WO2024066900A1 - 上行传输方法、终端、网络设备、装置和存储介质 - Google Patents

上行传输方法、终端、网络设备、装置和存储介质 Download PDF

Info

Publication number
WO2024066900A1
WO2024066900A1 PCT/CN2023/116122 CN2023116122W WO2024066900A1 WO 2024066900 A1 WO2024066900 A1 WO 2024066900A1 CN 2023116122 W CN2023116122 W CN 2023116122W WO 2024066900 A1 WO2024066900 A1 WO 2024066900A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
uplink
candidate
precoding
type
Prior art date
Application number
PCT/CN2023/116122
Other languages
English (en)
French (fr)
Inventor
叶凌云
黄秋萍
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2024066900A1 publication Critical patent/WO2024066900A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to an uplink transmission method, terminal, network equipment, device and storage medium.
  • codebook-based uplink MIMO Multiple Input Multiple Output
  • 4 antenna ports and a maximum of 4 layers.
  • CPE Customer Premise Equipment
  • FWA Fiber Wireless Access
  • Vehicle/Industrial and other application scenarios all have high throughput requirements for uplink transmission.
  • uplink transmission currently only supports a maximum of 4 antenna ports and a maximum of 4 layers of codebooks, which obviously cannot meet the requirements of the above application scenarios.
  • the embodiments of the present disclosure provide an uplink transmission method, a terminal, a network device, an apparatus and a storage medium, so as to solve the defect that the uplink transmission in the prior art cannot meet the high throughput requirement.
  • an uplink transmission method including:
  • the candidate precoding matrix comprises a first type of matrix and/or a second type of matrix, the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • Uplink transmission is performed based on the precoding matrix.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix A third type of matrix is also included, where each row and each column of the third type of matrix has only one non-zero element.
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix having only one non-zero element in each row and each column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the candidate precoding matrix is determined based on the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • an embodiment of the present disclosure further provides an uplink transmission method, including:
  • Generate precoding matrix indication information based on a precoding matrix in candidate precoding matrices where the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, where the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • the precoding matrix indication information is sent to a terminal, where the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is used for uplink transmission.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix also includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix having only one non-zero element in each row and each column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the candidate precoding matrix is determined based on the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • an embodiment of the present disclosure further provides a terminal, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program; a transceiver for sending and receiving data under the control of the processor; and a processor for reading the computer program in the memory and implementing the steps of the uplink transmission method described in the first aspect as described above.
  • an embodiment of the present disclosure further provides a network device, including a memory, a transceiver, and a processor, wherein:
  • a memory for storing a computer program; a transceiver for sending and receiving data under the control of the processor; and a processor for reading the computer program in the memory and implementing the steps of the uplink transmission method described in the second aspect as described above.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to enable the processor to execute the steps of the uplink transmission method described in the first aspect or the second aspect as described above.
  • the uplink transmission method, terminal, network device, apparatus and storage medium provided in the embodiments of the present disclosure use a first type of matrix determined based on a fully coherent codeword and a zero matrix, and/or based on a partially coherent codeword.
  • a second type of matrix determined by a fully coherent codeword or a non-coherent codeword is formed to form a candidate precoding matrix, so as to determine the precoding matrix for uplink transmission precoding. Since the fully coherent codeword, the partially coherent codeword and the non-coherent codeword can be directly obtained from the existing codebook, the candidate precoding matrix obtained by the combination can be quickly and conveniently obtained, thereby supporting more antenna ports and more layers of uplink parallel transmission to meet the high throughput requirements.
  • FIG1 is a schematic diagram of a flow chart of an uplink transmission method provided in an embodiment of the present disclosure
  • FIG2 is a second flow chart of an uplink transmission method provided by an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of the structure of a terminal provided in an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of the structure of a network device provided in an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a structure of an uplink transmission device according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic diagram of the structure of the uplink transmission device provided in an embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B may represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • plurality in the embodiments of the present disclosure refers to two or more than two, and other quantifiers are similar thereto.
  • an uplink transmission scheme is usually implemented based on a codebook, and specifically implemented through a multi-antenna transmission technology that determines an uplink transmission precoding matrix based on a fixed codebook.
  • the current NR system uplink transmission supports two waveforms: DFT (Discrete Fourier Transform)-S-OFDM (Single-carrier Frequency-Division Multiple Access) and CP-OFDM (Cyclic Prefix Orthogonal Frequency Division Multiplexing).
  • DFT Discrete Fourier Transform
  • S-OFDM Single-carrier Frequency-Division Multiple Access
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • uplink transmission under DFT-S-OFDM is mainly used in edge coverage scenarios with limited power, and only supports single-stream data transmission, which requires a special design for the single-stream codebook.
  • CP-OFDM can support up to 4-stream parallel transmission, which requires the design of a codebook for up to 4 streams.
  • the characteristics of its transmission antenna and radio frequency are quite different from those of the network equipment, and the codebook design needs to fully consider the correlation characteristics between antennas.
  • the terminal can use the two antenna ports to simultaneously transmit data on the same layer through precoding, thereby obtaining array gain.
  • factors such as the mutual coupling effect of antenna array elements, feeder differences, and changes in the amplifier phase and gain of the radio frequency path, in actual applications, there are inevitably differences in power and phase between the ports of the terminal antenna.
  • Due to cost and design constraints not all terminals can calibrate each antenna port to the extent that it meets the coherent transmission requirements. Antenna ports that cannot transmit coherently can transmit data on different transmission layers at the same time. Therefore, the codebook design for uplink transmission needs to consider the coherent transmission capability of the terminal's antenna.
  • the NR system defines the antenna coherent transmission capabilities of three types of terminals.
  • Partial-Coherent Antennas in the same coherent transmission group can transmit coherently, but coherent transmission groups cannot transmit coherently. Each coherent transmission group contains two antennas.
  • Non-coherent No antenna can transmit coherently.
  • the design of the uplink codebook is not based on any specific antenna structure assumption and correlation assumption.
  • the uplink codebook should contain codewords for antenna partial coherent transmission and antenna incoherent transmission to be used for terminals with partial coherent transmission capability or incoherent transmission capability.
  • the 4-antenna codebook using the DFT-S-OFDM waveform is designed based on the LTE (Long Term Evolution) uplink 4-antenna single-stream transmission codebook.
  • the LTE uplink 4-antenna single-stream transmission codebook contains 16 codewords suitable for 4-antenna full coherent transmission and 8 codewords suitable for partial antenna coherent transmission.
  • the codewords for partial antenna coherent transmission contain two coherent transmission antenna groups: 1 and 3 antennas as one group, and 2 and 4 antennas as one group.
  • NR's 4-antenna codebook under the DFT-S-OFDM waveform adds 4 single-antenna selection codewords on the basis of the LTE uplink 4-antenna single-stream transmission codebook, which is used for terminal and antenna selection with non-coherent transmission capabilities.
  • the codewords for coherent transmission of partial antennas use the 8 codewords for coherent transmission of partial antennas in the codebook for uplink 4-antenna single-stream transmission of LTE.
  • the codewords for incoherent transmission are all 4 single-antenna selection codewords.
  • the codewords for partial antenna coherent transmission are composed of the codewords in the LTE uplink 4-antenna 2-stream transmission codebook with 1 and 2 antennas as one group of coherent transmission antenna groups and 3 and 4 antennas as one group of coherent transmission antenna groups.
  • the coefficients of 2 and 3 antennas in the codewords for partial antenna coherent transmission in the LTE uplink 4-antenna single-stream transmission codebook are interchanged in NR and used in the codebook for 4-antenna 2-stream transmission when using CP-OFDM waveform.
  • the codewords for non-coherent transmission are the codewords for non-coherent transmission of all six 2-stream antennas.
  • the codewords for partial antenna coherent transmission are 2 codewords selected from the LTE R10 uplink codebook, corresponding to 1 and 3 antennas as a group of coherent transmission antenna groups, and 2 and 4 antennas as a group of coherent transmission antenna groups. Codeword for the antenna group.
  • the current uplink transmission only supports a maximum of 4 antenna ports and a maximum of 4 layers of codebooks, and therefore cannot meet the needs of various application scenarios.
  • FIG1 is a flow chart of an uplink transmission method provided by an embodiment of the present disclosure. As shown in FIG1 , the execution subject of the method is a terminal, and the method includes:
  • Step 110 receiving precoding matrix indication information
  • the precoding matrix indication information is sent by the network device to the terminal.
  • the precoding matrix indication information is used to indicate the precoding matrix applied for uplink transmission.
  • the precoding matrix indication information may carry the index of the precoding matrix used for uplink transmission, so that the terminal can determine the precoding matrix from the codebook stored for uplink transmission. It can be understood that the codebook used for uplink transmission here is pre-agreed by the network device and the terminal.
  • Step 120 determine the precoding matrix indicated by the precoding matrix indication information from the candidate precoding matrices, the candidate precoding matrices include a first type of matrix and/or a second type of matrix, the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword.
  • the candidate precoding matrix is a precoding matrix that can be used for uplink transmission in the codebook for uplink transmission.
  • the codebook for uplink transmission can include candidate precoding matrices for realizing partially coherent transmission, and can also include candidate precoding matrices for realizing incoherent transmission.
  • the candidate precoding matrix includes at least a first type of matrix and/or a second type of matrix, where the first type of matrix and the second type of matrix are both precoding matrices for partially coherent transmission of uplink P antenna ports, and P is the total number of uplink antenna ports included in the terminal.
  • the first type of matrix is a precoding matrix formed by any combination of fully coherent codewords and zero matrices.
  • the number of uplink antenna ports corresponding to the fully coherent codeword is related to the number of uplink antenna ports contained in each coherent transmission group owned by the terminal.
  • the fully coherent codeword used to form the first type of matrix can be a fully coherent codeword for uplink 4 antennas, or a fully coherent codeword for uplink 2 antennas, or both a fully coherent codeword for uplink 4 antennas and a fully coherent codeword for uplink 2 antennas.
  • the second type of matrix is determined based on partially coherent codewords or incoherent codewords. Furthermore, the second type of matrix can be determined based on the splicing of two partially coherent codewords, or the second type of matrix can be determined based on the splicing of two incoherent codewords. When determining the second type of matrix, whether to apply partially coherent codewords or incoherent codewords can be related to the number of uplink antenna ports contained in each coherent transmission group owned by the terminal.
  • the coherent transmission group contains 4 uplink antenna ports
  • the partially coherent codewords of two uplink 4 antenna ports can be used to construct the second type of matrix
  • the coherent transmission group contains 2 uplink antenna ports
  • the incoherent codewords of two uplink 4 antenna ports can be used to construct the second type of matrix.
  • both the first type of matrix and the second type of matrix can be obtained based on the fully coherent codewords in the existing codebook, or based on the partially coherent codewords or incoherent codewords in the existing codebook. Therefore, when designing a codebook for supporting uplink parallel transmission with more antenna ports and more layers, the codewords in the existing codebook supporting uplink parallel transmission with fewer antenna ports and fewer layers can be applied. For example, when designing a candidate precoding matrix for uplink parallel transmission with 8 antenna ports and 8 layers, the codewords in the codebook for uplink parallel transmission with 4 antenna ports and 4 layers can be applied.
  • the terminal after receiving the precoding matrix indication information, the terminal only needs to select the candidate precoding matrix indicated by the precoding matrix indication information from the candidate precoding matrices as the precoding matrix for subsequent uplink transmission.
  • Step 130 Perform uplink transmission based on the precoding matrix.
  • the terminal may apply the precoding matrix, perform a precoding operation on information to be transmitted, and transmit the information after the precoding operation, thereby realizing uplink transmission.
  • the method provided by the embodiment of the present disclosure uses a first type of matrix determined based on a fully coherent codeword and a zero matrix, and/or a second type of matrix determined based on a partially coherent codeword or an incoherent codeword to form a candidate precoding matrix, so as to determine the precoding matrix for uplink transmission precoding. Since the fully coherent codeword, the partially coherent codeword, and the incoherent codeword can be directly obtained from the existing codebook, the candidate precoding matrix obtained by the combination can be quickly and conveniently obtained, thereby supporting more antenna ports and more layers of uplink parallel transmission to meet high throughput requirements.
  • the first type of matrix is a combination of matrix W and matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the antenna ports used for uplink transmission of the terminal can be divided into coherent transmission groups according to the coherent transmission capability, and the number of uplink antenna ports in each coherent transmission group is consistent.
  • 8 antenna ports can be divided into 2 coherent transmission groups, each of which has 4 uplink antenna ports; for another example, 8 antenna ports can be divided into 4 coherent transmission groups, each of which has 2 uplink antenna ports; for another example, 16 antenna ports can be divided into 2 coherent transmission groups, each of which has 8 uplink antenna ports.
  • the embodiments of the present disclosure do not specifically limit this.
  • the number of uplink antenna ports in the coherent transmission group is an exponent of 2, such as 2, 4, 8, etc., and the number of uplink antenna ports in each coherent transmission group is less than the total number of uplink antenna ports of the terminal P. Therefore, there can be 2N uplink antenna ports in each coherent transmission group, where N is a positive integer, and considering the partial coherence, the antenna ports for uplink transmission are divided into at least two coherent transmission groups, so N ⁇ log 2 P.
  • the fully coherent codeword and the zero matrix need to meet the following conditions:
  • the first type of matrix is the fully coherent codeword W of the uplink 2 i antenna ports and the zero matrix Z with 2 i rows. Any combination of .
  • the value of i is restricted by N, that is, i can be one or more integers from 1 to N.
  • the matrix W used to construct the first type of matrix can include matrices in the fully coherent codewords of antenna ports with indexes of each 2 from 2 to 2N
  • the matrix Z can include a zero matrix with a row number of indexes of each 2 from 2 to 2N .
  • the terminal has 8 antenna ports, which are divided into 2 coherent transmission groups and each coherent transmission group has 4 antenna ports.
  • the first type of matrix used for partially coherent transmission can be a combination of all possible matrices or matrix transformations as follows:
  • W, W 1 , W 2 , W 3 and W 4 are matrices in fully coherent codewords of 4 uplink and/or 2 antenna ports, and Z is a zero matrix with 4 and/or 2 rows.
  • the above matrix transformation refers to the row transformation of the above matrix.
  • W1 and W2 are expressed as Then the matrix After row transformation, it can be
  • the terminal has 8 antenna ports, which are divided into 4 coherent transmission groups and each coherent transmission group has 2 antenna ports.
  • the first type of matrix used for partially coherent transmission can be a combination of all possible matrices or matrix transformations as follows:
  • W, W 1 , W 2 , W 3 and W 4 are matrices in the fully coherent codewords of the two uplink antenna ports, and Z is a zero matrix with 2 rows.
  • the matrix transformation refers to the row transformation of the above matrix.
  • W1 and W2 are expressed as Then the matrix After row transformation, it can be
  • the method provided by the embodiment of the present disclosure constructs a first-class matrix by combining a matrix W and a matrix Z. Since the matrix W is a matrix in a fully coherent codeword that can be directly obtained from an existing codebook, and the matrix Z is a matrix that can be directly constructed, the difficulty of obtaining both is very low. The cost of obtaining the first-class matrix based on the combination of the two is very low, and a rich variety of first-class matrices that can support more antenna ports and more layers of uplink parallel transmission can be obtained, thereby improving the flexibility of precoding matrix selection.
  • the embodiment of the present disclosure screens any combination of the matrix W and the matrix Z:
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combination matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • N the value of N can be further divided into two cases.
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the first type of matrix obtained by selecting the above rules can effectively limit the difference in the number of non-zero elements in different rows during uplink transmission, thereby balancing the transmit power of each antenna port, because the difference in the number of non-zero elements in different rows is less than or equal to 1.
  • its partial coherent transmission codebook can be the following first type matrix selected according to the above rules:
  • W mTx,rn is a matrix in a fully coherent codeword with n layers for uplink m antenna ports; the number of rows of the zero matrix Z is 4.
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2, and the value of j is at least one integer from 1 to K.
  • the first type of matrix selected by the above rules can ensure a low cubic metric because the number of non-zero elements in each row is less than or equal to 2, thereby ensuring the efficiency of the power amplifier on the terminal side.
  • its partially coherent transmission codebook can be the following first-class matrix selected according to the above rules:
  • W mTx,rn is a matrix in a fully coherent codeword with a layer number of n for uplink m antenna ports; the number of rows of the zero matrix Z is 4 and/or 2.
  • the following rule can be applied to select the combined matrix obtained by any combination of the matrix W and the matrix Z to obtain the first type of matrix:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the transmit power of different antenna ports during uplink transmission can be effectively limited, thereby balancing the transmit power of each antenna port.
  • each coherent transmission group has 2 antenna ports
  • its partial coherent transmission codebook can be the following first type matrix selected according to the above rules:
  • W 2Tx,rn is a matrix in a fully coherent codeword with a layer number of n for two uplink antenna ports; the number of rows of the zero matrix Z is 2.
  • the method provided by the embodiment of the present disclosure screens a combination matrix of any combination of the matrix W and the matrix Z by limiting the number of antenna ports corresponding to the matrix W, and the number of non-zero elements and/or the difference in the number of non-zero elements in different rows in the combination matrix obtained by combining the matrix W and the matrix Z. While ensuring that the first type of matrix can support more antenna ports and more layers of uplink parallel transmission, the scale of the candidate precoding matrix is effectively controlled.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the second type of matrix it is necessary to refer to the partial coherent codewords or incoherent codewords of the uplink P/2 antenna ports.
  • the specific codeword used to construct the second type of matrix still needs to be determined according to the number of uplink antenna ports contained in each coherent transmission group owned by the terminal. Specifically, when the coherent transmission group has P/2 antenna ports, A and B are matrices in the partial coherent codewords. When the number of antenna ports in the coherent transmission group is less than P/2, A and B are matrices in the incoherent codewords.
  • the terminal when the terminal includes 8 antenna ports, it can be specifically divided into 2 coherent transmission groups and each coherent transmission group has 4 antenna ports.
  • a and B used to construct the second type of matrix are matrices in the partial coherent codewords of the uplink 4 antenna ports.
  • the terminal when the terminal includes 8 antenna ports, it can be specifically divided into 4 coherent transmission groups and each coherent transmission group has 2 antenna ports.
  • a and B used to construct the second type of matrix are matrices in the incoherent codewords of the uplink 4 antenna ports.
  • the method provided by the embodiment of the present disclosure applies partially coherent codewords or incoherent codewords to construct a second type of matrix. Since both partially coherent codewords and incoherent codewords can be directly obtained from the existing codebook, the candidate precoding matrix thus combined can be quickly and conveniently obtained, thereby supporting more antenna ports and more layers of uplink parallel transmission to meet high throughput requirements.
  • the candidate precoding matrix further includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the candidate precoding matrix should also be provided with a precoding matrix for realizing uplink incoherent transmission of more antenna ports and more layers.
  • this type of precoding matrix used for incoherent transmission is recorded as the third type of matrix.
  • each row of the third type matrix has only one non-zero element
  • each column of the third type matrix has only one non-zero element.
