WO2016107559A1 - 一种石头纸专用球形碳酸钙及其制备方法 - Google Patents
一种石头纸专用球形碳酸钙及其制备方法 Download PDFInfo
- Publication number
- WO2016107559A1 WO2016107559A1 PCT/CN2015/099521 CN2015099521W WO2016107559A1 WO 2016107559 A1 WO2016107559 A1 WO 2016107559A1 CN 2015099521 W CN2015099521 W CN 2015099521W WO 2016107559 A1 WO2016107559 A1 WO 2016107559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calcium carbonate
- spherical
- stone paper
- caprolactam
- micropores
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/08—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
- C08G69/14—Lactams
- C08G69/16—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
- C08L77/02—Polyamides derived from omega-amino carboxylic acids or from lactams thereof
Definitions
- the present invention relates to the field of stone paper, and in particular to a spherical calcium carbonate which can be used for stone paper and a preparation method thereof.
- a stone paper composed of a polymer powder and an inorganic powder material such as calcium carbonate, which is obtained by thermoplastic mixing, blow molding or calendering. It better solves the dependence of paper on plant fiber pulp, and it does not need plant fiber in the production process, does not cut trees, does not discharge waste water, does not need to add bleach, strong acid, strong alkali, and will not pollute the environment.
- Chinese Patent Publication No. CN1651649A reports a method for preparing synthetic paper from polyolefin and heavy mineral oil such as heavy calcium carbonate, which is composed of 30 ⁇ 50% of polyolefin blend.
- 40 ⁇ 60 ⁇ % natural inorganic mineral powder composition, natural inorganic mineral powder and carrier resin are first granulated by twin-screw extruder to make masterbatch, then the masterbatch and polyolefin mixture and auxiliary agent are evenly mixed.
- a screw extruder and a T-die were pressed out to obtain a synthetic paper.
- Synthetic paper is not only costly because it contains a relatively high amount of resin, but also wastes resources due to the use of a large amount of resin, and cannot be called stone paper.
- stone paper The purpose of stone paper is to make the calcium carbonate content in the paper higher, more than 80%. Since calcium carbonate is inexpensive, the use of calcium carbonate as a primary raw material effectively reduces paper costs and protects the environment.
- Chinese Patent Publication No. CN102154931A discloses a stone paper and a processing method.
- the stone paper is composed of 15 to 30 parts by weight of an organic component and 70 to 85 parts by weight of an inorganic component, and is obtained by kneading, granulating, and calendering to obtain a stone paper.
- the present invention proposes a spherical calcium carbonate having good fluidity in a heated state.
- the spherical calcium carbonate is formed by microporous polymerization of caprolactam infiltrated into the surface of spherical calcium carbonate.
- the spherical characteristics of calcium carbonate and the plasticizing property of caprolactam polymer greatly improve the processing fluidity of stone paper when used for processing of stone paper raw materials. Dispersibility.
- a method for preparing spherical calcium carbonate for stone paper is further provided.
- a spherical calcium carbonate special for stone paper which is characterized by a spherical calcium carbonate surface-embedded caprolactam polymer formed by adsorption of caprolactam by spherical microporous calcium carbonate on the surface.
- a method for preparing spherical calcium carbonate for stone paper comprising the following specific steps:
- the particle size distribution of 98% is a 200-400 mesh calcite-type calcium carbonate, and the water is disposed in a 30-40% slurry, and the calcium carbonate mass is 0.5% sodium hexametaphosphate as a dispersing agent.
- the grinding medium is zirconia microbeads having a particle diameter of 2 - 4 mm, and is ground in a grinder for 5-15 minutes to obtain spherical fine calcium carbonate having a particle diameter of 1250-2500 mesh;
- the spherical fine calcium carbonate slurry obtained in the step (1) is sent to a high-pressure expansion fluid device, and the slurry is pressurized to make the liquid toward the spherical fine calcium carbonate surface under a pressure of 40-60 MPa.
- the energy accumulated on the surface of the spherical calcium carbonate expands due to rapid release, thereby forming micropores on the surface of the calcium carbonate, resulting in micropores on the surface.
- step (3) 98 parts by weight of the microporous spherical fine calcium carbonate obtained in the step (2), 2 parts by weight of caprolactam, 0.01 parts by weight of the catalyst in the reactor is heated to 120 ° C, under vacuum conditions 0. 08-0. 5MPa , heating and mixing for 10-15 minutes, caprolactam melts and penetrates into the micropores of the surface of the spherical fine calcium carbonate;
- step (1) a calcite-type calcium carbonate having a particle size distribution of 98% of 200 mesh to 400 is selected, and a narrow particle size distribution is used to ensure a spherical calcium carbonate having a uniform particle size in the grinding.
- the catalyst described in the step (3) is at least one selected from the group consisting of sodium ethoxide and potassium ethoxide.
- the initiator described in the step (4) is one selected from the group consisting of diisocyanate and 2,6-toluene diisocyanate.
- the present invention relates to a spherical calcium carbonate for stone paper, which is ground from a heavy calcium carbonate to a spherical shape, and is driven by a high pressure of a high pressure expansion fluid device, so that the liquid penetrates into the surface of the spherical fine calcium carbonate, and the capillary is finely released by sudden release of pressure.
