WO2016112693A1 - 内嵌式触摸屏及显示装置 - Google Patents

内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2016112693A1
WO2016112693A1 PCT/CN2015/087769 CN2015087769W WO2016112693A1 WO 2016112693 A1 WO2016112693 A1 WO 2016112693A1 CN 2015087769 W CN2015087769 W CN 2015087769W WO 2016112693 A1 WO2016112693 A1 WO 2016112693A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
touch panel
capacitance
cell touch
electrode
Prior art date
Application number
PCT/CN2015/087769
Other languages
English (en)
French (fr)
Inventor
李昌峰
董学
王海生
刘英明
杨盛际
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/914,592 priority Critical patent/US10459573B2/en
Publication of WO2016112693A1 publication Critical patent/WO2016112693A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04184Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • At least one embodiment of the present invention is directed to an in-cell touch screen and display device.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into: Add on Mode Touch Panel, On Cell Touch Panel, and In Cell Touch Panel; In cell type.
  • the touch screen can be further divided into: a mutual capacitance touch screen and a self-capacitance touch screen.
  • self-capacitive touch screens due to the accuracy of their touch sensing and high signal-to-noise ratio, they are favored by major panel manufacturers.
  • the self-capacitance touch screen utilizes the principle of self-capacitance to realize the detection of the finger touch position.
  • the principle is as follows: a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other are arranged in the touch screen, and when the human body does not touch the screen, the respective capacitor electrodes are subjected to The capacitance is a fixed value.
  • the capacitance of the self-capacitance electrode corresponding to the touch position is a fixed value superimposed on the human body capacitance, and the touch detection chip detects the capacitance of the respective capacitor electrode during the touch time period. The value change can determine the touch position.
  • At least one embodiment of the present invention provides an in-cell touch panel and a display device for improving the touch sensitivity of the in-cell touch panel while ensuring a narrow bezel.
  • At least one embodiment of the present invention provides an in-cell touch panel including an upper substrate and a lower substrate disposed opposite to each other, a plurality of self-capacitance electrodes arranged in a matrix and independently disposed in the same layer, and the self-capacitance a plurality of wires respectively connected to the electrodes; the wires and the self-capacitance electrodes are disposed on a side of the upper substrate facing the lower substrate or a side of the lower substrate facing the upper substrate; each of the self-capacitance electrodes Each has multiple cutout areas.
  • At least one embodiment of the present invention also provides a display device including the above-described in-cell touch panel.
  • 1 is a schematic structural view of an in-cell touch panel
  • FIG. 2a is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 2b is a second schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • 2c is a third schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 3 is a fourth schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIGS. 4a to 4d are schematic diagrams showing driving timings of an in-cell touch panel according to an embodiment of the present invention.
  • 5a is a schematic structural diagram 5 of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 5b is a sixth schematic structural diagram of an in-cell touch panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • 6b is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram 9 of an in-cell touch panel according to an embodiment of the present invention.
  • each film layer in the drawings do not reflect the true scale, and are merely intended to illustrate the present invention.
  • a wire corresponding to the self-capacitance electrode is generally disposed.
  • the pattern of the wire and the self-capacitance electrode may be disposed on the same film layer, or the pattern of the wire and the self-capacitance electrode may be disposed in a different layer.
  • the wire and the self-capacitance electrode are disposed in the same layer, it is possible to avoid adding a new patterning process.
  • the self-capacitance electrode and the wire are arranged in the same layer to form a touch dead zone, and the wires of the plurality of self-capacitance electrodes are respectively connected in the touch blind zone.
  • each self-capacitance electrode is generally connected to the touch detection chip through a separate lead line, and each lead line includes, for example, a different layer from the self-capacitance electrode 1 and Connecting the self-capacitance electrode 1 to the wire 2 at the frame of the touch screen, and the peripheral trace 4 disposed at the frame for connecting the self-capacitance electrode 1 to the terminal 3 of the touch detection chip; the self-capacitance electrode 1 and The corresponding wires 2 are electrically connected through the vias 5.
  • the inventors of the present application noticed that according to the principle of self-capacitance, in a self-capacitive touch screen, the smaller the area of each capacitor electrode, the smaller the capacitance value of each capacitor electrode itself is, so that when the human body touches When the screen is on, the capacitance of the self-capacitance electrode corresponding to the touch position changes more, that is, the more sensitive the touch.
  • the self-capacitance touch screen shown in FIG. 1 if the number of self-capacitance electrodes is not changed, only the area of the self-capacitance electrode is reduced, and the gap between the self-capacitance electrodes is increased, thereby increasing the touch dead zone.
  • the number of wires correspondingly connected to the self-capacitance electrode is increased, thereby causing the periphery of the frame to be connected one-to-one with the wires.
  • the number of lines will also be very large, which is not conducive to narrow border design.
  • the in-cell touch panel includes an upper substrate 001 and a lower substrate 01 disposed opposite each other.
  • the self-capacitance electrode 02 disposed in the same layer and the plurality of wires 03 connected to the self-capacitance electrode 02; the wire 03 and the self-capacitance electrode 02 are both disposed on the upper substrate facing the lower substrate 01.
  • the side or lower substrate 01 faces the upper substrate side; each of the capacitor electrodes 02 has a plurality of hollow regions 02a.
  • the in-cell touch panel is a liquid crystal panel as an example.
  • Embodiments of the invention include but are not limited thereto.
  • the in-cell touch panel may further include: a touch detection chip 07 for determining a touch position by detecting a change in a capacitance value of each capacitor electrode during a touch period, as shown in FIG. 2b and FIG. 2c;
  • the wire 03 connects the self-capacitance electrode 02 to the touch detection chip 07, respectively.
  • the self-capacitance electrode since the self-capacitance electrode has a plurality of hollow regions, the area of the respective capacitor electrodes can be reduced, thereby reducing the inherent capacitance of the respective capacitor electrodes;
  • the capacitance on the self-capacitance electrode that is, the intrinsic capacitance plus the finger capacitance, is relatively small, thereby reducing the RC delay of the feedback signal on the self-capacitance electrode; and, since the capacitance change on the self-capacitance electrode before and after the touch is relative to The inherent capacitance is relatively increased, and accordingly, the amount of change in the feedback signal caused by the finger will increase, thereby improving the touch sensitivity of the touch screen.
