WO2016112733A1 - 无人机调度方法及系统、无人机 - Google Patents

无人机调度方法及系统、无人机 Download PDF

Info

Publication number
WO2016112733A1
WO2016112733A1 PCT/CN2015/093739 CN2015093739W WO2016112733A1 WO 2016112733 A1 WO2016112733 A1 WO 2016112733A1 CN 2015093739 W CN2015093739 W CN 2015093739W WO 2016112733 A1 WO2016112733 A1 WO 2016112733A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
data
task
server
real
Prior art date
Application number
PCT/CN2015/093739
Other languages
English (en)
French (fr)
Inventor
管武烈
陈家翔
黄耀霖
Original Assignee
广州极飞电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520023417.XU external-priority patent/CN204316545U/zh
Priority claimed from CN201510036938.3A external-priority patent/CN104615143B/zh
Application filed by 广州极飞电子科技有限公司 filed Critical 广州极飞电子科技有限公司
Priority to US15/542,631 priority Critical patent/US10311739B2/en
Priority to JP2017536854A priority patent/JP2018503194A/ja
Publication of WO2016112733A1 publication Critical patent/WO2016112733A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/30Flight plan management
    • G08G5/32Flight plan management for flight plan preparation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/20Arrangements for acquiring, generating, sharing or displaying traffic information
    • G08G5/26Transmission of traffic-related information between aircraft and ground stations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/50Navigation or guidance aids
    • G08G5/53Navigation or guidance aids for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/50Navigation or guidance aids
    • G08G5/55Navigation or guidance aids for a single aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/50Navigation or guidance aids
    • G08G5/57Navigation or guidance aids for unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/50Navigation or guidance aids
    • G08G5/58Navigation or guidance aids for emergency situations, e.g. hijacking or bird strikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/70Arrangements for monitoring traffic-related situations or conditions
    • G08G5/72Arrangements for monitoring traffic-related situations or conditions for monitoring traffic
    • G08G5/727Arrangements for monitoring traffic-related situations or conditions for monitoring traffic from a ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a UAV scheduling method and system, a UAV, and a server for UAV scheduling.
  • the drone is an unmanned aerial vehicle operated by a radio remote control device or its own program control device. It has a wide range of uses, low production cost, strong survivability and good maneuverability, so it plays an extremely important role in modern warfare. In addition, drones have broad application prospects in the civilian sector, such as collecting atmospheric samples, map mapping, resource censuses, and disaster investigations.
  • Cellular mobile communication is currently the fastest growing, most widely used and lowest cost long-distance mobile communication system, and has now evolved to the stage where the second, third and fourth generation systems coexist.
  • Current cellular mobile communication GSM and satellite positioning GPS Global Positioning System, Global Positioning System
  • GPS Global Positioning System, Global Positioning System
  • the radio remote control is generally used to directly control the aircraft, or the ground equipment is controlled by the radio digital transmission module and the mobile cellular network.
  • These methods can only be used for a small number of drones due to limited processing capability at the ground end. Manipulation has limited the use of drones and prevented large-scale scheduling.
  • a UAV scheduling method includes the following steps:
  • a UAV scheduling method includes the following steps:
  • the task command is sent to the drone.
  • a UAV scheduling method includes the following steps:
  • the drone acquires its own identity data and sends the identity feature data to the server;
  • the server acquires a task data table matching the drone according to the identity feature data
  • the server generates a task instruction according to the task data table
  • the drone receives a task instruction sent by the server and performs a corresponding task according to the task instruction.
  • An unmanned aerial vehicle includes a flight control module and a communication module, and the communication module is connected to the flight control module;
  • the flight control module is configured to store an identity ID of the drone
  • the communication module is configured to acquire and store a current IP address
  • the communication module is further configured to send the identity ID and the current IP address to a server, and receive a task instruction sent by the server that matches the identity ID, where the task instruction is Preset task data table generation;
  • the flight control module is further configured to receive a task instruction transmitted by the communication module, and execute a corresponding task according to the task instruction.
  • a server for drone scheduling includes a communication service module and a back end application module, and the communication service module is connected to the backend application module;
  • the communication service module is configured to receive identity feature data sent by the drone;
  • the backend application module is configured to acquire a task data table that matches the unmanned aerial vehicle according to the identity feature data, generate a task instruction according to the task data table, and send the task instruction by using the communication service module. Sent to the drone.
  • a drone scheduling system including the Internet, the system further comprising a drone as described above and a server for drone scheduling as described above, the drone being connected to the server via the Internet.
  • the above-mentioned UAV scheduling method and system the UAV, the server for the UAV scheduling, the UAV sends the acquired identity characteristic data to the server, and the server according to the preset task data matching the UAV
  • the table generates task instructions.
  • the server sends control commands according to the identity data of the drone, and can control the designated drone to perform corresponding tasks in real time, and schedule a large number of drones to realize large-scale scheduling of the drone.
  • FIG. 1 is a schematic structural view of an unmanned aerial vehicle in an embodiment
  • FIG. 2 is a schematic structural diagram of a server for drone scheduling in an embodiment
  • FIG. 3 is a schematic structural diagram of a UAV dispatching system in an embodiment
  • FIG. 4 is a schematic structural diagram of a UAV dispatching system in another embodiment
  • FIG. 5 is a schematic flow chart of a method for dispatching a drone in an embodiment
  • FIG. 6 is a schematic flow chart of a drone transmitting current flight state data to a server in an embodiment
  • FIG. 7 is a schematic flow chart of a method for dispatching a drone in another embodiment
  • FIG. 8 is a schematic flowchart of real-time monitoring of a drone by a server in an embodiment
  • FIG. 9 is a schematic flow chart of a server issuing an early warning to a drone in an embodiment
  • FIG. 10 is a schematic flow chart of the server determining whether the drone is in an abnormal take-off state in an embodiment
  • FIG. 11 is a schematic diagram of a process for a server to acquire a drone IP in an embodiment.
  • a drone 100 includes a communication module 110 , a flight control module 120 , and a data acquisition module 130 .
  • the communication module 110 is connected to the flight control module 120 , and the data acquisition module 130 and the flight The control module 120 is connected.
  • the communication module 110 is configured to acquire and store a current IP (Internet) Protocol, the protocol of the interconnection between networks).
  • IP Internet Protocol
  • the drone 100 accesses the Internet through the communication module 110 and establishes a connection with the server. After the Internet access is successful, the IP address is assigned, and the communication module 110 acquires and stores the current IP address.
  • the communication module 110 also has the function of detecting disconnection and reconnection, and can cope with the situation that the network or the signal is disconnected when a network or a signal dead zone is encountered during data transmission.
  • the flight control module 120 is configured to store an identity ID (Identity) of the drone 100.
  • each drone 100 has its own unique ID, which facilitates the server to identify the identity of the drone 100 and send a task command based on the identity ID.
  • the flight control module 120 stores the identity ID.
  • the communication module 110 is further configured to send the identity ID and the current IP address to the server, and receive a task instruction sent by the server that matches the identity ID, and the task instruction is generated by the server according to the preset task data table.
  • the communication module 110 sends the identity ID and the current IP address of the drone 100 to the server, and after receiving the identity ID and the current IP address of the drone 100, the server generates a task instruction according to the preset task data table, and The task command is sent to the corresponding drone 100.
  • the communication module 110 of the drone 100 receives the task instruction.
  • the task data table is shown in the following table:
  • the mission data table may include identity IDs, waypoints, waypoint types, and waypoint data, and record their associations.
  • the identity ID represents a different drone 100.
  • Waypoints can be represented by sequence numbers, such as waypoint 1, waypoint 2, waypoint 3, etc. Different waypoints correspond to different serial numbers.
  • the waypoint type can be a takeoff location, a landing point location, a conventional waypoint location, an implementation point location, and the like. Different waypoints and corresponding waypoint types can be used for different identity IDs.
  • the waypoint data is specific data that is run or implemented by the waypoint drone 100.
  • the waypoint data may include time, waypoint latitude and longitude coordinates, waypoint altitude, operating parameters of the drone 100 to the waypoint, and actions that the drone 100 needs to perform at the waypoint.
  • Different waypoint types correspond to different waypoint data, and there may be one or more different waypoint data for different waypoints.
  • the operating parameters of the drone 100 to the waypoint may include a horizontal speed, a climb speed, and a heading parameter, etc., wherein the heading parameter refers to a heading that the drone 100 has when flying, for example, the heading points to the north, or the heading direction A latitude and longitude coordinate, etc.
  • the actions that the drone 100 needs to perform at the waypoint may include way, hover, look around, point of interest surround, peripheral operations, and the like.
  • the way is that the drone 100 arrives at the waypoint and immediately flies to the next waypoint.
  • Hovering means that the drone 100 stays at this waypoint.
  • Looking around refers to the action of the drone 100 looking around after arriving at the waypoint.
  • the point of interest represents a geographical location information, including latitude and longitude coordinates and altitude
  • the point of interest surround means that the drone 100 can fly around the point of interest according to the set operating parameters.
  • the peripheral operation is related to the equipment carried by the drone 100, for example, photographing, recording, and sensor data collection of the waypoint.
  • the server After receiving the identity ID and the current IP address sent by the aircraft 100 through the communication module 110, the server queries the preset task data table according to the identity ID, and finds the same part of the identity ID in the task data table and the received identity ID, and then Generating a task instruction according to the task data table corresponding to the identity ID, where the task command includes information such as specific data required to be run or implemented by the current drone 100 obtained according to the task data table, and sending according to the current IP address of the drone 100 To the drone 100, the drone 100 performs the corresponding task.
  • the flight control 120 is further configured to receive a task instruction transmitted by the communication module 110 and perform a corresponding task according to the task instruction.
  • the flight control module 120 performs a corresponding task according to the task instruction sent by the server, including various operations preset in the task data table corresponding to the drone 100, for example, the drone 100 can fly according to the task instruction, Suspension, continuation, termination, forced landing, returning, passing, hovering, looking around, tracking of points of interest, photographing, video recording, sensor data collection, etc., can also adjust real-time attitude, flight speed, etc. according to task instructions.
  • the server can control the corresponding drone 100 to perform corresponding tasks in real time, and schedule a large number of drones to realize large-scale scheduling of the drone.
  • the data collection module 130 is configured to acquire current flight state data.
  • the current flight status data may include hardware status data, real-time position data, real-time motion data, real-time attitude data, sensor data, and self-test data.
  • the hardware status data refers to status data of each component of the drone 100, including battery voltage, motor speed, signal quality of data transmission, and the like.
  • the real-time location data includes the latitude and longitude, altitude, GPS positioning accuracy, satellite number, and UTC (Universal) of the current location of the drone 100. Time Coordinated, Coordinated Universal Time), etc.
  • the real-time motion data includes the running speed, climb/fall speed, heading, and the like of the drone 100.
  • the real-time attitude data includes the angles of pitch and roll, and the like.
  • the sensor data includes accelerometers, gyroscopes, thermometers, and ultrasonic measurements.
  • the self-test data refers to data obtained by the drone 100 according to the result of detecting its own data, such as whether the battery is under voltage, whether the sensor is overloaded, or whether the real-time motion data is within a normal range.
  • the data collection module 130 is further configured to send current flight state data to the server through the communication module 110.
  • the data collection module 130 may include a main control chip, a gyroscope, an acceleration sensor, a geomagnetic sensor, a pneumatic temperature sensor, and a GPS satellite positioning device.
  • the main control chip is connected to the gyroscope, the acceleration sensor, the geomagnetic sensor, the air pressure temperature sensor, and the GPS satellite positioning device, respectively.
  • the gyroscope, the acceleration sensor, the geomagnetic sensor, the air pressure temperature sensor and the GPS satellite positioning device are used to acquire hardware state data, real-time position data, real-time motion data, real-time attitude data and sensor data of the drone 100.
  • the main control chip can be a 32-bit microcontroller of the type STM32F103VET6, the gyroscope can be an ADXL345B three-axis gyroscope, the acceleration sensor can be a L3G4200D three-axis acceleration sensor, and the geomagnetic sensor can be a HMC5833L three-axis geomagnetic sensor.
  • the gyroscope and the acceleration sensor can sense the three-dimensional angular velocity signal and the three-dimensional acceleration signal of the drone 100, and obtain the real-time attitude data of the drone through the main control chip.
  • the main control chip can acquire current position data according to the geomagnetic sensor, the GPS satellite positioning device and the air pressure temperature sensor, and correct the real-time attitude data of the drone 100 to obtain real-time attitude data with high reliability.
  • the master chip is also coupled to the communication module 110 and is configured to transmit the acquired current flight state data to the server via the communication module 110.
  • the server performs real-time monitoring on the drone 100 according to the flight state data of the drone 100. When it is found that the current flight state data is abnormal, an early warning is issued to facilitate timely adjustment processing.
  • the above-mentioned drone transmits a task ID, a current IP address, and current flight state data of the obtained drone to the server, and the server generates a task instruction according to the preset task data table matching the drone, and the server causes The control command is sent according to the identity ID of the drone, and the designated drone can be controlled in real time to perform corresponding tasks, and a large number of drones are scheduled and monitored to realize large-scale dispatching and monitoring of the drone.