- the energy of the surface area of the calcium carbonate swells due to rapid release, thereby forming micropores on the surface of the calcium carbonate, and the surface microporous spherical heavy calcium carbonate adsorbs caprolactam and polymerizes to form a spherical calcium carbonate having a surface-embedded caprolactam polymer.
- the spherical calcium carbonate of the present invention is used for the processing of stone paper raw materials, the spherical characteristics of calcium carbonate and the plasticizing property of the caprolactam polymer greatly improve the processing fluidity and dispersibility of the stone paper. Good processing fluidity of stone paper can be achieved with or without the use of lubricating auxiliaries.
- the ordinary calcium carbonate, the spherical calcium carbonate of the present invention and the polyvinyl chloride were respectively subjected to screw paper extrusion by screw extrusion at a mass ratio of 10:1, and the properties are as follows:
- the spherical calcium carbonate of the present invention has short plasticizing time for the stone paper, good fluidity, and the screw torque is greatly reduced, and the obtained stone is obtained.
- the paper is evenly distributed and has a high degree of smoothness.
- the spherical calcium carbonate of the present invention may be at least 80-90% by mass and 10-20% of polyethylene, polyvinyl chloride, polypropylene, polyethylene terephthalate.
- the utility model is processed by a screw extruder and extruded and rolled in a T-shaped head to obtain a stone paper with uniform thickness and high smoothness, without using a lubricating auxiliary agent, and overcoming the current processing flow of the stone paper after increasing the inorganic powder content. Defects in poor performance.
- the caprolactam polymer is inlaid on the surface of the spherical calcium carbonate, the defect that the stone paper is easy to fall off after increasing the content of the inorganic powder is also overcome.
- the spherical calcium carbonate for stone paper of the present invention is formed by polymerizing micropores of caprolactam infiltrated into the surface of spherical calcium carbonate, and is a spherical calcium carbonate having good fluidity under heating.
- the spherical characteristics of calcium carbonate and the plasticizing property of caprolactam polymer during the processing of stone paper raw materials greatly improve the processing fluidity and dispersibility of stone paper.
- the spherical calcium carbonate special for stone paper of the present invention the surface of the spherical calcium carbonate is inlaid with caprolactam polymer, so the defect that the stone paper is easy to fall off after increasing the content of the inorganic powder is also overcome.
- the particle size distribution of 98% is 200 mesh -400 mesh calcite-type calcium carbonate, and the water is configured to 30-40% of the slurry, adding calcium carbonate mass of 0.5% sodium hexametaphosphate as a dispersing agent
- the grinding medium is made of zirconia microbeads having a particle diameter of 2 - 4 mm, and ground in a grinder for 5 minutes to obtain spherical fine calcium carbonate having a particle diameter of 1250 mesh;
- the spherical fine calcium carbonate slurry obtained in the step (1) is sent to a high-pressure expansion fluid device, and the slurry is pressurized to permeate the liquid toward the surface of the spherical fine calcium carbonate under a pressure of 40 MPa. Hold the pressure for 3 minutes.
- the energy accumulated on the surface of the spherical calcium carbonate expands due to rapid release, thereby forming micropores on the surface of the calcium carbonate to obtain spherical fine carbonic acid having micropores on the surface.
- step (3) 98 parts by weight of the microporous spherical fine calcium carbonate obtained in the step (2), 2 parts by weight of caprolactam, 0.01 parts by weight of sodium ethoxide catalyst in a reaction vessel heated to 120 ° C, vacuum The condition is 0. 08MP a, heated and mixed for 10 minutes, the caprolactam melts and penetrates into the micropores of the surface of the spherical fine calcium carbonate;
- the obtained spherical calcium carbonate and the film grade HDPE6098 are uniformly mixed in a high-speed mixer at a mass ratio of 1:1, extruded and granulated by a close-mixing three-screw reaction type extruder, and passed through a plastic general-purpose film blowing machine.
- 05 ⁇ The blown to a thickness of 0. 05mm stone paper.
- Embodiments of the invention Embodiment 2 Embodiments of the invention Embodiment 2
- the particle size distribution of 98% is a 200-400 mesh calcite-type calcium carbonate, and the water is disposed in a 30-40% slurry, and the calcium carbonate mass is 0.5% sodium hexametaphosphate as a dispersing agent.
- the grinding medium is zirconia microbeads having a particle diameter of 2 - 4 mm, and ground in a grinder for 10 minutes to obtain spherical fine calcium carbonate having a particle size of 2000 mesh;
- the spherical fine calcium carbonate slurry obtained in the step (1) is sent to a high-pressure expansion fluid device, and the slurry is pressurized to permeate the liquid toward the surface of the spherical fine calcium carbonate under a pressure of 4560 MPa. Hold pressure for 5 minutes, when the liquid penetrates into the surface of the spherical fine calcium carbonate, and then quickly relieves pressure, the energy accumulated on the surface of the spherical calcium carbonate expands due to rapid release, thereby forming micropores on the surface of the calcium carbonate, and obtaining spherical fine carbonic acid having micropores on the surface.
