WO2016116007A1 - 一种废气除尘方法和除尘剂 - Google Patents

一种废气除尘方法和除尘剂 Download PDF

Info

Publication number
WO2016116007A1
WO2016116007A1 PCT/CN2016/070998 CN2016070998W WO2016116007A1 WO 2016116007 A1 WO2016116007 A1 WO 2016116007A1 CN 2016070998 W CN2016070998 W CN 2016070998W WO 2016116007 A1 WO2016116007 A1 WO 2016116007A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
organic
exhaust gas
tower
dust removing
Prior art date
Application number
PCT/CN2016/070998
Other languages
English (en)
French (fr)
Inventor
魏雄辉
Original Assignee
北京博源恒升高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京博源恒升高科技有限公司 filed Critical 北京博源恒升高科技有限公司
Priority to ES16739754T priority Critical patent/ES2910525T3/es
Priority to EA201791649A priority patent/EA035474B1/ru
Priority to US15/534,341 priority patent/US10744452B2/en
Priority to PL16739754.6T priority patent/PL3248669T3/pl
Priority to CA2969804A priority patent/CA2969804C/en
Priority to BR112017013890-5A priority patent/BR112017013890B1/pt
Priority to AU2016208969A priority patent/AU2016208969B2/en
Priority to JP2017537977A priority patent/JP2018501954A/ja
Priority to KR1020177019772A priority patent/KR20170102269A/ko
Priority to MX2017009338A priority patent/MX2017009338A/es
Priority to EP16739754.6A priority patent/EP3248669B1/en
Publication of WO2016116007A1 publication Critical patent/WO2016116007A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/14Packed scrubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention relates to the technical field of exhaust gas dust removal, in particular to a method, a device and a dust removing agent for flue gas or various combustion tail (waste) gas dust removal.
  • the burning of fossil fuels produces a large amount of flue gas that is emitted into the atmosphere.
  • the flue gas also contains a large amount of dust.
  • the invention includes minute hydrophilic and lipophilic particles, wherein the minute hydrophilic and lipophilic particles mainly include calcium salt particles, aluminum salt particles, magnesium salt particles, titanium salt particles, iron salt particles, lead salt particles, and zinc salts. Particles, cobalt salt particles, rare earth element particles, radioactive element particles and other harmful element particles, and mineral particles such as silica particles, mullite particles, silicate particles, and phosphate particles.
  • the limestone wet desulfurization method is that the calcium carbonate stone from the mine is crushed by a crusher, and then ground into a fine powder having a mesh number of more than 325 mesh by a ball mill, and then formulated into a slurry containing 10% to 15% of the calcium carbonate powder;
  • the calcium slurry is contacted with the flue gas in the desulfurization tower, and the sulfur dioxide in the gas reacts with the calcium carbonate in the slurry to form calcium sulfite, and the calcium sulfite slurry is oxidized into calcium sulfate in the air forced oxidation layer of the desulfurization tower to separate the calcium sulfate.
  • the ground calcium carbonate slurry contains some calcium sulfite, which will decompose and release sulfur dioxide, causing secondary pollution.
  • the finely ground hydrophilic and lipophilic particles contained in the ground calcium carbonate slurry are taken out by the flue gas and discharged into the atmosphere, and the surface of these particles is easily adsorbed with heavy metal compounds, sulfur dioxide, sulfur trioxide, hydrogen chloride, hydrogen fluoride.
  • Other harmful organic matter and bacteria such as nitrogen oxides, dioxins, polycyclic aromatic hydrocarbons, etc., cause a significant increase in the content of suspended particulates (ie, PM100, PM10, PM2.5, etc.), causing haze and atmospheric photochemical reactions. Causes serious environmental pollution.
  • minute hydrophilic and lipophilic particles mainly include calcium salt particles, aluminum salt particles, magnesium salt particles, titanium salt particles, iron salt particles, lead salt particles, zinc salt particles, cobalt salt particles, rare earth element particles, Radioactive element particles and other harmful element particles, and mineral particles such as silica particles, mullite particles, silicate particles, and phosphate particles.
  • the lime wet desulfurization process uses the calcined calcium oxide to react with water to form a calcium hydroxide aqueous emulsion, which is formulated into a lime slurry.
  • a slurry containing 10% to 15% of calcium hydroxide the calcium hydroxide slurry is contacted with the flue gas in the desulfurization tower, the sulfur dioxide in the gas reacts with the calcium hydroxide in the slurry to form calcium sulfite, and the calcium hydroxide slurry is converted into sulfurous acid.
  • Calcium slurry calcium sulfite slurry is oxidized into calcium sulfate in the air forced oxidation layer of the desulfurization tower, and the calcium sulfite slurry is converted into calcium sulfate slurry; the calcium sulfate slurry flows out of the desulfurization tower, and enters the separator to separate the calcium sulfate in the slurry;
  • the calcium sulphate also contains some solid waste such as calcium sulfite, calcium carbonate and unreacted calcium hydroxide. Calcium sulfite will decompose and release sulphur dioxide, which will cause pollution transfer and secondary pollution. Moreover, in the production of calcium oxide.
  • minute hydrophilic and lipophilic particles mainly include calcium salt particles, aluminum salt particles, magnesium salt particles, titanium salt particles, iron salt particles, lead salt particles, zinc salt particles, cobalt salt particles, rare earth element particles, Radioactive element particles and other harmful element particles, and mineral particles such as silica particles, mullite particles, silicate particles, and phosphate particles.
  • the exhaust gas after wet desulfurization by limestone or lime contains a large amount of fine particles that cannot be removed by conventional dust removal methods (such as bag dust removal method), and if it is directly discharged to the atmosphere without further dust removal, it will significantly enhance smog and Atmospheric photochemical reaction phenomenon.
  • dust removal methods such as bag dust removal method
  • emissions of exhaust gases cannot remove organic matter that is extremely harmful to humans and organisms. The discharge of these organic substances into the atmosphere can seriously affect and endanger human health.
  • the conventional exhaust gas dust removal methods include electrostatic dust removal method, cyclone dust removal method, bag dust removal method, and water wet dust removal method.
  • the basic principle of the electrostatic dust removal method is that the dust-containing gas is electrically separated when passing through a high-voltage electrostatic field. After the negative combination of the dust particles and the negative ions, the anode surface is discharged and deposited. In a strong electric field, air molecules are ionized into positive ions and electrons, and electrons encounter dust particles in the process of the positive electrode, so that the dust particles are negatively charged and absorbed to the positive electrode to be collected.
  • the biggest drawback of the electrostatic precipitator method is that the dust deposited on the electrode plate is easy to block the gap due to the small gap between the electrode plates.
  • the gap between the plates is more likely to be blocked, and it is difficult to remove, so that the electrostatic precipitator loses dust.
  • the effect is significantly increased.
  • the gap between the electrode plates is increased, the required voltage is higher to have the dust removal effect, otherwise there is no dust removal capability; the high voltage of the plate is likely to cause serious safety accidents, and the equipment manufacturing requirements are high, the structure is complicated, and the cost is significantly increased. high.
  • the electrostatic dust removal method is only applicable to the dust removal of charged particles, and has a certain range of adaptation to the dust concentration of the purified gas.
  • the cyclone dust removal method is to make the centrifugal action of the dust-containing gas in the cyclone to generate a centrifugal force to separate the dust from the gas to achieve the separation.
  • the cyclone dust removal method is characterized by simple equipment and low cost; the disadvantage is that the separation effect is poor and can only be separated. Particulate dust, which cannot be removed by tiny particles.
  • the bag dust removal method is to fix the dust bag from the bag bag to the bag bag after the bag is fixed.
  • the bag fiber blocks the dust and the gas enters the bag bag, thereby removing the dust in the gas.
  • the bag dust removal method is characterized by simple equipment, low cost and simple operation. The shortcomings are also very significant. When the dust adheres strongly, the bag is very easy to block the cake, loses the filtering effect, the resistance increases sharply, and the production cannot be carried out.
  • the bag dust removal method relies on the fiber cloth bag to filter the gas for dust removal
  • the filtering effect is determined by the fiber diameter of the bag, but the smaller the hole diameter, the greater the resistance, and the dust particles larger than the bag fiber diameter can be removed, which is smaller than the bag fiber diameter. Dust particles pass through the bag with the gas and cannot be removed.
  • the water-wet dust removal method directly injects water into a dust-containing gas stream, which agglomerates particles that can be wetted by water in the gas into large particles to precipitate and remove dust.
  • the water-wet dust removal method can remove various hydrophilic particles in a gas, but cannot remove lipophilic particles.
  • the dust removal effect is better than the dust removal effect of the bag.
  • the boiling point of water is only 100 ° C, it is easy to vaporize, and the vaporized water will be carried away with the gas.
  • the gas temperature is high, the water loss is serious, especially in the water-deficient area, it is not suitable for water use. Dust removal method. Since wet dust removal requires a large amount of water, various industrial alkaline waste waters are generally used as dust removers in actual use, but high requirements are also imposed on the recovery and treatment of dusty wastewater.
  • An exhaust gas dust removal process comprises the following steps: a dust-containing exhaust gas and an organic dust-removing agent respectively enter a dust-removing tower, and are contacted in the tower, at least part of the water vapor in the dust-containing exhaust gas is condensed, and the organic dust removing agent and the condensed water adsorb the dust-containing exhaust gas. Solid particles, acidic contaminants, organic contaminants and/or heavy metal compounds; the resulting purge gas is vented or enters a subsequent process.
  • the organic dusting agent and the condensed water mixed solution adsorbing solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds enter the filter for solid-liquid separation, and the ash discharged from the filter is further processed or After being recycled, the obtained filtrate enters the storage tank for oil-water separation, and the lower aqueous layer is discharged for further treatment or recycling, and the upper organic dust remover layer is still sent back to the dust removal tower for use.
  • a countercurrent exhaust gas dust removal process is adopted, that is, the dust-containing exhaust gas enters the countercurrent dust removal tower from the lower portion, and the organic dust removing agent enters the countercurrent dust removal tower from the upper portion, and is in countercurrent contact with the dust-containing exhaust gas in the tower, and the obtained purified gas is from the top of the countercurrent dust removal tower. Venting or entering a subsequent process; organically adsorbing solid particles, acidic contaminants, organic contaminants and/or heavy metal compounds The dust and condensate mixed solution is discharged from the bottom of the countercurrent dedusting tower.