  • the third type matrix included in the precoding matrix may be a set of all possible matrices, or a set of matrices obtained after screening based on a preset principle, which is not specifically limited in the embodiments of the present disclosure.
  • the method provided by the embodiment of the present disclosure provides a third type of matrix for realizing incoherent transmission as a candidate precoding matrix, thereby ensuring that whether it is partially coherent transmission or incoherent transmission, the terminal can obtain a suitable precoding matrix from the candidate precoding matrix to realize uplink parallel transmission of more antenna ports and more layers.
  • the embodiment of the present disclosure screens any candidate matrix that has only one non-zero element in each row and each column:
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix with only one non-zero element in each row and column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the above four rules can be applied one by one to implement the screening of the third type of matrix, or multiple of them can be selected and applied separately, and the candidate matrices screened based on each rule are all used as the third type of matrix.
  • the embodiments of the present disclosure do not make specific limitations on this.
  • a candidate matrix connected with row numbers where non-zero elements are located is selected as a third type of matrix, so that when the matrix is applied for precoding processing and sending signals, the serial numbers of the occupied uplink antenna ports are continuous, which is more conducive to the convenience of configuring the corresponding uplink antenna ports;
  • the third type of matrix is screened from the candidate matrix according to the interval of row numbers where non-zero elements of adjacent columns are located, so that when the matrix is applied for precoding processing and sending signals, the anti-interference performance between adjacent uplink antenna ports is stronger.
  • the method provided by the embodiment of the present disclosure limits the row number of the non-zero elements in the third type of matrix.
  • the candidate matrices are screened based on the continuity and the interval of row numbers of non-zero elements in adjacent columns. While ensuring that the third type of matrix can support more antenna ports and more layers of uplink parallel transmission, the scale of the candidate precoding matrix is effectively controlled.
  • the signaling overhead of transmitting the candidate precoding matrices between the two devices will increase, and the algorithm complexity of selecting the optimal codebook and the overhead of storing all candidate precoding matrix sets will also increase.
  • the size of the candidate precoding matrices can also be planned and limited through the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • the target candidate matrix number M is the total number of candidate precoding matrices that are expected to be ultimately applied to the uplink transmission method.
  • the initial precoding matrix set includes a large number of initial precoding matrices.
  • the initial precoding matrix set may include the first type of matrix and/or the second type of matrix, and may also include the third type of matrix and the first type of matrix and/or the second type of matrix. The embodiments of the present disclosure do not specifically limit this.
  • M can be used as the number of initial precoding matrices included in the initial matrix combination, and M initial precoding matrices are selected from the initial precoding matrix set to construct the initial matrix combination. It can be understood that the M initial precoding matrices here can be selected arbitrarily, so that the initial matrix combination obtained covers all possible combinations of the M initial precoding matrices.
  • the difference value between each two initial precoding matrices in the initial matrix combination can be calculated, where the difference value between the two initial precoding matrices can be expressed as the chord distance between the two initial precoding matrices.
  • the intra-group matrix difference value of the initial matrix combination can be determined based on this.
  • the intra-group matrix difference value here reflects the difference between the initial precoding matrices in the entire initial matrix combination in units of the initial matrix combination.
  • the intra-group matrix difference value can take the average of the difference values between every two initial precoding matrices in the initial matrix combination, or can take the minimum value of the difference value between every two initial precoding matrices in the initial matrix combination.
  • the intra-group matrix difference value can take the average of the chord distances between every two initial precoding matrices in the initial matrix combination, or the intra-group matrix difference value can take the minimum value of the chord distances between every two initial precoding matrices in the initial matrix combination.
  • the embodiments of the present disclosure do not make specific limitations on this.
  • the initial matrix combination with the largest intra-group matrix difference value can be selected from each of the above initial matrix combinations as a candidate matrix combination. It can be understood that the larger the intra-group matrix difference value, the greater the difference between the initial precoding matrices in the initial matrix combination, and the more types and characteristics of the initial precoding matrices covered by the initial matrix combination. Therefore, the initial matrix combination with the largest matrix difference value is selected, that is, under the premise of a limited number of initial precoding matrices M, the initial precoding matrices with the most types and characteristics are covered as much as possible to cope with various uplink transmission requirements.
  • the M initial precoding matrices in the candidate matrix combination may be determined as candidate precoding matrices.
  • the method provided by the embodiment of the present disclosure effectively limits the size and quantity of candidate precoding matrices, reduces the algorithm complexity of precoding matrix selection, and reduces the storage overhead of candidate precoding matrices.
  • each layer may reduce the number of candidate precoding matrices to a reasonable number M according to the following method.
  • Step 1 Select all M combinations of initial precoding matrices from the initial precoding matrix set, i.e., the initial matrix combination;
  • Step 2 Traverse all combinations. For each combination, select 2 initial precoding matrices from the M initial precoding matrices. Calculate the difference between each two initial precoding matrices, that is, the chord distance between each two initial precoding matrices Then calculate this The minimum value of the chord distances is taken as the intra-group matrix difference value of the combination. Therefore, each combination corresponds to an intra-group matrix difference value, that is, the minimum chord distance.
  • Step 3 Traverse all combinations and select the combination with the largest matrix difference value within the group, which is the candidate matrix combination finally applied to this layer. It contains M initial precoding matrices, and these M initial precoding matrices are the candidate precoding matrices finally applied to this layer.
  • FIG. 2 is a second flow chart of an uplink transmission method provided by an embodiment of the present disclosure.
  • the execution subject of the method is a network device, and the method includes:
  • Step 210 Generate precoding matrix indication information based on a precoding matrix in a candidate precoding matrix, wherein the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, wherein the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword.
  • the candidate precoding matrix is a precoding matrix that can be used for uplink transmission in the codebook for uplink transmission.
  • the codebook for uplink transmission can include candidate precoding matrices for realizing partially coherent transmission, and can also include candidate precoding matrices for realizing incoherent transmission.
  • the candidate precoding matrix in the embodiment of the present disclosure includes at least a first type of matrix and/or a second type of matrix, where the first type of matrix and the second type of matrix are both precoding matrices for partially coherent transmission of P uplink antenna ports, where P is the total number of uplink antenna ports included in the terminal.
  • the first type of matrix is a precoding matrix formed by any combination of fully coherent codewords and zero matrices.
  • the number of uplink antenna ports corresponding to the fully coherent codeword is related to the number of uplink antenna ports contained in each coherent transmission group owned by the terminal.
  • the fully coherent codeword used to form the first type of matrix can be a fully coherent codeword for uplink 4 antennas, or a fully coherent codeword for uplink 2 antennas, or both a fully coherent codeword for uplink 4 antennas and a fully coherent codeword for uplink 2 antennas.
  • the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword. Furthermore, the second type of matrix can be determined based on the concatenation of two partially coherent codewords, or the second type of matrix can be determined based on the concatenation of two incoherent codewords. When determining the second type of matrix, whether to apply a partially coherent codeword or an incoherent codeword can be related to the number of uplink antenna ports included in each coherent transmission group owned by the terminal.
  • the second type of matrix may be constructed using partially coherent codewords of two uplink four antenna ports; when the coherent transmission group includes two uplink antenna ports, the second type of matrix may be constructed using incoherent codewords of two uplink four antenna ports.
  • both the first type of matrix and the second type of matrix can be obtained based on the fully coherent codewords in the existing codebook, or based on the partially coherent codewords or incoherent codewords in the existing codebook. Therefore, when designing a codebook for supporting uplink parallel transmission with more antenna ports and more layers, the codewords in the existing codebook supporting uplink parallel transmission with fewer antenna ports and fewer layers can be applied. For example, when designing a candidate precoding matrix for uplink parallel transmission with 8 antenna ports and 8 layers, the codewords in the codebook for uplink parallel transmission with 4 antenna ports and 4 layers can be applied.
  • the network device can select a precoding matrix from the candidate precoding matrices and generate precoding matrix indication information for indicating the precoding matrix.
  • the precoding matrix indication information is used to indicate the precoding matrix applied for uplink transmission, and the precoding matrix indication information can carry the index of the precoding matrix used for uplink transmission.
  • Step 220 Send the precoding matrix indication information to the terminal, where the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is used for uplink transmission.
  • the network device may send the generated precoding matrix indication information to the terminal.
  • the terminal may select a candidate precoding matrix indicated by the precoding matrix indication information from the candidate precoding matrices as the precoding matrix for subsequent uplink transmission.
  • the terminal may apply the precoding matrix, perform a precoding operation on the information to be transmitted, and transmit the information after the precoding operation, thereby realizing uplink transmission.
  • the method provided by the embodiment of the present disclosure uses a first type of matrix determined based on a fully coherent codeword and a zero matrix, and/or a second type of matrix determined based on a partially coherent codeword or an incoherent codeword to form a candidate precoding matrix, so as to determine the precoding matrix for uplink transmission precoding. Since the fully coherent codeword, the partially coherent codeword, and the incoherent codeword can be directly obtained from the existing codebook, the candidate precoding matrix obtained by the combination can be quickly and conveniently obtained, thereby supporting more antenna ports and more layers of uplink parallel transmission to meet high throughput requirements.
  • the first type of matrix is a combination of matrix W and matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the antenna ports used for uplink transmission of the terminal can be divided into coherent transmission groups according to the coherent transmission capability, and the number of uplink antenna ports in each coherent transmission group is consistent.
  • 8 antenna ports can be divided into 2 coherent transmission groups, each of which has 4 uplink antenna ports; for another example, 8 antenna ports can be divided into 4 coherent transmission groups, each of which has 2 uplink antenna ports; for another example, 16 antenna ports can be divided into 2 coherent transmission groups, each of which has 8 uplink antenna ports.
  • the embodiments of the present disclosure do not specifically limit this.
  • the number of uplink antenna ports in the coherent transmission group is an exponent of 2, such as 2, 4, 8, etc., and the number of uplink antenna ports in each coherent transmission group is less than the total number of uplink antenna ports of the terminal P. Therefore, there can be 2N uplink antenna ports in each coherent transmission group, where N is a positive integer, and considering the partial coherence, the antenna ports for uplink transmission are divided into at least two coherent transmission groups, so N ⁇ log 2 P.
  • the fully coherent codeword and the zero matrix need to meet the following conditions:
  • the first type of matrix is any combination of the fully coherent codewords W of the uplink 2 i antenna ports and the zero matrix Z with 2 i rows.
  • the value of i is restricted by N, that is, i can be one or more integers from 1 to N.
  • the matrix W used to construct the first type of matrix can include matrices in the fully coherent codewords of antenna ports with indexes of each 2 from 2 to 2N
  • the matrix Z can include a zero matrix with a row number of indexes of each 2 from 2 to 2N .
  • the method provided by the embodiment of the present disclosure constructs a first type of matrix by combining a matrix W and a matrix Z. Since the matrix W is a matrix in a fully coherent codeword that can be directly obtained from an existing codebook, and the matrix Z is a matrix that can be directly constructed, the difficulty of obtaining both is very low. The cost of obtaining the first type of matrix based on the combination of the two is very low, and a rich variety of matrixes that can support more antenna ports and more can be obtained.
  • the first type of matrix for uplink parallel transmission of the layer improves the flexibility of precoding matrix selection.
  • the embodiment of the present disclosure screens any combination of the matrix W and the matrix Z:
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combination matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • N the value of N can be further divided into two cases.
  • N is an integer greater than 1, that is, 1 ⁇ N ⁇ log 2 P.
  • N is denoted by K, that is, K is an integer, and 1 ⁇ K ⁇ log 2 P.
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the first type of matrix obtained by selecting the above rules can effectively limit the difference in the number of non-zero elements in different rows during uplink transmission, thereby balancing the transmit power of each antenna port, because the difference in the number of non-zero elements in different rows is less than or equal to 1.
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2, and the value of j is at least one integer from 1 to K.
  • the first type of matrix selected by the above rules can ensure a low cubic metric because the number of non-zero elements in each row is less than or equal to 2, thereby ensuring the efficiency of the power amplifier on the terminal side.
  • the following rule can be applied to select the combined matrix obtained by any combination of the matrix W and the matrix Z to obtain the first type of matrix:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the transmit power of different antenna ports during uplink transmission can be effectively limited, thereby balancing the transmit power of each antenna port.
  • the method provided by the embodiment of the present disclosure screens a combination matrix of any combination of the matrix W and the matrix Z by limiting the number of antenna ports corresponding to the matrix W, and the number of non-zero elements and/or the difference in the number of non-zero elements in different rows in the combination matrix obtained by combining the matrix W and the matrix Z. While ensuring that the first type of matrix can support more antenna ports and more layers of uplink parallel transmission, the scale of the candidate precoding matrix is effectively controlled.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the second type of matrix it is necessary to refer to the partially coherent codewords or incoherent codewords of the uplink P/2 antenna ports.
  • the specific codeword used to construct the second type of matrix still needs to be determined according to the number of uplink antenna ports contained in each coherent transmission group owned by the terminal. Specifically, when the coherent transmission group has P/2 antenna ports, A and B are matrices in the partially coherent codewords. When the number of antenna ports in the input group is less than P/2, A and B are matrices in non-coherent codewords.
  • the method provided by the embodiment of the present disclosure applies partially coherent codewords or incoherent codewords to construct a second type of matrix. Since both partially coherent codewords and incoherent codewords can be directly obtained from the existing codebook, the candidate precoding matrix thus combined can be quickly and conveniently obtained, thereby supporting more antenna ports and more layers of uplink parallel transmission to meet high throughput requirements.
  • the candidate precoding matrix further includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the candidate precoding matrix should also be provided with a precoding matrix for realizing uplink incoherent transmission of more antenna ports and more layers.
  • this type of precoding matrix used for incoherent transmission is recorded as the third type of matrix.
  • each row of the third type matrix has only one non-zero element
  • each column of the third type matrix has only one non-zero element.
  • the third type matrix included in the precoding matrix may be a set of all possible matrices, or a set of matrices obtained after screening based on a preset principle, which is not specifically limited in the embodiments of the present disclosure.
  • the method provided by the embodiment of the present disclosure provides a third type of matrix for realizing incoherent transmission as a candidate precoding matrix, thereby ensuring that whether it is partially coherent transmission or incoherent transmission, the terminal can obtain a suitable precoding matrix from the candidate precoding matrix to realize uplink parallel transmission of more antenna ports and more layers.
  • the embodiment of the present disclosure screens any candidate matrix that has only one non-zero element in each row and each column:
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix with only one non-zero element in each row and column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the above four rules can be applied one by one to implement the screening of the third type of matrix, or multiple of them can be selected and applied separately, and the candidate matrices screened based on each rule are all used as the third type of matrix.
  • the embodiments of the present disclosure do not make specific limitations on this.
  • a candidate matrix connected with row numbers where non-zero elements are located is selected as a third type of matrix, so that when the matrix is applied for precoding processing and sending signals, the serial numbers of the occupied uplink antenna ports are continuous, which is more conducive to the convenience of configuring the corresponding uplink antenna ports;
  • the third type of matrix is screened from the candidate matrix according to the interval of row numbers where non-zero elements of adjacent columns are located, so that when the matrix is applied for precoding processing and sending signals, the anti-interference performance between adjacent uplink antenna ports is stronger.
  • the method provided by the embodiment of the present disclosure screens the candidate matrices by limiting the continuity of the row numbers of the non-zero elements in the third type of matrix and the intervals between the row numbers of the non-zero elements in adjacent columns. This effectively controls the scale of the candidate precoding matrix while ensuring that the third type of matrix can support more antenna ports and more layers of uplink parallel transmission.
  • the signaling overhead of transmitting the candidate precoding matrices between the two devices will increase, and the algorithm complexity of selecting the codebook and the overhead of storing all candidate precoding matrix sets will also increase.
  • the size of the candidate precoding matrices can also be planned and limited through the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • the target candidate matrix number M is the total number of candidate precoding matrices that are expected to be ultimately applied to the uplink transmission method.
  • the initial precoding matrix set includes a large number of initial precoding matrices.
  • the initial precoding matrix set may include the first type of matrix and/or the second type of matrix, and may also include the third type of matrix as well as the first type of matrix and/or the second type of matrix, which is not specifically limited in the embodiments of the present disclosure.
  • M can be used as the number of initial precoding matrices included in the initial matrix combination, and M initial precoding matrices are selected from the initial precoding matrix set to construct the initial matrix combination. It can be understood that the M initial precoding matrices here can be selected arbitrarily, so that the initial matrix combination obtained covers all possible combinations of the M initial precoding matrices.
  • the difference value between each two initial precoding matrices in the initial matrix combination can be calculated, where the difference value between the two initial precoding matrices can be expressed as the chord distance between the two initial precoding matrices.
  • the intra-group matrix difference value of the initial matrix combination can be determined based on this, where the intra-group matrix difference value reflects the difference between the initial precoding matrices in the entire initial matrix combination in units of the initial matrix combination, and the intra-group matrix difference value can be the average of the difference values between each two initial precoding matrices in the initial matrix combination, or the minimum of the difference values between each two initial precoding matrices in the initial matrix combination, which is not specifically limited in the embodiments of the present disclosure.
  • the initial matrix combination with the largest intra-group matrix difference value can be selected from each of the above initial matrix combinations as a candidate matrix combination. It can be understood that the larger the intra-group matrix difference value, the greater the difference between the initial precoding matrices in the initial matrix combination, and the more types and characteristics of the initial precoding matrices covered by the initial matrix combination. Therefore, the initial matrix combination with the largest matrix difference value is selected, that is, under the premise of a limited number of initial precoding matrices M, the initial precoding matrices with the most types and characteristics are covered as much as possible to cope with various uplink transmission requirements.
  • the M initial precoding matrices in the candidate matrix combination may be determined as candidate precoding matrices.
  • the method provided by the embodiment of the present disclosure effectively limits the size and quantity of candidate precoding matrices, reduces the algorithm complexity of precoding matrix selection, and reduces the storage overhead of candidate precoding matrices.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the present disclosure provides an uplink transmission method based on an uplink non-coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports, and includes the following steps:
  • the terminal obtains the set of incoherent transmission precoding matrices of each layer, that is, the set of the third type matrix of each layer, in the following manner.
  • the set of the third type matrix of all layers can be used as an uplink incoherent transmission codebook and stored in the terminal.
  • the third type of matrix acquisition rules include:
  • the third type of matrix has only one non-zero element in each column and only one non-zero element in each row; and:
  • the terminal receives precoding matrix indication information indicated by the network device, where the precoding matrix indication information may specifically be a precoding matrix index.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present disclosure provides an uplink transmission method based on an uplink non-coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports, and includes the following steps:
  • the network device obtains the set of incoherent transmission precoding matrices of each layer, that is, the set of the third type matrix of each layer, in the following manner.
  • the set of the third type matrix of all layers can be used as an uplink incoherent transmission codebook and stored in the network device.
  • the third type of matrix acquisition rule is the same as that in the first embodiment and will not be described in detail here.
  • the network device selects a precoding matrix from the incoherent transmission codebook and generates precoding matrix indication information carrying the index of the precoding matrix.
  • the network device sends the precoding matrix indication information to the terminal.
  • the present disclosure provides an uplink transmission method based on an uplink partially coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports.
  • the method includes:
  • the terminal has 2 coherent transmission groups and each coherent transmission group has 4 antenna ports.
  • the terminal can generate a set of partially coherent transmission precoding matrices for each layer, that is, a set of first-class matrices for each layer, in the following manner.
  • the set of first-class matrices for all layers is stored in the terminal as an uplink partially coherent transmission codebook shown in Table 2.
  • the first type of matrix acquisition rules include:
  • the first type of matrix is composed of any combination of a matrix W consisting of non-zero elements and a zero element matrix Z.
  • a matrix W consisting of non-zero elements
  • a zero element matrix Z In each column of the first type of matrix, only one element corresponding to a coherent transmission group is non-zero, and the elements corresponding to the other coherent transmission groups are all zero.
  • W 4Tx,rankn is the fully coherent codeword of the current uplink 4 antenna ports UL 4Tx system rank n, and the dimension is 4*n.
  • the first type of matrix of UL 4Tx layer can include and / or
  • the first type matrix of UL 4Tx three layers may include and / or
  • the first type matrix of UL 4Tx four layers can be Among them, the non-zero matrices W 4Tx,rank2 selected for columns 1 and 3, and columns 2 and 4 may be the same or different.
  • the first type matrix of UL 4Tx five layers can be and / or
  • the first type matrix of UL 4Tx six layers can be Among them, the non-zero matrices W 4Tx,rank3 selected for columns 1 and 4, columns 2 and 5, and columns 3 and 6 may be the same or different.
  • the first type matrix of UL 4Tx seven layers can be and / or
  • the first type matrix of UL 4Tx eight layers can be The non-zero matrices W 4Tx,rank4 selected for columns 1 and 5, columns 2 and 6, columns 3 and 7, and columns 4 and 8 may be the same or different.
  • the terminal receives precoding matrix indication information indicated by the network device, where the precoding matrix indication information may specifically be a precoding matrix index.
  • the terminal finds a corresponding precoding matrix from the partially coherent transmission codebook containing the first type of matrix and the incoherent codebook containing the third type of matrix according to the precoding matrix index in the precoding matrix indication information, and precodes the data.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the present disclosure provides an uplink transmission method based on an uplink partially coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports.
  • the method includes:
  • the network device generates a set of partially coherent transmission precoding matrices for each layer, that is, a set of first-class matrices for each layer, in the following manner.
  • the set of first-class matrices for all layers is stored in the network device as an uplink partially coherent transmission codebook shown in Table 2.
  • the first type of matrix acquisition rule is the same as that in the third embodiment, and will not be described in detail here.
  • the network device selects a precoding matrix from the above-mentioned partially coherent transmission codebook and the incoherent transmission codebook, and generates precoding matrix indication information carrying the index of the precoding matrix.
  • the network device sends the precoding matrix indication information to the terminal.
  • the present disclosure provides an uplink transmission method based on an uplink partially coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports.
  • the method includes:
  • the terminal has 4 coherent transmission groups and each coherent transmission group has 2 antenna ports.
  • the terminal can generate a set of partially coherent transmission precoding matrices for each layer, that is, a set of first-class matrices for each layer, in the following manner.
  • the set of first-class matrices for all layers is used as an uplink partially coherent transmission codebook and stored in the terminal.
  • the first type of matrix acquisition rules include:
  • the first type of matrix is composed of any combination of a matrix W consisting of non-zero elements and a zero element matrix Z.
  • a matrix W consisting of non-zero elements
  • a zero element matrix Z In each column of the first type of matrix, only one element corresponding to a coherent transmission group is non-zero, and the elements corresponding to the other coherent transmission groups are all zero.
  • W 2Tx,rankn may be the full phase interference coding matrix of the current uplink 2 antenna ports UL 2Tx system rank n, and the dimension is 2*n.
  • the first type matrix of UL 8Tx layer can be and / or and / or and / or
  • the first type matrix of UL 8Tx two layers can be and / or and / or and / or and / or and / or or and / or or Column 1 and column 2 may use the same or different W 2Tx,rank1 .
  • the first type matrix of UL 8Tx three layers can be and / or and / or and / or Columns 1/2/3 can use the same or different W 2Tx,rank1 .
  • the first type matrix of UL 8Tx four layers can be Columns 1/2/3/4 can use the same or different W 2Tx,rank1 .
  • the first type matrix of UL 8Tx five layers can be and / or and / or and Different columns of the rank1 matrix can use the same or different W 2Tx,rank1 .
  • the first type matrix of UL 8Tx six layers can be and / or and / or and / or and / or and / or and / or Different columns of the rank1 matrix can use the same or different W 2Tx,rank1 .
  • Different columns of the rank2 matrix can use the same or different W 2Tx,rank2 .
  • Rank2 matrix can use the same or different W 2Tx,rank2 .
  • the terminal receives precoding matrix indication information indicated by the network device, where the precoding matrix indication information may specifically be a precoding matrix index.
  • the terminal finds a corresponding precoding matrix from the partially coherent transmission codebook containing the first type of matrix and the incoherent codebook containing the third type of matrix according to the precoding matrix index in the precoding matrix indication information, and precodes the data.
  • the present disclosure provides an uplink transmission method based on an uplink partially coherent transmission codebook, which is applied to a terminal with 8 uplink antenna ports.
  • the method includes:
  • the network device generates a set of partially coherent transmission precoding matrices for each layer, that is, a set of first-class matrices for each layer, in the following manner.
  • the set of first-class matrices for all layers is stored in the network device as an uplink partially coherent transmission codebook shown in Table 2.
  • the first type of matrix acquisition rule is the same as that in the fifth embodiment, and will not be described in detail here.
  • the network device selects a precoding matrix from the above-mentioned partially coherent transmission codebook and the incoherent transmission codebook, and generates precoding matrix indication information carrying the index of the precoding matrix.
  • the network device sends the precoding matrix indication information to the terminal.
  • the method provided by the embodiment of the present disclosure can realize parallel transmission of a maximum of 8 layers on 8 antenna ports, which can effectively improve the uplink throughput.
  • FIG. 3 is a schematic diagram of the structure of a terminal provided in an embodiment of the present disclosure.
  • the terminal includes a memory 320, a transceiver 300, and a processor 310:
  • the memory 320 is used to store computer programs; the transceiver 300 is used to send and receive data under the control of the processor 310; the processor 310 is used to read the computer program in the memory 320 and perform the following operations:
  • the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, wherein the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • Uplink transmission is performed based on the precoding matrix.
  • the transceiver 300 is used to receive and send data under the control of the processor 310.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 310 and various circuits of memory represented by memory 320 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators and power management circuits together, which are all well known in the art, so they are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 300 can be a plurality of components, namely, a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, and these transmission media include transmission media such as wireless channels, wired channels, optical cables, etc.
  • the user interface 330 can also be an interface that can be connected to the required devices externally and internally, and the connected devices include but are not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 310 is responsible for managing the bus architecture and general processing, and the memory 320 can store data used by the processor 310 when performing operations.
  • processor 310 can be a CPU (central processing unit), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array) or CPLD (Complex Programmable Logic Device), and the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor calls the computer program stored in the memory to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions.
  • the processor and the memory can also be arranged physically separately.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix also includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix with only one non-zero element in each row and each column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the candidate precoding matrix is determined based on the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • FIG4 is a schematic diagram of the structure of a network device provided in an embodiment of the present disclosure.
  • the network device includes a memory 420, a transceiver 400, and a processor 410:
  • the memory 420 is used to store computer programs; the transceiver 400 is used to send and receive data under the control of the processor; the processor 410 is used to read the computer program in the memory and perform the following operations:
  • Generate precoding matrix indication information based on a precoding matrix in candidate precoding matrices where the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, where the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • the precoding matrix indication information is sent to a terminal, where the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is used for uplink transmission.
  • the bus architecture may include any number of interconnected buses and bridges, specifically various circuits of one or more processors represented by processor 410 and memory represented by memory 420.
  • the bus architecture may also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 400 may be a plurality of components, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium, which may be Transmission media include, these transmission media include wireless channels, wired channels, optical cables and other transmission media.
  • the processor 410 is responsible for managing the bus architecture and general processing, and the memory 420 can store data used by the processor 410 when performing operations.
  • processor 410 can be a CPU (central processing unit), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array) or CPLD (Complex Programmable Logic Device), and the processor can also adopt a multi-core architecture.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the processor calls the computer program stored in the memory to execute any of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions.
  • the processor and the memory can also be arranged physically separately.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix also includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix with only one non-zero element in each row and each column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the candidate precoding matrix is determined based on the following steps:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • FIG. 5 is a schematic diagram of a structure of an uplink transmission device provided in an embodiment of the present disclosure. As shown in FIG. 5 , the uplink transmission device includes:
  • the receiving unit 510 is configured to receive precoding matrix indication information
  • the selection unit 520 is used to determine the precoding matrix indication information from the candidate precoding matrix.
  • the indicated precoding matrix, the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • the precoding unit 530 is configured to perform uplink transmission based on the precoding matrix.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes matrices in fully coherent codewords of the uplink 2 i antenna ports, and the matrix Z includes a zero matrix with 2 i rows;
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix also includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the third type of matrix is any candidate matrix with only one non-zero element in each row and column. Based on the selection matrix, it is obtained by any one or more of the following rules:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the device further includes a candidate matrix screening unit, configured to:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • the uplink transmission device provided in the embodiment of the present disclosure can implement all the method steps implemented in the method embodiment in which the execution subject is the terminal, and can achieve the same technical effect.
  • the parts and beneficial effects of this embodiment that are the same as those of the method embodiment will not be described in detail here.
  • FIG. 6 is a second structural schematic diagram of an uplink transmission device provided in an embodiment of the present disclosure. As shown in FIG. 6 , the uplink transmission device includes:
  • a generating unit 610 is configured to generate precoding matrix indication information based on a precoding matrix in a candidate precoding matrix, wherein the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, wherein the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • the sending unit 620 is configured to send the precoding matrix indication information to a terminal, where the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is used for uplink transmission.
  • the first type of matrix is a combination of a matrix W and a matrix Z;
  • the matrix W includes the uplink antenna ports.
  • N is a positive integer
  • P is the total number of uplink antenna ports
  • the value of i is at least one integer from 1 to N.
  • the first type of matrix is obtained by selecting at least one of the following rules based on a combined matrix obtained by any combination of the matrix W and the matrix Z:
  • the matrix W is a matrix in the fully coherent codeword of the uplink 2K antenna ports, and the difference in the number of non-zero elements in different rows of the combined matrix is less than or equal to 1; or,
  • the matrix W is a matrix in the fully coherent codewords of the uplink 2 j antenna ports, and the number of non-zero elements in each row of the combined matrix is less than or equal to 2;
  • K is an integer, and 1 ⁇ K ⁇ log 2 P; the value of j is at least one integer from 1 to K;
  • the first type of matrix is selected based on a combination matrix obtained by any combination of the matrix W and the matrix Z according to the following rules:
  • the number of non-zero elements in each row of the combination matrix is less than or equal to 2, and the difference in the number of non-zero elements in different rows of the combination matrix is less than or equal to 1.
  • the second type of matrix is
  • the matrices A and B are both matrices in partially coherent codewords of uplink P/2 antenna ports, or the matrices A and B are both matrices in incoherent codewords of uplink P/2 antenna ports.
  • the candidate precoding matrix also includes a third type of matrix, and the third type of matrix is a matrix with only one non-zero element in each row and each column.
  • the third type of matrix is obtained by selecting any one or more of the following rules based on any candidate matrix with only one non-zero element in each row and each column:
  • the row numbers of the non-zero elements of the candidate matrix are continuous
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-1;
  • the interval between the row numbers of the non-zero elements in adjacent columns of the candidate matrix is P/2-2;
  • P is the total number of uplink antenna ports.
  • the device further includes a candidate matrix screening unit, configured to:
  • a candidate matrix combination is selected from the multiple initial matrix combinations, and M initial precoding matrices in the candidate matrix combination are determined as the candidate precoding matrices.
  • the uplink transmission device provided in the embodiment of the present disclosure can implement all the method steps implemented in the method embodiment in which the execution subject is a network device, and can achieve the same technical effect.
  • the parts and beneficial effects of this embodiment that are the same as those of the method embodiment will not be described in detail here.
  • the division of units/modules in the above-mentioned embodiments of the present disclosure is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present disclosure may be integrated into a processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a processor-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) or a processor (processor) to perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.
  • an embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, wherein the computer program is used to enable the processor to execute the above
  • the method provided in each embodiment includes:
  • the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, wherein the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • Uplink transmission is performed based on the precoding matrix.
  • Generate precoding matrix indication information based on a precoding matrix in candidate precoding matrices where the candidate precoding matrix includes a first type of matrix and/or a second type of matrix, where the first type of matrix is determined based on a fully coherent codeword and a zero matrix, and the second type of matrix is determined based on a partially coherent codeword or an incoherent codeword;
  • the precoding matrix indication information is sent to a terminal, where the precoding matrix indication information is used to indicate the precoding matrix, and the precoding matrix is used for uplink transmission.
  • the processor-readable storage medium can be any available medium or data storage device that can be accessed by the processor, including but not limited to magnetic storage (such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor storage (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)), etc.
  • magnetic storage such as floppy disks, hard disks, magnetic tapes, magneto-optical disks (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor storage such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid-state drive (SSD)
  • the technical solution provided by the embodiments of the present disclosure can be applicable to a variety of systems, especially 5G systems.
  • the applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (WCDMA) general packet radio service (GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system, long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), global interconnected microwave access (worldwide interoperability for microwave access, WiMAX) system, 5G new radio (NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • LTE-A long term evolution advanced
  • UMTS universal mobile telecommunication system
  • EPS E
  • the terminal device involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the names of terminal devices may also be different.
  • the terminal device may be called a user equipment (UE).
  • UE user equipment
  • a wireless terminal device may communicate with one or more core networks (CN) via a radio access network (RAN).
  • CN core networks
  • RAN radio access network
  • the wireless terminal device may be a mobile terminal device, such as a mobile phone (or a "cellular" phone) and a computer with a mobile terminal device.
  • the wireless terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal device, an access terminal device, a user terminal device, a user agent, and a user device, but is not limited to these in the embodiments of the present disclosure.
  • the network device involved in the embodiments of the present disclosure may be a base station, which may include multiple cells providing services for terminals.
  • the base station may also be called an access point, or may be a device in an access network that communicates with a wireless terminal device through one or more sectors on an air interface, or may be called by other names.
  • the network device may be used to interchange received air frames with Internet Protocol (IP) packets, and serve as a router between the wireless terminal device and the rest of the access network, wherein the rest of the access network may include an Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network device may also coordinate the management of attributes of the air interface.
  • the network device involved in the embodiments of the present disclosure may be a network device (Base Transceiver Station, BTS) in the Global System for Mobile communications (Global System for Mobile communications, GSM) or Code Division Multiple Access (Code Division Multiple Access, CDMA), or a network device (NodeB) in Wide-band Code Division Multiple Access (WCDMA), or an evolutionary network device (evolutional Node B, eNB or e-NodeB) in the long term evolution (long term evolution, LTE) system, a 5G base station (gNB) in the 5G network architecture (next generation system), or a home evolved Node B (Home evolved Node B, HeNB), a relay node, a home base station (femto), a pico base station (pico), etc., which is not limited in the embodiments of the present disclosure.
  • the network device may include a centralized unit (CU) node and a distributed unit (DU) node, and the centralized unit and the distributed unit may also be arranged
  • Network devices and terminal devices can each use one or more antennas for multiple input multiple output (MIMO) transmission.
  • MIMO transmission can be single user MIMO (SU-MIMO) or multi-user MIMO (MU-MIMO).
  • MIMO transmission can be 2D-MIMO, 3D-MIMO, FD-MIMO or massive-MIMO, or it can be diversity transmission, precoded transmission or beamforming transmission, etc.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Therefore, the present disclosure may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer-usable program codes.
  • processor-executable instructions may also be stored in a processor-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the processor-readable memory produce a product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • processor-executable instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种上行传输方法、终端、网络设备、装置和存储介质,方法包括:接收预编码矩阵指示信息;从候选预编码矩阵中,确定预编码矩阵指示信息所指示的预编码矩阵,候选预编码矩阵包括第一类矩阵和/或第二类矩阵,第一类矩阵基于全相干码字和零矩阵确定,第二类矩阵基于部分相干码字或非相干码字确定;基于预编码矩阵,进行上行传输。