- step (3) 98 parts by weight of the microporous spherical fine calcium carbonate obtained in the step (2), 2 parts by weight of caprolactam, 0.01 parts by weight of potassium ethoxide catalyst in a reaction vessel heated to 120 ° C, vacuum The condition is 0. IMPa, heated and mixed for 12 minutes, the caprolactam melts and penetrates into the micropores of the surface of the spherical fine calcium carbonate;
- the mass ratio is evenly mixed at 9:1, blended and granulated in an internal mixer, and obtained by stretching in a SL1200 pressure casting machine to obtain stone paper.
- the particle size distribution of 98% is a 200-400 mesh calcite-type calcium carbonate, and the water is disposed in a 30-40% slurry, and the calcium carbonate mass is 0.5% sodium hexametaphosphate as a dispersing agent.
- the grinding medium is made of zirconia microbeads having a particle diameter of 2 - 4 mm, and ground in a grinder for 15 minutes to obtain spherical fine calcium carbonate having a particle diameter of 1250-2500 mesh;
- the spherical fine calcium carbonate slurry obtained in the step (1) is sent to a high-pressure expansion fluid device, and the slurry is pressurized to permeate the liquid toward the surface of the spherical fine calcium carbonate under a pressure of 60 MPa. Hold the pressure for 3 minutes, when the liquid penetrates into the surface of the spherical fine calcium carbonate, and then quickly relieve pressure, the energy accumulated on the surface of the spherical calcium carbonate expands due to the rapid release, thereby forming micropores on the surface of the calcium carbonate, resulting in micropores on the surface.
- Spherical fine calcium carbonate
- step (3) 98 parts by weight of the microporous spherical fine calcium carbonate obtained in the step (2), 2 parts by weight of caprolactam, 0.01 parts by weight of sodium ethoxide catalyst in a reaction vessel heated to 120 ° C, under vacuum conditions 0.3MPa, heated and mixed for 10 minutes, caprolactam melted and penetrated into the micropores of the surface of the spherical fine calcium carbonate;
- the obtained spherical calcium carbonate and polypropylene 045 were uniformly mixed at a mass ratio of 12:1, directly extruded in a T-die of a double-layer extruder, and calendered with a SYS6S-O230X630 six-roll calendering unit to obtain a stone paper.
- a particle size distribution of 98% is a 200-400 mesh calcite-type calcium carbonate, and a water is disposed in a 30-40% slurry, and a calcium carbonate mass of 0.5% sodium hexametaphosphate is added as a dispersing agent.
- the medium is zirconia microbeads having a particle diameter of 2 - 4 mm, and ground in a grinder for 15 minutes to obtain spherical fine calcium carbonate having a particle diameter of 2,500 mesh;
- the spherical fine calcium carbonate slurry obtained in the step (1) is sent to a high-pressure expansion fluid device, and the slurry is pressurized to permeate the liquid toward the surface of the spherical fine calcium carbonate under a pressure of 50 MPa. Hold the pressure for 4 minutes, when the liquid penetrates into the surface of the spherical fine calcium carbonate, and then quickly relieve pressure, the energy accumulated on the surface of the spherical calcium carbonate expands due to rapid release, thereby forming micropores on the surface of the calcium carbonate, and obtaining spherical fine carbonic acid having micropores on the surface.
- the obtained spherical calcium carbonate and polystyrene are uniformly mixed at a mass ratio of 10:1, and the uniformly mixed material is introduced into an extrusion calendering stretching apparatus, and the reaction is extruded, calendered, and longitudinally pulled by a twin-screw reaction extruder. Stretch 2 times and stretch 2 times in the horizontal direction to obtain stone paper.
- the high pressure of the high pressure expansion fluid device pushes the liquid into the surface of the spherical fine calcium carbonate.
- the energy of the surface of the spherical fine calcium carbonate is expanded by the rapid release, thereby forming micropores on the surface of the calcium carbonate, and the surface of the microporous sphere
- the heavy calcium carbonate adsorbs caprolactam and polymerizes to form a spherical calcium carbonate surface-embedded caprolactam polymer.
