WO2016110124A1 - 一种燃气蒸汽联合循环集中供热装置及供热方法 - Google Patents

一种燃气蒸汽联合循环集中供热装置及供热方法 Download PDF

Info

Publication number
WO2016110124A1
WO2016110124A1 PCT/CN2015/089348 CN2015089348W WO2016110124A1 WO 2016110124 A1 WO2016110124 A1 WO 2016110124A1 CN 2015089348 W CN2015089348 W CN 2015089348W WO 2016110124 A1 WO2016110124 A1 WO 2016110124A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
water
heat
outlet
inlet
Prior art date
Application number
PCT/CN2015/089348
Other languages
English (en)
French (fr)
Inventor
付林
赵玺灵
李锋
张世钢
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to EP15826126.3A priority Critical patent/EP3064841B1/en
Priority to JP2016535633A priority patent/JP6117444B2/ja
Priority to KR1020167003301A priority patent/KR102071105B1/ko
Priority to US14/910,228 priority patent/US10823015B2/en
Priority to DK15826126.3T priority patent/DK3064841T3/en
Publication of WO2016110124A1 publication Critical patent/WO2016110124A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • F01K17/025Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic in combination with at least one gas turbine, e.g. a combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a heating device and a heating method, in particular to a gas-steam combined cycle central heating device and a heating method.
  • Gas-fired cogeneration is a form of energy utilization in which heat and electricity are simultaneously produced. It uses high-grade heat for power generation, and low-grade heat is used for heat supply, which not only improves energy efficiency but also reduces environmental pollution. Natural gas is a kind of high-energy clean energy. The greenhouse gases and other harmful substances generated during combustion are far less than other fossil energy sources. Therefore, natural gas cogeneration has great application value in reducing carbon and polluted air emissions. .
  • the current gas-fired combined cycle cogeneration is mainly composed of gas-fired combined cycle (gas turbine, waste heat boiler, steam turbine) and steam-water heat exchanger.
  • the main problems of current gas-fired cogeneration central heating devices are: (1) The thermoelectric ratio is low. The proportion of thermoelectricity generated by the conventional gas-fired cogeneration combination has certain limitations. The more advanced and high-conversion unit, because the primary power generation efficiency is high, the smaller the thermoelectric ratio, the 100,000 kW gas-gas combined cycle For example, the thermoelectric ratio is about 0.7. The low thermoelectric ratio means that the heating efficiency is low. In order to meet the heating load, a large amount of natural gas is consumed, which not only causes environmental pollution, but also affects the heating safety. (2) The energy loss is large.
  • the exhaust gas temperature of a conventional gas-fired combined cycle cogeneration central heating system is generally 90 ° C or higher.
  • This part of the heat contains a large amount of latent heat of vaporization of water vapor, which generally accounts for about 10% to 11% of the low calorific value of natural gas. .
  • the condensing heat of the steam turbine is taken away by the circulating water and released into the atmosphere. This part of the heat accounts for about 6% to 12% of the low calorific value of the natural gas.
  • Environmental protection and landscape effects are poor. As mentioned above, a large amount of gas consumption will inevitably lead to a large amount of pollutant discharge. In addition, the large amount of water vapor contained in the flue gas causes the chimney to take a "white smoke" scene, and the environmental pollution and landscape effect are poor.
  • an object of the present invention is to provide a gas-steam combined cycle central heating device and a heating method capable of recovering waste heat of a power plant, improving energy utilization efficiency, reducing energy consumption and environmental pollution.
  • a gas-fired combined cycle central heating device characterized in that it comprises a gas-gas combined cycle system, a heat network backwater heating system and a heat station, and the gas-steam combination a circulation system is connected to the heat station through the heat network backwater heating system;
  • the gas-steam combined cycle system comprises a gas turbine, a waste heat boiler, a direct contact flue gas condensing heat exchanger and a steam turbine; an exhaust port of the gas turbine is connected to a flue gas inlet of the waste heat boiler; and a flue gas of the waste heat boiler An outlet is connected to a flue gas inlet of the direct contact flue gas condensing heat exchanger, an exhaust steam outlet of the waste heat boiler is connected to a steam extraction inlet of the steam turbine, and a hydrophobic inlet of the waste heat boiler is connected to the heat net backwater a heating system; a first intermediate medium water inlet, a first intermediate medium water outlet, a second intermediate medium water inlet, and a second intermediate medium water outlet of the direct contact flue gas condensing heat exchanger are all connected to the heating network a water heating system is connected to the heat network backwater heating system; the steam turbine outlet of the steam turbine is connected to the heat network backwater heating system;
  • the heat station comprises a hot water type absorption heat pump and a water water heat exchanger; the heat network return water outlet of the hot water type absorption heat pump and the heat network water supply inlet are all connected to the heat network back water heating system,
  • the hot water supply outlet of the hot water type absorption heat pump is connected to the hot water supply inlet of the water water heat exchanger, and the hot water return inlet of the hot water type absorption heat pump is connected to the heat of the water heat exchanger Net water supply outlet.
  • the heat network backwater heating system includes a steam type absorption heat pump and a steam-water heat exchanger for recovering waste heat of flue gas; and the hot water inlet of the steam type absorption heat pump for recovering waste heat of flue gas is connected to the hot water type absorption type a heat network return outlet of the heat pump, the hot mesh water outlet of the steam-type absorption heat pump for recovering waste heat of flue gas is connected to the hot water inlet of the steam-water heat exchanger, and the hot water outlet of the steam-water heat exchanger is connected a hot water supply inlet of the hot water type absorption heat pump; an intermediate medium water outlet and an intermediate medium water inlet of the steam type absorption heat pump for recovering flue gas residual heat, respectively, and the direct contact type flue gas condensation heat exchanger a first intermediate medium water inlet, a first intermediate medium water outlet connection, a hydrophobic outlet of the steam-type absorption heat pump for recovering flue gas waste heat, and a hydrophobic outlet of the steam-water heat exchanger are connected to the hydrophobic in
  • the heat network backwater heating system comprises a steam type absorption heat pump for recovering waste heat of flue gas, a steam water heat exchanger and a water water heat exchanger in the power plant; a heat network water inlet connection station of the water heat exchanger in the power plant a hot water return outlet of the hot water type absorption heat pump, wherein the hot water outlet of the water heat exchanger in the power plant is connected to the hot water inlet of the steam type absorption heat pump for recovering waste heat of the flue gas; a hot water outlet of the steam type absorption heat pump of the flue gas waste heat is connected to the hot water inlet of the steam water heat exchanger, and the hot water outlet of the steam water heat exchanger is connected to the heat net of the hot water type absorption heat pump a water supply inlet; an intermediate medium water outlet and an intermediate medium water inlet of the steam-type absorption heat pump for recovering waste heat of flue gas, respectively, and a first intermediate medium water inlet and a first intermediate medium of the direct contact type flue gas condensation heat exchanger a water
  • the heat network backwater heating system comprises a steam type absorption heat pump for recovering waste heat of flue gas, a steam water heat exchanger, a water heat exchanger and a condenser in the power plant; and a hot water water of the water heat exchanger in the power plant Importing a heat network return water outlet connected to the hot water type absorption heat pump, wherein a heat network water outlet of the water heat exchanger in the power plant is connected to a heat network water inlet of the condenser; the heat of the condenser The net water outlet is connected to the hot net water inlet of the steam type absorption heat pump for recovering waste heat of the flue gas; the hot net water outlet of the steam type absorption heat pump for recovering flue gas residual heat is connected to the hot net water of the soda water heat exchanger Importing; the hot water outlet of the steam-water heat exchanger is connected to the hot water supply inlet of the hot water type absorption heat pump in the heat station; the intermediate medium water outlet of the steam-type absorption heat pump for recovering waste heat of
  • the heat network backwater heating system comprises a steam type absorption heat pump for recovering waste heat of flue gas, a steam-water heat exchanger, a water-heat exchanger and a condenser in the power plant; and a heat network water inlet connection of the condenser is connected a hot water return outlet of the hot water type absorption heat pump, the hot water outlet of the condenser is connected to the electric a hot water inlet of the water-heat exchanger in the plant, the hot-net water outlet of the water-heat exchanger in the power plant is connected to the hot-water inlet of the steam-type absorption heat pump for recovering waste heat of the flue gas;
  • the hot water outlet of the steam-type absorption heat pump of the gas waste heat is connected to the hot water inlet of the steam-water heat exchanger, and the hot water outlet of the steam-water heat exchanger is connected to the heat network water supply of the hot water type absorption heat pump Importing; the intermediate medium water outlet and the intermediate medium water inlet of the steam-type
  • the heat network backwater heating system comprises a steam type absorption heat pump for recovering waste heat of flue gas, a steam water heat exchanger, a water heat exchanger and a condenser in the power plant; and a hot water water of the water heat exchanger in the power plant
  • the inlet, the hot water inlet of the condenser is connected to the hot water return outlet of the hot water type absorption heat pump; the hot water outlet of the water and water heat exchanger in the power plant, the condenser
  • the hot water outlet is connected to the hot water inlet of the steam-type absorption heat pump for recovering waste heat of flue gas
  • the hot water outlet of the steam-type absorption heat pump for recovering waste heat of flue gas is connected to the steam-water heat exchanger a hot water inlet;
  • the hot water outlet of the steam-water heat exchanger is connected to the hot water supply inlet of the hot water type absorption heat pump; and the intermediate medium water outlet of the steam-type absorption heat pump for recovering waste heat of the flue gas,
  • the heating network backwater heating system comprises a steam type absorption heat pump for recovering waste heat of flue gas, a steam-water heat exchanger, a condenser and a steam-type absorption heat pump for recovering waste heat of waste steam; and the steaming for recovering waste heat of waste steam
  • the hot water inlet of the steam absorption heat pump is connected to the heat network return water outlet of the hot water type absorption heat pump, and the heat net water outlet of the steam type absorption heat pump for recovering the waste steam waste heat is connected to the waste heat of the recovered flue gas
  • An intermediate cooling circulating water outlet connection; the hot mesh water outlet of the steam-type absorption heat pump for recovering waste heat of flue gas is connected to the hot water inlet of the steam-water heat exchanger; and the hot water outlet
  • the heat network backwater heating system includes a steam type absorption heat pump for recovering waste heat of flue gas, a steam-water heat exchanger, a water-heat exchanger in a power plant, a condenser, and a steam-type absorption heat pump for recovering waste heat of waste steam;
  • the hot water inlet of the water-heat exchanger in the power plant is connected to the heat network return water outlet of the hot water type absorption heat pump, and the hot water outlet of the water-heat exchanger in the power plant is connected to the recovered waste steam heat recovery a hot water inlet of the steam type absorption heat pump;