  • the data acquisition module 130 is further configured to detect whether hardware state data, real-time location data, real-time motion data, real-time attitude data, and sensor data are within a preset normal value range, and according to The test results generate self-test data.
  • the data collection module 130 compares the acquired hardware state data, real-time location data, real-time motion data, real-time posture data, and sensor data with a normal value range corresponding to the preset data, and generates a test according to the detection result.
  • Self-test data self-test data can include whether the battery is under voltage, whether the sensor is overloaded, or whether the real-time motion data is within the normal range.
  • the master chip in the data collection module 130 can transmit the self-test data of the drone 100 to the server through the communication module 110.
  • the data collection module 130 is further configured to: when it is determined that the hardware status data, the real-time position data, the real-time motion data, the real-time attitude data, and the sensor data are not within a preset normal value range, the flight status is abnormal, and the adjustment is convenient. And processing.
  • the self-test data is abnormal, if the abnormal state is small, such as the flight speed is too fast, the pitch angle is too large, etc., the drone 100 can adjust the operating parameters to make it normal.
  • the server determines and issues a corresponding adjustment instruction according to the uploaded self-test data, such as stopping the flight, changing the route, returning, and the like.
  • the flight control module 120 is further configured to perform a takeoff operation when the drone 100 is in a normal takeoff state, and receive a task instruction sent by the server in real time, and execute a corresponding task according to the task instruction.
  • the server may preload the task data table, or may load the task data table one by one according to the actual operating environment.
  • the two methods can be selected according to the actual application scenario of the drone 100 and the network environment.
  • the server can adopt a preloaded form, once.
  • the corresponding task data table is loaded, and then the corresponding task command is generated according to the task data table matched with the drone 100 and sent to the drone 100, and the drone 100 executes the corresponding task according to the task instruction.
  • the server may use a method of loading the data one by one or updating the task data table in real time. For example, the task of the drone 100 is to track a beacon on the ground.
  • the real-time location data and the motion data can be fed back to the server, and the server updates the task data table in real time according to the real-time location data and the motion data, and
  • the generated real-time task command is sent to the corresponding drone 100, and the drone 100 receives the task command and tracks the beacon according to the task instruction.
  • the flight control module 120 is further configured to receive the refusal takeoff command sent by the server through the communication module 110 when the drone 100 is in the abnormal takeoff state, and prompt according to the refusal takeoff command.
  • the above-mentioned drone can prompt when it finds that the self-test data is abnormal, which facilitates the processing and adjustment of the abnormal condition, and the server can preload or load the task data table according to different situations, which can better schedule the execution of the drone.
  • the corresponding task is convenient for scheduling and monitoring the drone.
  • a server 200 for drone scheduling includes a communication service module 210 and a backend application module 220.
  • the communication service module 210 is connected to the backend application module 220.
  • the communication service module 210 is configured to receive identity feature data transmitted by the drone 100.
  • the identity feature data includes the identity ID and current IP address of the drone 100.
  • the server 200 accesses the Internet through the communication service module 210, a connection is established with the drone 100, and the communication service module 210 receives the identity ID and the current IP address transmitted by the drone 100.
  • the backend application module 220 is configured to acquire a task data table matching the drone 100 according to the identity feature data, generate a task instruction according to the task data table, and send the task instruction to the corresponding drone through the communication service module 210. 100.
  • the backend application module 220 queries the preset task data table according to the received identity ID, finds the same part of the identity ID in the task data table and the received identity ID, and then generates according to the task data table corresponding to the identity ID.
  • the mission command is sent to the drone 100 according to the current IP address of the drone 100, and the drone 100 performs the corresponding task.
  • the server for dispatching the drone receives the identity feature data sent by the drone, and generates a task instruction according to the preset task data table corresponding to the drone.
  • the server sends control commands according to the identity data of the drone, and can control the designated drone to perform corresponding tasks in real time, and schedule a large number of drones to realize large-scale scheduling of the drone.
  • the communication service module 210 is further configured to receive current flight state data transmitted by the drone 100.
  • the current flight state data includes hardware state data of the drone 100, real-time position data, real-time motion data, real-time attitude data, sensor data, and self-test data.
  • the backend application module 220 is further configured to store the current flight state data, and when an abnormality is found in the current flight state data, issue an early warning to the drone.
  • the backend application module 220 can alert the drone 100 according to the current flight state data of the drone 100.
  • the drone 100 transmits current flight state data to the server 200 at regular intervals, and the time interval may be a preset time interval, for example, 5 s (seconds), 10 s, 1 minute (minutes), etc., to ensure current flight state data. real-time.
  • the backend application module 220 monitors and warns the drone 100 according to the current flight state data, for example, the drone 100 is yawed, enters a sensitive area, is in an abnormal take-off state, etc., and facilitates immediate adjustment of the drone 100 and Exception handling.
  • the drone 100 can issue commands such as suspending, terminating, returning, or landing.
  • the backend application module 220 is further configured to generate a preset route according to the task data table matched with the drone 100, and calculate a distance between the drone 100 and the preset route according to the real-time location data of the drone 100. When the distance is greater than the preset threshold, an alert is issued to the drone.
  • the backend application module 220 generates a preset route according to the waypoint data in the task data table that matches the identity ID of the drone 100, and calculates the distance between the drone 100 and the preset route, such as an unmanned person. If the machine 100 is flying point i, the geographic line segment L(i, il) can be obtained, the preset threshold value can be 20 meters, 30 meters, etc., and then the distance between the geographic line segment L and the preset route is calculated, or The coordinate data of the flight point i is directly obtained, and the distance between the drone 100 and the preset route is calculated according to the point-to-line distance algorithm. When the distance exceeds the threshold, an alert is issued to the drone 100. When the drone 100 is yawed, the server can issue an adjustment command by itself or manually adjust the corresponding drone.
  • the backend application module 220 is further configured to acquire a preset sensitive area, and determine whether the real-time location of the drone is close to or located in the sensitive area. If the real-time location of the drone 100 is close to or located in the sensitive area, then The drone 100 issues a warning of sensitive areas.
  • the server 200 may establish a sensitive area database to store a preset sensitive area, and the sensitive area includes an airport, a military area, and the like.
  • the backend application module 220 can utilize the distance-to-point distance algorithm and the point-to-line distance algorithm in geometric mathematics, and calculate the distance between the real-time position and the sensitive area of the drone 100 according to constants such as the radius of the earth. Value, the distance value can be in meters.
  • the drone 100 is less than the preset distance from the sensitive area, it is regarded as a proximity sensitive area, and the preset distance may be 10 meters, 5 meters, or the like. The drone 100 is alerted when the drone 100 approaches or is located in these sensitive areas.
  • the backend application module 220 can also temporarily issue a task command to the drone 100 to change the original route away from the sensitive area.
  • the original route of the drone 100 is A ⁇ B, and the route passes through the sensitive area.
  • the server can issue an adjustment command by itself or manually adjust the corresponding drone.
  • the backend application module 220 is further configured to determine whether the drone 100 is in an abnormal take-off state, and if yes, send a reject takeoff command to the drone 100 through the communication service module 210; if not, match the drone 100
  • the task data table generates task instructions and transmits the task instructions to the drone 100 through the communication service module 210.
  • the abnormal takeoff state includes one or more of the following situations: (1) determining, according to the task data table, that the drone 100 is in a non-executing task state, that is, the unattended task data table The data corresponding to the machine 100. (2) Calculate and judge that the drone is not in the take-off area based on the current position data of the drone 100. Calculating a distance between the current position data of the drone 100 and the takeoff point according to the latitude and longitude information of the waypoint type corresponding to the drone 100 in the mission data table, when the distance is less than the preset range The preset range may be 5 meters, 3 meters, etc., that is, the drone 100 is in the take-off area; otherwise, the drone 100 is not in the take-off area.
  • the backend application module 220 may schedule the designated drone 100 to perform the corresponding task in an orderly manner according to the task data table matched with the drone 100, through the preset task. Scheduling the drone in the form of a data table can improve the efficiency of scheduling a drone cluster.
  • the above-mentioned server for unmanned aerial vehicle scheduling monitors and warns the drone according to the current flight state data, and provides an early warning to the drone when the current flight state data sent by the drone is abnormal, which is convenient for the drone Make immediate adjustments and exception handling.
  • the backend application module 220 is further configured to obtain the last IP address of the drone 100 in the preset communication address table according to the ID of the drone, and determine the current IP address and the last IP address. Whether they are the same, if so, the communication service module 210 continues to receive the current IP address transmitted by the drone 100, and if not, updates the communication address table.
  • the UAV 100 may change its current IP address when the base station switches, so the drone 100 needs to obtain its current IP address in real time and send the current IP address to the server 200.
  • the server 200 receives the current IP address in real time through the communication service module 210.
  • the correspondence address table records the association relationship between the identity ID of the drone 100 and the current IP address.
  • the mailing address table is as follows:
  • the communication address table is updated.
  • the server 200 transmits a task instruction based on the current IP address of the drone 100, thereby controlling the designated drone to perform the corresponding task.
  • the above-mentioned server for the UAV scheduling can establish the relationship between the ID of the UAV and the current IP address, and update the current IP address in real time, so that the task command can be timely and accurately sent to the corresponding drone, which is convenient. Large-scale scheduling of drones.
  • the communication service module 210 is further configured to receive a drone control command sent by the terminal.
  • the terminal can be a terminal device such as a mobile phone, a laptop computer, a tablet computer, or a desktop computer.
  • the terminal can establish a connection with the server 200 through the Internet, and send a control instruction of the drone 100 to the server, thereby realizing scheduling of the drone.
  • the backend application module 220 is further configured to determine identity characteristic data of the drone 100 according to the control instruction, and send the control instruction to the corresponding drone 100 through the communication service module 210 according to the determined identity characteristic data of the drone.
  • the backend application module 220 determines the identity ID and the current IP address of the drone 100 according to the control command sent by the terminal, and sends the control command to the corresponding drone 100 through the current IP address of the drone 100.
  • the effect of monitoring and dispatching the drone through the terminal is greatly facilitated, and the use of the drone is greatly facilitated.
  • a drone scheduling system includes one or more of the above-described drones 100, the Internet 150, and the server 200 described above.
  • the drone 100 is connected to the Internet 150
  • the server 200 is connected to the Internet 150
  • the drone 100 and the server 200 establish a connection via the Internet 150.
  • the drone and the server establish a connection through the Internet, that is, in the place where the network exists, the server can monitor and dispatch the drone connected thereto, and can be widely monitored without being limited by the distance. And dispatch the drone to perform the corresponding task.
  • a UAV dispatching system includes a base station 120 and a cellular mobile in addition to one or more of the above-described drone 100, the Internet 150, and the server 200 described above. Network 130 and terminal 140.
  • the drone 100 is connected to the cellular mobile network 130 through the base station 120, the cellular mobile network 130 is connected to the Internet 150, and the server 200 is connected to the cellular mobile network 130 via the Internet 150 and establishes a connection with the drone 100.
  • the terminal 140 is connected to the server 200 via the Internet 150.
  • the cellular mobile network 130 can be a mobile communication network such as a GPRS, 3G, 4G, 5G network.
  • the terminal 140 transmits a control command of the drone 100 to the server 200, and the server 200 receives the control command and transmits the control command to the corresponding drone 100, and the drone 100 executes a corresponding task according to the control command.
  • the server dispatches the drone through the Internet, and can monitor and dispatch the drone to perform corresponding tasks in a wide range without being limited by the distance. And the two-way communication between the server and the drone, the terminal and the drone is established, and the drone can be monitored and dispatched through the terminal, which greatly facilitates the use of the drone.
  • a UAV scheduling method is described from the UAV side, including the following steps:
  • Step S510 acquiring identity characteristic data of the drone, and transmitting the identity feature data to the server.
  • the identity data includes the identity ID of the drone and the current IP address.
  • Each drone has its own unique ID that allows the server to identify the identity of the drone and send a task command based on that identity ID. After the drone enters the Internet, it establishes a connection with the server. After accessing the Internet successfully, it is assigned an IP address. The drone sends the identity ID and current IP address to the server.
  • Step S520 receiving a task instruction sent by the server that matches the identity feature data.
  • the drone receives a task instruction sent by the server that matches its identity ID, and the task instruction is generated by the server according to the preset task data table.
  • the server After receiving the identity ID and the current IP address of the drone, the server generates a task instruction according to the preset task data table, and sends the task instruction to the corresponding drone.
  • the task data table is shown in the following table:
  • the mission data table may include identity IDs, waypoints, waypoint types, and waypoint data, and record their associations.
  • the identity ID represents different drones.
  • Waypoints can be represented by sequence numbers, such as waypoint 1, waypoint 2, waypoint 3, etc. Different waypoints correspond to different serial numbers.