- the spherical characteristics of calcium carbonate and the plasticizing property of the caprolactam polymer greatly improve the processing fluidity and dispersibility of the stone paper, and the stone can be reduced or eliminated without using a lubricating aid. Paper good processing fluidity
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明提出一种在加热状态下具有良好流动性的球形碳酸钙。该球形碳酸钙是由己内酰胺渗入球形碳酸钙表面的微孔聚合而成。利用高压膨胀流体装置的高压推动,使液体渗入球状微细碳酸钙表面,通过突然释放压力,球状微细碳酸钙表面积聚的能量由于快速释放膨胀,从而在碳酸钙表面形成微孔,表面微孔的球形重质碳酸钙吸附己内酰胺并聚合形成的一种表面镶嵌己内酰胺聚合物的球形碳酸钙。该球形碳酸钙用于石头纸原料加工时,碳酸钙的球状特性和己内酰胺聚合物易塑化特性大幅提高了石头纸的加工流动性和分散性,可减少或者不使用润滑助剂即可达到石头纸良好的加工流动性。
Description
一种石头纸专用球形碳酸钙及其制备方法 技术领域
[0001] 本发明涉及石头纸领域, 具体提供了一种可用于石头纸的球形碳酸钙以及其制 备方法。
背景技术
[0002] 蔡伦利用植物纤维造纸的技术是人类文明史上的一项杰出的发明创造, 纸的出 现为人类的生活、 学习带来了极大的便利。 造纸技术经过不断变革发展至今, 几乎达到了完美的地步。 但随着纸张在包装等领域的大量应用, 需求越来越大 , 生产需要消耗大量的森林资源, 产生大量的废水。 因此利用植物纤维造纸的 技术面领着严峻的挑战。
[0003] 为了摆脱造纸对植物纤维造纸的依赖, 消除造纸的废水排放, 一种由高分子聚 合物与碳酸钙等无机粉体材料组成, 通过热塑混炼、 吹塑或压延得到的石头纸 较好的解决了纸张对植物纤维纸浆的依赖, 而且制作过程无需植物纤维, 不砍 伐树木, 不排放废水, 不需添加漂白剂、 强酸、 强碱, 不会对环境造成污染。
[0004] 中国专利公开号 CN1651649A报道了由聚烯烃和重质、 轻质碳酸钙等无机矿物粉 为主要原料的制备合成纸的方法, 该合成纸是由 30〜50^%聚烯烃共混物、 40〜 60^%天然无机矿物粉组成, 天然无机矿物粉与载体树脂先经双螺杆挤出机造粒 、 制成母粒, 再将母粒与聚烯烃混合物和助剂混合均匀, 经双螺杆挤出机、 T型 模头压出得到合成纸。 合成纸由于含有较高含量的树脂, 因此不但成本高, 而 且由于使用大量树脂, 因此造成资源浪费, 不能称之为石头纸。
[0005] 石头纸的目的是使纸中的碳酸钙含量更高, 超过 80%以上。 由于碳酸钙价格低 廉, 因此使用碳酸钙做主要原材料有效的降低了纸张成本, 保护了环境。 中国 发明专利公开号 CN102154931A公开了一种石头纸及加工方法。 其中石头纸是由 1 5-30的重量份的有机组分和 70-85重量份的无机组分组成, 通过密炼捏合、 造粒 、 压延机挤出得到石头纸。
发明概述
技术问题
[0006] 在石头纸制备的过程中, 由于无机粉体含量占比超过 80%, 流动性大幅降低, 分散越来越困难, 在 τ型摸头挤出压延时导致均匀度受限。 尽管采用过量润滑助 剂可以弥补石头纸加工流动性差的缺陷, 但由于过多使用润滑助剂导致石头纸 张表面涂布、 印刷困难。 尤其是石头纸中使用过量润滑助剂直接降低石头纸的 强度和挺度。
问题的解决方案
技术解决方案
[0007] 为了提高石头纸的加工流动性和分散性, 本发明提出一种在加热状态下具有良 好流动性的球形碳酸钙。 该球形碳酸钙是由己内酰胺渗入球形碳酸钙表面的微 孔聚合而成, 在用于石头纸原料加工时碳酸钙的球状特性和己内酰胺聚合物易 塑化特性大幅提高了石头纸的加工流动性和分散性。 进一步提供石头纸专用的 球形碳酸钙的制备方法。
[0008] 本发明一种石头纸专用球形碳酸钙是采用如下技术方案实现的:
[0009] 一种石头纸专用球形碳酸钙, 其特征是由表面微孔的球形重质碳酸钙吸附己内 酰胺并聚合形成的一种表面镶嵌己内酰胺聚合物的球形碳酸钙。
[0010] 一种石头纸专用球形碳酸钙的制备方法, 包括以下具体步骤:
[0011] ( 1 ) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置成 30-40% 的浆料, 加入碳酸钙质量 0. 5%的六偏磷酸钠作为分散剂, 研磨介质采用粒径为 2 -4mm的氧化锆微珠, 在研磨机中研磨 5-15分钟, 得到粒径为 1250-2500目的球状 微细碳酸钙;
[0012] ( 2 ) 将步骤 (1 ) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置中, 对浆 料进行加压, 在 40-60MPa的压力条件下使液体向球状微细碳酸钙表面渗透, 保 压 3-5分钟, 当液体渗入球状微细碳酸钙表面, 然后迅速泄压, 积聚在球形碳酸 钙表面的能量由于快速释放膨胀, 从而在碳酸钙表面形成微孔, 得到表面具有 微孔的球形微细碳酸钙;
[0013] ( 3 ) 将步骤 (2 ) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的己内酰胺 、 0. 01重量份的催化剂在反应釜中加热条件为 120°C, 真空条件为 0. 08-0. 5MPa
