WO2016112704A1 - 调节投影仪焦距的方法和装置、计算机存储介质 - Google Patents

调节投影仪焦距的方法和装置、计算机存储介质 Download PDF

Info

Publication number
WO2016112704A1
WO2016112704A1 PCT/CN2015/089551 CN2015089551W WO2016112704A1 WO 2016112704 A1 WO2016112704 A1 WO 2016112704A1 CN 2015089551 W CN2015089551 W CN 2015089551W WO 2016112704 A1 WO2016112704 A1 WO 2016112704A1
Authority
WO
WIPO (PCT)
Prior art keywords
focal length
sharpness
projection distance
correspondence
value
Prior art date
Application number
PCT/CN2015/089551
Other languages
English (en)
French (fr)
Inventor
魏强
里强
Original Assignee
努比亚技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 努比亚技术有限公司 filed Critical 努比亚技术有限公司
Publication of WO2016112704A1 publication Critical patent/WO2016112704A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/53Means for automatic focusing, e.g. to compensate thermal effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/317Convergence or focusing systems

Definitions

  • the present invention relates to the field of projector technologies, and in particular, to a method and apparatus for adjusting a focal length of a projector, and a computer storage medium.
  • Projectors have been widely used in teaching, office and life fields. Especially with the rapid development of mobile terminals, many mobile terminals are also equipped with projectors, which bring great convenience and fun to people's work and life.
  • projectors When using the projector, in order to make the projected image displayed on the projection screen clear, it is necessary to adjust the focal length of the projector, and currently the user usually needs manual adjustment, and the adjustment process is cumbersome and time consuming.
  • the projection distance is different each time, and the different focal lengths corresponding to different projection distances are different. Therefore, each time the user uses the projector, it has to undergo a complicated focal length adjustment process, which is time-consuming and labor-intensive, and the user experience. Not good.
  • the main object of the embodiments of the present invention is to provide a method and apparatus for adjusting the focal length of a projector, and a computer storage medium, which are intended to realize automatic adjustment of the focal length of the projector, improve efficiency, and improve user experience.
  • an embodiment of the present invention provides a method for adjusting a focal length of a projector, where the method includes:
  • the acquiring at least two sets of focal length-sharpness corresponding values under the current projection distance includes:
  • the focal length-sharpness corresponding value includes a focal length value and a sharpness value corresponding to the focal length value.
  • the correspondence between the focal length and the sharpness at a plurality of projection distances is a correspondence relationship between a focal length and a sharpness of a projection distance value, or a correspondence relationship between a focal length and a sharpness of a projection distance range.
  • the correspondence between the focal length and the sharpness is: a function expression of a focal length and a sharpness, a function graph or a corresponding table.
  • the correspondence between the focal length and the sharpness is a function of a focal length and a sharpness; and the correspondence between the focal length and the sharpness from the pre-stored multiple projection distances according to the focal length-sharpness corresponding value
  • the correspondence between the focal length and the sharpness that best matches the current projection distance is selected, including:
  • a function graph having the highest degree of coincidence with the coordinate point is selected from the function curve of the focal length and the sharpness as a function graph of the focal length and the sharpness that most closely match the current projection distance.
  • the obtaining, according to the correspondence between the focal length and the sharpness that is the closest match with the current projection distance, obtaining the optimal focal length corresponding to the maximum sharpness of the current projection distance including:
  • the correspondence between the focal length and the sharpness is a function expression of a focal length and a sharpness; and the correspondence between the focal length and the sharpness from the pre-stored multiple projection distances according to the focal length-sharpness corresponding value
  • the correspondence between the focal length and the sharpness that best matches the current projection distance is selected, including:
  • the focal length value in the focal length-sharpness corresponding value is taken as x, and the sharpness value is substituted into each pre-stored function expression as f(x), and the function expressions with equal or closest equality of the two sides are selected as the current projection.
  • the obtaining, according to the correspondence between the focal length and the sharpness that is the closest match with the current projection distance, obtaining the optimal focal length corresponding to the maximum sharpness of the current projection distance including:
  • the correspondence between the focal length and the sharpness is a correspondence table of focal length and sharpness; and the correspondence between the focal length and the sharpness from the pre-stored multiple projection distances according to the focal length-sharpness corresponding value Among them, the correspondence between the focal length and the sharpness that best matches the current projection distance is selected, including:
  • the obtaining, according to the correspondence between the focal length and the sharpness that is the closest match with the current projection distance, obtaining the optimal focal length corresponding to the maximum sharpness of the current projection distance including:
  • the maximum sharpness value is found from the corresponding table, and the focal length value corresponding to the maximum sharpness value is taken as the optimal focal length at the current projection distance.
  • the embodiment of the invention simultaneously provides an apparatus for adjusting a focal length of a projector, comprising an acquisition module, a processing module and an adjustment module, wherein:
  • Obtaining a module configured to obtain a current projection distance, or obtain at least two sets of focal length-sharpness corresponding values under the current projection distance;
  • the processing module is configured to select a focal length and a sharpness that best match the current projection distance from the correspondence between the focal length and the sharpness of the pre-stored plurality of projection distances according to the current projection distance or the focal length-sharpness corresponding value Corresponding relationship; according to the correspondence between the focal length and the sharpness that best matches the current projection distance, obtaining the optimal focal length corresponding to the maximum sharpness of the current projection distance;
  • An adjustment module configured to adjust a focal length of the projector to the optimal focal length.
  • the acquiring module is configured to: collect a projection image at a current projection distance, obtain a sharpness of the projected image and a current focal length, and obtain a set of focal length-sharpness corresponding values; and control the adjustment module to automatically adjust The focal length acquires another set of focal length-sharpness corresponding values, and finally obtains at least two sets of focal length-sharpness corresponding values.
  • the focal length-sharpness corresponding value includes a focal length value and a sharpness value corresponding to the focal length value.
  • the correspondence between the focal length and the sharpness at a plurality of projection distances is a correspondence relationship between a focal length and a sharpness of a projection distance value, or a correspondence relationship between a focal length and a sharpness of a projection distance range.
  • the correspondence between the focal length and the sharpness is: a function expression of a focal length and a sharpness, a function graph or a corresponding table.
  • the correspondence between the focal length and the sharpness is a function of a focal length and a sharpness
  • the processing module is configured to: use the focal length-sharpness corresponding value as a coordinate value, and set the coordinate value
  • Corresponding coordinate points are marked in a coordinate system in which the function curve of the focal length and the sharpness is located; and a function curve graph having the highest coincidence degree with the coordinate points is selected from the function curve diagram of the focal length and the sharpness as A plot of the focal length and sharpness that best matches the current projection distance.
  • the processing module is configured to: acquire a coordinate value of a vertex of the function curve of the focal length and the sharpness that best matches the current projection distance, and use the ordinate in the coordinate value as the current projection distance. Maximum sharpness, the abscissa in the coordinate value is taken as the best focal length corresponding to the maximum sharpness under the current projection distance.
  • the correspondence between the focal length and the sharpness is a function expression of a focal length and a sharpness
  • the processing module is configured to: use a focal length value in the focal length-sharpness corresponding value as x, and a sharpness value as f ( x) Substituting into the pre-stored function expressions, select the function expressions with equal or closest equality on both sides as the function expression of the focal length and sharpness that best match the current projection distance.
  • the processing module is configured to: obtain vertex coordinates (b, a) of the function expression, where a is the maximum resolution under the current projection distance, and b is the maximum resolution corresponding to the maximum resolution at the current projection distance. Good focus.
  • the correspondence between the focal length and the sharpness is a correspondence table of focal length and sharpness
  • the processing module is configured to: compare all acquired focal length-sharpness corresponding values with respective corresponding tables, and select from the corresponding tables.
  • a corresponding table that completely corresponds to or is closest to all focal length-sharpness values is used as a correspondence table of focal length and sharpness that most closely matches the current projection distance.
  • the processing module is configured to: find a maximum sharpness value from the corresponding table, and use a focal length value corresponding to the maximum sharpness value as a best focal length at a current projection distance.
  • the embodiment of the invention simultaneously proposes a computer storage medium storing a computer program for performing the above method for adjusting the focal length of the projector.
  • the embodiment of the present invention by pre-storing the correspondence between the focal length and the sharpness under a plurality of projection distances, after the projector is started, first acquiring the current projection distance or acquiring at least two sets of focal lengths under the current projection distance-clear Corresponding value, then select the corresponding relationship between the focal length and the sharpness that best matches the current projection distance from the corresponding relationship, and then obtain the best focal length corresponding to the maximum sharpness under the current projection distance, and finally automatically adjust the focal length to the optimal focal length. , get a clear projected image.
  • the automatic adjustment of the focal length of the projector is realized, which makes the projector more intelligent and user-friendly, and the user does not need manual adjustment, thereby improving the user experience and improving the efficiency.
  • FIG. 1 is a flow chart of a first embodiment of a method for adjusting a focal length of a projector according to the present invention
  • Figure 2 is a graph of the focal length and sharpness at a certain projection distance
  • Figure 3 is a graph of focal length and sharpness for a certain two projection distances
  • FIG. 4 is a schematic diagram of a function curve for selecting a focal length and a sharpness that best match the current projection distance in the embodiment of the present invention
  • FIG. 5 is a flow chart of a second embodiment of a method for adjusting a focal length of a projector according to the present invention.
  • Figure 6 is a flow chart of a first embodiment of the apparatus for adjusting the focal length of a projector of the present invention
  • Fig. 7 is a block diagram showing a main electrical configuration of an image pickup apparatus according to an embodiment of the present invention.