  • the touch sensitivity of the touch screen can be increased on the basis of ensuring a narrow bezel design.
  • the in-cell touch panel provided by the embodiment of the present invention is provided, for example, in order to avoid the occurrence of a touch dead zone in the hollow area of the self-capacitance electrode.
  • the maximum inner diameter of the hollowed out area may be 1 mm.
  • the wires may be disposed in the same layer as the self-capacitance electrodes, or may be disposed in different layers, which is not limited herein.
  • the wires and the self-capacitance electrodes are disposed in different layers.
  • the above-mentioned in-cell touch panel provided by the embodiment of the present invention is applicable to both a twisted nematic (TN) liquid crystal display and an advanced super-dimensional field switch (ADS).
  • TN twisted nematic
  • ADS advanced super-dimensional field switch
  • Liquid crystal display, high-advanced Dimension Switch (HADS) type liquid crystal display and In-Plane Switch (IPS) type liquid crystal display is applicable to both a twisted nematic (TN) liquid crystal display and an advanced super-dimensional field switch (ADS).
  • HADS high-advanced Dimension Switch
  • IPS In-Plane Switch
  • the common electrode of the plate-like structure is located below the slit-shaped pixel electrode, that is, the common electrode is located between the lower substrate and the pixel electrode.
  • a passivation is also provided between the common electrode and the pixel electrode Floor.
  • the slit-shaped common electrode is located above the pixel electrode of the plate-like structure, that is, the pixel electrode is located between the lower substrate and the common electrode, and is further disposed between the pixel electrode and the common electrode. Passivation layer.
  • the in-cell touch panel provided by the embodiment of the present invention when the in-cell touch panel provided by the embodiment of the present invention is applied to an ADS type liquid crystal display, in order to simplify the manufacturing process and reduce the manufacturing cost, the common electrode layer on the lower substrate can be multiplexed into a self-capacitance electrode.
  • the self-capacitance electrode 02 is located on the side of the lower substrate 01 facing the upper substrate; in this case, the in-cell touch panel may further include: disposed in the same layer as the self-capacitance electrode 02, located at the self-capacitance electrode 02
  • the common electrode 04 in each hollow region and the common electrode 04 and the self-capacitance electrode 02 are insulated from each other.
  • the touch detection chip can also be used to load the common electrode signals to the common electrodes during the display period.
  • the density of the touch screen is usually on the order of millimeters. Therefore, in a specific implementation, the density and the occupied area of the respective capacitor electrodes can be selected according to the required touch density to ensure the required touch density, usually the respective capacitive electrode design. It is a square electrode of about 5mm*5mm.
  • the density of the display is usually on the order of micrometers. Therefore, a self-capacitance electrode generally corresponds to multiple pixels in the display.
  • the touch screen provided by the embodiment of the present invention adopts a common electrode layer multiplexing as a self-capacitance electrode.
  • touch and display stages may be used. Time-driven approach.
  • the display driving chip and the touch detection chip can be integrated into one chip, thereby further reducing the production cost.
  • the touch detecting chip in the case that the in-cell touch panel driving mode is a time-division driving method, for example, the touch detecting chip can also be used for: in the touch time period, for each public The electrodes load the common electrode signals; during the display period, the common electrode signals are applied to the respective capacitor electrodes.
  • the time of displaying each frame (V-sync) of the touch screen is divided into a display time period (display) and a touch time period (touch), for example, as shown in FIG. 4a.
  • the time of displaying the frame of the touch screen in the driving sequence diagram shown in FIG. 4b is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
  • the length of time is appropriately adjusted, and is not specifically limited herein.
  • a gate scan signal is sequentially applied to each of the gate signal lines G1, G2, ..., Gn in the touch screen, and a gray scale signal is applied to the data signal line D, and is connected to the respective capacitor electrodes Cx1 ... Cx n
  • the touch detection chip applies a common electrode signal to each of the capacitor electrodes Cx1 . . . Cx n to realize a liquid crystal display function.
  • the touch detection chip connected to the respective capacitor electrodes Cx1 . . . Cx n sequentially applies driving signals to the respective capacitor electrodes Cx1 . . . Cx n to respectively receive the respective capacitors.
  • the feedback signals of the respective capacitor electrodes Cx1 . . . Cx n are not limited herein, and the touch signal is implemented by determining whether the touch signal is generated by the analysis of the feedback signal.
  • the in-cell touch panel provided by the embodiment of the present invention may also adopt a driving manner in which the touch and display phases are simultaneously driven.
  • the driving mode of the in-cell touch panel is the simultaneous driving mode; as shown in FIG. 5a and FIG. 5b, the respective capacitor electrodes 02 may correspond to the plurality of pixels 08 located on the lower substrate, and at least correspond to the opening regions of the respective pixels. The position is set with the common electrode 04. Therefore, it is ensured that the liquid crystal of the opening area of each pixel can be normally flipped during display to ensure that the display screen can be normally displayed.
  • a common electrode 04 may be disposed at a position corresponding to an opening area of each pixel, that is, an open area corresponding to one hollow area; of course, for example, As shown in FIG. 5b, a hollow region corresponds to a plurality of pixels, so that the common electrode 04 located in the hollow region covers the open region of the plurality of pixels.
  • the driving timing chart can be as shown in FIG. 4c and FIG. 4d, and each of the touch screens is in a time period of one frame of the screen.
  • the gate signal lines G1, G2, ..., Gn sequentially apply a gate scan signal, apply a gray scale signal to the data signal line D, and connect the touch detection chips connected to the respective capacitor electrodes Cx1 ... Cx n to the respective capacitor electrodes Cx1... Cx n respectively applies a common electrode signal to realize a liquid crystal display function.
  • the period of one frame as shown in FIG.
  • the touch detection chip connected to the respective capacitor electrodes Cx1 . . . Cx n sequentially applies driving signals to the respective capacitor electrodes Cx1 . . . Cx n to sequentially receive the respective capacitors.
  • the feedback signals of the electrodes Cx1 . . . Cx n; as shown in FIG. 4b, the touch detection chips connected to the respective capacitance electrodes Cx1 . . . Cx n are simultaneously directed to the respective capacitance electrodes Cx1 . . . Cx n
  • the driving signal is applied, and the feedback signals of the respective capacitive electrodes Cx1 . . . Cx n are received at the same time, which is not limited herein.