Description

上行传输方法、终端、网络设备、装置和存储介质
相关申请的交叉引用
本申请要求于2022年09月30日提交的申请号为202211216179.5,发明名称为“上行传输方法、终端、网络设备、装置和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种上行传输方法、终端、网络设备、装置和存储介质。
背景技术
3GPP(The 3rd Generation Partnership Project,第三代合作伙伴计划)NR(New Radio,新空口)系统的Release 17版本中,基于码本的上行MIMO(Multiple Input Multiple Output,多输入多输出)传输支持4个天线端口最大4层。
而在实际应用中,CPE(Customer Premise Equipment,客户终端设备)/FWA(Fixed Wireless Access,固定无线接入)/车辆Vehicle/工业Industrial等应用场景,均对上行传输有着高吞吐量的需求。而目前上行传输仅支持最大4个天线端口最大4层的码本,显然无法满足上述应用场景的需求。
发明内容
本公开实施例提供一种上行传输方法、终端、网络设备、装置和存储介质,用以解决现有技术中上行传输无法满足高吞吐量需求的缺陷。
第一方面,本公开实施例提供一种上行传输方法,包括:
接收预编码矩阵指示信息;
从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩 阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
基于所述预编码矩阵,进行上行传输。
可选地,根据本公开一个实施例的上行传输方法,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,根据本公开一个实施例的上行传输方法,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,根据本公开一个实施例的上行传输方法,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,根据本公开一个实施例的上行传输方法,所述候选预编码矩阵 还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,根据本公开一个实施例的上行传输方法,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,根据本公开一个实施例的上行传输方法,所述候选预编码矩阵基于如下步骤确定:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
第二方面,本公开实施例还提供一种上行传输方法,包括:
基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
可选地,根据本公开一个实施例的上行传输方法,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,根据本公开一个实施例的上行传输方法,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,根据本公开一个实施例的上行传输方法,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,根据本公开一个实施例的上行传输方法,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,根据本公开一个实施例的上行传输方法,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,根据本公开一个实施例的上行传输方法,所述候选预编码矩阵基于如下步骤确定:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
第三方面,本公开实施例还提供一种终端,包括存储器,收发机,处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并实现如上所述第一方面所述的上行传输方法的步骤。
第四方面,本公开实施例还提供一种网络设备,包括存储器,收发机,处理器,其中:
存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并实现如上所述第二方面所述的上行传输方法的步骤。
第五方面,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上所述第一方面或第二方面所述的上行传输方法的步骤。
本公开实施例提供的上行传输方法、终端、网络设备、装置和存储介质,应用基于全相干码字和零矩阵确定的第一类矩阵,和/或,基于部分相干码字 或非相干码字确定的第二类矩阵,形成候选预编码矩阵,以便于从中确定预编码矩阵进行上行传输的预编码。由于全相干码字、部分相干码字和非相干码字均可以从现有的码本中直接得到,可以快速、便捷地由此组合得到的候选预编码矩阵,从而实现支持更多天线端口和更多层的上行并行传输,以满足高吞吐量需求。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的上行传输方法的流程示意图之一;
图2是本公开实施例提供上行传输方法的流程示意图之二;
图3是本公开实施例提供的终端的结构示意图;
图4是本公开实施例提供的网络设备的结构示意图;
图5是本公开实施例提供的上行传输装置的结构示意图之一;
图6是本公开实施例提供的上行传输装置的结构示意图之二。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
相关技术中,上行传输方案通常基于码本实现,具体是通过基于固定码本确定上行传输预编码矩阵的多天线传输技术实现。
目前的NR系统上行传输支持DFT(Discrete Fourier Transform,离散傅里叶)-S-OFDM(Single-carrier Frequency-Division Multiple Access,单载波分频多址)和CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing,循环前缀正交频分复用)两种波形,且两种波形的适用场景和特性不同,码本设计考虑的因素也有所不同。
其中,DFT-S-OFDM下的上行传输主要用于功率受限的边缘覆盖场景,只支持单流的数据传输,需要专门针对单流码本进行设计。CP-OFDM则最多可以支持4流的并行传输,需要设计最多4流的码本。
对于终端的MIMO传输,其传输天线与射频的特性和网络设备有较大差别,码本设计上需要充分考虑天线间的相关特性。当两个天线端口满足相干传输条件,即各天线单元发射通路可以调整至固定功率、相位差时,终端可以通过预编码,利用这两个天线端口同时进行同一层的数据传输,由此获得阵列增益。然而,由于天线阵元的互耦效应、馈线差异以及射频通路的放大器相位和增益的变化等因素的影响,实际应用中,终端天线各端口间不可避免地存在着功率和相位等方面的差异。受限于成本和设计,不是所有的终端都可以将各天线端口校准至满足相干传输需求的程度。不能相干传输的天线端口可以同时在不同的传输层上进行数据传输。因此,上行传输的码本设计需要考虑终端的天线相干传输能力。
NR系统定义了三种终端的天线相干传输能力。
全相干(Full-Coherent):所有的天线都可以相干传输。
部分相干(Partial-Coherent):同一相干传输组内的天线可以相干传输,相干传输组之间不能相干传输,每个相干传输组包含两个天线。
非相干(Non-coherent):没有天线可以相干传输。
考虑到终端天线结构的多样性,上行码本的设计不基于任何特定的天线结构假设和相关性假设。上行码本中应包含天线部分相干传输和天线非相干传输的码字,以用于具有部分相干传输能力或非相干传输能力的终端。
目前,使用DFT-S-OFDM波形的4天线码本是以LTE(Long Term Evolution,长期演进)上行4天线单流传输的码本为基础进行设计的。LTE的上行4天线单流传输的码本中包含了16个适用于4根天线全相干传输的码字和8个适用于部分天线相干传输的码字。其中,部分天线相干传输的码字中包含两个相干传输天线组:1和3天线为一组,2和4天线为一组。NR在DFT-S-OFDM波形下的4天线的码本在LTE上行4天线单流传输的码本的基础上增加了4个单天线选择的码字,用于非相干传输能力的终端和天线选择。
使用CP-OFDM时的上行4天线单流传输的码本中所有天线相干传输的码字是对CodebookMode=1、L=1的NR Type I下行4天线单流传输的码本进行码字组均匀降采样后的码字,即,将过采样因子O1置为2,共16个码字。部分天线相干传输的码字沿用了LTE上行4天线单流传输的码本中的8个部分天线相干传输的码字。非相干传输的码字为全部的4个单天线选择码字。
使用CP-OFDM时的4天线2流传输的码本中,所有天线相干传输的码字是通过对CodebookMode=1、L=1的NR Type I下行4天线2流传输的码本进行了码字组均匀降采样后得到的,即将过采样因子O1置为2,同时对组内的码字也进行了降采样,将i1,3固定为0,共8个码字。部分天线相干传输的码字由LTE上行4天线2流传输的码本中以1和2天线为一组相干传输天线组、3和4天线为一组相干传输天线组的码字所构成。为了与4天线单流传输的码本中针对部分天线相干传输的码字所对应的相干传输天线组的分组保持一致,NR中将LTE上行4天线单流传输的码本中针对部分天线相干传输的码字中的2、3天线的系数进行互换后用于使用CP-OFDM波形时的4天线2流传输的码本。非相干传输的码字为全部的6个2流天线非相干传输的码字。
使用CP-OFDM时上行4天线3流传输的码本中所有天线相干传输的码字都是通过对CodebookMode=1~2、L=1的NR Type I下行4天线2流传输的码本进行了码字组均匀降采样得到的,即将过采样因子O1置为2,同时对组内的码字也进行了降采样,将i1,1的取值范围限制在{0,2},将i1,3固定为0,共4个码字。部分天线相干传输的码字为从LTE R10上行码本中选取的2个码字,对应于以1和3天线为一组相干传输天线组、2和4天线为一组相干传输 天线组的码字。
使用CP-OFDM时的4天线4流传输的码本中所有天线相干传输的码字只有两个,是通过对CodebookMode=1~2、L=1的NR Type I下行4天线4流传输的码本进行了码字组均匀降采样得到的,即将过采样因子O1置为2,同时对组内的码字也进行了降采样,将i1,1置为0,将i1,3固定为0,共两个码字。部分天线相干传输的码字数量也为2,对应于以1和3天线为一组相干传输天线组、2和4天线为一组相干传输天线组的码字。天线非相干传输的码字与LTE上行4天线4流传输的码本相同,只有一个单位阵码字。
综上可知,目前上行传输仅支持最大4个天线端口最大4层的码本,因此无法满足各类应用场景的需求。
针对这一问题,本公开提供一种上行传输方法,以提高上行传输性能。图1是本公开实施例提供的上行传输方法的流程示意图之一,如图1所示,该方法的执行主体为终端,该方法包括:
步骤110,接收预编码矩阵指示信息;
此处,预编码矩阵指示信息是网络设备发送至终端的。预编码矩阵指示信息用于指示上行传输所应用的预编码矩阵,预编码矩阵指示信息可以携带用于上行传输的预编码矩阵的索引,以便于终端从优先从存储的用于上行传输的码本中确定该预编码矩阵。可以理解的是,此处用于上行传输的码本是网络设备和终端预先约定好的。
步骤120,从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定。
具体地,候选预编码矩阵即用于上行传输的码本中可用于上行传输的预编码矩阵,候选预编码矩阵可以是多个,且上行传输的码本中可以包含用于实现部分相干传输的候选预编码矩阵,也可以包含用于实现非相干传输的候选预编码矩阵。
为了能够支持更多天线端口和更多层的上行并行传输,本公开实施例中 的候选预编码矩阵至少包括第一类矩阵和/或第二类矩阵,此处的第一类矩阵和第二类矩阵均是用于上行P个天线端口的部分相干传输的预编码矩阵,P为终端所包含的上行天线端口总数。
其中,第一类矩阵为全相干码字和零矩阵组合任意而成的预编码矩阵。此处,全相干码字对应的上行天线端口数与终端所拥有的各相干传输组内包含的上行天线端口数相关,例如,相干传输组内包含4个上行天线端口的情况,用于构成第一类矩阵的全相干码字可以是上行4天线的全相干码字,也可以是上行2天线的全相干码字,还可以既包括上行4天线的全相干码字,也包括上行2天线的全相干码字。
第二类矩阵基于部分相干码字或非相干码字确定,进一步地,第二类矩阵可以是在两个部分相干码字拼接的基础上确定的,第二类矩阵也可以是在两个非相干码字拼接的基础上确定的。而具体在确定第二类矩阵时,应用部分相干码字还是非相干码字,可以根据终端所拥有的各相干传输组内包含的上行天线端口数相关,例如相干传输组内包含4个上行天线端口的情况,用于构建第二类矩阵的可以是两个上行4个天线端口的部分相干码字;相干传输组内包含2个上行天线端口的情况,用于构建第二类矩阵的可以是两个上行4个天线端口的非相干码字。
可以理解的是,无论是第一类矩阵还是第二类矩阵,都可以基于现有码本中的全相干码字,或者基于现有码本中的部分相干码字或非相干码字进行组合得到,由此,在设计针对支持更多天线端口和更多层的上行并行传输的码本时,应用现有的支持较少天线端口和较少层的上行并行传输的码本中的码字即可实现,例如,在设计8个天线端口8层的上行并行传输的候选预编码矩阵时,可以应用4个天线端口4层的上行并行传输的码本中的码字。
在码本足以提供丰富的能够支持更多天线端口和更多层的上行并行传输的候选预编码矩阵的情况下,终端在接收到预编码矩阵指示信息之后,仅需从候选预编码矩阵中选取出预编码矩阵指示信息所指示的候选预编码矩阵,作为后续进行上行传输的预编码矩阵。
步骤130,基于所述预编码矩阵,进行上行传输。