  • the method includes the following steps:
  • Step S10 Acquire at least two sets of focal length-sharpness corresponding values under the current projection distance.
  • the projection is first performed at the current projection distance to automatically perform the focus correction.
  • the projector which may be a dedicated projection instrument or a projector module in the mobile terminal
  • the projection is first performed at the current projection distance to automatically perform the focus correction.
  • Acquiring the projected image projected onto the screen obtaining the sharpness of the projected image, and acquiring the current focal length, obtaining a set of focal length-sharpness corresponding values; automatically adjusting the focal length, and projecting the adjusted focal length again, repeating the previous step,
  • Another set of focal length-sharpness corresponding values is obtained in the same way, and so on, multiple sets of focal length-sharpness corresponding values can be obtained, at least not less than two groups, and the theoretically the better.
  • the focal length-sharpness corresponding value includes a focal length value and a sharpness value corresponding to the focal length value.
  • the sharpness of the projected image can be obtained by the definition of the sharpness algorithm in the prior art, and will not be described here.
  • Step S11 According to the acquired focal length-sharpness corresponding value, the correspondence between the focal length and the sharpness that best matches the current projection distance is selected from the correspondence between the focal length and the sharpness under the pre-stored plurality of projection distances.
  • the correspondence between the focal length and the sharpness of the pre-stored multiple projection distances can be stored locally or in the cloud. In theory, the more correspondences are stored, the better.
  • the correspondence between the focal length and the sharpness under a plurality of projection distances may be a correspondence relationship between a focal length and a sharpness of a projection distance value, or a correspondence relationship between a focal length and a sharpness of a projection distance range.
  • the correspondence between the focal length and the sharpness includes a function expression of a focal length and a sharpness, a function graph, a corresponding table, and the like.
  • the focal length of the projector When the projector is projected on the screen, adjust the focal length of the projector, and the projected image will change between blur and sharpness.
  • the projected image When gradually adjusting from a short focal length to a long focal length or from a long focal length to a short focal length, the projected image will undergo a process from blur to sharpness, then from sharpness to blur, which can be represented by the function curve in Figure 2.
  • the horizontal axis represents the focal length of the projector
  • the vertical axis represents the sharpness of the projected image
  • the function curve represents the adjustment of the focal length of the projector and the change in the sharpness of the projected image at a certain projection distance.
  • the sharpness of the projected image changes with the change of the focal length of the projector, and the vertex of the curve indicates that the sharpness of the projected image reaches the highest.
  • the horizontal coordinate value corresponding to this point represents the most projector under the current projection distance. Good focus.
  • the projector has its own The range of supported projection distances, when measuring the relationship curve in advance, only needs to measure the range of projection distance it supports, which can reduce the workload of measurement.
  • a function curve diagram of focal length and sharpness under a plurality of projection distances in a projection distance range supported by the machine is pre-stored, and a correspondence database of focal length and sharpness is formed, and the database can be located locally. Can be located in the cloud.
  • the focal length-sharpness corresponding value is taken as the coordinate value, wherein the focal length value is used as the horizontal coordinate value and the sharpness value as the vertical coordinate value, and the coordinate value is used.
  • the corresponding coordinate points are marked in the coordinate system in which the pre-stored function of the focal length and sharpness is plotted.
  • a function graph with the highest degree of coincidence with all the coordinate points of the marker is selected from the function curve of the focal length and the sharpness as a function graph of the focal length and the sharpness which most closely match the current projection distance.
  • the function graph is a function of the focal length and sharpness that best match the current projection distance.
  • the pre-stored function of the focal length and the sharpness includes a function graph of two projection distances, which are function graphs A and B, respectively.
  • Three focal length-sharpness corresponding values are obtained, corresponding to three coordinate points i, j, and k. All three coordinate points fall into the function graph A, and the function graph A is the one that best matches the current projection distance.
  • a plot of the focal length and sharpness is the one that best matches the current projection distance.
  • the correspondence between focal length and sharpness may also be a function expression of focal length and sharpness, and a function expression of focal length and sharpness under a plurality of projection distances is prestored in the database, such as the function expression.
  • f(x) represents sharpness
  • x represents focal length
  • a, b, and c are constants and a>0
  • a, b, and c are different at different projection distances.
  • the focal length value in the focal length-sharpness corresponding value is taken as x, and the sharpness value is substituted as f(x) into the pre-stored function expressions, and the two sides are equal or the most
  • a function expression that is close to the equality is a function expression that is the closest match to the current projection distance.
  • three sets of focal length-sharpness corresponding values are substituted into function expressions respectively. In the middle, directly obtain the a, b, and c values, and substitute the obtained a, b, and c values into the function expression.
  • the correspondence between the focal length and the sharpness may also be a correspondence table of focal length and sharpness, and a corresponding table of focal length and sharpness under a plurality of projection distances is prestored in the database, corresponding to each definition in the table.
  • the value (or range value) corresponds to a focus value (or range value).
  • all the obtained focal length-sharpness corresponding values are compared with the respective corresponding tables, and a corresponding table completely corresponding to or closest to all the focal length-sharpness corresponding values is selected as the current and the current table.
  • the corresponding table of focal length and sharpness that best matches the projection distance.
  • Step S12 Obtain the optimal focal length corresponding to the maximum sharpness of the current projection distance according to the correspondence between the focal length and the sharpness that best matches the current projection distance.
  • the correspondence between the focal length and the sharpness that best matches the current projection distance is a function curve of the focal length and the sharpness
  • the coordinate values of the vertices of the function graph are obtained, and the ordinate in the vertex coordinate value is taken as the current
  • the maximum sharpness at the projection distance, and the abscissa in the coordinate value is taken as the best focal length corresponding to the maximum sharpness at the current projection distance.
  • the corresponding vertex coordinates are (b, a), where a is the maximum sharpness at the current projection distance, and b is the optimal focal length corresponding to the maximum sharpness at the current projection distance.
  • the correspondence between the focal length and the sharpness that best matches the current projection distance is a correspondence table of focal length and sharpness
  • the maximum sharpness value is found from the table, and the focal length value corresponding to the maximum sharpness value is used as the current projection.
  • the best focal length under the distance is a correspondence table of focal length and sharpness
  • Step S13 adjusting the focal length of the projector to the optimal focal length
  • the method for adjusting the focal length of the projector in the embodiment by pre-storing the correspondence between the focal length and the sharpness under the plurality of projection distances, firstly acquiring at least two sets of focal length-sharpness corresponding to the current projection distance after the projector is activated. Value, and then according to the corresponding value and the corresponding relationship to obtain the correspondence between the focal length and the sharpness that best match the current projection distance, thereby obtaining the optimal focal length corresponding to the maximum sharpness under the current projection distance, and finally automatically adjusting the focal length to the optimal focal length, Get a clear projected image.
  • the automatic adjustment of the focal length of the projector is realized, which makes the projector more intelligent and user-friendly, and the user does not need manual adjustment, thereby improving the user experience and improving the efficiency.
  • the method includes the following steps:
  • Step S20 Acquire the current projection distance.
  • the distance between the projector and the projection screen is obtained by a distance detecting device (such as an infrared range finder), which is the current projection distance.
  • a distance detecting device such as an infrared range finder
  • Step S21 selecting, according to the current projection distance, a correspondence between the focal length and the sharpness that most closely matches the current projection distance from the correspondence between the focal length and the sharpness of the plurality of pre-stored projection distances.
  • the correspondence between the focal length and the sharpness of the pre-stored multiple projection distances may be stored locally or in the cloud.
  • the correspondence between focal length and sharpness includes a functional expression of focal length and sharpness, a function graph, a corresponding table, and the like.
  • the correspondence between the focal length and the sharpness under a plurality of projection distances may be a correspondence relationship between a focal length and a sharpness of a projection distance value, or a correspondence relationship between a focal length and a sharpness of a projection distance range.
  • Step S22 obtaining a correspondence between the focal length and the sharpness that most closely matches the current projection distance. The best focal length corresponding to the maximum sharpness at the current projection distance.
  • step S22 is the same as step S12 in the first embodiment, and details are not described herein again.
  • Step S23 Adjust the focal length of the projector to the optimal focal length.
  • the method for adjusting the focal length of the projector of the embodiment by pre-storing the correspondence between the focal length and the sharpness under a plurality of projection distances, after the projector is started, the current projection distance is first acquired, and then the corresponding relationship is selected.
  • the correspondence between the focal length and the sharpness of the current projection distance is the best, and the best focal length corresponding to the maximum sharpness of the current projection distance is obtained, and finally the focal length is automatically adjusted to the optimal focal length to obtain a clear projected image.
  • the automatic adjustment of the focal length of the projector is realized, which makes the projector more intelligent and user-friendly, and the user does not need manual adjustment, thereby improving the user experience and improving the efficiency.
  • the apparatus for adjusting the focal length of a projector of the present invention can be applied to a dedicated projection instrument or a mobile terminal having a projection function.
  • the device for adjusting the focal length of the projector includes an acquisition module 61, a processing module 62, and an adjustment module 63.
  • the obtaining module 61 is configured to acquire at least two sets of focal length-sharpness corresponding values under the current projection distance, and send the corresponding values to the processing module 62.