  • the hot water outlet of the steam type absorption heat pump for recovering waste steam residual heat is connected to the hot water inlet of the steam type absorption heat pump for recovering waste heat of flue gas;
  • the intermediate cooling circulating water outlet and the intermediate cooling circulating water inlet of the steam-type absorption heat pump with excess steam residual heat are respectively connected with the intermediate cooling circulating water inlet and the intermediate cooling circulating water outlet of the condens
  • the heat network backwater heating system includes a steam type absorption heat pump for recovering waste heat of flue gas, a steam-water heat exchanger, a water-heat exchanger in a power plant, a condenser, and a steam-type absorption heat pump for recovering waste heat of waste steam; a hot water inlet of the condenser is connected to a heat network return outlet of the hot water type absorption heat pump; a hot water outlet of the condenser is connected to a hot water inlet of the water heat exchanger in the power plant; The hot water outlet of the water-hydraulic heat exchanger in the power plant is connected to the hot-net water inlet of the steam-type absorption heat pump for recovering waste heat of flue gas; the hot-water outlet of the steam-type absorption heat pump for recovering waste heat of flue gas a hot water inlet for connecting the steam-type absorption heat pump for recovering waste steam residual heat; the hot water outlet of the steam-type absorption heat pump for recovering waste steam residual heat is connected to the hot water inlet of
  • the heating method of the gas-fired combined cycle central heating device comprises the following steps: 1) in the gas-fired combined cycle system, the natural gas and the air are mixed and combusted in the combustion chamber of the gas turbine to generate high-temperature flue gas, and the high-temperature flue gas flows into the gas turbine In the gas turbine, the expansion work is done, and the generator is driven to generate electricity; the flue gas after the work enters the waste heat boiler, and the boiler feed water is heated in the waste heat boiler to generate high temperature steam in the waste heat boiler; the flue gas discharged from the waste heat boiler enters the direct contact type smoke The gas condensing heat exchanger is cooled and cooled, and then discharged into the atmosphere.
  • the high-temperature steam generated in the waste heat boiler enters the steam turbine to generate electricity, and extracts steam in the steam turbine, and the extracted steam enters the heating network backwater heating system; The user returning to the heat station as the hot network low temperature return water is discharged from the heat station.
  • the heating network backwater heating system Entering the heating network backwater heating system, being heated in the heating network backwater heating system, and heating the heated network low temperature backwater as the hot network high temperature water supply returning to the heat station; wherein the intermediate medium water generated in the heat network backwater heating system Into the direct contact flue gas condensing heat exchanger, the flue gas in the direct contact flue gas condensing heat exchanger is heated, and the heated intermediate medium water is returned to the heat net back water heating system; the heat net back water heating system generates The steam condensate is returned to the steam boiler; 3)
  • the hot water supply to the heat station is used as the driving heat source to enter the hot water type absorption heat pump. After the heat release in the hot water type absorption heat pump, the water and water heat exchange in the heat station is entered.
  • the device heats the user's water supply, and then enters the hot water type absorption heat pump as a low-level heat source after the water-heat exchanger in the heat station cools down, and finally releases the heat to the original low-temperature return water temperature of the heat network, and then acts as a heat-network low-temperature return water from the heat.
  • the station enters the heating network backwater heating system.
  • the invention adopts the above technical solutions, and has the following advantages: 1.
  • the invention adopts a direct contact type flue gas condensation heat exchanger, a steam type absorption heat pump for recovering waste heat of flue gas, and a steam type absorption heat pump for recovering waste heat of waste steam. And instruments such as condensers can effectively recover the latent heat of vaporization and exhaustion of flue gas, reduce the exhaust gas temperature, and reduce environmental pollution.
  • the invention uses the water-water heat exchanger, the steam-water heat exchanger and the like to heat the low-temperature backwater of the heating network in the power plant, and the recycling of the intermediate medium water and the extraction condensate in the heating process fully recovers the waste heat boiler.
  • the invention utilizes the combination of the hot water absorption heat pump and the water water heat exchanger in the heat station to effectively utilize the heat of the high temperature water supply of the heat network, and simultaneously heats the user water supply, realizes the cascade utilization of the energy, and comprehensively improves the energy. Effective utilization.
  • the present invention can be widely applied to industries that recover waste heat from power plants and improve energy utilization efficiency.
  • FIG. 1 is a schematic view of the first gas-fired combined cycle central heating device of the present invention
  • FIG. 2 is a schematic overall view of a second gas-fired combined cycle central heating device of the present invention
  • FIG. 3 is a schematic overall view of a third gas-fired combined cycle central heating device of the present invention.
  • FIG. 4 is a schematic overall view of a fourth gas-fired combined cycle central heating device of the present invention.
  • Figure 5 is a schematic overall view of a fifth gas-fired combined cycle central heating device of the present invention.
  • FIG. 6 is a schematic overall view of a sixth gas-fired combined cycle central heating device of the present invention.
  • FIG. 7 is a schematic overall view of a seventh gas-fired combined cycle central heating device of the present invention.
  • Fig. 8 is a schematic overall view of an eighth gas-fired combined cycle central heating device of the present invention.
  • the present invention provides a gas-fired combined cycle central heating device, which comprises a gas-gas combined cycle system, a heat station and a heat network backwater heating system; and a gas-steam combined cycle system through a heat network backwater heating system. Connect to the heat station.
  • the gas-fired combined cycle system includes a gas turbine 1, a waste heat boiler 2, a direct contact flue gas condensing heat exchanger 3, and a steam turbine 4.
  • the exhaust port of the gas turbine 1 is connected to the flue gas inlet of the waste heat boiler 2.
  • the flue gas outlet of the waste heat boiler 2 is connected to the flue gas inlet of the direct contact flue gas condensing heat exchanger 3, the exhaust steam outlet of the waste heat boiler 2 is connected to the steam inlet of the steam turbine 4, and the hydrophobic inlet of the waste heat boiler 2 is connected to the heat net back water heating. system.
  • the first intermediate medium water inlet, the first intermediate medium water outlet, the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact flue gas condensing heat exchanger 3 are all connected to the heat network backwater heating system; the steam turbine The extraction outlet of 4 is connected to the heating network backwater heating system.
  • the heat station includes a hot water type absorption heat pump 5 and a water water heat exchanger 6.
  • the hot water return water outlet of the hot water type absorption heat pump 5 and the heat network water supply inlet are all connected to the heat network back water heating system, and the hot water supply outlet of the hot water type absorption heat pump 5 is connected to the heat network of the water heat exchanger 6
  • the water supply inlet, the hot water return water inlet of the hot water type absorption heat pump 5 is connected to the hot water supply outlet of the water heat exchanger 6.
  • the heat network backwater heating system of the present invention comprises a steam type absorption heat pump 7 and a soda water heat exchanger 8 for recovering waste heat of flue gas.
  • the hot water inlet of the steam type absorption heat pump 7 for recovering the waste heat of the flue gas is connected to the hot water return outlet of the hot water type absorption heat pump 5, and the hot water outlet of the steam type absorption heat pump 7 for recovering the residual heat of the flue gas is connected with the steam exchange.
  • the hot water inlet of the heat exchanger 8 and the hot water outlet of the steam-water heat exchanger 8 are connected to the hot water supply inlet of the hot water type absorption heat pump 5.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam-type absorption heat pump 7 for recovering waste heat of the flue gas are respectively connected to the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensation heat exchanger 3, and are recycled.
  • the hydrophobic outlet of the steam-type absorption heat pump 7 and the hydrophobic outlet of the soda water heat exchanger 8 are connected to the hydrophobic inlet of the waste heat boiler 2, and the steam extraction and steam-water exchange of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas
  • the extraction inlets of the heat exchanger 8 are all connected to the extraction outlet of the steam turbine 4.
  • the heat network backwater heating system includes a steam type absorption heat pump 7, a soda water heat exchanger 8, and a water heat exchanger 9 in the power plant for recovering waste heat of the flue gas. Electricity
  • the hot water inlet of the water heat exchanger 9 in the plant is connected to the hot water return outlet of the hot water type absorption heat pump 5, and the hot water outlet of the water heat exchanger 9 in the power plant is connected to recover the steam type absorption of the waste heat of the flue gas.
  • the hot water outlet of the steam-type absorption heat pump 7 for recovering the waste heat of the flue gas is connected to the hot water inlet of the steam-water heat exchanger 8, and the hot-net water outlet of the steam-water heat exchanger 8 is connected to the hot-net water supply of the hot-water absorption heat pump 5. import.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the intermediate medium water outlet and the intermediate medium water inlet of the inner water water heat exchanger 9 are respectively connected with the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3; and the residual heat of the flue gas is recovered.
  • the hydrophobic outlet of the steam-type absorption heat pump 7 and the hydrophobic outlet of the steam-water heat exchanger 8 are both connected to the hydrophobic inlet of the waste heat boiler 2, and the extraction inlet of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas, and the steam-water heat exchanger 8
  • the extraction steam inlets are all connected to the extraction steam outlet of the steam turbine 4.
  • the heat network return water heating system includes a steam type absorption heat pump 7 for recovering waste heat of flue gas, a steam-water heat exchanger 8, a water-heat exchanger 9 in the power plant, and a condensing steam. 10.
  • the hot water inlet of the water and water heat exchanger 9 in the power plant is connected to the hot water return outlet of the hot water type absorption heat pump 5, and the hot water outlet of the water heat exchanger 9 in the power plant is connected to the hot net water of the condenser 10 import.
  • the hot water outlet of the condenser 10 is connected to the hot water inlet of the steam type absorption heat pump 7 for recovering the residual heat of the flue gas; the hot net water outlet of the steam type absorption heat pump 7 for recovering the residual heat of the flue gas is connected to the soda heat exchanger 8
  • the hot water inlet is connected to the hot water outlet of the hot water type absorption heat pump 5 in the heat station.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the intermediate medium water outlet and the intermediate medium water inlet of the inner water water heat exchanger 9 are respectively connected with the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3; and the residual heat of the flue gas is recovered.