, 加热混合 10-15分钟, 己内酰胺熔化并渗入球形微细碳酸钙表面的微孔;
[0014] ( 4) 在反应釜加入 0. 008重量份的引发剂, 并使应釜加压至 l-2MPa, 温度升至
180-200°C, 搅拌 15-20分钟, 渗入球形微细碳酸钙表面微孔的己内酰胺聚合, 得到一种石头纸专用的球形碳酸钙。
[0015] 上述制备方法,步骤 (1 ) 中选用粒度分布 98%为 200目 -400的方解石型碳酸钙, 通过较窄的粒径分布, 确保在研磨中得到粒度均匀的球形碳酸钙。
[0016] 上述制备方法步,步骤 (3 ) 中所述的催化剂选用乙醇钠、 乙醇钾中的至少一种
[0017] 上述制备方法步,步骤 (4) 中所述的引发剂选用二异氰酸酯、 2, 6甲苯二异氰 酸酯中的一种。
[0018] 本发明一种石头纸专用球形碳酸钙, 是由重质碳酸钙通过研磨至球形, 利用高 压膨胀流体装置的高压推动, 使液体渗入球状微细碳酸钙表面, 通过突然释放 压力, 球状微细碳酸钙表面积聚的能量由于快速释放膨胀, 从而在碳酸钙表面 形成微孔, 表面微孔的球形重质碳酸钙吸附己内酰胺并聚合形成的一种表面镶 嵌己内酰胺聚合物的球形碳酸钙。 与普通碳酸钙用于石头纸加工相比,本发明球 形碳酸钙用于石头纸原料加工时, 碳酸钙的球状特性和己内酰胺聚合物易塑化 特性大幅提高了石头纸的加工流动性和分散性, 可减少或者不使用润滑助剂即 可达到石头纸良好的加工流动性。 将普通碳酸钙、 本发明球形碳酸钙分别与聚 氯乙烯以质量比 10 : 1通过螺杆挤出进行石头纸加工性的测试, 性能如下表 1 :
[0019] 表 1 本发明球形碳酸钙、 普通碳酸钙用于石头纸加工的性能对比
[]
[表 1]
[0020] 通过本发明球形碳酸钙与普通重质碳酸钙应用于石头纸加工的比较, 本发明球 形碳酸钙用于石头纸的塑化时间短, 流动性好, 螺杆扭矩大幅降低, 得到的石 头纸分散均匀, 平滑度高。
[0021] 作为石头纸专用原料, 本发明球形碳酸钙可以以 80-90%的质量比例与 10-20%的 聚乙烯、 聚氯乙烯、 聚丙烯、 聚对苯二甲酸乙二醇酯中至少一种通过螺杆挤出 机加工, 在 T型摸头挤出压延, 得到厚薄分散均匀、 高平滑度的石头纸, 无需使 用润滑助剂, 克服了目前的石头纸在提高无机粉体含量后加工流动性能变差的 缺陷。 另外由于球形碳酸钙表面镶嵌己内酰胺聚合物, 因此石头纸在提高无机 粉体含量后易掉粉的缺陷也得到克服。
发明的有益效果
有益效果
[0022] 本发明一种石头纸专用球形碳酸钙及其制备方法, 与现有技术相比突出的特点 和有益的效果在于:
[0023] 1、 本发明一种石头纸专用球形碳酸钙, 由己内酰胺渗入球形碳酸钙表面的微 孔聚合而成, 是一种在加热状态下具有良好流动性的球形碳酸钙。 用于石头纸 原料加工时碳酸钙的球状特性和己内酰胺聚合物易塑化特性大幅提高了石头纸 的加工流动性和分散性。 克服了目前的石头纸在提高无机粉体含量后加工流动
性能变差的缺陷
[0024] 2、 本发明一种石头纸专用球形碳酸钙, 球形碳酸钙表面镶嵌己内酰胺聚合物 , 因此石头纸在提高无机粉体含量后易掉粉的缺陷也得到克服。
[0025] 3、 本发明一种石头纸专用球形碳酸钙的制备方法, 采用重质碳酸钙球化和表 面微孔化, 无需合成, 制备工艺易控, 成本低, 适合于大规模化生产应用。 实施该发明的最佳实施例
本发明的最佳实施方式
[0026] 实施例 1
[0027] ( 1 ) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置成 30-40% 的浆料, 加入碳酸钙质量 0. 5%的六偏磷酸钠作为分散剂, 研磨介质采用粒径为 2 -4mm的氧化锆微珠, 在研磨机中研磨 5分钟, 得到粒径为 1250目的球状微细碳酸 钙;
[0028] ( 2 ) 将步骤 (1 ) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置中, 对浆 料进行加压, 在 40MPa的压力条件下使液体向球状微细碳酸钙表面渗透, 保压 3 分钟, 当液体渗入球状微细碳酸钙表面, 然后迅速泄压, 积聚在球形碳酸钙表 面的能量由于快速释放膨胀, 从而在碳酸钙表面形成微孔, 得到表面具有微孔 的球形微细碳酸钙;
[0029] ( 3 ) 将步骤 (2 ) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的己内酰胺 、 0. 01重量份的乙醇钠催化剂在反应釜中加热条件为 120°C, 真空条件为 0. 08MP a, 加热混合 10分钟, 己内酰胺熔化并渗入球形微细碳酸钙表面的微孔;
[0030] ( 4) 在反应釜加入 0. 008重量份的二异氰酸酯, 并使应釜加压至 2MPa, 温度升 至 180°C, 搅拌 20分钟, 渗入球形微细碳酸钙表面微孔的己内酰胺聚合, 得到一 种石头纸专用的球形碳酸钙。
[0031] 将得到的球形碳酸钙与薄膜级 HDPE6098以质量比 9 : 1在高速混合机中混合均匀 , 经密炼式三螺杆反应型挤出机挤出造粒, 通过塑料通用薄膜吹塑机吹制得到 厚度为 0. 05mm的石头纸。
发明实施例
本发明的实施方式
[0032] 实施例 2
[0033] ( 1 ) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置成 30-40% 的浆料, 加入碳酸钙质量 0. 5%的六偏磷酸钠作为分散剂, 研磨介质采用粒径为 2 -4mm的氧化锆微珠, 在研磨机中研磨 10分钟, 得到粒径为 2000目的球状微细碳 酸钙;