  • the projection is first performed at the current projection distance, and the acquisition module 61 collects the projection image projected onto the screen, obtains the sharpness of the projected image, and obtains the current focal length, and obtains a set of focal lengths - clear Corresponding value; then the control adjustment module 63 automatically adjusts the focal length, the projector is projected again with the adjusted focal length, the acquisition module 61 acquires another set of focal length-sharpness corresponding values in the same manner, and so on, and can acquire multiple sets of focal lengths.
  • the corresponding value of the definition at least not less than two groups.
  • the focal length-sharpness corresponding value includes a focal length value and a sharpness value corresponding to the focal length value.
  • the processing module 62 is configured to select, according to the current projection distance or the focal length-sharpness corresponding value, the focal length and the sharpness that best match the current projection distance from the correspondence between the focal length and the sharpness under the pre-stored plurality of projection distances. Corresponding relationship; then according to the corresponding relationship between the focal length and the sharpness that best matches the current projection distance, the best focus corresponding to the maximum sharpness at the current projection distance is obtained. distance. The best focal length is sent to the adjustment module 63.
  • the correspondence between the focal length and the sharpness of the pre-stored multiple projection distances may be stored locally or in the cloud.
  • the correspondence between the focal length and the sharpness under a plurality of projection distances may be a correspondence relationship between a focal length and a sharpness of a projection distance value, or a correspondence relationship between a focal length and a sharpness of a projection distance range.
  • focal length and sharpness includes a functional expression of focal length and sharpness, a function graph, a corresponding table, and the like.
  • the correspondence between the focal length and the sharpness is taken as an example of a function graph.
  • the projector When the projector is projected on the screen, adjust the focal length of the projector, and the projected image will change between blur and sharpness.
  • the projected image When gradually adjusting from a short focal length to a long focal length or from a long focal length to a short focal length, the projected image will undergo a process from blur to sharpness, then from sharpness to blur, which can be represented by the function curve in Figure 2.
  • the horizontal axis represents the focal length of the projector
  • the vertical axis represents the sharpness of the projected image
  • the function curve represents the adjustment of the focal length of the projector and the change in the sharpness of the projected image at a certain projection distance.
  • the sharpness of the projected image changes with the change of the focal length of the projector, and the vertex of the curve indicates that the sharpness of the projected image reaches the highest.
  • the horizontal coordinate value corresponding to this point represents the most projector under the current projection distance. Good focus.
  • the function of the focal length and the sharpness of the plurality of projection distances in the range of the projection distance supported by the projector can be pre-stored.
  • a database of correspondence between focus and sharpness, the database can be local or in the cloud.
  • the obtaining module 61 uses the focal length-sharpness corresponding value as the coordinate value, wherein the focal length value is used as the horizontal coordinate value and the sharpness value as the vertical coordinate value, and the The coordinate points corresponding to the coordinate values are marked in the coordinate system in which the pre-stored function of the focal length and sharpness is plotted. Next, a function graph with the highest degree of coincidence with all the coordinate points of the marker is selected from the function curve of the focal length and the sharpness as a function graph of the focal length and the sharpness which most closely match the current projection distance.
  • the processing module 62 analyzes which focal length and sharpness function map points corresponding to all acquired focal length-sharpness corresponding values, or which focal length and sharpness function curve map, The function graph is then a function of the focal length and sharpness that best matches the current projection distance.
  • the pre-stored function of the focal length and the sharpness includes a function graph of two projection distances, which are function graphs A and B, respectively.
  • Three focal length-sharpness corresponding values are obtained, corresponding to three coordinate points i, j, k, all of which fall into the function graph A, and the processing module 62 takes the function graph A as the current projection distance.
  • the processing module 62 After selecting a function graph of the focal length and the sharpness that best matches the current projection distance, the processing module 62 obtains the coordinate values of the vertices of the function graph, and uses the ordinate in the vertex coordinate value as the maximum sharpness under the current projection distance. Degree, the abscissa in the coordinate value is taken as the best focal length corresponding to the maximum sharpness under the current projection distance.
  • focal length and sharpness As a function expression of focal length and sharpness as an example.
  • a function expression for storing focal length and sharpness at multiple projection distances in the database as the function expression is Where f(x) represents sharpness, x represents focal length, a, b, and c are constants and a>0, and a, b, and c are different at different projection distances.
  • the processing module 62 substitutes the focal length value in the focal length-sharpness corresponding value as x and the sharpness value as f(x) into the pre-stored function expressions, and selects two sides, etc.
  • a function expression of equal or closest equality is a function expression of the focal length and sharpness that best matches the current projection distance.
  • three sets of focal length-sharpness corresponding values are substituted into function expressions respectively.
  • directly obtain the a, b, and c values and substitute the obtained a, b, and c values into the function expression.
  • the processing module 62 After selecting or obtaining a function expression of the focal length and the sharpness that best matches the current projection distance, the processing module 62 obtains the vertex coordinates of the function graph corresponding to the function expression, and the vertex coordinates are (b, a), Where a is the maximum sharpness at the current projection distance and b is the best focal length corresponding to the maximum sharpness at the current projection distance.
  • a corresponding table of focal length and sharpness under a plurality of projection distances is prestored in the database, and each sharpness value (or range value) in the corresponding table corresponds to a focal length value (or range value).
  • the processing module 62 compares all the acquired focal length-sharpness corresponding values with the respective corresponding tables, and selects a corresponding table that completely corresponds to or is closest to all the focal length-sharpness corresponding values.
  • a corresponding table of focal length and sharpness that best matches the current projection distance After selecting the corresponding table of focal length and sharpness that best matches the current projection distance, the processing module 62 searches for the maximum sharpness value from the table, and the focal length value corresponding to the maximum sharpness value is taken as the current projection distance. The best focal length.
  • the adjustment module 63 is configured to automatically adjust the focal length of the projector, and after receiving the optimal focal length, adjust the focal length of the projector to the optimal focal length.
  • the acquisition module 61 acquires the distance between the projector and the projection screen by a distance detecting device (such as an infrared range finder), that is, the current projection distance, and the current projection distance.
  • a distance detecting device such as an infrared range finder
  • the processing module 62 determines whether the current projection distance value is equal to the pre-stored distance value, or which distance value is pre-stored, or In which distance range is stored, the correspondence between the focal length and the sharpness at the distance is used as the correspondence between the focal length and the sharpness which most closely match the current projection distance.
  • the device for adjusting the focal length of the projector of the present invention by pre-storing the correspondence between the focal length and the sharpness under a plurality of projection distances, when the projector is started, first acquiring the current projection distance or acquiring at least two sets of focal lengths under the current projection distance - Correspondence corresponding value, and then select the corresponding relationship between the focal length and the sharpness that best matches the current projection distance from the corresponding relationship, thereby obtaining the best focal length corresponding to the maximum sharpness under the current projection distance, and finally automatically adjusting the focal length to the best. Focus, for a clear projected image.
  • the automatic adjustment of the focal length of the projector is realized, which makes the projector more intelligent and user-friendly, and the user does not need manual adjustment, thereby improving the user experience and improving the efficiency.
  • the apparatus for adjusting the focal length of the projector provided by the above embodiment is only exemplified by the division of the above functional modules when adjusting the focal length of the projector. In actual applications, the functions may be assigned differently according to needs.
  • the function module is completed.
  • the device for adjusting the focal length of the projector provided by the above embodiment is the same as the method for adjusting the focal length of the projector.
  • the specific implementation process is described in detail in the method embodiment, and the technical features in the method embodiment are in the device embodiment. Correspondence is applicable, and will not be described here.
  • Fig. 7 is a block diagram showing a main electrical configuration of an image pickup apparatus according to an embodiment of the present invention.
  • the photographic lens 101 is composed of a plurality of optical lenses for forming a subject image, and is a single focus lens or a zoom lens.
  • the photographic lens 101 can be moved in the optical axis direction by the lens driving unit 111, and controls the focus position of the taking lens 101 based on the control signal from the lens driving control unit 112, and also controls the focus distance in the case of the zoom lens.
  • the lens drive control circuit 112 performs drive control of the lens drive unit 111 in accordance with a control command from the microcomputer 107.
  • An imaging element 102 is disposed in the vicinity of a position where the subject image is formed by the photographing lens 101 on the optical axis of the photographing lens 101.
  • the imaging element 102 functions as an imaging unit that captures a subject image and acquires captured image data.
  • Photodiodes constituting each pixel are two-dimensionally arranged in a matrix on the imaging element 102. Each photodiode generates a photoelectric conversion current corresponding to the amount of received light, and the photoelectric conversion current is charged by a capacitor connected to each photodiode.
  • Front of each pixel The surface is provided with a Bayer array of RGB color filters.
  • the imaging element 102 is connected to an imaging circuit 103 that performs charge accumulation control and image signal readout control in the imaging element 102, and performs waveform shaping after reducing the reset noise of the read image signal (analog image signal). Further, gain improvement or the like is performed to obtain an appropriate signal level.
  • the imaging circuit 103 is connected to the A/D conversion unit 104, which performs analog-to-digital conversion on the analog image signal, and outputs a digital image signal (hereinafter referred to as image data) to the bus 199.
  • image data a digital image signal
  • the bus 199 is a transmission path for transmitting various data read or generated inside the photographing apparatus.
  • the A/D conversion unit 104 is connected to the bus 199, and an image processor 105, a JPEG processor 106, a microcomputer 107, a SDRAM (Synchronous DRAM) 108, and a memory interface (hereinafter referred to as a memory I/F) are connected. 109. LCD (Liquid Crystal Display) driver 110.