  • a downstream exhaust gas dust removal process is adopted, that is, both the dust-containing exhaust gas and the organic dust removing agent enter the downstream dust-removing tower from the upper portion, and are in downstream contact with the tower, and the organic dust removing agent and the condensed water adsorb the solid particles in the dust-containing exhaust gas.
  • Acidic pollutants, organic pollutants and/or heavy metal compounds the obtained gas-liquid mixture enters the gas-liquid separator together, and the purified gas obtained after gas-liquid separation is vented from the top of the gas-liquid separator or enters a subsequent process; adsorbed solid particles and acid
  • the organic dust remover and condensed water mixed solution of contaminants, organic pollutants and/or heavy metal compounds are discharged from the bottom of the gas-liquid separator.
  • a mixed-flow exhaust gas dust removal process is adopted, that is, the dust-containing exhaust gas and the organic dust-removing agent enter the downstream dust-removing tower from the upper portion, and are in downstream contact in the tower, and the water vapor in the dust-containing exhaust gas is at least partially condensed, and the dust-containing exhaust gas is exhausted.
  • At least part of the solid particles, acidic contaminants, organic pollutants and/or heavy metal compounds are adsorbed by the organic dust remover and the condensed water, forming a gas-liquid mixture through the lower part of the downstream dedusting tower into the countercurrent dedusting tower, and entering from the upper part of the countercurrent dedusting tower
  • the organic dedusting agent is countercurrently contacted in the tower, and the obtained purified gas is vented from the top of the countercurrent dedusting tower or into a subsequent process; the organic dedusting agent and condensed water mixed with solid particles, acidic contaminants, organic pollutants and/or heavy metal compounds are mixed.
  • the solution is collected at the bottom of the countercurrent dedusting tower.
  • a part of the organic dust removing agent and the condensed water mixed solution at the bottom of the countercurrent dedusting tower is extracted by the internal circulation pump as an internal circulation dust removing agent, and is sprayed from the upper part of the downstream dust removing tower into the downstream contact with the dust-containing exhaust gas, and/or from the countercurrent flow.
  • the middle part of the dust removal tower is sprayed in countercurrent with the dusty exhaust gas.
  • the upper organic dedusting agent layer of the sump is pumped by a circulation pump, recycled into a countercurrent dedusting tower, and/or recycled into a downstream dedusting tower.
  • the upper organic dedusting agent layer of the sump is pumped by a circulation pump, cooled by a coolant in a heat exchanger, and then used in a countercurrent dedusting tower for recycling, and/or into a downstream dedusting tower for recycling.
  • a filler layer may be disposed in the dust removal tower.
  • the organic dust removing agent is in countercurrent contact with the dust-containing exhaust gas, and the dust-containing exhaust gas is cooled to below 80 ° C.
  • the temperature of the organic dust remover entering the dust removal tower is below 80 °C.
  • the heat recovery after the endothermic heat is recovered.
  • the exhaust gas after dedusting and purifying may be further subjected to a subsequent process of desulfurization and/or denitration treatment.
  • the invention also provides an exhaust gas dust removing device, comprising a dust removing tower, a filter and a storage tank, wherein the dust removing tower is provided with a dust-containing exhaust gas inlet and an organic dust removing agent inlet, and the filter is connected to the bottom of the dust removing tower.
  • the storage tank is connected with the filter; the organic dust remover is in contact with the dust-containing exhaust gas in the dust removal tower, and the water vapor in the dust-containing exhaust gas at least partially condenses, adsorbing solid particles, acidic pollutants, organic pollutants and/or in the dust-containing exhaust gas.
  • Heavy metal compound, mixed organic dust remover and condensed water The combined solution enters the filter for solid-liquid separation, and the obtained ash is discharged from the filter.
  • the obtained filtrate enters the storage tank, precipitates and separates, and the aqueous layer of the lower layer of the storage tank is discharged, and the upper organic dust remover layer is optionally reused.
  • the dust removal tower is provided with a dust
  • the dust-containing exhaust gas inlet is located at a lower portion of the dust-removing tower, and the organic dust-removing agent inlet is located at an upper portion of the dust-removing tower, and the organic dust-removing agent is in countercurrent contact with the dust-containing exhaust gas in the tower, and the purified gas is vented from the top of the dust-removing tower or Enter the follow-up process.
  • the device further comprises a gas-liquid separator connected to the bottom of the dust removal tower; the dust-containing exhaust gas inlet and the organic dust collector inlet are located at the upper part of the dust removal tower, and the organic dust remover
  • the dust-containing exhaust gas is in downstream contact with the tower, and the organic dust remover and the condensed water adsorb solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds in the dust-containing exhaust gas, and the obtained gas-liquid mixture enters the gas-liquid separator together.
  • the purified gas is vented from the top of the gas-liquid separator or into the subsequent process; the organic dust-removing agent and the condensed water mixed solution adsorbing solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds are from the bottom of the gas-liquid separator Discharge and enter the filter for solid-liquid separation.
  • the device comprises a downstream dust removal tower and a countercurrent dust removal tower, and the dust-containing exhaust gas and the organic dust-removing agent enter the downstream dust-removing tower from the upper feed inlet, and are in downstream contact with the tower, and the water in the dust-containing exhaust gas
  • the steam is at least partially condensed, and at least part of the solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds in the dust-containing exhaust gas are adsorbed by the organic dust remover and the condensed water, and the gas-liquid mixture is formed into the countercurrent dust removal tower through the lower part of the downstream dust removal tower.
  • the organic dust removing agent entering from the upper part of the countercurrent dedusting tower is in countercurrent contact in the tower, and the obtained purifying gas is vented from the top of the countercurrent dedusting tower or enters a subsequent process; adsorbing solid particles, acidic pollutants, organic pollutants and/or heavy metal compounds
  • the organic dedusting agent and the condensed water mixed solution are collected at the bottom of the countercurrent dedusting tower.
  • the apparatus further comprises an internal circulation pump, extracting a mixed solution of a part of the organic dust remover and the condensed water from the bottom of the counter-current dust removal tower, and injecting from the upper part of the downstream dust-removing tower into the downstream contact with the dust-containing exhaust gas and/or from the countercurrent flow
  • the middle part of the dust removal tower is sprayed in countercurrent with the dusty exhaust gas.
  • the apparatus further comprises a circulation pump, and the upper organic dedusting agent layer of the sump is extracted by a circulation pump, passed to a countercurrent dedusting tower for recycling, and/or recycled by a downstream dedusting tower.
  • the apparatus further comprises a circulation pump and a heat exchanger, and the upper organic dedusting agent layer of the sump is pumped by the circulation pump, cooled by the coolant in the heat exchanger, and then enters the countercurrent dedusting tower for recycling, and/or enters the downstream Dust removal tower recycling
  • the apparatus further comprises a heat pump system for recovering waste heat from the endothermic heat coolant.
  • the dust removal tower is provided with a filler layer or an atomizing nozzle to increase the gas-liquid contact surface.
  • the device can be further used in conjunction with a desulfurization and/or denitration device.
  • an organic dust removing agent comprising a non-toxic high-boiling organic solvent composition selected from the group consisting of Two or more kinds of oil, silicone oil, modified silicone oil, liquid asphalt oil, tung oil, liquid paraffin oil, mineral oil, palm oil and waste oil are used.
  • the edible oil may be selected from one or more of peanut oil, salad oil, olive oil, castor oil, camellia oil, rape oil, corn oil, various plant germ oils, and soybean oil.
  • the organic dust remover comprises a silicon based modifier, preferably a silicone oil or a modified silicone oil.
  • the organic dust remover comprises a high boiling edible oil and a silicon based modifier, preferably a silicone oil or a modified silicone oil.
  • the organic dust remover further contains water.
  • the water may be condensed water obtained by condensation of water vapor in the dust-containing exhaust gas.
  • the modified silicone oil is preferably modified by hydroxylation and/or amine nitridation and/or carboxylation and/or acylation.
  • the exhaust gas dust removal process of the present invention is characterized in that the organic dust remover directly adsorbs the dust in the gas by contacting the water-incompatible, non-toxic organic dust remover directly with the flue gas or various combustion tail (waste) gases.
  • the gas temperature is directly cooled to below 80 ° C, and HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other organic substances and heavy metal compounds in the gas are also adsorbed by the dust remover. Since the exhaust gas contains more or less part of water vapor, when the dust remover and the exhaust gas are in contact, part of the water vapor will condense into water droplets, and the water droplets will agglomerate the hydrophilic particles of various particle sizes into large particles.
  • the organic dust remover Enriched in an oil-water mixed solution composed of a dust remover and condensed water; at the same time, the organic dust remover also agglomerates the lipophilic particles of various particle sizes in the exhaust gas into large particles, and is enriched in a dust remover and condensed water.
  • the oil-water mixed solution The hydrophilic particles of various particle sizes in the oil-water mixed solution composed of the organic dust remover and the condensed water and the lipophilic particles of various particle sizes are further agglomerated and gradually grown into larger particles deposited to the bottom of the oil-water mixed solution.
  • the oil-water mixed solution is divided into an aqueous layer and an organic dust remover layer; and during the process of particle agglomeration and gradual growth, the adsorbed HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other organic matter and heavy metal compounds are adsorbed on
  • the various particles in the oil-water mixed solution are adsorbed and wrapped, and then deposited together to the bottom of the oil-water mixed solution to form a ash layer, which is an aqueous layer, the uppermost layer is an organic dust remover layer, and the organic dust remover can be recycled; the ash layer It can be used to extract valuable substances.
  • the water layer also contains a large amount of HCl, HF and a small amount of dioxins, polycyclic aromatic hydrocarbons and other organic compounds and heavy metal compounds, etc., which need to be further treated for later sewage discharge or recovery.
  • the method can effectively remove dust (including PM100, PM10, PM2.5 and smaller particles, etc.) in the exhaust gas, and can also remove HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other gases in the exhaust gas. Organic matter and heavy metal compounds, etc.
  • the basic principle of dust removal of the organic dust remover according to the present invention is a physical adsorption process;