[0034] ( 2 ) 将步骤 (1 ) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置中, 对浆 料进行加压, 在 4560MPa的压力条件下使液体向球状微细碳酸钙表面渗透, 保压 5分钟, 当液体渗入球状微细碳酸钙表面, 然后迅速泄压, 积聚在球形碳酸钙表 面的能量由于快速释放膨胀, 从而在碳酸钙表面形成微孔, 得到表面具有微孔 的球形微细碳酸钙;
[0035] ( 3 ) 将步骤 (2 ) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的己内酰胺 、 0. 01重量份的乙醇钾催化剂在反应釜中加热条件为 120°C, 真空条件为 0. IMPa , 加热混合 12分钟, 己内酰胺熔化并渗入球形微细碳酸钙表面的微孔;
[0036] ( 4) 在反应釜加入 0. 008重量份的 2, 6甲苯二异氰酸酯, 并使应釜加压至 IMPa , 温度升至 180°C, 搅拌 15分钟, 渗入球形微细碳酸钙表面微孔的己内酰胺聚合 , 得到一种石头纸专用的球形碳酸钙。
[0037] 将得到的球形碳酸钙与 PET以
质量比 9 : 1混合均匀, 在密炼机中共混造粒, 在 SL1200压流延机拉伸成型即可得 到石头纸。
[0038] 实施例 3
[0039] ( 1 ) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置成 30-40% 的浆料, 加入碳酸钙质量 0. 5%的六偏磷酸钠作为分散剂, 研磨介质采用粒径为 2 -4mm的氧化锆微珠, 在研磨机中研磨 15分钟, 得到粒径为 1250-2500目的球状微 细碳酸钙;
[0040] ( 2 ) 将步骤 (1 ) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置中, 对浆 料进行加压, 在 60MPa的压力条件下使液体向球状微细碳酸钙表面渗透, 保压 3 分钟, 当液体渗入球状微细碳酸钙表面, 然后迅速泄压, 积聚在球形碳酸钙表 面的能量由于快速释放膨胀, 从而在碳酸钙表面形成微孔, 得到表面具有微孔
的球形微细碳酸钙;
[0041] (3) 将步骤 (2) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的己内酰胺 、 0.01重量份的乙醇钠催化剂在反应釜中加热条件为 120°C, 真空条件为 0.3MPa , 加热混合 10分钟, 己内酰胺熔化并渗入球形微细碳酸钙表面的微孔;
[0042] (4) 在反应釜加入 0.008重量份的 2, 6甲苯二异氰酸酯, 并使应釜加压至 2MPa , 温度升至 1900°C, 搅拌 20分钟, 渗入球形微细碳酸钙表面微孔的己内酰胺聚 合, 得到一种石头纸专用的球形碳酸钙。
[0043] 将得到的球形碳酸钙与聚丙烯 045以质量比 12: 1混合均匀, 直接在双层挤出机 的 T型模头挤出后用 SYS6S-O230X630六辊压延机组压延得到石头纸。
[0044] 实施例 4
[0045] (1) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置成 30-40% 的浆料, 加入碳酸钙质量 0.5%的六偏磷酸钠作为分散剂, 研磨介质采用粒径为 2 -4mm的氧化锆微珠, 在研磨机中研磨 15分钟, 得到粒径为 2500目的球状微细碳 酸钙;
[0046] (2) 将步骤 (1) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置中, 对浆 料进行加压, 在 50MPa的压力条件下使液体向球状微细碳酸钙表面渗透, 保压 4 分钟, 当液体渗入球状微细碳酸钙表面, 然后迅速泄压, 积聚在球形碳酸钙表 面的能量由于快速释放膨胀, 从而在碳酸钙表面形成微孔, 得到表面具有微孔 的球形微细碳酸钙;
[0047] (3) 将步骤 (2) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的己内酰胺 、 0.01重量份的催化剂在反应釜中加热条件为 120°C, 真空条件为 0.5MPa, 加热 混合 10分钟, 己内酰胺熔化并渗入球形微细碳酸钙表面的微孔;
[0048] (4) 在反应釜加入 0.008重量份的二异氰酸酯, 并使应釜加压至 1.5MPa, 温度 升至 180°C, 搅拌 18分钟, 渗入球形微细碳酸钙表面微孔的己内酰胺聚合, 得到 一种石头纸专用的球形碳酸钙。
[0049] 将得到的球形碳酸钙与聚苯乙烯以质量比 10: 1混合均匀, 将混合均匀的物料 引入挤出压延拉伸设备, 通过双螺杆反应挤出机反应挤出、 压延、 纵向拉伸 2倍 、 横向拉伸 2倍得到石头纸。
工业实用性
利用高压膨胀流体装置的高压推动, 使液体渗入球状微细碳酸钙表面, 通过突 然释放压力, 球状微细碳酸钙表面积聚的能量由于快速释放膨胀, 从而在碳酸 钙表面形成微孔, 表面微孔的球形重质碳酸钙吸附己内酰胺并聚合形成的一种 表面镶嵌己内酰胺聚合物的球形碳酸钙。 该球形碳酸钙用于石头纸原料加工时 , 碳酸钙的球状特性和己内酰胺聚合物易塑化特性大幅提高了石头纸的加工流 动性和分散性, 可减少或者不使用润滑助剂即可达到石头纸良好的加工流动性
Claims
[权利要求 1] 一种石头纸专用球形碳酸钙, 其特征是由表面微孔的球形重质碳酸钙 吸附己内酰胺并聚合形成的一种表面镶嵌己内酰胺聚合物的球形碳酸 钙。