  • the image processor 105 performs various kinds of images such as OB subtraction processing, white balance adjustment, color matrix calculation, gamma conversion, color difference signal processing, noise removal processing, simultaneous processing, edge processing, and the like on the image data based on the output of the imaging element 102. deal with.
  • the JPEG processor 106 compresses the image data read out from the SDRAM 108 in accordance with the JPEG compression method. Further, the JPEG processor 106 performs decompression of JPEG image data for image reproduction display. At the time of decompression, the file recorded on the recording medium 115 is read, and after the compression processing is performed in the JPEG processor 106, the decompressed image data is temporarily stored in the SDRAM 108 and displayed on the LCD 116. Further, in the present embodiment, the JPEG method is adopted as the image compression/decompression method. However, the compression/decompression method is not limited thereto, and other compression/decompression methods such as MPEG, TIFF, and H.264 may be used.
  • the microcomputer 107 functions as a control unit of the entire imaging device, and collectively controls various processing sequences of the imaging device.
  • the microcomputer 107 is connected to the operation unit 113 and the flash memory 114.
  • the operation unit 113 includes but not limited to a physical button or a virtual button, the entity or virtual
  • the button can be used as a power button, a camera button, an edit button, a dynamic image button, a reproduction button, a menu button, a cross button, an OK button, a delete button, an enlargement button, and the like, and various operation buttons such as various input buttons, and the like.
  • the operating state of the operating member is not limited to a physical button or a virtual button, the entity or virtual
  • the button can be used as a power button, a camera button, an edit button, a dynamic image button, a reproduction button, a menu button, a cross button, an OK button, a delete button, an enlargement button, and the like, and various operation buttons such as various input buttons, and the like.
  • the detection result is output to the microcomputer 107.
  • a touch panel is provided on the front surface of the LCD 116 as a display portion, and the touch position of the user is detected, and the touch position is output to the microcomputer 107.
  • the microcomputer 107 executes various processing sequences corresponding to the operation of the user based on the detection result of the operation member from the operation unit 113. (Similarly, this place can be changed to the computer 107 to execute various processing sequences corresponding to the user's operation based on the detection result of the touch panel on the front of the LCD 116.)
  • the flash memory 114 stores programs for executing various processing sequences of the microcomputer 107.
  • the microcomputer 107 performs overall control of the imaging device in accordance with the program. Further, the flash memory 114 stores various adjustment values of the imaging device, and the microcomputer 107 reads the adjustment value, and controls the imaging device in accordance with the adjustment value.
  • the SDRAM 108 is an electrically rewritable volatile memory for temporarily storing image data or the like.
  • the SDRAM 108 temporarily stores image data output from the A/D conversion unit 104 and image data processed in the image processor 105, the JPEG processor 106, and the like.
  • the memory interface 109 is connected to the recording medium 115, and performs control for writing image data and a file header attached to the image data to the recording medium 115 and reading from the recording medium 115.
  • the recording medium 115 is, for example, a recording medium such as a memory card that can be detachably attached to the main body of the imaging device.
  • the recording medium 115 is not limited thereto, and may be a hard disk or the like built in the main body of the imaging device.
  • the LCD driver 110 is connected to the LCD 116, and stores image data processed by the image processor 105 in the SDRAM.
  • the image data stored in the SDRAM is read and displayed on the LCD 116, or the image data stored in the JPEG processor 106 is compressed.
  • the JPEG processor 106 reads the compressed image data of the SDRAM, decompresses it, and displays the decompressed image data on the LCD 116.
  • the LCD 116 is disposed on the back surface of the main body of the imaging device or the like to perform image display.
  • the LCD116 There is a touch panel that detects a user's touch operation.
  • the liquid crystal display panel (LCD 116) is disposed as the display portion.
  • the present invention is not limited thereto, and various display panels such as an organic EL may be employed.
  • the apparatus for tracking the service signaling may also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a separate product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a computer storage medium storing a computer program for performing a method of adjusting a focal length of a projector according to an embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种调节投影仪焦距的方法和装置、计算机存储介质,包括:获取当前的投影距离(S20),或者获取当前投影距离下的至少两组焦距-清晰度对应值(S10);根据所述当前的投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系(S21,S11);根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距(S12,S22);调节投影仪的焦距至所述最佳焦距(S13,S23),获得清晰的投影图像。

Description

调节投影仪焦距的方法和装置、计算机存储介质 技术领域
