WO2016106788A1 - 激光结晶系统及其晶化能量控制方法 - Google Patents

激光结晶系统及其晶化能量控制方法 Download PDF

Info

Publication number
WO2016106788A1
WO2016106788A1 PCT/CN2015/070185 CN2015070185W WO2016106788A1 WO 2016106788 A1 WO2016106788 A1 WO 2016106788A1 CN 2015070185 W CN2015070185 W CN 2015070185W WO 2016106788 A1 WO2016106788 A1 WO 2016106788A1
Authority
WO
WIPO (PCT)
Prior art keywords
mura
crystallization
real
time
energy control
Prior art date
Application number
PCT/CN2015/070185
Other languages
English (en)
French (fr)
Inventor
王志刚
李子健
唐丽娟
李勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,638 priority Critical patent/US20160189990A1/en
Publication of WO2016106788A1 publication Critical patent/WO2016106788A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line

Definitions

  • the invention belongs to the technical field of crystallization manufacturing, in particular to a crystallization energy control method of a laser crystallization system, and to a laser crystallization system using the crystallization energy control method.
  • liquid crystal displays have the characteristics of thin and light appearance, low power consumption, good resolution, no radiation and anti-electromagnetic interference, so they have been widely used in mobile phones, personal digital assistants (PDAs), notebook computers, flat panel displays, etc. Information on home appliances.
  • PDAs personal digital assistants
  • LCDs notebook computers
  • flat panel displays etc. Information on home appliances.
  • LTPSTFT low-temperature polysilicon transistor
  • low-temperature polysilicon processes mostly use excimer laser annealing (Excimer Laser) Annealing, ELA) technology is carried out by using an excimer laser as a heat source to convert an amorphous silicon structure into a polycrystalline silicon structure.
  • ELA excimer laser annealing
  • an excimer laser passes through the optical projection system, a laser beam with uniform energy distribution is generated and projected onto the substrate on which the amorphous silicon film is deposited, so that the amorphous silicon film absorbing the excimer laser energy is recrystallized and converted into polycrystalline silicon. structure. Since the above process is completed below 600 ° C, generally a glass substrate or a plastic substrate can be applied, thereby expanding the application range of the low temperature polysilicon thin film transistor liquid crystal display.
  • a substrate is irradiated with an excimer laser beam, thereby converting pre-deposited amorphous silicon on the substrate into a polysilicon structure.
  • the quality of the polysilicon structure on the surface of the substrate directly affects the characteristics of the various components formed later, and the crystal state of the polysilicon is mainly affected by two factors, one is the thickness of the amorphous silicon film on the surface of the substrate, and the other is the excimer laser light. Ground energy density.
  • the thickness or crystalline state of the amorphous silicon film on the surface of each batch of the substrate subjected to the excimer laser annealing process may be different depending on the design of the low-temperature polysilicon thin film transistor liquid crystal display or the reaction conditions of the amorphous silicon plating process. Therefore, an excimer laser with an appropriate energy density must be selected for the excimer laser annealing process, otherwise the polycrystalline silicon crystal state on the surface of the substrate may be poor.
  • the principle of the excimer laser is to store the gas in a closed chamber and use the electric excitation gas to generate the excimer laser, the excimer laser usually has to refill the new gas after about ten hours of use.
  • the energy density of a molecular laser is attenuated with time of use, so its energy density is not easily controlled. Based on the limitation of the excimer laser itself, even if an optimal energy density is set in advance during the excimer laser process, the actual energy density of the excimer laser is often different from the preset value due to the attenuation, and the influence is affected.
  • the crystalline state of polycrystalline silicon is often different from the preset value due to the attenuation, and the influence is affected.
  • the crystallization process requires control of the condition of Mura (the color unevenness), and the current practice is to check the condition of Mura by the offline MAC/MIC (macroscopic micro defect inspection machine), and then, online.
  • the best crystallization energy range is confirmed below.
  • this method requires downtime confirmation, offline adjustment, which has a great impact on the work of the mainframe, and often takes about 30 minutes at a time, plus it can not be changed immediately, which is easy to cause product yield loss.
  • such an inspection method is mainly for human eye examination, which is prone to misjudgment, and human factors influence judgment.
  • the embodiment of the present invention provides a crystallization energy control method for a laser crystallization system, which effectively solves the problem that the Mura condition of the product cannot be effectively monitored in the prior art, and thus the corresponding crystallization energy cannot be controlled, and the working efficiency is Low technical problems with low accuracy.