  • the touch signal is determined by determining whether the touch signal is generated by the analysis of the feedback signal.
  • the shape of the hollow region of the self-capacitance electrode on the surface of the self-capacitance electrode may be a regular shape or an irregular shape, which is not limited herein.
  • the shape of the hollow region on the surface of the self-capacitance electrode may be any regular shape, such as a square, a rectangle, a triangle, a circle, etc.; for example, as shown in FIG. 3, the hollow region The shape can be square.
  • the shape of the common electrode may be a regular shape or an irregular shape, which is not limited herein.
  • the shape of the common electrode may be any regular shape such as a square, a rectangle, a triangle, a circle, etc.; for example, as shown in FIG. 3, the shape of the common electrode 04 may be a square .
  • the shape of the hollow region and the shape of the self-capacitance electrode may be the same or different, and are not limited herein.
  • the shape of the common electrode is the same as the shape of the cutout region.
  • the above-mentioned in-cell touch panel provided by the embodiment of the present invention is, for example, located in the respective
  • the gap width between the common electrode and the self-capacitance electrode in the hollow region of the capacitor electrode can be controlled to be 4 ⁇ m to 10 ⁇ m.
  • the in-cell touch panel may further include: a common electrode line, the common electrode line may be located under the common electrode, and the common electrode line is electrically connected to the common electrode through the via hole;
  • the common electrode lines may be disposed in the same layer, and the wires are electrically connected to the corresponding self-capacitance electrodes through the via holes.
  • the wires are disposed in the same layer as the common electrode lines, so that the pattern of the wires and the common electrode lines can be formed only by one patterning process, which can simplify the process steps and save the manufacturing cost.
  • the wires and the common electrode lines can also be layered, which is not limited herein.
  • the in-cell touch panel provided in the embodiment of the present invention further includes: disposed on a side of the upper substrate facing the lower substrate, or disposed on the lower substrate, in order to prevent the electric field generated by the self-capacitance electrode from affecting the electric field of the pixel opening region.
  • the black matrix layer 09 facing one side of the upper substrate, as shown in FIG. 2c; the orthographic projection of the respective capacitor electrodes on the lower substrate may be located on the lower substrate of the black matrix layer 08 on the lower substrate In the shadow.
  • the material of the wire is generally a metal material, in order not to affect the normal display, for example, the orthographic projection of the pattern of each wire on the lower substrate is located in the region of the pattern of the black matrix layer. .
  • the touch detection chip may be disposed on the circuit board, for example, may be disposed on a circuit board located at the back of the display screen, and may be disposed at the circuit board.
  • the circuit board of the frame area of the display screen may also be disposed on the flexible circuit board included in the lower substrate.
  • the wire can be directly electrically connected to the touch detection chip, or can be electrically connected to the touch detection chip through the peripheral trace.
  • the wire and the touch detection chip may be directly electrically connected; for example, when the wire is set When the upper substrate faces the lower substrate and the touch detection chip is disposed on the circuit board on the back of the display device, the wires can be electrically connected to the touch detection chip through the peripheral wires.
  • the wire 03 connects the self-capacitance electrode 02 to the frame of the in-cell touch screen; for example, the in-cell touch screen may further include: at the frame of the in-cell touch screen and The peripheral trace 05 electrically connected to the wire 03; the touch detection chip is electrically connected to the peripheral trace 05 through the terminal 06.
  • the bezel of the in-cell touch screen may have four sides, and the respective capacitive electrodes may be connected to the nearest side by corresponding wires on the basis that the wires do not cross each other.
  • the frame of the in-cell touch panel has four sides, and the respective capacitor electrodes 02 are connected to the nearest side by corresponding wires 03 on the basis that the wires 03 do not cross each other.
  • the shape of the frame of the in-cell touch panel may be a rectangle, and the extending direction of each of the wires 03 may coincide with the direction of the short side of the frame. Therefore, the spacing between the wires is ensured to be large, and it is easy to ensure that the wires do not cross each other, so as to realize electrical insulation of the wires.
  • the extending direction of each of the wires may also be consistent with the longitudinal direction of the frame, which is not limited herein.
  • the peripheral traces may be disposed on the lower substrate or may be disposed on the upper substrate, which is not limited herein.
  • the peripheral traces are typically disposed on the lower substrate.
  • the wire can pass through the example.
  • the upper and lower conduction functions of the gold ball in the sealant are electrically connected to the peripheral traces on the lower substrate; if the self-capacitance electrodes and the wires are disposed on the lower substrate, the wires can be electrically connected directly to the peripheral traces of the lower substrate. .
  • the in-cell touch panel may include: an upper substrate (not shown) and a lower substrate 01 disposed opposite to each other, and a gate electrode 11 and a wire 03 disposed in the same layer on the lower substrate 01 in sequence.
  • the common electrode 04 is electrically connected to the common electrode line 12 through the first via hole V1 penetrating the gate insulating layer 13 and the passivation layer 17, and the second via hole penetrating the gate insulating layer 13 and the passivation layer 17 from the capacitor electrode 02 V2 is electrically connected to the wire 03.
  • the other components of the liquid crystal display are further included between the upper substrate and the lower substrate of the in-cell touch panel, and the techniques commonly used in the art may be used, and details are not described herein.
  • the touch screen provided by the embodiment of the present invention can fabricate each film layer on the lower substrate by any patterning process commonly used in the art.
  • a 6-time patterning process can be used: forming a gate electrode, a wire, and a common electrode line. a patterning process; a patterning process for forming an active layer; a patterning process for forming a pixel electrode; a patterning process for forming a source/drain electrode; a patterning process for forming a passivation layer; and a patterning process for forming a common electrode layer.
  • 5 patterning processes, 7 patterning processes or 8 patterning processes may be used, which are not limited herein.
  • At least one embodiment of the present invention further provides a display device including the above-described in-cell touch panel provided by the embodiment of the present invention.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • an in-cell touch panel and a display device provided by the embodiments of the present invention, since the self-capacitance electrode has a plurality of hollow regions, the area of the respective capacitor electrodes can be reduced, thereby reducing the inherent capacitance of the respective capacitor electrodes; If the finger capacitance is constant, the capacitance on the self-capacitance electrode is solid. The capacitance plus the finger capacitance is relatively small, thereby reducing the RC delay of the feedback signal on the self-capacitance electrode; and, since the amount of capacitance change on the self-capacitance electrode before and after the touch is relatively increased relative to its inherent capacitance, the opposite finger The amount of change in the feedback signal caused will increase, thereby increasing the touch sensitivity of the touch screen.