本发明涉及投影仪技术领域,尤其是涉及一种调节投影仪焦距的方法和装置、计算机存储介质。
背景技术
投影仪已广泛应用于教学、办公以及生活领域,特别是随着移动终端的迅速发展,很多移动终端上也配备了投影仪,给人们的工作和生活带来了极大的便利和乐趣。在使用投影仪时,为了使投影屏幕上显示的投影图像清晰,需要调节投影仪的焦距,而目前通常需要用户进行手动调节,调节过程比较繁琐费时。特别是对于移动终端而言,每次使用时投影距离都不同,而不同的投影距离对应的最佳焦距不同,因此用户每次使用投影仪都要经历繁琐的焦距调节过程,费时费力,用户体验不佳。
发明内容
本发明实施例的主要目的在于提供一种调节投影仪焦距的方法和装置、计算机存储介质,旨在实现投影仪焦距的自动调节,提高效率,提升用户体验。
为达以上目的,本发明实施例提出一种调节投影仪焦距的方法,所述方法包括:
获取当前的投影距离,或者获取当前投影距离下的至少两组焦距-清晰度对应值;
根据所述当前的投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系;
根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距;
调节投影仪的焦距至所述最佳焦距。
可选地,所述获取当前投影距离下的至少两组焦距-清晰度对应值包括:
在当前投影距离下进行投影;
采集投影图像,获得所述投影图像的清晰度和当前的焦距,得到一组焦距-清晰度对应值;
自动调节焦距,重复前一步骤,获取另一组焦距-清晰度对应值,最终获取至少两组焦距-清晰度对应值。
可选地,所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。
可选地,多个投影距离下的所述焦距与清晰度的对应关系,是一个投影距离值对应一个焦距与清晰度的对应关系,或者是一个投影距离范围对应一个焦距与清晰度的对应关系。
可选地,所述焦距与清晰度的对应关系为:焦距与清晰度的函数表达式、函数曲线图或对应表格。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的函数曲线图;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
将所述焦距-清晰度对应值作为坐标值,并将所述坐标值所对应的坐标点标记于所述焦距与清晰度的函数曲线图所在的坐标系中;
从所述焦距与清晰度的函数曲线图中选出与所述坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
可选地,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
获取所述与当前投影距离最匹配的焦距与清晰度的函数曲线图的顶点的坐标值,将所述坐标值中的纵坐标作为当前投影距离下的最大清晰度,将所述坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的函数表达式;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
将焦距-清晰度对应值中的焦距值作为x、清晰度值作为f(x)代入预存的各函数表达式中,从中选出两边等式相等或者最接近相等的函数表达式作为与当前投影距离最匹配的焦距与清晰度的函数表达式。
可选地,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
获取函数表达式的顶点坐标(b,a),其中,a为当前投影距离下的最大清晰度,b为当前投影距离下最大清晰度所对应的最佳焦距。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的对应表格;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格。
可选地,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
从所述对应表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
本发明实施例同时提出一种调节投影仪焦距的装置,包括获取模块、处理模块和调节模块,其中:
获取模块,配置为获取当前的投影距离,或者获取当前投影距离下的至少两组焦距-清晰度对应值;
处理模块,配置为根据所述当前投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系;根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距;
调节模块,配置为调节投影仪的焦距至所述最佳焦距。
可选地,所述获取模块配置为:采集当前投影距离下的投影图像,获得所述投影图像的清晰度和当前的焦距,得到一组焦距-清晰度对应值;控制所述调节模块自动调节焦距,获取另一组焦距-清晰度对应值,最终获取至少两组焦距-清晰度对应值。
可选地,所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。
可选地,多个投影距离下的所述焦距与清晰度的对应关系,是一个投影距离值对应一个焦距与清晰度的对应关系,或者是一个投影距离范围对应一个焦距与清晰度的对应关系。
可选地,所述焦距与清晰度的对应关系为:焦距与清晰度的函数表达式、函数曲线图或对应表格。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的函数曲线图,所述处理模块配置为:将所述焦距-清晰度对应值作为坐标值,并将所述坐标值所对应的坐标点标记于所述焦距与清晰度的函数曲线图所在的坐标系中;从所述焦距与清晰度的函数曲线图中选出与所述坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
可选地,所述处理模块配置为:获取所述与当前投影距离最匹配的焦距与清晰度的函数曲线图的顶点的坐标值,将所述坐标值中的纵坐标作为当前投影距离下的最大清晰度,将所述坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的函数表达式,所述处理模块配置为:将焦距-清晰度对应值中的焦距值作为x、清晰度值作为f(x)代入预存的各函数表达式中,从中选出两边等式相等或者最接近相等的函数表达式作为与当前投影距离最匹配的焦距与清晰度的函数表达式。
可选地,所述处理模块配置为:获取函数表达式的顶点坐标(b,a),其中,a为当前投影距离下的最大清晰度,b为当前投影距离下最大清晰度所对应的最佳焦距。
可选地,所述焦距与清晰度的对应关系为焦距与清晰度的对应表格,所述处理模块配置为:将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格。
可选地,所述处理模块配置为:从所述对应表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
本发明实施例同时提出一种计算机存储介质,存储有计算机程序,该计算机程序用于执行上述调节投影仪焦距的方法。
本发明实施例的技术方案中,通过预存多个投影距离下的焦距与清晰度的对应关系,当投影仪启动后,首先获取当前的投影距离或获取当前投影距离下的至少两组焦距-清晰度对应值,然后从对应关系中选出与当前投影距离最匹配的焦距与清晰度的对应关系,进而获得当前投影距离下最大清晰度所对应的最佳焦距,最终自动调节焦距至最佳焦距,获得清晰的投影图像。实现了投影仪焦距的自动调节,使得投影仪更加智能化和人性化,用户无需手动调节,提升了用户体验,提高了效率。
附图说明
图1是本发明调节投影仪焦距的方法第一实施例的流程图;
图2是某一投影距离下的焦距与清晰度的函数曲线图;
图3是某两个投影距离下的焦距与清晰度的函数曲线图;
图4是本发明实施例中选取与当前投影距离最匹配的焦距与清晰度的函数曲线图的示意图;
图5是本发明调节投影仪焦距的方法第二实施例的流程图;
图6是本发明调节投影仪焦距的装置第一实施例的流程图;
图7是表示本发明的一个实施方式的拍摄装置的主要电气结构的框图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参见图1,提出本发明调节投影仪焦距的方法第一实施例,所述方法包括以下步骤:
步骤S10:在当前投影距离下获取至少两组焦距-清晰度对应值。
具体的,投影仪(可以是专门的投影仪器或移动终端内的投影仪模块)启动后,首先在当前投影距离下进行投影,以自动进行焦距矫正。采集投影到屏幕上的投影图像,获得该投影图像的清晰度,并获取当前的焦距,得到一组焦距-清晰度对应值;自动调节焦距,以调节后的焦距再次投影,重复前一步骤,以相同的方式获取另一组焦距-清晰度对应值,以此类推,可以获取多组焦距-清晰度对应值,最少不少于两组,理论上越多越好。所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。投影图像的清晰度可以通过现有技术中的清晰度算法计算获得,在此不赘述。
步骤S11:根据获取的焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系。
预存的多个投影距离下的焦距与清晰度的对应关系,可以存储于本地,也可以存储于云端,理论上,存储的对应关系越多越好。多个投影距离下的焦距与清晰度的对应关系,可以是一个投影距离值对应一个焦距与清晰度的对应关系,也可以是一个投影距离范围对应一个焦距与清晰度的对应关系。所述焦距与清晰度的对应关系包括焦距与清晰度的函数表达式、函数曲线图、对应表格等。
以下以函数曲线图为例进行详细说明。
当投影仪进行屏幕投影时,调节投影仪焦距,投影图像会在模糊与清晰之间变换。当从短焦距逐渐调节到长焦距或者从长焦距逐渐调节到短焦距时,投影图像将经历从模糊到清晰、再从清晰到模糊的变化过程,这个变化过程可以用图2中的函数曲线表示。其中,图2中,横轴表示投影仪的焦距,纵轴表示投影图像的清晰度,函数曲线表示在一定的投影距离下,调节投影仪的焦距,投影图像的清晰度变化情况。图中可以看出,投影图像的清晰度随着投影仪焦距的变化而发生的变化,曲线顶点表示投影图像的清晰度达到最高,这个点对应的横坐标值表示当前投影距离下投影仪的最佳焦距。
然而,同一个投影仪在不同的投影距离下进行投影时,其对应的最佳焦距不同。如图3所示,显示了两个投影距离下对应的两个焦距与清晰度的函数曲线图。所以,对于同一个投影仪,可以测量多个投影距离下的清晰度与焦距的函数曲线图,从而形成一个焦距与清晰度的对应关系数据库。为了使得到的清晰度足够准确,可以让投影仪始终使用同一幅图像来进行测量,比如使用厂家的LOGO图像,这样做的另一个好处是在投影仪启动显示LOGO的过程中,焦距就已经自动调整好。实际上,投影仪都有自己 支持的投影距离范围,在事先测量关系曲线时,只需要测量其支持的投影距离范围即可,这样可以减少测量的工作量。本实施例中即预先存储了本机支持的投影距离范围内,多个投影距离下的焦距与清晰度的函数曲线图,形成一焦距与清晰度的对应关系数据库,该数据库可以位于本地,也可以位于云端。
当获得当前投影距离下的焦距-清晰度对应值后,则将焦距-清晰度对应值作为坐标值,其中将焦距值作为横坐标值、清晰度值作为纵坐标值,并将该坐标值所对应的坐标点标记于预存的焦距与清晰度的函数曲线图所在的坐标系中。接着,从焦距与清晰度的函数曲线图中选出与标记的所有坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。换句话说,当所有获取的焦距-清晰度对应值所对应的坐标点落入了哪一个焦距与清晰度的函数曲线图,或者最靠近哪一个焦距与清晰度的函数曲线图时,则将该函数曲线图作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
例如,如图4所示,预存的焦距与清晰度的函数曲线图中包括两个投影距离下的函数曲线图,分别为函数曲线图A和B。获取了三个焦距-清晰度对应值,分别对应三个坐标点i、j、k,这三个坐标点全部落入函数曲线图A,则将函数曲线图A作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
在某些实施例中,焦距与清晰度的对应关系也可以是焦距与清晰度的函数表达式,数据库中预存了多个投影距离下的焦距与清晰度的函数表达式,如该函数表达式为
Figure PCTCN2015089551-appb-000001
其中f(x)代表清晰度,x代表焦距,a、b、c为常数且a>0,不同投影距离下a、b、c不同。当获得焦距-清晰度对应值后,将焦距-清晰度对应值中的焦距值作为x、清晰度值作为f(x)代入预存的各函数表达式中,从中选出两边等式相等或者最接近相等的函数表 达式作为与当前投影距离最匹配的焦距与清晰度的函数表达式。或者,在获得三组焦距-清晰度对应值后,分别将三组焦距-清晰度对应值代入函数表达式
Figure PCTCN2015089551-appb-000002
中,直接求得a、b、c值,将求得的a、b、c值代入函数表达式
Figure PCTCN2015089551-appb-000003
中作为与当前投影距离最匹配的焦距与清晰度的函数表达式。
在另一些实施例中,焦距与清晰度的对应关系也可以是焦距与清晰度的对应表格,数据库中预存了多个投影距离下的焦距与清晰度的对应表格,对应表格中每一个清晰度值(或范围值)对应一个焦距值(或范围值)。当获得焦距-清晰度对应值后,将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格。
步骤S12:根据与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距。
具体的,当与当前投影距离最匹配的焦距与清晰度的对应关系为焦距与清晰度的函数曲线图时,获取该函数曲线图的顶点的坐标值,将顶点坐标值中的纵坐标作为当前投影距离下的最大清晰度,将坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
当与当前投影距离最匹配的焦距与清晰度的对应关系为焦距与清晰度的函数表达式时,以高斯函数
Figure PCTCN2015089551-appb-000004
为例,其对应的顶点坐标为(b,a),其中a为当前投影距离下的最大清晰度,b为当前投影距离下最大清晰度所对应的最佳焦距。
当与当前投影距离最匹配的焦距与清晰度的对应关系为焦距与清晰度的对应表格时,从该表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
应当理解,本发明所述的最佳焦距,是一个相对概念,并非绝对的最 佳焦距,不能因此对本发明的保护范围进行限制。
步骤S13:调节投影仪的焦距至最佳焦距
从而,本实施例的调节投影仪焦距的方法,通过预存多个投影距离下的焦距与清晰度的对应关系,当投影仪启动后,首先获取当前投影距离下的至少两组焦距-清晰度对应值,然后根据对应值和对应关系获得与当前投影距离最匹配的焦距与清晰度的对应关系,进而获得当前投影距离下最大清晰度所对应的最佳焦距,最终自动调节焦距至最佳焦距,获得清晰的投影图像。实现了投影仪焦距的自动调节,使得投影仪更加智能化和人性化,用户无需手动调节,提升了用户体验,提高了效率。
参见图5,提出本发明调节投影仪焦距的方法第二实施例,所述方法包括以下步骤:
步骤S20:获取当前的投影距离。
当投影仪启动后,通过距离检测装置(如红外测距仪)获取投影仪与投影屏幕的距离,该距离即当前的投影距离。
步骤S21:根据当前的投影距离,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系。
预存的多个投影距离下的焦距与清晰度的对应关系,可以存储于本地,也可以存储于云端。焦距与清晰度的对应关系包括焦距与清晰度的函数表达式、函数曲线图、对应表格等。多个投影距离下的焦距与清晰度的对应关系,可以是一个投影距离值对应一个焦距与清晰度的对应关系,也可以是一个投影距离范围对应一个焦距与清晰度的对应关系。
判断当前的投影距离值与预存的哪个距离值相等,或与预存的哪个距离值最接近,或者在预存的哪个距离范围内,则将该距离下的焦距与清晰度的对应关系作为与当前投影距离最匹配的焦距与清晰度的对应关系。
步骤S22:根据与当前投影距离最匹配的焦距与清晰度的对应关系,获 得当前投影距离下最大清晰度所对应的最佳焦距。
本步骤S22与第一实施例中的步骤S12相同,在此不再赘述。
步骤S23:调节投影仪的焦距至最佳焦距。
从而,本实施例的调节投影仪焦距的方法,通过预存多个投影距离下的焦距与清晰度的对应关系,当投影仪启动后,首先获取当前的投影距离,然后从对应关系中选出与当前投影距离最匹配的焦距与清晰度的对应关系,进而获得当前投影距离下最大清晰度所对应的最佳焦距,最终自动调节焦距至最佳焦距,获得清晰的投影图像。实现了投影仪焦距的自动调节,使得投影仪更加智能化和人性化,用户无需手动调节,提升了用户体验,提高了效率。
参见图6,提出本发明调节投影仪焦距的装置一实施例,所述调节投影仪焦距的装置可以应用于专门的投影仪器或具有投影功能的移动终端内。所述调节投影仪焦距的装置包括获取模块61、处理模块62和调节模块63。
获取模块61:配置为获取当前投影距离下的至少两组焦距-清晰度对应值,并发送给处理模块62。
具体的,当投影仪启动后,首先在当前投影距离下进行投影,获取模块61采集投影到屏幕上的投影图像,获得该投影图像的清晰度,并获取当前的焦距,得到一组焦距-清晰度对应值;然后控制调节模块63自动调节焦距,投影仪以调节后的焦距再次投影,获取模块61以相同的方式获取另一组焦距-清晰度对应值,以此类推,可以获取多组焦距-清晰度对应值,最少不少于两组。所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。
处理模块62:配置为根据当前投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系;然后根据与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦 距。并将最佳焦距发送给调节模块63。
预存的多个投影距离下的焦距与清晰度的对应关系,可以存储于本地,也可以存储于云端。多个投影距离下的焦距与清晰度的对应关系,可以是一个投影距离值对应一个焦距与清晰度的对应关系,也可以是一个投影距离范围对应一个焦距与清晰度的对应关系。
焦距与清晰度的对应关系包括焦距与清晰度的函数表达式、函数曲线图、对应表格等。
举例而言,以焦距与清晰度的对应关系为函数曲线图为例。当投影仪进行屏幕投影时,调节投影仪焦距,投影图像会在模糊与清晰之间变换。当从短焦距逐渐调节到长焦距或者从长焦距逐渐调节到短焦距时,投影图像将经历从模糊到清晰、再从清晰到模糊的变化过程,这个变化过程可以用图2中的函数曲线表示。其中,图2中,横轴表示投影仪的焦距,纵轴表示投影图像的清晰度,函数曲线表示在一定的投影距离下,调节投影仪的焦距,投影图像的清晰度变化情况。图中可以看出,投影图像的清晰度随着投影仪焦距的变化而发生的变化,曲线顶点表示投影图像的清晰度达到最高,这个点对应的横坐标值表示当前投影距离下投影仪的最佳焦距。
然而,同一个投影仪在不同的投影距离下进行投影时,其对应的最佳焦距不同。如图3所示,显示了两个投影距离下对应的两个焦距与清晰度的函数曲线图。所以,对于同一个投影仪,可以测量多个投影距离下的清晰度与焦距的函数曲线图,从而形成一个焦距与清晰度的对应关系数据库。为了使得到的清晰度足够准确,可以让投影仪始终使用同一幅图像来进行测量,比如使用厂家的LOGO图像,这样做的另一个好处是在投影仪启动显示LOGO的过程中,焦距就已经自动调整好。实际上,投影仪都有自己支持的投影距离范围,在事先测量关系曲线时,只需要测量其支持的投影距离范围即可,这样可以减少测量的工作量。从而可以预先存储投影仪支持的投影距离范围内,多个投影距离下的焦距与清晰度的函数曲线图,形 成一焦距与清晰度的对应关系数据库,该数据库可以位于本地,也可以位于云端。
当获得当前投影距离下的焦距-清晰度对应值后,获取模块61则将焦距-清晰度对应值作为坐标值,其中将焦距值作为横坐标值、清晰度值作为纵坐标值,并将该坐标值所对应的坐标点标记于预存的焦距与清晰度的函数曲线图所在的坐标系中。接着,从焦距与清晰度的函数曲线图中选出与标记的所有坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。换句话说,处理模块62分析所有获取的焦距-清晰度对应值所对应的坐标点落入了哪一个焦距与清晰度的函数曲线图,或者最靠近哪一个焦距与清晰度的函数曲线图,则将该函数曲线图作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
例如,如图4所示,预存的焦距与清晰度的函数曲线图中包括两个投影距离下的函数曲线图,分别为函数曲线图A和B。获取了三个焦距-清晰度对应值,分别对应三个坐标点i、j、k,这三个坐标点全部落入函数曲线图A,处理模块62则将函数曲线图A作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
选出与当前投影距离最匹配的焦距与清晰度的函数曲线图后,处理模块62则获取该函数曲线图的顶点的坐标值,将顶点坐标值中的纵坐标作为当前投影距离下的最大清晰度,将坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
以焦距与清晰度的对应关系为焦距与清晰度的函数表达式为例。数据库中预存了多个投影距离下的焦距与清晰度的函数表达式,如该函数表达式为
Figure PCTCN2015089551-appb-000005
其中f(x)代表清晰度,x代表焦距,a、b、c为常数且a>0,不同投影距离下a、b、c不同。当获得焦距-清晰度对应值后,处理模块62则将焦距-清晰度对应值中的焦距值作为x、清晰度值作为f(x)代 入预存的各函数表达式中,从中选出两边等式相等或者最接近相等的函数表达式作为与当前投影距离最匹配的焦距与清晰度的函数表达式。或者,在获得三组焦距-清晰度对应值后,分别将三组焦距-清晰度对应值代入函数表达式
Figure PCTCN2015089551-appb-000006
中,直接求得a、b、c值,将求得的a、b、c值代入函数表达式
Figure PCTCN2015089551-appb-000007
中作为与当前投影距离最匹配的焦距与清晰度的函数表达式。
选出或获得与当前投影距离最匹配的焦距与清晰度的函数表达式后,处理模块62则获取该函数表达式所对应的函数曲线图的顶点坐标,该顶点坐标为(b,a),其中a为当前投影距离下的最大清晰度,b为当前投影距离下最大清晰度所对应的最佳焦距。
以焦距与清晰度的对应关系为焦距与清晰度的对应表格为例。数据库中预存了多个投影距离下的焦距与清晰度的对应表格,对应表格中每一个清晰度值(或范围值)对应一个焦距值(或范围值)。当获得焦距-清晰度对应值后,处理模块62将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格。选出与当前投影距离最匹配的焦距与清晰度的对应表格后,处理模块62则从该表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
调节模块63:配置为自动调节投影仪的焦距,当接收到最佳焦距后,调节投影仪的焦距至最佳焦距。
在某些实施例中,当投影仪启动后,获取模块61通过距离检测装置(如红外测距仪)获取投影仪与投影屏幕的距离,该距离即当前的投影距离,并将当前的投影距离发送给处理模块62。处理模块62则判断当前的投影距离值与预存的哪个距离值相等,或与预存的哪个距离值最接近,或者在预 存的哪个距离范围内,则将该距离下的焦距与清晰度的对应关系作为与当前投影距离最匹配的焦距与清晰度的对应关系。
本发明的调节投影仪焦距的装置,通过预存多个投影距离下的焦距与清晰度的对应关系,当投影仪启动后,首先获取当前的投影距离或获取当前投影距离下的至少两组焦距-清晰度对应值,然后从对应关系中选出与当前投影距离最匹配的焦距与清晰度的对应关系,进而获得当前投影距离下最大清晰度所对应的最佳焦距,最终自动调节焦距至最佳焦距,获得清晰的投影图像。实现了投影仪焦距的自动调节,使得投影仪更加智能化和人性化,用户无需手动调节,提升了用户体验,提高了效率。
需要说明的是:上述实施例提供的调节投影仪焦距的装置在调节投影仪焦距时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成。另外,上述实施例提供的调节投影仪焦距的装置与调节投影仪焦距的方法实施例属于同一构思,其具体实现过程详见方法实施例,且方法实施例中的技术特征在装置实施例中均对应适用,这里不再赘述。
图7是表示本发明的一个实施方式的拍摄装置的主要电气结构的框图。摄影镜头101由用于形成被摄体像的多个光学镜头构成,是单焦点镜头或变焦镜头。摄影镜头101能够通过镜头驱动部111在光轴方向上移动,根据来自镜头驱动控制部112的控制信号,控制摄影镜头101的焦点位置,在变焦镜头的情况下,也控制焦点距离。镜头驱动控制电路112按照来自微型计算机107的控制命令进行镜头驱动部111的驱动控制。
在摄影镜头101的光轴上、由摄影镜头101形成被摄体像的位置附近配置有摄像元件102。摄像元件102发挥作为对被摄体像摄像并取得摄像图像数据的摄像部的功能。在摄像元件102上二维地呈矩阵状配置有构成各像素的光电二极管。各光电二极管产生与受光量对应的光电转换电流,该光电转换电流由与各光电二极管连接的电容器进行电荷蓄积。各像素的前 表面配置有拜耳排列的RGB滤色器。
摄像元件102与摄像电路103连接,该摄像电路103在摄像元件102中进行电荷蓄积控制和图像信号读出控制,对该读出的图像信号(模拟图像信号)降低重置噪声后进行波形整形,进而进行增益提高等以成为适当的信号电平。
摄像电路103与A/D转换部104连接,该A/D转换部104对模拟图像信号进行模数转换,向总线199输出数字图像信号(以下称之为图像数据)。
总线199是用于传送在拍摄装置的内部读出或生成的各种数据的传送路径。在总线199连接着上述A/D转换部104,此外还连接着图像处理器105、JPEG处理器106、微型计算机107、SDRAM(Synchronous DRAM)108、存储器接口(以下称之为存储器I/F)109、LCD(液晶显示器:Liquid Crystal Display)驱动器110。
图像处理器105对基于摄像元件102的输出的图像数据进行OB相减处理、白平衡调整、颜色矩阵运算、伽马转换、色差信号处理、噪声去除处理、同时化处理、边缘处理等各种图像处理。
JPEG处理器106在将图像数据记录于记录介质115时,按照JPEG压缩方式压缩从SDRAM108读出的图像数据。此外,JPEG处理器106为了进行图像再现显示而进行JPEG图像数据的解压缩。进行解压缩时,读出记录在记录介质115中的文件,在JPEG处理器106中实施了解压缩处理后,将解压缩的图像数据暂时存储于SDRAM108中并在LCD116上进行显示。另外,在本实施方式中,作为图像压缩解压缩方式采用的是JPEG方式,然而压缩解压缩方式不限于此,当然可以采用MPEG、TIFF、H.264等其他的压缩解压缩方式。
微型计算机107发挥作为该拍摄装置整体的控制部的功能,统一控制拍摄装置的各种处理序列。微型计算机107连接着操作单元113和闪存114。
操作单元113包括包括但不限于实体按键或者虚拟按键,该实体或虚 拟按键可以为电源按钮、拍照键、编辑按键、动态图像按钮、再现按钮、菜单按钮、十字键、OK按钮、删除按钮、放大按钮等各种输入按钮和各种输入键等操作部材,检测这些操作部材的操作状态。
将检测结果向微型计算机107输出。此外,在作为显示部的LCD116的前表面设有触摸面板,检测用户的触摸位置,将该触摸位置向微型计算机107输出。微型计算机107根据来自操作单元113的操作部材的检测结果,执行与用户的操作对应的各种处理序列。(同样,可以把这个地方改成计算机107根据LCD116前面的触摸面板的检测结果,执行与用户的操作对应的各种处理序列。)
闪存114存储用于执行微型计算机107的各种处理序列的程序。微型计算机107根据该程序进行拍摄装置整体的控制。此外,闪存114存储拍摄装置的各种调整值,微型计算机107读出调整值,按照该调整值进行拍摄装置的控制。
SDRAM108是用于对图像数据等进行暂时存储的可电改写的易失性存储器。该SDRAM108暂时存储从A/D转换部104输出的图像数据和在图像处理器105、JPEG处理器106等中进行了处理后的图像数据。
存储器接口109与记录介质115连接,进行将图像数据和附加在图像数据中的文件头等数据写入记录介质115和从记录介质115中读出的控制。记录介质115例如为能够在拍摄装置主体上自由拆装的存储器卡等记录介质,然而不限于此,也可以是内置在拍摄装置主体中的硬盘等。
LCD驱动器110与LCD116连接,将由图像处理器105处理后的图像数据存储于SDRAM,需要显示时,读取SDRAM存储的图像数据并在LCD116上显示,或者,JPEG处理器106压缩过的图像数据存储于SDRAM,在需要显示时,JPEG处理器106读取SDRAM的压缩过的图像数据,再进行解压缩,将解压缩后的图像数据通过LCD116进行显示。
LCD116配置在拍摄装置主体的背面等上,进行图像显示。该LCD116 设有检测用户的触摸操作的触摸面板。另外,作为显示部,在本实施方式中配置的是液晶表示面板(LCD116),然而不限于此,也可以采用有机EL等各种显示面板。
本发明实施例上述业务信令跟踪的装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序用于执行本发明实施例的调节投影仪焦距的方法。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤可以通过程序来控制相关的硬件完成,所述的程序可以存储于一计算机可读取存储介质中,所述的存储介质可以是ROM/RAM、磁盘、光盘等。
应当理解的是,以上仅为本发明的优选实施例,不能因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种调节投影仪焦距的方法,所述方法包括:
    获取当前的投影距离,或者获取当前投影距离下的至少两组焦距-清晰度对应值;
    根据所述当前的投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系;
    根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距;
    调节投影仪的焦距至所述最佳焦距。
  2. 根据权利要求1所述的调节投影仪焦距的方法,其中,所述获取当前投影距离下的至少两组焦距-清晰度对应值包括:
    在当前投影距离下进行投影;
    采集投影图像,获得所述投影图像的清晰度和当前的焦距,得到一组焦距-清晰度对应值;
    自动调节焦距,重复前一步骤,获取另一组焦距-清晰度对应值,最终获取至少两组焦距-清晰度对应值。
  3. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。
  4. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,多个投影距离下的所述焦距与清晰度的对应关系,是一个投影距离值对应一个焦距与清晰度的对应关系,或者是一个投影距离范围对应一个焦距与清晰度的对应关系。
  5. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,所述焦距与清晰度的对应关系为:焦距与清晰度的函数表达式、函数曲线图或对 应表格。
  6. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,所述焦距与清晰度的对应关系为焦距与清晰度的函数曲线图;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
    将所述焦距-清晰度对应值作为坐标值,并将所述坐标值所对应的坐标点标记于所述焦距与清晰度的函数曲线图所在的坐标系中;
    从所述焦距与清晰度的函数曲线图中选出与所述坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
  7. 根据权利要求6所述的调节投影仪焦距的方法,其中,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
    获取所述与当前投影距离最匹配的焦距与清晰度的函数曲线图的顶点的坐标值,将所述坐标值中的纵坐标作为当前投影距离下的最大清晰度,将所述坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
  8. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,所述焦距与清晰度的对应关系为焦距与清晰度的函数表达式;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
    将焦距-清晰度对应值中的焦距值作为x、清晰度值作为f(x)代入预存的各函数表达式中,从中选出两边等式相等或者最接近相等的函数表达式作为与当前投影距离最匹配的焦距与清晰度的函数表达式。
  9. 根据权利要求8所述的调节投影仪焦距的方法,其中,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
    获取函数表达式的顶点坐标(b,a),其中,a为当前投影距离下的最大清晰度,b为当前投影距离下最大清晰度所对应的最佳焦距。
  10. 根据权利要求1或2所述的调节投影仪焦距的方法,其中,所述焦距与清晰度的对应关系为焦距与清晰度的对应表格;所述根据所述焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系,包括:
    将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格。
  11. 根据权利要求10所述的调节投影仪焦距的方法,其中,所述根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距,包括:
    从所述对应表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
  12. 一种调节投影仪焦距的装置,包括获取模块、处理模块和调节模块,其中:
    获取模块,配置为获取当前的投影距离,或者获取当前投影距离下的至少两组焦距-清晰度对应值;
    处理模块,配置为根据所述当前投影距离或者焦距-清晰度对应值,从预存的多个投影距离下的焦距与清晰度的对应关系中,选出与当前投影距离最匹配的焦距与清晰度的对应关系;根据所述与当前投影距离最匹配的焦距与清晰度的对应关系,获得当前投影距离下最大清晰度所对应的最佳焦距;
    调节模块,配置为调节投影仪的焦距至所述最佳焦距。
  13. 根据权利要求12所述的调节投影仪焦距的装置,其中,所述获取模块配置为:采集当前投影距离下的投影图像,获得所述投影图像的清晰 度和当前的焦距,得到一组焦距-清晰度对应值;控制所述调节模块自动调节焦距,获取另一组焦距-清晰度对应值,最终获取至少两组焦距-清晰度对应值。
  14. 根据权利要求12或13所述的调节投影仪焦距的方法,其中,所述焦距-清晰度对应值包括焦距值以及与该焦距值相对应的清晰度值。
  15. 根据权利要求12或13所述的调节投影仪焦距的方法,其中,多个投影距离下的所述焦距与清晰度的对应关系,是一个投影距离值对应一个焦距与清晰度的对应关系,或者是一个投影距离范围对应一个焦距与清晰度的对应关系。
  16. 根据权利要求12或13所述的调节投影仪焦距的装置,其中,所述焦距与清晰度的对应关系为:焦距与清晰度的函数表达式、函数曲线图或对应表格。
  17. 根据权利要求12或13所述的调节投影仪焦距的装置,其中,所述焦距与清晰度的对应关系为焦距与清晰度的函数曲线图,所述处理模块配置为:将所述焦距-清晰度对应值作为坐标值,并将所述坐标值所对应的坐标点标记于所述焦距与清晰度的函数曲线图所在的坐标系中;从所述焦距与清晰度的函数曲线图中选出与所述坐标点重合度最高的函数曲线图,作为与当前投影距离最匹配的焦距与清晰度的函数曲线图。
  18. 根据权利要求17所述的调节投影仪焦距的装置,其中,所述处理模块配置为:获取所述与当前投影距离最匹配的焦距与清晰度的函数曲线图的顶点的坐标值,将所述坐标值中的纵坐标作为当前投影距离下的最大清晰度,将所述坐标值中的横坐标作为当前投影距离下最大清晰度所对应的最佳焦距。
  19. 根据权利要求12或13所述的调节投影仪焦距的装置,其中,所述焦距与清晰度的对应关系为焦距与清晰度的对应表格,所述处理模块配置为:将获取的所有的焦距-清晰度对应值与各个对应表格进行对比,从中 选出与所有焦距-清晰度对应值完全对应或最接近的对应表格作为与当前投影距离最匹配的焦距与清晰度的对应表格;所述处理模块配置为:从所述对应表格中查找出最大清晰度值,将该最大清晰度值所对应的焦距值作为当前投影距离下的最佳焦距。
  20. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-11任一项所述的调节投影仪焦距的方法。
PCT/CN2015/089551 2015-01-16 2015-09-14 调节投影仪焦距的方法和装置、计算机存储介质 WO2016112704A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510023687.5A CN104536249B (zh) 2015-01-16 2015-01-16 调节投影仪焦距的方法和装置
CN201510023687.5 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016112704A1 true WO2016112704A1 (zh) 2016-07-21

Family

ID=52851796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089551 WO2016112704A1 (zh) 2015-01-16 2015-09-14 调节投影仪焦距的方法和装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN104536249B (zh)
WO (1) WO2016112704A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231201A (zh) * 2016-08-31 2016-12-14 成都市极米科技有限公司 自动对焦方法及装置