  • an embodiment of the present invention provides a laser crystallization system, wherein the laser crystallization system includes: a Mura monitoring device for monitoring a real-time Mura condition during crystallization; a host station, and the Mura monitoring The device is connected to determine a real-time level of the real-time Mura condition monitored by the Mura monitoring device, and generate a crystallization energy control instruction according to the real-time level; a crystallization device is connected to the host station for executing The crystallization energy control command generated by the host station controls the output crystallization energy.
  • the host station includes: a storage module, a correspondence table for storing a one-to-one correspondence between a real-time level of the Mura condition and the crystallization energy control command; and a determining module, configured to be monitored according to the Mura monitoring device A real-time Mura condition finds a corresponding level of crystallization energy control commands from the memory module.
  • the determining module is further configured to determine whether a real-time level of the real-time Mura condition reaches a preset threshold, and when it is determined that the preset threshold is less than the preset threshold, the process of generating a crystallization energy control instruction is not performed, so that The crystallization apparatus maintains the original crystallization energy output level.
  • an embodiment of the present invention further provides a crystallization energy control method of a laser crystallization system, wherein the crystallization energy control method includes: monitoring a real-time Mura condition in a crystallization process by a Mura monitoring device; The Mura monitoring device monitors the real-time level of the obtained real-time Mura condition and generates a crystallization energy control command based on the real-time level; the crystallization energy control command is executed to control the output crystallization energy.
  • the crystallization energy control method further includes: a correspondence table that stores a one-to-one correspondence between the real-time level of the Mura condition and the crystallization energy control command.
  • the step of generating a crystallization energy control instruction according to the real-time level specifically includes: searching for a corresponding level of crystallization energy control instruction from the correspondence table according to the real-time Mura condition monitored by the Mura monitoring device.
  • the step of determining the real-time level of the real-time Mura condition that is monitored by the Mura monitoring device further includes: determining whether the real-time level of the real-time Mura condition reaches a preset threshold, and determining that the threshold value is less than the preset threshold At the time, the process of generating the crystallization energy control command is not performed, so that the original crystallization energy output level is maintained.
  • the embodiment of the present invention uses the Mura monitoring device to monitor the status of the Mura online in real time, and controls the crystallization energy output by the crystallization device according to the real-time Mura condition. It is not difficult to see that the present invention can effectively monitor the Mura condition of the product, thereby controlling the corresponding crystallization energy, effectively improving the work efficiency compared with the manual method, and ensuring accuracy and online control to ensure the product. Yield.
  • 1 is a block diagram showing the functional blocks of an embodiment of the laser crystallization system of the present invention.
  • FIG. 2 is a block diagram of functional modules of an embodiment of the host station shown in FIG. 1;
  • FIG. 3 is a flow chart showing an embodiment of a method for controlling crystallization energy of a laser crystallization system of the present invention.
  • FIG. 1 is a functional block diagram of an embodiment of a laser crystallization system according to the present invention.
  • the laser crystallization system of the present embodiment includes a Mura monitoring device 10, a host station 11, and a crystallization device 12.
  • the Mura monitoring device 10 is used to monitor real-time Mura conditions during crystallization.
  • the host station 11 is connected to the Mura monitoring device 10 for determining the real-time level of the real-time Mura condition monitored by the Mura monitoring device 10, and generating a crystallization energy control command according to the real-time level.
  • the crystallization apparatus 12 of the present embodiment is connected to the main stage 11 for executing a crystallization energy control command generated by the main stage 11 to control the output crystallization energy.
  • FIG. 2 is a functional block diagram of an embodiment of the host station shown in FIG. 1 , wherein the host station 11 can include a storage module 111 and a determination module 112 .