  • the touch sensitivity of the touch screen can be increased on the basis of ensuring the design of the narrow bezel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种内嵌式触摸屏及显示装置,该内嵌式触摸屏包括:相对设置的上基板(001)和下基板(01);呈矩阵排列的多个相互独立且同层设置的自电容电极(02);以及与所述自电容电极(02)分别连接的多条导线(03)。所述导线(03)与所述自电容电极(02)均设置于所述上基板(001)面向所述下基板(01)一侧或所述下基板(01)面向所述上基板(001)一侧;各所述自电容电极(02)均具有多个镂空区域(02a)。该内嵌式触摸屏可以保证在窄边框设计的基础上,增加触摸屏的触控灵敏性。

Description

内嵌式触摸屏及显示装置 技术领域
本发明的至少一个实施例涉及一种内嵌式触摸屏及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel)、覆盖表面式触摸屏(On Cell Touch Panel)以及内嵌式触摸屏(In Cell Touch Panel);内嵌(In cell)式触摸屏又可以分为:互电容触摸屏和自电容触摸屏。对于自电容触摸屏,由于其触控感应的准确度和信噪比比较高,因而受到了各大面板厂家青睐。
目前,自电容触摸屏利用自电容的原理实现检测手指触摸位置,其原理为:在触摸屏中设置多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,触碰位置对应的自电容电极所承受的电容为固定值叠加人体电容,触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触碰位置。
发明内容
本发明的至少一个实施例提供一种内嵌式触摸屏及显示装置,用以在保证窄边框的基础上提高内嵌式触摸屏的触控灵敏性。
本发明的至少一个实施例提供了一种内嵌式触摸屏,其包括相对设置的上基板和下基板,呈矩阵排列的多个相互独立且同层设置的自电容电极、以及与所述自电容电极分别连接的多条导线;所述导线与所述自电容电极均设置于所述上基板面向所述下基板一侧或所述下基板面向所述上基板一侧;各所述自电容电极均具有多个镂空区域。
本发明的至少一个实施例还提供了一种显示装置,其包括上述内嵌式触摸屏。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种内嵌式触摸屏的结构示意图;
图2a为本发明实施例提供的内嵌式触摸屏的结构示意图之一;
图2b为本发明实施例提供的内嵌式触摸屏的结构示意图之二;
图2c为本发明实施例提供的内嵌式触摸屏的结构示意图之三;
图3为本发明实施例提供的内嵌式触摸屏的结构示意图之四;
图4a至图4d分别为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图5a为本发明实施例提供的内嵌式触摸屏的结构示意图之五;
图5b为本发明实施例提供的内嵌式触摸屏的结构示意图之六;
图6a为本发明实施例提供的内嵌式触摸屏的结构示意图之七;
图6b为本发明实施例提供的内嵌式触摸屏的结构示意图之八;
图7为本发明实施例提供的内嵌式触摸屏的结构示意图之九。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是 直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
在内嵌式触摸屏中,为了将自电容电极与触控侦测芯片连接,一般会设置与自电容电极对应连接的导线。例如,可以将导线与自电容电极的图形设置在同一膜层,也可以将导线与自电容电极的图形异层设置。将导线和自电容电极同层设置虽然可以避免增加新的构图工艺,但是,将自电容电极和导线同层设置会形成触控盲区,在触控盲区内分别连接多个自电容电极的导线均经过该触控盲区,因此,在这个触控盲区内的信号相对比较紊乱,也就是在该区域内的触控性能无法保证。基于上述考虑,在具体实施时,如图1所示,每一个自电容电极一般通过单独的引出线与触控侦测芯片连接,每条引出线例如包括:与自电容电极1异层设置且将自电容电极1连接至触摸屏的边框处的导线2,以及设置在边框处用于将自电容电极1导通至触控侦测芯片的接线端子3的周边走线4;自电容电极1与对应的导线2通过过孔5电性连接。
在研究中,本申请的发明人注意到,根据自电容的原理,在自电容触摸屏中,各自电容电极的面积越小,各自电容电极自身所承受的电容值就越小,从而当人体触碰屏幕时,触碰位置对应的自电容电极所承受的电容的变化就越大,即触控越灵敏。但是,图1所示的自电容触摸屏中,若不改变自电容电极的数量,仅是将自电容电极的面积减小,则自电容电极之间的间隙会增大,从而导致增加触控盲区;若将自电容电极的面积减小,并且增加自电容电极的数量,则对应地与自电容电极连接的导线数量就会增多,从而导致设置在边框处的与导线一一对应连接的周边走线数量也会非常多,这不利于窄边框设计。
本发明的至少一个实施例提供了一种内嵌式触摸屏,如图2a至图2c所示,该内嵌式触摸屏包括相对设置的上基板001和下基板01,呈矩阵排列的多个相互独立且同层设置的自电容电极02,以及与自电容电极02分别连接的多条导线03;导线03与自电容电极02均设置于上基板面向下基板01一 侧或下基板01面向上基板一侧;各自电容电极02均具有多个镂空区域02a。
图2c仅以自电容电极设置于下基板01的面向上基板001的一侧,且该内嵌式触摸屏为液晶屏为例进行说明。本发明实施例包括但不限于此。
例如,该内嵌式触摸屏还可以包括:在触控时间段通过检测各自电容电极的电容值变化以判断触控位置的触控侦测芯片07,如图2b和图2c所示;在这种情况下,导线03将自电容电极02分别连接至该触控侦测芯片07。
本发明实施例提供的上述内嵌式触摸屏,由于自电容电极具有多个镂空区域,因此可以减小各自电容电极的面积,从而降低各自电容电极的固有电容;若假设触控时手指电容不变,则自电容电极上的电容量,即固有电容加手指电容就相对变小,从而可以降低自电容电极上反馈信号的RC延迟;并且,由于触控前后自电容电极上的电容改变量相对于其固有电容相对增大,因此,相应地,手指引起的反馈信号的改变量将会增大,从而提高触摸屏的触控灵敏度。另外,由于是通过在自电容电极内部设置镂空区域来减少自电容电极的面积,因此既不用增加相邻自电容电极之间的触控盲区,也不用增加自电容电极的数量,从而与图1所示的情形相比可以在保证窄边框设计的基础上,增加触摸屏的触控灵敏性。
由于一般触控笔不能识别的最小触控盲区宽度为1mm,因此,例如,为了避免在自电容电极的镂空区域产生触控盲区,在具体实施时,在发明实施例提供的上述内嵌式触摸屏中,镂空区域的最大内径可以为1mm。
在至少一个实施例中,导线可以与自电容电极同层设置,也可以异层设置,在此不做限定。例如,为了进一步减少触控盲区,导线与自电容电极异层设置。
例如,在具体实施时,本发明实施例提供的上述内嵌式触摸屏,既适用于扭转向列(Twisted Nematic,TN)型液晶显示屏,也适用于高级超维场开关(Adwanced Dimension Switch,ADS)型液晶显示屏、高开口率的高级超维场开关(High-Adwanced Dimension Switch,HADS)型液晶显示屏和平面内开关(In-Plane Switch,IPS)型液晶显示屏。