  • the waypoint type can be a takeoff location, a landing point location, a conventional waypoint location, an implementation point location, and the like. Different waypoints and corresponding waypoint types can be used for different identity IDs.
  • the waypoint data is the specific data that is run or implemented by the waypoint drone.
  • the waypoint data may include time, waypoint latitude and longitude coordinates, waypoint altitude, operating parameters of the drone to the waypoint, and actions required by the drone at the waypoint.
  • Different waypoint types correspond to different waypoint data, and there may be one or more different waypoint data for different waypoints.
  • the operating parameters of the drone to the waypoint may include a horizontal speed, a climbing speed, and a heading parameter, wherein the heading parameter refers to a heading that the drone has when flying, for example, the heading points to the north, or the heading points to a certain direction.
  • the actions that the drone needs to perform at the waypoint may include way, hover, look around, point of interest surround, and peripheral operations.
  • the way is that the drone arrives at the waypoint and immediately flies to the next waypoint.
  • Hovering means that the drone is at this waypoint.
  • Looking around refers to the action of the drone to look around after arriving at the waypoint.
  • the point of interest represents a geographical location information, including latitude and longitude coordinates and altitude
  • the point of interest surround means that the drone can fly around the point of interest according to the set operating parameters.
  • the peripheral operation is related to the equipment carried by the drone, such as taking photos, recording, and collecting sensor data for the waypoint.
  • the server After receiving the identity ID and the current IP address sent by the aircraft through the communication module, the server queries the preset task data table according to the identity ID, and finds the same part of the identity ID in the task data table and the received identity ID, and then according to the
  • the task data table corresponding to the identity ID generates a task instruction, and the task instruction includes information such as specific data required to be run or implemented by the current drone obtained according to the task data table, and is sent to the drone according to the current IP address of the drone.
  • the corresponding task is performed by the drone.
  • step S530 the corresponding task is executed according to the task instruction.
  • the drone performs the corresponding task according to the task instruction sent by the server, including various operations preset in the task data table corresponding to the drone, for example, the drone can fly, suspend, and continue according to the task instruction.
  • termination, forced landing, returning, passing, hovering, looking around, point of interest surround, photo, video, sensor data collection and other tasks can also adjust the real-time attitude, flight speed, etc. according to the task instructions.
  • the UAV sends the acquired identity characteristic data to the server, and the server generates a task instruction according to the preset task data table matching the UAV.
  • the server sends control commands according to the identity data of the drone, and can control the designated drone to perform corresponding tasks in real time, and schedule a large number of drones to realize large-scale scheduling of the drone.
  • the method further includes the following steps:
  • Step S610 acquiring current flight state data.
  • step S620 the current flight state data is sent to the server, so that the server performs real-time monitoring on the current flight state.
  • the current flight status data may include hardware status data of the drone, real-time position data, real-time motion data, real-time attitude data, sensor data, and self-test data.
  • the hardware status data refers to the status data of each component of the drone, including the battery voltage, the motor speed, and the signal quality of the data transmission.
  • the real-time location data includes the latitude and longitude, altitude, GPS positioning accuracy, satellite number, and UTC time of the current location of the drone.
  • Real-time motion data includes the speed of the drone, climb/fall speed, heading, and so on.
  • the real-time attitude data includes the angles of pitch and roll, and the like.
  • the sensor data includes accelerometers, gyroscopes, thermometers, and ultrasonic measurements.
  • the self-test data refers to the data obtained by the drone based on the result of detecting its own data, such as whether the battery is under voltage, whether the sensor is overloaded, or whether the real-time motion data is within the normal range.
  • the drone sends the current flight status data obtained to the server.
  • the server monitors the UAV in real time according to the flight status data of the drone. When it finds that the current flight status data is abnormal, it issues an early warning to facilitate timely adjustment and processing.
  • Step S630 detecting whether the hardware status data, the real-time position data, the real-time motion data, the real-time attitude data, and the sensor data are all within a preset normal value range. If yes, step S640 is performed, and if no, step S650 is performed.
  • the UAV compares the acquired hardware state data, real-time position data, real-time motion data, real-time attitude data, and sensor data with a normal value range corresponding to the preset data, and generates a self-detection result according to the detection result.
  • Check data, self-test data can include whether the battery is under voltage, whether the sensor is overloaded, or whether the real-time motion data is within the normal range.
  • the flight status is abnormal, which is convenient for adjustment and processing.
  • the self-test data is abnormal, if the abnormal state is small, such as the flight speed is too fast, the pitch angle is too large, etc., the drone can adjust the operating parameters to make it normal.
  • the abnormal state is large, such as yaw, entering a sensitive area, etc.
  • the server determines and issues a corresponding adjustment instruction according to the uploaded self-test data, such as stopping the flight, changing the route, returning, and the like.
  • step S640 the flight state is normal.
  • step S650 the flight state is abnormal.
  • the above-mentioned UAV scheduling method transmits the acquired current flight state data to the server, so that the server monitors it in real time, and when the flight state is abnormal, the prompting and adjustment can be performed, so that the abnormal situation can be solved immediately.
  • the unmanned aircraft scheduling method further includes the following steps:
  • the take-off operation is performed and the task command sent by the server is received in real time.
  • the server can preload the task data table, or load the task data table one by one according to the actual operating environment.
  • the two methods can be selected according to the actual application scenarios of the drone and the network environment.
  • the server can adopt the form of preloading, load the corresponding task data table once and then match according to the drone.
  • the task data table generates corresponding task instructions and sends them to the drone, and the drone executes the corresponding tasks according to the task instructions.
  • the server can be loaded one by one or updated in real time.
  • the task of the drone is to track a beacon on the ground.
  • the beacon is connected to the Internet
  • the real-time location data and the motion data can be fed back to the server, and the server updates the task data table in real time according to the real-time location data and the motion data, and generates
  • the real-time task command is sent to the corresponding drone, and the drone receives the task command and tracks the beacon according to the task instruction.
  • the drone when the drone is in an abnormal take-off state, the refusal to take off command sent by the server is received, and after being prompted, it can be manually adjusted to be in a normal take-off state.
  • the server can preload or load the task data table according to different situations, can better schedule the drone to perform corresponding tasks, and conveniently schedule and monitor the drone.
  • a UAV scheduling method is described from the server side, and includes the following steps:
  • Step S710 receiving identity feature data sent by the drone.
  • the identity feature data includes the identity ID of the drone and the current IP address.
  • the server accesses the Internet, it establishes a connection with the drone and receives the identity ID and current IP address sent by the drone.
  • Step S720 acquiring a task data table matching the drone according to the identity feature data.
  • the server queries the preset task data table according to the identity ID of the received drone, and finds the same part of the identity ID in the task data table and the received identity ID.
  • Step S730 generating a task instruction according to the task data table.
  • the server generates a task instruction according to the task data table that matches the identity ID, and the task instruction includes information such as specific data required to be run or implemented by the current drone obtained according to the task data table.
  • step S740 the task instruction is sent to the drone.
  • the server sends the drone to the drone according to the current IP address of the drone, and the drone performs the corresponding task.
  • the server receives the identity feature data sent by the drone, and generates a task instruction according to the preset task data table matching the drone.
  • the server sends control commands according to the identity data of the drone, and can control the designated drone to perform corresponding tasks in real time, and schedule a large number of drones to realize large-scale scheduling of the drone.
  • the method further includes the following steps:
  • Step S810 receiving current flight state data sent by the drone and storing it.
  • the current flight state data includes hardware status data of the drone, real-time position data, real-time motion data, real-time attitude data, sensor data, and self-test data.
  • Step S820 real-time monitoring of the drone according to the current flight state data.
  • Step S830 when it is found that the current flight state data is abnormal, an early warning is issued to the drone.
  • the server can alert the drone according to the current flight state data of the drone.
  • the drone transmits the current flight state data to the server at a certain time.
  • the time interval may be a preset time interval, for example, 5s, 10s, 1min, etc., to ensure the real-time performance of the current flight state data.
  • the server monitors and warns the UAV based on the current flight status data, such as the yaw of the UAV, entering the sensitive area, and being in an abnormal take-off state, which facilitates immediate adjustment and abnormal processing of the UAV.
  • the drone may be given a command to suspend, terminate, return or make a landing.
  • step S830 specifically includes the following steps:
  • Step S902 generating a preset route according to the task data table matched with the drone.
  • the server generates a preset route according to the waypoint data in the task data table that matches the identity ID of the drone.
  • Step S904 calculating a distance between the drone and the preset route according to the real-time location data of the drone.
  • the server calculates the distance between the drone and the preset route.
  • Step S906 when the distance is greater than a preset threshold, an early warning is issued to the drone.
  • the geographic line segment L(i, il) can be obtained, and the preset threshold can be a value of 20 meters, 30 meters, etc., and then the geographic line segment L and the preset route are calculated.
  • Distance or directly obtain the coordinate data of the flight point i, and calculate the distance between the drone and the preset route according to the point-to-line distance algorithm, and when the distance exceeds the threshold, an early warning is issued to the drone .
  • the server can release the adjustment command by itself or manually adjust the corresponding drone.
  • Step S908 acquiring a preset sensitive area.
  • the server may establish a sensitive area database to store preset sensitive areas, including sensitive airports, military areas, and the like.
  • step S910 it is determined whether the real-time location of the drone is close to or located in the sensitive area. If yes, step S912 is performed, and if not, the process ends.
  • the server can utilize the distance-to-point distance algorithm and the distance-to-line distance algorithm in geometric mathematics, and calculate the distance between the real-time position and the sensitive area of the drone according to constants such as the radius of the earth.
  • the distance value can be in meters.
  • the drone is less than the preset distance from the sensitive area, it is regarded as being close to the sensitive area, and the preset distance may be 10 meters, 5 meters, or the like.
  • the drone is alerted when the drone approaches or is located in these sensitive areas.
  • the server can also temporarily issue a mission command to the drone to change the original route and away from the sensitive area.
  • the original route of the drone is A ⁇ B, and the route passes through the sensitive area in the middle, and the waypoint C can be temporarily added. Make the route change to A ⁇ C ⁇ B to avoid sensitive areas.
  • the server can release the adjustment command by itself or manually adjust the corresponding drone.
  • Step S912 issuing a sensitive area warning to the drone.
  • the above-mentioned method for unmanned aerial vehicle scheduling is to monitor and warn the drone according to the current flight state data, and when the current flight state data sent by the drone is abnormal, the UAV is alerted to facilitate the drone. Instant adjustments and exception handling.
  • the foregoing unmanned aircraft scheduling method further includes the following steps:
  • step S1002 it is determined whether the drone is in an abnormal take-off state. If yes, step S1006 is performed, and if no, step S1004 is performed.
  • the abnormal takeoff state includes one or more of the following situations: (1) determining, according to the task data table, that the drone is in a non-executing task state, that is, the drone is not in the task data table. Corresponding data. (2) Calculate and judge that the drone is not in the take-off area based on the current position data of the drone. Calculating the distance between the current position data of the drone and the takeoff point according to the latitude and longitude information of the waypoint type corresponding to the drone corresponding to the drone in the task data table, when the distance is less than the preset range, The preset range can be 5 meters, 3 meters, etc., that is, the drone is in the take-off area, otherwise the drone is not in the take-off area.
  • Step S1004 Generate a task instruction according to the task data table matched with the drone, and send the task instruction to the drone.
  • the server may preload the task data table, or may load the task data table one by one according to the actual operating environment.
  • the two methods can be selected according to the actual application scenarios of the drone and the network environment.
  • step S1006 the refusal to take off command is sent to the drone.
  • the server sends a refusal to take off command to the drone to facilitate adjustment of the drone.
  • the server can determine whether the drone is in an abnormal take-off state, and is convenient for state determination and adjustment.
  • the server can preload or update the task data table in real time, can better schedule the drone to perform tasks, and schedule the drone through the preset task data table, which can improve the efficiency of scheduling the drone cluster.
  • the foregoing unmanned aircraft scheduling method further includes the following steps:
  • Step S1102 Receive a current IP address sent by the drone.
  • the current IP address of the drone may change when the base station switches, so the drone needs to obtain its current IP address in real time and send the current IP address to the server.
  • Step S1104 Obtain the last IP address of the drone in the preset communication address table according to the drone ID.
  • the communication address table records the association between the identity ID of the drone and the current IP address.
  • the mailing address table is as follows:
  • step S1106 it is determined whether the current IP address is the same as the previous IP address. If yes, step S1102 is performed, and if no, step S1108 is performed.
  • the server when the server detects that the current IP address sent by the drone is different from the IP address corresponding to the identity ID in the communication address table, the server updates the communication address table.
  • the server sends a task instruction based on the current IP address of the drone, thereby controlling the designated drone to perform the corresponding task.
  • step S1108 the communication address table is updated.
  • the above-mentioned method for unmanned aerial vehicle scheduling by establishing the association relationship between the identity ID of the drone and the current IP address, and instantly updating the current IP address, can ensure that the task instruction is timely and accurately sent to the corresponding drone, which facilitates no Large-scale scheduling of man-machines.