  • the hydrophobic outlet of the steam-type absorption heat pump 7, the hydrophobic outlet of the steam-water heat exchanger 8, and the hydrophobic outlet of the condenser 10 are both connected to the hydrophobic inlet of the waste heat boiler 2; the extraction of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas
  • the extraction inlets of the inlet, steam-water heat exchanger 8 are connected to the extraction outlet of the steam turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • the heat network return water heating system includes a steam type absorption heat pump 7 for recovering waste heat of flue gas, a steam-water heat exchanger 8, a water-heat exchanger 9 in the power plant, and a condensing steam. 10.
  • the hot water inlet of the condenser 10 is connected to the hot water back of the hot water type absorption heat pump 5
  • the hot water outlet of the condenser 10 is connected to the hot water inlet of the water-heat exchanger 9 in the power plant, and the hot-water outlet of the water-heat exchanger 9 in the power plant is connected to the steam-type absorption heat pump for recovering waste heat of the flue gas.
  • steam net type absorption heat pump 7 for recovering flue gas waste heat is connected to the hot net water inlet of the soda water heat exchanger 8 , and the hot water outlet of the soda water heat exchanger 8 is connected to the hot water type absorption
  • the heat source of the heat pump 5 is supplied with water.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the intermediate medium water outlet and the intermediate medium water inlet of the inner water water heat exchanger 9 are respectively connected with the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3; and the residual heat of the flue gas is recovered.
  • the hydrophobic outlet of the steam-type absorption heat pump 7, the hydrophobic outlet of the steam-water heat exchanger 8, and the hydrophobic outlet of the condenser 10 are both connected to the hydrophobic inlet of the waste heat boiler 2, and the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas is extracted.
  • the extraction inlets of the inlet, steam-water heat exchanger 8 are connected to the extraction outlet of the steam turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • the heat network return water heating system includes a steam type absorption heat pump 7 for recovering waste heat of flue gas, a steam-water heat exchanger 8, a water-heat exchanger 9 in the power plant, and a condensing steam. 10.
  • the hot water inlet of the water and water heat exchanger 9 in the power plant and the hot water inlet of the condenser 10 are connected to the hot water return outlet of the hot water type absorption heat pump 5; the heat of the water heat exchanger 9 in the power plant
  • the net water outlet and the hot water outlet of the condenser 10 are connected to the hot water inlet of the steam type absorption heat pump 7 for recovering the waste heat of the flue gas, and the hot net water outlet connection of the steam type absorption heat pump 7 for recovering the residual heat of the flue gas
  • the hot water inlet of the steam-water heat exchanger 8; the hot-net water outlet of the steam-water heat exchanger 8 is connected to the hot-water supply inlet of the hot-water absorption heat pump 5.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the intermediate medium water outlet and the intermediate medium water inlet of the inner water water heat exchanger 9 are respectively connected with the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3; and the residual heat of the flue gas is recovered.
  • the hydrophobic outlet of the steam-type absorption heat pump 7, the hydrophobic outlet of the steam-water heat exchanger 8, and the hydrophobic outlet of the condenser 10 are both connected to the hydrophobic inlet of the waste heat boiler 2; the extraction of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas
  • the extraction inlets of the inlet, steam-water heat exchanger 8 are connected to the extraction outlet of the steam turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • the heat network backwater heating system includes a steam type absorption heat pump 7 that recovers waste heat of the flue gas, a steam-water heat exchanger 8, a condenser 10, and recovered waste heat of waste steam.
  • the steam type absorption heat pump 11 is.
  • the hot water inlet of the steam-type absorption heat pump 11 for recovering the waste heat of the spent steam is connected to the hot water return outlet of the hot water type absorption heat pump 5, and the hot water outlet of the steam-type absorption heat pump 11 for recovering the waste heat of the spent steam is connected to the recovered smoke.
  • the intermediate cooling circulating water outlet is connected.
  • the hot water outlet of the steam-type absorption heat pump 7 for recovering the waste heat of the flue gas is connected to the hot water inlet of the steam-water heat exchanger 8; the hot-net water outlet of the steam-water heat exchanger 8 is connected to the hot-net water supply of the hot-water absorption heat pump 5 import.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam-type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensation heat exchanger 3;
  • the hydrophobic outlet of the steam-type absorption heat pump 7 of the flue gas waste heat, the hydrophobic outlet of the soda water heat exchanger 8, the hydrophobic outlet of the condenser 10, and the hydrophobic outlet of the steam-type absorption heat pump 11 for recovering the residual heat of the steam are connected to the waste heat boiler.
  • the hydrophobic inlet of 2; the extraction inlet of the steam-type absorption heat pump 7 for recovering waste heat of flue gas, the extraction inlet of the steam-water heat exchanger 8 and the extraction inlet of the steam-type absorption heat pump 11 for recovering the waste heat of waste steam are all connected to the steam
  • the extraction outlet of the turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • the heat network backwater heating system includes a steam type absorption heat pump 7 for recovering waste heat of flue gas, a steam-water heat exchanger 8, a water-heat exchanger 9 in the power plant, and a condensing steam.
  • the hot water inlet of the water and water heat exchanger 9 in the power plant is connected to the hot water return outlet of the hot water type absorption heat pump 5, and the hot water outlet of the water heat exchanger 9 in the power plant is connected to recover the steam type absorption of the waste steam residual heat.
  • the hot water inlet of the heat pump 11; the hot water outlet of the steam type absorption heat pump 11 for recovering the waste heat of waste steam is connected to the hot water inlet of the steam type absorption heat pump 7 for recovering the waste heat of the flue gas; the steam type for recovering the waste heat of the spent steam
  • the intermediate cooling circulating water outlet and the intermediate cooling circulating water inlet of the absorption heat pump 11 are respectively connected to the intermediate cooling circulating water inlet of the condenser 10 and the intermediate cooling circulating water outlet.
  • the hot water outlet of the steam-type absorption heat pump 7 for recovering the waste heat of the flue gas is connected to the hot water inlet of the steam-water heat exchanger 8; the hot-net water outlet of the steam-water heat exchanger 8 is connected to the hot-net water supply of the hot-water absorption heat pump 5 import.
  • the intermediate medium water outlet and the intermediate medium water inlet of the steam type absorption heat pump 7 for recovering waste heat of flue gas are respectively connected with the first intermediate medium water inlet and the first intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the intermediate medium water outlet and the intermediate medium water inlet of the inner water water heat exchanger 9 are respectively connected with the second intermediate medium water inlet and the second intermediate medium water outlet of the direct contact type flue gas condensing heat exchanger 3;
  • the hydrophobic outlet of the steam-type absorption heat pump 7 of the flue gas waste heat, the hydrophobic outlet of the soda water heat exchanger 8, the hydrophobic outlet of the condenser 10, and the hydrophobic outlet of the steam-type absorption heat pump 11 for recovering the residual heat of the steam are connected to the waste heat boiler.
  • the hydrophobic inlet of 2; the extraction inlet of the steam-type absorption heat pump 7 for recovering waste heat of flue gas, the extraction inlet of the steam-water heat exchanger 8 and the extraction inlet of the steam-type absorption heat pump 11 for recovering the waste heat of waste steam are all connected to the steam
  • the extraction outlet of the turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • the heat network backwater heating system includes a steam type absorption heat pump 7 for recovering waste heat of flue gas, a steam-water heat exchanger 8, a water-heat exchanger in the power plant 9, and a condensing steam.
  • the hot water inlet of the condenser 10 is connected to the hot water return outlet of the hot water type absorption heat pump 5; the hot net water outlet of the condenser 10 is connected to the hot net water inlet of the water and water heat exchanger 9 in the power plant;
  • the hot water outlet of the water-heat exchanger 9 is connected to the hot-net water inlet of the steam-type absorption heat pump 7 for recovering the waste heat of the flue gas;
  • the hot-water outlet of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas recovers the waste heat of the spent steam
  • the hot water inlet of the steam-type absorption heat pump 11; the hot-net water outlet of the steam-type absorption heat pump 11 for recovering the waste steam residual heat is connected to the hot-net water inlet of the steam-water heat exchanger 8, and the steam-type absorption type for recovering the waste heat of the spent steam
  • the intermediate cooling circulating water outlet and the intermediate cooling circulating water inlet of the heat pump 11 are respectively connected with the intermediate
  • the heat network of the heat pump 5 is supplied with water.
  • the hydrophobic outlet of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas, the hydrophobic outlet of the soda water heat exchanger 8, the hydrophobic outlet of the condenser 10, and the hydrophobic outlet of the steam-type absorption heat pump 11 for recovering the residual heat of the steam are connected to the waste heat.
  • the hydrophobic inlet of the boiler 2; the extraction inlet of the steam-type absorption heat pump 7 for recovering the residual heat of the flue gas, the extraction inlet of the soda-heat exchanger 8 and the extraction inlet of the steam-type absorption heat pump 11 for recovering the residual heat of the exhaust steam are all connected to The extraction outlet of the steam turbine 4; the exhaust inlet of the condenser 10 is connected to the exhaust outlet of the steam turbine 4.
  • a water pump 12 is provided between the heat station and the heat network return water heating system for transporting the heat network in the heat station to the heat network backwater heating system.
  • the present invention also provides a gas-steam combined cycle central heating method, comprising the following steps:
  • the high temperature water supply returns to the heat station.
  • the intermediate medium water generated in the heating network backwater heating system enters the direct contact type flue gas condensing heat exchanger 3 and is heated by the flue gas in the direct contact flue gas condensing heat exchanger 3, and the heated intermediate medium water returns.
  • the heating network backwater heating system; the steaming condensate generated in the heating network backwater heating system is returned to the steam boiler 2.
  • the high temperature water supply of the heat station first enters the hot water type absorption heat pump 5 as a driving heat source, and after entering the heat station in the hot water type absorption heat pump 5, the water water heat exchanger 6 is heated to heat the user water supply. After the water and water heat exchanger 6 in the heat station cools down, it enters the hot water type absorption heat pump 5 again as a low-level heat source, and finally releases the heat to the original low-temperature return water temperature of the hot network, and then acts as a hot network low-temperature return water from the heat station to the heat network. Backwater heating system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种燃气蒸汽联合循环集中供热装置,包括燃气蒸汽联合循环系统、热网回水加热系统和热力站,燃气蒸汽联合循环系统通过热网回水加热系统与热力站连接;燃气蒸汽联合循环系统包括燃气轮机(1)、余热锅炉(2)、直接接触式烟气冷凝换热器(3)和蒸汽轮机(4);燃气轮机(1)连接余热锅炉(2),余热锅炉(2)连接直接接触式烟气冷凝换热器(3)和蒸汽轮机(4);热力站包括热水型吸收式热泵(5)和水水换热器(6);热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵(7)和汽水换热器(8);回收烟气余热的蒸汽型吸收式热泵(7)分别连接汽水换热器(8)、直接接触式烟气冷凝换热器(3)、余热锅炉(2)、蒸汽轮机(1)和热力站,汽水换热器(8)分别连接余热锅炉(2)、蒸汽轮机(4)和热力站。还公开了一种燃气蒸汽联合循环集中供热方法。