例如,在本发明实施例提供的上述内嵌式触摸屏应用于例如ADS型液晶显示屏时,板状结构的公共电极位于狭缝状像素电极的下方,即公共电极位于下基板与像素电极之间,并且在公共电极与像素电极之间还设置有钝化 层。而应用于HADS型液晶显示屏时,狭缝状的公共电极位于板状结构的像素电极的上方,即像素电极位于下基板与公共电极之间,并且在像素电极与公共电极之间还设置有钝化层。
例如,当本发明实施例提供的内嵌式触摸屏应用于ADS型液晶显示屏时,为了简化制作工艺,以及降低制作成本,可以采用位于下基板上的公共电极层复用为自电容电极的方式,如图3所示,即自电容电极02位于下基板01面向上基板一侧;在这种情况下,内嵌式触摸屏还可以包括:与自电容电极02同层设置、位于自电容电极02的各镂空区域内的公共电极04,且公共电极04与自电容电极02之间相互绝缘。
例如,在公共电极层复用为自电容电极的情形下,触控侦测芯片还可以用于在显示时间段对各公共电极加载公共电极信号。
这样,将公共电极层的结构进行变更分割成自电容电极以实现触控功能时,在通常的阵列基板制备工艺的基础上,不需要增加额外的工艺,可以节省生产成本,提高生产效率。
一般地,触摸屏的密度通常在毫米级,因此,在具体实施时,可以根据所需的触控密度选择各自电容电极的密度和所占面积以保证所需的触控密度,通常各自电容电极设计为5mm*5mm左右的方形电极。而显示屏的密度通常在微米级,因此,一般一个自电容电极会对应显示屏中的多个像素。
由于本发明实施例提供的上述触摸屏采用公共电极层复用作为自电容电极的方式,为了减少显示和触控信号之间的相互干扰,在具体实施时,例如,可以采用触控和显示阶段分时驱动的方式。并且,例如,在具体实施时还可以将显示驱动芯片和触控侦测芯片整合为一个芯片,进一步降低生产成本。
本发明实施例提供的上述内嵌式触摸屏中,在内嵌式触摸屏驱动方式为分时驱动方式的情况下,例如,触控侦测芯片还可以用于:在触控时间段,对各公共电极加载公共电极信号;在显示时间段,对各自电容电极加载公共电极信号。
例如:如图4a和图4b所示的驱动时序图中,将触摸屏显示每一帧(V-sync)的时间分成显示时间段(显示)和触控时间段(触控),例如如图4a和图4b所示的驱动时序图中触摸屏的显示一帧的时间为16.7ms,选取其中5ms作为触控时间段,其他的11.7ms作为显示时间段,当然也可以根 据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。在显示时间段(显示),对触摸屏中的每条栅极信号线G1,G2……Gn依次施加栅扫描信号,对数据信号线D施加灰阶信号,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n分别施加公共电极信号,以实现液晶显示功能。在触控时间段(触控),如图4a所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n依次施加驱动信号,分别接收各自电容电极Cx1……Cx n的反馈信号;也可以如图4b所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n同时施加驱动信号,同时接收各自电容电极Cx1……Cx n的反馈信号,在此不做限定,通过对反馈信号的分析判断是否发生触控,以实现触控功能。
当然,在具体实施时,本发明实施例提供的上述内嵌式触摸屏,也可以采用触控和显示阶段同时驱动的驱动方式。例如,当内嵌式触摸屏的驱动方式为同时驱动方式;如图5a和图5b所示,各自电容电极02可以对应位于下基板上的多个像素08,且至少在与各像素的开口区域对应的位置设置有公共电极04。从而保证在显示时每个像素的开口区域的液晶可以正常翻转,以保证显示屏可以正常显示。
进一步地,在具体实施时,例如,如图5a所示,可以是在各像素的开口区域对应的位置均设置一个公共电极04,即相当于一个开口区域对应一个镂空区域;当然,例如,如图5b所示,也可是一个镂空区域对应多个像素,从而保证位于该镂空区域中的公共电极04覆盖该多个像素的开口区域。
例如,本发明实施提供的上述内嵌式触摸屏,当采用同时驱动的驱动方式时,驱动时序图可以如图4c和图4d所示,在一帧画面的时间段内,对触摸屏中的每条栅极信号线G1,G2……G n依次施加栅扫描信号,对数据信号线D施加灰阶信号,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n分别施加公共电极信号,以实现液晶显示功能。同时在一帧画面的时间段内,如图4c所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n依次施加驱动信号,依次接收各自电容电极Cx1……Cx n的反馈信号;也可以如图4b所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n同时 施加驱动信号,同时接收各自电容电极Cx1……Cx n的反馈信号,在此不做限定,通过对反馈信号的分析判断是否发生触控,以实现触控功能。
进一步地,在本发明实施例提供的上述内嵌式触摸屏中,自电容电极中镂空区域在自电容电极所在面上的形状可以为规则形状,也可以为不规则形状,在此不做限定。例如,为了降低制作复杂度,镂空区域在自电容电极所在面上的形状可以为任一种规则形状,比如,正方形、矩形、三角形和圆形等;例如,如图3所示,镂空区域的形状可以为正方形。
相应地,在本发明实施例提供的上述内嵌式触摸屏中,公共电极的形状可以为规则形状,也可以为不规则形状,在此不做限定。例如,为了降低制作复杂度,公共电极的形状可以为任一种规则形状,比如,正方形、矩形、三角形和圆形等;比如,例如,如图3所示,公共电极04的形状可以为正方形。
在至少一个实施例中,在本发明实施例提供的上述内嵌式触摸屏中,镂空区域的形状与自电容电极的形状可以相同,也可以不同,在此不做限定。例如,为了降低制作难度,如图3所示,公共电极的形状与镂空区域的形状相同。
在具体实施时,为了使自电容电极、镂空区域和公共电极的尺寸更好地满足触控感应准确性的要求,因此,在本发明实施例提供的上述内嵌式触摸屏中,例如,位于各自电容电极中镂空区域内的公共电极与自电容电极之间的间隙宽度可以控制在4μm~10μm。
例如,在本发明实施例提供的上述内嵌式触摸屏中,还可以包括:公共电极线,公共电极线可以位于公共电极的下方,且公共电极线通过过孔与公共电极电性连接;导线与公共电极线可以同层设置,且导线通过过孔与对应的自电容电极电性连接。将导线与公共电极线同层设置,这样,只需要通过一次构图工艺就可形成导线与公共电极线的图形,能够简化工艺步骤,节省制备成本。当然也可以分层设置导线与公共电极线,在此不做限定。
为了避免自电容电极产生的电场影响像素开口区域的电场,例如,在本发明实施例提供的上述内嵌式触摸屏中,还包括:设置于上基板面向下基板的一侧,或设置于下基板面向上基板的一侧的黑矩阵层09,如图2c所示;各自电容电极在下基板上的正投影可以位于黑矩阵层08在下基板上的正投 影内。
在发明实施例提供的上述内嵌式触摸屏中,由于导线的材料一般为金属材料,为了不影响正常的显示,例如,各导线的图形在下基板的正投影均位于黑矩阵层的图形所在区域内。
在具体实施时,在发明实施例提供的上述内嵌式触摸屏中,例如,触控侦测芯片可以设置于电路板上,例如,可以设置于位于显示屏背部的电路板上,可以设置于位于显示屏的边框区域的电路板上,也可以设置于所述下基板包括的柔性电路板上。