  • the organic dust remover of the present invention is High boiling point non-toxic edible oil, silicone oil, modified silicone oil, liquid asphalt oil, tung oil, liquid paraffin oil, mineral oil, palm oil and so on.
  • the organic dust remover has good solubility, sufficient source, stable property, can be repeatedly recycled at high temperature, and the vapor pressure of the organic dust remover is high, can significantly avoid secondary pollution caused by vaporization, and can simultaneously remove exhaust gas.
  • HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other organic and heavy metal compounds are examples of these organic dust remover.
  • the dust removing process and the organic dust removing agent of the invention can be used for purifying the exhaust gas generated by the boiler flue gas, the garbage incineration tail gas and various combustion products, and the purifying gas after the dust removal can enter the desulfurization or denitration section to further perform desulfurization. And / or denitrification treatment.
  • 1 is a schematic view of a process and apparatus for countercurrent exhaust gas dedusting. Among them: 1 is the exhaust gas before dust removal, 2 is the exhaust gas after purification, 3 is the countercurrent dust removal tower, 4 is the organic dust remover, 5 is the ash, 6 is the filter, 7 is the storage tank, 8 is the circulation pump, 9 is the heat exchange 10 is a coolant and 11 is a hot coolant.
  • 2 is a schematic diagram of a downstream exhaust gas dedusting process and equipment. Among them: 1 is exhaust gas before dust removal, 2 is exhaust gas after purification, 4 is organic dust remover, 5 is ash, 6 is filter, 7 is storage tank, 8 is circulation pump, 9 is heat exchanger, 10 is coolant 11 is a hot coolant, 12 is a downstream dust removal tower, and 13 is a gas-liquid separator.
  • 3 is a schematic diagram of a mixed flow exhaust gas dedusting process and equipment. Among them: 1 is the exhaust gas before dust removal, 2 is the exhaust gas after purification, 3 is the countercurrent dust removal tower, 4 is the organic dust remover, 5 is the ash, 6 is the filter, 7 is the storage tank, 8 is the circulation pump, 9 is the heat exchange 10 is a coolant, 11 is a hot coolant, 12 is a downstream dust removal tower, 14 is an internal circulation pump, and 15 is an internal circulation dust remover.
  • 4 is another schematic diagram of a mixed flow exhaust gas dedusting process and apparatus.
  • 1 is the exhaust gas before dust removal
  • 2 is the exhaust gas after purification
  • 3 is the countercurrent dust removal tower
  • 4 is the organic dust remover
  • 5 is the ash
  • 6 is the filter
  • 7 is the storage tank
  • 8 is the circulation pump
  • 9 is the heat exchange 10 is a coolant
  • 11 is a hot coolant
  • 12 is a downstream dust removal tower
  • 14 is an internal circulation pump
  • 15 is an internal circulation dust remover (partially injected from the top of the downstream dust removal tower 12 for pressurization and dust removal)
  • the portion is internally circulated with the dust-containing exhaust gas
  • the other portion is a portion of the counter-current dust-removing tower 3 that is injected into the counter-flowing dust-removing agent in a countercurrent contact with the dust-containing exhaust gas
  • 16 is a packing layer.
  • the reverse flow exhaust dust removal process and equipment are shown in Fig. 1.
  • the operation method is that the exhaust gas 1 enters the countercurrent dust removal tower 3 from the bottom before the dust removal, and the organic dust remover 4 enters the countercurrent dust removal tower 3 from the top, and the exhaust gas before the dust removal in the countercurrent dust removal tower 3.
  • the dust, HCl, HF, dioxins, polycyclic aromatic hydrocarbons, other organic substances and heavy metal compounds in the exhaust gas 1 before the dust removal are adsorbed by the organic dust remover 4 and the condensed water, and the exhaust gas before the dust removal 1 is converted into purified exhaust gas 2 from the top of the countercurrent dedusting tower 3; a mixture of organic dusting agent 4 and condensed water which adsorbs dust, HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other organic substances and heavy metal compounds
  • the solution is collected at the bottom of the countercurrent dedusting tower 3, then flows out from the bottom of the countercurrent dedusting tower 3, and enters the filter 6 for filtration.
  • the separated ash 5 is discharged from the filter 6, and the filtrate enters the storage tank 7, and is precipitated and divided.
  • the bottom layer is an aqueous layer containing HCl, HF, dioxins, polycyclic aromatic hydrocarbons and other organic compounds and heavy metal compounds, which are discharged, further processed or recycled, and the upper organic dedusting agent
  • the heat generating coolant 11 can use the hot coolant 11 to recover the waste heat; when the exhaust gas 1 does not need to be cooled and cooled before the dust removal, the clean organic dust remover 4 delivered by the circulating pump 8 can directly enter the countercurrent dust removal tower 3, at this time, the industry The heat exchanger 9, the coolant 10 and the hot coolant 11 in the process can be omitted.
  • the downstream exhaust gas dust removal process and equipment are shown in Figure 2: the operation method is that the exhaust gas 1 enters the downstream dust removal tower 12 from the top before the dust removal, and the organic dust remover 4 also enters the downstream dust removal tower 12 from the top, in the downstream dust removal tower.
  • the exhaust gas 1 and the organic dust remover 4 are in contact with each other, and the dust, HCl, HF, dioxins, polycyclic aromatic hydrocarbons, other organic substances and heavy metal compounds in the exhaust gas 1 before being dedusted are condensed by the organic dust remover 4
  • Water adsorption before the dedusting, the exhaust gas 1 is converted into a purified exhaust gas 2 from the bottom of the downstream dedusting tower 12 into the gas-liquid separator 13, and is vented from the top of the gas-liquid separator 13 after gas-liquid separation; adsorption of dust, HCl a mixed solution of HF, dioxins, polycyclic aromatic hydrocarbons, organic diluents 4 such as organic compounds and heavy metal compounds, and condensed water is collected at the bottom of the downstream dust removal tower 12, and enters the gas-liquid separator 13 for gas.
  • the liquid is separated, then flows out from the bottom of the gas-liquid separator 13, and enters the filter 6 for filtration.
  • the separated ash 5 is discharged from the filter 6, and the filtrate enters the storage tank 7, and is precipitated and layered, and the bottom is contained.
  • HCl, HF, dioxins The water layer of polycyclic aromatic hydrocarbons and other organic substances and heavy metal compounds is discharged, further processed or recycled, and the upper organic dust remover 4 is transported by the dust removing pump 8 and further transformed by the coolant 10 in the heat exchanger 9 after being cooled.
  • the cleaned organic dust remover 4 is reused in the downstream dust removal tower 12, and the coolant 10 absorbing the heat in the organic dust remover is converted into the hot coolant 11, and the waste heat can be recovered by using the hot coolant 11; 1
  • the clean organic dust remover 4 delivered by the circulation pump 8 can directly enter the downstream dust removal tower 12, at this time, the heat exchanger 9 and the coolant in the industrial process. 10 and the hot coolant 11 can be omitted.
  • the mixed flow exhaust gas dust removal process and equipment are shown in Fig. 3: the operation method is that the exhaust gas 1 enters the downstream dust removal tower 12 from the top before the dust removal, and the inner circulation pump 14 extracts the inner circulation dust remover 15 from the bottom of the countercurrent dust removal tower 3 also from the top.
  • the exhaust gas 1 and the internal circulation dust remover 15 are in downstream contact with each other before the dust removal in the downstream dust removal tower 12, and most of the dust, HCl, HF, dioxin, polycyclic aromatic hydrocarbons in the exhaust gas 1 before the dust removal and Other organic matter and heavy metal compounds are adsorbed by the inner circulating dust removing agent 15 and the condensed water to form a gas-liquid mixture, and enter the countercurrent dust removing tower 3 from the bottom of the downstream dust removing tower 12; at the bottom of the countercurrent dust removing tower 3, internal circulation dust removing
  • the agent 15 is separated from the partially purified pre-dusting off-gas 1 which enters the counter-current dedusting tower 3 from the bottom, and the organic dedusting agent 4 enters the counter-current dedusting tower 3 from the top, and the partially purified exhaust gas and the organic dedusting agent in the counter-current dedusting tower 3.
  • a part of the mixed solution is extracted by the internal circulation pump 14 as an internal circulation dust remover 15 from the top into the downstream dust removal tower 12 for recycling, and the remainder flows out from the bottom of the countercurrent dedusting tower 3, and enters the filter 6 for filtration.
  • the separated ash 5 is discharged from the filter 6, and the filtrate enters the storage tank 7, precipitates and separates, and the bottom is an aqueous layer containing HCl, HF, dioxins, polycyclic aromatic hydrocarbons, and other organic substances and heavy metal compounds.
  • the upper organic dust remover layer is transported by the dust removal pump 8, and then cooled by the coolant 10 in the heat exchanger 9 to be converted into a clean organic dust remover 4, and enters the countercurrent dust removal tower 3
  • the coolant 10 absorbing the heat in the dust remover is converted into the hot coolant 11, and the heat coolant 11 can be used for waste heat recovery; in this process, the internal circulation dust removal 15 can also be replaced by a clean organic dust remover 4, in which case the internal circulation pump 14 can be omitted, so that the clean organic dust remover 4 from the heat exchanger 9 is divided into two paths, one into the countercurrent dust removal tower 3, and the other from the other side.
  • the top directly enters the downstream dedusting tower 12.
  • the clean organic dust remover 4 delivered by the circulation pump 8 can directly enter the countercurrent dust removal tower 3, at this time the heat exchanger 9, the coolant 10 and the hot coolant in the industrial process. 11 can be saved.
  • the inner circulation dust remover 15 can also be divided into two paths, one way from the top of the downstream dust removal tower 12 for supercharging and dust removal, and the dusty exhaust gas 1 is directly processed.
  • the flow contact, the other path is injected from the middle of the counter-current dust removal tower 3 into countercurrent contact with the preliminary purified dust-containing exhaust gas, and the counter-flow dust removal tower 3 may also be provided with a filler layer 16 to improve the condensation efficiency.
  • the absorption bottle used in the laboratory is used, and the absorption bottle is filled with 200 ml of modified silicone oil, and a kiln exhaust gas of 800 tons of glass is directly produced from a petroleum coke of a group in Huzhou, Zhejiang Province, and dust is removed by a bag filter.
  • the absorption bottle used in the laboratory is used, and the absorption bottle is filled with 200 ml of peanut oil and modified silicone oil mixture, and a 600-ton glass kiln exhaust gas is directly produced from a natural gas-based group of Hainan Group through denitration and On the pipeline after alkali desulfurization, exhaust gas is extracted for dust removal test; 0.6Nm 3 of exhaust gas is taken through the absorption bottle, absorbed by 200ml peanut oil and modified silicone oil mixture in the absorption bottle; 200ml peanut oil and modified to absorb dust
  • the silicone oil mixture is centrifuged, and after centrifugation, it is divided into three layers in the centrifuge tube: the bottom is the ash layer, followed by the water layer, and the upper layer is the mixed layer of peanut oil and modified silicone oil;