  • the UAV scheduling method further includes the following steps:
  • the terminal can be a terminal device such as a mobile phone, a laptop computer, a tablet computer, or a desktop computer.
  • the terminal can establish a connection with the server through the Internet, and send a control instruction of the drone to the server, thereby realizing scheduling of the drone.
  • the server determines the identity ID and the current IP address of the drone according to the control command sent by the terminal, and sends the control command to the corresponding drone through the current IP address of the drone.
  • the server sends the control command sent by the terminal to the corresponding drone, which can realize the effect of monitoring and dispatching the drone through the terminal, which greatly facilitates the use of the drone.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Navigation (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明涉及一种无人机调度方法及系统、无人机、用于无人机调度的服务器,该方法包括以下步骤: 获取无人机的身份特征数据,并将所述身份特征数据发送至服务器;接收由所述服务器发送的与所述身份特征数据相匹配的任务指令,所述任务指令由所述服务器根据预设的任务数据表生成;根据所述任务指令执行相应的任务。上述无人机调度方法及系统、无人机、用于无人机调度的服务器,可实现大规模的调度无人机,方便人们对无人机的使用。

Description

无人机调度方法及系统、无人机
本申请要求于2015年1月23日提交中国专利局、申请号为201510036938.3、发明名称为“无人机调度方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2015年1月13日提交中国专利局、申请号为201520023417.X、发明名称为“基于移动通信网络的无人机数据链路系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及通信技术领域,特别是涉及一种无人机调度方法及系统、无人机、用于无人机调度的服务器。
【背景技术】
无人机是一种由无线电遥控设备或自身程序控制装置操纵的无人架驶飞行器,其用途广泛,制作成本低,生存能力强且机动性能好,故在现代战争中有极其重要的作用。此外,无人机在民用领域也具有广阔的应用前景,例如收集大气样本、地图测绘、资源普查以及灾害调查等。蜂窝移动通信是目前发展最快、应用最广和成本最低的长距离移动通信系统,现在已经发展到第二代、第三代和第四代系统并存的阶段。现阶段蜂窝移动通信GSM和卫星定位GPS(Global Positioning System,全球定位系统)相结合的技术已经广泛用于车辆定位、调度和防盗中。因为蜂窝移动通信在移动条件下传输的稳定性较好,现有的无人机一般通过射频数字传输模块或蜂窝移动通信进行数据传输和控制,但是射频数字传输模块有距离和地形限制,要求地面与无人机之间不能有障碍物,而且单一的通过蜂窝移动通信进行数据通信,只能在特定的设备上对无人机进行控制。
而在传统方式中,一般使用无线电遥控器直接操控飞机,或是由地面设备通过无线电数字传输模块及移动蜂窝网络进行操控,这些方式由于地面端的处理能力有限,只能对数量少的无人机进行操控,限制了人们对于无人机的使用,无法进行大规模的调度。
【发明内容】
基于此,有必要针对无法对无人机进行大规模调度的问题,提供一种无人机调度方法及系统、无人机、用于无人机调度的服务器。
一种无人机调度方法,包括以下步骤:
获取无人机的身份特征数据,并将所述身份特征数据发送至服务器;
接收由所述服务器发送的与所述身份特征数据相匹配的任务指令,所述任务指令由所述服务器根据预设的任务数据表生成;
根据所述任务指令执行相应的任务。
一种无人机调度方法,包括以下步骤:
接收由无人机发送的身份特征数据;
根据所述身份特征数据获取与所述无人机相匹配的任务数据表;
根据所述任务数据表生成任务指令;
将所述任务指令发送至所述无人机。
一种无人机调度方法,包括以下步骤:
无人机获取自身的身份特征数据,并将所述身份特征数据发送至服务器;
所述服务器接收所述无人机发送的身份特征数据;
所述服务器根据所述身份特征数据获取与所述无人机相匹配的任务数据表;
所述服务器根据所述任务数据表生成任务指令;
所述服务器将所述任务指令发送至所述无人机;
所述无人机接收由所述服务器发送的任务指令,并根据所述任务指令执行相应的任务。
一种无人机,包括飞行控制模块和通信模块,所述通信模块与所述飞行控制模块连接;
所述飞行控制模块用于存储无人机的身份ID;
所述通信模块用于获取并存储当前IP地址;
所述通信模块还用于将所述身份ID及所述当前IP地址发送至服务器,并接收由所述服务器发送的与所述身份ID相匹配的任务指令,所述任务指令由所述服务器根据预设的任务数据表生成;
所述飞行控制模块还用于接收由所述通信模块传递的任务指令,并根据所述任务指令执行相应的任务。
一种用于无人机调度的服务器,所述服务器包括通信服务模块及后端应用模块,所述通信服务模块与所述后端应用模块相连;
所述通信服务模块用于接收由无人机发送的身份特征数据;
所述后端应用模块用于根据所述身份特征数据获取与所述无人机相匹配的任务数据表,根据所述任务数据表生成任务指令,并通过所述通信服务模块将所述任务指令发送至所述无人机。
一种无人机调度系统,包括互联网,所述系统还包括如上所述的无人机和如上所述的用于无人机调度的服务器,所述无人机与所述服务器通过互联网连接。
上述无人机调度方法及系统、无人机、用于无人机调度的服务器,无人机将获取的身份特征数据发送给服务器,服务器根据预设的与该无人机相匹配的任务数据表生成任务指令。服务器因是根据无人机的身份特征数据发送控制指令,可实时控制指定无人机执行相应任务,对大量无人机进行调度,实现无人机的大规模调度。
【附图说明】
图1为一个实施例中无人机的结构示意图;
图2为一个实施例中用于无人机调度的服务器的结构示意图;
图3为一个实施例中无人机调度系统的结构示意图;
图4为另一个实施例中无人机调度系统的结构示意图;
图5为一个实施例中无人机调度方法的流程示意图;
图6为一个实施例中无人机向服务器发送当前飞行状态数据的流程示意图;
图7为另一个实施例中无人机调度方法的流程示意图;
图8为一个实施例中服务器对无人机进行实时监控的流程示意图;
图9为一个实施例中服务器向无人机发出预警的流程示意图;
图10为一个实施例中服务器判断无人机是否处于非正常起飞状态的流程示意图;
图11为一个实施例中服务器获取无人机IP的流程示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,在一个实施例中,一种无人机100,包括通信模块110、飞行控制模块120和数据采集模块130,通信模块110与飞行控制模块120连接,数据采集模块130与飞行控制模块120连接。
通信模块110,用于获取并存储当前IP(Internet Protocol,网络之间互连的协议)地址。
具体的,无人机100通过通信模块110接入互联网,并与服务器建立连接,接入互联网成功后,即被分配有IP地址,通信模块110获取并存储当前IP地址。通信模块110还具有检测断线及重连的功能,可应对数据传输过程中遇到网络或信号盲区时,造成网络或信号断开的情况。
飞行控制模块120,用于存储无人机100的身份ID(Identity,身份标识)。
具体的,每架无人机100都有其单独的身份ID,该身份ID便于服务器识别无人机100的身份并根据该身份ID发送任务指令。飞行控制模块120存储该身份ID。
通信模块110还用于将身份ID及当前IP地址发送至服务器,并接收由服务器发送的与该身份ID相匹配的任务指令,该任务指令由服务器根据预设的任务数据表生成。
具体的,通信模块110将无人机100的身份ID及当前IP地址发送给服务器,服务器接收无人机100的身份ID及当前IP地址之后,根据预设的任务数据表生成任务指令,并将任务指令发送给对应的无人机100。无人机100的通信模块110接收该任务指令。任务数据表如下表所示:
身份 ID 航点 航点类型 航点数据
任务数据表可包括身份ID、航点、航点类型及航点数据,并记录有它们的关联关系。
其中,身份ID代表不同的无人机100。
航点可用序号进行表示,例如航点1、航点2、航点3等,不同的航点对应不同的序号。
航点类型可为起飞地理位置、降落点地理位置、常规航点地理位置、实施点地理位置等。针对不同的身份ID,可有不同的航点及对应的航点类型。
航点数据为该航点无人机100所运行或实施的具体数据。航点数据可包括时间、航点经纬度坐标、航点海拔高度、无人机100飞往该航点的运行参数及无人机100在该航点所需执行的动作等。不同的航点类型对应的航点数据不同,针对不同的航点可有一种或多种不同的航点数据。无人机100飞往该航点的运行参数可包括水平速度、爬升速度和航向参数等,其中,航向参数是指无人机100飞行时所具有的航向,例如航向指向正北,或航向指向某一经纬度坐标等。无人机100在该航点所需执行的动作可包括途经、悬停、环视、兴趣点环绕及外设操作等。其中,途经是指无人机100抵达该航点后立即向下一航点飞行。悬停是指无人机100在此航点停留。环视是指无人机100在抵达该航点后作四周环视的动作。兴趣点表示一个地理位置信息,包括经纬度坐标及海拔高度,兴趣点环绕是指无人机100可按设定的运行参数环绕该兴趣点进行飞行。外设操作则与无人机100搭载的设备有关,例如对该航点进行拍照、录像、传感器数据采集等。
服务器接收由飞行器100通过通信模块110发送的身份ID及当前IP地址后,根据该身份ID查询预设的任务数据表,找出任务数据表中的身份ID与接收的身份ID相同的部分,然后根据该身份ID对应的任务数据表生成任务指令,任务指令包括根据该任务数据表获取的当前无人机100所需运行或实施的具体数据等信息,并根据无人机100的当前IP地址发送给无人机100,由无人机100执行相应的任务。
飞行控制120还用于接收由通信模块110传递的任务指令,并根据该任务指令执行相应的任务。
具体的,飞行控制模块120根据服务器发送的任务指令执行相应任务,包括按照与无人机100对应的任务数据表中预先设定的各种操作,例如无人机100可根据任务指令进行飞行、中止、继续、终止、迫降、返航、途经、悬停、环视、兴趣点环绕、拍照、录像、传感器数据采集等任务,还可根据任务指令调整实时姿态、飞行速度等。服务器可实时控制相应的无人机100执行相应任务,对大量无人机进行调度,实现无人机的大规模调度。
数据采集模块130,用于获取当前飞行状态数据。
具体的,当前飞行状态数据可包括硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据等。其中,硬件状态数据是指无人机100各组成部分的状态数据,包括电池电压、电机转速、数据传输的信号质量等。实时位置数据包括无人机100当前所处位置的经纬度、海拔高度、GPS定位精度、卫星数及UTC(Universal Time Coordinated,协调世界时)时间等。实时运动数据包括无人机100的运行速度、爬升/下降速度、航向等。实时姿态数据包括俯仰和横滚的角度等。传感器数据包括加速度计、陀螺仪、温度计、超声波的测量数值等。自检数据则是指无人机100根据检测自身数据的结果所获得的数据,例如电池是否欠压、传感器是否过载,或是实时运动数据是否在正常范围内等。
数据采集模块130还用于通过通信模块110将当前飞行状态数据发送至服务器。
具体的,数据采集模块130可包括主控芯片、陀螺仪、加速度传感器、地磁传感器、气压温度传感器及GPS卫星定位装置等。主控芯片分别与陀螺仪、加速传感器、地磁传感器、气压温度传感器及GPS卫星定位装置等相连。陀螺仪、加速传感器、地磁传感器、气压温度传感器及GPS卫星定位装置用于获取无人机100的硬件状态数据、实时位置数据、实时运动数据及实时姿态数据及传感器数据等。主控芯片可为型号为STM32F103VET6的32位微控制器,陀螺仪可为ADXL345B三轴陀螺仪,加速度传感器可为L3G4200D三轴加速度传感器,地磁传感器可为HMC5833L三轴地磁传感器。陀螺仪与加速度传感器能感应无人机100的三维角速度信号和三维加速度信号,并通过主控芯片得出无人机的实时姿态数据。主控芯片能根据地磁传感器、GPS卫星定位装置及气压温度传感器等获取当前位置数据,并对无人机100的实时姿态数据进行修正以获得具有高可信度的实时姿态数据。
主控芯片还与通信模块110相连,并用于将获取的当前飞行状态数据通过通信模块110发送至服务器。服务器根据无人机100的飞行状态数据对该无人机100进行实时监控,当发现当前飞行状态数据出现异常时,发出预警,方便及时进行调整处理。
上述无人机,通过将获取的无人机的身份ID、当前IP地址及当前飞行状态数据发送给服务器,服务器根据预设的与该无人机相匹配的任务数据表生成任务指令,服务器因是根据无人机的身份ID发送控制指令,可实时控制指定无人机执行相应任务,对大量无人机进行调度和监控,实现无人机的大规模调度及监控。