  • the storage module 111 is configured to store a correspondence table of a one-to-one correspondence between the real-time level of the Mura condition and the crystallization energy control command.
  • the determining module 112 is configured to search the storage module 111 for a corresponding level of crystallizing energy control command according to the real-time Mura condition monitored by the Mura monitoring device 10.
  • the determining module 112 is further configured to determine whether the real-time level of the real-time Mura condition reaches a preset threshold, and when it is determined that the threshold is less than the preset threshold, the process of generating the crystallization energy control instruction is not performed, so that the crystallization device remains original. Some crystallization energy output levels. In this manner, the present embodiment can avoid frequently and repeatedly querying the correspondence table, and compare the detected real-time Mura status with the preset threshold in advance to directly determine whether it is necessary to control the crystallization energy and improve the working efficiency.
  • the Mura monitoring device 10 of the present embodiment may include an excimer laser annealing device, a light source generator, an image receiver, etc., wherein the excimer laser annealing device can generate an excimer laser and be in a line shape.
  • the substrate is irradiated in a scanning manner, whereby the crystalline state of a silicon thin film on the surface of the substrate is recrystallized from an amorphous silicon structure to be converted into a polycrystalline silicon structure or the like.
  • the embodiment of the present invention uses the Mura monitoring device 10 to monitor the condition of the Mura online in real time, and controls the crystallization energy output by the crystallization device 12 according to the real-time Mura condition. It is not difficult to see that the present invention can effectively monitor the Mura condition of the product, thereby controlling the corresponding crystallization energy, effectively improving the work efficiency compared with the manual method, and ensuring accuracy and online control to ensure the product. Yield.
  • FIG. 3 is a schematic flow chart of an embodiment of a method for controlling crystallization energy of a laser crystallization system according to the present invention.
  • the crystallization energy control method of the present embodiment includes the following steps.
  • step S200 the real-time Mura condition during the crystallization process is monitored by the Mura monitoring device.
  • step S200 the present embodiment may employ an online monitoring Mura monitoring device that can be connected to the ELA machine.
  • Step S201 determining a real-time level of the real-time Mura condition monitored by the Mura monitoring device, and generating a crystallization energy control command according to the real-time level.
  • the embodiment may further store a correspondence table of a one-to-one correspondence between the real-time level of the Mura condition and the crystallization energy control instruction, and then, when generating the crystallization energy control instruction according to the real-time level, the Mura monitoring may be performed according to the Mura.
  • the real-time Mura condition obtained by the device monitoring finds the corresponding level of crystallization energy control command from the correspondence table. It is not difficult to understand that the working efficiency and working performance of the host station 11 can be effectively improved by setting the correspondence table.
  • the embodiment may determine whether the real-time level of the real-time Mura condition reaches a preset threshold, and when it is determined that the threshold is less than the preset threshold, The process of generating a crystallization energy control command is performed such that the original crystallization energy output level is maintained. In this way, the embodiment can avoid frequently and repeatedly querying the correspondence table, and compare the detected real-time Mura status with the preset threshold in advance to directly determine whether it is necessary to control the crystallization energy and improve the working efficiency.
  • step S202 a crystallization energy control command is executed to control the output crystallization energy.
  • the embodiment of the invention utilizes the Mura monitoring device to monitor the condition of the Mura online in real time, and controls the crystallization energy output by the crystallization device according to the real-time Mura condition. It is not difficult to see that the present invention can effectively monitor the Mura condition of the product, thereby controlling the corresponding crystallization energy, effectively improving the work efficiency compared with the manual method, and ensuring accuracy and online control to ensure the product. Yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种激光结晶系统及其晶化能量控制方法,所述激光结晶系统包括:Mura监控设备(10),用于监控晶化过程中的实时Mura状况;主机台(11),与所述Mura监控设备相连接,用于判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;结晶设备(12),与所述主机台相连接,用于执行所述主机台生成的所述晶化能量控制指令以控制所输出的晶化能量。其中利用Mura监控设备实时地在线监控Mura的状况,根据实时Mura状况控制结晶设备输出的晶化能量,能够实现对产品的Mura状况的有效监控,进而控制对应的晶化能量,相比于人工的方式,有效地提高了工作效率,且能够保证精确度和在线控制,保证产品的良率。