Abstract

一种废气除尘方法和和装置以及该方法所用的除尘剂。使含尘废气(1)与有机除尘剂(4)分别进入除尘塔(3),并在塔内接触,含尘废气(1)中至少部分的水蒸汽冷凝,有机除尘剂(4)和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物;所得净化气(2)放空或进入后续工艺。有机除尘剂(4)包含无毒高沸点有机溶剂组合物,选自食用油、硅油、改性硅油、液态沥青油、桐树子油、液态石蜡油、矿物油、棕榈油和地沟油中的两种或两种以上。

Description

一种废气除尘方法和除尘剂 技术领域
本发明涉及废气除尘技术领域,具体涉及一种烟道气或各种燃烧尾(废)气除尘的方法、设备和除尘剂。
背景技术
化石燃料燃烧产生大量的烟道气排放到大气中,烟道气中除含有二氧化硫、三氧化硫、氯化氢、氟化氢、氮氧化物、少量有害有机物和重金属化合物外,还含有大量灰尘,这些灰尘中包括微小的亲水性和亲脂性粒子,其中,所述微小的亲水性和亲脂性粒子主要包括钙盐粒子、铝盐粒子、镁盐粒子、钛盐粒子、铁盐粒子、铅盐粒子、锌盐粒子、钴盐粒子、稀土元素粒子、放射性元素粒子和其它有害元素粒子,以及二氧化硅粒子、莫来石粒子、硅酸盐粒子、磷酸盐粒子等矿物粒子。这些粒子随烟道气一起被排放至大气中,且这些粒子表面很容易吸附重金属化合物、二氧化硫、三氧化硫、氯化氢、氟化氢、氮氧化物、二噁英、多环芳烃等其它有害有机物和细菌等,引起大气悬浮粒子(即PM100、PM10、PM2.5等)含量的显著增加,而引起雾霾和大气光化学反应现象,造成严重的环境污染。
目前,废气脱硫方法绝大多数是采用石灰石或石灰湿法脱硫。
石灰石湿法脱硫方法是矿山来的碳酸钙石块经破碎机破碎,再经球磨机磨成目数大于325目的细小粉末,然后将其配制成含碳酸钙粉末10%~15%的浆液;该碳酸钙浆液在脱硫塔中与烟道气接触,气体中二氧化硫和浆液中的碳酸钙反应生成亚硫酸钙,亚硫酸钙浆液在脱硫塔的空气强制氧化层被氧化成硫酸钙,分离硫酸钙,其中还含有部分亚硫酸钙,亚硫酸钙会分解释放出二氧化硫,产生二次污染现象。尤其,经磨碎的碳酸钙浆液中含有微小的亲水性和亲脂性粒子被烟道气带出,排放至大气中,且这些粒子表面很容易吸附重金属化合物、二氧化硫、三氧化硫、氯化氢、氟化氢、氮氧化物、二噁英、多环芳烃等其它有害有机物和细菌等,引起大气悬浮粒子(即PM100、PM10、PM2.5等)含量的显著增加,而引起雾霾和大气光化学反应现象,造成严重的环境污染。其中,所述微小的亲水性和亲脂性粒子主要包括钙盐粒子、铝盐粒子、镁盐粒子、钛盐粒子、铁盐粒子、铅盐粒子、锌盐粒子、钴盐粒子、稀土元素粒子、放射性元素粒子和其它有害元素粒子,以及二氧化硅粒子、莫来石粒子、硅酸盐粒子、磷酸盐粒子等矿物粒子等。
石灰湿法脱硫工艺是利用锻烧好的氧化钙与水反应生成氢氧化钙水乳浆液,将其配制成 含氢氧化钙10%~15%的浆液;氢氧化钙浆液在脱硫塔中与烟道气接触,气体中二氧化硫和浆液中的氢氧化钙反应生成亚硫酸钙,氢氧化钙浆液转变成亚硫酸钙浆液;亚硫酸钙浆液在脱硫塔的空气强制氧化层被氧化成硫酸钙,亚硫酸钙浆液转变成硫酸钙浆液;硫酸钙浆液流出脱硫塔,进入分离器分离出浆液中的硫酸钙;分离出的硫酸钙中还含有部分亚硫酸钙、碳酸钙和未反应的氢氧化钙等固体废物,亚硫酸钙会分解释放出二氧化硫,产生污染转移和二次污染现象;而且,在生产氧化钙的煅烧过程中,要消耗大量的煤,还会产生严重的污染。同时,由于氢氧化钙浆液中含有微小的亲水性和亲脂性粒子被烟道气带出,排放至大气中,且这些粒子表面很容易吸附重金属化合物、二氧化硫、三氧化硫、氯化氢、氟化氢、氮氧化物、二噁英、多环芳烃等其它有害有机物和细菌等,引起大气悬浮粒子(即PM100、PM10、PM2.5等)含量的显著增加,而引起雾霾和大气光化学反应现象,造成严重的环境污染。其中,所述微小的亲水性和亲脂性粒子主要包括钙盐粒子、铝盐粒子、镁盐粒子、钛盐粒子、铁盐粒子、铅盐粒子、锌盐粒子、钴盐粒子、稀土元素粒子、放射性元素粒子和其它有害元素粒子,以及二氧化硅粒子、莫来石粒子、硅酸盐粒子、磷酸盐粒子等矿物粒子等。
经石灰石或石灰湿法脱硫后的废气中含有大量的用传统的除尘方法(如布袋除尘法等)无法除去的微小粒子,若不经过进一步的除尘而直接排放至大气,会显著增强雾霾和大气光化学反应现象。尤其,排放废气中无法除去对人类和生物危害极大的有机物,这些有机物排放至大气中会严重影响和危害人类的健康。
传统的废气除尘方法有静电除尘法、旋风除尘法、布袋除尘法和水湿式除尘法等。
静电除尘法的基本原理是含尘气体经过高压静电场时被电分离,尘粒与负离子结合带上负电后,趋向阳极表面放电而沉积。在强电场中空气分子被电离为正离子和电子,电子奔向正极过程中遇到尘粒,使尘粒带负电吸附到正极被收集。通过技术创新,也有采用负极板集尘的方式。静电除尘法的最大缺陷是由于电极板间隙小,沉积在极板上的灰尘很容易堵塞间隙,尤其当粒子粘度大时更容易堵塞极板间的空隙,且不易除去,使静电除尘器失去除尘作用,阻力显著增大。但是,当电极板间隙增大后,要求电压较高才会有除尘效果,否则无除尘能力;极板电压较高容易造成严重的安全事故,且对设备制造要求高,结构复杂,造价显著升高。并且,静电除尘法仅适用于带电粒子除尘,对所净化的气体的含尘浓度有一定的适应范围。
旋风除尘法是使含尘气体在旋风除尘器中做旋转运动产生离心力,使灰尘与气体分开,来达到分离作用。旋风除尘法的特点是设备简单,造价低;缺点是分离效果差,只能分离大 颗粒灰尘,对微小粒子无法除去。
布袋除尘法是将布袋固定以后,使含尘气体从布袋外流向布袋内,含尘气体经过布袋外表面时,布袋纤维将灰尘拦阻在外,气体进入布袋内,以此除去气体中灰尘的作用。布袋除尘法特点是设备简单、造价低、操作简单。其缺点也非常显著,当灰尘黏附性强时,布袋非常容易结饼堵塞,失去过滤效果,阻力激增,生产无法进行。由于布袋除尘法是依靠纤维布袋过滤气体来进行除尘的,因此其过滤效果由布袋的纤维孔径决定,但是孔径越小阻力越大,大于布袋纤维孔径的灰尘颗粒可以去除掉,小于布袋纤维孔径的灰尘颗粒会和气体一起穿过布袋,无法除去。
水湿式除尘法是直接将水喷入含尘的气流中,水将气体中水能够润湿的粒子团聚成大颗粒,沉淀除去灰尘。水湿式除尘法能够将气体中亲水性的各种粒子除去,但是对亲脂性的粒子无法除去。其除尘效果比布袋除尘效果好,但是,由于水的沸点只有100℃,容易汽化,汽化的水会随气体带走,当气体温度高时,水损失严重,尤其缺水地区不适宜是用水湿式除尘法除尘。由于湿法除尘需要耗费大量的水,因此在实际使用时通常以各种工业碱性废水作为除尘剂,但对含尘废水的回收、处理也提出了较高的要求。
同时,传统的烟道气除尘方法都不具有去除气体中的二噁英、多环芳烃、其它有机物和重金属化合物的能力。
发明内容
本发明的目的在于提供一种能高效去除废气中颗粒物和有机污染物的工艺。为解决上述问题,提供如下技术方案:
一种废气除尘工艺,包含如下步骤:含尘废气与有机除尘剂分别进入除尘塔,并在塔内接触,含尘废气中至少部分的水蒸汽冷凝,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物;所得净化气放空或进入后续工艺。
作为优选方案,吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液进入过滤机进行固液分离,从过滤机中排出的灰渣经进一步处理或回收使用,所得滤液进入贮槽进行油水分离,下层水相层放出经进一步处理或回收使用,上层有机除尘剂层仍然送回至除尘塔中使用。
作为优选方案,采用逆流废气除尘工艺,即,含尘废气从下部进入逆流除尘塔,有机除尘剂从上部进入逆流除尘塔,与含尘废气在塔内逆流接触,所得净化气从逆流除尘塔顶部放空或经进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机 除尘剂和冷凝水混合溶液从逆流除尘塔底部排出。
作为优选方案,采用顺流废气除尘工艺,即,含尘废气和有机除尘剂均从上部进入顺流除尘塔,在塔内顺流接触,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,所得气液混合物一同进入气液分离器,气液分离后所得净化气从气液分离器顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液从气液分离器底部排出。