在一个实施例中,上述无人机,数据采集模块130还用于检测硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据是否均在预设的正常数值范围内,并根据检测结果生成自检数据。
具体的,数据采集模块130将获取的硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据等数据与预设的各项数据对应的正常数值范围进行比较,并根据检测结果生成自检数据,自检数据可包括电池是否欠压、传感器是否过载,或是实时运动数据是否在正常范围内等。数据采集模块130中的主控芯片可通过通信模块110将无人机100的自检数据发送至服务器。
数据采集模块130还用于当判断出硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据等数据不在预设的正常数值范围内时,提示飞行状态异常,方便对其进行调整和处理。当自检数据发生异常时,若异常状态较小,例如飞行速度过快、俯仰角度过大等情况,无人机100可自行调整运行参数,使其正常。当异常状态较大时,例如偏航、进入敏感区域等,则由服务器根据上传的自检数据判断并下达相应的调整指令,例如停飞、改变航线、返航等。
飞行控制模块120还用于当无人机100处于正常起飞状态时,执行起飞操作,并实时接收由服务器发送的任务指令,根据该任务指令执行相应的任务。
具体的,服务器可预加载任务数据表,也可以根据实际运用环境逐条加载或进行实时更新任务数据表。两种方式可根据无人机100的实际应用场景及网络环境进行选择,一般当无人机100所执行的任务是固定的,或是网络环境不好时,服务器可采用预加载的形式,一次性加载对应的任务数据表,然后根据与无人机100相匹配的任务数据表生成相应的任务指令并发送给无人机100,无人机100再根据任务指令执行相应任务。当无人机100的任务是不固定的,服务器可采用逐条加载或是实时更新任务数据表的方式。例如无人机100的任务为追踪地面上的一个信标,该信标连接互联网后可将实时位置数据及运动数据反馈给服务器,服务器根据该实时位置数据及运动数据实时更新任务数据表,并生成实时任务指令发送给相应的无人机100,无人机100接收任务指令后根据该任务指令追踪信标。
飞行控制模块120还用于当无人机100处于非正常起飞状态时,通过通信模块110接收由服务器发送的拒绝起飞指令,并根据该拒绝起飞指令进行提示。
上述无人机,当发现自检数据产生异常时可进行提示,方便异常状况的处理和调整,且服务器根据不同的情况可预加载或实时加载任务数据表,能更好地调度无人机执行相应的任务,方便对无人机进行调度和监控。
如图2所示,在一个实施例中,一种用于无人机调度的服务器200,包括通信服务模块210和后端应用模块220。通信服务模块210与后端应用模块220相连。
通信服务模块210用于接收由无人机100发送的身份特征数据。
具体的,身份特征数据包括无人机100的身份ID和当前IP地址。服务器200通过通信服务模块210接入互联网后,与无人机100建立连接,通信服务模块210接收由无人机100发送的身份ID和当前IP地址。
后端应用模块220用于根据该身份特征数据获取与无人机100相匹配的任务数据表,根据任务数据表生成任务指令,并通过通信服务模块210将该任务指令发送至对应的无人机100。
具体的,后端应用模块220根据接收的身份ID查询预设的任务数据表,找出任务数据表中的身份ID与接收的身份ID相同的部分,然后根据该身份ID对应的任务数据表生成任务指令,并根据无人机100的当前IP地址发送给无人机100,由无人机100执行相应的任务。
上述用于无人机调度的服务器,服务器接收无人机发送的身份特征数据,并根据预设的与该无人机对应的任务数据表生成任务指令。服务器因是根据无人机的身份特征数据发送控制指令,可实时控制指定无人机执行相应任务,对大量无人机进行调度,实现无人机的大规模调度。
在一个实施例中,上述通信服务模块210还用于接收由无人机100发送的当前飞行状态数据。
具体的,当前飞行状态数据包括无人机100的硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据等。
后端应用模块220还用于存储该当前飞行状态数据,当发现该当前飞行状态数据出现异常,则向所述无人机发出预警。
具体的,后端应用模块220可根据无人机100的当前飞行状态数据对无人机100进行预警。无人机100每隔一定时间即向服务器200发送当前飞行状态数据,该时间间隔可以是预设的时间间隔,例如5s(秒)、10s、1min(分钟)等,可保证当前飞行状态数据的实时性。后端应用模块220根据当前飞行状态数据对无人机100进行监控和预警,例如无人机100发生偏航、进入敏感区域、处于非正常起飞状态等,方便对无人机100进行即时调整以及异常处理。后端应用模块220发现无人机100的当前飞行状态数据出现异常时,可随时对该无人机100下达中止、终止、返航或迫降等命令。
后端应用模块220还用于根据与无人机100相匹配的任务数据表生成预设航线,并根据无人机100的实时位置数据计算该无人机100与预设航线之间的距离,当距离大于预设的阈值,则向无人机发出预警。
具体的,后端应用模块220根据与无人机100的身份ID相匹配的任务数据表中的航点数据生成预设航线,计算无人机100与预设航线之间的距离,例如无人机100正在飞行点i,则可获得地理线段L(i,i-l),预设的阈值可为20米、30米等数值,然后计算该地理线段L与预设航线之间的距离,或是直接获取飞行点i的坐标数据,并根据点到线的距离算法计算无人机100与预设航线之间的距离,当该距离超过阈值时,则向该无人机100发出预警。当无人机100发生偏航时,服务器可自行下达调整指令,也可通过人工对相应无人机进行调整。
后端应用模块220还用于获取预设的敏感区域,并判断所述无人机的实时位置是否接近或位于敏感区域内,若无人机100的实时位置接近或位于敏感区域内,则向无人机100发出敏感区域预警。
具体的,服务器200可建立敏感区域数据库存储预设的敏感区域,敏感区域包括机场、军事区域等。后端应用模块220可利用几何数学中点到点之间的距离算法及点到线之间的距离算法,并根据地球半径等常量,计算无人机100的实时位置与敏感区域之间的距离值,该距离值可以米为单位。当无人机100距离敏感区域小于预设距离时,即被视为接近敏感区域,该预设距离可为10米、5米等。当无人机100接近或位于这些敏感区域时向该无人机100发出预警。后端应用模块220还可向无人机100临时下达任务指令,使其改变原来的航线,远离敏感区域,例如无人机100原来的航线为A→B,该航线中间会经过敏感区域,可临时增设航点C,使其航线变为A→C→B,以避开敏感区域。当无人机100接近或位于敏感区域时,服务器可自行下达调整指令,也可通过人工对相应无人机进行调整。
后端应用模块220还用于判断无人机100是否处于非正常起飞状态,若是,则通过通信服务模块210向无人机100发送拒绝起飞指令;若否,则根据与无人机100相匹配的任务数据表生成任务指令,并通过通信服务模块210将任务指令发送至无人机100。
具体的,非正常起飞状态包括以下几种情况中的一种或多种:(1)根据任务数据表判断出该无人机100处于非执行任务状态,即任务数据表中无与该无人机100对应的数据。(2)根据无人机100的当前位置数据计算并判断出无人机不在起飞区域内。根据任务数据表中与该无人机100对应的航点类型为起飞点地理位置的经纬度信息,计算无人机100的当前位置数据与该起飞点之间的距离,当该距离小于预设范围时,该预设范围可为5米、3米等,即表示无人机100在起飞区域内,否则,该无人机100不在起飞区域内。(3)根据无人机100的当前位置数据计算并判断出无人机100位于敏感区域内。(4)判断出无人机100的自检数据存在异常,例如工作电压出现异常、温度出现异常等。
当无人机100处于正常起飞状态时,后端应用模块220可根据与无人机100相匹配的任务数据表,调度指定的无人机100有序地执行相应的任务,通过预设的任务数据表的形式调度无人机,可提高调度无人机集群的效率。
上述用于无人机调度的服务器,根据当前飞行状态数据对无人机进行监控和预警,当无人机发送的当前飞行状态数据发生异常时对该无人机进行预警,方便对无人机进行即时调整以及异常处理。
在一个实施例中,后端应用模块220还用于根据无人机的身份ID在预设的通讯地址表中获取无人机100的上次IP地址,并判断当前IP地址与上次IP地址是否相同,若是,则通信服务模块210继续接收由该无人机100发送的当前IP地址,若否,则更新通讯地址表。
具体的,无人机100在飞行的过程中,其当前IP地址可能在基站切换时发生变化,因此无人机100需要实时获取其当前IP地址,并将该当前IP地址发送到服务器200。服务器200通过通信服务模块210实时接收该当前IP地址。通讯地址表记录有无人机100的身份ID及当前IP地址的关联关系。通讯地址表如下所示:
身份 ID IP 地址
当后端应用模块220检测到无人机100的发送的当前IP地址与通讯地址表中的与其身份ID对应的IP地址不同时,则更新通讯地址表。服务器200根据无人机100的当前IP地址发送任务指令,从而控制指定的无人机执行相应任务。
上述用于无人机调度的服务器,通过建立无人机的身份ID及当前IP地址的关联关系,并即时更新当前IP地址,可保证任务指令及时准确地发送至相应的无人机,方便了无人机的大规模调度。
在一个实施例中,上述通信服务模块210还用于接收由终端发送的无人机控制指令。
具体的,终端可为手机、手提电脑、平板电脑、台式电脑等终端设备。终端通过互联网可与服务器200建立连接,并向服务器发送无人机100的控制指令,以此来实现对无人机的调度。
后端应用模块220还用于根据控制指令确定无人机100的身份特征数据,并根据确定的无人机的身份特征数据将该控制指令通过通信服务模块210发送给对应的无人机100。
具体的,后端应用模块220根据终端发送的控制指令确定无人机100的身份ID及当前IP地址,并将该控制指令通过无人机100的当前IP地址发送至对应的无人机100,实现通过终端来监控和调度无人机的效果,大大方便了人们对于无人机的使用。
如图3所示,在一个实施例中,一种无人机调度系统,包括一个或多个上述的无人机100、互联网150和上述的服务器200。无人机100连接互联网150,服务器200连接互联网150,无人机100与服务器200通过互联网150建立连接。
上述无人机调度系统,无人机与服务器通过互联网建立连接,即在有网络存在的地方,服务器即可监控和调度与其建立连接的无人机,无需受到距离的限制,能大范围地监控和调度无人机执行相应任务。
如图4所示,在另一个实施例中,一种无人机调度系统,除了包括一个或多个上述的无人机100、互联网150和上述的服务器200外,还包括基站120、蜂窝移动网络130和终端140。
具体的,无人机100通过基站120与蜂窝移动网络130相连,蜂窝移动网络130与互联网150相连,服务器200通过互联网150连接蜂窝移动网络130,并与无人机100建立连接。终端140通过互联网150与服务器200连接。蜂窝移动网络130可为GPRS、3G、4G、5G网络等移动通信网络。
终端140向服务器200发送无人机100的控制指令,服务器200接收该控制指令并将该控制指令发送给对应的无人机100,无人机100根据该控制指令执行相应的任务。
上述无人机调度系统,服务器通过互联网调度无人机,无需受到距离的限制,能大范围地监控和调度无人机执行相应任务。且建立了服务器与无人机,终端与无人机的双向通信,可通过终端对无人机进行监控和调度,大大方便了人们对于无人机的使用。
如图5所示,一个实施例中,一种无人机调度方法,从无人机端进行描述,包括以下步骤:
步骤S510,获取无人机的身份特征数据,并将身份特征数据发送至服务器。
具体的,身份特征数据包括无人机的身份ID及当前IP地址。每架无人机都有其单独的身份ID,该身份ID便于服务器识别无人机的身份并根据该身份ID发送任务指令。无人机接入互联网后,与服务器建立连接,接入互联网成功后,即被分配有IP地址。无人机将身份ID及当前IP地址发送至服务器。
步骤S520,接收由服务器发送的与该身份特征数据相匹配的任务指令。
具体的,无人机接收由服务器发送的与其身份ID相匹配的任务指令,该任务指令由服务器根据预设的任务数据表生成。服务器接收无人机的身份ID及当前IP地址之后,根据预设的任务数据表生成任务指令,并将任务指令发送给对应的无人机。任务数据表如下表所示:
身份 ID 航点 航点类型 航点数据
任务数据表可包括身份ID、航点、航点类型及航点数据,并记录有它们的关联关系。
其中,身份ID代表不同的无人机。
航点可用序号进行表示,例如航点1、航点2、航点3等,不同的航点对应不同的序号。
航点类型可为起飞地理位置、降落点地理位置、常规航点地理位置、实施点地理位置等。针对不同的身份ID,可有不同的航点及对应的航点类型。
航点数据为该航点无人机所运行或实施的具体数据。航点数据可包括时间、航点经纬度坐标、航点海拔高度、无人机飞往该航点的运行参数及无人机在该航点所需执行的动作等。不同的航点类型对应的航点数据不同,针对不同的航点可有一种或多种不同的航点数据。无人机飞往该航点的运行参数可包括水平速度、爬升速度和航向参数等,其中,航向参数是指无人机飞行时所具有的航向,例如航向指向正北,或航向指向某一经纬度坐标等。无人机在该航点所需执行的动作可包括途经、悬停、环视、兴趣点环绕及外设操作等。其中,途经是指无人机抵达该航点后立即向下一航点飞行。悬停是指无人机在此航点停留。环视是指无人机在抵达该航点后作四周环视的动作。兴趣点表示一个地理位置信息,包括经纬度坐标及海拔高度,兴趣点环绕是指无人机可按设定的运行参数环绕该兴趣点进行飞行。外设操作则与无人机搭载的设备有关,例如对该航点进行拍照、录像、传感器数据采集等。
服务器接收由飞行器通过通信模块发送的身份ID及当前IP地址后,根据该身份ID查询预设的任务数据表,找出任务数据表中的身份ID与接收的身份ID相同的部分,然后根据该身份ID对应的任务数据表生成任务指令,任务指令包括根据该任务数据表获取的当前无人机所需运行或实施的具体数据等信息,并根据无人机的当前IP地址发送给无人机,由无人机执行相应的任务。
步骤S530,根据任务指令执行相应的任务。
具体的,无人机根据服务器发送的任务指令执行相应任务,包括按照与无人机对应的任务数据表中预先设定的各种操作,例如无人机可根据任务指令进行飞行、中止、继续、终止、迫降、返航、途经、悬停、环视、兴趣点环绕、拍照、录像、传感器数据采集等任务,还可根据任务指令调整实时姿态、飞行速度等。