Description

激光结晶系统及其晶化能量控制方法
【技术领域】
本发明属于结晶制造技术领域,具体涉及一种激光结晶系统的晶化能量控制方法,还涉及一种采用该晶化能量控制方法的激光结晶系统。
【背景技术】
众所周知,液晶显示器具有外型轻薄、耗电量少、分辨率佳、无辐射以及抗电磁干扰等特性,故已被广泛地应用在手机、个人数字助理(PDA)、笔记型计算机、平面显示器等信息家电产品上。然而随着使用者对于显示器视觉感受要求的提升,加上新技术应用领域不断的扩展,于是更高画质、高分辨率且具低价位的液晶显示器变成未来显示技术发展的趋势,也造就了新的显示技术发展的原动力,而其中低温复晶硅薄膜晶体管(LTPSTFT)技术是实现上述目标的一项重要量产技术。
一般低温多晶硅制程大多利用准分子激光退火(Excimer Laser Annealing,ELA)技术进行,亦即利用准分子激光作为热源以将非晶硅结构转换为多晶硅结构。当准分子激光经过光学投射系统后,会产生能量均匀分布的激光束,并投射于沉积有非晶硅膜的基板上,以使吸收准分子激光能量的非晶硅膜再结晶而转变成为多晶硅结构。由于上述制程是在600℃以下完成,一般玻璃基板或是塑料基板等皆可适用,因此更扩大了低温多晶硅薄膜晶体管液晶显示器的应用范围。
目前在低温多晶硅薄膜晶体管液晶显示器的制作上,是以一准分子激光束照射扫瞄基板,藉此使基板上预先沉积的非晶硅转换为多晶硅结构。基板表面的多晶硅结构的品质会直接影响之后形成各式组件的特性,且多晶硅结晶状态的好坏主要受到二项因素的影响,一为基板表面的非晶硅膜厚,一为准分子激光光地能量密度。其中随着低温多晶硅薄膜晶体管液晶显示器的设计不同,或非晶硅镀膜制程的反应条件的差异,进行准分子激光退火制程的各批次基板表面的非晶硅膜厚或结晶状态可能有所不同,因此于进行准分子激光退火制程时必须选用适当能量密度的准分子激光,否则会使基板表面的多晶硅结晶状态不佳。另外,由于准分子激光的原理是将气体封存于一密闭腔室内,并利用电力激发气体产生准分子激光,因此准分子激光通常视使用状况经历约十数小时即必须重新填充新气体,且准分子激光的能量密度会随着使用时间而衰减,因此其能量密度不易控制。基于上述准分子激光本身的限制,在进行准分子激光制程时即使预先设定了一最佳能量密度,准分子激光的实际能量密度往往因衰减而与预先的设定值有所差异,而影响多晶硅的结晶状态。
然而,在现有技术中,结晶的过程需要对Mura(色不均)的状况进行控制,目前的做法通过是通过线下MAC/MIC(宏观微观缺陷检查机)检查Mura的状况,接着,在线下确认最佳晶化能量范围。其中,此种方式需要停机确认,线下调整,对于主机台工作影响较大,而且一次往往需要30分钟左右,加上不能即时进行更改,容易造成产品良率损失。进一步而言,此种检查方式为人眼检查为主,容易产生误判,且有人为因素影响判断。
不难看出,使用上述检测方法即使检测基板表面的多晶硅的结晶状态不佳,无法对产品的Mura状况进行有效监控,进而无法控制对应的晶化能量,且工作效率低下,精确度低。
【发明内容】
有鉴于此,本发明实施例提供一种激光结晶系统的晶化能量控制方法,有效地解决现有技术中无法对产品的Mura状况进行有效监控,进而无法控制对应的晶化能量,且工作效率低下,精确度低的技术问题。
为解决上述技术问题,本发明实施例提供一种激光结晶系统,其中,所述激光结晶系统包括:Mura监控设备,用于监控晶化过程中的实时Mura状况;主机台,与所述Mura监控设备相连接,用于判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;结晶设备,与所述主机台相连接,用于执行所述主机台生成的所述晶化能量控制指令以控制所输出的晶化能量。
其中,所述主机台包括:存储模块,用于存储Mura状况的实时级别与所述晶化能量控制指令的一一对应关系的对应表;判断模块,用于根据所述Mura监控设备监控得到的实时Mura状况从所述存储模块查找相对应级别的晶化能量控制指令。
其中,所述判断模块,还用于判断所述实时Mura状况的实时级别是否达到预设阈值,且在判断到小于所述预设阈值时,不执行生成晶化能量控制指令的过程,使得所述结晶设备保持原有的晶化能量输出级别。
为解决上述技术问题,本发明实施例还提供一种激光结晶系统的晶化能量控制方法,其中,所述晶化能量控制方法包括:通过Mura监控设备监控晶化过程中的实时Mura状况;判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;执行所述晶化能量控制指令以控制所输出的晶化能量。
其中,所述晶化能量控制方法还包括:存储Mura状况的实时级别与所述晶化能量控制指令的一一对应关系的对应表。述根据所述实时级别生成晶化能量控制指令的步骤,具体包括:根据所述Mura监控设备监控得到的实时Mura状况从所述对应表中查找相对应级别的晶化能量控制指令。