Description

一种燃气蒸汽联合循环集中供热装置及供热方法 技术领域
本发明涉一种供热装置及供热方法,特别是关于一种燃气蒸汽联合循环集中供热装置及供热方法。
背景技术
燃气热电联产是一种热能、电能同时生产的能源利用形式,它将高品位的热能用于发电,低品位的热能用于供热,既提高能源的利用效率,又减少了环境污染。而天然气是一种高热值的清洁能源,燃烧时产生的温室气体和其它有害物质远远少于其它化石能源,因此天然气热电联产在降低碳和污染空气的排放物方面具有很大的应用价值。
目前的燃气蒸汽联合循环热电联产主要由燃气蒸汽联合循环(燃气轮机、余热锅炉、蒸汽轮机)、汽水换热器等组成。目前的燃气热电联产集中供热装置主要存在的问题有:(1)热电比偏低。常规燃气热电联产组合所产生的热电比例是有一定局限的,越是先进的、转换效率高的机组,因为一次发电效率高,所以热电比越小,以10万kW的燃气蒸汽联合循环为例,其热电比为0.7左右。热电比偏低意味着供热效率低,为了满足供热负荷,需要消耗大量的天然气,这不仅会造成环境污染,而且对供热安全性造成影响。(2)能量损失大。常规燃气蒸汽联合循环热电联产集中供热系统的排烟温度一般为90℃甚至更高,这部分热量中含大量的水蒸气汽化潜热,一般占到天然气低位热值的10%~11%左右。另外,汽机的凝气排热由循环水带走,释放到大气中,这部分热量占天然气低位热值的6%~12%左右。(3)环保及景观效果差。如上所述,大量的燃气消耗必然造成大量的污染物排放,另外,烟气中含有的大量水蒸气造成了烟囱冒“白烟”的景象,环境污染和景观效果较差。
发明内容
针对上述问题,本发明的目的是提供一种可回收电厂余热、提高能源的综合利用效率、减少能源消耗和环境污染的燃气蒸汽联合循环集中供热装置及供热方法。
为实现上述目的,本发明采取以下技术方案:一种燃气蒸汽联合循环集中供热装置,其特征在于:它包括燃气蒸汽联合循环系统、热网回水加热系统和热力站,所述燃气蒸汽联合循环系统通过所述热网回水加热系统与所述热力站连接;
所述燃气蒸汽联合循环系统包括燃气轮机、余热锅炉、直接接触式烟气冷凝换热器和蒸汽轮机;所述燃气轮机的排气口连接所述余热锅炉的烟气进口;所述余热锅炉的烟气出口连接所述直接接触式烟气冷凝换热器的烟气进口,所述余热锅炉的排汽出口连接所述蒸汽轮机的抽汽进口,所述余热锅炉的疏水进口连接所述热网回水加热系统;所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口、第二中间介质水进口和第二中间介质水出口都连接至所述热网回水加热系统都连接至所述热网回水加热系统;所述蒸汽轮机的抽汽出口连接至所述热网回水加热系统;
所述热力站包括热水型吸收式热泵和水水换热器;所述热水型吸收式热泵的热网回水出口、热网供水进口都连接至所述热网回水加热系统,所述热水型吸收式热泵的热网供水出口连接所述水水换热器的热网供水进口,所述热水型吸收式热泵的热网回水进口连接所述水水换热器的热网供水出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵和汽水换热器;所述回收烟气余热的蒸汽型吸收式热泵的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接,所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器和电厂内水水换热器;所述电厂内水水换热器的热网水进口连接所 述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述电厂内水水换热器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述凝汽器的热网水进口;所述凝汽器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热力站内的热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述凝汽器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述凝汽器的热网水出口连接所述电 厂内水水换热器的热网水进口,所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述电厂内水水换热器的热网水进口、所述凝汽器的热网水进口都连接至所述热水型吸收式热泵的热网回水出口;所述电厂内水水换热器的热网水出口、所述凝汽器的热网水出口都连接至所述回收烟气余热的蒸汽型吸收式热泵的热网水进口,所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述回收乏汽余热的蒸 汽型吸收式热泵的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述电厂内水水换热器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述回收乏汽余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的 蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述凝汽器的热网水进口连接所述热水型吸收式热泵的热网回水出口;所述凝汽器的热网水出口连接所述电厂内水水换热器的热网水进口;所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述回收乏汽余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
所述燃气蒸汽联合循环集中供热装置的供热方法,包括以下步骤:1)在燃气蒸汽联合循环系统中,天然气和空气在燃气轮机的燃烧室混合燃烧后产生高温烟气,高温烟气流入燃气轮机的燃气透平中膨胀做功,并带动发电机发电;做功后的烟气进入余热锅炉,在余热锅炉中加热锅炉给水,使得余热锅炉中产生高温蒸汽;余热锅炉排出的烟气进入直接接触式烟气冷凝换热器中被冷却降温后排入大气,余热锅炉中产生的高温蒸汽进入蒸汽轮机中做功发电,并在蒸汽轮机中提取抽汽,提取的抽汽进入热网回水加热系统;2)进入热力站的用户回水作为热网低温回水从热力站排出, 进入热网回水加热系统,在热网回水加热系统中被加热,加热后的热网低温回水作为热网高温供水返回热力站;其中,热网回水加热系统中产生的中间介质水进入直接接触式烟气冷凝换热器中被直接接触式烟气冷凝换热器中的烟气加热,加热后的中间介质水返回热网回水加热系统;热网回水加热系统中产生的抽汽凝水均返回蒸汽锅炉;3)返回热力站的热网高温供水首先作为驱动热源进入热水型吸收式热泵,在热水型吸收式热泵中放热降温后进入热力站内水水换热器加热用户供水,在热力站内水水换热器降温后再次进入热水型吸收式热泵作为低位热源,最终放热降温到最初的热网低温回水温度后再次作为热网低温回水从热力站进入热网回水加热系统。
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于采用直接接触式烟气冷凝换热器、回收烟气余热的蒸汽型吸收式热泵、回收乏汽余热的蒸汽型吸收式热泵和凝汽器等仪器,可以有效地回收烟气冷凝汽化潜热和乏汽余热,降低排烟温度,减少对环境的污染。2、本发明由于采用水水换热器、汽水换热器等对电厂内的热网低温回水进行加热,加热过程中的中间介质水、抽汽凝水的循环利用充分回收了余热锅炉的烟气冷凝余热和凝汽器的乏汽余热,进一步减少了能源的浪费。3、本发明由于在热力站采用热水吸收式热泵和水水换热器组合的方式有效利用热网高温供水的热量,同时对用户供水进行加热,实现了能源的梯级利用,综合提高了能源的有效利用率。综上所述,本发明可以广泛应用于回收电厂余热、提高能源综合利用效率的工业中。
附图说明
图1是本发明的第一种燃气蒸汽联合循环集中供热装置整体示意图;
图2是本发明的第二种燃气蒸汽联合循环集中供热装置整体示意图;
图3是本发明的第三种燃气蒸汽联合循环集中供热装置整体示意图;
图4是本发明的第四种燃气蒸汽联合循环集中供热装置整体示意图;
图5是本发明的第五种燃气蒸汽联合循环集中供热装置整体示意图;
图6是本发明的第六种燃气蒸汽联合循环集中供热装置整体示意图;
图7是本发明的第七种燃气蒸汽联合循环集中供热装置整体示意图;
图8是本发明的第八种燃气蒸汽联合循环集中供热装置整体示意图。
本发明最佳实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1所示,本发明提供一种燃气蒸汽联合循环集中供热装置,其包括燃气蒸汽联合循环系统、热力站和热网回水加热系统;燃气蒸汽联合循环系统通过热网回水加热系统与热力站连接。
燃气蒸汽联合循环系统包括燃气轮机1、余热锅炉2、直接接触式烟气冷凝换热器3和蒸汽轮机4。燃气轮机1的排气口连接余热锅炉2的烟气进口。余热锅炉2的烟气出口连接直接接触式烟气冷凝换热器3的烟气进口,余热锅炉2的排汽出口连接蒸汽轮机4的蒸汽进口,余热锅炉2的疏水进口连接热网回水加热系统。直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口、第二中间介质水进口和第二中间介质水出口都连接至热网回水加热系统;蒸汽轮机4的抽汽出口连接至热网回水加热系统。
热力站包括热水型吸收式热泵5和水水换热器6。热水型吸收式热泵5的热网回水出口、热网供水进口都连接至热网回水加热系统,热水型吸收式热泵5的热网供水出口连接水水换热器6的热网供水进口,热水型吸收式热泵5的热网回水进口连接水水换热器6的热网供水出口。
如图1所示,本发明的热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7和汽水换热器8。回收烟气余热的蒸汽型吸收式热泵7的热网水进口连接热水型吸收式热泵5的热网回水出口,回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口,汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接,回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口都连接至余热锅炉2的疏水进口,回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口都连接至蒸汽轮机4的抽汽出口。
在一个优选的实施例中,如图2所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8和电厂内水水换热器9。电 厂内水水换热器9的热网水进口连接热水型吸收式热泵5的热网回水出口,电厂内水水换热器9的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口。回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口,汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;电厂内水水换热器9的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第二中间介质水进口、第二中间介质水出口连接;回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口都连接至余热锅炉2的疏水进口,回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口都连接至蒸汽轮机4的抽汽出口。
在一个优选的实施例中,如图3所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、电厂内水水换热器9和凝汽器10。电厂内水水换热器9的热网水进口连接热水型吸收式热泵5的热网回水出口,电厂内水水换热器9的热网水出口连接凝汽器10的热网水进口。凝汽器10的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口;回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口;汽水换热器8的热网水出口连接热力站内的热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;电厂内水水换热器9的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第二中间介质水进口、第二中间介质水出口连接;回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口和凝汽器10的疏水出口都连接至余热锅炉2的疏水进口;回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,如图4所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、电厂内水水换热器9和凝汽器10。凝汽器10的热网水进口连接热水型吸收式热泵5的热网回水出 口,凝汽器10的热网水出口连接电厂内水水换热器9的热网水进口,电厂内水水换热器9的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口;回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口,汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;电厂内水水换热器9的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第二中间介质水进口、第二中间介质水出口连接;回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口和凝汽器10的疏水出口都连接至余热锅炉2的疏水进口,回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,如图5所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、电厂内水水换热器9和凝汽器10。电厂内水水换热器9的热网水进口、凝汽器10的热网水进口都连接至热水型吸收式热泵5的热网回水出口;电厂内水水换热器9的热网水出口、凝汽器10的热网水出口都连接至回收烟气余热的蒸汽型吸收式热泵7的热网水进口,回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口;汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;电厂内水水换热器9的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第二中间介质水进口、第二中间介质水出口连接;回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口和凝汽器10的疏水出口都连接至余热锅炉2的疏水进口;回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,如图6所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、凝汽器10和回收乏汽余热 的蒸汽型吸收式热泵11。