例如,导线可以与触控侦测芯片直接电性连接,也可以通过周边走线与触控侦测芯片电性连接。例如,在导线设置于下基板面向上基板的一侧且触控侦测芯片设置于下基板包括的柔性电路板上时,导线与触控侦测芯片可以直接电性连接;例如,当导线设置于上基板面向下基板的一侧,且触控侦测芯片设置于位于显示装置背部的电路板上时,导线可以通过周边走线与触控侦测芯片电性连接。
在具体实施时,如图6a和图6b所示,导线03将自电容电极02连接至内嵌式触摸屏的边框处;例如,内嵌式触摸屏还可以包括:位于内嵌式触摸屏的边框处且与导线03电性连接的周边走线05;触控侦测芯片通过接线端子06与周边走线05电性连接。
在至少一个实施例中,内嵌式触摸屏的边框可以具有四个侧边,各自电容电极在导线互不交叉的基础上可以通过对应的导线连接至距离最近的侧边。例如,如图6a所示,内嵌式触摸屏的边框具有四个侧边,各自电容电极02在导线03互不交叉的基础上通过对应的导线03连接至距离最近的侧边。
或者,例如,如图6b所示,内嵌式触摸屏的边框形状可以为长方形,各条导线03的延伸方向可以与边框的短边方向一致。从而保证导线之间的间隔较大,容易地实现保证各导线互不交叉,以实现各导线电性绝缘。当然,在具体实施时,各条导线的延伸方向也可以与边框的长边方向一致,在此不做限定。
例如,在具体实施时,周边走线可以设置在下基板上,也可以设置在上基板时,在此不做限定。较佳地,一般将周边走线设置在下基板上。
在具体实施时,若将自电容电极和导线设置在上基板,导线可以通过例 如封框胶中的金球的上下导通作用与位于下基板的周边走线电性连接;若将自电容电极和导线设置在下基板,导线可以直接与位于下基板的周边走线电性连接。
下面通过将本说明本发明实施例提供的上述内嵌式触摸屏应用于HADS模式液晶显示屏为例,具体说明上述内嵌式触摸屏。如图7所示,该内嵌式触摸屏可以包括:相对设置的上基板(图中未示出)和下基板01,以及依次位于下基板01上的同层设置的栅电极11、导线03和公共电极线12,栅极绝缘层13,同层且间隔设置的有源层14和像素电极15,源/漏电极16,钝化层17,以及同层且相互绝缘的自电容电极02和公共电极04。公共电极04通过贯穿栅极绝缘层13和钝化层17的第一过孔V1与公共电极线12电连接,自电容电极02通过贯穿栅极绝缘层13和钝化层17的第二过孔V2与导线03电连接。
在具体实施时,上述内嵌式触摸屏的上基板与下基板之间还包括液晶显示屏的其它必不可少部件,这些均可以采用本领域常用的技术,在此不再赘述。
在具体实施时,本发明实施例提供的上述触摸屏可以采用本领域常用的任意一种构图流程制作下基板上的各膜层,例如可以采用6次构图工艺:形成栅电极、导线和公共电极线的构图工艺;形成有源层的构图工艺;形成像素电极的构图工艺;形成源漏电极的构图工艺;形成钝化层的构图工艺;形成公共电极层的构图工艺。当然也可以根据实际设计,采用5次构图工艺、7次构图工艺或8次构图工艺,在此不做限定。
基于同一发明构思,本发明的至少一个实施例还提供了一种显示装置,其包括本发明实施例提供的上述内嵌式触摸屏。
例如,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
本发明实施例提供的一种内嵌式触摸屏及显示装置,由于自电容电极具有多个镂空区域,因此可以减小各自电容电极的面积,从而降低各自电容电极的固有电容;若假设触控时手指电容不变,则自电容电极上的电容量即固 有电容加手指电容就相对变小,从而降低自电容电极上反馈信号的RC延迟;并且,由于触控前后自电容电极上的电容改变量相对于其固有电容相对增大,因此,相对的手指引起的反馈信号的改变量将会增大,从而提高触摸屏的触控灵敏度。另外,由于是通过在自电容电极内部设置镂空区域来减少自电容电极的面积,因此既不用增加相邻自电容的点击之间的触控盲区,也不用增加自电容电极的数量,从而与图1所示的情形相比可以在保证窄边框设计的基础上,增加触摸屏的触控灵敏性。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年1月16日递交的中国专利申请第201510024268.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种内嵌式触摸屏,包括:
    相对设置的上基板和下基板;
    呈矩阵排列的多个相互独立且同层设置的自电容电极;以及
    与所述自电容电极分别连接的多条导线,其中:
    所述导线与所述自电容电极均设置于所述上基板面向所述下基板一侧或所述下基板面向所述上基板一侧;
    各所述自电容电极均具有多个镂空区域。
  2. 如权利要求1所述的内嵌式触摸屏,还包括:
    在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置的触控侦测芯片,其中,所述多条导线将所述自电容电极分别连接至所述触控侦测芯片。
  3. 如权利要求2所述的内嵌式触摸屏,其中,所述自电容电极位于所述下基板面向所述上基板一侧;所述内嵌式触摸屏还包括:
    与所述自电容电极同层设置、位于所述自电容电极的各镂空区域内的公共电极,且所述公共电极与所述自电容电极之间相互绝缘;
    所述触控侦测芯片还配置为在显示时间段对各所述公共电极加载公共电极信号。
  4. 如权利要求3所述的内嵌式触摸屏,其中,所述内嵌式触摸屏的驱动方式为分时驱动方式;所述触控侦测芯片还配置为:
    在触控时间段,对各所述公共电极加载公共电极信号;
    在显示时间段,对各所述自电容电极加载公共电极信号。
  5. 如权利要求3所述的内嵌式触摸屏,其中,所述内嵌式触摸屏的驱动方式为同时驱动方式;
    各所述自电容电极对应位于所述下基板上的多个像素,且至少在与各像素的开口区域对应的位置设置有公共电极。
  6. 如权利要求1所述的内嵌式触摸屏,其中,所述自电容电极位于所述下基板面向所述上基板一侧;
    所述内嵌式触摸屏还包括:与所述自电容电极同层设置、位于所述自电 容电极的各镂空区域内的公共电极,且所述公共电极与所述自电容电极之间相互绝缘。
  7. 如权利要求3-6任一项所述的内嵌式触摸屏,其中,所述公共电极的形状与所述镂空区域的形状相同。
  8. 如权利要求3-7任一项所述的内嵌式触摸屏,其中,位于各自电容电极中所述镂空区域内的公共电极与所述自电容电极之间的间隙宽度为4μm~10μm。
  9. 如权利要求3-8任一项所述的内嵌式触摸屏,还包括:公共电极线,且所述公共电极线通过过孔与公共电极电性连接。
  10. 如权利要求9所述的内嵌式触摸屏,其中,所述导线与所述公共电极线同层设置,且所述导线通过过孔与对应的自电容电极电性连接。
  11. 如权利要求1-10任一项所述的内嵌式触摸屏,其中,所述镂空区域的最大内径为1mm。
  12. 如权利要求1-11任一项所述的内嵌式触摸屏,还包括:设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的黑矩阵层;
    其中,各所述自电容电极在所述下基板上的正投影位于所述黑矩阵层在所述下基板上的正投影内。
  13. 如权利要求2-12任一项所述的内嵌式触摸屏,其中,所述导线将所述自电容电极连接至所述内嵌式触摸屏的边框处;
    所述内嵌式触摸屏还包括:位于所述内嵌式触摸屏的边框处、且与所述导线电性连接的周边走线;