[权利要求 2] —种如权利要求 1所述一种石头纸专用球形碳酸钙的制备方法, 其特 征在于: 具体方法如下:
( 1 ) 选用粒度分布 98%为 200目 -400目的方解石型碳酸钙, 与水配置 成 30-40%的浆料, 加入碳酸钙质量 0. 5%的六偏磷酸钠作为分散剂, 研 磨介质采用粒径为 2-4mm的氧化锆微珠, 在研磨机中研磨 5_15分钟, 得到粒径为 1250-2500目的球状微细碳酸钙;
( 2 ) 将步骤 (1 ) 得到的球状微细碳酸钙浆料送入高压膨胀流体装置 中, 对浆料进行加压, 在 40-60MPa的压力条件下使液体向球状微细碳 酸钙表面渗透, 保压 3-5分钟, 当液体渗入球状微细碳酸钙表面, 然 后迅速泄压, 积聚在球形碳酸钙表面的能量由于快速释放膨胀, 从而 在碳酸钙表面形成微孔, 得到表面具有微孔的球形微细碳酸钙;
( 3 ) 将步骤 (2 ) 得到的微孔球形微细碳酸钙 98重量份、 2重量份的 己内酰胺、 0. 01重量份的催化剂在反应釜中加热条件为 120°C, 真空 条件为 0. 08-0. 5MPa, 加热混合 10-15分钟, 己内酰胺熔化并渗入球形 微细碳酸钙表面的微孔;
( 4) 在反应釜加入 0. 008重量份的引发剂, 并使应釜加压至 l-2MPa, 温度升至 180-200°C, 搅拌 15-20分钟, 渗入球形微细碳酸钙表面微孔 的己内酰胺聚合, 得到一种石头纸专用的球形碳酸钙。
[权利要求 3] 根据权利要求 2所述一种石头纸专用球形碳酸钙的制备方法, 其特征 在于: 制备步骤 (1 ) 选用粒度分布 98%为 200目 -400的方解石型碳酸 钙, 通过较窄的粒径分布, 确保在研磨中得到粒度均匀的球形碳酸钙
[权利要求 4] 根据权利要求 1所述一种石头纸专用球形碳酸钙的制备方法, 其特征 在于: 制备步骤 (3 ) 所述的催化剂选用乙醇钠、 乙醇钾中的至少一
种。
[权利要求 5] 根据权利要求 1所述一种石头纸专用球形碳酸钙的制备方法, 其特征 在于: 步骤 (4) 中所述的引发剂选用二异氰酸酯、 2, 6甲苯二异氰酸 酯中的一种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410839853.4 | 2014-12-30 | ||
CN201410839853.4A CN104558687B (zh) | 2014-12-30 | 2014-12-30 | 一种石头纸专用球形碳酸钙及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016107559A1 true WO2016107559A1 (zh) | 2016-07-07 |
Family
ID=53075814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/099521 WO2016107559A1 (zh) | 2014-12-30 | 2015-12-29 | 一种石头纸专用球形碳酸钙及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104558687B (zh) |
WO (1) | WO2016107559A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104558687B (zh) * | 2014-12-30 | 2017-12-12 | 江苏锡沂高新区科技发展有限公司 | 一种石头纸专用球形碳酸钙及其制备方法 |
CN105111501B (zh) * | 2015-07-30 | 2018-05-01 | 杭州明鑫钙业有限公司 | 一种热塑性碳酸钙增韧粒子及其制备方法 |
MX2017005123A (es) * | 2017-04-20 | 2018-01-17 | Ind Sustentables Nava S A P I De C V | Papel mineral ecologico de plastico reciclado y proceso para la produccion del mismo. |
CN109943101B (zh) * | 2019-03-29 | 2022-09-27 | 桂林理工大学 | 一种耐高温超细活性碳酸钙的制备方法 |
CN112127211B (zh) * | 2020-09-27 | 2023-05-23 | 山西宇皓环保纸业有限公司 | 一种石头纸、碳酸钙浆料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1757668A (zh) * | 2005-11-11 | 2006-04-12 | 清华大学 | 高分子/碳酸钙纳米粒子、其功能型粒子及其制备方法 |
CN102822098A (zh) * | 2010-04-12 | 2012-12-12 | 日东电工株式会社 | 粒子、粒子分散液、粒子分散树脂组合物、其制造方法、树脂成形体、其制造方法、催化剂粒子、催化剂液、催化剂组合物、催化剂成形体、钛络合物、氧化钛粒子及其制造方法 |
CN103099777A (zh) * | 2011-11-15 | 2013-05-15 | 上海高科生物工程有限公司 | 以多孔碳酸钙为载体的生物酶水凝胶剂及制备方法 |
CN103772747A (zh) * | 2012-10-22 | 2014-05-07 | 中国石油化工股份有限公司 | 交联型有机聚合物-碳酸钙复合粒子及其制备方法 |