具体地,在确定用于上行传输的预编码矩阵之后,终端可以应用预编码矩阵,对待发送的信息进行预编码操作,并发送预编码操作后的信息,由此实现上行传输。
本公开实施例提供的方法,应用基于全相干码字和零矩阵确定的第一类矩阵,和/或,基于部分相干码字或非相干码字确定的第二类矩阵,形成候选预编码矩阵,以便于从中确定预编码矩阵进行上行传输的预编码。由于全相干码字、部分相干码字和非相干码字均可以从现有的码本中直接得到,可以快速、便捷地由此组合得到的候选预编码矩阵,从而实现支持更多天线端口和更多层的上行并行传输,以满足高吞吐量需求。
基于上述实施例,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
具体地,终端用于上行传输的天线端口可以根据相干传输能力划分相干传输组,每个相干传输组内的上行天线端口数量是一致的。例如8个天线端口可以划分为2个相干传输组,每个相干传输组内有4个上行天线端口,又例如8个天线端口可以划分为4个相干传输组,每个相干传输组内有2个上行天线端口;还例如,16个天线端口可以划分为2个相干传输组,每个相干传输组内有8个上行天线端口,本公开实施例不对此作具体限定。
可以理解的是,每个相干传输组内至少存在2个上行天线端口,相干传输组内存在的上行天线端口数为2的指数,例如2、4、8等,且各相干传输组中存在的上行天线端口数小于终端的上行天线端口总数P。由此,每个相干传输组内可以有2N个上行天线端口,此处的N为正整数,并且考虑到部分相干的情况,上行传输的天线端口至少分为两个相干传输组,故N<log2P。
在此情况下,针对于第一类矩阵的构建,全相干码字和零矩阵需要符合如下条件:
第一类矩阵为上行2i个天线端口的全相干码字W与行数为2i的零矩阵Z 的任意组合。
此处,i的取值受N的限制,即,i可以是1至N中的一个或者多个整数。换而言之,在每个相干传输组内有2N个上行天线端口的情况下,用于构建第一类矩阵的矩阵W可以包括2至2N中每个2的指数的天线端口的全相干码字中的矩阵,矩阵Z可以包括行数为2至2N中每个2的指数的零矩阵。
例如,终端有8个天线端口,划分为2个相干传输组且每个相干传输组有4个天线端口,其用于部分相干传输的第一类矩阵可以是如下所有可能矩阵或矩阵变换的组合:
其中,W,W1,W2,W3和W4是上行4个和/或2个天线端口的全相干码字中的矩阵,Z是行数为4和/或2的零矩阵。
上述矩阵变换是指对如上矩阵做行变换。比如W1和W2表示为则矩阵做行变换后可以是
又例如,终端有8个天线端口,划分为4个相干传输组且每个相干传输组有2个天线端口,其用于部分相干传输的第一类矩阵可以是如下所有可能矩阵或矩阵变换的组合:
其中W,W1,W2,W3和W4是上行2个天线端口的全相干码字中的矩阵,Z是行数为2的零矩阵。
所述矩阵变换是指对如上矩阵做行变换。比如W1和W2表示为则矩阵做行变换后可以是
本公开实施例提供的方法,通过矩阵W和矩阵Z的组合构建第一类矩阵,由于矩阵W是可以从现有的码本中直接得到全相干码字中的矩阵,而矩阵Z是可以直接构建的矩阵,此两者的获取难度都很低,基于此两者组合得到第一类矩阵的成本很低,且可以得到丰富多样的能够支持更多天线端口和更多层的上行并行传输的第一类矩阵,提高了预编码矩阵选取的灵活性。
考虑到任意组合所得的第一类矩阵的数量规模极其庞大,为了从中筛选中更加适合用于上行部分相干传输的候选预编码矩阵,基于上述任一实施例,本公开实施例针对矩阵W和矩阵Z的任意组合进行了筛选:
在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
具体地,针对N的取值,可以进一步划分为两种情况,一种是N为大于 1的整数,即1<N<log2P,此时将N记为K,即K为整数,且1<K<log2P;另一种是N为1,此时2N=2。
针对第一种情况,即每个相干传输组内有2K个上行天线端口,2K≥4的情况,此时可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1。
通过如上规则选取得到的第一类矩阵,由于不同行的非零元素个数差小于等于1,能够有效限制在上行传输时不同天线端口的发射功率差,从而平衡各天线端口的发射功率。
例如,K=2时,即8个天线端口有2个相干传输组且每个相干传输组有4个天线端口,其部分相干传输码本可以是按照上述规则筛选出的以下第一类矩阵:
其中,WmTx,rn是上行m个天线端口的层数为n的全相干码字中的矩阵;零矩阵Z的行数是4。
针对第一种情况,即每个相干传输组内有2K个上行天线端口,2K≥4的情况,此时还可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2,j的取值为1至K中的至少一个整数。
通过上述规则选取得到的第一类矩阵,由于每行的非零元素个数均小于等于2,能够保证低立方度量(cubic metric),从而使得终端侧的功率放大器效率得到保障。
例如,K=2时,即8个天线端口有2个相干传输组且每个相干传输组有4 个天线端口,其部分相干传输码本可以是按照上述规则筛选出的以下第一类矩阵:
其中WmTx,rn是上行m个天线端口的层数为n的全相干码字中的矩阵;零矩阵Z的行数是4和/或2。
针对第二种情况,即每个相干传输组内有2个上行天线端口的情况,此时可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
组合矩阵中每行的非零元素个数小于等于2,且,组合矩阵中不同行非零元素个数差小于等于1。
此处,通过限制每行的非零元素的个数,以及不同行的非零元素的个数差,能够有效限制在上行传输时不同天线端口的发射功率,从而平衡各天线端口的发射功率。
例如,8个天线端口有4个相干传输组且每个相干传输组有2个天线端口,其部分相干传输码本可以是按照上述规则筛选出的以下第一类矩阵:
其中W2Tx,rn是上行2个天线端口的层数为n的全相干码字中的矩阵;零矩阵Z的行数是2。
本公开实施例提供的方法,通过限制矩阵W所对应的天线端口数,以及矩阵W和矩阵Z组合得到的组合矩阵中不同的行的非零元素个数和/或非零元素个数差,对矩阵W和矩阵Z任意组合的组合矩阵进行筛选,在保证第一类矩阵能够支持更多天线端口和更多层的上行并行传输的同时,有效控制了候选预编码矩阵的规模。
基于上述任一实施例,第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
具体地,在第二类矩阵的构建中,需要参考上行P/2个天线端口的部分相干码字或者非相干码字。而具体通过何种码字构建第二类矩阵,依然需要依据终端所拥有的各相干传输组内包含的上行天线端口数而定,具体在相干传输组有P/2个天线端口的情况下,A、B为部分相干码字中的矩阵,在相干传输组中天线端口的数量小于P/2的情况下,A、B为非相干码字中的矩阵。
例如,针对终端包括8天线端口,具体可拆分2个相干传输组且每个相干传输组有4个天线端口的情况,用于构建第二类矩阵的A、B为上行4个天线端口的部分相干码字中的矩阵;又例如,针对终端包括8个天线端口,具体可拆分4个相干传输组且每个相干传输组有2个天线端口的情况,用于构建第二类矩阵的A、B为上行4个天线端口的非相干码字中的矩阵。
本公开实施例提供的方法,应用部分相干码字或非相干码字构建第二类矩阵,由于部分相干码字和非相干码字均可以从现有的码本中直接得到,可以快速、便捷地由此组合得到的候选预编码矩阵,从而实现支持更多天线端口和更多层的上行并行传输,以满足高吞吐量需求。
基于上述任一实施例,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
具体地,考虑到终端中的P个上行天线端口中可能不存在可以相干传输天线端口,即终端需要进行非相干传输的情况,候选预编码矩阵中也应设置有用于实现更多天线端口和更多层的上行非相干传输的预编码矩阵。本公开实施例中,将此类用于非相干传输的预编码矩阵,记为第三类矩阵。
此处,第三类矩阵的每一行只有一个非零元素,且第三类矩阵的每一列只有一个非零元素。预编码矩阵中包含的第三类矩阵,可以是所有可能的矩阵的集合,也可以是基于预先设定的原则进行筛选后得到的矩阵的集合,本公开实施例对此不作具体限定。
本公开实施例提供的方法,提供了用于实现非相干传输的第三类矩阵作为候选预编码矩阵,从而保证无论是部分相干传输还是非相干传,终端均可以从候选预编码矩阵中获取得到合适的预编码矩阵,以实现更多天线端口和更多层的上行并行传输。
考虑到符合第三类矩阵每行、每列均只有一个非零元素的矩阵数量规模极其庞大,为了从中筛选中更加适合用于上行非相干传输的候选预编码矩阵,基于上述任一实施例,本公开实施例针对各在每行、每列均只有一个非零元素的任意候选矩阵进行了筛选:
所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
具体地,上述四种规则可以择一应用以实现第三类矩阵的筛选,也可以选取其中的多个分别应用,并将基于每个规则筛选得到的候选矩阵均作为第三类矩阵,本公开实施例对此不作具体限定。
上述各规则中,选取非零元素所在行号联系的候选矩阵作为第三类矩阵,使得在应用该矩阵进行预编码处理并发送信号时,所占用的上行天线端口的序号是连续的,更有利相应上行天线端口配置的便捷性;根据相邻列的非零元素所在行号的间隔从候选矩阵中筛选第三类矩阵,使得在应用该矩阵进行预编码处理并发送信号时,相邻的上行天线端口之间的抗干扰性能更强。
本公开实施例提供的方法,通过限制第三类矩阵中非零元素所在行号的 连续性、相邻列的非零元素所在行号的间隔,对候选矩阵进行筛选,在保证第三类矩阵能够支持更多天线端口和更多层的上行并行传输的同时,有效控制了候选预编码矩阵的规模。
基于上述任一实施例,考虑到基于上述方法产生的候选预编码矩阵数量比较大,会增加候选预编码矩阵在两个设备之间传递的信令开销,也会增加选择最优码本的算法复杂度和存储全部候选预编码矩阵集合的开销。为了解决候选预编码矩阵数量庞大的问题,还可以通过如下步骤规划限制候选预编码矩阵的规模:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
具体地,目标候选矩阵数量M即期望最终应用于该上行传输方法的候选预编码矩阵的总数。初始预编码矩阵集合中包含了大量的初始预编码矩阵,此处,初始预编码矩阵集合可以包括第一类矩阵和/或第二类矩阵,还可以既包括第三类矩阵,也包括第一类矩阵和/或第二类矩阵,本公开实施例对此不作具体限定。
针对数量规模庞大的初始预编码矩阵集合,可以将M作为初始矩阵组合内包括的初始预编码矩阵的数量值,从初始预编码矩阵集合中选取M个初始预编码矩阵以构建初始矩阵组合。可以理解的是,此处的M个初始预编码矩阵可以是任意选取的,由此得到初始矩阵组合涵盖了所有可能的M个初始预编码矩阵的组合形式。
在得到各种初始矩阵组合之后,针对其中的每一个初始矩阵组合,均可以计算该初始矩阵组合内的每两个初始预编码矩阵之间的差异值,此处两个初始预编码矩阵之间的差异值可以表示为两个初始预编码矩阵的弦距离。在 得到一个初始矩阵组合内的每两个初始预编码矩阵之间的弦距离之后,即可基于此确定该初始矩阵组合的组内矩阵差异值,此处的组内矩阵差异值以初始矩阵组合为单位反映整个初始矩阵组合内各初始预编码矩阵之间的差异大小,组内矩阵差异值可以取初始矩阵组合内每两个初始预编码矩阵之间的差异值的均值,也可以取初始矩阵组合内每两个初始预编码矩阵之间的差异值的最小值,例如组内矩阵差异值可以取初始矩阵组合内每两个初始预编码矩阵之间弦距离的均值,或者,组内矩阵差异值可以取初始矩阵组合内每两个初始预编码矩阵之间的弦距离的最小值,本公开实施例对此不作具体限定。
在得到每个初始矩阵组合的组内矩阵差异值,即可从上述每个初始矩阵组合中选取出组内矩阵差异值最大的初始矩阵组合,作为候选矩阵组合。可以理解的是,组内矩阵差异值越大,则初始矩阵组合内各初始预编码矩阵之间的差异越大,初始矩阵组合所覆盖的初始预编码矩阵的种类特性越多。由此,选取矩阵差异值最大的初始矩阵组合,即在有限的初始预编码矩阵数量M的前提下,尽可能覆盖最多种类特性的初始预编码矩阵,以应对各种上行传输需求。
在得到候选矩阵组合之后,即可将候选矩阵组合中的M个初始预编码矩阵确定为候选预编码矩阵。
本公开实施例提供的方法,有效限制了候选预编码矩阵的规模数量,降低了预编码矩阵选取的算法复杂度,并且降低了候选预编码矩阵存储的开销。
基于上述任一实施例,针对于候选预编码矩阵数量规模的限制,各层可以按照如下方法删减候选预编码矩阵到合理的个数M。
Step1.从初始预编码矩阵集合中选出所有的M个初始预编码矩阵的组合,即初始矩阵组合;
Step2.遍历所有组合,对于每个组合,从M个初始预编码矩阵中选择2个初始预编码矩阵的所有组合共有种,计算每两个初始预编码矩阵之间的差异值,即每两个初始预编码矩阵之间弦距离然后再计算这个弦距离的最小值作为组合的组内矩阵差异值。由此,每个组合对应有一个组内矩阵差异值,即弦距离最小值。
Step3.遍历所有组合,选出组内矩阵差异值最大的组合,即为该层的最终应用的候选矩阵组合,其包含M个初始预编码矩阵,此M个初始预编码矩阵即最终应用于该层的候选预编码矩阵。
基于上述任一实施例,图2是本公开实施例提供上行传输方法的流程示意图之二,如图2所示,该方法的执行主体为网络设备,该方法包括:
步骤210,基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定。
具体地,候选预编码矩阵即用于上行传输的码本中可用于上行传输的预编码矩阵,候选预编码矩阵可以是多个,且上行传输的码本中可以包含用于实现部分相干传输的候选预编码矩阵,也可以包含用于实现非相干传输的候选预编码矩阵。
为了能够支持更多天线端口和更多层的上行并行传输,本公开实施例中的候选预编码矩阵至少包括第一类矩阵和/或第二类矩阵,此处的第一类矩阵和第二类矩阵均是用于上行P个天线端口的部分相干传输的预编码矩阵,P为终端所包含的上行天线端口总数。
其中,第一类矩阵为全相干码字和零矩阵组合任意而成的预编码矩阵。此处,全相干码字对应的上行天线端口数与终端所拥有的各相干传输组内包含的上行天线端口数相关,例如,相干传输组内包含4个上行天线端口的情况,用于构成第一类矩阵的全相干码字可以是上行4天线的全相干码字,也可以是上行2天线的全相干码字,还可以既包括上行4天线的全相干码字,也包括上行2天线的全相干码字。