作为优选方案,采用混合流废气除尘工艺,即,含尘废气和有机除尘剂均从上部进入顺流除尘塔,在塔内顺流接触,含尘废气中的水蒸汽至少部分冷凝,含尘废气中的至少部分固体颗粒、酸性污染物、有机污染物和/或重金属化合物被有机除尘剂和冷凝水吸附,形成气液混合物经顺流除尘塔下部进入逆流除尘塔,与从逆流除尘塔上部进入的有机除尘剂在塔内逆流接触,得到的净化气从逆流除尘塔顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液汇集在逆流除尘塔底部。
作为优选方案,逆流除尘塔底部的一部分有机除尘剂和冷凝水混合溶液被内循环泵抽取作为内循环除尘剂,从顺流除尘塔上部喷入与含尘废气顺流接触,和/或从逆流除尘塔中部喷入与含尘废气逆流接触。
作为优选方案,所述贮槽上层有机除尘剂层由循环泵抽取,进入逆流除尘塔循环使用,和/或进入顺流除尘塔循环使用。
作为优选方案,所述贮槽上层有机除尘剂层由循环泵抽取,经热交换器中冷却剂降温后进入逆流除尘塔循环使用,和/或进入顺流除尘塔循环使用。
作为优选方案,所述除尘塔内可设置有填料层。
作为优选方案,所述废气除尘工艺中有机除尘剂与含尘废气逆流接触,使含尘废气降温至80℃以下。
作为优选方案,进入除尘塔的有机除尘剂的温度低于80℃。
作为优选方案,对吸热后的热冷却剂进行余热回收。
作为优选方案,经除尘净化后的废气可进一步进行脱硫和/或脱硝处理的后续工艺。
本发明还提供了一种废气除尘装置,包括除尘塔、过滤机和贮槽,其特征在于,除尘塔设有含尘废气进料口和有机除尘剂进料口,过滤机连接除尘塔底部,贮槽与过滤机连接;有机除尘剂与含尘废气在除尘塔内接触,含尘废气中的水蒸汽至少部分冷凝,吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,吸附后的有机除尘剂和冷凝水混 合溶液进入过滤机中进行固液分离,所得灰渣从过滤机中排出,所得滤液进入贮槽,沉淀、分层,贮槽下层的水相层放出,上层有机除尘剂层任选回用至除尘塔中。
作为优选方案,所述含尘废气进料口位于除尘塔下部,有机除尘剂进料口位于除尘塔上部,有机除尘剂与含尘废气在塔内逆流接触,所得净化气从除尘塔顶部放空或进入后续工艺。
作为优选方案,所述装置进一步包括气液分离器,该气液分离器与除尘塔底部连接;所述含尘废气进料口和有机除尘剂进料口均位于除尘塔上部,有机除尘剂与含尘废气在塔内顺流接触,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,所得气液混合物一同进入气液分离器,经气液分离后净化气从气液分离器顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液从气液分离器底部排出,进入过滤机中进行固液分离。
作为优选方案,所述装置包括顺流除尘塔和逆流除尘塔,含尘废气和有机除尘剂均从上部的进料口进入顺流除尘塔,在塔内顺流接触,含尘废气中的水蒸汽至少部分冷凝,含尘废气中的至少部分固体颗粒、酸性污染物、有机污染物和/或重金属化合物被有机除尘剂和冷凝水吸附,形成气液混合物经顺流除尘塔下部进入逆流除尘塔,与从逆流除尘塔上部进入的有机除尘剂在塔内逆流接触,得到的净化气从逆流除尘塔顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液汇集在逆流除尘塔底部。
作为优选方案,所述装置进一步包括内循环泵,从逆流除尘塔底部抽取部分有机除尘剂和冷凝水的混合溶液,从顺流除尘塔上部喷入与含尘废气顺流接触和/或从逆流除尘塔中部喷入与含尘废气逆流接触。
作为优选方案,所述装置进一步包括循环泵,贮槽上层有机除尘剂层由循环泵抽取,通入逆流除尘塔循环使用,和/或顺流除尘塔循环使用。
作为优选方案,所述装置进一步包括循环泵和热交换器,贮槽上层有机除尘剂层由循环泵抽取,经热交换器中冷却剂降温后进入逆流除尘塔循环使用,和/或进入顺流除尘塔循环使用
作为优选方案,所述装置进一步包括热泵系统,对吸热后的热冷却剂进行余热回收。
作为优选方案,所述除尘塔内设置有填料层或雾化嘴,以便增大气液接触面。
作为优选方案,所述装置可进一步与脱硫和/或脱硝装置联合使用。
进一步的,本发明提供了一种有机除尘剂,其包含无毒高沸点有机溶剂组合物,选自食 用油、硅油、改性硅油、液态沥青油、桐树子油、液态石蜡油、矿物油、棕榈油和地沟油的两种或两种以上。
作为优选方案,所述食用油可选自花生油、色拉油、橄榄油、蓖麻油、山茶仔油、油菜仔油、玉米油、各种植物胚芽油和大豆油中的一种或几种。
作为优选方案,所述有机除尘剂包含硅基调节剂,所述硅基调节剂优选为硅油或改性硅油。
作为优选方案,所述有机除尘剂包含高沸点食用油和硅基调节剂,所述硅基调节剂优选为硅油或改性硅油。
作为优选方案,所述有机除尘剂中还含有水。
作为优选方案,所述水可以是含尘废气中水蒸气冷凝得到的冷凝水。
作为优选方案,所述改性硅油优选通过羟基化和/或胺氮化和/或羧酸化和/或酰化改性。
本发明的有益效果:
本发明所述废气除尘工艺的特点是通过使与水不相溶的、无毒的有机除尘剂直接和烟道气或各种燃烧尾(废)气接触,有机除尘剂将气体中的灰尘吸附,并将气体温度直接冷却至80℃以下,同时气体中的HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等也会被除尘剂吸附。由于废气中或多或少都会含有部分水蒸汽,在除尘剂和废气接触的时候,部分水蒸汽会冷凝成水滴,水滴会将废气中亲水性的各种粒径的粒子团聚成大颗粒粒子富集在除尘剂和冷凝水组成的油水混合溶液中;同时,有机除尘剂还会将废气中的亲脂性的各种粒径的粒子团聚成大颗粒粒子,富集在除尘剂和冷凝水组成的油水混合溶液中。进入有机除尘剂和冷凝水组成的油水混合溶液中的亲水性的各种粒径的粒子和亲脂性的各种粒径的粒子进一步团聚和逐渐长成更大的粒子沉积到油水混合溶液的底部,同时油水混合溶液分成水层和有机除尘剂层;而在粒子团聚和逐渐长大的过程中,吸附下来的HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物会被吸附在油水混合溶液中的各种粒子吸附和包裹,然后一起沉积到油水混合溶液的底部形成灰渣层,其上为水层,最上层是有机除尘剂层,有机除尘剂可循环使用;灰渣层可以用于提取有价物质,水层中还会含有大量HCl、HF和少量的二噁英、多环芳烃及其它有机物和重金属化合物等,需要进一步处理以后排污或回收。该方法可有效地将废气中的灰尘(包括了PM100、PM10、PM2.5及更小粒子等)脱除,并还可以脱除废气中的HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等。
本发明所述的有机除尘剂除尘的基本原理是物理吸附过程;本发明所述的有机除尘剂是 高沸点无毒的各种食用油、硅油、改性硅油、液态沥青油、桐树子油、液态石蜡油、矿物油、棕榈油等。所述有机除尘剂具有良好的溶解性、来源充足、性质稳定、可在高温下重复循环使用,且有机除尘剂的蒸汽压高,能显著避免汽化带来的二次污染,能够同时脱除废气中的HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等物质。
本发明所述的除尘工艺和有机除尘剂可以用于对锅炉烟道气、垃圾焚烧尾气和各种燃烧物燃烧产生的废气进行净化处理,除尘后的净化气可进入脱硫或脱硝工段进一步进行脱硫和/或脱硝处理。
附图说明
图1是逆流废气除尘工艺流程和设备的示意图。其中:1是除尘前废气,2是净化后废气,3是逆流除尘塔,4是有机除尘剂,5是灰渣,6是过滤机,7是贮槽,8是循环泵,9是热交换器,10是冷却剂,11是热冷却剂。
图2是顺流废气除尘工艺流程和设备的示意图。其中:1是除尘前废气,2是净化后废气,4是有机除尘剂,5是灰渣,6是过滤机,7是贮槽,8是循环泵,9是热交换器,10是冷却剂,11是热冷却剂,12是顺流除尘塔,13是气液分离器。