上述无人机调度方法,无人机将获取的身份特征数据发送给服务器,服务器根据预设的与该无人机相匹配的任务数据表生成任务指令。服务器因是根据无人机的身份特征数据发送控制指令,可实时控制指定无人机执行相应任务,对大量无人机进行调度,实现无人机的大规模调度。
在一个实施例中,在步骤获取无人机的身份特征数据,并将身份特征数据发送至服务器之后,还包括以下步骤:
步骤S610,获取当前飞行状态数据。
步骤S620,将当前飞行状态数据发送至服务器,以使服务器对当前飞行状态进行实时监控。
具体的,当前飞行状态数据可包括无人机的硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据等。其中,硬件状态数据是指无人机各组成部分的状态数据,包括电池电压、电机转速、数据传输的信号质量等。实时位置数据包括无人机当前所处位置的经纬度、海拔高度、GPS定位精度、卫星数及UTC时间等。实时运动数据包括无人机的运行速度、爬升/下降速度、航向等。实时姿态数据包括俯仰和横滚的角度等。传感器数据包括加速度计、陀螺仪、温度计、超声波的测量数值等。自检数据则是指无人机根据检测自身数据的结果所获得的数据,例如电池是否欠压、传感器是否过载,或是实时运动数据是否在正常范围内等。无人机将获取的当前飞行状态数据发送至服务器。服务器根据无人机的飞行状态数据对该无人机进行实时监控,当发现当前飞行状态数据出现异常时,发出预警,方便及时进行调整处理。
步骤S630,检测硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据是否均在预设的正常数值范围内,若是,则执行步骤S640,若否,则执行步骤S650。
具体的,无人机将获取的硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据等数据与预设的各项数据对应的正常数值范围进行比较,并根据检测结果生成自检数据,自检数据可包括电池是否欠压、传感器是否过载,或是实时运动数据是否在正常范围内等。
当无人机判断出硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据等数据不在预设的正常数值范围内时,提示飞行状态异常,方便对其进行调整和处理。当自检数据发生异常时,若异常状态较小,例如飞行速度过快、俯仰角度过大等情况,无人机可自行调整运行参数,使其正常。当异常状态较大时,例如偏航、进入敏感区域等,则由服务器根据上传的自检数据判断并下达相应的调整指令,例如停飞、改变航线、返航等。
步骤S640,飞行状态正常。
步骤S650,提示飞行状态异常。
上述无人机调度方法,通过将获取的当前飞行状态数据发送给服务器,使服务器对其进行实时监控,当飞行状态出现异常时,可进行提示并进行调整,方便即时解决异常状况。
在另一个实施例中,上述无人机调度方法,还包括以下步骤:
(a)当处于正常起飞状态时,执行起飞操作,并实时接收由服务器发送的任务指令,根据任务指令执行相应的任务。
具体的,当无人机处于正常起飞状态时,执行起飞操作并实时接收服务器发送的任务指令。服务器可预加载任务数据表,也可以根据实际运用环境逐条加载或进行实时更新任务数据表。两种方式可根据无人机的实际应用场景及网络环境进行选择。
一般情况下,当无人机所执行的任务是固定的,或是网络环境不好时,服务器可采用预加载的形式,一次性加载对应的任务数据表,然后根据与无人机相匹配的任务数据表生成相应的任务指令并发送给无人机,无人机再根据任务指令执行相应任务。
当无人机的任务是不固定的,服务器可采用逐条加载或是实时更新的方式。例如无人机的任务为追踪地面上的一个信标,该信标连接互联网后可将实时位置数据及运动数据反馈给服务器,服务器根据该实时位置数据及运动数据实时更新任务数据表,并生成实时任务指令发送给相应的无人机,无人机接收任务指令后根据该任务指令追踪信标。
(b)当处于非正常起飞状态时,接收由服务器发送的拒绝起飞指令,并根据拒绝起飞指令进行提示。
具体的,当无人机处于非正常起飞状态时,接收由服务器发送的拒绝起飞指令,提示后可由人工对其进行调整使其处于正常起飞状态。
上述无人机调度方法,服务器可根据不同的情况可预加载或实时加载任务数据表,能更好地调度无人机执行相应的任务,方便对无人机进行调度和监控。
如图7所示,一个实施例中,一种无人机调度方法,从服务器端进行描述,包括以下步骤:
步骤S710,接收由无人机发送的身份特征数据。
具体的,身份特征数据包括无人机的身份ID和当前IP地址。服务器接入互联网后,与无人机建立连接,并接收由无人机发送的身份ID和当前IP地址。
步骤S720,根据身份特征数据获取与无人机相匹配的任务数据表。
具体的,服务器根据接收的无人机的身份ID查询预设的任务数据表,找出任务数据表中的身份ID与接收的身份ID相同的部分。
步骤S730,根据任务数据表生成任务指令。
具体的,服务器根据与该身份ID相匹配的任务数据表生成任务指令,任务指令包括根据该任务数据表获取的当前无人机所需运行或实施的具体数据等信息。
步骤S740,将该任务指令发送至无人机。
具体的,服务器根据无人机的当前IP地址发送给无人机,由该无人机执行相应的任务。
上述用于无人机调度方法,服务器接收无人机发送的身份特征数据,并根据预设的与该无人机相匹配的任务数据表生成任务指令。服务器因是根据无人机的身份特征数据发送控制指令,可实时控制指定无人机执行相应任务,对大量无人机进行调度,实现无人机的大规模调度。
如图8所示,在一个实施例中,在步骤接收由无人机发送的身份特征数据之后,还包括以下步骤:
步骤S810,接收由无人机发送的当前飞行状态数据并进行存储。
具体的,当前飞行状态数据包括无人机的硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据等。
步骤S820,根据当前飞行状态数据对无人机进行实时监控。
步骤S830,当发现当前飞行状态数据出现异常,则向无人机发出预警。
具体的,服务器可根据无人机的当前飞行状态数据对无人机进行预警。无人机每隔一定时间即向服务器发送当前飞行状态数据,该时间间隔可以是预设的时间间隔,例如5s、10s、1min等,可保证当前飞行状态数据的实时性。服务器根据当前飞行状态数据对无人机进行监控和预警,例如无人机发生偏航、进入敏感区域、处于非正常起飞状态等,方便对无人机进行即时调整以及异常处理。服务器发现无人机的当前飞行状态数据出现异常时,可随时对该无人机下达中止、终止、返航或迫降等命令。一个实施例中,如图9如示,步骤S830具体包括以下步骤:
步骤S902,根据与无人机相匹配的任务数据表生成预设航线。
具体的,服务器根据与无人机的身份ID相匹配的任务数据表中的航点数据生成预设航线。
步骤S904,根据无人机的实时位置数据计算无人机与预设航线之间的距离。
具体的,服务器计算无人机与预设航线之间的距离。
步骤S906,当距离大于预设的阈值,则向无人机发出预警。
具体的,例如无人机正在飞行点i,则可获得地理线段L(i,i-l),预设的阈值可为20米、30米等数值,然后计算该地理线段L与预设航线之间的距离,或是直接获取飞行点i的坐标数据,并根据点到线的距离算法计算无人机与预设航线之间的距离,当该距离超过阈值时,则向该无人机发出预警。当无人机发生偏航时,服务器可自行下达调整指令,也可通过人工对相应无人机进行调整。
步骤S908,获取预设的敏感区域。
具体的,服务器可建立敏感区域数据库存储预设的敏感区域,敏感区域包括机场、军事区域等。
步骤S910,判断无人机的实时位置是否接近或位于敏感区域内,若是,则执行步骤S912,若否,则结束。
具体的,服务器可利用几何数学中点到点之间的距离算法及点到线之间的距离算法,并根据地球半径等常量,计算无人机的实时位置与敏感区域之间的距离值,该距离值可以米为单位。当无人机距离敏感区域小于预设距离时,即被视为接近敏感区域,该预设距离可为10米、5米等。当无人机接近或位于这些敏感区域时向该无人机发出预警。服务器还可向无人机临时下达任务指令,使其改变原来的航线,远离敏感区域,例如无人机原来的航线为A→B,该航线中间会经过敏感区域,可临时增设航点C,使其航线变为A→C→B,以避开敏感区域。当无人机接近或位于敏感区域时,服务器可自行下达调整指令,也可通过人工对相应无人机进行调整。
步骤S912,向无人机发出敏感区域预警。
上述用于无人机调度方法,根据当前飞行状态数据对无人机进行监控和预警,当无人机发送的当前飞行状态数据发生异常时对该无人机进行预警,方便对无人机进行即时调整以及异常处理。
如图10所示,一个实施例中,上述无人机调度方法,还包括以下步骤:
步骤S1002,判断无人机是否处于非正常起飞状态,若是,则执行步骤S1006,若否,则执行步骤S1004。
具体的,非正常起飞状态包括以下几种情况中的一种或多种:(1)根据任务数据表判断出该无人机处于非执行任务状态,即任务数据表中无与该无人机对应的数据。(2)根据无人机的当前位置数据计算并判断出无人机不在起飞区域内。根据任务数据表中与该无人机对应的航点类型为起飞点地理位置的经纬度信息,计算无人机的当前位置数据与该起飞点之间的距离,当该距离小于预设范围时,该预设范围可为5米、3米等,即表示无人机在起飞区域内,否则,该无人机不在起飞区域内。(3)根据无人机的当前位置数据计算并判断出无人机位于敏感区域内。(4)判断出无人机的自检数据存在异常,例如工作电压出现异常、温度出现异常等。
步骤S1004,根据与无人机相匹配的任务数据表生成任务指令,并将任务指令发送至无人机。
具体的,服务器可预加载任务数据表,也可以根据实际运用环境逐条加载或实时更新任务数据表。两种方式可根据无人机的实际应用场景及网络环境进行选择。
步骤S1006,向无人机发送拒绝起飞指令。
具体的,当无人机处于非正常起飞状态时,服务器向无人机发送拒绝起飞指令,方便对无人机进行调整。
上述无人机调度方法,服务器可判断无人机是否处于非正常起飞状态,方便进行状态判定及调整。服务器可预加载或实时更新任务数据表,能更好地调度无人机执行任务,通过预设的任务数据表的形式调度无人机,可提高调度无人机集群的效率。
如图11所示,一个实施例中,上述无人机调度方法,还包括以下步骤:
步骤S1102,接收由无人机发送的当前IP地址。
具体的,无人机在飞行的过程中,其当前IP地址可能在基站切换时发生变化,因此无人机需要实时获取其当前IP地址,并将该当前IP地址发送到服务器。
步骤S1104,根据无人机身份ID在预设的通讯地址表中获取无人机的上次IP地址。
通讯地址表记录有无人机的身份ID及当前IP地址的关联关系。通讯地址表如下所示:
身份 ID IP 地址
步骤S1106,判断当前IP地址与上次IP地址是否相同,若是,则执行步骤S1102,若否,则执行步骤S1108。
具体的,服务器检测到无人机的发送的当前IP地址与通讯地址表中的与其身份ID对应的IP地址不同时,则更新通讯地址表。服务器根据无人机的当前IP地址发送任务指令,从而控制指定的无人机执行相应任务。
步骤S1108,更新通讯地址表。
上述用于无人机调度方法,通过建立无人机的身份ID及当前IP地址的关联关系,并即时更新当前IP地址,可保证任务指令及时准确地发送至相应的无人机,方便了无人机的大规模调度。
在一个实施例中,上述无人机调度方法,还包括步骤:
(1)接收由终端发送的无人机控制指令。
具体的,终端可为手机、手提电脑、平板电脑、台式电脑等终端设备。终端通过互联网可与服务器建立连接,并向服务器发送无人机的控制指令,以此来实现对无人机的调度。
(2)根据控制指令确定无人机的身份特征数据。
(3)根据确定的无人机的身份特征数据将该控制指令发送给对应的无人机。
具体的,服务器根据终端发送的控制指令确定无人机的身份ID及当前IP地址,并将该控制指令通过无人机的当前IP地址发送至对应的无人机。
上述无人机调度方法,服务器将终端发送的控制指令发送至相应的无人机,可实现通过终端来监控和调度无人机的效果,大大方便了人们对于无人机的使用。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种无人机调度方法,其特征在于,包括以下步骤:
    获取无人机的身份特征数据,并将所述身份特征数据发送至服务器;
    接收由所述服务器发送的与所述身份特征数据相匹配的任务指令,所述任务指令由所述服务器根据预设的任务数据表生成;
    根据所述任务指令执行相应的任务。
  2. 根据权利要求1所述的无人机调度方法,其特征在于,在所述获取无人机的身份特征数据,并将所述身份特征数据发送至服务器的步骤之后,还包括以下步骤:
    获取当前飞行状态数据;
    将所述当前飞行状态数据发送至所述服务器,以使所述服务器对当前飞行状态进行实时监控;
    所述当前飞行状态数据包括硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据。
  3. 根据权利要求2所述的无人机调度方法,其特征在于,所述方法还包括以下步骤:
    检测硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据是否均在预设的正常数值范围内;
    若是,则飞行状态正常,若否,则提示飞行状态异常;
    根据检测结果生成自检数据。
  4. 根据权利要求1至3任一所述的无人机调度方法,其特征在于,在所述获取无人机的身份特征数据,并将所述身份特征数据发送至服务器的步骤之后,还包括以下步骤:
    当处于正常起飞状态时,执行起飞操作,并实时接收由所述服务器发送的任务指令,根据所述任务指令执行相应的任务;
    当处于非正常起飞状态时,接收由所述服务器发送的拒绝起飞指令,并根据所述拒绝起飞指令进行提示。
  5. 一种无人机调度方法,其特征在于,包括以下步骤:
    接收由无人机发送的身份特征数据;
    根据所述身份特征数据获取与所述无人机相匹配的任务数据表;
    根据所述任务数据表生成任务指令;
    将所述任务指令发送至所述无人机。
  6. 根据权利要求5所述的无人机调度方法,其特征在于,在所述接收由无人机发送的身份特征数据的步骤之后,还包括以下步骤:
    接收由所述无人机发送的当前飞行状态数据并进行存储;
    根据所述当前飞行状态数据对所述无人机进行实时监控;