其中,所述判断所述Mura监控设备监控得到的实时Mura状况的实时级别的步骤,还包括:判断所述实时Mura状况的实时级别是否达到预设阈值,且在判断到小于所述预设阈值时,不执行生成晶化能量控制指令的过程,使得保持原有的晶化能量输出级别。
通过上述技术方案,本发明实施例的有益效果是:本发明实施例利用Mura监控设备实时地在线监控Mura的状况,根据实时Mura状况控制结晶设备输出的晶化能量。不难看出,本发明能够实现对产品的Mura状况的有效监控,进而控制对应的晶化能量,相比于人工的方式,有效地提高了工作效率,且能够保证精确度和在线控制,保证产品的良率。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明激光结晶系统一实施例的功能模块框图;
图2是图1所示主机台一实施例的功能模块框图;
图3是本发明激光结晶系统的晶化能量控制方法一实施例的流程示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明激光结晶系统一实施例的功能模块框图,本实施例激光结晶系统包括Mura监控设备10、主机台11和结晶设备12。
在本实施例中,Mura监控设备10用于监控晶化过程中的实时Mura状况。
其中,主机台11与Mura监控设备10相连接,用于判断Mura监控设备10监控得到的实时Mura状况的实时级别,并根据实时级别生成晶化能量控制指令。
本实施例的结晶设备12与主机台11相连接,用于执行主机台11生成的晶化能量控制指令以控制所输出的晶化能量。
请进一步参阅图2,图2是图1所示主机台一实施例的功能模块框图,其中,主机台11可以包括存储模块111和判断模块112。
在本实施例中,存储模块111用于存储Mura状况的实时级别与晶化能量控制指令的一一对应关系的对应表。
对应地,判断模块112用于根据Mura监控设备10监控得到的实时Mura状况从存储模块111查找相对应级别的晶化能量控制指令。
不难理解的是,通过设置对应表的方式,可以有效地提高主机台11的工作效率和工作性能。
需要说明的是,判断模块112还用于判断实时Mura状况的实时级别是否达到预设阈值,且在判断到小于预设阈值时,不执行生成晶化能量控制指令的过程,使得结晶设备保持原有的晶化能量输出级别。其中,通过此种方式,本实施例可以避免频繁反复地查询对应表,而预先将检测的实时Mura状况与预设阈值相比较,直接判断是否需要控制晶化能量,提高工作效率。
此外,在其他实施例中,本实施例Mura监控设备10可以包含有准分子激光退火装置、光源产生器、影像接收器等,其中,准分子激光退火装置可产生准分子激光,并以线状扫描方式照射基板,藉此将基板表面的一硅薄膜的结晶状态由非晶硅结构再结晶而转换为多晶硅结构等等。
本发明实施例利用Mura监控设备10实时地在线监控Mura的状况,根据实时Mura状况控制结晶设备12输出的晶化能量。不难看出,本发明能够实现对产品的Mura状况的有效监控,进而控制对应的晶化能量,相比于人工的方式,有效地提高了工作效率,且能够保证精确度和在线控制,保证产品的良率。
请结合图1和图2参阅图3,图3是本发明激光结晶系统的晶化能量控制方法一实施例的流程示意图,本实施例晶化能量控制方法包括如下步骤。
步骤S200,通过Mura监控设备监控晶化过程中的实时Mura状况。
在步骤S200中,本实施例可以采用在线监控的Mura监控设备,其可以与ELA机台连接设置。
步骤S201,判断Mura监控设备监控得到的实时Mura状况的实时级别,并根据实时级别生成晶化能量控制指令。
在步骤S201中,本实施例还可以预先存储Mura状况的实时级别与晶化能量控制指令的一一对应关系的对应表,接着,在根据实时级别生成晶化能量控制指令时,可以根据Mura监控设备监控得到的实时Mura状况从对应表中查找相对应级别的晶化能量控制指令。不难理解的是,通过设置对应表的方式,可以有效地提高主机台11的工作效率和工作性能。
需要说明的是,在判断Mura监控设备监控得到的实时Mura状况的实时级别时,本实施例还可以判断实时Mura状况的实时级别是否达到预设阈值,且在判断到小于预设阈值时,不执行生成晶化能量控制指令的过程,使得保持原有的晶化能量输出级别。通过此种方式,本实施例可以避免频繁反复地查询对应表,而预先将检测的实时Mura状况与预设阈值相比较,直接判断是否需要控制晶化能量,提高工作效率。
步骤S202,执行晶化能量控制指令以控制所输出的晶化能量。
本发明实施例利用Mura监控设备实时地在线监控Mura的状况,根据实时Mura状况控制结晶设备输出的晶化能量。不难看出,本发明能够实现对产品的Mura状况的有效监控,进而控制对应的晶化能量,相比于人工的方式,有效地提高了工作效率,且能够保证精确度和在线控制,保证产品的良率。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

