WO2016106721A1 - 一种csi-rs传输方法、网络设备及用户设备 - Google Patents

一种csi-rs传输方法、网络设备及用户设备 Download PDF

Info

Publication number
WO2016106721A1
WO2016106721A1 PCT/CN2014/095991 CN2014095991W WO2016106721A1 WO 2016106721 A1 WO2016106721 A1 WO 2016106721A1 CN 2014095991 W CN2014095991 W CN 2014095991W WO 2016106721 A1 WO2016106721 A1 WO 2016106721A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
csi
user equipment
network device
pmi
Prior art date
Application number
PCT/CN2014/095991
Other languages
English (en)
French (fr)
Inventor
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14909528.3A priority Critical patent/EP3232730A4/en
Priority to US15/541,325 priority patent/US10224988B2/en
Priority to PCT/CN2014/095991 priority patent/WO2016106721A1/zh
Priority to CN201480080924.5A priority patent/CN106576387B/zh
Priority to JP2017535396A priority patent/JP6501892B2/ja
Priority to EP18187280.5A priority patent/EP3461167B1/en
Publication of WO2016106721A1 publication Critical patent/WO2016106721A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a CSI-RS transmission method, a network device, and a user equipment.
  • Massive MIMO Massive Multiple-Input Multiple-Output
  • 5G Fifth Generation Mobile Communication Technology
  • the base station when transmitting a CSI-RS (Channel State Indication Reference Signal), the base station generally performs corresponding coverage enhancement by increasing the transmit power of the transmitting end.
  • CSI-RS Channel State Indication Reference Signal
  • the CSI-RS is an omnidirectional transmission, there may be many user equipments in the transmission direction, resulting in a larger portion of the transmission power being absorbed by the surrounding environment, and the utilization of the transmission power is lower, resulting in waste of power.
  • the embodiments of the present invention provide a CSI-RS transmission method, a network device, and a user equipment, which are used to solve the technical problem that power waste is serious when transmitting a CSI-RS.
  • a first aspect of the present invention provides a CSI-RS transmission method, including:
  • the network device acquires a first precoding matrix
  • the network device pre-codes the CSI-RS according to the first pre-coding matrix
  • the network device sends the pre-coded CSI-RS to the user equipment.
  • the acquiring, by the network device, the first precoding matrix includes:
  • the network device selects, as the first precoding matrix, a precoding matrix corresponding to the determined number of ports from the first precoding matrix codebook.
  • the network device selects, from the first precoding matrix codebook, a preamble corresponding to the number of the ports.
  • the method further includes:
  • the network device selects a precoding matrix from the M CSI feedback precoding matrix codebooks, and the first precoding matrix codebook is formed by the selected precoding matrix, where the first precoding matrix codebook includes A precoding matrix of at least two ports, M being a positive integer.
  • the network device selects a precoding matrix from the M CSI feedback precoding matrix codebooks,
  • the precoding matrix constitutes the first precoding matrix codebook, including:
  • the network device selects, from the i-th CSI feedback precoding matrix codebook, a precoding matrix whose number of layers is equal to the determined number of ports, where i is a positive integer, and 1 ⁇ i ⁇ M;
  • the network device adds the selected precoding matrix to the first precoding matrix codebook.
  • the method further includes:
  • the network device reacquires the first precoding matrix; otherwise, the user equipment continues according to the The first precoding matrix precodes the CSI-RS, and sends the precoded CSI-RS to the user equipment.
  • the receiving, by the network device, the feedback message of the user equipment for the first precoding matrix includes: The network device receives the feedback message of the user equipment for the first precoding matrix through a PUCCH, an EPUCCH, or a PUSCH.
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, the feedback message includes the PMI or is used to confirm that the PMI is the CSI-RS. Confirmation information of available PMI;
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is not the available PMI of the CSI-RS
  • the feedback message includes indication information for re-acquiring the first precoding matrix or used for confirming the location.
  • the PMI is not the confirmation information of the available PMI of the CSI-RS.
  • the network device sends the pre-coded CSI-RS to the user equipment, including:
  • the network device sends the pre-coded CSI-RS to the user equipment by using a PDCCH or an EPDCCH.
  • a second aspect of the present invention provides a CSI-RS transmission method, including:
  • the pre-coded channel state indication reference signal CSI-RS sent by the network device, where the pre-coded CSI-RS is used by the network device to pre-process the CSI-RS according to the acquired first precoding matrix Coded.
  • the method further includes:
  • the user equipment sends a feedback message to the network device for the first precoding matrix.
  • the method further includes:
  • the user equipment compares the parameters of the pre-coded CSI-RS with a preset parameter threshold, and generates a feedback message for the first pre-coding matrix according to the comparison result.
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold Generating a feedback message for the first precoding matrix according to the comparison result, including:
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold, and if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold satisfies a preset And determining, by the comparison, that the precoding matrix corresponding to the first precoding matrix indicates that the PMI is an available PMI of the CSI-RS, and generating feedback for the first precoding matrix according to the comparison result. Message; or
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold, if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold does not satisfy the Determining a predetermined condition, determining that the PMI corresponding to the first precoding matrix is not an available PMI of the CSI-RS, and generating a feedback message for the first precoding matrix according to the comparison result .
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, the feedback message includes the PMI or is used to confirm that the PMI is the CSI-RS. Confirmation information of available PMI;
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is not the available PMI of the CSI-RS
  • the feedback message includes reselection indication information for obtaining the first precoding matrix or for confirming The PMI is not confirmation information of the available PMI of the CSI-RS.
  • a third aspect of the present invention provides a network device, including:
  • An obtaining module configured to acquire a first precoding matrix
  • a precoding module configured to precode the channel state indication reference signal CSI-RS according to the first precoding matrix
  • a sending module configured to send the pre-coded CSI-RS to the user equipment.
  • the acquiring module is specifically configured to:
  • a precoding matrix corresponding to the determined number of ports is selected from the first precoding matrix codebook as the first precoding matrix.
  • the acquiring module is further configured to: select, in the code from the first precoding matrix, the port Before the precoding matrix corresponding to the number is used as the first precoding matrix, selecting a precoding matrix from the M CSI feedback precoding matrix codebooks, and forming the first precoding matrix codebook by using the selected precoding matrix,
  • the first precoding matrix codebook includes a precoding matrix corresponding to at least two ports, and M is a positive integer.
  • the acquiring module is further configured to:
  • the selected precoding matrix is added to the first precoding matrix codebook.
  • the network The device further includes: a receiving module, configured to: receive a feedback message of the user equipment for the first precoding matrix;
  • the acquiring module re-acquires the first precoding matrix
  • the precoding module continues to precode the CSI-RS according to the first precoding matrix.
  • the sending module sends the pre-coded CSI-RS to the user equipment.
  • the receiving module is specifically configured to: receive, by using a PUCCH, an EPUCCH, or a PUSCH, the user equipment, The feedback message of the first precoding matrix.
  • the sending module is specifically configured to: send, by using a PDCCH or an EPDCCH, the pre-coded CSI-RS to the User equipment.
  • a fourth aspect of the present invention provides a user equipment, including:
  • a receiving module configured to receive a pre-coded CSI-RS sent by the network device, where the pre-coded CSI-RS is used by the network device to pre-code the CSI-RS according to the obtained first precoding matrix.
  • the user equipment further includes: a sending module, configured to: send, to the network device, a feedback message for the first precoding matrix.
  • the user equipment further includes: a comparing module, configured to: use the pre-coded CSI-RS The parameter is compared with a preset parameter threshold, and a feedback message for the first precoding matrix is generated according to the comparison result.
  • the comparing module is specifically configured to:
  • the comparison result is that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, and generates a feedback message for the first precoding matrix according to the comparison result;
  • a fifth aspect of the present invention provides a network device including a memory, a processor, and a transmitter connected to a same bus;
  • the memory is configured to store an instruction
  • the processor is configured to execute the instruction, obtain a first precoding matrix, and precode the CSI-RS according to the first precoding matrix;
  • the transmitter is configured to send the pre-coded CSI-RS to the user equipment.
  • the processor is specifically configured to:
  • a precoding matrix corresponding to the determined number of ports is selected from the first precoding matrix codebook as the first precoding matrix.
  • the processor is further configured to: execute the instruction in the code from the first precoding matrix Before selecting a precoding matrix corresponding to the number of ports as the first precoding matrix, selecting a precoding matrix from the M CSI feedback precoding matrix codebooks, and configuring the first precoding by the selected precoding matrix a matrix codebook, the first precoding matrix codebook includes a precoding matrix corresponding to at least two ports, and M is a positive integer.
  • the processor is further configured to:
  • the selected precoding matrix is added to the first precoding matrix codebook.
  • the network The device also includes a receiver coupled to the bus;
  • the receiver is configured to: receive a feedback message of the user equipment for the first precoding matrix
  • the processor is further configured to: if the feedback message indicates a PMI corresponding to the first precoding matrix Retrieving the first precoding matrix instead of the available PMI of the CSI-RS; otherwise continuing to precode the CSI-RS according to the first precoding matrix and using the transmitter to The precoded CSI-RS is sent to the user equipment.
  • the receiver is specifically configured to: receive, by using a PUCCH, an EPUCCH, or a PUSCH, the user equipment, The feedback message of the first precoding matrix.
  • the transmitter is specifically configured to send the pre-coded CSI-RS to the user equipment by using a PDCCH or an EPDCCH.
  • a sixth aspect of the invention provides a user equipment comprising a receiver connected to a bus;
  • the receiver is configured to: receive a pre-coded CSI-RS sent by the network device, where the pre-coded CSI-RS pre-codes the CSI-RS according to the acquired first pre-coding matrix by the network device owned.
  • the user equipment further includes: a transmitter connected to the bus, configured to: send, to the network device, the first precoding Matrix feedback message.
  • the user equipment further includes a memory and a processor connected to the bus;
  • the memory is configured to store an instruction
  • the processor is configured to execute the instruction, compare the parameter of the pre-coded CSI-RS with a preset parameter threshold, and generate a feedback message for the first pre-coding matrix according to the comparison result.
  • the processor is specifically configured to:
  • Executing the instruction comparing the parameter of the pre-coded CSI-RS with a preset parameter threshold, if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold is not satisfied Determining, by the preset condition, that the PMI corresponding to the first precoding matrix is not an available PMI of the CSI-RS, and generating feedback for the first precoding matrix according to the comparison result. Message.
  • the CSI-RS when the network device is to transmit the CSI-RS to the user equipment, the CSI-RS is first pre-coded according to the obtained precoding matrix, which is equivalent to performing beaming on the CSI-RS. Forming, and transmitting the pre-coded CSI-RS to the user equipment, so that after receiving the pre-coded CSI-RS, the user equipment may set the parameters of the pre-coded CSI-RS Comparing with the preset parameter threshold, for example, if the relationship between the parameter of the pre-coded CSI-RS and the preset parameter threshold satisfies a preset condition, the user equipment determines that the received signal has a larger power.
  • the power consumption is small, which is equivalent to the fact that after the beamforming of the CSI-RS, the transmission direction of the pre-coded CSI-RS is substantially aligned with the user equipment, so the user equipment receives If the power of the precoded CSI-RS is large, the user equipment determines that the CSI-RS may be precoded with the precoding matrix, and if the precoded CSI-RS The relationship between the parameter and the preset parameter threshold does not satisfy the The preset condition is that the user equipment determines that the received signal has a small power and a large power waste, which is equivalent to the transmit direction of the pre-coded CSI-RS after beamforming the CSI-RS.
  • the user equipment determines that the CSI-RS may be continued without using the precoding matrix.
  • the network device re-determines the precoding mode of the CSI-RS, for example, reselecting the precoding matrix to precode the CSI-RS, and then transmitting the re-coded CSI-RS. Judge the user equipment Break, and so on, until the appropriate precoding matrix is selected for the user equipment.
  • a method of beamforming at the transmitting end is adopted to improve the utilization of the transmitting power. Due to the beamforming, the effective coverage of the CSI-RS can be greatly improved, that is, the CSI-RS is transmitted to each user equipment as much as possible, thereby improving the data throughput and performance of the entire system, and transmitting data for the control layer plane and the data plane. Performance improvements play a key role.
  • FIG. 1 is a main flowchart of a method for transmitting a CSI-RS on a network device side according to an embodiment of the present invention
  • FIG. 2 is a main structural block diagram of a network device according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a network device further including a receiving module according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of main structures of a network device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network device further including a receiver according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a main structure of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user device further including a memory, a processor, and a transmitter according to an embodiment of the present invention.
  • An embodiment of the present invention provides a CSI-RS transmission method, where the method includes: a network device acquiring a first precoding matrix; the network device precoding a CSI-RS according to the first precoding matrix; the network The device sends the pre-coded CSI-RS to the user equipment.
  • the CSI-RS when the network device is to transmit the CSI-RS to the user equipment, the CSI-RS is first pre-coded according to the obtained precoding matrix, which is equivalent to performing beaming on the CSI-RS. Forming, and transmitting the pre-coded CSI-RS to the user equipment, so that after receiving the pre-coded CSI-RS, the user equipment may set the parameters of the pre-coded CSI-RS Comparing with the preset parameter threshold, for example, if the relationship between the parameter of the pre-coded CSI-RS and the preset parameter threshold satisfies a preset condition, the user equipment determines that the received signal has a larger power.
  • the power waste is small, which is equivalent to, after beamforming the CSI-RS, the pre- The transmitting direction of the encoded CSI-RS is substantially aligned with the user equipment. Therefore, if the power of the pre-coded CSI-RS received by the user equipment is large, the user equipment determines that the user equipment may use the The precoding matrix continues to precode the CSI-RS, and if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold does not satisfy the preset condition, the user equipment determines The power of the received signal is small, and the power is wasted.
  • the beam direction of the CSI-RS is not aligned with the user equipment after the beamforming of the CSI-RS.
  • the power of the pre-coded CSI-RS received by the user equipment is small, and the user equipment determines that the CSI-RS may be pre-coded without using the pre-coding matrix, then the network device
  • the CSI-RS precoding mode is re-determined. For example, the CSI-RS is pre-coded by reselecting the precoding matrix, and then the re-coded CSI-RS is sent to the user equipment for judgment. Until you choose to fit the user device Until the pre-coding matrix.
  • a method of beamforming at the transmitting end is adopted to improve the utilization of the transmitting power. Due to the beamforming, the effective coverage of the CSI-RS can be greatly improved, that is, the CSI-RS is transmitted to each user equipment as much as possible, thereby improving the data throughput and performance of the entire system, and transmitting data for the control layer plane and the data plane. Performance improvements play a key role.
  • the techniques described herein can be used in a variety of communication systems, such as current 2G (second generation mobile communication technology), 3G (third generation mobile communication technology) communication systems, and next generation communication systems, such as the Global System for Global System (Global System for Mobile Communications) Mobile communications, GSM), Code Division Multiple Access (CDMA) system, Time Division Multiple Access (TDMA) system, Wideband Code Division Multiple Access Wireless (WCDMA), frequency Divisional Multiple Addressing (Frequency Division Multiple Addressing, FDMA) system, Orthogonal Frequency-Division Multiple Access (OFDMA) system, single carrier FDMA (SC-FDMA) system, General Packet Radio Service (GPRS) system, Long Term Evolution (Long) Term Evolution, LTE) systems, and other such communication systems.
  • GSM Global System for Global System
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • OFDMA frequency Divisional Multiple Addressing
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connectivity, or a wireless modem. Other processing equipment.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN (Radio Access Network)), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile
  • RAN Radio Access Network
  • the computer of the terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a network device such as a base station (e.g., an access point), may specifically refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be LTE.
  • the evolved base station NodeB or eNB or e-NodeB, evolutional Node B
  • NodeB evolutional Node B
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • an embodiment of the present invention provides a CSI-RS transmission method, where the method can be applied to a network device.
  • the main flow of the method is described below.
  • Step 101 The network device acquires a first precoding matrix.
  • the network device When the network device is to send the CSI-RS to the user equipment, the network device first obtains a precoding matrix to precode the CSI-RS according to the precoding matrix, which is used in the embodiment of the present invention.
  • the coding matrix is referred to as the first precoding matrix.
  • the acquiring, by the network device, the first precoding matrix includes:
  • the network device selects, as the first precoding matrix, a precoding matrix corresponding to the determined number of ports from the first precoding matrix codebook.
  • the network device may correspond to multiple user devices, and the number of ports used by the network device to send CSI-RS to different user devices may be different. For example, for user device 1, the network device may use two ports. Sending, for user equipment 2, the network device may be sent with 4 ports, and so on.
  • the port here refers to a logical port, for example, one port can correspond to 5 physical antennas.
  • the actual setting is not limited in the present invention, and the numerical values herein are for the sake of example only.
  • the first precoding matrix codebook is a codebook formed by a precoding matrix pre-coded specifically for a CSI-RS, and the first precoding matrix codebook may include at least one And a precoding matrix, wherein the precoding matrix included in the first precoding matrix codebook corresponds to at least two ports. That is to say, for example, the network device determines that the user equipment 1 is to be sent by using two ports, then the precoding matrix corresponding to the port 2 can be selected from the first precoding matrix codebook as the user equipment 1 Precoding matrix.
  • the precoding is generated before the network device selects a precoding matrix corresponding to the number of ports from the first precoding matrix codebook as the first precoding matrix.
  • Matrix codebook including:
  • the network device selects a precoding matrix from the M CSI feedback precoding matrix codebooks, and the first precoding matrix codebook is formed by the selected precoding matrix, where the first precoding matrix codebook includes A precoding matrix of at least two ports, M being a positive integer.
  • the CSI feedback precoding matrix codebook that is, the CSI feedback (feedback) codebook, is a precoding matrix codebook existing in the prior art, where each CSI feedback precoding matrix codebook corresponds to a port number, and each CSI
  • the feedback precoding matrix codebook includes multiple precoding matrices, and the number of layers corresponding to the precoding matrices may be different.
  • one CSI feedback precoding matrix may also have different precoding matrices corresponding to the same layer number.
  • the network device may separately select a precoding matrix from the M CSI feedback precoding matrix codebooks, where the precoding matrix selected from a CSI precoding matrix codebook is a layer number and the CSI pre A precoding matrix in which the number of ports corresponding to the code matrix codebook is equal.
  • the network device selects a precoding matrix from the M CSI feedback precoding matrix codebooks, and the first precoding matrix codebook is formed by the selected precoding matrix, including:
  • the network device selects, from the i-th CSI feedback precoding matrix codebook, a precoding matrix whose number of layers is equal to the determined number of ports, where i is a positive integer, and 1 ⁇ i ⁇ M;
  • the network device adds the selected precoding matrix to the first precoding matrix codebook in.
  • the precoding matrix with the layer number 2 is selected, and the selected precoding matrix is added to The first precoding matrix codebook described in the embodiment of the present invention.
  • the number of ports corresponding to the CSI feedback precoding matrix codebook 2 is 4, when the network device selects a precoding matrix, the precoding matrix with a layer number of 4 is selected, and the selected precoding matrix is added. To the first precoding matrix codebook described in the embodiment of the present invention, and so on.
  • the network device may process multiple CSI feedback precoding matrix codebooks at the same time, or may process each CSI feedback precoding matrix one by one, that is, it may be processed in parallel to improve processing efficiency or serial processing. , to reduce errors that may occur during processing.
  • the network device may perform processing, and the precoding matrix is selected to form the first precoding matrix codebook in the embodiment of the present invention, so that the obtained result is comprehensive. It is better to process CSI-RS for different user equipments.
  • the network device may also select some CSI feedback precoding matrix for processing, and select the precoding matrix from the CSI feedback precoding matrix codebook to form the first precoding matrix codebook in the embodiment of the present invention. In this way, the network device requires less processing, reduces the burden on the network device, and reduces processing time.
  • the first precoding matrix codebook in the embodiment of the present invention is generated, and the first precoding matrix codebook includes a precoding matrix corresponding to at least two ports.
  • the network device sends a CSI-RS to a user equipment
  • the first precoding matrix pair is selected from the first precoding matrix codebook according to the number of ports corresponding to the user equipment. -RS for precoding.
  • Table 1 is a CSI feedback precoding matrix codebook.
  • the number of ports corresponding to the CSI feedback precoding matrix codebook is 4.
  • the CodeBook Index in Table 1 is a codebook index, number of layers, indicating the number of layers (or may also be called a stream number), and one layer represents a data stream, that is, different layers represent different data streams.
  • W represents a specific matrix
  • u n is a variable in W.
  • W 1 means that u n in the W is u 1 .
  • the superscript of W indicates which columns are taken out from the matrix of W to form a new matrix, W as a matrix, which includes a plurality of columns, for example, W ⁇ 1 ⁇ means that the first column is taken out from the matrix of W to form a new one.
  • the matrix, W ⁇ 1234 ⁇ indicates that the first column, the second column, the third column, and the fourth column are taken out from the matrix of W to form a new matrix, and so on.
  • W 1 ⁇ 1234 ⁇ means that the first column, the second column, the third column, and the fourth column are taken out from the matrix of W to form a new matrix, where u n in the matrix of W is u 1 .
  • the number of ports corresponding to the CSI feedback precoding matrix codebook shown in Table 1 is 4, when selecting a precoding matrix to be added to the first precoding matrix codebook, it can be selected from Table 1.
  • the column precoding matrix having a layer number of 4, that is, the rightmost column of the precoding matrix in Table 1 can be added to the first precoding matrix codebook.
  • the first precoding matrix codebook in the embodiment of the present invention is as shown in Table 2:
  • the network device adds a column precoding matrix with a layer number of 4 in the CSI feedback precoding matrix codebook shown in Table 1 to the first precoding matrix codebook as A precoding matrix corresponding to the number of ports 4.
  • the CSI feedback precoding matrix codebook corresponding to the number of other ports can also be processed in the same manner.
  • the number of precoding matrices added to the first precoding matrix codebook may be the same or different for different port numbers.
  • the first The number of ports corresponding to 15 precoding matrices in the precoding matrix codebook is 4, and for port number 2, the number of corresponding precoding matrices in the first precoding matrix codebook may also be 15 It may or may not be 15, which is the same for the number of other ports.
  • the obtained first precoding matrix codebook is as shown in Table 3, for example:
  • the network device selects a part of a column precoding matrix having a layer number of 4 in the CSI feedback precoding matrix codebook shown in Table 1 and adds the code to the first precoding matrix codebook. In the middle, it is a precoding matrix corresponding to the number of ports 4.
  • the network device when the network device processes each CSI feedback precoding matrix codebook, the network device may perform processing in the same manner, that is, all precoding matrices from which a specific number of layers can be selected are added to the first a partial precoding matrix from which a specific number of layers can be selected in a precoding matrix is added to the first precoding matrix; or, processing may be performed in different manners, that is, partial CSI feedback is pre-processed therein An encoding matrix codebook, wherein all precoding matrices from which a specific number of layers can be selected are added to the first precoding matrix codebook, and for another partial CSI feedback precoding matrix codebook, a partial preamble of a specific number of layers can be selected therefrom An encoding matrix is added to the first precoding matrix.
  • the specific processing manner is not limited in the embodiment of the present invention.
  • Step 102 The network device pre-codes the CSI-RS according to the first pre-coding matrix.
  • the network device After selecting the first precoding matrix, the network device encodes the CSI-RS according to the first precoding matrix to obtain a precoded CSI-RS.
  • the pre-coded CSI-RS is substantially CSI-RS.
  • Step 103 The network device sends the pre-coded CSI-RS to the user equipment.
  • the network device may send the pre-coded CSI-RS to the user equipment.
  • the PMI Precoding Matrix Indicator
  • the matrix device is sent to the user equipment, or the network device may send the PMI corresponding to the first precoding matrix to the user equipment at other occasions, or the user equipment may also use other methods.
  • the PMI corresponding to the first precoding matrix is obtained, which is not limited in the present invention.
  • the method may further include:
  • the network device reacquires the first precoding matrix; otherwise, the user equipment continues according to the The first precoding matrix precodes the CSI-RS, and sends the precoded CSI-RS to the user equipment.
  • the user equipment after receiving the pre-coded CSI-RS, compares the pre-coded CSI-RS parameters with a preset parameter threshold to generate a comparison result, and Generating a feedback message for transmission to the network device based on the comparison.
  • the network device may reacquire the first precoding matrix from the first precoding matrix codebook. And re-encoding the CSI-RS by using the re-acquired first pre-coding matrix, after which the network device sends the re-pre-coded CSI-RS to the user equipment. Similarly, the user equipment compares the re-precoded CSI-RS parameter with the preset parameter threshold to obtain a comparison result, and generates feedback for sending to the network device according to the comparison result.
  • the message is that, after receiving the feedback message, the network device determines, according to the feedback message, whether the PMI corresponding to the reselected first precoding matrix is the available PMI of the CSI-RS, in the same manner as before. If the PMI corresponding to the reacquired first precoding matrix is an available PMI as the CSI-RS, the network device may continue to use the reacquired first precoding matrix pair to the CSI-RS. Performing precoding, and if the re-acquisition of the first pre- If the PMI corresponding to the coding matrix is still not the available PMI of the CSI-RS, the network device may re-select the first precoding matrix from the first precoding matrix codebook to precode the CSI-RS. This is cyclically executed until the end of the loop process is selected when one of its PMIs can be used as the first precoding matrix of the available PMI of the CSI-RS.
  • step 103 may be a step of finally ending the loop, that is, before step 103, there may be at least one loop process of selecting an available PMI of the CSI-RS, but during these loops, each time None of the available PMIs to the CSI-RS are selected, and of course, any looping process may not be included before step 103, ie the network device selects the available PMI of the CSI-RS at a time.
  • the available PMI means that the user equipment determines that the first precoding matrix corresponding to the PMI can be used as a precoding matrix for precoding the CSI-RS. That is, if the user equipment compares and determines that the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold satisfies a preset condition, the user equipment may consider that the first pre-coding matrix corresponding to the received PMI may be As a precoding matrix for precoding the CSI-RS, such a PMI is referred to as an available PMI in the embodiment of the present invention, or may also be referred to as an alternate PMI.
  • the preset parameter threshold is a preset power threshold
  • the comparison result obtained by the user equipment is that the PMI corresponding to the first precoding matrix is an alternate PMI of the CSI-RS, that is, for the user equipment, by the first
  • the received power of the precoded CSI-RS is large, and the CSI-RS may be precoded by using the first precoding matrix.
  • the network device may continue to precode the CSI-RS by using the first precoding matrix, and may end the cyclic process of selecting the first precoding matrix for the user equipment.
  • the preset parameter threshold is a preset power threshold
  • the power of the pre-coded CSI-RS is less than the preset power Threshold
  • the comparison result obtained by the user equipment is that the PMI corresponding to the first precoding matrix cannot be used as the candidate PMI of the CSI-RS, that is, for the user equipment, by using the first After precoding the CSI-RS by the precoding matrix, the received power of the precoded CSI-RS is small, and the precoding CSI-RS obtained after beamforming may be considered to be sent.
  • the CSI-RS may not be pre-coded by using the first pre-coding matrix, and the CSI-RS may be pre-selected by using another first pre-coding matrix.
  • the coding is performed in such a manner that the direction of transmission of the pre-coded CSI-RS is aligned with the direction in which the user equipment is located, the power of the received signal is increased, and the loss of power in the environment is reduced.
  • the network device may determine that the CSI-RS is not pre-coded by using the first pre-coding matrix, but re-select another one from the first pre-coding matrix codebook. The first precoding matrix until the available PMI is selected for the CSI-RS.
  • the network device sends the pre-coded CSI-RS to the user equipment, including:
  • the network device sends the pre-coded CSI-RS to the user equipment by using a PDCCH (Physical Downlink Control Channel) or an Enhanced Physical Downlink Control Channel (EPDCCH).
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • the network device receives the feedback message of the user equipment for the first pre-coded CSI-RS, including: the network device passes a PUCCH (Physical Uplink Control CHannel, physics) Receiving, by the user equipment, the first pre-coded, the uplink control channel, the EPUCCH (Enhanced Physical Uplink Control CHannel), or the PUSCH (Physical Uplink Shared Channel) Feedback message from CSI-RS.
  • PUCCH Physical Uplink Control CHannel, physics
  • the network device passes a PUCCH (Physical Uplink Control CHannel, physics) Receiving, by the user equipment, the first pre-coded, the uplink control channel, the EPUCCH (Enhanced Physical Uplink Control CHannel), or the PUSCH (Physical Uplink Shared Channel) Feedback message from CSI-RS.
  • PUCCH Physical Uplink Control CHannel, physics
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, the feedback message includes the PMI or is used to confirm that the PMI is the CSI-RS. Confirmation information of available PMI;
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is not the available PMI of the CSI-RS
  • the feedback message includes indication information for re-acquiring the first precoding matrix or used for confirming the location.
  • the PMI is not the confirmation information of the available PMI of the CSI-RS.
  • the user equipment sends the feedback message to the network device, and when the PMI corresponding to the first precoding matrix can be used as the available PMI of the user equipment, the PMI is directly added to the feedback message and sent to the network device. And adding the adjustment information of the PMI (for example, re-acquiring the indication information of the first precoding matrix) to the feedback message when the PMI corresponding to the first precoding matrix is not available as the available PMI of the user equipment. Sent to the network device. The adjustment information of the PMI or the PMI is directly sent to the network device, and the result can be presented to the network device more intuitively, thereby reducing the confirmation work required by the network device.
  • the adjustment information of the PMI or the PMI is directly sent to the network device, and the result can be presented to the network device more intuitively, thereby reducing the confirmation work required by the network device.
  • the user equipment may also add the corresponding confirmation information to the network device according to the judgment result of the user equipment, for example, if the user equipment determines one The PMI corresponding to the first precoding matrix can be used as the available PMI of the user equipment, and the confirmation information added by the user equipment to the feedback message indicates that the PMI can be used as the available PMI of the user equipment, if the user equipment determines The PMI corresponding to the first precoding matrix cannot be used as the available PMI of the user equipment, and the confirmation information added by the user equipment to the feedback message indicates that the PMI cannot be used as the available PMI of the user equipment.
  • the acknowledgment information is sent to the network device, and the acknowledgment information generally has a small capacity.
  • an acknowledgment message has only one bit (for example, when the acknowledgment message is "1", it indicates that a PMI can be used as the available PMI of the user equipment, and the acknowledgment information is " 0" indicates that a PMI cannot be used as the available PMI for the user equipment), reducing the amount of data that needs to be transmitted and increasing the transmission rate.
  • the power of the CSI-RS received by each user equipment minimizes the transmission power consumed in the environment and improves the utilization of the transmission power.
  • the same similar processing is performed for each user equipment, and each user equipment can be guaranteed to be as normal as possible. Receiving CSI-RS improves the coverage of CSI-RS.
  • the embodiment of the present invention provides another CSI-RS transmission method, and the method may be applied to a user equipment.
  • the user equipment in the embodiment of the present invention may be the same as the user equipment in FIG.
  • the network device described in the embodiment of the present invention may be the same device as the network device described in FIG. 1 .
  • the main process of the method is:
  • the manner in which the network device obtains the pre-coded CSI-RS according to the obtained first pre-coding matrix and the CSI-RS is described in the flow of FIG. 1 , and details are not described herein.
  • the network device may send the pre-coded CSI-RS to the user equipment by using a PDCCH or an EPDCCH.
  • the method may further include:
  • the user equipment sends a feedback message to the network device for the first precoding matrix.
  • the method may further include:
  • the user equipment compares the parameters of the pre-coded CSI-RS with a preset parameter threshold, and generates a feedback message for the pre-coded CSI-RS according to the comparison result.
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold, and generates a feedback message for the first pre-coding matrix according to the comparison result.
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold, and if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold satisfies a preset a condition, determining that the comparison result is that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, and generating a feedback message for the first precoding matrix according to the comparison result; or
  • the user equipment compares the parameter of the pre-coded CSI-RS with a preset parameter threshold, if the relationship between the pre-coded CSI-RS parameter and the preset parameter threshold does not satisfy the Determining a predetermined condition, determining that the PMI corresponding to the first precoding matrix is not an available PMI of the CSI-RS, and generating a feedback message for the first precoding matrix according to the comparison result .
  • the parameter may include one or more of a power parameter, a signal to noise ratio parameter, an interference signal power parameter, and any other possible parameters.
  • the preset parameter threshold may be a preset power threshold
  • the preset condition may be: the power of the pre-coded CSI-RS is greater than or equal to the Preset power threshold. That is, if the user equipment compares and determines that the power of the pre-coded CSI-RS is greater than or equal to the preset power threshold, determining that the power of the pre-coded CSI-RS meets the preset condition On the other hand, if the user equipment determines that the power of the pre-coded CSI-RS is less than the preset power threshold, it is determined that the power of the pre-coded CSI-RS does not satisfy the preset condition.
  • the preset parameter threshold may specifically be a preset signal to noise ratio threshold.
  • the preset condition may be: the precoded CSI-RS message.
  • the noise ratio is greater than or equal to the preset signal to noise ratio threshold. That is, if the user equipment compares and determines that the signal to noise ratio of the precoded CSI-RS is greater than or equal to the preset signal to noise ratio threshold, determining a signal to noise ratio of the precoded CSI-RS.
  • the predetermined condition is met. If the user equipment compares and determines that the signal to noise ratio of the precoded CSI-RS is less than the preset signal to noise ratio threshold, determining the precoded CSI-RS.
  • the signal to noise ratio does not satisfy the preset condition.
  • the preset parameter threshold may be a preset interference signal power threshold
  • the preset condition may be: the pre-coded CSI-RS interference.
  • the signal power is less than the preset interference signal power threshold. That is, if the user equipment compares and determines that the interference signal power of the precoded CSI-RS is less than the preset interference signal power threshold, determining that the interference signal power of the precoded CSI-RS is satisfied Said pre Setting the condition, if the user equipment compares and determines that the interference signal power of the precoded CSI-RS is greater than or equal to the preset interference signal power threshold, determining the interference signal of the precoded CSI-RS The power does not satisfy the preset condition.
  • parameters may also include other parameters, and the preset conditions may also vary according to specific parameters.
  • the preset parameter threshold is specifically the preset power threshold, and if the power of the pre-coded CSI-RS is greater than or equal to the preset power threshold, the user
  • the comparison result obtained by the device is that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, that is, for the user equipment, the CSI is performed by the first precoding matrix.
  • the received power of the precoded CSI-RS is relatively large, and the CSI-RS may be precoded by using the first precoding matrix, for the user equipment,
  • the network device may continue to precode the CSI-RS by using the first precoding matrix.
  • the preset parameter threshold is specifically the preset power threshold, and if the power of the pre-coded CSI-RS is less than the preset power threshold, the user equipment
  • the result of the comparison is that the PMI corresponding to the first precoding matrix cannot be used as the available PMI of the CSI-RS, that is, for the user equipment, the CSI is performed by the first precoding matrix.
  • the received power of the precoded CSI-RS is small, and the transmission direction of the precoded CSI-RS obtained after the beamforming is deviated from the location of the user equipment.
  • the sending direction of the CSI-RS is aligned with the direction in which the user equipment is located, the power of the received signal is increased, and the loss of power in the environment is reduced.
  • the method may further include:
  • the feedback message indicates that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, the feedback message includes the PMI or is used to confirm that the PMI is the CSI-RS. Confirmation information of available PMI;
  • the feedback message indicates that the precoding matrix corresponding to the first precoding matrix indicates that the PMI is not the available PMI of the CSI-RS
  • the feedback message includes reselection indication information for acquiring the first precoding matrix. Or for confirming that the PMI is not the confirmation information of the available PMI of the CSI-RS.
  • the network device reselects the first precoding matrix pair for the user.
  • the CSI-RS of the device is pre-coded, and the re-coded CSI-RS is sent to the user equipment, and the loop is repeated until the feedback message sent by the user equipment indicates that the PMI corresponding to the first pre-coding matrix can be used as the user equipment.
  • the loop ends.
  • the network device may reselect the precoding matrix of the CSI-RS for the user equipment, until the available PMI that meets the preset condition is determined, The user equipment performs corresponding beamforming on the CSI-RS by using a precoding matrix corresponding to the PMI, so as to improve system performance.
  • the embodiments of the present invention are directed to the disadvantage of CSI-RS omnidirectional transmission at high frequency, adopting a beamforming method at the transmitting end to improve the utilization of the transmission power, and the beamforming can greatly improve the CSI-RS.
  • the coverage which improves the data throughput and performance of the entire system, can play a key role in improving the data transmission performance of the control plane and data plane.
  • an embodiment of the present invention provides a network device, including an obtaining module 201, a precoding module 202, and a sending module 203.
  • the obtaining module 201 is configured to acquire a first precoding matrix
  • the precoding module 202 is configured to precode the CSI-RS according to the first precoding matrix
  • the sending module 203 is configured to send the pre-coded CSI-RS to the user equipment.
  • the obtaining module 201 is specifically configured to:
  • a precoding matrix corresponding to the determined number of ports is selected from the first precoding matrix codebook as the first precoding matrix.
  • the obtaining module 201 is further configured to: before selecting, from the first precoding matrix codebook, a precoding matrix corresponding to the number of ports as the first precoding matrix, from the M a precoding matrix is selected in the CSI feedback precoding matrix codebook, and the first precoding matrix codebook is formed by the selected precoding matrix, where the first precoding matrix codebook includes a preamble corresponding to at least two ports.
  • the coding matrix, M is a positive integer.
  • the acquiring module 201 is further configured to select a precoding matrix from the M CSI feedback precoding matrix codebooks, and form the first precoding matrix codebook by using the selected precoding matrix, where for:
  • the selected precoding matrix is added to the first precoding matrix codebook.
  • the network device further includes a receiving module 301;
  • the receiving module 301 is configured to: receive a feedback message of the user equipment for the first precoding matrix
  • the obtaining module 201 is further configured to re-acquire the first precoding matrix if the feedback message indicates that the PMI corresponding to the first precoding matrix is not the available PMI of the CSI-RS;
  • the precoding module 202 is further configured to: if the PMI corresponding to the first precoding matrix is not an available PMI of the CSI-RS, continue to pair the CSI-RS according to the first precoding matrix Performing precoding; the sending module 203 is further configured to: send the pre-coded CSI-RS Send to the user equipment.
  • the receiving module 301 is specifically configured to: receive the feedback message of the user equipment for the first precoding matrix by using a PUCCH, an EPUCCH, or a PUSCH.
  • the sending module 203 is specifically configured to: send the pre-coded CSI-RS to the user equipment by using a PDCCH or an EPDCCH.
  • an embodiment of the present invention provides a user equipment, where the user equipment includes a receiving module, where the receiving module is configured to receive a pre-coded CSI-RS sent by a network device, where the pre-encoding is performed.
  • the CSI-RS is obtained by the network device precoding the CSI-RS according to the obtained first precoding matrix.
  • the user equipment further includes: a sending module, configured to: send, to the network device, a feedback message for the first precoding matrix.
  • the user equipment further includes: a comparison module, configured to: compare the parameter of the pre-coded CSI-RS with a preset parameter threshold, and generate, according to the comparison result, the A feedback message of a precoding matrix.
  • a comparison module configured to: compare the parameter of the pre-coded CSI-RS with a preset parameter threshold, and generate, according to the comparison result, the A feedback message of a precoding matrix.
  • the comparing module is specifically configured to:
  • the comparison result is that the PMI corresponding to the first precoding matrix is an available PMI of the CSI-RS, and generates a feedback message for the first precoding matrix according to the comparison result;
  • an embodiment of the present invention provides a network device, which may include a memory 401, a processor 402, and a transmitter connected to the same bus 400. 403.
  • a memory 401 configured to store instructions required by the processor 402 to perform a task
  • the processor 402 is configured to execute an instruction stored in the memory 401, obtain a first precoding matrix, and perform precoding on the CSI-RS according to the first precoding matrix;
  • the transmitter 403 is configured to send the pre-coded CSI-RS to the user equipment.
  • the processor 402 is configured to obtain the first precoding matrix, specifically:
  • a precoding matrix corresponding to the determined number of ports is selected from the first precoding matrix codebook as the first precoding matrix.
  • the processor 402 is further configured to: execute the instruction, select a precoding matrix corresponding to the number of ports from the first precoding matrix codebook as the first precoding Before the matrix, the precoding matrix is selected from the M CSI feedback precoding matrix codebooks, and the first precoding matrix codebook is formed by the selected precoding matrix, where the first precoding matrix codebook includes at least The precoding matrix of two ports, M is a positive integer.
  • the processor 402 is further configured to: select a precoding matrix from the M CSI feedback precoding matrix codebooks, and form the first precoding matrix codebook by using the selected precoding matrix, specifically for:
  • the selected precoding matrix is added to the first precoding matrix codebook.
  • the network device further includes a receiver 501 connected to the bus 400;
  • the receiver 501 is configured to: receive a feedback message of the user equipment for the first precoding matrix
  • the processor 402 is further configured to: if the feedback message indicates a pre-corresponding to the first pre-coding matrix And the coding matrix indicates that the PMI is not the available PMI of the CSI-RS, and the first precoding matrix is re-acquired; otherwise, the CSI-RS is pre-coded according to the first precoding matrix, and passes through the transmitter 403. Transmitting the precoded CSI-RS to the user equipment.
  • the receiver 501 is specifically configured to: receive the feedback message of the user equipment for the first precoding matrix by using a PUCCH, an EPUCCH, or a PUSCH.
  • the transmitter 403 is specifically configured to: send the pre-coded CSI-RS to the user equipment by using a PDCCH or an EPDCCH.
  • an embodiment of the present invention provides a user equipment, including a receiver 601 connected to a bus 600, where the receiver 601 is configured to: receive a pre-coded CSI-RS sent by a network device; And the pre-coded CSI-RS is obtained by the network device pre-coding the CSI-RS according to the acquired first pre-coding matrix.
  • the user equipment further includes a transmitter 701 connected to the bus 600, configured to: send a feedback message to the network device for the first precoding matrix.
  • the user equipment further includes a memory 702 and a processor 703 connected to the bus 600; wherein
  • a memory 702 configured to store an instruction
  • the processor 703 is configured to execute the instruction, compare the parameter of the pre-coded CSI-RS with a preset parameter threshold, and generate a feedback message for the first pre-coding matrix according to the comparison result.
  • the processor 703 is specifically configured to:
  • comparing the parameter of the pre-coded CSI-RS with a preset parameter threshold determining, if the relationship between the parameter of the pre-coded CSI-RS and the preset parameter threshold does not satisfy the preset condition, determining that the comparison result is a PMI corresponding to the first pre-coding matrix Not the available PMI of the CSI-RS, and generating a feedback message for the first precoding matrix based on the comparison result.
  • An embodiment of the present invention provides a CSI-RS transmission method, where the method includes: a network device acquiring a first precoding matrix; and the network device precoding the CSI-RS according to the first precoding matrix; The network device sends the pre-coded CSI-RS to the user equipment.
  • the CSI-RS when the network device is to transmit the CSI-RS to the user equipment, the CSI-RS is first pre-coded according to the obtained precoding matrix, which is equivalent to performing beaming on the CSI-RS. Forming, and transmitting the pre-coded CSI-RS to the user equipment, so that after receiving the pre-coded CSI-RS, the user equipment may set the parameters of the pre-coded CSI-RS Comparing with the preset parameter threshold, for example, if the relationship between the parameter of the pre-coded CSI-RS and the preset parameter threshold satisfies a preset condition, the user equipment determines that the received signal has a larger power.
  • the power consumption is small, which is equivalent to the fact that after the beamforming of the CSI-RS, the transmission direction of the pre-coded CSI-RS is substantially aligned with the user equipment, so the user equipment receives If the power of the precoded CSI-RS is large, the user equipment determines that the CSI-RS may be precoded with the precoding matrix, and if the precoded CSI-RS The relationship between the parameter and the preset parameter threshold does not satisfy the The preset condition is that the user equipment determines that the received signal has a small power and a large power waste, which is equivalent to the transmit direction of the pre-coded CSI-RS after beamforming the CSI-RS.
  • the user equipment determines that the CSI-RS may be continued without using the precoding matrix.
  • the network device re-determines the precoding mode of the CSI-RS, for example, reselecting the precoding matrix to precode the CSI-RS, and then transmitting the re-coded CSI-RS.
  • the user equipment is judged, as such, until the appropriate precoding matrix is selected for the user equipment.
  • a method of beamforming at the transmitting end is adopted to improve the transmitting power. Utilization rate. Due to the beamforming, the effective coverage of the CSI-RS can be greatly improved, that is, the CSI-RS is transmitted to each user equipment as much as possible, thereby improving the data throughput and performance of the entire system, and transmitting data for the control layer plane and the data plane. Performance improvements play a key role.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • a processor Processor
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及通信技术领域,尤其涉及一种CSI-RS传输方法、网络设备及用户设备,用以解决在发射CSI-RS时功率浪费较为严重的技术问题;本发明实施例中通过对CSI-RS进行预编码,相当于对CSI-RS进行波束赋形,以在发射CSI-RS时能够尽量对准用户设备发射,减少发射功率在环境中的损耗,提高发射功率的利用率。

Description

一种CSI-RS传输方法、网络设备及用户设备 技术领域
本发明涉及通信技术领域,尤其涉及一种CSI-RS传输方法、网络设备及用户设备。
背景技术
Massive MIMO(Massive Multiple-Input Multiple-Output,大规模多输入多输出)被认为是5G(第五代移动通信技术)中提高频谱效率将要优先被采用的技术,并在业界得到广泛认可。
在Massvie MIMO系统中,基站在发射CSI-RS(Channel State Indication Reference Signal,信道状态指示参考信号)时,一般主要是通过增加发射端的发射功率的方法来进行相应的覆盖增强。然而,由于CSI-RS是全向发射,可能会有很多发射方向上并没有用户设备存在,导致较大部分的发射功率被周围环境吸收,发射功率的利用率较低,造成功率的浪费。
发明内容
本发明实施例提供一种CSI-RS传输方法、网络设备及用户设备,用以解决在发射CSI-RS时功率浪费较为严重的技术问题。
本发明的第一方面,提供一种CSI-RS传输方法,包括:
网络设备获取第一预编码矩阵;
所述网络设备根据所述第一预编码矩阵对CSI-RS进行预编码;
所述网络设备将预编码后的CSI-RS发送给用户设备。
结合第一方面,在第一方面的第一种可能的实现方式中,所述网络设备获取第一预编码矩阵,包括:
所述网络设备确定向所述用户设备发送所述CSI-RS使用的端口数目;
所述网络设备从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,在所述网络设备从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,还包括:
所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,包括:
所述网络设备从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
所述网络设备将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
结合第一方面或第一方面的第一种可能的实现方式或第二种可能的实现方式或第三种可能的实现方式,在第一方面的第四种可能的实现方式中,还包括:
所述网络设备接收所述用户设备针对所述第一预编码矩阵的反馈消息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述网络设备重新获取所述第一预编码矩阵;否则所述用户设备继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并将所述预编码后的CSI-RS发送给所述用户设备。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述网络设备接收所述用户设备针对所述第一预编码矩阵的反馈消息包括:所述网络设备通过PUCCH、EPUCCH、或PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
结合第一方面的第四种可能的实现方式,在第一方面的第六种可能的实 现方式中,
若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重新获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
结合第一方面或第一方面的第一种可能的实现方式至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述网络设备将预编码后的CSI-RS发送给用户设备,包括:
所述网络设备通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
本发明的第二方面,提供一种CSI-RS传输方法,包括:
用户设备接收网络设备发送的预编码后的信道状态指示参考信号CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对CSI-RS进行预编码得到的。
结合第二方面,在第二方面的第一种可能的实现方式中,还包括:
所述用户设备向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,还包括:
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息,包括:
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的预编码矩阵指示PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
结合第二方面或第二方面的第一种可能的实现方式或第二种可能的实现方式或第三种可能的实现方式,在第二方面的第四种可能的实现方式中,
若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重选获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
本发明的第三方面,提供一种网络设备,包括:
获取模块,用于获取第一预编码矩阵;
预编码模块,用于根据所述第一预编码矩阵对信道状态指示参考信号CSI-RS进行预编码;
发送模块,用于将预编码后的CSI-RS发送给用户设备。
结合第三方面,在第三方面的第一种可能的实现方式中,所述获取模块具体用于:
确定向所述用户设备发送所述CSI-RS使用的端口数目;
从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述获取模块还用于:在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述获取模块还用于:
从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
结合第三方面或第三方面的第一种可能的实现方式或第二种可能的实现方式或第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述网络设备还包括接收模块,用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述获取模块重新获取所述第一预编码矩阵;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述预编码模块继续根据所述第一预编码矩阵对所述CSI-RS进行预编码;所述发送模块将所述预编码后的CSI-RS发送给所述用户设备。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述接收模块具体用于:通过PUCCH、EPUCCH、或PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
结合第三方面或第三方面的第一种可能的实现方式至第五种可能的实现 方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述发送模块具体用于:通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
本发明的第四方面,提供一种用户设备,包括:
接收模块,用于接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对CSI-RS进行预编码得到的。
结合第四方面,在第四方面的第一种可能的实现方式中,所述用户设备还包括发送模块,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述用户设备还包括比较模块,用于:将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述比较模块具体用于:
将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
本发明的第五方面,提供一种网络设备,包括连接到同一总线的存储器、处理器和发送器;其中,
所述存储器,用于存储指令;
所述处理器,用于执行所述指令,获取第一预编码矩阵,根据所述第一预编码矩阵对CSI-RS进行预编码;
所述发送器,用于将预编码后的CSI-RS发送给用户设备。
结合第五方面,在第五方面的第一种可能的实现方式中,所述处理器具体用于:
确定向所述用户设备发送所述CSI-RS使用的端口数目;
从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述处理器还用于:执行所述指令,在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
结合第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述处理器还用于:
从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
结合第五方面或第五方面的第一种可能的实现方式或第二种可能的实现方式或第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述网络设备还包括连接到所述总线的接收器;
所述接收器用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
所述处理器还用于:若所述反馈消息指示所述第一预编码矩阵对应的PMI 不是所述CSI-RS的可用PMI,则重新获取所述第一预编码矩阵;否则继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并通过所述发送器将所述预编码后的CSI-RS发送给所述用户设备。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,所述接收器具体用于:通过PUCCH、EPUCCH、或PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
结合第五方面或第五方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第五方面的第六种可能的实现方式中,所述发送器具体用于:通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
本发明的第六方面,提供一种用户设备,包括连接到总线的接收器;
所述接收器用于:接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对CSI-RS进行预编码得到的。
结合第六方面,在第六方面的第一种可能的实现方式中,所述用户设备还包括连接到所述总线的发送器,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述用户设备还包括连接到所述总线的存储器和处理器;其中,
所述存储器,用于存储指令;
所述处理器,用于执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
结合第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述处理器具体用于:
执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比 较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
本发明实施例中,网络设备在要向用户设备发射CSI-RS时,首先要根据获取的预编码矩阵对所述CSI-RS进行预编码,这就相当于对所述CSI-RS进行了波束赋形,并将预编码后的CSI-RS发送给所述用户设备,这样,用户设备在接收到所述预编码后的CSI-RS后,可以将所述预编码后的CSI-RS的参数和预设参数阈值进行比较,例如,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则用户设备确定所接收的信号的功率较大,功率浪费较小,相当于,在对所述CSI-RS进行波束赋形后,所述预编码后的CSI-RS的发射方向基本对准了所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较大,则所述用户设备确定可以用所述预编码矩阵继续对所述CSI-RS进行预编码,而若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则用户设备确定所接收的信号的功率较小,功率浪费较大,相当于,在对所述CSI-RS进行波束赋形后,所述预编码后的CSI-RS的发射方向没有对准所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较小,则所述用户设备确定可以不用所述预编码矩阵继续对所述CSI-RS进行预编码,那么网络设备就会重新确定所述CSI-RS的预编码方式,例如会重新选择预编码矩阵对所述CSI-RS进行预编码,之后再将重新预编码后的CSI-RS发给用户设备进行判 断,如此,直到为用户设备选择到合适的预编码矩阵为止。
本发明实施例中采用在发射端进行波束赋形的方法,以提高发射功率的利用率。由于采用波束赋形,可以极大地提高CSI-RS的有效覆盖范围,即尽量将CSI-RS发射给各个用户设备,从而提高整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发射性能提高起到关键作用。
附图说明
图1为本发明实施例中网络设备侧CSI-RS传输方法的主要流程图;
图2为本发明实施例中网络设备的主要结构框图;
图3为本发明实施例中网络设备中还包括接收模块的结构框图;
图4为本发明实施例中网络设备的主要结构示意图;
图5为本发明实施例中网络设备中还包括接收器的结构示意图;
图6为本发明实施例中用户设备的主要结构示意图;
图7为本发明实施例中用户设备中还包括存储器、处理器和发送器的结构示意图。
具体实施方式
本发明实施例提供一种CSI-RS传输方法,所述方法包括:网络设备获取第一预编码矩阵;所述网络设备根据所述第一预编码矩阵对CSI-RS进行预编码;所述网络设备将预编码后的CSI-RS发送给用户设备。
本发明实施例中,网络设备在要向用户设备发射CSI-RS时,首先要根据获取的预编码矩阵对所述CSI-RS进行预编码,这就相当于对所述CSI-RS进行了波束赋形,并将预编码后的CSI-RS发送给所述用户设备,这样,用户设备在接收到所述预编码后的CSI-RS后,可以将所述预编码后的CSI-RS的参数和预设参数阈值进行比较,例如,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则用户设备确定所接收的信号的功率较大,功率浪费较小,相当于,在对所述CSI-RS进行波束赋形后,所述预 编码后的CSI-RS的发射方向基本对准了所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较大,则所述用户设备确定可以用所述预编码矩阵继续对所述CSI-RS进行预编码,而若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则用户设备确定所接收的信号的功率较小,功率浪费较大,相当于,在对所述CSI-RS进行波束赋形后,所述预编码后的CSI-RS的发射方向没有对准所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较小,则所述用户设备确定可以不用所述预编码矩阵继续对所述CSI-RS进行预编码,那么网络设备就会重新确定所述CSI-RS的预编码方式,例如会重新选择预编码矩阵对所述CSI-RS进行预编码,之后再将重新预编码后的CSI-RS发给用户设备进行判断,如此,直到为用户设备选择到合适的预编码矩阵为止。
本发明实施例中采用在发射端进行波束赋形的方法,以提高发射功率的利用率。由于采用波束赋形,可以极大地提高CSI-RS的有效覆盖范围,即尽量将CSI-RS发射给各个用户设备,从而提高整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发射性能提高起到关键作用。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中描述的技术可用于各种通信系统,例如当前2G(第二代移动通信技术),3G(第三代移动通信技术)通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing, FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,以及其他此类通信系统。
本文中结合用户设备和/或网络设备来描述各种方面。
用户设备(User Equipment,UE),可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN(Radio Access Network))与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
网络设备,例如是基站(例如,接入点),具体可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE 中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
下面结合说明书附图对本发明实施例作进一步详细描述。
请参见图1,本发明实施例提供一种CSI-RS传输方法,所述方法可以应用于网络设备。所述方法的主要流程描述如下。
步骤101:网络设备获取第一预编码矩阵。
所述网络设备在要向所述用户设备发送CSI-RS时,首先要获得一个预编码矩阵,以根据所述预编码矩阵对所述CSI-RS进行预编码,本发明实施例中将该预编码矩阵称为所述第一预编码矩阵。
可选的,本发明实施例中,网络设备获取第一预编码矩阵,包括:
所述网络设备确定向所述用户设备发送所述CSI-RS使用的端口数目;
所述网络设备从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
所述网络设备可能对应于多个用户设备,那么所述网络设备在向不同的用户设备发送CSI-RS时所用的端口数目可能不同,例如对于用户设备1,所述网络设备可能用两个端口发送,对于用户设备2,所述网络设备可能用4个端口发送,等等。这里的端口指的是逻辑端口,例如一个端口可以对应于5根物理天线。当然实际的设置情况本发明不作限制,这里的数值只是为了举例。
本发明实施例中,所述第一预编码矩阵码本是由专门针对CSI-RS进行预编码的预编码矩阵构成的码本,所述第一预编码矩阵码本中可以包括至少一 个预编码矩阵,所述第一预编码矩阵码本中所包括的预编码矩阵对应于至少两个端口。也就是说,例如所述网络设备确定针对用户设备1要用2个端口发送,那么就可以从所述第一预编码矩阵码本中选择对应于端口2的预编码矩阵作为针对用户设备1的预编码矩阵。
那么,在从所述第一预编码矩阵码本中选择预编码矩阵之前,自然还需要先生成所述第一预编码矩阵码本。
可选的,本发明实施例中,在所述网络设备从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前需生成所述预编码矩阵码本,具体包括:
所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
CSI反馈预编码矩阵码本,即CSI feedback(反馈)码本,是现有技术中已有的预编码矩阵码本,其中每个CSI反馈预编码矩阵码本对应于一个端口数目,每个CSI反馈预编码矩阵码本中包括有多个预编码矩阵,这些预编码矩阵对应的层数可能不同,当然一个CSI反馈预编码矩阵中可能也有对应于同一层数的不同预编码矩阵。
所述网络设备可以从所述M个CSI反馈预编码矩阵码本中分别选择预编码矩阵,其中,从一个CSI预编码矩阵码本中所选择的预编码矩阵,是层数与所述CSI预编码矩阵码本所对应的端口数目相等的预编码矩阵。
具体的,本发明实施例中,所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,包括:
所述网络设备从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
所述网络设备将所选择的预编码矩阵添加到所述第一预编码矩阵码本 中。
例如,CSI反馈预编码矩阵码本1所对应的端口数目为2,那么所述网络设备从中选择预编码矩阵时,就选择层数为2的预编码矩阵,并将选择的预编码矩阵添加到本发明实施例中所述的第一预编码矩阵码本中。再例如,CSI反馈预编码矩阵码本2所对应的端口数目为4,那么所述网络设备从中选择预编码矩阵时,就选择层数为4的预编码矩阵,并将选择的预编码矩阵添加到本发明实施例中所述的第一预编码矩阵码本中,等等。
所述网络设备可以同时针对多个CSI反馈预编码矩阵码本进行处理,或者也可以逐一针对每个CSI反馈预编码矩阵进行处理,即,既可以并行处理,提高处理效率,也可以串行处理,减少在处理过程中可能出现的错误。
CSI反馈预编码矩阵码本可能有很多,所述网络设备可以均进行处理,从中选择预编码矩阵构成本发明实施例中的所述第一预编码矩阵码本,这样,得到的结果较为全面,能够更好地对针对不同的用户设备的CSI-RS进行处理。或者,所述网络设备也可以从中选择一些CSI反馈预编码矩阵进行处理,从这些CSI反馈预编码矩阵码本中选择预编码矩阵构成本发明实施例中的所述第一预编码矩阵码本,这样,网络设备所需的处理过程较少,减轻网络设备的负担,也减少处理时间。
这样,就生成了本发明实施例中的所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括有对应于至少两个端口的预编码矩阵。所述网络设备要向一个用户设备发送CSI-RS时,就可以根据对应于该用户设备的端口数目,从所述第一预编码矩阵码本中选择所述第一预编码矩阵对所述CSI-RS进行预编码。
以下介绍一个具体的例子,说明如何构成所述第一预编码矩阵。
例如请参见表1,为一种CSI反馈预编码矩阵码本,例如该CSI反馈预编码矩阵码本对应的端口数目为4。
表1
Figure PCTCN2014095991-appb-000001
其中,表1中的CodeBook Index为码本索引,number of layers,表示层数(或者也可以称为流数),一层代表一个数据流,即不同的层就表示不同的数据流。
其中的W表示特定矩阵,un为W中的变量,例如,W1就表示该W中的un为u1。W的上标表示从W这个矩阵中取出哪几列构成一个新的矩阵,W作为一个矩阵,其包括有多个列,例如W{1}表示从W这个矩阵中取出第1列构成 一个新的矩阵,W{1234}表示从W这个矩阵中取出第1列、第2列、第3列和第4列构成一个新的矩阵,等等。例如,W1 {1234}就表示从W这个矩阵中取出第1列、第2列、第3列和第4列构成一个新的矩阵,其中W这个矩阵中的un为u1
因为表1所示的CSI反馈预编码矩阵码本所对应的端口数目为4,因此,要从中选择预编码矩阵添加到所述第一预编码矩阵码本中时,就可以从表1中选择层数为4的这一列预编码矩阵,即可以将表1中最右边的一列预编码矩阵均添加到所述第一预编码矩阵码本中。
例如本发明实施例中的所述第一预编码矩阵码本如表2所示:
表2
Figure PCTCN2014095991-appb-000002
Figure PCTCN2014095991-appb-000003
从表2中可以看出,所述网络设备将表1所示的CSI反馈预编码矩阵码本中层数为4的一列预编码矩阵均添加到了所述第一预编码矩阵码本中,作为与端口数目4对应的预编码矩阵。对于对应于其他端口数目的CSI反馈预编码矩阵码本,也可以采用同样的方式进行处理。
当然,本发明实施例中,对于不同的端口数目,添加到所述第一预编码矩阵码本中的预编码矩阵的数目可以相同也可以不同,例如,从表2中可知,所述第一预编码矩阵码本中有15个预编码矩阵对应的端口数目均为4,那么对于端口数目2来说,其在所述第一预编码矩阵码本中对应的预编码矩阵的数量可能也是15个,也有可能不是15个,对于其他端口数目来说也是一样。
另外,表2中是选择将表1中层数为4的预编码矩阵全部添加到了所述第一预编码矩阵码本中,这样可以使结果更为全面,在选择时有更宽的选择范围。而在实际应用中,也可以只从表1中选择一部分层数为4的预编码矩阵添加到所述第一预编码矩阵码本中,这样可以节省为存储所述第一预编码矩阵码本而划分的存储空间。那么对于具体从表1中选择哪些层数为4的预编码矩阵添加到所述第一预编码矩阵码本中,选择方式可以任意,例如可以是随机选择,或者也可以按照预先设定的任意规则选择,本发明不做限制。
例如,若从表1中随机选择一部分层数为4的预编码矩阵添加到所述第一预编码矩阵码本中,则得到的第一预编码矩阵码本例如如表3所示:
表3
Figure PCTCN2014095991-appb-000004
Figure PCTCN2014095991-appb-000005
从表3中可以看出,所述网络设备从表1所示的CSI反馈预编码矩阵码本中层数为4的一列预编码矩阵中选择了一部分添加到了所述第一预编码矩阵码本中,作为与端口数目4对应的预编码矩阵。
本发明实施例中,所述网络设备在对各CSI反馈预编码矩阵码本进行处理时,可以按照相同的方式进行处理,即可以都从中选择特定层数的全部预编码矩阵添加到所述第一预编码矩阵中,或者可以都从中选择特定层数的部分预编码矩阵添加到所述第一预编码矩阵中;或者,也可以按照不同的方式进行处理,即,对于其中的部分CSI反馈预编码矩阵码本,可以从中选择特定层数的全部预编码矩阵添加到所述第一预编码矩阵码本中,而对于另一部分CSI反馈预编码矩阵码本,可以从中选择特定层数的部分预编码矩阵添加到所述第一预编码矩阵中。对于具体的处理方式本发明实施例不作限制。
步骤102:所述网络设备根据所述第一预编码矩阵对所述CSI-RS进行预编码。
在选择出所述第一预编码矩阵后,所述网络设备根据所述第一预编码矩阵对所述CSI-RS进行编码,得到预编码后的CSI-RS。
本发明实施例中,预编码后的CSI-RS,其实质还是CSI-RS。
步骤103:所述网络设备将预编码后的CSI-RS发送给用户设备。
在对所述CSI-RS进行预编码,得到所述预编码后的CSI-RS之后,所述网络设备可以将所述预编码后的CSI-RS发送给所述用户设备。
本发明实施例中,所述网络设备在将所述预编码后的CSI-RS发送给所述用户设备时,可以一并将所述第一预编码矩阵对应的PMI(Precoding Matrix Indicator,预编码矩阵指示)发送给所述用户设备,或者,所述网络设备也可以在其他时机将所述第一预编码矩阵对应的PMI发送给所述用户设备,或者,所述用户设备也可以通过其他途径获得所述第一预编码矩阵对应的PMI,本发明不作限制。
可选的,本发明实施例中,所述方法还可以包括:
所述网络设备接收所述用户设备针对所述第一预编码矩阵的反馈消息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述网络设备重新获取所述第一预编码矩阵;否则所述用户设备继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并将所述预编码后的CSI-RS发送给所述用户设备。
本发明实施例中,所述用户设备在接收到所述预编码后的CSI-RS后,会将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,生成比较结果,并根据所述比较结果生成用于发送给所述网络设备的反馈消息。
若所述反馈消息表明所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述网络设备会从所述第一预编码矩阵码本中重新获取第一预编码矩阵,并采用重新获取的第一预编码矩阵对所述CSI-RS重新进行预编码,之后所述网络设备将所述重新预编码后的CSI-RS发送给所述用户设备。同样的,所述用户设备会将所述重新预编码后的CSI-RS的参数与所述预设参数阈值进行比较,得到比较结果,并根据比较结果生成用于发送给所述网络设备的反馈消息,同样的,所述网络设备在接收到该反馈消息后会以与之前相同的方式根据该反馈消息确定重新选择的第一预编码矩阵对应的PMI是否是所述CSI-RS的可用PMI,若所述重新获取的第一预编码矩阵对应的PMI是作为所述CSI-RS的可用PMI,则所述网络设备后续会继续使用所述重新获取的第一预编码矩阵对所述CSI-RS进行预编码,而若所述重新获取的第一预 编码矩阵对应的PMI依然不是所述CSI-RS的可用PMI,则所述网络设备会再次从所述第一预编码矩阵码本中重新选择第一预编码矩阵对所述CSI-RS进行预编码,如此循环执行,直到选择到一个其PMI能够作为所述CSI-RS的可用PMI的第一预编码矩阵时结束循环过程。
本发明实施例中,步骤103可以是最终结束循环的步骤,即,在步骤103之前可能还包括有至少一个选择所述CSI-RS的可用PMI的循环过程,不过在这些循环过程中,每次都没有选择到所述CSI-RS的可用PMI,当然在步骤103之前也可能没有包括任何循环过程,即所述网络设备一次就选择到了所述CSI-RS的可用PMI。
本发明实施例中,可用PMI是指:用户设备确定该PMI对应的第一预编码矩阵可以作为对所述CSI-RS进行预编码的预编码矩阵。即,若用户设备比较确定所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则用户设备会认为接收的PMI对应的第一预编码矩阵可以作为对所述CSI-RS进行预编码的预编码矩阵,本发明实施例中将这类PMI称为可用PMI,或者也可以称为备选PMI。
例如,若所述预编码后的CSI-RS的参数是功率参数,所述预设参数阈值为预设功率阈值,且,若所述预编码后的CSI-RS的功率大于等于所述预设功率阈值,则所述用户设备得出的比较结果是所述第一预编码矩阵对应的PMI是所述CSI-RS的备选PMI,即,对于所述用户设备来说,通过所述第一预编码矩阵对所述CSI-RS进行预编码后,接收到的所述预编码后的CSI-RS的功率较大,可以继续使用所述第一预编码矩阵对所述CSI-RS进行预编码,则对于所述用户设备,所述网络设备可以继续采用所述第一预编码矩阵对所述CSI-RS进行预编码,可以结束为所述用户设备选择第一预编码矩阵的循环过程。
例如,若所述预编码后的CSI-RS的参数是功率参数,所述预设参数阈值为预设功率阈值,且,若所述预编码后的CSI-RS的功率小于所述预设功率阈 值,则所述用户设备得出的比较结果是所述第一预编码矩阵对应的PMI不能作为所述CSI-RS的备选PMI,即,对于所述用户设备来说,通过所述第一预编码矩阵对所述CSI-RS进行预编码后,接收到的所述预编码后的CSI-RS的功率较小,可以认为波束赋形后得到的所述预编码后的CSI-RS的发送方向偏离了所述用户设备所在的方向,那么就不能继续使用所述第一预编码矩阵对所述CSI-RS进行预编码,而应该选用其它第一预编码矩阵对所述CSI-RS进行预编码,以期经过预编码得到的CSI-RS的发送方向尽量对准所述用户设备所在的方向,提高所接收的信号的功率,减少功率在环境中的损耗。
则对于所述用户设备,所述网络设备可以确定不再采用所述第一预编码矩阵对所述CSI-RS进行预编码,而是重新从所述第一预编码矩阵码本中选择另一个第一预编码矩阵,直到为所述CSI-RS选择到可用PMI为止。
可选的,本发明实施例中,所述网络设备将预编码后的CSI-RS发送给用户设备,包括:
所述网络设备通过PDCCH(Physical Downlink Control Channel,物理下行控制信道)或EPDCCH(Enhanced Physical Downlink Control Channel,增强型物理下行控制信道)将所述预编码后的CSI-RS发送给所述用户设备。
可选的,本发明实施例中,所述网络设备接收所述用户设备针对所述第一预编码后的CSI-RS的反馈消息,包括:所述网络设备通过PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)、EPUCCH(Enhanced Physical Uplink Control CHannel,物理上行链路控制信道)、或PUSCH(Physical Uplink Shared Channel,物理上行共享信道)接收所述用户设备针对所述第一预编码后的CSI-RS的反馈消息。
可选的,本发明实施例中,
若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重新获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
可选的,用户设备在向网络设备发送反馈消息时,可以在一个第一预编码矩阵对应的PMI可以作为该用户设备的可用PMI时直接将该PMI添加到反馈消息中发送给所述网络设备,及可以在一个第一预编码矩阵对应的PMI不能作为该用户设备的可用PMI时直接将该PMI的调整信息(例如是重新获取所述第一预编码矩阵的指示信息)添加到反馈消息中发送给所述网络设备。直接将PMI或PMI的调整信息发送给所述网络设备,能够将结果较为直观地呈现给网络设备,减少网络设备所需的确认工作。
或者,用户设备在向网络设备发送反馈消息时,也可以根据所述用户设备的判断结果,将相应的确认信息添加到反馈消息中发送给所述网络设备,例如,若所述用户设备确定一个第一预编码矩阵对应的PMI可以作为该用户设备的可用PMI,则所述用户设备添加到所述反馈消息中的确认信息表明该PMI可以作为该用户设备的可用PMI,若所述用户设备确定一个第一预编码矩阵对应的PMI不能作为该用户设备的可用PMI,则所述用户设备添加到所述反馈消息中的确认信息表明该PMI不能作为该用户设备的可用PMI。给网络设备发送确认信息,而确认信息一般容量都较小,例如一个确认信息只有一个比特(例如该确认信息为“1”时表明一个PMI可以作为该用户设备的可用PMI,该确认信息为“0”时表明一个PMI不能作为该用户设备的可用PMI),减少需要传输的数据量,提高传输速率。
一个小区中可能有多个用户设备,对于每个用户设备,都可以执行相同的处理过程,那么,对于每个用户设备,都能够选择到与其相适应的波束赋形的预编码矩阵,尽量提高每个用户设备所接收的CSI-RS的功率,也就尽量减少了消耗在环境中的发射功率,提高了发射功率的利用率。另外,针对每个用户设备都进行同样类似的处理,可以尽量保证每个用户设备都能够正常 接收到CSI-RS,提高了CSI-RS的覆盖率。
基于同一发明构思,本发明实施例提供另一种CSI-RS传输方法,所述方法可以应用于用户设备,本发明实施例中所述的用户设备与图1中所述的用户设备可以是同一设备,同样,本发明实施例中所述的网络设备与图1中所述的网络设备也可以是同一设备。所述方法的主要流程为:
用户设备接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对所述CSI-RS进行预编码得到的。
所述网络设备根据获取的第一预编码矩阵和所述CSI-RS得到所述预编码后的CSI-RS的方式,在图1流程中都有描述,此处不多赘述。
可选的,本发明实施例中,所述网络设备可以通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
可选的,本发明实施例中,所述方法还可以包括:
所述用户设备向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,所述方法还可以包括:
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述预编码后的CSI-RS的反馈消息。
可选的,本发明实施例中,所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息,包括:
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
本发明实施例中,所述参数可以包括功率参数、信噪比参数、干扰信号功率参数、及其他任意可能的参数中的一种或几种。
例如,若所述参数包括功率参数,那么所述预设参数阈值具体可以是预设功率阈值,那么,所述预设条件可以是:所述预编码后的CSI-RS的功率大于等于所述预设功率阈值。也就是说,若所述用户设备比较确定所述预编码后的CSI-RS的功率大于等于所述预设功率阈值,则确定所述预编码后的CSI-RS的功率满足所述预设条件,反之,若所述用户设备比较确定所述预编码后的CSI-RS的功率小于所述预设功率阈值,则确定所述预编码后的CSI-RS的功率不满足所述预设条件。
例如,若所述参数包括信噪比参数,那么所述预设参数阈值具体可以是预设信噪比阈值,那么,所述预设条件可以是:所述预编码后的CSI-RS的信噪比大于等于所述预设信噪比阈值。也就是说,若所述用户设备比较确定所述预编码后的CSI-RS的信噪比大于等于所述预设信噪比阈值,则确定所述预编码后的CSI-RS的信噪比满足所述预设条件,反之,若所述用户设备比较确定所述预编码后的CSI-RS的信噪比小于所述预设信噪比阈值,则确定所述预编码后的CSI-RS的信噪比不满足所述预设条件。
例如,若所述参数包括干扰信号功率参数,那么所述预设参数阈值具体可以是预设干扰信号功率阈值,那么,所述预设条件可以是:所述预编码后的CSI-RS的干扰信号功率小于所述预设干扰信号功率阈值。也就是说,若所述用户设备比较确定所述预编码后的CSI-RS的干扰信号功率小于所述预设干扰信号功率阈值,则确定所述预编码后的CSI-RS的干扰信号功率满足所述预 设条件,反之,若所述用户设备比较确定所述预编码后的CSI-RS的干扰信号功率大于等于所述预设干扰信号功率阈值,则确定所述预编码后的CSI-RS的干扰信号功率不满足所述预设条件。
当然,所述参数还可能包括其他参数,那么预设条件也会根据具体参数的不同而有所不同。
例如,若所述参数包括功率参数,所述预设参数阈值具体是所述预设功率阈值,若所述预编码后的CSI-RS的功率大于等于所述预设功率阈值,则所述用户设备得出的比较结果是所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,即,对于所述用户设备来说,通过所述第一预编码矩阵对所述CSI-RS进行预编码后,接收到的所述预编码后的CSI-RS的功率较大,可以继续使用所述第一预编码矩阵对所述CSI-RS进行预编码,则对于所述用户设备,所述网络设备可以继续采用所述第一预编码矩阵对所述CSI-RS进行预编码。
例如,若所述参数包括功率参数,所述预设参数阈值具体是所述预设功率阈值,若所述预编码后的CSI-RS的功率小于所述预设功率阈值,则所述用户设备得出的比较结果是所述第一预编码矩阵对应的PMI不能作为所述CSI-RS的可用PMI,即,对于所述用户设备来说,通过所述第一预编码矩阵对所述CSI-RS进行预编码后,接收到的所述预编码后的CSI-RS的功率较小,可以认为波束赋形后得到的所述预编码后的CSI-RS的发送方向偏离了所述用户设备所在的方向,那么就不能继续使用所述第一预编码矩阵对所述CSI-RS进行预编码,而应该选用其它第一预编码矩阵对所述CSI-RS进行预编码,以期经过预编码得到的CSI-RS的发送方向尽量对准所述用户设备所在的方向,提高所接收的信号的功率,减少功率在环境中的损耗。
可选的,本发明实施例中,在根据比较结果生成针对所述预编码后的CSI-RS的反馈消息之后,还可以包括:
所述用户设备将所述针对所述预编码后的CSI-RS的反馈消息发送给所述 网络设备。
可选的,本发明实施例中,
若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
若所述反馈消息指示所述第一预编码矩阵对应的预编码矩阵指示PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重选获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
在图1流程中介绍了,若用户设备发送的反馈消息表明一个第一预编码矩阵对应的PMI不是该用户设备的可用PMI,那么网络设备就会再重新选择第一预编码矩阵对针对该用户设备的CSI-RS进行预编码,并将重新预编码后的CSI-RS发送给用户设备,如此不断循环,直到用户设备发送的反馈消息表明一个第一预编码矩阵对应的PMI可以作为该用户设备的可用PMI时,结束循环。
当然,如果用户设备的信道衰落情况发生变化,则针对该用户设备,所述网络设备可能会重新为其选择CSI-RS的预编码矩阵,直到满足所述预设条件的可用PMI确定后,对于所述用户设备,采用可用PMI对应的预编码矩阵对CSI-RS进行相应的波束赋形,达到提高系统性能的目的。
本发明实施例针对CSI-RS在高频时全向发射的缺点,采用在发射端进行波束赋形的方法来提高发射功率的利用率,并且由于采用波束赋形,可以极大地提高CSI-RS的覆盖范围,从而提高整个系统的数据吞吐量和性能,能够为控制层平面和数据平面的数据发射性能的提高起到关键作用。
请参见图2,基于同一发明构思,本发明实施例提供一种网络设备,包括获取模块201、预编码模块202和发送模块203。
获取模块201,用于获取第一预编码矩阵;
预编码模块202,用于根据所述第一预编码矩阵对CSI-RS进行预编码;
发送模块203,用于将预编码后的CSI-RS发送给用户设备。
可选的,本发明实施例中,获取模块201具体用于:
确定向所述用户设备发送所述CSI-RS使用的端口数目;
从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
可选的,本发明实施例中,获取模块201还用于:在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
可选的,本发明实施例中,获取模块201还用于从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,具体为:
从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
可选的,本发明实施例中,请参见图3,所述网络设备还包括接收模块301;
接收模块301用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
获取模块201还用于:若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则重新获取所述第一预编码矩阵;
预编码模块202还用于:若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则继续根据所述第一预编码矩阵对所述CSI-RS进行预编码;发送模块203还用于:将所述预编码后的CSI-RS发 送给所述用户设备。
可选的,本发明实施例中,接收模块301具体用于:通过PUCCH、EPUCCH、或PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,发送模块203具体用于:通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
基于同一发明构思,本发明实施例提供一种用户设备,所述用户设备包括接收模块,所述接收模块,用于接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对所述CSI-RS进行预编码得到的。
可选的,本发明实施例中,所述用户设备还包括发送模块,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,所述用户设备还包括比较模块,用于:将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,所述比较模块具体用于:
将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
请参见图4,基于同一发明构思,本发明实施例提供一种网络设备,所述网络设备可以包括连接到同一总线400的存储器401、处理器402和发送器 403。
存储器401,用于存储处理器402执行任务所需的指令;
处理器402,用于执行存储器401存储的指令,获取第一预编码矩阵,根据所述第一预编码矩阵对CSI-RS进行预编码;
发送器403,用于将预编码后的CSI-RS发送给用户设备。
可选的,本发明实施例中,处理器402用于获取第一预编码矩阵,具体为:
确定向所述用户设备发送所述CSI-RS使用的端口数目;
从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
可选的,本发明实施例中,处理器402还用于:执行所述指令,在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
可选的,本发明实施例中,处理器402还用于从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,具体为:
从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
可选的,本发明实施例中,请参见图5,所述网络设备还包括连接到总线400的接收器501;
接收器501用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
处理器402还用于:若所述反馈消息指示所述第一预编码矩阵对应的预 编码矩阵指示PMI不是所述CSI-RS的可用PMI,则重新获取所述第一预编码矩阵;否则继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并通过发送器403将所述预编码后的CSI-RS发送给所述用户设备。
可选的,本发明实施例中,接收器501具体用于:通过PUCCH、EPUCCH、或PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,发送器403具体用于:通过PDCCH或EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
请参见图6,基于同一发明构思,本发明实施例提供一种用户设备,包括连接到总线600的接收器601,接收器601用于:接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对所述CSI-RS进行预编码得到的。
可选的,请参见图7,所述用户设备还包括连接到总线600的发送器701,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
可选的,请继续参见图7,所述用户设备还包括连接到总线600的存储器702和处理器703;其中,
存储器702,用于存储指令;
处理器703,用于执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
可选的,本发明实施例中,处理器703具体用于:
执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的预编码矩阵指示PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比 较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
本发明实施例提供一种CSI-RS传输方法,所述方法包括:网络设备获取第一预编码矩阵;所述网络设备根据所述第一预编码矩阵对所述CSI-RS进行预编码;所述网络设备将预编码后的CSI-RS发送给用户设备。
本发明实施例中,网络设备在要向用户设备发射CSI-RS时,首先要根据获取的预编码矩阵对所述CSI-RS进行预编码,这就相当于对所述CSI-RS进行了波束赋形,并将预编码后的CSI-RS发送给所述用户设备,这样,用户设备在接收到所述预编码后的CSI-RS后,可以将所述预编码后的CSI-RS的参数和预设参数阈值进行比较,例如,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则用户设备确定所接收的信号的功率较大,功率浪费较小,相当于,在对所述CSI-RS进行波束赋形后,所述预编码后的CSI-RS的发射方向基本对准了所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较大,则所述用户设备确定可以用所述预编码矩阵继续对所述CSI-RS进行预编码,而若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则用户设备确定所接收的信号的功率较小,功率浪费较大,相当于,在对所述CSI-RS进行波束赋形后,所述预编码后的CSI-RS的发射方向没有对准所述用户设备,因此所述用户设备接收到的所述预编码后的CSI-RS的功率较小,则所述用户设备确定可以不用所述预编码矩阵继续对所述CSI-RS进行预编码,那么网络设备就会重新确定所述CSI-RS的预编码方式,例如会重新选择预编码矩阵对所述CSI-RS进行预编码,之后再将重新预编码后的CSI-RS发给用户设备进行判断,如此,直到为用户设备选择到合适的预编码矩阵为止。
本发明实施例中采用在发射端进行波束赋形的方法,以提高发射功率的 利用率。由于采用波束赋形,可以极大地提高CSI-RS的有效覆盖范围,即尽量将CSI-RS发射给各个用户设备,从而提高整个系统数据吞吐量和性能,为控制层平面和数据平面的数据发射性能提高起到关键作用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将装置的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (35)

  1. 一种信道状态指示参考信号CSI-RS传输方法,其特征在于,包括:
    网络设备获取第一预编码矩阵;
    所述网络设备根据所述第一预编码矩阵对CSI-RS进行预编码;
    所述网络设备将预编码后的CSI-RS发送给用户设备。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备获取第一预编码矩阵,包括:
    所述网络设备确定向所述用户设备发送所述CSI-RS使用的端口数目;
    所述网络设备从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
  3. 如权利要求2所述的方法,其特征在于,在所述网络设备从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,还包括:
    所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
  4. 如权利要求3所述的方法,其特征在于,所述网络设备从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,包括:
    所述网络设备从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
    所述网络设备将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
  5. 如权利要求1-4任一所述的方法,其特征在于,还包括:
    所述网络设备接收所述用户设备针对所述第一预编码矩阵的反馈消息;
    若所述反馈消息指示所述第一预编码矩阵对应的预编码矩阵指示PMI不是所述CSI-RS的可用PMI,则所述网络设备重新获取所述第一预编码矩阵;否则 所述用户设备继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并将所述预编码后的CSI-RS发送给所述用户设备。
  6. 如权利要求5所述的方法,其特征在于,所述网络设备接收所述用户设备针对所述第一预编码矩阵的反馈消息包括:所述网络设备通过物理上行控制信道PUCCH、增强型物理上行控制信道EPUCCH、或上行数据信道PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
  7. 如权利要求5所述的方法,其特征在于,
    若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
    若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重新获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述网络设备将预编码后的CSI-RS发送给用户设备,包括:
    所述网络设备通过物理下行控制信道PDCCH或增强型物理下行控制信道EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
  9. 一种信道状态指示参考信号CSI-RS传输方法,其特征在于,包括:
    用户设备接收网络设备发送的预编码后的CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对CSI-RS进行预编码得到的。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    所述用户设备向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
  11. 如权利要求10所述的方法,其特征在于,还包括:
    所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
  12. 如权利要求11所述的方法,其特征在于,所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息,包括:
    所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的预编码矩阵指示PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
    所述用户设备将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
  13. 如权利要求9-12任一所述的方法,其特征在于,
    若所述反馈消息指示所述第一预编码矩阵对应的PMI是所述CSI-RS的可用PMI,则所述反馈消息中包括所述PMI或用于确认所述PMI为所述CSI-RS的可用PMI的确认信息;
    若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述反馈消息中包括重选获取所述第一预编码矩阵的指示信息或用于确认所述PMI不是所述CSI-RS的可用PMI的确认信息。
  14. 一种网络设备,其特征在于,包括:
    获取模块,用于获取第一预编码矩阵;
    预编码模块,用于根据所述第一预编码矩阵对信道状态指示参考信号CSI-RS进行预编码;
    发送模块,用于将预编码后的CSI-RS发送给用户设备。
  15. 如权利要求14所述的网络设备,其特征在于,所述获取模块具体用于:
    确定向所述用户设备发送所述CSI-RS使用的端口数目;
    从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作为所述第一预编码矩阵。
  16. 如权利要求15所述的网络设备,其特征在于,所述获取模块还用于:在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
  17. 如权利要求16所述的网络设备,其特征在于,所述获取模块还用于:
    从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
    将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
  18. 如权利要求14-17任一所述的网络设备,其特征在于,所述网络设备还包括接收模块,用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
    若所述反馈消息指示所述第一预编码矩阵对应的预编码矩阵指示PMI不是所述CSI-RS的可用PMI,则所述获取模块重新获取所述第一预编码矩阵;
    若所述反馈消息指示所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,则所述预编码模块继续根据所述第一预编码矩阵对所述CSI-RS进行预编码;所述发送模块将所述预编码后的CSI-RS发送给所述用户设备。
  19. 如权利要求18所述的网络设备,其特征在于,所述接收模块具体用于:通过物理上行控制信道PUCCH、增强型物理上行控制信道EPUCCH、或上行数据信道PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
  20. 如权利要求14-19任一所述的网络设备,其特征在于,所述发送模块具体用于:通过物理下行控制信道PDCCH或增强型物理下行控制信道EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
  21. 一种用户设备,其特征在于,包括:
    接收模块,用于接收网络设备发送的预编码后的信道状态指示参考信号CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码矩阵对CSI-RS进行预编码得到的。
  22. 如权利要求21所述的用户设备,其特征在于,所述用户设备还包括发送模块,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
  23. 如权利要求22所述的用户设备,其特征在于,所述用户设备还包括比较模块,用于:将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
  24. 如权利要求23所述的用户设备,其特征在于,所述比较模块具体用于:
    将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的预编码矩阵指示PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
    将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
  25. 一种网络设备,其特征在于,包括连接到同一总线的存储器、处理器和发送器;其中,
    所述存储器,用于存储指令;
    所述处理器,用于执行所述指令,获取第一预编码矩阵,根据所述第一预编码矩阵对信道状态指示参考信号CSI-RS进行预编码;
    所述发送器,用于将预编码后的CSI-RS发送给用户设备。
  26. 如权利要求25所述的网络设备,其特征在于,所述处理器具体用于:
    确定向所述用户设备发送所述CSI-RS使用的端口数目;
    从第一预编码矩阵码本中选择与所述确定的端口数目对应的预编码矩阵作 为所述第一预编码矩阵。
  27. 如权利要求26所述的网络设备,其特征在于,所述处理器还用于:执行所述指令,在从第一预编码矩阵码本中选择与所述端口数目对应的预编码矩阵作为所述第一预编码矩阵之前,从M个CSI反馈预编码矩阵码本中选择预编码矩阵,由选择的预编码矩阵构成所述第一预编码矩阵码本,所述第一预编码矩阵码本中包括对应于至少两个端口的预编码矩阵,M为正整数。
  28. 如权利要求27所述的网络设备,其特征在于,所述处理器还用于:
    从第i个CSI反馈预编码矩阵码本中选择层数与所述确定的端口数目相等的预编码矩阵,其中i为正整数,且1<i≤M;
    将所选择的预编码矩阵添加到所述第一预编码矩阵码本中。
  29. 如权利要求25-28任一所述的网络设备,其特征在于,所述网络设备还包括连接到所述总线的接收器;
    所述接收器用于:接收所述用户设备针对所述第一预编码矩阵的反馈消息;
    所述处理器还用于:若所述反馈消息指示所述第一预编码矩阵对应的预编码矩阵指示PMI不是所述CSI-RS的可用PMI,则重新获取所述第一预编码矩阵;否则继续根据所述第一预编码矩阵对所述CSI-RS进行预编码,并通过所述发送器将所述预编码后的CSI-RS发送给所述用户设备。
  30. 如权利要求29所述的网络设备,其特征在于,所述接收器具体用于:通过物理上行控制信道PUCCH、增强型物理上行控制信道EPUCCH、或上行数据信道PUSCH接收所述用户设备针对所述第一预编码矩阵的反馈消息。
  31. 如权利要求25-30任一所述的网络设备,其特征在于,所述发送器具体用于:通过物理下行控制信道PDCCH或增强型物理下行控制信道EPDCCH将所述预编码后的CSI-RS发送给所述用户设备。
  32. 一种用户设备,其特征在于,包括连接到总线的接收器;
    所述接收器用于:接收网络设备发送的预编码后的信道状态指示参考信号CSI-RS;其中,所述预编码后的CSI-RS为所述网络设备根据获取的第一预编码 矩阵对CSI-RS进行预编码得到的。
  33. 如权利要求32所述的用户设备,其特征在于,所述用户设备还包括连接到所述总线的发送器,用于:向所述网络设备发送针对所述第一预编码矩阵的反馈消息。
  34. 如权利要求33所述的用户设备,其特征在于,所述用户设备还包括连接到所述总线的存储器和处理器;其中,
    所述存储器,用于存储指令;
    所述处理器,用于执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,根据比较结果生成针对所述第一预编码矩阵的反馈消息。
  35. 如权利要求34所述的用户设备,其特征在于,所述处理器具体用于:
    执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系满足预设条件,则确定所述比较结果为所述第一预编码矩阵对应的预编码矩阵指示PMI是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息;或
    执行所述指令,将所述预编码后的CSI-RS的参数与预设参数阈值进行比较,若所述预编码后的CSI-RS的参数与所述预设参数阈值之间的关系不满足所述预设条件,则确定所述比较结果为所述第一预编码矩阵对应的PMI不是所述CSI-RS的可用PMI,并根据所述比较结果生成针对所述第一预编码矩阵的反馈消息。
PCT/CN2014/095991 2014-12-31 2014-12-31 一种csi-rs传输方法、网络设备及用户设备 WO2016106721A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14909528.3A EP3232730A4 (en) 2014-12-31 2014-12-31 Csi-rs transmission method, network device and user equipment
US15/541,325 US10224988B2 (en) 2014-12-31 2014-12-31 CSI-RS transmission method, network device, and user equipment
PCT/CN2014/095991 WO2016106721A1 (zh) 2014-12-31 2014-12-31 一种csi-rs传输方法、网络设备及用户设备
CN201480080924.5A CN106576387B (zh) 2014-12-31 2014-12-31 一种csi-rs传输方法、网络设备及用户设备
JP2017535396A JP6501892B2 (ja) 2014-12-31 2014-12-31 Csi−rs伝送方法、ネットワークデバイスおよびユーザ機器
EP18187280.5A EP3461167B1 (en) 2014-12-31 2014-12-31 Csi-rs transmission method, network device, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095991 WO2016106721A1 (zh) 2014-12-31 2014-12-31 一种csi-rs传输方法、网络设备及用户设备

Publications (1)

Publication Number Publication Date
WO2016106721A1 true WO2016106721A1 (zh) 2016-07-07

Family

ID=56283993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095991 WO2016106721A1 (zh) 2014-12-31 2014-12-31 一种csi-rs传输方法、网络设备及用户设备

Country Status (5)

Country Link
US (1) US10224988B2 (zh)
EP (2) EP3461167B1 (zh)
JP (1) JP6501892B2 (zh)
CN (1) CN106576387B (zh)
WO (1) WO2016106721A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
CN102948096A (zh) * 2010-06-21 2013-02-27 富士通株式会社 用于无线通信系统的信道状态信息反馈的方法和设备
CN103210605A (zh) * 2010-06-21 2013-07-17 高通股份有限公司 针对开环波束成形的物理资源块(prb)绑定
CN103782533A (zh) * 2012-07-02 2014-05-07 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2422542B1 (en) 2009-04-21 2017-09-13 Apple Inc. Method and apparatus for determining channel quality index in multiple user-mimo communication networks
CN102045762B (zh) * 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置
KR101839386B1 (ko) 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
CN103067064B (zh) * 2011-10-21 2017-10-10 中兴通讯股份有限公司 预编码矢量的确定方法及装置
US9166659B2 (en) * 2012-01-23 2015-10-20 Telefonaktiebolaget L M Ericsson (Publ) Method and device for selecting precoding matrices based on representations of speed of related devices
US10159052B2 (en) * 2012-08-03 2018-12-18 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
JP6121118B2 (ja) 2012-09-07 2017-04-26 株式会社Nttドコモ 無線通信方法、ユーザ端末、無線基地局及び無線通信システム
JP2014053812A (ja) 2012-09-07 2014-03-20 Ntt Docomo Inc 無線基地局、無線通信システム及び無線通信方法
US8976884B2 (en) * 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US9042255B2 (en) * 2013-01-18 2015-05-26 Nokia Solutions And Networks Oy Methods and apparatus for device scheduling
CN104065448B (zh) * 2013-03-22 2017-11-14 电信科学技术研究院 一种确定预编码矩阵的方法、系统和设备
JP6102606B2 (ja) * 2013-07-26 2017-03-29 富士通株式会社 無線基地局
US9787376B2 (en) * 2014-01-06 2017-10-10 Intel IP Corporation Systems, methods, and devices for hybrid full-dimensional multiple-input multiple-output
US9787379B2 (en) * 2014-11-17 2017-10-10 Samsung Electronics Co., Ltd. Method and apparatus for precoding channel state information reference signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104994A (zh) * 2009-12-21 2011-06-22 上海贝尔股份有限公司 在mimo系统中向用户发射数据的方法和基站
CN102948096A (zh) * 2010-06-21 2013-02-27 富士通株式会社 用于无线通信系统的信道状态信息反馈的方法和设备
CN103210605A (zh) * 2010-06-21 2013-07-17 高通股份有限公司 针对开环波束成形的物理资源块(prb)绑定
CN103782533A (zh) * 2012-07-02 2014-05-07 华为技术有限公司 确定预编码矩阵指示的方法、用户设备和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232730A4 *

Also Published As

Publication number Publication date
JP2018504835A (ja) 2018-02-15
CN106576387B (zh) 2019-11-12
JP6501892B2 (ja) 2019-04-17
EP3232730A1 (en) 2017-10-18
EP3461167A1 (en) 2019-03-27
US20170359110A1 (en) 2017-12-14
EP3232730A4 (en) 2018-02-28
CN106576387A (zh) 2017-04-19
US10224988B2 (en) 2019-03-05
EP3461167B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
TWI676370B (zh) 一種發送下行控制資訊dci的方法及裝置
WO2017050295A1 (zh) 一种多天线信道测量方法和装置
RU2642828C1 (ru) Способ, устройство и система совместной связи между оборудованиями пользователя
WO2013189018A1 (zh) 多点协作传输中的非周期反馈的触发方法和装置
JP2012525796A (ja) 閉ループmimoビーム形成のための差分フィードバックスキーム
WO2018059470A1 (zh) 传输信息的方法和设备
WO2015039312A1 (zh) 信道状态信息的反馈方法及装置
US9843411B2 (en) System and method for rate adaptation based on total number of spatial streams in MU-MIMO transmissions
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
US10469135B2 (en) Transmission control methods and transmission control apparatus
WO2019002284A1 (en) DESIGN OF QUAD-CYCLIC LDPC CODES SHIFT VALUES
WO2019019055A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020107188A1 (zh) 一种数据处理方法、设备及存储介质
WO2022033217A1 (zh) 多天线系统的资源复用方法、网络设备、装置和存储介质
WO2015062069A1 (zh) 确定预编码矩阵指示的方法、接收设备和发送设备
WO2016106721A1 (zh) 一种csi-rs传输方法、网络设备及用户设备
WO2024067346A1 (zh) 信息传输方法、装置及存储介质
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2024066900A1 (zh) 上行传输方法、终端、网络设备、装置和存储介质
WO2022028599A1 (zh) 信息传输方法、装置及存储介质
WO2024032387A1 (zh) 码本参数传输方法、装置及存储介质
CN117200841A (zh) 波束极化方向确定方法、装置及存储介质
CN118138084A (zh) 信道状态反馈方法、装置、网络侧设备及终端
CN116171560A (zh) 使用基于ai的信道估计的dmrs开销适配

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535396

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541325

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909528

Country of ref document: EP