    当发现所述当前飞行状态数据出现异常,则向所述无人机发出预警;
    所述当前飞行状态数据包括硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据。
  7. 根据权利要求6所述的无人机调度方法,其特征在于,所述当发现所述飞行状态数据出现异常,则向所述无人机发出预警具体包括以下步骤:
    根据与所述无人机相匹配的任务数据表生成预设航线;
    根据所述无人机的实时位置数据计算所述无人机与所述预设航线之间的距离;
    当所述距离大于预设的阈值,则向所述无人机发出预警。
  8. 根据权利要求6或7所述的无人机调度方法,其特征在于,所述当发现所述飞行状态数据出现异常,则向所述无人机发出预警还包括以下步骤:
    获取预设的敏感区域;
    判断所述无人机的实时位置是否接近或位于敏感区域内;
    若所述无人机的实时位置接近或位于敏感区域内,则向所述无人机发出敏感区域预警。
  9. 根据权利要求8所述的无人机调度方法,其特征在于,所述当发现所述飞行状态数据出现异常,则向所述无人机发出预警还包括以下步骤:
    判断所述无人机是否处于非正常起飞状态;
    若是,则向所述无人机发送拒绝起飞指令;
    若否,则根据与所述无人机相匹配的任务数据表生成任务指令,并将所述任务指令发送至所述无人机;
    所述非正常起飞状态包括根据所述任务数据表判断出所述无人机处于非执行任务状态, 根据所述无人机的当前位置数据计算并判断出所述无人机不在起飞区域内,根据所述无人机的当前位置数据计算并判断出所述无人机位于敏感区域内及判断出所述无人机的自检数据存在异常中的一种或多种。
  10. 根据权利要求5所述的无人机调度方法,其特征在于,所述身份特征数据包括所述无人机的身份ID和当前IP地址,所述方法还包括以下步骤:
    根据所述无人机的身份ID在预设的通讯地址表中获取所述无人机的上次IP地址,所述通讯地址表记录所述身份ID及IP地址的关联关系;
    判断所述当前IP地址与所述上次IP地址是否相同;
    若是,则继续接收由所述无人机发送的当前IP地址,若否,则更新所述通讯地址表。
  11. 根据权利要求5所述的无人机调度方法,其特征在于,所述方法还包括以下步骤:
    接收由终端发送的无人机控制指令;
    根据所述控制指令确定所述无人机的身份特征数据;
    根据所述确定的无人机的身份特征数据将所述控制指令发送给对应的无人机。
  12. 一种无人机调度方法,其特征在于,包括以下步骤:
    无人机获取自身的身份特征数据,并将所述身份特征数据发送至服务器;
    所述服务器接收所述无人机发送的身份特征数据;
    所述服务器根据所述身份特征数据获取与所述无人机相匹配的任务数据表;
    所述服务器根据所述任务数据表生成任务指令;
    所述服务器将所述任务指令发送至所述无人机;
    所述无人机接收由所述服务器发送的任务指令,并根据所述任务指令执行相应的任务。
  13. 一种无人机,其特征在于,包括飞行控制模块和通信模块,所述通信模块与所述飞行控制模块连接;
    所述飞行控制模块用于存储无人机的身份ID;
    所述通信模块用于获取并存储当前IP地址;
    所述通信模块还用于将所述身份ID及所述当前IP地址发送至服务器,并接收由所述服务器发送的与所述身份ID相匹配的任务指令,所述任务指令由所述服务器根据预设的任务数据表生成;
    所述飞行控制模块还用于接收由所述通信模块传递的任务指令,并根据所述任务指令执行相应的任务。
  14. 根据权利要求13所述的无人机,其特征在于,所述无人机还包括数据采集模块,所述数据采集模块与所述飞行控制模块连接;
    所述数据采集模块用于获取当前飞行状态数据;
    所述数据采集模块还用于通过所述通信模块将所述当前飞行状态数据发送至所述服务器,以使所述服务器对当前飞行状态进行实时监控;
    所述当前飞行状态数据包括硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据。
  15. 根据权利要求14所述的无人机,其特征在于,所述数据采集模块还用于检测硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据是否均在预设的正常数值范围内,并根据检测结果生成自检数据;
    所述数据采集模块还用于当判断出硬件状态数据、实时位置数据、实时运动数据、实时姿态数据及传感器数据不在预设的正常数值范围内时,提示飞行状态异常。
  16. 根据权利要求15所述的无人机,其特征在于,所述飞行控制模块还用于当处于正常起飞状态时,执行起飞操作,并实时接收由所述服务器发送的任务指令,根据所述任务指令执行相应的任务;
    所述飞行控制模块还用于当处于非正常起飞状态时,通过所述通信模块接收由所述服务器发送的拒绝起飞指令,并根据所述拒绝起飞指令进行提示。
  17. 一种用于无人机调度的服务器,其特征在于,所述服务器包括通信服务模块及后端应用模块,所述通信服务模块与所述后端应用模块相连;
    所述通信服务模块用于接收由无人机发送的身份特征数据;
    所述后端应用模块用于根据所述身份特征数据获取与所述无人机相匹配的任务数据表,根据所述任务数据表生成任务指令,并通过所述通信服务模块将所述任务指令发送至所述无人机。
  18. 根据权利要求17所述的用于无人机调度的服务器,其特征在于,所述通信服务模块还用于接收由所述无人机发送的当前飞行状态数据,所述当前飞行状态数据包括硬件状态数据、实时位置数据、实时运动数据、实时姿态数据、传感器数据及自检数据;
    所述后端应用模块还用于存储所述当前飞行状态数据,当发现所述当前飞行状态数据出现异常,则向所述无人机发出预警。
  19. 根据权利要求18所述的用于无人机调度的服务器,其特征在于,所述后端应用模块还用于根据与所述无人机相匹配的任务数据表生成预设航线,并根据所述无人机的实时位置数据计算所述无人机与所述预设航线之间的距离,当所述距离大于预设的阈值,则向所述无人机发出预警。
  20. 根据权利要求18或19所述的用于无人机调度的服务器,其特征在于,所述后端应用模块还用于获取预设的敏感区域,并判断所述无人机的实时位置是否接近或位于敏感区域内,若所述无人机的实时位置接近或位于敏感区域内,则向所述无人机发出敏感区域预警。
  21. 根据权利要求20所述的用于无人机调度的服务器,其特征在于,所述后端应用模块还用于判断所述无人机是否处于非正常起飞状态,若是,则通过所述通信服务模块向所述无人机发送拒绝起飞指令;若否,则根据与所述无人机相匹配的任务数据表生成任务指令,通过所述通信服务模块将所述任务指令发送至所述无人机;
    所述非正常起飞状态包括根据所述任务数据表判断出所述无人机处于非执行任务状态, 根据所述无人机的当前位置数据计算并判断出所述无人机不在起飞区域内,根据所述无人机的当前位置数据计算并判断出所述无人机位于敏感区域内及判断出所述无人机的自检数据存在异常中的一种或多种。
  22. 根据权利要求17所述的用于无人机调度的服务器,其特征在于,所述身份特征数据包括无人机的身份ID和当前IP地址;
    所述后端应用模块还用于根据所述无人机的身份ID在预设的通讯地址表中获取所述无人机的上次IP地址,所述通讯地址表记录所述身份ID及IP地址的关联关系,并判断所述当前IP地址与所述上次IP地址是否相同,若是,则所述通信服务模块继续接收由所述无人机发送的当前IP地址,若否,则所述后端应用模块更新所述通讯地址表。
  23. 根据权利要求17所述的用于无人机调度的服务器,其特征在于,所述通信服务模块还用于接收由终端发送的无人机控制指令;
    所述后端应用模块还用于根据所述控制指令确定所述无人机的身份特征数据,并根据所述确定的无人机的身份特征数据将所述控制指令通过通信服务模块发送给对应的无人机。
  24. 一种无人机调度系统,包括互联网,其特征在于,所述系统还包括如权利要求13至16任一所述的无人机和如权利要求17至23任一所述的用于无人机调度的服务器,所述无人机与所述服务器通过互联网连接。
  25. 根据权利要求24所述的无人机调度系统,所述系统还包括基站与蜂窝移动网络,其特征在于,所述无人机通过所述基站与所述蜂窝移动网络相连,所述蜂窝移动网络与所述互联网相连,所述服务器通过所述互联网连接所述蜂窝移动网络,并与所述无人机连接。
  26. 根据权利要求24或25所述的无人机调度系统,其特征在于,所述系统还包括终端,所述终端通过互联网与所述服务器连接,所述终端向所述服务器发送无人机的控制指令,所述服务器接收所述控制指令并将所述控制指令发送给对应的无人机,所述无人机根据所述控制指令执行相应的任务。
PCT/CN2015/093739 2015-01-13 2015-11-03 无人机调度方法及系统、无人机 WO2016112733A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/542,631 US10311739B2 (en) 2015-01-13 2015-11-03 Scheduling method and system for unmanned aerial vehicle, and unmanned aerial vehicle
JP2017536854A JP2018503194A (ja) 2015-01-13 2015-11-03 無人航空機をスケジューリングする方法及びシステム、無人航空機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520023417.XU CN204316545U (zh) 2015-01-13 2015-01-13 基于移动通信网络的无人机数据链路系统
CN201520023417.X 2015-01-13
CN201510036938.3A CN104615143B (zh) 2015-01-23 2015-01-23 无人机调度方法
CN201510036938.3 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016112733A1 true WO2016112733A1 (zh) 2016-07-21

Family

ID=56405218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093739 WO2016112733A1 (zh) 2015-01-13 2015-11-03 无人机调度方法及系统、无人机

Country Status (3)

Country Link
US (1) US10311739B2 (zh)
JP (1) JP2018503194A (zh)
WO (1) WO2016112733A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108454831A (zh) * 2018-05-03 2018-08-28 苏州柯谱瑞欣通信科技有限公司 一种航拍无人机用智能反馈控制系统
JP2018165932A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用動態管理装置、ドローン用動態管理方法及びドローン用動態管理プログラム
JP2018165115A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム
JP2018165931A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用管制装置、ドローン用管制方法及びドローン用管制プログラム
JPWO2019106714A1 (ja) * 2017-11-28 2020-11-19 株式会社自律制御システム研究所 無人航空機、無人航空機の飛行制御装置、無人航空機の飛行制御方法、及びプログラム
CN112666980A (zh) * 2020-12-30 2021-04-16 青海大学 一种无人机集群协作系统、协作方法及无人机集群
CN112666961A (zh) * 2020-12-14 2021-04-16 广东电网有限责任公司佛山供电局 无人机坠机检测方法、系统、装置、无人机和存储介质
CN113034872A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机链路数据传输方法和装置
CN113095645A (zh) * 2021-03-31 2021-07-09 中国科学院自动化研究所 针对任务分布不均的紧急场景的异构无人机任务分配方法
CN115657938A (zh) * 2022-09-28 2023-01-31 中国科学院东北地理与农业生态研究所 一种无人机被动微波辐射测量的快速存储方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL240073B (en) * 2015-07-21 2020-06-30 Ciconia Ltd A method and system for the autonomous and dynamic management of air traffic
JP2019505875A (ja) * 2015-11-25 2019-02-28 ウォルマート アポロ,エルエルシー 安全な場所への無人航空機による配送
CN106850050A (zh) * 2016-01-22 2017-06-13 广州极飞科技有限公司 无人机及地面站与无人机的通信系统、方法
US10853756B2 (en) * 2016-03-02 2020-12-01 International Business Machines Corporation Vehicle identification and interception
MX2019003456A (es) 2016-10-04 2019-09-09 Walmart Apollo Llc Contenedor de plataforma de aterrizaje para distribucion y recepcion de paquetes.