  1. 一种激光结晶系统,其特征在于,所述激光结晶系统包括:
    Mura监控设备,用于监控晶化过程中的实时Mura状况,所述Mura监控设备包括准分子激光退火装置、光源产生器以及影像接收器,其中,所述准分子激光退火装置产生准分子激光,并以线状扫描方式照射基板,以将基板表面的一硅薄膜的结晶状态由非晶硅结构再结晶而转换为多晶硅结构;
    主机台,与所述Mura监控设备相连接,用于判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;
    结晶设备,与所述主机台相连接,用于执行所述主机台生成的所述晶化能量控制指令以控制所输出的晶化能量。
  2. 一种激光结晶系统,其特征在于,所述激光结晶系统包括:
    Mura监控设备,用于监控晶化过程中的实时Mura状况;
    主机台,与所述Mura监控设备相连接,用于判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;
    结晶设备,与所述主机台相连接,用于执行所述主机台生成的所述晶化能量控制指令以控制所输出的晶化能量。
  3. 根据权利要求2所述的激光结晶系统,其特征在于,所述主机台包括:
    存储模块,用于存储Mura状况的实时级别与所述晶化能量控制指令的一一对应关系的对应表;
    判断模块,用于根据所述Mura监控设备监控得到的实时Mura状况从所述存储模块查找相对应级别的晶化能量控制指令。
  4. 根据权利要求3所述的激光结晶系统,其特征在于,所述判断模块,还用于判断所述实时Mura状况的实时级别是否达到预设阈值,且在判断到小于所述预设阈值时,不执行生成晶化能量控制指令的过程,使得所述结晶设备保持原有的晶化能量输出级别。
  5. 一种激光结晶系统的晶化能量控制方法,其特征在于,所述晶化能量控制方法包括:
    通过Mura监控设备监控晶化过程中的实时Mura状况;
    判断所述Mura监控设备监控得到的实时Mura状况的实时级别,并根据所述实时级别生成晶化能量控制指令;
    执行所述晶化能量控制指令以控制所输出的晶化能量。
  6. 根据权利要求5所述的晶化能量控制方法,其特征在于,所述晶化能量控制方法还包括:
    存储Mura状况的实时级别与所述晶化能量控制指令的一一对应关系的对应表;
    所述根据所述实时级别生成晶化能量控制指令的步骤,具体包括:
    根据所述Mura监控设备监控得到的实时Mura状况从所述对应表中查找相对应级别的晶化能量控制指令。
  7. 根据权利要求6所述的晶化能量控制方法,其特征在于,所述判断所述Mura监控设备监控得到的实时Mura状况的实时级别的步骤,还包括:
    判断所述实时Mura状况的实时级别是否达到预设阈值,且在判断到小于所述预设阈值时,不执行生成晶化能量控制指令的过程,使得保持原有的晶化能量输出级别。
PCT/CN2015/070185 2014-12-29 2015-01-06 激光结晶系统及其晶化能量控制方法 WO2016106788A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,638 US20160189990A1 (en) 2014-12-29 2015-01-06 Laser crystallziation system and method of controlling crystallization energy therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410837007.9 2014-12-29
CN201410837007.9A CN104465345A (zh) 2014-12-29 2014-12-29 激光结晶系统及其晶化能量控制方法