第二类矩阵基于部分相干码字或非相干码字确定,进一步地,第二类矩阵可以是在两个部分相干码字拼接的基础上确定的,第二类矩阵也可以是在两个非相干码字拼接的基础上确定的。而具体在确定第二类矩阵时,应用部分相干码字还是非相干码字,可以根据终端所拥有的各相干传输组内包含的上行天线端口数相关,例如相干传输组内包含4个上行天线端口的情况,用于 构建第二类矩阵的可以是两个上行4个天线端口的部分相干码字;相干传输组内包含2个上行天线端口的情况,用于构建第二类矩阵的可以是两个上行4个天线端口的非相干码字。
可以理解的是,无论是第一类矩阵还是第二类矩阵,都可以基于现有码本中的全相干码字,或者基于现有码本中的部分相干码字或非相干码字进行组合得到,由此,在设计针对支持更多天线端口和更多层的上行并行传输的码本时,应用现有的支持较少天线端口和较少层的上行并行传输的码本中的码字即可实现,例如,在设计8个天线端口8层的上行并行传输的候选预编码矩阵时,可以应用4个天线端口4层的上行并行传输的码本中的码字。
在码本足以提供丰富的能够支持更多天线端口和更多层的上行并行传输的候选预编码矩阵的情况下,网络设备可以从候选预编码矩阵中选取一个预编码矩阵,并生成用于指示该预编码矩阵的预编码矩阵指示信息。此处预编码矩阵指示信息用于指示上行传输所应用的预编码矩阵,预编码矩阵指示信息可以携带用于上行传输的预编码矩阵的索引。
步骤220,将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
具体地,网络设备可以将生成的预编码矩阵指示信息发送到终端。终端在接收到预编码矩阵指示信息之后,可以从候选预编码矩阵中选取出预编码矩阵指示信息所指示的候选预编码矩阵,作为后续进行上行传输的预编码矩阵。在确定用于上行传输的预编码矩阵之后,终端可以应用预编码矩阵,对待发送的信息进行预编码操作,并发送预编码操作后的信息,由此实现上行传输。
本公开实施例提供的方法,应用基于全相干码字和零矩阵确定的第一类矩阵,和/或,基于部分相干码字或非相干码字确定的第二类矩阵,形成候选预编码矩阵,以便于从中确定预编码矩阵进行上行传输的预编码。由于全相干码字、部分相干码字和非相干码字均可以从现有的码本中直接得到,可以快速、便捷地由此组合得到的候选预编码矩阵,从而实现支持更多天线端口和更多层的上行并行传输,以满足高吞吐量需求。
基于上述任一实施例,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
具体地,终端用于上行传输的天线端口可以根据相干传输能力划分相干传输组,每个相干传输组内的上行天线端口数量是一致的。例如8个天线端口可以划分为2个相干传输组,每个相干传输组内有4个上行天线端口,又例如8个天线端口可以划分为4个相干传输组,每个相干传输组内有2个上行天线端口;还例如,16个天线端口可以划分为2个相干传输组,每个相干传输组内有8个上行天线端口,本公开实施例不对此作具体限定。
可以理解的是,每个相干传输组内至少存在2个上行天线端口,相干传输组内存在的上行天线端口数为2的指数,例如2、4、8等,且各相干传输组中存在的上行天线端口数小于终端的上行天线端口总数P。由此,每个相干传输组内可以有2N个上行天线端口,此处的N为正整数,并且考虑到部分相干的情况,上行传输的天线端口至少分为两个相干传输组,故N<log2P。
在此情况下,针对于第一类矩阵的构建,全相干码字和零矩阵需要符合如下条件:
第一类矩阵为上行2i个天线端口的全相干码字W与行数为2i的零矩阵Z的任意组合。
此处,i的取值受N的限制,即,i可以是1至N中的一个或者多个整数。换而言之,在每个相干传输组内有2N个上行天线端口的情况下,用于构建第一类矩阵的矩阵W可以包括2至2N中每个2的指数的天线端口的全相干码字中的矩阵,矩阵Z可以包括行数为2至2N中每个2的指数的零矩阵。
本公开实施例提供的方法,通过矩阵W和矩阵Z的组合构建第一类矩阵,由于矩阵W是可以从现有的码本中直接得到全相干码字中的矩阵,而矩阵Z是可以直接构建的矩阵,此两者的获取难度都很低,基于此两者组合得到第一类矩阵的成本很低,且可以得到丰富多样的能够支持更多天线端口和更多 层的上行并行传输的第一类矩阵,提高了预编码矩阵选取的灵活性。
考虑到任意组合所得的第一类矩阵的数量规模极其庞大,为了从中筛选中更加适合用于上行部分相干传输的候选预编码矩阵,基于上述任一实施例,本公开实施例针对矩阵W和矩阵Z的任意组合进行了筛选:
在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
具体地,针对N的取值,可以进一步划分为两种情况,一种是N为大于1的整数,即1<N<log2P,此时将N记为K,即K为整数,且1<K<log2P;另一种是N为1,此时2N=2。
针对第一种情况,即每个相干传输组内有2K个上行天线端口,2K≥4的情况,此时可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1。
通过如上规则选取得到的第一类矩阵,由于不同行的非零元素个数差小于等于1,能够有效限制在上行传输时不同天线端口的发射功率差,从而平衡各天线端口的发射功率。
针对第一种情况,即每个相干传输组内有2K个上行天线端口,2K≥4的情况,此时还可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2,j的取值为1至K中的至少一个整数。
通过上述规则选取得到的第一类矩阵,由于每行的非零元素个数均小于等于2,能够保证低立方度量(cubic metric),从而使得终端侧的功率放大器效率得到保障。
针对第二种情况,即每个相干传输组内有2个上行天线端口的情况,此时可应用如下规则对矩阵W和矩阵Z的任意组合所得的组合矩阵进行选取以获取第一类矩阵:
组合矩阵中每行的非零元素个数小于等于2,且,组合矩阵中不同行非零元素个数差小于等于1。
此处,通过限制每行的非零元素的个数,以及不同行的非零元素的个数差,能够有效限制在上行传输时不同天线端口的发射功率,从而平衡各天线端口的发射功率。
本公开实施例提供的方法,通过限制矩阵W所对应的天线端口数,以及矩阵W和矩阵Z组合得到的组合矩阵中不同的行的非零元素个数和/或非零元素个数差,对矩阵W和矩阵Z任意组合的组合矩阵进行筛选,在保证第一类矩阵能够支持更多天线端口和更多层的上行并行传输的同时,有效控制了候选预编码矩阵的规模。
基于上述任一实施例,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
具体地,在第二类矩阵的构建中,需要参考上行P/2个天线端口的部分相干码字或者非相干码字。而具体通过何种码字构建第二类矩阵,依然需要依据终端所拥有的各相干传输组内包含的上行天线端口数而定,具体在相干传输组有P/2个天线端口的情况下,A、B为部分相干码字中的矩阵,在相干传 输组中天线端口的数量小于P/2的情况下,A、B为非相干码字中的矩阵。
本公开实施例提供的方法,应用部分相干码字或非相干码字构建第二类矩阵,由于部分相干码字和非相干码字均可以从现有的码本中直接得到,可以快速、便捷地由此组合得到的候选预编码矩阵,从而实现支持更多天线端口和更多层的上行并行传输,以满足高吞吐量需求。
基于上述任一实施例,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
具体地,考虑到终端中的P个上行天线端口中可能不存在可以相干传输天线端口,即终端需要进行非相干传输的情况,候选预编码矩阵中也应设置有用于实现更多天线端口和更多层的上行非相干传输的预编码矩阵。本公开实施例中,将此类用于非相干传输的预编码矩阵,记为第三类矩阵。
此处,第三类矩阵的每一行只有一个非零元素,且第三类矩阵的每一列只有一个非零元素。预编码矩阵中包含的第三类矩阵,可以是所有可能的矩阵的集合,也可以是基于预先设定的原则进行筛选后得到的矩阵的集合,本公开实施例对此不作具体限定。
本公开实施例提供的方法,提供了用于实现非相干传输的第三类矩阵作为候选预编码矩阵,从而保证无论是部分相干传输还是非相干传,终端均可以从候选预编码矩阵中获取得到合适的预编码矩阵,以实现更多天线端口和更多层的上行并行传输。
考虑到符合第三类矩阵每行、每列均只有一个非零元素的矩阵数量规模极其庞大,为了从中筛选中更加适合用于上行非相干传输的候选预编码矩阵,基于上述任一实施例,本公开实施例针对各在每行、每列均只有一个非零元素的任意候选矩阵进行了筛选:
所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
具体地,上述四种规则可以择一应用以实现第三类矩阵的筛选,也可以选取其中的多个分别应用,并将基于每个规则筛选得到的候选矩阵均作为第三类矩阵,本公开实施例对此不作具体限定。
上述各规则中,选取非零元素所在行号联系的候选矩阵作为第三类矩阵,使得在应用该矩阵进行预编码处理并发送信号时,所占用的上行天线端口的序号是连续的,更有利相应上行天线端口配置的便捷性;根据相邻列的非零元素所在行号的间隔从候选矩阵中筛选第三类矩阵,使得在应用该矩阵进行预编码处理并发送信号时,相邻的上行天线端口之间的抗干扰性能更强。
本公开实施例提供的方法,通过限制第三类矩阵中非零元素所在行号的连续性、相邻列的非零元素所在行号的间隔,对候选矩阵进行筛选,在保证第三类矩阵能够支持更多天线端口和更多层的上行并行传输的同时,有效控制了候选预编码矩阵的规模。
基于上述任一实施例,考虑到基于上述方法产生的候选预编码矩阵数量比较大,会增加候选预编码矩阵在两个设备之间传递的信令开销,也会增加选择码本的算法复杂度和存储全部候选预编码矩阵集合的开销。为了解决候选预编码矩阵数量庞大的问题,还可以通过如下步骤规划限制候选预编码矩阵的规模:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
具体地,目标候选矩阵数量M即期望最终应用于该上行传输方法的候选预编码矩阵的总数。初始预编码矩阵集合中包含了大量的初始预编码矩阵, 此处,初始预编码矩阵集合可以包括第一类矩阵和/或第二类矩阵,还可以既包括第三类矩阵,也包括第一类矩阵和/或第二类矩阵,本公开实施例对此不作具体限定。
针对数量规模庞大的初始预编码矩阵集合,可以将M作为初始矩阵组合内包括的初始预编码矩阵的数量值,从初始预编码矩阵集合中选取M个初始预编码矩阵以构建初始矩阵组合。可以理解的是,此处的M个初始预编码矩阵可以是任意选取的,由此得到初始矩阵组合涵盖了所有可能的M个初始预编码矩阵的组合形式。
在得到各种初始矩阵组合之后,针对其中的每一个初始矩阵组合,均可以计算该初始矩阵组合内的每两个初始预编码矩阵之间的差异值,此处两个初始预编码矩阵之间的差异值可以表示为两个初始预编码矩阵的弦距离。在得到一个初始矩阵组合内的每两个初始预编码矩阵之间的弦距离之后,即可基于此确定该初始矩阵组合的组内矩阵差异值,此处的组内矩阵差异值以初始矩阵组合为单位反映整个初始矩阵组合内各初始预编码矩阵之间的差异大小,组内矩阵差异值可以取初始矩阵组合内每两个初始预编码矩阵之间的差异值的均值,也可以取初始矩阵组合内每两个初始预编码矩阵之间的差异值的最小值,本公开实施例对此不作具体限定。
在得到每个初始矩阵组合的组内矩阵差异值,即可从上述每个初始矩阵组合中选取出组内矩阵差异值最大的初始矩阵组合,作为候选矩阵组合。可以理解的是,组内矩阵差异值越大,则初始矩阵组合内各初始预编码矩阵之间的差异越大,初始矩阵组合所覆盖的初始预编码矩阵的种类特性越多。由此,选取矩阵差异值最大的初始矩阵组合,即在有限的初始预编码矩阵数量M的前提下,尽可能覆盖最多种类特性的初始预编码矩阵,以应对各种上行传输需求。
在得到候选矩阵组合之后,即可将候选矩阵组合中的M个初始预编码矩阵确定为候选预编码矩阵。
本公开实施例提供的方法,有效限制了候选预编码矩阵的规模数量,降低了预编码矩阵选取的算法复杂度,并且降低了候选预编码矩阵存储的开销。
实施例一:
本公开提供一种基于上行非相干传输码本的上行传输方法,应用于8个上行天线端口的终端,包括如下步骤:
1、终端按照如下方式获取各层的非相干传输预编码矩阵集合,即各层的第三类矩阵的集合。所有层的第三类矩阵的集合可以作为上行非相干传输码本,存储于终端中。
第三类矩阵获取规则包括:
第三类矩阵每一列只有一个非零元素,每一行只有一个非零元素;并且:
Rank=1时,所有可能的每行、每列均只有一个非零元素的候选矩阵作为第三类矩阵构成一层的码本,即一层的第三类矩阵共8个,见表1示出的上行非相干传输码本。
Rank=2时,在所有可能的候选矩阵中,按照相邻列的非零元素所在的行号间隔是4的规则进行删减,得到4个第三类矩阵,见表1示出的上行非相干传输码本。
Rank=3时,在所有可能的候选矩阵中,按照相邻列的非零元素所在的行号间隔是3的规则进行删减,得到2个第三类矩阵,见表1示出的上行非相干传输码本。
Rank=4时,在所有可能的候选矩阵中,按照相邻列的非零元素所在的行号间隔是2的规则进行删减,得到2个第三类矩阵,见表1示出的上行非相干传输码本。
Rank=5~7时,在所有可能的候选矩阵中,按照非零元素所在的行号连续的规则进行删减,每层得到1个第三类矩阵,见表1示出的上行非相干传输码本。
Rank=8时,预编码矩阵只有1个,见表1示出的上行非相干传输码本。
2、终端接收网络设备指示的预编码矩阵指示信息,此处的预编码矩阵指示信息具体可以是预编码矩阵索引。
3、对于没有天线端口可以进行相干传输的终端,根据预编码矩阵指示信息指示的预编码矩阵索引,在上述非相干传输码本中找到相应的预编码矩阵, 对数据进行预编码。
实施例二:
本公开提供一种基于上行非相干传输码本的上行传输方法,应用于8个上行天线端口的终端,包括如下步骤:
1、网络设备按照如下方式获取各层的非相干传输预编码矩阵集合,即各层的第三类矩阵的集合。所有层的第三类矩阵的集合可以作为上行非相干传输码本,存储于网络设备中。
第三类矩阵获取规则与实施例一相同,此处不作赘述。
2、如果终端上报的能力仅支持非相干传输,则网络设备从上述非相干传输码本中选择预编码矩阵,并生成携带了预编码矩阵的索引的预编码矩阵指示信息。
3、网络设备将此预编码矩阵指示信息发送给终端。
表1.上行非相干传输码本