回收乏汽余热的蒸汽型吸收式热泵11的热网水进口连接热水型吸收式热泵5的热网回水出口,回收乏汽余热的蒸汽型吸收式热泵11的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口;回收乏汽余热的蒸汽型吸收式热泵11的中间冷却循环水出口、中间冷却循环水进口分别与凝汽器10的中间冷却循环水进口、中间冷却循环水出口连接。回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口;汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口、凝汽器10的疏水出口和回收乏汽余热的蒸汽型吸收式热泵11的疏水出口都连接至余热锅炉2的疏水进口;回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口和回收乏汽余热的蒸汽型吸收式热泵11的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,如图7所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、电厂内水水换热器9、凝汽器10和回收乏汽余热的蒸汽型吸收式热泵11。电厂内水水换热器9的热网水进口连接热水型吸收式热泵5的热网回水出口,电厂内水水换热器9的热网水出口连接回收乏汽余热的蒸汽型吸收式热泵11的热网水进口;回收乏汽余热的蒸汽型吸收式热泵11的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口;回收乏汽余热的蒸汽型吸收式热泵11的中间冷却循环水出口、中间冷却循环水进口分别与凝汽器10的中间冷却循环水进口、中间冷却循环水出口连接。回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接汽水换热器8的热网水进口;汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第一中间介质水进口、第一中间介质水出口连接;电厂内水水换热器9的中间介质水出口、中间介质水进口分别与直接接触式烟气冷凝换热器3的第二中间介质水进口、第二中间介质水出口连接;回收 烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口、凝汽器10的疏水出口和回收乏汽余热的蒸汽型吸收式热泵11的疏水出口都连接至余热锅炉2的疏水进口;回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口和回收乏汽余热的蒸汽型吸收式热泵11的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,如图8所示,热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵7、汽水换热器8、电厂内水水换热器9、凝汽器10和回收乏汽余热的蒸汽型吸收式热泵11。凝汽器10的热网水进口连接热水型吸收式热泵5的热网回水出口;凝汽器10的热网水出口连接电厂内水水换热器9的热网水进口;电厂内水水换热器9的热网水出口连接回收烟气余热的蒸汽型吸收式热泵7的热网水进口;回收烟气余热的蒸汽型吸收式热泵7的热网水出口连接回收乏汽余热的蒸汽型吸收式热泵11的热网水进口;回收乏汽余热的蒸汽型吸收式热泵11的热网水出口连接汽水换热器8的热网水进口,回收乏汽余热的蒸汽型吸收式热泵11的中间冷却循环水出口、中间冷却循环水进口分别与凝汽器10的中间冷却循环水进口、中间冷却循环水出口连接;汽水换热器8的热网水出口连接热水型吸收式热泵5的热网供水进口。回收烟气余热的蒸汽型吸收式热泵7的疏水出口、汽水换热器8的疏水出口、凝汽器10的疏水出口和回收乏汽余热的蒸汽型吸收式热泵11的疏水出口都连接至余热锅炉2的疏水进口;回收烟气余热的蒸汽型吸收式热泵7的抽汽进口、汽水换热器8的抽汽进口和回收乏汽余热的蒸汽型吸收式热泵11的抽汽进口都连接至蒸汽轮机4的抽汽出口;凝汽器10的排汽进口连接至蒸汽轮机4的排汽出口。
在一个优选的实施例中,在热力站和热网回水加热系统之间设置有一水泵12,用于将热力站中的热网低温回水输送至热网回水加热系统。
基于上述实施例中提供的燃气蒸汽联合循环集中供热装置,本发明还提出了一种燃气蒸汽联合循环集中供热方法,包括以下步骤:
1)在燃气蒸汽联合循环系统中,天然气和空气在燃气轮机1的燃烧室混合燃烧后产生高温烟气,高温烟气流入燃气轮机1的燃气透平中膨胀做功,并带动发电机发电;做功后的烟气进入余热锅炉2,在余热锅炉2中加热锅炉给水,使得余热锅炉2中产生高温蒸汽;余热锅炉2排出的烟 气进入直接接触式烟气冷凝换热器3中被冷却降温后排入大气,余热锅炉2中产生的高温蒸汽进入蒸汽轮机4中做功发电,并在蒸汽轮机4中提取抽汽,提取的抽汽进入热网回水加热系统。
2)进入热力站的用户回水作为热网低温回水从热力站排出,进入热网回水加热系统,在热网回水加热系统中被加热,加热后的热网低温回水作为热网高温供水返回热力站。其中,热网回水加热系统中产生的中间介质水进入直接接触式烟气冷凝换热器3中被直接接触式烟气冷凝换热器3中的烟气加热,加热后的中间介质水返回热网回水加热系统;热网回水加热系统中产生的抽汽凝水均返回蒸汽锅炉2。
3)返回热力站的热网高温供水首先作为驱动热源进入热水型吸收式热泵5,在热水型吸收式热泵5中放热降温后进入热力站内水水换热器6加热用户供水,在热力站内水水换热器6降温后再次进入热水型吸收式热泵5作为低位热源,最终放热降温到最初的热网低温回水温度后再次作为热网低温回水从热力站进入热网回水加热系统。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和制作工艺等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种燃气蒸汽联合循环集中供热装置,其特征在于:它包括燃气蒸汽联合循环系统、热网回水加热系统和热力站,所述燃气蒸汽联合循环系统通过所述热网回水加热系统与所述热力站连接;
    所述燃气蒸汽联合循环系统包括燃气轮机、余热锅炉、直接接触式烟气冷凝换热器和蒸汽轮机;所述燃气轮机的排气口连接所述余热锅炉的烟气进口;所述余热锅炉的烟气出口连接所述直接接触式烟气冷凝换热器的烟气进口,所述余热锅炉的排汽出口连接所述蒸汽轮机的抽汽进口,所述余热锅炉的疏水进口连接所述热网回水加热系统;所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口、第二中间介质水进口和第二中间介质水出口都连接至所述热网回水加热系统都连接至所述热网回水加热系统;所述蒸汽轮机的抽汽出口连接至所述热网回水加热系统;
    所述热力站包括热水型吸收式热泵和水水换热器;所述热水型吸收式热泵的热网回水出口、热网供水进口都连接至所述热网回水加热系统,所述热水型吸收式热泵的热网供水出口连接所述水水换热器的热网供水进口,所述热水型吸收式热泵的热网回水进口连接所述水水换热器的热网供水出口。
  2. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵和汽水换热器;所述回收烟气余热的蒸汽型吸收式热泵的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接,所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口。
  3. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器和电厂内水水换热器;所述电厂内水水换热器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口。
  4. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述电厂内水水换热器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述凝汽器的热网水进口;所述凝汽器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热力站内的热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的 抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  5. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述凝汽器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述凝汽器的热网水出口连接所述电厂内水水换热器的热网水进口,所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口,所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  6. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器和凝汽器;所述电厂内水水换热器的热网水进口、所述凝汽器的热网水进口都连接至所述热水型吸收式热泵的热网回水出口;所述电厂内水水换热器的热网水出口、所述凝汽器的热网水出口都连接至所述回收烟气余热的蒸汽型吸收式热泵的热网水进口,所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收 式热泵的疏水出口、所述汽水换热器的疏水出口和所述凝汽器的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口和所述汽水换热器的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  7. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述回收乏汽余热的蒸汽型吸收式热泵的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  8. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述电厂内水水换热器的热网水进口连接所述热水型吸收式热泵的热网回水出口,所述电厂内水水换热器的热网水出口连接所述回收乏汽余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中 间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第一中间介质水进口、第一中间介质水出口连接;所述电厂内水水换热器的中间介质水出口、中间介质水进口分别与所述直接接触式烟气冷凝换热器的第二中间介质水进口、第二中间介质水出口连接;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  9. 如权利要求1所述的一种燃气蒸汽联合循环集中供热装置,其特征在于:所述热网回水加热系统包括回收烟气余热的蒸汽型吸收式热泵、汽水换热器、电厂内水水换热器、凝汽器和回收乏汽余热的蒸汽型吸收式热泵;所述凝汽器的热网水进口连接所述热水型吸收式热泵的热网回水出口;所述凝汽器的热网水出口连接所述电厂内水水换热器的热网水进口;所述电厂内水水换热器的热网水出口连接所述回收烟气余热的蒸汽型吸收式热泵的热网水进口;所述回收烟气余热的蒸汽型吸收式热泵的热网水出口连接所述回收乏汽余热的蒸汽型吸收式热泵的热网水进口;所述回收乏汽余热的蒸汽型吸收式热泵的热网水出口连接所述汽水换热器的热网水进口,所述回收乏汽余热的蒸汽型吸收式热泵的中间冷却循环水出口、中间冷却循环水进口分别与所述凝汽器的中间冷却循环水进口、中间冷却循环水出口连接;所述汽水换热器的热网水出口连接所述热水型吸收式热泵的热网供水进口;所述回收烟气余热的蒸汽型吸收式热泵的疏水出口、所述汽水换热器的疏水出口、所述凝汽器的疏水出口和所述回收乏汽余热的蒸汽型吸收式热泵的疏水出口都连接至所述余热锅炉的疏水进口;所述回收烟气余热的蒸汽型吸收式热泵的抽汽进口、所述汽水换热器的抽汽进口和所述回收乏汽余热的蒸汽型吸收式热泵的抽汽进口都连接至所述蒸 汽轮机的抽汽出口;所述凝汽器的排汽进口连接至所述蒸汽轮机的排汽出口。
  10. 一种如权利要求1到9任一项所述燃气蒸汽联合循环集中供热装置的供热方法,包括以下步骤:
    1)在燃气蒸汽联合循环系统中,天然气和空气在燃气轮机的燃烧室混合燃烧后产生高温烟气,高温烟气流入燃气轮机的燃气透平中膨胀做功,并带动发电机发电;做功后的烟气进入余热锅炉,在余热锅炉中加热锅炉给水,使得余热锅炉中产生高温蒸汽;余热锅炉排出的烟气进入直接接触式烟气冷凝换热器中被冷却降温后排入大气,余热锅炉中产生的高温蒸汽进入蒸汽轮机中做功发电,并在蒸汽轮机中提取抽汽,提取的抽汽进入热网回水加热系统;
    2)进入热力站的用户回水作为热网低温回水从热力站排出,进入热网回水加热系统,在热网回水加热系统中被加热,加热后的热网低温回水作为热网高温供水返回热力站;其中,热网回水加热系统中产生的中间介质水进入直接接触式烟气冷凝换热器中被直接接触式烟气冷凝换热器中的烟气加热,加热后的中间介质水返回热网回水加热系统;热网回水加热系统中产生的抽汽凝水均返回蒸汽锅炉;
    3)返回热力站的热网高温供水首先作为驱动热源进入热水型吸收式热泵,在热水型吸收式热泵中放热降温后进入热力站内水水换热器加热用户供水,在热力站内水水换热器降温后再次进入热水型吸收式热泵作为低位热源,最终放热降温到最初的热网低温回水温度后再次作为热网低温回水从热力站进入热网回水加热系统。
PCT/CN2015/089348 2015-01-08 2015-09-10 一种燃气蒸汽联合循环集中供热装置及供热方法 WO2016110124A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15826126.3A EP3064841B1 (en) 2015-01-08 2015-09-10 Gas steam combined cycle central heating device
JP2016535633A JP6117444B2 (ja) 2015-01-08 2015-09-10 ガス−蒸気コンバインドサイクル集中熱供給装置及び熱供給方法
KR1020167003301A KR102071105B1 (ko) 2015-01-08 2015-09-10 가스-증기 복합 사이클 집중형 열 공급 장치 및 열 공급 방법
US14/910,228 US10823015B2 (en) 2015-01-08 2015-09-10 Gas-steam combined cycle centralized heat supply device and heat supply method
DK15826126.3T DK3064841T3 (en) 2015-01-08 2015-09-10 COMBINED GAS STEAM CYCLE CENTRAL HEATER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510009398.XA CN104534539A (zh) 2015-01-08 2015-01-08 一种燃气蒸汽联合循环集中供热装置及供热方法
CN201510009398.X 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016110124A1 true WO2016110124A1 (zh) 2016-07-14