Publications (1)

Publication Number Publication Date
WO2016106788A1 true WO2016106788A1 (zh) 2016-07-07

Family

ID=52911217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070185 WO2016106788A1 (zh) 2014-12-29 2015-01-06 激光结晶系统及其晶化能量控制方法

Country Status (2)

Country Link
CN (1) CN104465345A (zh)
WO (1) WO2016106788A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877274B1 (ko) * 2015-05-29 2018-07-12 에이피시스템 주식회사 자외선 광원을 이용한 레이저 결정화 설비에 기인하는 무라 정량화 시스템 및 자외선 광원을 이용한 레이저 결정화 설비에 기인하는 무라 정량화 방법
KR101939058B1 (ko) * 2015-06-09 2019-01-17 에이피시스템 주식회사 레이저 결정화 설비에 기인하는 무라 정량화 시스템 및 레이저 결정화 설비에 기인하는 무라 정량화 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234288A (ja) * 2002-02-07 2003-08-22 Sony Corp 多結晶半導体膜と半導体素子の製造方法及び製造装置
CN1564312A (zh) * 2004-03-18 2005-01-12 友达光电股份有限公司 激光退火装置及激光退火工艺
CN101705477A (zh) * 2009-12-09 2010-05-12 新奥光伏能源有限公司 一种在线检测与在线修补薄膜产品晶化率的系统及方法
WO2012114909A1 (ja) * 2011-02-23 2012-08-30 株式会社日本製鋼所 薄膜の表面検査方法および検査装置
CN103219229A (zh) * 2013-03-28 2013-07-24 昆山维信诺显示技术有限公司 Ela不均匀性的量化判断方法及其反馈系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472787A (zh) * 2002-07-29 2004-02-04 沈毓铨 结晶薄膜品质监控系统及方法
CN1290154C (zh) * 2003-07-16 2006-12-13 友达光电股份有限公司 激光结晶系统和控制准分子激光退火制程能量密度的方法
WO2010091025A2 (en) * 2009-02-04 2010-08-12 Applied Materials, Inc. Metrology and inspection suite for a solar production line
CN102540740A (zh) * 2010-12-22 2012-07-04 无锡华润上华半导体有限公司 一种光刻方法和能量反馈系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234288A (ja) * 2002-02-07 2003-08-22 Sony Corp 多結晶半導体膜と半導体素子の製造方法及び製造装置
CN1564312A (zh) * 2004-03-18 2005-01-12 友达光电股份有限公司 激光退火装置及激光退火工艺
CN101705477A (zh) * 2009-12-09 2010-05-12 新奥光伏能源有限公司 一种在线检测与在线修补薄膜产品晶化率的系统及方法
WO2012114909A1 (ja) * 2011-02-23 2012-08-30 株式会社日本製鋼所 薄膜の表面検査方法および検査装置
CN103219229A (zh) * 2013-03-28 2013-07-24 昆山维信诺显示技术有限公司 Ela不均匀性的量化判断方法及其反馈系统

Also Published As

Publication number Publication date
CN104465345A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
US10392297B2 (en) Method for manufacturing substrate
EP3664178A1 (en) Flexible substrate of oled display panel and method for preparing same
WO2016106788A1 (zh) 激光结晶系统及其晶化能量控制方法
CN106910697A (zh) 晶体硅太阳能电池片抗光衰能力的检测方法
CN104779199B (zh) 低温多晶硅tft基板结构及其制作方法
WO2015139498A1 (zh) 激光退火设备、多晶硅薄膜制作方法及由其制成的多晶硅薄膜
CN104820316A (zh) 光配向装置、光配向方法和配向膜制备系统
CN108346562A (zh) 低温多晶硅、薄膜晶体管及阵列基板的制作方法
CN103325859A (zh) 一种ito薄膜的制备方法
CN104701265A (zh) 低温多晶硅tft基板结构及其制作方法
CN104037060A (zh) 多晶金属氧化物图形的制备方法
US20150289318A1 (en) Annealing apparatus and annealing process
CN104576318B (zh) 一种非晶硅表面氧化层形成方法
CN104362115B (zh) 一种准分子激光退火装置及该装置的使用方法
CN106128940B (zh) 一种低温多晶硅薄膜的制备方法
CN103346065A (zh) 激光退火的方法及装置
US10263202B2 (en) Flexible base plate of OLED display panel and method for manufacturing the same
CN103631289A (zh) 太阳模拟器用拼接准直镜的温度控制系统
CN103730336A (zh) 定义多晶硅生长方向的方法
CN104505404A (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
US20160189990A1 (en) Laser crystallziation system and method of controlling crystallization energy therein
JP2006162823A (ja) ポリマーネットワーク型液晶表示装置、及び、その製造方法
CN107119329B (zh) 一种多晶硅的晶化方法、晶化设备及多晶硅
CN104253246A (zh) 低温多晶硅薄膜的制作方法、低温多晶硅薄膜及相关器件
CN107413554A (zh) 一种玻璃面板喷涂定位装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433638

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874481

Country of ref document: EP

Kind code of ref document: A1