实施例三:
本公开提供一种基于上行部分相干传输码本的上行传输方法,应用于8个上行天线端口的终端,该方法包括:
1、终端有2个相干传输组且每个相干传输组都有4个天线端口,终端可以按照如下方式产生各层的部分相干传输预编码矩阵集合,即各层的第一类矩阵的集合。所有层的第一类矩阵的集合作为表2示出的上行部分相干传输码本,存储于终端中。
第一类矩阵获取规则包括:
第一类矩阵由非零元素构成的矩阵W和零元素矩阵Z任意组合而成。第一类矩阵每一列仅有一个相干传输组对应的元素全为非零,其余相干传输组对应的元素全为0。
下式中,W4Tx,rankn是当前上行4个天线端口UL 4Tx系统rank n的全相干码字,维度是4*n。
Rank=1时,则UL 4Tx一层的第一类矩阵可以包括和/或
Rank=2时,则UL 4Tx两层的第一类矩阵可以是
Rank=3时,则UL 4Tx三层的第一类矩阵可以包括和/或
Rank=4时,则UL 4Tx四层的第一类矩阵可以是其中,1、3列,以及2、4列选用的非零矩阵W4Tx,rank2可以相同,也可以不同。
Rank=5时,则UL 4Tx五层的第一类矩阵可以是和/或
Rank=6时,则UL 4Tx六层的第一类矩阵可以是其中,1、4列,2、5列,以及3、6列选用的非零矩阵W4Tx,rank3可以相同,也可以不同。
Rank=7时, 则UL 4Tx七层的第一类矩阵可以是和/或
Rank=8时,则UL 4Tx八层的第一类矩阵可以是1、5列,2、6列,3、7列,以及4、8列选用的非零矩阵W4Tx,rank4可以相同,也可以不同。
2、终端接收网络设备指示的预编码矩阵指示信息,此处的预编码矩阵指示信息具体可以是预编码矩阵索引。
3、终端根据预编码矩阵指示信息中的预编码矩阵索引,从上述包含了第一类矩阵的部分相干传输码本和包含了第三类矩阵的非相干码本中找到相应的预编码矩阵,对数据进行预编码。
实施例四:
本公开提供一种基于上行部分相干传输码本的上行传输方法,应用于8个上行天线端口的终端,该方法包括:
1、网络设备按照如下方式产生各层的部分相干传输预编码矩阵集合,即各层的第一类矩阵的集合。所有层的第一类矩阵的集合作为表2示出的上行部分相干传输码本,存储于网络设备中。
第一类矩阵获取规则与实施例三相同,此处不作赘述。
2、如果终端上报的能力支持部分相干传输,且每个相干传输组有4个端口,则网络设备从上述部分相干传输码本和非相干传输码本中选择预编码矩阵,并生成携带了预编码矩阵的索引的预编码矩阵指示信息。
3、网络设备将此预编码矩阵指示信息发送给终端。
表2.上行部分相干传输码本(第一类矩阵)









实施例五:
本公开提供一种基于上行部分相干传输码本的上行传输方法,应用于8个上行天线端口的终端,该方法包括:
1、终端有4个相干传输组且每个相干传输组都有2个天线端口,终端可以按照如下方式产生各层的部分相干传输预编码矩阵集合,即各层的第一类矩阵的集合。所有层的第一类矩阵的集合作为上行部分相干传输码本,存储于终端中。
第一类矩阵获取规则包括:
第一类矩阵由非零元素构成的矩阵W和零元素矩阵Z任意组合而成。第一类矩阵每一列仅有一个相干传输组对应的元素全为非零,其余相干传输组对应的元素全为0。
下式中,W2Tx,rankn可以是当前上行2个天线端口UL 2Tx系统rank n的全相干预编码矩阵,维度是2*n。
Rank=1时,则UL 8Tx一层的第一类矩阵可以是和/或和/或和/或
Rank=2时,则UL 8Tx两层的第一类矩阵可以是和/或和/或和/或和/或和/或第1列和第2列可以使用相同或不同的W2Tx,rank1
Rank=3时,则UL 8Tx三层的第一类矩阵可以是和/或和/或和/或第1/2/3列可以使用相同或不同的W2Tx,rank1
Rank=4时,则UL 8Tx四层的第一类矩阵可以是 第1/2/3/4列可以使用相同或不同的W2Tx,rank1
Rank=5时,则UL 8Tx五层的第一类矩阵可以是和/或和/或rank1矩阵的不同列可以使用相同或不同的W2Tx,rank1
Rank=6时,则UL 8Tx六层的第一类矩阵可以是和/或和/或和/或 和/或和/或rank1矩阵的不同列可以使用相同或不同的W2Tx,rank1。Rank2矩阵的不同列可以使用相同或不同的W2Tx,rank2
Rank=7时,则UL 8Tx七层的第一类矩阵可以是
和/或和/或和/或Rank2矩阵的不同列可以使用相同或不同的W2Tx,rank2
Rank=8时,则UL 8Tx八层的第一类矩阵可 以是
2、终端接收网络设备指示的预编码矩阵指示信息,此处的预编码矩阵指示信息具体可以是预编码矩阵索引。
3、终端根据预编码矩阵指示信息中的预编码矩阵索引,从上述包含了第一类矩阵的部分相干传输码本和包含了第三类矩阵的非相干码本中找到相应的预编码矩阵,对数据进行预编码。
实施例六:
本公开提供一种基于上行部分相干传输码本的上行传输方法,应用于8个上行天线端口的终端,该方法包括:
1、网络设备按照如下方式产生各层的部分相干传输预编码矩阵集合,即各层的第一类矩阵的集合。所有层的第一类矩阵的集合作为表2示出的上行部分相干传输码本,存储于网络设备中。
第一类矩阵获取规则与实施例五相同,此处不作赘述。
2、如果终端上报的能力支持部分相干传输,且每个相干传输组有2个端口,则网络设备从上述部分相干传输码本和非相干传输码本中选择预编码矩阵,并生成携带了预编码矩阵的索引的预编码矩阵指示信息。
3、网络设备将此预编码矩阵指示信息发送给终端。
本公开实施例提供的方法,可实现8个天线端口最大8层的并行传输,能够有效提升上行的吞吐量。
基于上述任一实施例,图3是本公开实施例提供的终端的结构示意图,如图3所示,所述终端包括存储器320,收发机300,处理器310:
存储器320,用于存储计算机程序;收发机300,用于在所述处理器310的控制下收发数据;处理器310,用于读取所述存储器320中的计算机程序并执行以下操作:
接收预编码矩阵指示信息;
从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
基于所述预编码矩阵,进行上行传输。
具体来说,收发机300,用于在处理器310的控制下接收和发送数据。
其中,在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器310代表的一个或多个处理器和存储器320代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机300可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口330还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器310负责管理总线架构和通常的处理,存储器320可以存储处理器310在执行操作时所使用的数据。
可选地,处理器310可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,所述候选预编码矩阵基于如下步骤确定:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
在此需要说明的是,本公开实施例提供的上述终端,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图4是本公开实施例提供的网络设备的结构示意图,如图4所示,所述网络设备包括存储器420,收发机400,处理器410:
存储器420,用于存储计算机程序;收发机400,用于在所述处理器的控制下收发数据;处理器410,用于读取所述存储器中的计算机程序并执行以下操作:
基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
其中,在图4中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器410代表的一个或多个处理器和存储器420代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机400可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些 传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。
处理器410负责管理总线架构和通常的处理,存储器420可以存储处理器410在执行操作时所使用的数据。
可选地,处理器410可以是CPU(中央处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
可选地,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,所述候选预编码矩阵基于如下步骤确定:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
在此需要说明的是,本公开实施例提供的上述网络设备,能够实现上述执行主体为网络设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图5是本公开实施例提供的上行传输装置的结构示意图之一,如图5所示,上行传输装置包括:
接收单元510,用于接收预编码矩阵指示信息;
选取单元520,用于从候选预编码矩阵中,确定所述预编码矩阵指示信息 所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
预编码单元530,用于基于所述预编码矩阵,进行上行传输。
可选地,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候 选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,该装置还包括候选矩阵筛选单元,用于:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
具体来说,本公开实施例提供的上述上行传输装置,能够实现上述执行主体为终端的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
图6是本公开实施例提供的上行传输装置的结构示意图之二,如图6所示,上行传输装置包括:
生成单元610,用于基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
发送单元620,用于将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
可选地,所述第一类矩阵为矩阵W和矩阵Z的组合;
在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上 行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
可选地,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
可选地,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
可选地,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
可选地,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
所述候选矩阵的非零元素所在的行号连续;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
其中,所述P为上行天线端口总数。
可选地,该装置还包括候选矩阵筛选单元,用于:
确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
具体来说,本公开实施例提供的上述上行传输装置,能够实现上述执行主体为网络设备的方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
需要说明的是,本公开上述各实施例中对单元/模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本公开实施例还提供一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行上述 各实施例提供的方法,包括:
接收预编码矩阵指示信息;
从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
基于所述预编码矩阵,进行上行传输。
或者包括:
基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
需要说明的是:所述处理器可读存储介质可以是处理器能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
另外需要说明的是:本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入 (worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evloved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的网络设备,可以是基站,该基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互更换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本公开实施例涉及的网络设备 可以是全球移动通信系统(Global System for Mobile communications,GSM)或码分多址接入(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是带宽码分多址接入(Wide-band Code Division Multiple Access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional Node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站(gNB),也可以是家庭演进基站(Home evolved Node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本公开实施例中并不限定。在一些网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点,集中单元和分布单元也可以地理上分开布置。
网络设备与终端设备之间可以各自使用一或多根天线进行多输入多输出(Multi Input Multi Output,MIMO)传输,MIMO传输可以是单用户MIMO(Single User MIMO,SU-MIMO)或多用户MIMO(Multiple User MIMO,MU-MIMO)。根据根天线组合的形态和数量,MIMO传输可以是2D-MIMO、3D-MIMO、FD-MIMO或massive-MIMO,也可以是分集传输或预编码传输或波束赋形传输等。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实 现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (43)

  1. 一种上行传输方法,包括:
    接收预编码矩阵指示信息;
    从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    基于所述预编码矩阵,进行上行传输。
  2. 根据权利要求1所述的上行传输方法,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  3. 根据权利要求2所述的上行传输方法,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不 同行非零元素个数差小于等于1。
  4. 根据权利要求1所述的上行传输方法,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  5. 根据权利要求1所述的上行传输方法,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  6. 根据权利要求5所述的上行传输方法,其中,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  7. 根据权利要求1至6中任一项所述的上行传输方法,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  8. 一种上行传输方法,包括:
    基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
  9. 根据权利要求8所述的上行传输方法,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  10. 根据权利要求9所述的上行传输方法,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
  11. 根据权利要求8所述的上行传输方法,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  12. 根据权利要求8所述的上行传输方法,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  13. 根据权利要求12所述的上行传输方法,其中,所述第三类矩阵是在 每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  14. 根据权利要求8至13中任一项所述的上行传输方法,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  15. 一种终端,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    接收预编码矩阵指示信息;
    从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    基于所述预编码矩阵,进行上行传输。
  16. 根据权利要求15所述的终端,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上 行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  17. 根据权利要求16所述的终端,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
  18. 根据权利要求15所述的终端,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  19. 根据权利要求15所述的终端,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  20. 根据权利要求19所述的终端,其中,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  21. 根据权利要求15至20中任一项所述的终端,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  22. 一种网络设备,包括存储器,收发机,处理器:
    存储器,用于存储计算机程序;收发机,用于在所述处理器的控制下收发数据;处理器,用于读取所述存储器中的计算机程序并执行以下操作:
    基于候选预编码矩阵中的一个预编码矩阵,生成预编码矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
  23. 根据权利要求22所述的网络设备,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  24. 根据权利要求23所述的网络设备,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
  25. 根据权利要求22所述的网络设备,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  26. 根据权利要求22所述的网络设备,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  27. 根据权利要求26所述的网络设备,其中,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  28. 根据权利要求22至27中任一项所述的网络设备,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每 个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  29. 一种上行传输装置,包括:
    接收单元,用于接收预编码矩阵指示信息;
    选取单元,用于从候选预编码矩阵中,确定所述预编码矩阵指示信息所指示的预编码矩阵,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    预编码单元,用于基于所述预编码矩阵,进行上行传输。
  30. 根据权利要求29所述的上行传输装置,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  31. 根据权利要求30所述的上行传输装置,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规 则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
  32. 根据权利要求29所述的上行传输装置,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  33. 根据权利要求29所述的上行传输装置,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  34. 根据权利要求33所述的上行传输装置,其中,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  35. 根据权利要29至34中任一项所述的上行传输装置,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  36. 一种上行传输装置,包括:
    生成单元,用于基于候选预编码矩阵中的一个预编码矩阵,生成预编码 矩阵指示信息,所述候选预编码矩阵包括第一类矩阵和/或第二类矩阵,所述第一类矩阵基于全相干码字和零矩阵确定,所述第二类矩阵基于部分相干码字或非相干码字确定;
    发送单元,用于将所述预编码矩阵指示信息发送到终端,所述预编码矩阵指示信息用于指示所述预编码矩阵,所述预编码矩阵用于进行上行传输。
  37. 根据权利要求36所述的上行传输装置,其中,所述第一类矩阵为矩阵W和矩阵Z的组合;
    在每个相干传输组内有2N个上行天线端口的情况下,所述矩阵W包括上行2i个天线端口的全相干码字中的矩阵,所述矩阵Z包括行数为2i的零矩阵;
    其中,N为正整数,且N<log2P,P为上行天线端口总数,i的取值为1至N中的至少一个整数。
  38. 根据权利要求37所述的上行传输装置,其中,在每个相干传输组内有2K个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则中的至少一种选取得到的:
    所述矩阵W为上行2K个天线端口的全相干码字中的矩阵,且所述组合矩阵不同行的非零元素个数差小于等于1;或,
    所述矩阵W为上行2j个天线端口的全相干码字中的矩阵,且所述组合矩阵每行的非零元素个数小于等于2;
    其中,K为整数,且1<K<log2P;j的取值为1至K中的至少一个整数;
    在每个相干传输组内有2个上行天线端口的情况下,所述第一类矩阵是在所述矩阵W和所述矩阵Z的任意组合所得的组合矩阵的基础上,通过如下规则选取得到的:
    所述组合矩阵中每行的非零元素个数小于等于2,且,所述组合矩阵中不同行非零元素个数差小于等于1。
  39. 根据权利要求36所述的上行传输装置,其中,所述第二类矩阵为其中矩阵A、B均为上行P/2个天线端口的部分相干码字中的矩阵,或,矩阵A、B均为上行P/2个天线端口的非相干码字中的矩阵。
  40. 根据权利要求36所述的上行传输装置,其中,所述候选预编码矩阵还包括第三类矩阵,所述第三类矩阵为每行、每列均只有一个非零元素的矩阵。
  41. 根据权利要求40所述的上行传输装置,其中,所述第三类矩阵是在每行、每列均只有一个非零元素的任意候选矩阵的基础上,通过如下规则中的任意一种或多种选取得到的:
    所述候选矩阵的非零元素所在的行号连续;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-1;
    所述候选矩阵中相邻列的非零元素所在行号的间隔为P/2-2;
    其中,所述P为上行天线端口总数。
  42. 根据权利要求36至41中任一项所述的上行传输装置,其中,所述候选预编码矩阵基于如下步骤确定:
    确定目标候选矩阵数量M,并获取初始预编码矩阵集合中每M个初始预编码矩阵构成的多个初始矩阵组合;
    基于每个初始矩阵组合内每两个初始预编码矩阵之间的弦距离,确定每个初始矩阵组合的组内矩阵差异值;
    基于所述多个初始矩阵组合的组内矩阵差异值,从所述多个初始矩阵组合中选取候选矩阵组合,并将所述候选矩阵组合中的M个初始预编码矩阵确定为所述候选预编码矩阵。
  43. 一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至14任一项所述的上行传输方法。
PCT/CN2023/116122 2022-09-30 2023-08-31 上行传输方法、终端、网络设备、装置和存储介质 WO2024066900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216179.5 2022-09-30
CN202211216179.5A CN117856833A (zh) 2022-09-30 2022-09-30 上行传输方法、终端、网络设备、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2024066900A1 true WO2024066900A1 (zh) 2024-04-04

Family

ID=90476055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116122 WO2024066900A1 (zh) 2022-09-30 2023-08-31 上行传输方法、终端、网络设备、装置和存储介质

Country Status (2)

Country Link
CN (1) CN117856833A (zh)
WO (1) WO2024066900A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201307A1 (en) * 2014-07-31 2017-07-13 Lg Electronics Inc. Method for estimating channel and device therefor
CN109787668A (zh) * 2017-11-15 2019-05-21 华为技术有限公司 通信方法、通信装置和系统
CN110971275A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种上行传输方法、上行传输的调度方法和设备
CN111357208A (zh) * 2017-11-17 2020-06-30 瑞典爱立信有限公司 可变相干自适应天线阵列
CN112751597A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 信道测量方法和用户设备
WO2022082689A1 (zh) * 2020-10-22 2022-04-28 华为技术有限公司 一种传输信号的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170201307A1 (en) * 2014-07-31 2017-07-13 Lg Electronics Inc. Method for estimating channel and device therefor
CN109787668A (zh) * 2017-11-15 2019-05-21 华为技术有限公司 通信方法、通信装置和系统
CN111357208A (zh) * 2017-11-17 2020-06-30 瑞典爱立信有限公司 可变相干自适应天线阵列
CN110971275A (zh) * 2018-09-28 2020-04-07 电信科学技术研究院有限公司 一种上行传输方法、上行传输的调度方法和设备
CN112751597A (zh) * 2019-10-29 2021-05-04 华为技术有限公司 信道测量方法和用户设备
WO2022082689A1 (zh) * 2020-10-22 2022-04-28 华为技术有限公司 一种传输信号的方法及装置

Also Published As

Publication number Publication date
CN117856833A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US10749584B2 (en) Uplink MIMO codebook for advanced wireless communication systems
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
US11005550B2 (en) Method and apparatus for transmitting downlink control information (DCI)
JP7238167B2 (ja) プリコーディング行列表示及び決定方法、及び通信装置
US10567054B2 (en) Channel state information sending method and receiving method, apparatus, and system
CN111106857B (zh) 指示和确定预编码向量的方法以及通信装置
WO2014135993A1 (en) Method, apparatus and computer program for controlling a wireless device
KR20190104382A (ko) 전송 다이버시티 방법, 단말 및 기지국
KR20220025672A (ko) 통신 시스템에서 채널 상태 정보 피드백 방법 및 장치
JP7371270B2 (ja) チャネル状態情報フィードバック方法及び通信装置
WO2020107188A1 (zh) 一种数据处理方法、设备及存储介质
WO2024066900A1 (zh) 上行传输方法、终端、网络设备、装置和存储介质
CN111587543B (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2024067346A1 (zh) 信息传输方法、装置及存储介质
TW202416756A (zh) 上行傳輸方法、終端、網路設備、裝置和存儲介質
WO2022142459A1 (zh) 信号传输方法及装置、终端、接入网设备
CN115189837B (zh) 端口指示信息上报方法及终端
WO2023143086A1 (zh) 信号传输方法、装置及存储介质
WO2024067158A1 (zh) 信息确定方法、装置、终端及网络设备
WO2024007854A1 (zh) 码本传输方法、装置及存储介质
WO2024032699A1 (zh) Dmrs端口的确定方法、设备、装置及存储介质
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
WO2024125199A1 (zh) 波束指示方法、设备、装置及存储介质
WO2024032760A1 (zh) Csi报告方法、终端设备、网络设备及存储介质
KR102682187B1 (ko) 무선 통신 시스템에서 데이터를 프리코딩하기 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870140

Country of ref document: EP

Kind code of ref document: A1