US11068837B2 (en) * 2016-11-21 2021-07-20 International Business Machines Corporation System and method of securely sending and receiving packages via drones
US11148819B2 (en) 2019-01-23 2021-10-19 H55 Sa Battery module for electrically-driven aircraft
US10854866B2 (en) 2019-04-08 2020-12-01 H55 Sa Power supply storage and fire management in electrically-driven aircraft
US11063323B2 (en) 2019-01-23 2021-07-13 H55 Sa Battery module for electrically-driven aircraft
US10322824B1 (en) 2018-01-25 2019-06-18 H55 Sa Construction and operation of electric or hybrid aircraft
US11065979B1 (en) 2017-04-05 2021-07-20 H55 Sa Aircraft monitoring system and method for electric or hybrid aircrafts
US10673520B2 (en) * 2017-06-08 2020-06-02 Verizon Patent And Licensing Inc. Cellular command, control and application platform for unmanned aerial vehicles
JP6777355B2 (ja) 2018-06-04 2020-10-28 株式会社ナイルワークス ドローンシステム、ドローンシステムの制御方法、およびドローンシステムの制御プログラム
KR102050230B1 (ko) * 2018-06-29 2019-11-29 순천향대학교 산학협력단 페트리 넷 모델링을 이용한 산업용 사물 인터넷 시스템에 구비되는 드론의 검증방법
US10976402B2 (en) * 2018-09-24 2021-04-13 Nokia Technologies Oy Unmanned arial vehicle recovery mechanism
JP6974290B2 (ja) * 2018-10-31 2021-12-01 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co., Ltd 位置推定装置、位置推定方法、プログラム、及び記録媒体
CN113226025B (zh) * 2019-01-23 2022-11-08 株式会社尼罗沃克 无人机系统
EP3901723A4 (en) * 2019-02-07 2022-01-05 Honda Motor Co., Ltd. WORK MACHINE, WORK MACHINE CONTROL PROCEDURE AND PROGRAM
CN112394654A (zh) * 2019-08-19 2021-02-23 华东师范大学 一种基于物联网的无人机监控系统及监控方法
CN111127689A (zh) * 2019-11-22 2020-05-08 中国电力科学研究院有限公司 一种用于对无人机巡检业务进行管控的系统及方法
CN111338378A (zh) * 2020-03-10 2020-06-26 南京中正致远智能科技有限公司 一种无人机指挥调度系统
CN111422079A (zh) * 2020-03-12 2020-07-17 重庆科技学院 一种无人机空中续航系统及方法
JP7210034B2 (ja) * 2020-03-17 2023-01-23 株式会社エイビット ドローンの飛行管理システム
CN112487552B (zh) * 2020-11-18 2024-10-15 南京航空航天大学 基于模糊聚类的飞翼无人机的包线划分以及增益调度方法
CN112764916B (zh) * 2020-12-18 2023-08-22 北京百度网讯科技有限公司 数据采集的方法及装置
CN113543066B (zh) * 2021-06-07 2023-11-03 北京邮电大学 感通导指一体化交互与多目标应急组网方法及系统
US11941926B2 (en) * 2021-08-04 2024-03-26 Ford Global Technologies, Llc Vehicle variation remediation
CN114460957A (zh) * 2021-10-29 2022-05-10 上海翼枭航空科技有限公司 一种无人航空器管理方法、系统、设备及存储介质
CN116080903B (zh) * 2021-11-04 2024-10-29 北京三快在线科技有限公司 一种配送无人机、配送无人机预警方法及装置
CN114091754B (zh) * 2021-11-23 2024-07-19 北京邮电大学 一种多无人机移动基站协同部署及调度方法
CN114625161B (zh) * 2022-01-26 2025-04-25 合肥工业大学 面向交通非现场执法的多无人机联合任务规划方法和系统
WO2023188271A1 (ja) * 2022-03-31 2023-10-05 三共木工株式会社 航空機
CN115037638B (zh) * 2022-06-14 2023-10-20 北京邮电大学 低能耗和高时效性的无人机网络数据采集与传输控制方法
CN115209379B (zh) * 2022-08-15 2024-09-24 江苏方天电力技术有限公司 基于5g智能网联无人机的电网云边协同巡检系统及方法
CN115131717B (zh) * 2022-08-30 2022-12-20 珠海翔翼航空技术有限公司 一种基于图像分析的预警方法及系统
CN115549761B (zh) * 2022-09-21 2024-11-08 云南电网有限责任公司电力科学研究院 无人机移动通信接入方法、系统、设备、装置和存储介质
CN115587767B (zh) * 2022-10-14 2023-11-21 众芯汉创(北京)科技有限公司 一种基于rfid的无人机快速出入库的登记方法和系统
CN115866020B (zh) * 2022-12-19 2025-03-25 亿航智能设备(广州)有限公司 一种通信方法、装置、设备及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110320068A1 (en) * 2010-06-24 2011-12-29 Hon Hai Precision Industry Co., Ltd. Electronic device and method for controlling unmanned aerial vehicle using the same
CN103337163A (zh) * 2013-07-16 2013-10-02 国家电网公司 电力检修车辆调度方法
CN103824233A (zh) * 2014-03-07 2014-05-28 国家电网公司 基于gis的无人机电力线路巡检调度平台及方法
CN204316545U (zh) * 2015-01-13 2015-05-06 东莞极飞无人机科技有限公司 基于移动通信网络的无人机数据链路系统
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283400A (ja) * 2000-04-03 2001-10-12 Nec Corp 無人機管制システム
JP2003127994A (ja) * 2001-10-24 2003-05-08 Kansai Electric Power Co Inc:The 無人飛行物体の制御システム
JP2005193727A (ja) * 2003-12-26 2005-07-21 Toshiyuki Horiuchi 飛翔ロボット
JP4222510B2 (ja) * 2004-03-19 2009-02-12 中国電力株式会社 無人飛行体による運搬方法
JP2006001487A (ja) 2004-06-21 2006-01-05 Yanmar Co Ltd 無人ヘリコプター
US7603212B2 (en) * 2006-03-30 2009-10-13 Honeywell International, Inc. Real time planning and scheduling for a team of unmanned vehicles
US7581702B2 (en) * 2006-06-09 2009-09-01 Insitu, Inc. Wirelessly controlling unmanned aircraft and accessing associated surveillance data
JP2008105591A (ja) 2006-10-26 2008-05-08 Hiroboo Kk 自律制御無人飛行体の飛行管理方法
JP2011124624A (ja) * 2009-12-08 2011-06-23 Nakayo Telecommun Inc ビーコンによる通信パラメータ設定機能を有する無線アクセスポイント
JP2012037204A (ja) * 2010-08-11 2012-02-23 Yasuaki Iwai 地雷探索装置、地雷探索方法
EP2482269B1 (en) * 2011-01-28 2017-03-22 The Boeing Company Providing data for predicting aircraft trajectory
CN102637023A (zh) 2012-03-23 2012-08-15 王效波 基于3g、gprs手机通讯的远程无人机集群控制方法及系统
CN108983802A (zh) * 2014-07-31 2018-12-11 深圳市大疆创新科技有限公司 使用无人飞行器实现的虚拟观光系统及方法
US11157021B2 (en) * 2014-10-17 2021-10-26 Tyco Fire & Security Gmbh Drone tours in security systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110320068A1 (en) * 2010-06-24 2011-12-29 Hon Hai Precision Industry Co., Ltd. Electronic device and method for controlling unmanned aerial vehicle using the same
CN103337163A (zh) * 2013-07-16 2013-10-02 国家电网公司 电力检修车辆调度方法
CN103824233A (zh) * 2014-03-07 2014-05-28 国家电网公司 基于gis的无人机电力线路巡检调度平台及方法
CN204316545U (zh) * 2015-01-13 2015-05-06 东莞极飞无人机科技有限公司 基于移动通信网络的无人机数据链路系统
CN104615143A (zh) * 2015-01-23 2015-05-13 广州快飞计算机科技有限公司 无人机调度方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165932A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用動態管理装置、ドローン用動態管理方法及びドローン用動態管理プログラム
JP2018165115A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用緊急事態対応指示装置、ドローン用緊急事態対応指示方法及びドローン用緊急事態対応指示プログラム
JP2018165931A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローン用管制装置、ドローン用管制方法及びドローン用管制プログラム
JPWO2019106714A1 (ja) * 2017-11-28 2020-11-19 株式会社自律制御システム研究所 無人航空機、無人航空機の飛行制御装置、無人航空機の飛行制御方法、及びプログラム
CN108454831A (zh) * 2018-05-03 2018-08-28 苏州柯谱瑞欣通信科技有限公司 一种航拍无人机用智能反馈控制系统
CN113034872A (zh) * 2019-12-25 2021-06-25 海鹰航空通用装备有限责任公司 无人机链路数据传输方法和装置
CN112666961A (zh) * 2020-12-14 2021-04-16 广东电网有限责任公司佛山供电局 无人机坠机检测方法、系统、装置、无人机和存储介质
CN112666980A (zh) * 2020-12-30 2021-04-16 青海大学 一种无人机集群协作系统、协作方法及无人机集群
CN113095645A (zh) * 2021-03-31 2021-07-09 中国科学院自动化研究所 针对任务分布不均的紧急场景的异构无人机任务分配方法
CN113095645B (zh) * 2021-03-31 2023-06-23 中国科学院自动化研究所 针对任务分布不均的紧急场景的异构无人机任务分配方法
CN115657938A (zh) * 2022-09-28 2023-01-31 中国科学院东北地理与农业生态研究所 一种无人机被动微波辐射测量的快速存储方法
CN115657938B (zh) * 2022-09-28 2025-04-15 中国科学院东北地理与农业生态研究所 一种无人机被动微波辐射测量的快速存储方法

Also Published As

Publication number Publication date
US10311739B2 (en) 2019-06-04
JP2018503194A (ja) 2018-02-01
US20180268719A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2016112733A1 (zh) 无人机调度方法及系统、无人机
WO2016049923A1 (en) System and method for data recording and analysis
WO2018124662A1 (en) Method and electronic device for controlling unmanned aerial vehicle
WO2016101227A1 (zh) 无人机的飞行辅助方法和系统、无人机和移动终端
WO2018110964A1 (en) Electronic device and method for recognizing object by using plurality of sensors
WO2017183920A1 (ko) 차량용 제어장치
WO2018038441A1 (en) Electronic device and operating method thereof
WO2019103212A1 (ko) 통신망을 이용한 선박내 IoT 스마트 단말의 모니터링 시스템
WO2016106622A1 (zh) 移动物体及其天线自动对准方法、系统
WO2016061774A1 (zh) 一种飞行航线设置方法及装置
WO2017066927A1 (en) Systems, methods, and devices for setting camera parameters
WO2011129617A2 (en) Determination of a location of an apparatus
WO2016041110A1 (zh) 一种飞行器的飞行控制方法及相关装置
CN107000849A (zh) 无人机及其空中补给方法、以及浮空平台及其控制方法
WO2017219313A1 (en) Systems and methods for controlling movable object behavior
WO2017193252A1 (zh) 一种记录、呈现动物运动轨迹的装置、系统及方法
WO2020013607A1 (en) Server device and method for collecting location information of other devices
EP3545509A1 (en) Electronic device for controlling unmanned aerial vehicle and method of operating the same
WO2023033323A1 (ko) 무인 비행체 편대 제어 시스템 및 그 방법
WO2021096195A1 (ko) 메시지 기반의 영상 처리 방법 및 이를 구현하는 전자 장치
WO2018190648A1 (ko) 무인 비행 장치를 제어하는 전자 장치, 그에 의해 제어되는 무인 비행 장치 및 시스템
WO2023287103A1 (ko) 청소 로봇을 제어하는 전자 장치 및 그 동작 방법
EP3799700A1 (en) Electronic device, server device, and method for determining location of electronic device
WO2021201665A1 (ko) Das 기반 측위를 수행하는 방법 및 장치
WO2022059972A1 (en) Apparatus and method for providing service related to target location based on uwb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15542631

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.03.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15877644

Country of ref document: EP

Kind code of ref document: A1