Family

ID=52850118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089348 WO2016110124A1 (zh) 2015-01-08 2015-09-10 一种燃气蒸汽联合循环集中供热装置及供热方法

Country Status (7)

Country Link
US (1) US10823015B2 (zh)
EP (1) EP3064841B1 (zh)
JP (1) JP6117444B2 (zh)
KR (1) KR102071105B1 (zh)
CN (1) CN104534539A (zh)
DK (1) DK3064841T3 (zh)
WO (1) WO2016110124A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621002A (zh) * 2016-10-09 2018-01-23 燕山大学 利用组合式热泵回收电厂乏汽余热的梯级加热方法及系统
CN108005741A (zh) * 2017-12-14 2018-05-08 华电电力科学研究院 一种提高凝抽背供热安全的热电联产系统及调节方法
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN109099745A (zh) * 2018-10-08 2018-12-28 公安县人民医院 一种利用医院蒸汽回收加热的热水供水系统
CN110873354A (zh) * 2019-12-23 2020-03-10 北京市热力集团有限责任公司 用于调峰供热厂的一机多效热泵系统及热泵控制方法
CN112129005A (zh) * 2020-10-19 2020-12-25 华能国际电力股份有限公司 一种联合循环电厂多能互补能源站
CN113028645A (zh) * 2021-03-30 2021-06-25 青岛新奥能源有限公司 一种燃气热水锅炉的烟气余热和冷凝回收系统
CN113375211A (zh) * 2021-06-28 2021-09-10 大唐环境产业集团股份有限公司 燃煤机组供热系统、及运行方法
CN113532134A (zh) * 2021-07-28 2021-10-22 首钢京唐钢铁联合有限责任公司 一种烧结余热回收利用装置和方法
CN113566260A (zh) * 2021-08-17 2021-10-29 清华大学 一种复合式热泵供热系统及方法
CN113899006A (zh) * 2021-11-09 2022-01-07 东北电力大学 一种利用低加疏水驱动热泵回收循环水余热的供热系统
CN114111094A (zh) * 2021-11-30 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种利用机组抽汽与吸收式热泵的脱硫浆液余热回收装置
CN115013852A (zh) * 2022-05-31 2022-09-06 华能伊敏煤电有限责任公司 一种多机组供热的疏水余热深度回收利用装置及方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534539A (zh) * 2015-01-08 2015-04-22 清华大学 一种燃气蒸汽联合循环集中供热装置及供热方法
CN104964479A (zh) * 2015-07-07 2015-10-07 中能世华(北京)节能科技有限公司 一种基于吸收式换热的燃气热电联产供热系统
CN105114936A (zh) * 2015-09-06 2015-12-02 中国华能集团清洁能源技术研究院有限公司 联合循环低温烟气余热最大化利用系统及方法
CN105222203A (zh) * 2015-11-04 2016-01-06 清华大学 一种新型燃气热电联产集中供热装置
CN105484816B (zh) * 2015-12-31 2017-08-04 中国能源建设集团广东省电力设计研究院有限公司 燃气蒸汽联合系统及其运行控制方法
CN105605647A (zh) * 2016-02-03 2016-05-25 清华大学 一种协同净化、全热回收型热电联产系统
CN106369804B (zh) * 2016-08-31 2019-05-24 中节能科技投资有限公司 高效能回热系统
CN106594842B (zh) * 2016-12-30 2022-05-13 何宗衡 气电混合供热机组
KR101842713B1 (ko) * 2017-11-16 2018-03-28 주식회사 동광보일러 증기보일러의 폐열 회수장치
CN107764122B (zh) * 2017-11-20 2023-09-22 济南热力集团有限公司 一种基于余热利用的大温差冷水复合式梯级利用系统
CN108825364B (zh) * 2018-06-22 2021-05-04 中船动力有限公司 天然气发电机组余热及二氧化碳利用装置
CN109237509A (zh) * 2018-08-30 2019-01-18 华电电力科学研究院有限公司 一种将间接空冷机组循环水余热回收至锅炉送风系统的方法及装置
CN109237587B (zh) * 2018-09-13 2023-04-28 华电电力科学研究院有限公司 一种耦合大温差热泵的低真空供热系统及运行方法
CN109322716B (zh) * 2018-10-16 2021-06-11 山东华电节能技术有限公司 燃气蒸汽联合循环高背压供热机组及换转子不停燃机方法
CN109539293B (zh) * 2018-11-06 2024-01-26 清华大学 一种燃煤烟气超低排放协同余热利用的系统及其运行方法
CN109595046B (zh) * 2018-11-23 2024-03-19 中国大唐集团科学技术研究院有限公司火力发电技术研究院 大型燃煤机组锅炉余热与汽轮机余热耦合全回收发电系统
CN109855147B (zh) * 2019-02-02 2023-04-28 华电电力科学研究院有限公司 一种基于供热与电力调峰耦合的联合循环装置及其运行方法
CN111578301B (zh) * 2019-02-19 2022-08-09 北京热科能源技术研究有限公司 一种烟气余热回收系统
CN110230521B (zh) * 2019-03-12 2023-09-19 华电电力科学研究院有限公司 一种热电机组切除低压缸进汽耦合热泵梯级供热系统及调节方法
CN109751652B (zh) * 2019-03-19 2024-02-23 中国建筑标准设计研究院有限公司 300mw及以上等级湿冷机组高背压和热泵联合供热系统
KR102387283B1 (ko) * 2019-12-05 2022-04-18 주식회사 부-스타 가스보일러 시스템 및 혼합기
CN110849022A (zh) * 2019-12-06 2020-02-28 华北电力科学研究院有限责任公司 用于间接空冷系统的热量梯级利用系统
CN111442292A (zh) * 2020-05-26 2020-07-24 大唐环境产业集团股份有限公司 一种燃煤电站余热和水回收系统
CN111594288A (zh) * 2020-06-08 2020-08-28 威立雅(哈尔滨)热电有限公司 汽轮机轴封加热器热能回收装置
CN112096470B (zh) * 2020-09-29 2022-08-02 西安热工研究院有限公司 一种与供热系统耦合的液态压缩空气储能调峰系统及方法
FI129538B (en) * 2020-11-16 2022-04-14 Valmet Technologies Oy METHOD AND SYSTEM
CN112413712A (zh) * 2020-11-25 2021-02-26 双良节能系统股份有限公司 一种燃煤锅炉低低温烟气余热回收供热系统
CN114576693B (zh) * 2020-11-30 2024-02-27 上海本家空调系统有限公司 燃气热泵供热系统
CN112664918B (zh) * 2020-12-26 2021-09-21 龙游县金怡热电有限公司 一种燃气蒸汽联合循环集中供热装置及供热方法
CN112944451B (zh) * 2021-04-15 2022-05-27 晟源高科(北京)科技有限公司 基于隔压站的天然气补能分级利用系统及调节方法
CN113375210B (zh) * 2021-06-28 2022-03-01 大唐环境产业集团股份有限公司 耦合吸收式热泵的冷端余热供热方法及系统
CN113686190B (zh) * 2021-08-31 2024-02-02 济南美联同创能源科技有限公司 一种低温余热综合回收及利用的系统及方法
CN215637465U (zh) * 2021-09-10 2022-01-25 青岛新奥能源有限公司 一种多热源互补联合供热系统
CN113623711B (zh) * 2021-09-15 2023-05-02 西安热工研究院有限公司 一种燃气蒸汽联合机组电出力宽域调节的蓄热供热系统
CN114811630A (zh) * 2021-11-26 2022-07-29 清华大学 一种热泵与气水面式换热器耦合的烟气余热回收系统
CN114776405B (zh) * 2022-04-11 2024-01-26 华北电力科学研究院有限责任公司 一种热电联产机组的供热保护控制方法及装置