图3是混合流废气除尘工艺流程和设备的示意图。其中:1是除尘前废气,2是净化后废气,3是逆流除尘塔,4是有机除尘剂,5是灰渣,6是过滤机,7是贮槽,8是循环泵,9是热交换器,10是冷却剂,11是热冷却剂,12是顺流除尘塔,14是内循环泵,15是内循环除尘剂。
图4是混合流废气除尘工艺流程和设备的另一种示意图。其中:1是除尘前废气,2是净化后废气,3是逆流除尘塔,4是有机除尘剂,5是灰渣,6是过滤机,7是贮槽,8是循环泵,9是热交换器,10是冷却剂,11是热冷却剂,12是顺流除尘塔,14是内循环泵,15是内循环除尘剂(部分从增压和除尘用的顺流除尘塔12的顶部喷入与含尘废气顺流接触的部分内循环除尘剂,另一部分是从逆流除尘塔3的中部喷入与含尘废气逆流接触的部分内循环除尘剂),16是填料层。
具体实施方式
下面结合具体的实施方案来描述本发明所述的废气除尘工艺流程和设备。所述的实施方案是为了更好地说明本发明,而不能理解为是对本发明的权利要求的限制。
其操作方法如下:
逆流废气除尘工艺流程和设备如图1所示:其操作方法是除尘前废气1从底部进入逆流除尘塔3,有机除尘剂4从顶部进入逆流除尘塔3,在逆流除尘塔3中除尘前废气1和有机除尘剂4逆流接触,除尘前废气1中的灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等被有机除尘剂4和冷凝下来的水吸附,除尘前废气1转变成净化后废气2从逆流除尘塔3顶部放空;吸附了灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的有机除尘剂4和冷凝水所混合成的混合溶液汇集在逆流除尘塔3底部,然后从逆流除尘塔3底部流出,并进入过滤机6中进行过滤,分离出的灰渣5从过滤机6中排出,滤液进入贮槽7中,沉淀、分层,底部为含HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的水层,放出,经进一步处理或回收使用,上层的有机除尘剂层经循环泵8输送,又经在热交换器9中被冷却剂10降温以后转变成干净有机除尘剂4,进入逆流除尘塔3中重复使用,吸收了有机除尘剂4中热量的冷却剂10转变成热冷却剂11,利用热冷却剂11可以进行余热回收;当除尘前废气1不需要进行冷却降温时,循环泵8输送的干净有机除尘剂4可以直接进入逆流除尘塔3中,此时工业流程中的热交换器9、冷却剂10和热冷却剂11可以省去。
顺流废气除尘工艺流程和设备如图2所示:其操作方法是除尘前废气1从顶部进入顺流除尘塔12,有机除尘剂4也从顶部进入顺流除尘塔12,在顺流除尘塔12中除尘前废气1和有机除尘剂4顺流接触,除尘前废气1中的灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等被有机除尘剂4和冷凝下来的水吸附,除尘前废气1转变成净化后废气2从顺流除尘塔12的底部进入气液分离器13中,并经气液分离后从气液分离器13的顶部放空;吸附了灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的有机除尘剂4和冷凝水所混合成的混合溶液汇集在顺流除尘塔12底部,并进入气液分离器13中进行气液分离,然后从气液分离器13底部流出,并进入过滤机6中进行过滤,分离出的灰渣5从过滤机6中排出,滤液进入贮槽7中,沉淀、分层,底部为含HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的水层,放出,经进一步处理或回收使用,上层的有机除尘剂4经除尘泵8输送,又在热交换器9中被冷却剂10降温以后转变成干净的有机除尘剂4,进入顺流除尘塔12中重复使用,吸收了有机除尘剂中热量的冷却剂10转变成热冷却剂11,利用热冷却剂11可以进行余热回收;当除尘前废气1不需要进行冷却降温时,循环泵8输送的干净有机除尘剂4可以直接进入顺流除尘塔12中,此时工业流程中的热交换器9、冷却剂 10和热冷却剂11可以省去。
混合流废气除尘工艺流程和设备如图3所示:其操作方法是除尘前废气1从顶部进入顺流除尘塔12,内循环泵14从逆流除尘塔3底部抽取内循环除尘剂15也从顶部进入顺流除尘塔12,在顺流除尘塔12中除尘前废气1和内循环除尘剂15顺流接触,除尘前废气1中大部分的灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等被内循环除尘剂15和冷凝下来的水吸附,组成气液混合物,并从顺流除尘塔12的底部进入逆流除尘塔3中;在逆流除尘塔3底部,内循环除尘剂15和经过部分净化的除尘前废气1分离,该废气从底部进入逆流除尘塔3,有机除尘剂4从顶部进入逆流除尘塔3,在逆流除尘塔3中经部分净化的废气和有机除尘剂4逆流接触,废气中剩余的灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等被有机除尘剂4和冷凝下来的水吸附,废气转变成净化后废气2从逆流除尘塔3顶部放空;吸附了灰尘、HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的有机除尘剂4和冷凝水所混合成的混合溶液汇集在逆流除尘塔3底部,一部分混合溶液被内循环泵14抽取作为内循环除尘剂15从顶部进入顺流除尘塔12循环使用,剩余部分从逆流除尘塔3底部流出,并进入过滤机6中进行过滤,分离出的灰渣5从过滤机6中排出,滤液进入贮槽7中,沉淀、分层,底部为含HCl、HF、二噁英、多环芳烃及其它有机物和重金属化合物等的水层,放出,经进一步处理或回收使用,上层的有机除尘剂层经除尘泵8输送,又在热交换器9中被冷却剂10降温以后转变成干净的有机除尘剂4,进入逆流除尘塔3中重复使用,吸收了除尘剂中热量的冷却剂10转变成热冷却剂11,利用热冷却剂11可以进行余热回收;在这个工艺流程中,内循环除尘剂15也可以用干净的有机除尘剂4取代,此时可以省去内循环泵14,因此热交换器9出来的干净有机除尘剂4要分成两路,一路进逆流除尘塔3中,另一路从顶部直接进入顺流除尘塔12中。当除尘前废气1不需要进行冷却降温时,循环泵8输送的干净的有机除尘剂4可以直接进入逆流除尘塔3中,此时工业流程中的热交换器9、冷却剂10和热冷却剂11可以省去。
如图4所示:在混合流废气除尘工艺流程中,内循环除尘剂15还可以分成两路,一路从增压和除尘用的顺流除尘塔12的顶部喷入与含尘废气1直接顺流接触,另一路从逆流除尘塔3的中部喷入与经初步净化的含尘废气逆流接触,逆流除尘塔3中还可以设置填料层16以提高冷凝效率。
实施例1采用实验室所用的吸收瓶,吸收瓶中装入200ml改性硅油,直接从浙江湖州某集团的一条用石油焦为原料的每天生产800吨玻璃的窑炉尾气,经过布袋除尘器除尘后的管路上,抽取尾气进行除尘试验;抽取了1Nm3的尾气经过吸收瓶,被吸收瓶中的200ml改性硅油吸收;对吸收了灰尘的200ml改性硅油进行离心分离,离心分离后,在离心管中分为四层:底部为灰渣层,紧接着是水层,然后是固体有机物层,最上层是改性硅油层;经干燥称重得灰渣层重量为2.3546g,固体有机物层重量为0.3213g,因此经过布袋除尘后的该玻璃窑炉燃烧尾气中灰尘和有机物的含量为2.3546g+0.3213g=2.6759g/Nm3,而实际生产中仪器检测的灰尘含量只有0.8g/Nm3左右,可见本发明方法的除尘效率比实际生产中所用方法高很多。
实施例2采用实验室所用的吸收瓶,吸收瓶中装入200ml花生油和改性硅油混合液,直接从海南某集团的一条用天然气为原料的每天生产600吨玻璃的窑炉尾气,经过脱硝和碱法脱硫后的管路上,抽取尾气进行除尘试验;抽取了0.6Nm3的尾气经过吸收瓶,被吸收瓶中的200ml花生油和改性硅油混合液吸收;对吸收了灰尘的200ml花生油和改性硅油混合液进行离心分离,离心分离后,在离心管中分为三层:底部为灰渣层,紧接着是水层,最上层是花生油和改性硅油混合液层;经干燥称重得灰渣层重量为0.5347g,因此经过脱硝和碱法脱硫后的该玻璃窑炉燃烧尾气中灰尘含量为0.5347g/0.6=0.8911g/Nm3,而实际生产中该企业检测的灰尘含量小于0.1g/Nm3,可见本发明方法的除尘效率远远高于实际生产中所用方法。

Claims (22)

  1. 一种废气除尘方法,包含如下步骤:含尘废气与有机除尘剂分别进入除尘塔,并在塔内接触,含尘废气中至少部分的水蒸汽冷凝,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物;所得净化气放空或进入后续工艺。
  2. 如权利要求1所述的废气除尘方法,其特征在于,该方法还包括下述步骤:吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液进入过滤机进行固液分离,从过滤机中排出的灰渣经进一步处理或回收使用,而所得滤液进入贮槽进行油水分离,下层水相层放出经进一步处理或回收使用,上层有机除尘剂层仍然送回至除尘塔中使用。
  3. 如权利要求1所述的废气除尘方法,其特征在于,采用逆流废气除尘工艺,即:含尘废气从下部进入逆流除尘塔,有机除尘剂从上部进入逆流除尘塔,与含尘废气在塔内逆流接触,所得净化气从逆流除尘塔顶部放空或经进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液从逆流除尘塔底部排出。
  4. 如权利要求1所述的废气除尘方法,其特征在于,采用顺流废气除尘工艺,即:含尘废气和有机除尘剂均从上部进入顺流除尘塔,在塔内顺流接触,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,所得气液混合物一同进入气液分离器,气液分离后所得净化气从气液分离器顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液从气液分离器底部排出。
  5. 如权利要求1所述的废气除尘方法,其特征在于,采用混合流废气除尘工艺,即:含尘废气和有机除尘剂均从上部进入顺流除尘塔,在塔内顺流接触,含尘废气中的水蒸汽至少部分冷凝,含尘废气中的至少部分固体颗粒、酸性污染物、有机污染物和/或重金属化合物被有机除尘剂和冷凝水吸附,形成气液混合物经顺流除尘塔下部进入逆流除尘塔,与从逆流除尘塔上部进入的有机除尘剂在塔内逆流接触,得到的净化气从逆流除尘塔顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液汇集在逆流除尘塔底部。
  6. 如权利要求5所述的废气除尘方法,其特征在于,逆流除尘塔底部的一部分有机除尘剂和冷凝水混合溶液被内循环泵抽取作为内循环除尘剂,从顺流除尘塔上部喷入与含尘废气顺流接触,和/或从逆流除尘塔中部喷入与含尘废气逆流接触。
  7. 如权利要求2所述的废气除尘方法,其特征在于,所述贮槽上层有机除尘剂层由循环泵抽取,进入除尘塔循环使用;或者,所述贮槽上层有机除尘剂层由循环泵抽取,经热交换器中冷却剂降温后进入除尘塔循环使用。
  8. 如权利要求1~7任一所述的废气除尘方法,其特征在于,进入除尘塔的有机除尘剂的温度低于80℃。
  9. 如权利要求1~7任一所述的废气除尘方法,其特征在于,所述有机除尘剂包含无毒高沸点有机溶剂组合物,选自食用油、硅油、改性硅油、液态沥青油、桐树子油、液态石蜡油、矿物油、棕榈油和地沟油中的两种或两种以上。
  10. 一种废气除尘装置,包括除尘塔、过滤机和贮槽,其特征在于,除尘塔设有含尘废气进料口和有机除尘剂进料口,过滤机连接除尘塔底部,贮槽与过滤机连接;有机除尘剂与含尘废气在除尘塔内接触,含尘废气中的水蒸汽至少部分冷凝,吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,吸附后的有机除尘剂和冷凝水混合溶液进入过滤机中进行固液分离,所得灰渣从过滤机中排出,所得滤液进入贮槽,沉淀、分层,贮槽下层的水相层放出,上层有机除尘剂层任选回用至除尘塔中。
  11. 如权利要求10所述的废气除尘装置,其特征在于,所述含尘废气进料口位于除尘塔下部,有机除尘剂进料口位于除尘塔上部,有机除尘剂与含尘废气在塔内逆流接触,所得净化气从除尘塔顶部放空或进入后续工艺。
  12. 如权利要求10所述的废气除尘装置,其特征在于,所述废气除尘装置进一步包括气液分离器,该气液分离器与除尘塔底部连接;所述含尘废气进料口和有机除尘剂进料口均位于除尘塔上部,有机除尘剂与含尘废气在塔内顺流接触,有机除尘剂和冷凝水吸附含尘废气中的固体颗粒、酸性污染物、有机污染物和/或重金属化合物,所得气液混合物一同进入气液分离器,经气液分离后净化气从气液分离器顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液从气液分离器底部排出,进入过滤机中进行固液分离。
  13. 如权利要求10所述的废气除尘装置,其特征在于,所述废气除尘装置包括顺流除尘塔和逆流除尘塔,含尘废气和有机除尘剂均从上部的进料口进入顺流除尘塔,在塔内顺流接触,含尘废气中的水蒸汽至少部分冷凝,含尘废气中的至少部分固体颗粒、酸性污染物、有机污染物和/或重金属化合物被有机除尘剂和冷凝水吸附,形成气液混合物经顺流除尘塔下部进入逆流除尘塔,与从逆流除尘塔上部进入的有机除尘剂在塔内逆流接触,得到的净化 气从逆流除尘塔顶部放空或进入后续工艺;吸附了固体颗粒、酸性污染物、有机污染物和/或重金属化合物的有机除尘剂和冷凝水混合溶液汇集在逆流除尘塔底部。
  14. 如权利要求13所述的废气除尘装置,其特征在于,所述废气除尘装置进一步包括内循环泵,从逆流除尘塔底部抽取部分有机除尘剂和冷凝水的混合溶液,从顺流除尘塔上部喷入与含尘废气顺流接触,和/或从逆流除尘塔中部喷入与含尘废气逆流接触。
  15. 如权利要求10所述的废气除尘装置,其特征在于,所述废气除尘装置进一步包括循环泵,贮槽上层有机除尘剂层由循环泵抽取,通入除尘塔循环使用。
  16. 如权利要求10所述的废气除尘装置,其特征在于,所述废气除尘装置进一步包括循环泵和热交换器,贮槽上层有机除尘剂层由循环泵抽取,经热交换器中冷却剂降温后进入除尘塔循环使用。
  17. 如权利要求16所述的废气除尘装置,其特征在于,所述废气除尘装置进一步包括热泵系统,对吸热后的热冷却剂进行余热回收。
  18. 如权利要求10所述的废气除尘装置,其特征在于,所述除尘塔内设置有填料层或雾化嘴。
  19. 一种有机除尘剂,其包含无毒高沸点有机溶剂组合物,选自食用油、硅油、改性硅油、液态沥青油、桐树子油、液态石蜡油、矿物油、棕榈油和地沟油中的两种或两种以上。
  20. 如权利要求19所述的有机除尘剂,其特征在于,所述食用油选自花生油、色拉油、橄榄油、蓖麻油、山茶仔油、油菜仔油、玉米油、各种植物胚芽油和大豆油中的一种或多种。
  21. 如权利要求19所述的有机除尘剂,其特征在于,所述有机除尘剂包含硅基调节剂,所述硅基调节剂优选为硅油或改性硅油。
  22. 如权利要求21所述的有机除尘剂,其特征在于,所述改性硅油为通过羟基化和/或胺氮化和/或羧酸化和/或酰化改性的硅油。
PCT/CN2016/070998 2015-01-23 2016-01-15 一种废气除尘方法和除尘剂 WO2016116007A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES16739754T ES2910525T3 (es) 2015-01-23 2016-01-15 Método y aparato para el desempolvado de gas residual
EA201791649A EA035474B1 (ru) 2015-01-23 2016-01-15 Способ обеспыливания отходящих газов и обеспыливающий агент
US15/534,341 US10744452B2 (en) 2015-01-23 2016-01-15 Method for waste gas dedusting and dedusting agent
PL16739754.6T PL3248669T3 (pl) 2015-01-23 2016-01-15 Sposób i urządzenie do odpylania gazu odpadowego
CA2969804A CA2969804C (en) 2015-01-23 2016-01-15 Method for waste gas dedusting and dedusting agent
BR112017013890-5A BR112017013890B1 (pt) 2015-01-23 2016-01-15 Método e aparelho para a remoção de poeira de gás residual
AU2016208969A AU2016208969B2 (en) 2015-01-23 2016-01-15 Method for waste gas dedusting and dedusting agent
JP2017537977A JP2018501954A (ja) 2015-01-23 2016-01-15 排気ガスの除塵方法及び除塵剤
KR1020177019772A KR20170102269A (ko) 2015-01-23 2016-01-15 폐가스 탈진을 위한 방법 및 탈진제
MX2017009338A MX2017009338A (es) 2015-01-23 2016-01-15 Metodo para extraer el polvo de un gas residual y agente extractor de polvo.
EP16739754.6A EP3248669B1 (en) 2015-01-23 2016-01-15 Method and apparatus for waste gas dedusting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510033694.3 2015-01-23
CN201510033694.3A CN104667646B (zh) 2015-01-23 2015-01-23 一种废气除尘方法及其装置

Publications (1)

Publication Number Publication Date
WO2016116007A1 true WO2016116007A1 (zh) 2016-07-28

Family

ID=53303554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070998 WO2016116007A1 (zh) 2015-01-23 2016-01-15 一种废气除尘方法和除尘剂

Country Status (13)

Country Link
US (1) US10744452B2 (zh)
EP (1) EP3248669B1 (zh)
JP (1) JP2018501954A (zh)
KR (1) KR20170102269A (zh)
CN (1) CN104667646B (zh)
AU (1) AU2016208969B2 (zh)
BR (1) BR112017013890B1 (zh)
CA (1) CA2969804C (zh)
EA (1) EA035474B1 (zh)
ES (1) ES2910525T3 (zh)
MX (1) MX2017009338A (zh)
PL (1) PL3248669T3 (zh)
WO (1) WO2016116007A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104667646B (zh) * 2015-01-23 2017-02-22 北京博源恒升高科技有限公司 一种废气除尘方法及其装置
EP3394066A2 (en) * 2015-12-22 2018-10-31 H. Hoffnabb-La Roche Ag PYRAZOLO[1,5a]PYRIMIDINE DERIVATIVES AS IRAK4 MODULATORS
CN106823779A (zh) * 2016-12-26 2017-06-13 安徽元通采暖科技有限公司 一种采暖管道内空气净化剂
CN106669304A (zh) * 2016-12-26 2017-05-17 安徽元通采暖科技有限公司 一种用于采暖管道上的空气高效过滤模块
CN106731267A (zh) * 2016-12-26 2017-05-31 安徽元通采暖科技有限公司 一种采暖管道内空气净化方法
CN106731425A (zh) * 2017-03-13 2017-05-31 深圳沃海森科技有限公司 用于新风机的高效过滤装置
US11229876B1 (en) * 2017-10-04 2022-01-25 Kamterter Products, Llc Systems for the control and use of fluids and particles in fuel applications including boilers, refinery and chemical fluid heaters, rotary kilns, glass melters, solid dryers, drying ovens, organic fume incinerators, and scrubbers
CN107902990B (zh) * 2017-11-15 2020-07-28 新沂市晶润石英材料有限公司 一种利用石英砂粉尘制备聚合物水泥防水砂浆的方法
CN108794073A (zh) * 2018-05-29 2018-11-13 绍兴市鼎泰节能环保科技有限公司 一种除尘剂及其制备方法
CN109260860A (zh) * 2018-07-06 2019-01-25 王雪微 一种城市雾霾及道路扬尘的治理方法
CN109758851A (zh) * 2019-01-28 2019-05-17 滨州学院 一种用于施工车间产尘区域的移动式微雾降尘装置及方法
CN110013725A (zh) * 2019-04-27 2019-07-16 雷学军 动质与静质平衡的方法
CN110193254B (zh) * 2019-06-13 2021-07-13 湖北兴瑞硅材料有限公司 一种甲基氯硅烷单体湿法除尘的节能装置及工艺
CN110523193B (zh) * 2019-09-12 2022-03-15 杭州中测检测技术有限公司 一种可对混合气体进行循环过滤的废气处理方法
CN111569572B (zh) * 2020-05-15 2021-12-10 中建五局华南建设有限公司 一种建筑工地节约用水的降尘喷洒装置及其工作方法
CN112316626B (zh) * 2020-09-10 2022-04-15 江苏吉能达环境能源科技有限公司 一种用于砂石骨料加工的除尘器
AR124440A1 (es) * 2021-12-20 2023-03-29 Marcos Mazza Sistema inteligente de alta presión con aspersores de un producto final en emulsión con agua para suprimir los polvos emitidos durante los movimientos de cereales
CN114321956B (zh) * 2021-12-20 2022-10-28 徐州长盛电力设备有限公司 一种具有废气分离处理功能的环保型电杆生产用工业锅炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478854A (en) * 1977-12-06 1979-06-23 Seigou Hirakawa Method of dehumidifying and cleaning air
CN1157579A (zh) * 1994-09-08 1997-08-20 巴斯福股份公司 聚合物干燥器排出气体的冷却、除单体、除尘方法
CN2354633Y (zh) * 1997-04-10 1999-12-22 福建省劳动保护科学研究所 柴油吸收法净化装置
CN201807279U (zh) * 2010-10-13 2011-04-27 中国石油化工股份有限公司 一种高效烟气除尘脱硫装置
CN203830349U (zh) * 2013-11-14 2014-09-17 深圳可雷可科技股份有限公司 发电机组高效碳刷除尘器
CN104667646A (zh) * 2015-01-23 2015-06-03 北京博源恒升高科技有限公司 一种废气除尘方法和除尘剂

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921911A (en) * 1958-01-10 1960-01-19 Pennsalt Chemicals Corp Oxidizing compositions
JPS478058Y1 (zh) 1965-10-13 1972-03-27
US3959129A (en) * 1974-01-14 1976-05-25 Alar Engineering Corporation Waste treatment process
DE2451157C3 (de) 1974-10-28 1983-05-19 Aluminium Norf Gmbh, 4040 Neuss Verfahren zum Reinigen von beim Betriebe von Walzgerüsten in großen Mengen anfallender Abluft
US4473380A (en) * 1980-10-24 1984-09-25 R. R. Donnelley & Sons Company Pollution control system
US5198000A (en) * 1990-09-10 1993-03-30 The University Of Connecticut Method and apparatus for removing gas phase organic contaminants
DE4338003A1 (de) 1993-11-07 1995-05-11 Dynamit Nobel Ag Verfahren zur Abtrennung von organischen Komponenten aus Abluft
US6361586B1 (en) 1994-09-08 2002-03-26 Basf Corporation Process for cooling, demonomerizing and dedusting gas from a polymer drier
US6190630B1 (en) * 1996-02-21 2001-02-20 Mitsubishi Heavy Industries, Ltd. Flue gas treating process and apparatus
GB9615358D0 (en) 1996-07-22 1996-09-04 Dow Deutschland Inc Process for reducing the concentration of polyhalogenated aromatic compounds or polynuclear aromatic hydrocarbons in a flue gas
JPH10328518A (ja) 1997-06-03 1998-12-15 Chiyoda Eng Kk 集塵方法及び集塵装置
JPH11165025A (ja) 1997-12-04 1999-06-22 Aizono Masaru 燃焼炉等における排ガス等の有害物質の除去方法及びその除去装置
JP2000037612A (ja) * 1998-07-24 2000-02-08 Kao Corp 有機化合物の回収方法
JP4095737B2 (ja) 1999-03-29 2008-06-04 日本エア・リキード株式会社 洗浄集塵装置及び排ガス処理設備
US6843835B2 (en) 2001-03-27 2005-01-18 The Procter & Gamble Company Air cleaning apparatus and method for cleaning air
JP3919633B2 (ja) 2002-08-29 2007-05-30 株式会社神鋼環境ソリューション ポリ塩化ビフェニルで汚染された安定器、低圧トランス・コンデンサ等の機器類の処理方法とその装置
JP2004197624A (ja) 2002-12-17 2004-07-15 Mitsubishi Heavy Ind Ltd 船舶用ディーゼルエンジン排ガスの浄化装置及び方法
JP4593264B2 (ja) 2004-01-30 2010-12-08 三菱化学エンジニアリング株式会社 N−メチル−2−ピロリドン回収装置及びその回収方法
JP4431025B2 (ja) 2004-10-26 2010-03-10 株式会社神鋼環境ソリューション 有機ハロゲン化合物処理装置及びその処理方法
JP2006218392A (ja) * 2005-02-10 2006-08-24 Kobelco Eco-Solutions Co Ltd 汚染物の浄化方法及びその装置
CN2902425Y (zh) * 2006-01-19 2007-05-23 上海同济华康环境科技有限公司 一种有机混合废气处理装置
JP3124354U (ja) 2006-04-28 2006-08-17 オルボルグ インダストリーズ アクシェ セルスカブ スクラバー
JP4722070B2 (ja) 2007-03-20 2011-07-13 戸田建設株式会社 トンネル粉塵・排気ガス等の清浄装置
JP2010036136A (ja) * 2008-08-06 2010-02-18 Panasonic Corp 揮発性有機化合物の除去方法と除去装置
JP5414250B2 (ja) 2008-11-26 2014-02-12 株式会社ジャパンディスプレイ 液晶表示装置
EP2247366A4 (en) * 2009-03-10 2011-04-20 Calera Corp SYSTEMS AND METHODS FOR CO2 TREATMENT
DE102009041593A1 (de) 2009-09-15 2011-03-24 Bernhard Werner Anlage zur Reinigung von Holzgas
AU2010226936B2 (en) 2009-10-07 2012-03-15 Kabushiki Kaisha Toshiba CO2 recovery system and CO2 absorption liquid
CN101703869B (zh) * 2009-10-28 2012-11-21 马军 从废气中回收有机溶剂的方法及其装置
JP2011218326A (ja) 2010-04-14 2011-11-04 Techno Ryowa Ltd 揮発性有機化合物の除去システム
CN202538579U (zh) * 2012-03-09 2012-11-21 贝格工业涂料(广州)有限公司 一种工业涂料废气处理系统
CN102716656A (zh) * 2012-03-23 2012-10-10 北京东旭宏业科技有限公司 一种烟气洗涤装置
KR101387655B1 (ko) 2012-05-31 2014-04-21 고등기술연구원연구조합 바이오메스 가스화 합성가스 정제장치
JP6288904B2 (ja) 2012-07-11 2018-03-07 オリエンタルメタル株式会社 粉塵除去装置
CN103212257B (zh) * 2013-03-22 2015-11-18 顾怀宇 用于清除pm2.5的气体净化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478854A (en) * 1977-12-06 1979-06-23 Seigou Hirakawa Method of dehumidifying and cleaning air
CN1157579A (zh) * 1994-09-08 1997-08-20 巴斯福股份公司 聚合物干燥器排出气体的冷却、除单体、除尘方法
CN2354633Y (zh) * 1997-04-10 1999-12-22 福建省劳动保护科学研究所 柴油吸收法净化装置
CN201807279U (zh) * 2010-10-13 2011-04-27 中国石油化工股份有限公司 一种高效烟气除尘脱硫装置
CN203830349U (zh) * 2013-11-14 2014-09-17 深圳可雷可科技股份有限公司 发电机组高效碳刷除尘器
CN104667646A (zh) * 2015-01-23 2015-06-03 北京博源恒升高科技有限公司 一种废气除尘方法和除尘剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248669A4 *

Also Published As

Publication number Publication date
EP3248669A1 (en) 2017-11-29
ES2910525T3 (es) 2022-05-12
PL3248669T3 (pl) 2022-08-16
JP2018501954A (ja) 2018-01-25
CN104667646A (zh) 2015-06-03
US10744452B2 (en) 2020-08-18
US20170333830A1 (en) 2017-11-23
CN104667646B (zh) 2017-02-22
CA2969804C (en) 2020-10-13
BR112017013890A2 (pt) 2018-01-02
EA201791649A1 (ru) 2017-11-30
MX2017009338A (es) 2018-02-09
CA2969804A1 (en) 2016-07-28
EP3248669A4 (en) 2018-02-07
EA035474B1 (ru) 2020-06-23
EP3248669B1 (en) 2022-03-09
BR112017013890B1 (pt) 2022-06-14
KR20170102269A (ko) 2017-09-08
AU2016208969A1 (en) 2017-06-15
AU2016208969B2 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2016116007A1 (zh) 一种废气除尘方法和除尘剂
TW412434B (en) Process of removing mercury, mercury compounds, and polyhalogenated hydrocarbons from oxygen-containing exhaust gases produced by the combustion of garbage, industrial waste materials, and sewage sludge
CN110280125B (zh) 一种含砷和so3的冶炼烟气的干式净化方法
EP1308198B1 (en) Mercury removal method and system
RU2678278C1 (ru) Способы и системы для удаления материала частиц из потока технологических отработанных газов
CN110124507B (zh) 一种多污染物烟气清洁处理的方法及其装置
AU2007290817B2 (en) Wet gas scrubbing process
CA2622064A1 (en) Method of removing sulfur trioxide from a flue gas stream
CA2924377C (en) Method and system for gas scrubbing of aerosol-containing process gases
EA015416B1 (ru) Удаление триоксида серы из потока топочного газа
WO2015118165A1 (en) Reactive composition based on sodium bicarbonate and process for its production
AU2010276057A1 (en) Apparatus and method for removing mercury from a gas
JP2004238236A (ja) ガラス溶融方法およびガラス溶融設備
CN107787245B (zh) 用于从燃烧设施的烟气中去除汞的方法
CN102985517A (zh) 气溶胶的液体基清除
AU742408B2 (en) Method for purifying gas loaded with dust
CN110124491B (zh) 一种多污染物烟气协同处理及废水零排放的方法及其装置
CN101922717A (zh) 一种有机硅废气焚烧和稀盐酸回收的方法
TWM628976U (zh) 低溫式空氣污染防制系統
JPH0975667A (ja) 排ガスの処理方法
JPH04504378A (ja) ごみ焼却時に生成する煙道ガスの浄化法
JP5113788B2 (ja) 排ガス処理システム
TWI821847B (zh) 低溫式空氣污染防制系統及方法
CN212142100U (zh) 一种生活垃圾裂解烟气净化处理系统
CN109179339B (zh) 中低浓度酸性气的硫磺回收工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2969804

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016208969

Country of ref document: AU

Date of ref document: 20160115

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016739754

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013890

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017537977

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177019772

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009338

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201791649

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112017013890

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170627