CN104558687A (zh) * | 2014-12-30 | 2015-04-29 | 成都新柯力化工科技有限公司 | 一种石头纸专用球形碳酸钙及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101871182A (zh) * | 2010-06-18 | 2010-10-27 | 成都新柯力化工科技有限公司 | 热塑性环保石头纸及制备方法 |
CN102936410B (zh) * | 2012-11-23 | 2015-12-09 | 杭州千石科技有限公司 | 一种原位聚合制备聚酰胺基导热复合材料的方法 |
-
2014
- 2014-12-30 CN CN201410839853.4A patent/CN104558687B/zh active Active
-
2015
- 2015-12-29 WO PCT/CN2015/099521 patent/WO2016107559A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1757668A (zh) * | 2005-11-11 | 2006-04-12 | 清华大学 | 高分子/碳酸钙纳米粒子、其功能型粒子及其制备方法 |
CN102822098A (zh) * | 2010-04-12 | 2012-12-12 | 日东电工株式会社 | 粒子、粒子分散液、粒子分散树脂组合物、其制造方法、树脂成形体、其制造方法、催化剂粒子、催化剂液、催化剂组合物、催化剂成形体、钛络合物、氧化钛粒子及其制造方法 |
CN103099777A (zh) * | 2011-11-15 | 2013-05-15 | 上海高科生物工程有限公司 | 以多孔碳酸钙为载体的生物酶水凝胶剂及制备方法 |
CN103772747A (zh) * | 2012-10-22 | 2014-05-07 | 中国石油化工股份有限公司 | 交联型有机聚合物-碳酸钙复合粒子及其制备方法 |
CN104558687A (zh) * | 2014-12-30 | 2015-04-29 | 成都新柯力化工科技有限公司 | 一种石头纸专用球形碳酸钙及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104558687B (zh) | 2017-12-12 |
CN104558687A (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016107559A1 (zh) | 一种石头纸专用球形碳酸钙及其制备方法 | |
CN102060564B (zh) | 轻质环保石头纸及制备方法 | |
CN102093632B (zh) | 一种环保合成纸的制备方法 | |
CN101962455B (zh) | 注塑型微发泡木塑复合材料及制备方法 | |
CN109251412B (zh) | 一种超疏水聚四氟乙烯/高分子材料复合微孔泡沫及其制备方法 | |
CN111253677B (zh) | 一种低密度聚丙烯珠粒泡沫、其制备方法及应用 | |
CN111087701B (zh) | 抗菌聚丙烯组合物和微孔抗菌聚丙烯发泡板材及其制备方法和发泡片材 | |
CN112029173B (zh) | 一种聚乙烯透气膜及其制备方法 | |
KR102323858B1 (ko) | 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법 | |
CN103509203A (zh) | 一种增强的聚丙烯发泡珠粒的制备方法 | |
CN112795067A (zh) | 一种高透气高耐渗透聚烯烃透气膜专用料及其制备方法和应用 | |
CN106519390B (zh) | 聚烯烃石墨烯纳米复合材料及其制备方法 | |
CN107236167A (zh) | 一种高性能聚乙烯透气膜的制备方法 | |
CN111978644B (zh) | 一种聚丙烯透气膜及其制备方法 | |
CN101722689B (zh) | 一种微发泡复合板及其制造方法 | |
CN104987526A (zh) | 聚丙烯系树脂复合发泡颗粒及其制备方法与应用 | |
CN102558637A (zh) | 一种有机过氧化物母粒及其制备方法 | |
CN111234430B (zh) | 用于选择性激光烧结的聚乙烯醇基复合粉体及其制备方法 | |
CN101845172B (zh) | 聚丙烯高填充增韧母粒及其制备方法 | |
CN110128741B (zh) | 聚烯烃发泡材料及其制备方法 | |
CN104513430A (zh) | 一种仿藤条聚丙烯发泡材料及其制备方法 | |
CN109265825B (zh) | 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法 | |
JP7010721B2 (ja) | 樹脂ペレット | |
CN110283385A (zh) | 一种微发泡阻燃聚丙烯复合材料及其制备方法 | |
CN115627028A (zh) | 一种原位微纤化增强聚合物复合隔热泡沫材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15875235 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15875235 Country of ref document: EP Kind code of ref document: A1 |