CN115164262B (zh) * 2022-07-13 2024-01-23 西安热工研究院有限公司 一种热电联产机组余热和水回收系统及运行方法
CN115307172B (zh) * 2022-08-17 2023-05-26 饶阳县胜岳锅炉制造有限公司 环保型锅炉烟气余热回收装置
CN116221804A (zh) * 2022-12-30 2023-06-06 江苏港嘉节能科技有限公司 热电厂循环水余热回收方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205187A (ja) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd ボイラ−蒸気タービンシステムに付属させる熱回収システム
CN101858231A (zh) * 2010-04-07 2010-10-13 清华大学 一种以燃气蒸汽联合循环热电联产为主的能源供应系统
CN102359739A (zh) * 2011-09-14 2012-02-22 张军 零能源损耗率热电厂的燃蒸循环热电冷三联供系统与方法
CN102878603A (zh) * 2012-10-30 2013-01-16 哈尔滨工业大学 燃气-蒸汽循环联合双级耦合热泵供暖装置
KR20130091806A (ko) * 2012-02-08 2013-08-20 지에스파워주식회사 히트펌프를 사용하는 열병합 발전시스템
CN204082237U (zh) * 2014-08-29 2015-01-07 中国华能集团清洁能源技术研究院有限公司 回收余热的igcc热电联产集中供热系统
CN104534539A (zh) * 2015-01-08 2015-04-22 清华大学 一种燃气蒸汽联合循环集中供热装置及供热方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107803A (ja) * 1981-12-21 1983-06-27 Toshiba Corp 発電プラント
FR2572169B1 (fr) * 1984-10-18 1987-01-02 Armines Microcentrale thermoelectrique
JPH04292757A (ja) * 1991-03-18 1992-10-16 Mitsubishi Heavy Ind Ltd コジェネプラントシステム
JPH06129211A (ja) * 1992-10-21 1994-05-10 Shimizu Corp 熱電供給システム
JPH06201218A (ja) * 1992-12-28 1994-07-19 Mitsui Eng & Shipbuild Co Ltd 高温出力型大昇温幅ハイブリッドヒートポンプ
JPH094807A (ja) * 1995-06-15 1997-01-10 Pado:Kk 廃熱で給水加熱する蒸気タービン発電装置
DE19545668A1 (de) * 1995-12-07 1997-06-12 Asea Brown Boveri Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
JP2002266656A (ja) * 2001-03-07 2002-09-18 Ishikawajima Harima Heavy Ind Co Ltd ガスタービンコージェネレーションシステム
CN101761393A (zh) * 2010-02-11 2010-06-30 华北电力大学 汽轮机驱动压气机的燃气蒸汽联合循环系统
CN102393004A (zh) * 2010-09-30 2012-03-28 上海锅炉厂有限公司 一种燃气蒸汽联合循环热电厂
CN103154446B (zh) * 2010-10-19 2015-05-27 阿尔斯通技术有限公司 用于运行带有热电联产的联合循环动力设备的方法以及用于实施该方法的联合循环动力设备
JP2014514481A (ja) * 2011-03-01 2014-06-19 アルストム テクノロジー リミテッド コンバインドサイクル発電プラント
CN102242946B (zh) * 2011-04-29 2013-10-16 清华大学 利用吸收式热泵回收烟气余热的集中供热系统
CN102407070B (zh) * 2011-11-21 2013-12-11 北京建筑工程学院 一种烟气余热回收利用与除尘净化复合型设备
CN103759283B (zh) * 2014-01-10 2016-02-10 清华大学 一种喷淋吸收式燃气烟气全热回收及脱硫脱硝方法及装置
CN104197397A (zh) * 2014-09-23 2014-12-10 大连葆光节能空调设备厂 降低供热回水温度及回收热电厂余热的节能供热系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205187A (ja) * 2006-01-31 2007-08-16 Hitachi Engineering & Services Co Ltd ボイラ−蒸気タービンシステムに付属させる熱回収システム
CN101858231A (zh) * 2010-04-07 2010-10-13 清华大学 一种以燃气蒸汽联合循环热电联产为主的能源供应系统
CN102359739A (zh) * 2011-09-14 2012-02-22 张军 零能源损耗率热电厂的燃蒸循环热电冷三联供系统与方法
KR20130091806A (ko) * 2012-02-08 2013-08-20 지에스파워주식회사 히트펌프를 사용하는 열병합 발전시스템
CN102878603A (zh) * 2012-10-30 2013-01-16 哈尔滨工业大学 燃气-蒸汽循环联合双级耦合热泵供暖装置
CN204082237U (zh) * 2014-08-29 2015-01-07 中国华能集团清洁能源技术研究院有限公司 回收余热的igcc热电联产集中供热系统
CN104534539A (zh) * 2015-01-08 2015-04-22 清华大学 一种燃气蒸汽联合循环集中供热装置及供热方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621002A (zh) * 2016-10-09 2018-01-23 燕山大学 利用组合式热泵回收电厂乏汽余热的梯级加热方法及系统
CN108005741B (zh) * 2017-12-14 2023-07-04 华电电力科学研究院有限公司 一种提高凝抽背供热安全的热电联产系统及调节方法
CN108005741A (zh) * 2017-12-14 2018-05-08 华电电力科学研究院 一种提高凝抽背供热安全的热电联产系统及调节方法
CN108798898A (zh) * 2018-04-20 2018-11-13 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN108798898B (zh) * 2018-04-20 2023-11-28 华电电力科学研究院有限公司 质子交换膜燃料电池与燃气轮机联合供应蒸汽和热水的系统及方法
CN109099745A (zh) * 2018-10-08 2018-12-28 公安县人民医院 一种利用医院蒸汽回收加热的热水供水系统
CN109099745B (zh) * 2018-10-08 2024-03-01 公安县人民医院 一种利用医院蒸汽回收加热的热水供水系统
CN110873354A (zh) * 2019-12-23 2020-03-10 北京市热力集团有限责任公司 用于调峰供热厂的一机多效热泵系统及热泵控制方法
CN112129005A (zh) * 2020-10-19 2020-12-25 华能国际电力股份有限公司 一种联合循环电厂多能互补能源站
CN113028645A (zh) * 2021-03-30 2021-06-25 青岛新奥能源有限公司 一种燃气热水锅炉的烟气余热和冷凝回收系统
CN113375211A (zh) * 2021-06-28 2021-09-10 大唐环境产业集团股份有限公司 燃煤机组供热系统、及运行方法
CN113532134A (zh) * 2021-07-28 2021-10-22 首钢京唐钢铁联合有限责任公司 一种烧结余热回收利用装置和方法
CN113566260A (zh) * 2021-08-17 2021-10-29 清华大学 一种复合式热泵供热系统及方法
CN113566260B (zh) * 2021-08-17 2024-05-07 清华大学 一种复合式热泵供热系统及方法
CN113899006A (zh) * 2021-11-09 2022-01-07 东北电力大学 一种利用低加疏水驱动热泵回收循环水余热的供热系统
CN114111094B (zh) * 2021-11-30 2023-02-28 中国华能集团清洁能源技术研究院有限公司 一种利用机组抽汽与吸收式热泵的脱硫浆液余热回收装置
CN114111094A (zh) * 2021-11-30 2022-03-01 中国华能集团清洁能源技术研究院有限公司 一种利用机组抽汽与吸收式热泵的脱硫浆液余热回收装置
CN115013852A (zh) * 2022-05-31 2022-09-06 华能伊敏煤电有限责任公司 一种多机组供热的疏水余热深度回收利用装置及方法