    所述触控侦测芯片通过接线端子与所述周边走线电性连接。
  14. 如权利要求1-13任一项所述的内嵌式触摸屏,其中,
    所述内嵌式触摸屏的边框具有四个侧边,各所述自电容电极在所述导线互不交叉的基础上通过对应的所述导线连接至距离最近的侧边;或
    所述内嵌式触摸屏的边框形状为长方形,各条所述导线的延伸方向与所述边框的短边方向或长边方向一致。
  15. 一种显示装置,包括如权利要求1-14任一项所述的内嵌式触摸屏。
PCT/CN2015/087769 2015-01-16 2015-08-21 内嵌式触摸屏及显示装置 WO2016112693A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,592 US10459573B2 (en) 2015-01-16 2015-08-21 In-cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510024268.3A CN104536629B (zh) 2015-01-16 2015-01-16 一种内嵌式触摸屏及显示装置
CN201510024268.3 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016112693A1 true WO2016112693A1 (zh) 2016-07-21

Family

ID=52852168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087769 WO2016112693A1 (zh) 2015-01-16 2015-08-21 内嵌式触摸屏及显示装置

Country Status (3)

Country Link
US (1) US10459573B2 (zh)
CN (1) CN104536629B (zh)
WO (1) WO2016112693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109857286A (zh) * 2019-03-21 2019-06-07 深圳曦华科技有限公司 触摸显示面板、触摸检测电路、显示装置和电子设备

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042489B2 (en) 2013-09-30 2018-08-07 Synaptics Incorporated Matrix sensor for image touch sensing
US20150091842A1 (en) 2013-09-30 2015-04-02 Synaptics Incorporated Matrix sensor for image touch sensing
CN104460139B (zh) * 2014-12-31 2017-06-23 深圳市华星光电技术有限公司 触控显示装置及电子设备
CN104536629B (zh) * 2015-01-16 2019-03-26 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
TWI587199B (zh) * 2015-04-01 2017-06-11 友達光電股份有限公司 顯示裝置
CN104991690B (zh) * 2015-08-11 2018-05-18 京东方科技集团股份有限公司 一种触控显示面板、其制作方法、驱动方法及显示装置
CN105183253B (zh) 2015-08-13 2018-12-18 京东方科技集团股份有限公司 一种触控显示面板及其驱动方法、显示装置
CN105094489A (zh) * 2015-08-20 2015-11-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN105117085B (zh) * 2015-09-07 2018-03-27 武汉华星光电技术有限公司 内嵌式触控面板及其制造方法
CN105116583A (zh) * 2015-09-15 2015-12-02 深圳市华星光电技术有限公司 触控结构及具有该触控结构的液晶显示器
CN105138184B (zh) * 2015-09-25 2018-06-22 深圳市华星光电技术有限公司 一种内嵌触摸液晶面板及其阵列基板
CN105677086B (zh) * 2015-12-31 2018-11-23 武汉华星光电技术有限公司 互电容式的内嵌型触摸屏
CN109375818B (zh) * 2016-05-24 2022-04-01 厦门天马微电子有限公司 触控装置及其驱动方法、触控显示装置及其驱动方法
KR102651542B1 (ko) 2016-06-17 2024-03-28 삼성전자주식회사 터치-지문 복합 센서를 포함하는 전자 기기
CN106125975B (zh) 2016-06-20 2019-01-15 京东方科技集团股份有限公司 一种触控面板及其制作方法、触控装置
CN106325640A (zh) * 2016-08-29 2017-01-11 红河以恒科技集团有限公司 一种触控电极结构、触控面板及触控显示装置
TWI613581B (zh) * 2017-04-28 2018-02-01 友達光電股份有限公司 觸控顯示面板
US20180323239A1 (en) * 2017-05-03 2018-11-08 Innolux Corporation Display device
WO2018214080A1 (zh) * 2017-05-24 2018-11-29 昆山龙腾光电有限公司 视角可切换的触控显示面板及触控显示装置
CN107562272A (zh) * 2017-08-31 2018-01-09 广东欧珀移动通信有限公司 阵列基板、显示面板和电子设备
JP2019066718A (ja) * 2017-10-03 2019-04-25 シャープ株式会社 表示パネル
CN107885402B (zh) * 2017-12-15 2020-11-24 合肥京东方光电科技有限公司 一种自容式触控面板及显示装置
CN108153018B (zh) * 2017-12-25 2020-12-25 信利光电股份有限公司 一种集成触控面板
CN108897445B (zh) * 2018-05-15 2024-05-24 京东方科技集团股份有限公司 触控显示装置、触控显示面板及其制造方法
CN208580390U (zh) * 2018-07-27 2019-03-05 深圳市汇顶科技股份有限公司 电容式触摸屏模组及电子终端
CN110262694B (zh) * 2019-06-24 2023-03-07 信利(惠州)智能显示有限公司 触控显示模组及触控显示屏
CN112241224A (zh) * 2019-07-19 2021-01-19 陕西坤同半导体科技有限公司 一种触控显示基板、柔性显示屏及电子装置
CN111158533B (zh) * 2019-11-28 2024-04-23 京东方科技集团股份有限公司 检测基板和显示装置
CN112051934A (zh) * 2020-08-07 2020-12-08 武汉华星光电半导体显示技术有限公司 一种触控面板
CN112162654A (zh) * 2020-09-24 2021-01-01 武汉华星光电半导体显示技术有限公司 触控显示屏及其显示装置
US20220164084A1 (en) * 2020-11-23 2022-05-26 Sharp Kabushiki Kaisha Touch-panel-equipped display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201622554U (zh) * 2010-02-04 2010-11-03 深圳市汇顶科技有限公司 一种电容式触摸传感器、触摸检测装置及触控终端
CN101943975A (zh) * 2009-07-09 2011-01-12 敦泰科技有限公司 超薄型互电容触摸屏及组合式超薄型触摸屏
CN102955637A (zh) * 2012-11-02 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103293785A (zh) * 2012-12-24 2013-09-11 上海天马微电子有限公司 Tn型液晶显示装置及其触控方法
CN104020906A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏、以及显示装置
CN104536629A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426427B (zh) * 2010-02-12 2014-02-11 Wintek Corp 觸控面板
CN102662544A (zh) * 2012-03-31 2012-09-12 苏州瀚瑞微电子有限公司 双层ito布线结构
CN103513818B (zh) * 2012-06-15 2016-08-10 宸鸿科技(厦门)有限公司 触控装置及其静电屏蔽方法
CN103576998B (zh) * 2012-07-20 2017-07-28 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列
CN105992994A (zh) * 2013-12-13 2016-10-05 苹果公司 用于自电容触摸传感器的集成触摸和显示架构
CN103926729B (zh) * 2013-12-31 2017-12-22 上海天马微电子有限公司 一种阵列基板、彩膜基板、触控显示装置及其驱动方法
CN104020893B (zh) * 2014-05-30 2017-01-04 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020911A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101943975A (zh) * 2009-07-09 2011-01-12 敦泰科技有限公司 超薄型互电容触摸屏及组合式超薄型触摸屏
CN201622554U (zh) * 2010-02-04 2010-11-03 深圳市汇顶科技有限公司 一种电容式触摸传感器、触摸检测装置及触控终端
CN102955637A (zh) * 2012-11-02 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103293785A (zh) * 2012-12-24 2013-09-11 上海天马微电子有限公司 Tn型液晶显示装置及其触控方法
CN104020906A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏、以及显示装置
CN104536629A (zh) * 2015-01-16 2015-04-22 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109857286A (zh) * 2019-03-21 2019-06-07 深圳曦华科技有限公司 触摸显示面板、触摸检测电路、显示装置和电子设备
CN109857286B (zh) * 2019-03-21 2024-05-03 深圳曦华科技有限公司 触摸显示面板、触摸检测电路、显示装置和电子设备

Also Published As

Publication number Publication date
CN104536629B (zh) 2019-03-26
US20160357337A1 (en) 2016-12-08
CN104536629A (zh) 2015-04-22
US10459573B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2016112693A1 (zh) 内嵌式触摸屏及显示装置
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2015180312A1 (zh) 内嵌式触摸屏及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US10013121B2 (en) In-cell touch panel and display device with self-capacitance electrodes
WO2015180318A1 (zh) 内嵌式触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
WO2015180358A1 (zh) 阵列基板及其制作方法和显示装置
WO2016110104A1 (zh) 内嵌式触摸屏及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
WO2016110016A1 (zh) 一种内嵌式触摸屏及显示装置
EP3153952B1 (en) In-cell touch screen and display device
WO2016119445A1 (zh) 内嵌式触摸屏及显示装置
WO2016112683A1 (zh) 内嵌式触摸屏及显示装置
WO2016145784A1 (zh) 一种内嵌式触摸屏及显示装置
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
WO2015180311A1 (zh) 内嵌式触摸屏及显示装置
WO2015180335A1 (zh) 内嵌式触摸屏及显示装置
WO2015158083A1 (zh) 触摸屏及显示装置
WO2016110045A1 (zh) 内嵌式触摸屏及显示装置
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14914592

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877606

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.02.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15877606

Country of ref document: EP

Kind code of ref document: A1