CN110491316A (zh) * 2019-07-08 2019-11-22 青岛小鸟看看科技有限公司 一种投影仪及其投影控制方法
CN114740681A (zh) * 2022-04-19 2022-07-12 深圳市和天创科技有限公司 一种配置旋转镜头的单片液晶投影仪的智能测距调节系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536249B (zh) * 2015-01-16 2016-08-24 努比亚技术有限公司 调节投影仪焦距的方法和装置
CN106154721B (zh) * 2015-04-27 2021-01-01 中兴通讯股份有限公司 一种测距方法、自动调焦方法及装置
CN104935849B (zh) * 2015-06-08 2018-10-12 联想(北京)有限公司 一种信息处理方法及电子设备
CN105208308B (zh) * 2015-09-25 2018-09-04 广景视睿科技(深圳)有限公司 一种获取投影仪的最佳投影焦点的方法及系统
CN105301885B (zh) * 2015-11-30 2017-12-08 成都市极米科技有限公司 一种投影设备定焦系统、定焦方法以及遥控器配对方法
CN105824180A (zh) * 2016-03-29 2016-08-03 乐视控股(北京)有限公司 调节投影仪焦距的方法及装置
CN105721842B (zh) * 2016-04-08 2018-08-24 海尔优家智能科技(北京)有限公司 具有投影功能的机器人的投影方法、装置及机器人
CN107318007A (zh) * 2016-04-27 2017-11-03 中兴通讯股份有限公司 投影对焦的方法及装置
CN105842972A (zh) * 2016-04-28 2016-08-10 乐视控股(北京)有限公司 一种调整投影仪的投影焦距的方法及投影仪
CN107343184A (zh) * 2016-05-03 2017-11-10 中兴通讯股份有限公司 投影仪处理方法、装置及终端
CN108124145A (zh) * 2016-11-30 2018-06-05 中兴通讯股份有限公司 一种用于投影设备的方法及装置
CN106604005B (zh) * 2016-12-20 2019-09-10 深圳市Tcl高新技术开发有限公司 一种投影电视自动对焦方法及系统
CN107515454B (zh) * 2017-08-29 2019-12-20 宁夏巨能机器人股份有限公司 一种3d视觉定位的焦距自动调节装置及其调节方法
CN107911676B (zh) * 2017-11-28 2020-03-27 海信集团有限公司 一种用于投影设备的焦距调整方法及装置
CN109856902A (zh) 2017-11-30 2019-06-07 中强光电股份有限公司 投影装置及自动对焦方法
CN111064939A (zh) * 2018-10-16 2020-04-24 中强光电股份有限公司 投影系统及梯形校正方法
CN110996085A (zh) * 2019-12-26 2020-04-10 成都极米科技股份有限公司 一种投影仪调焦方法、投影仪调焦装置和投影仪
CN112415841A (zh) * 2020-10-27 2021-02-26 歌尔智能科技有限公司 一种投影装置、投影系统和投影方法
CN112764305A (zh) * 2021-01-27 2021-05-07 深圳市火乐科技发展有限公司 自动对焦组件、自动对焦方法和投影仪
WO2023087948A1 (zh) * 2021-11-16 2023-05-25 海信视像科技股份有限公司 一种投影设备及显示控制方法
CN114466173A (zh) * 2021-11-16 2022-05-10 海信视像科技股份有限公司 投影设备及自动投入幕布区域的投影显示控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621775A (zh) * 2003-11-24 2005-06-01 株式会社三丰 快速自动对焦机器视觉检查系统的系统和方法
US20060082740A1 (en) * 1999-10-07 2006-04-20 Ridha Radhouane Auto adjustment video projector (AAVP)
CN101178535A (zh) * 2006-11-10 2008-05-14 鸿富锦精密工业(深圳)有限公司 自动聚焦投影仪及其自动聚焦方法
US20110069190A1 (en) * 2009-09-18 2011-03-24 Altek Corporation Fast focusing method for digital camera
CN102055900A (zh) * 2009-10-27 2011-05-11 鸿富锦精密工业(深圳)有限公司 监视器焦距调整方法
CN102338972A (zh) * 2010-07-21 2012-02-01 华晶科技股份有限公司 多人脸区块辅助对焦的方法
CN104536249A (zh) * 2015-01-16 2015-04-22 深圳市中兴移动通信有限公司 调节投影仪焦距的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200412469A (en) * 2003-01-02 2004-07-16 Lite On Technology Corp Automatically focusing method for projector and projector using this method
CN101470246B (zh) * 2007-12-27 2010-12-01 深圳富泰宏精密工业有限公司 投影机自动对焦系统及方法
CN101281289A (zh) * 2007-12-29 2008-10-08 青岛海信电器股份有限公司 自动聚焦方法
CN102967991A (zh) * 2012-11-08 2013-03-13 广东欧珀移动通信有限公司 一种调节投影仪焦距的方法、装置、系统及移动终端
CN103974047B (zh) * 2014-04-28 2016-07-06 京东方科技集团股份有限公司 一种穿戴式投影装置及其调焦方法、投影方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060082740A1 (en) * 1999-10-07 2006-04-20 Ridha Radhouane Auto adjustment video projector (AAVP)
CN1621775A (zh) * 2003-11-24 2005-06-01 株式会社三丰 快速自动对焦机器视觉检查系统的系统和方法
CN101178535A (zh) * 2006-11-10 2008-05-14 鸿富锦精密工业(深圳)有限公司 自动聚焦投影仪及其自动聚焦方法
US20110069190A1 (en) * 2009-09-18 2011-03-24 Altek Corporation Fast focusing method for digital camera
CN102055900A (zh) * 2009-10-27 2011-05-11 鸿富锦精密工业(深圳)有限公司 监视器焦距调整方法
CN102338972A (zh) * 2010-07-21 2012-02-01 华晶科技股份有限公司 多人脸区块辅助对焦的方法
CN104536249A (zh) * 2015-01-16 2015-04-22 深圳市中兴移动通信有限公司 调节投影仪焦距的方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106231201A (zh) * 2016-08-31 2016-12-14 成都市极米科技有限公司 自动对焦方法及装置
CN106231201B (zh) * 2016-08-31 2020-06-05 成都极米科技股份有限公司 自动对焦方法及装置
CN110491316A (zh) * 2019-07-08 2019-11-22 青岛小鸟看看科技有限公司 一种投影仪及其投影控制方法
CN114740681A (zh) * 2022-04-19 2022-07-12 深圳市和天创科技有限公司 一种配置旋转镜头的单片液晶投影仪的智能测距调节系统
CN114740681B (zh) * 2022-04-19 2023-10-03 深圳市和天创科技有限公司 一种配置旋转镜头的单片液晶投影仪的智能测距调节系统

Also Published As

Publication number Publication date
CN104536249B (zh) 2016-08-24
CN104536249A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2016112704A1 (zh) 调节投影仪焦距的方法和装置、计算机存储介质
US10997696B2 (en) Image processing method, apparatus and device
US8786760B2 (en) Digital photographing apparatus and method using face recognition function
KR100851477B1 (ko) 투영장치, 투영방법 및 이를 실행시킬 수 있는 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체
CN100545733C (zh) 成像设备、成像设备的控制方法以及计算机程序
US8629915B2 (en) Digital photographing apparatus, method of controlling the same, and computer readable storage medium
WO2017050125A1 (zh) 拍摄角度提示方法和装置、终端和计算机存储介质
KR101455018B1 (ko) 촬상 장치, 촬상 방법, 및 컴퓨터 판독 가능한 기록 매체
US8648961B2 (en) Image capturing apparatus and image capturing method
KR20150109177A (ko) 촬영 장치, 그 제어 방법, 및 컴퓨터 판독가능 기록매체
WO2019085951A1 (en) Image processing method, and device
US8860840B2 (en) Light source estimation device, light source estimation method, light source estimation program, and imaging apparatus
US20140071318A1 (en) Imaging apparatus
WO2015196896A1 (zh) 对焦状态的提示方法和拍摄装置
US8295609B2 (en) Image processing apparatus, image processing method and computer readable-medium
JP2014138290A (ja) 撮像装置及び撮像方法
TWI393981B (zh) Use the flash to assist in detecting focal lengths
US11218650B2 (en) Image processing method, electronic device, and computer-readable storage medium
TWI398716B (zh) Use the flash to assist in detecting focal lengths
JP2017059927A (ja) ユーザ端末、色彩補正システム及び色彩補正方法
JP2013012940A (ja) 追尾装置及び追尾方法
JP2013225779A (ja) 画像処理装置、撮像装置および画像処理プログラム
WO2017071560A1 (zh) 图片处理方法及装置
US20070147819A1 (en) System and method for indicating sharpness of images
JP2013186560A (ja) 画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.12.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15877617

Country of ref document: EP

Kind code of ref document: A1