Also Published As

Publication number Publication date
KR102071105B1 (ko) 2020-03-02
EP3064841B1 (en) 2019-01-02
CN104534539A (zh) 2015-04-22
JP2017510742A (ja) 2017-04-13
US20180223699A1 (en) 2018-08-09
JP6117444B2 (ja) 2017-04-19
KR20170102793A (ko) 2017-09-12
EP3064841A1 (en) 2016-09-07
US10823015B2 (en) 2020-11-03
DK3064841T3 (en) 2019-04-15
EP3064841A4 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2016110124A1 (zh) 一种燃气蒸汽联合循环集中供热装置及供热方法
CN101858231B (zh) 一种以燃气蒸汽联合循环热电联产为主的能源供应系统
KR100975276B1 (ko) 흡수식 히트펌프를 이용한 지역난방수 공급 시스템
CN104963776B (zh) 一种太阳能热互补联合循环发电系统
CN104728823B (zh) 一种新型超临界二氧化碳燃煤锅炉
CN109681281B (zh) 一种可同时回收乏汽和烟气余热的生物质热电联产系统
CN112160806B (zh) 一种耦合富氧燃烧的超临界co2循环冷热电联产系统
WO2017054320A1 (zh) 一种烟气余热回收装置
KR20130086397A (ko) 발전 시스템에서 흡수식 히트펌프를 이용한 발전 효율 향상
CN108005744A (zh) 超临界co2循环的机炉冷能回收与发电供热一体化系统
CN203717051U (zh) 联合循环低温余热回收装置
CN111271702A (zh) 汽轮机平行抽汽能级提升系统
CN202673378U (zh) 火电厂驱动汽轮机乏汽能量利用系统及火电机组
CN203731368U (zh) 一种深度回收余热锅炉排烟余热的装置
CN108709216A (zh) 一种燃气蒸汽联合循环与脱碳系统联合供热系统
CN105114936A (zh) 联合循环低温烟气余热最大化利用系统及方法
CN108843406A (zh) 一种烟气再热式碟式光热与燃气蒸汽联合循环发电系统
CN103573311A (zh) 火电厂驱动汽轮机乏汽能量利用系统及火电机组
CN108590989A (zh) 塔式太阳能集热与燃气-蒸汽联合循环集成的互补系统
CN110159369B (zh) 一种燃煤发电机组能量高效利用系统
CN209604106U (zh) 一种可同时回收乏汽和烟气余热的生物质热电联产系统
CN109707511A (zh) 一种燃机联合循环低温烟气余热利用系统
CN216716345U (zh) 一种集成烟气余热回收、聚光太阳能和吸收式热泵的垃圾焚烧多联产系统
CN207934946U (zh) 一种提高天然气区域热电联供热能利用效率的系统
CN104373310B (zh) 太阳能与燃料互补发电系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016535633

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003301

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015826126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826126

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14910228

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE