WO2019019055A1 - 传输数据的方法、终端设备和网络设备 - Google Patents

传输数据的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019019055A1
WO2019019055A1 PCT/CN2017/094507 CN2017094507W WO2019019055A1 WO 2019019055 A1 WO2019019055 A1 WO 2019019055A1 CN 2017094507 W CN2017094507 W CN 2017094507W WO 2019019055 A1 WO2019019055 A1 WO 2019019055A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
terminal device
network device
different
Prior art date
Application number
PCT/CN2017/094507
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2019560342A priority Critical patent/JP2020532148A/ja
Priority to EP17919365.1A priority patent/EP3606103B1/en
Priority to US16/621,676 priority patent/US10931358B2/en
Priority to KR1020197032203A priority patent/KR20200031068A/ko
Priority to CN201780091768.6A priority patent/CN110731066B/zh
Priority to PCT/CN2017/094507 priority patent/WO2019019055A1/zh
Publication of WO2019019055A1 publication Critical patent/WO2019019055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communications, and more particularly to a method, terminal device and network device for transmitting data.
  • An uplink data transmission mode based on grant-free (also called unscheduled) is introduced in the 5G system.
  • the terminal device can initiate uplink data transmission without the scheduling signaling of the network device.
  • the terminal device since the terminal device does not know the current uplink channel, the terminal device may not adopt the optimal transmission mode, so that it is difficult to achieve a large transmission gain, resulting in low transmission reliability.
  • the embodiment of the present application provides a method for transmitting data, a terminal device, and a network device, which can improve the reliability of uplink transmission.
  • a method of transmitting data comprising:
  • the terminal device transmits the second data to the network device by using the transmission parameter of the second data.
  • the terminal device may transmit the first data to the network device at least once, so that the network device determines, in the at least one transmission, according to the receiving situation of the at least one transmission. And transmitting, by the network device, the first indication information, where the network device determines the one-time transmission determined by the network device, so that the terminal device may be according to the first
  • the indication information determines the transmission parameter of the second data, and further uses the transmission parameter of the second data to perform transmission of the second data, thereby improving the reliability of the uplink transmission.
  • the first data is data that is autonomously transmitted by the terminal device.
  • the terminal device transmits the first data to the network device at least once, including:
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different multiple input multiple output MIMO transmission modes.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different antenna ports.
  • the first antenna port may be used by the terminal device to transmit the first data
  • the second antenna port may be used for the second transmission of the first data, where the first antenna port and the second antenna are used.
  • the antenna ports are different.
  • the first antenna port may include at least one antenna port
  • the second antenna port may also include at least one antenna port
  • the first antenna port and the second Different antenna ports may mean that at least one antenna port included in the first antenna port and at least one antenna port portion included in the second antenna port are different or all different.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different precoding matrices.
  • the terminal device may acquire, from a pre-configured precoding matrix set, a precoding matrix used for transmitting the first data each time by polling.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different antenna array blocks.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different beams.
  • the terminal device may determine, by using a polling manner, a beam used to transmit the first data from each of the multiple beams. For example, the terminal device predetermines N beams, where N is an integer greater than 1, the N beams can be used by the terminal device to transmit data to the network device, and the terminal device can alternately use the N beams.
  • the beam in the medium transmits the first data to the network device.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different transmission powers.
  • a lower transmission power may be used to save power
  • the terminal device may adopt a relatively high transmission power.
  • the k+1th transmission can use a higher transmission power than the kth transmission until the highest transmission power is reached.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device uses different demodulation reference signal DMRS sequences to the network device Transmitting the first data.
  • the different transmission modes include a first transmission mode, and the terminal device transmits the first data to the network device multiple times by using different transmission modes.
  • the terminal device Determining, by the terminal device, the first resource pool corresponding to the first transmission mode according to the first transmission mode and the first correspondence, where the first correspondence relationship is a correspondence between multiple transmission modes and multiple resource pools, and each The resource pool corresponding to the transmission mode is different;
  • the corresponding relationship may be a correspondence between multiple MIMO transmission modes and multiple resource pools, or may be a correspondence between multiple antenna ports and multiple resource pools, or may also be It is a correspondence between multiple transmission powers and multiple resource pools.
  • the corresponding relationship between the multiple transmission modes used by the terminal device to transmit the first data and the multiple resource pools may be that the network device is pre-configured to the terminal device, where the network device detects the And determining, according to the resource pool and the corresponding relationship, a transmission manner adopted by the terminal device to transmit data, so as to receive the first data according to the determined transmission manner.
  • the transmission manner adopted by the terminal device to perform the multiple transmission is that the network device is pre-configured to the terminal device, or by the terminal device Pre-agreed with the network device or determined by the terminal device.
  • the receiving, by the terminal device, the first indication information that is sent by the network device includes:
  • DCI Downlink control information DCI, which is sent by the network device, for scheduling the second data, where the DCI includes the first indication information.
  • the terminal device determines, according to the first indication information, a transmission parameter of the second data, including:
  • the terminal device determines, by the terminal device, a transmission parameter used for the primary transmission indicated by the first indication information as a transmission parameter of the second data.
  • the transmission parameter comprises at least one of the following:
  • Time domain resources frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antennas Port, precoding matrix, antenna array block, beam and transmit power.
  • the first indication information is specifically used to indicate an index of the one-time transmission in the at least one transmission, or a resource or resource used in the one-time transmission index.
  • a second aspect provides a method for transmitting data, including: receiving, by a network device, first data that is transmitted by a terminal device at least once;
  • the network device Transmitting, by the network device, the first indication information to the terminal device, where the first indication information is used to indicate one transmission in at least one transmission of the first data, where the first indication information is used by the terminal device Determining a transmission parameter of the second data;
  • the network device receives the second data that is sent by the terminal device by using the transmission parameter of the second data.
  • the transmission parameter comprises at least one of the following:
  • Time domain resources Time domain resources, frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antenna ports, precoding matrices, antenna array blocks, beams, and transmit power.
  • the first indication information is specifically used to indicate an index of the one-time transmission in the at least one transmission, or a resource or resource used in the one-time transmission index.
  • the first indication information is specifically used to indicate that the transmission quality of the at least one transmission determined by the network device is optimal.
  • the network device may receive the first data that is transmitted by the terminal device at least once, and determine the optimal transmission quality in the at least one transmission according to the receiving situation of the at least one transmission. And transmitting, to the terminal device, first indication information, configured to indicate the one-time transmission determined by the network device, so that the terminal device may determine, according to the first indication information, transmission of the second data And transmitting the second data to the network device by using the transmission parameter of the second data, so that the reliability of the uplink transmission can be improved.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention which comprise a program designed to perform the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect, or the second Aspect or method of any alternative implementation of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method of transmitting data according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of an apparatus for transmitting data according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UPD Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a future 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • D2D device to device communication
  • D2D device to device
  • the 5G system or network may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the terminal device may use a grant-free based uplink data transmission method, or may also be referred to as an autonomous uplink transmission mode, to transmit data to another terminal device or network device.
  • a grant-free uplink transmission mode the terminal device can send data to another terminal device or network device autonomously without receiving scheduling instructions of other devices.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting data according to an embodiment of the present application. As shown in FIG. 2, the method 200 includes:
  • the terminal device transmits the first data to the network device at least once.
  • the terminal device may be a terminal device in the wireless communication system shown in FIG. 1, and the network device may be a network device in the wireless communication system shown in FIG. 1.
  • the terminal device may transmit the first data to the network device once, or may transmit the first data to the network device multiple times, where the first data is data that is automatically sent by the terminal device. Or, the first data is data that is sent by the terminal device according to the grant-free uplink transmission mode.
  • the first data that is sent by the terminal device autonomously may be sent without receiving a scheduling instruction of the network device, or may be an acknowledgement/negative acknowledgement of the network device not received (Acknowledgement/ Negative ACKnowledgement, ACK/NACK) information sent in case.
  • the first data may be that the terminal device is not based on a network device. Uplink grant-free transmission by uplink grant (UL grant). In this case, the terminal device does not need to detect the downlink control information (Downlink Control Information, DCI) sent by the network device through the downlink control channel, and can perform the autonomous operation. One or more transmissions of the first data.
  • DCI Downlink Control Information
  • the S210 may further include:
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes.
  • the terminal device may perform multiple transmissions of the first data by using different transmission modes, or different transmission modes corresponding to each transmission.
  • the data packets transmitted by the multiple transmission may be identical or not identical, but all include at least the first data.
  • the data packet transmitted by the terminal device at the time of the first transmission may include the first data and the third data
  • the data packet transmitted during the second transmission may include the first data and the fourth data.
  • the terminal device uses the different transmission modes to transmit the first data to the network device multiple times, and the network device may be based on the receiving situation of the multiple transmissions. Determining, in the multiple transmissions, a transmission with an optimal transmission quality, and further, the network device may send the first indication information to the terminal device, to notify the terminal device of a transmission with the best transmission quality, so that the terminal device
  • the transmission parameters used for the subsequent data transmission may be determined according to the transmission parameters used by the primary transmission with the best transmission quality, thereby improving the reliability of the uplink transmission.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different multiple input multiple output MIMO transmission modes.
  • the multiple-input multiple-output (MIMO) transmission mode specifically refers to a MIMO technology used for transmitting signals.
  • the MIMO transmission mode may include transmit diversity, codebook-based precoding, and non-codebook based precoding. Transmission modes such as coding, single antenna port transmission, and beamforming.
  • the terminal device may transmit the first data multiple times, and may adopt different MIMO transmission modes.
  • the multiple transmission includes two transmissions, and the terminal device performs the The two transmissions of the first data may respectively adopt two transmission modes in the foregoing MIMO transmission mode.
  • the first transmission of the first data by the terminal device may be based on non-codebook precoding ( In the MIMO transmission mode of the non-codebook based precoding, the second transmission of the first data may adopt a MIMO transmission mode of transmit diversity.
  • the impact on the transmission performance of the first data is different.
  • using a non-codebook precoding based MIMO transmission mode may be able to obtain a higher precoding gain, but channel reciprocity may be It is not ideal, and therefore, may cause transmission failure, and the MIMO transmission mode using transmission diversity or single antenna port may be able to obtain more stable transmission performance, and therefore, the terminal device transmits the first using different MIMO transmission modes.
  • the network device determines a transmission quality optimal MIMO transmission mode from a plurality of MIMO transmission modes, and further, may notify the terminal device which transmission quality of the MIMO transmission mode is optimal, so that the terminal device The MIMO transmission mode can be used for subsequent data transmission, thereby improving the reliability of the uplink transmission.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different antenna ports.
  • the terminal device may use different antenna ports to transmit the first data multiple times.
  • the multiple transmissions include two transmissions, the first transmission of the first data by the terminal device may adopt a first antenna port, and the second transmission of the first data may adopt a second antenna port, where the An antenna port is different from the second antenna port.
  • the first antenna port may include at least one antenna port
  • the second antenna port may also include at least one antenna port
  • the first antenna port and the second Different antenna ports may mean that at least one antenna port included in the first antenna port and at least one antenna port portion included in the second antenna port are different or all different.
  • N is an integer greater than 1
  • k is An integer greater than or equal to 1
  • n (k - 1) mod N, that is, n is an integer obtained by modulo (k-1) with respect to N.
  • Different antenna ports can be shaped by different beams, or precoded by different precoding matrices, or different antenna ports can be mapped to different On the physical antenna.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different precoding matrices.
  • the terminal device may transmit the first data multiple times and may adopt different precoding matrices.
  • the terminal device may obtain, by means of polling, a precoding matrix used for transmitting the first data each time from a preconfigured precoding matrix set.
  • the terminal device may pre-store a precoding matrix set including N precoding matrices.
  • the terminal device may use an index in the precoding matrix set to be m.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different antenna array blocks.
  • the terminal device may transmit the first data multiple times, and may use different antenna array blocks.
  • one antenna array block is also called a Panel, and one Panel is composed of a group of antenna elements.
  • Different antenna array blocks are connected to independent RF modules, and signals can be independently transmitted.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different beams.
  • the terminal device may use different beams by transmitting the first data multiple times.
  • the first transmission of the first data by the terminal device may adopt a first beam
  • the second transmission of the first data may adopt a second beam different from the first beam.
  • the first beam may include at least one beam
  • the second beam may also include at least one beam
  • the first beam and the second beam may be different in that the at least one beam included in the first beam and the at least one beam portion included in the second beam are different or all different.
  • the terminal device may determine, by means of polling, a beam used by each of the plurality of beams to transmit the first data. For example, the terminal device predetermines N beams, where N is an integer greater than 1, the N beams can be used by the terminal device to transmit data to the network device, and the terminal device can alternately use the N beams.
  • the beam in the medium transmits the first data to the network device.
  • the N beams may be indicated by the network device to the terminal device, that is, the network device may configure the N beams to the terminal device, for example, the network device may pass semi-static signaling (for example, wireless The Radio Resource Control (RRC) signaling or dynamic signaling (eg, DCI) configures the N beams for the terminal device.
  • RRC Radio Resource Control
  • DCI dynamic signaling
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different transmission powers.
  • the terminal device may use different transmit powers by transmitting the first data multiple times. For example, when the terminal device transmits the first data for the first time, a lower transmission power may be used to save power, and when the first data is transmitted for a second time, the terminal device may adopt a relatively high transmission power. To increase the probability of successful transmission, that is, the k+1th transmission can use a higher transmission power than the kth transmission until the highest transmission power is reached.
  • the size of the transmission power of the k+1th transmission of the first data relative to the kth transmission (which may be referred to as a power increase value, or a power step)
  • the value may be pre-configured by the network device to the terminal device, or the terminal device may also employ a fixed power increase value or power step value.
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device transmits the first data to the network device multiple times by using different demodulation reference signal DMRS sequences.
  • the Demodulation Reference Signal (DMRS) sequence is used.
  • the different transmission modes include a first transmission mode
  • the terminal device transmits the first data to the network device multiple times by using different transmission modes, including:
  • the terminal device Determining, by the terminal device, the first resource pool corresponding to the first transmission mode according to the first transmission mode and the first correspondence, where the first correspondence relationship is a correspondence between multiple transmission modes and multiple resource pools, and each The resource pool corresponding to the transmission mode is different;
  • the terminal device transmitting the first data multiple times may be transmitted in different resource pools.
  • the multiple transmission modes used by the terminal device to transmit the first data may have a corresponding relationship with multiple resource pools, and the terminal device may be configured according to the transmission mode used to transmit the first data, and the Corresponding relationship, determining a resource pool used for transmitting the first data, so that when the first data is transmitted by using the transmission manner, the terminal device may be performed in the resource pool.
  • the terminal device may determine, according to the first transmission mode and the corresponding relationship between multiple transmission modes and multiple resource pools, the first transmission mode, when the first data is transmitted by using the first transmission mode. a first resource pool, such that when the first data is transmitted by using the first transmission mode, the first data may be transmitted in the first resource pool.
  • the corresponding relationship may be a correspondence between multiple MIMO transmission modes and multiple resource pools, or may be a correspondence between multiple antenna ports and multiple resource pools, or may also be It is a correspondence between multiple transmission powers and multiple resource pools.
  • the corresponding relationship between the multiple transmission modes used by the terminal device to transmit the first data and the multiple resource pools may be that the network device is pre-configured to the terminal device, where the network device detects the And determining, according to the resource pool and the corresponding relationship, a transmission manner adopted by the terminal device to transmit data, so as to receive the first data according to the determined transmission manner.
  • the terminal device may use different MIMO transmission modes, or different antenna ports, or different precoding matrices, or different antenna array blocks, or different beams, to transmit the first data multiple times. Or different transmit power, or different DMRS sequences. That is, the MIMO transmission mode and antenna used for transmitting the first data of the first data multiple times At least one of the port, the precoding matrix, the antenna array block, the beam, the transmit power, and the DMRS sequence are different.
  • the transmission manner adopted by the terminal device to perform the multiple transmission may be that the network device is pre-configured to the terminal device, or may be the terminal device and The network device is pre-agreed or may be determined autonomously by the terminal device.
  • the terminal device receives first indication information that is sent by the network device, where the first indication information is used to indicate one transmission in at least one transmission of the first data.
  • the network device may determine, in the at least one transmission, a transmission with an optimal transmission quality according to the receiving condition of the at least one transmission of the first data, where the first indication information may be used to indicate the The transmission quality of the transmission is optimized at least once, so that the terminal device can determine the transmission parameter for subsequent data transmission according to the first indication information.
  • the first indication information may indicate an index of the one-time transmission in the at least one transmission, and may also indicate a resource or resource index used by the one-time transmission, or the first indication information may also indicate the The index of the time slot in which the transmission is performed needs to be explained that the resources herein may be time domain resources, or frequency domain resources, or code resources.
  • the S220 may specifically include:
  • DCI Downlink control information DCI, which is sent by the network device, for scheduling the second data, where the DCI includes the first indication information.
  • the 3-bit indication field is used in the DCI to carry the first indication information.
  • the 3-bit indication field may be set to The first transmission of the first data is indicated at 000 o'clock, the indication field of 3 bits is 001 indicating the second transmission of the first data, and the like.
  • the terminal device determines, according to the first indication information, a transmission parameter of the second data.
  • the terminal may determine, as the transmission parameter of the second data, the transmission parameter used for the primary transmission indicated by the first indication information, or may also use the transmission used for the primary transmission indicated by the first indication information.
  • the parameter is adjusted, and the adjusted transmission parameter is determined as the transmission parameter of the second data, and the like.
  • the transmission parameter includes at least one of the following:
  • Time domain resources Time domain resources, frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antenna ports, precoding matrices, antenna array blocks, beams, and transmit power.
  • the terminal device transmits the second data to the network device by using the transmission parameter of the second data.
  • the terminal device may transmit the first data to the network device at least once, so that the network device determines, in the at least one transmission, according to the receiving situation of the at least one transmission. And transmitting, by the network device, the first indication information, where the network device determines the one-time transmission determined by the network device, so that the terminal device may be according to the first
  • the indication information determines the transmission parameter of the second data, and further uses the transmission parameter of the second data to perform transmission of the second data, thereby improving the reliability of the uplink transmission.
  • FIG. 2 a method for transmitting data according to an embodiment of the present application is described in detail from the perspective of a terminal device.
  • a method for transmitting data according to an embodiment of the present application will be described in detail from the perspective of a network device in conjunction with FIG. It should be understood that the description on the network device side and the description on the terminal device side correspond to each other. For a similar description, refer to the above. To avoid repetition, details are not described herein again.
  • FIG. 3 is a schematic flowchart of a method for transmitting data according to another embodiment of the present application. As shown in FIG. 3, the method 300 includes:
  • the network device receives the first data that is transmitted by the terminal device at least once.
  • the network device sends first indication information to the terminal device, where the first indication information is used to indicate one transmission in at least one transmission of the first data, and the first indication information is used in the The terminal device determines a transmission parameter of the second data;
  • the network device receives the second data that is sent by the terminal device by using a transmission parameter of the second data.
  • the transmission parameter comprises at least one of the following:
  • Time domain resources Time domain resources, frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antenna ports, precoding matrices, antenna array blocks, beams, and transmit power.
  • the first indication information is specifically used to indicate an index of the one-time transmission in the at least one transmission, or a resource or resource index used by the one-time transmission.
  • the first indication information is specifically used to indicate a primary transmission that is optimal for transmission quality in the at least one transmission determined by the network device.
  • the network device may receive the first data that is transmitted by the terminal device at least once, and determine the optimal transmission quality in the at least one transmission according to the receiving situation of the at least one transmission.
  • One transmission then sending the first to the terminal device
  • the indication information is used to indicate the one-time transmission determined by the network device, so that the terminal device may determine, according to the first indication information, a transmission parameter of the second data, and further use a transmission parameter of the second data, Transmitting the second data to the network device, thereby improving the reliability of the uplink transmission.
  • the embodiment of the method of the present application is described in detail below with reference to FIG. 2 and FIG. 3 .
  • the device embodiment of the present application is described in detail below with reference to FIG. 4 to FIG. 7 . It should be understood that the device embodiment and the method embodiment correspond to each other. The description of the method can be referred to the method embodiment.
  • FIG. 4 shows a schematic block diagram of a terminal device 400 in accordance with an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication module 410 is configured to transmit the first data to the network device at least once, and receive the first indication information sent by the network device, where the first indication information is used to indicate one transmission in the at least one transmission of the first data. ;
  • a determining module 420 configured to determine, according to the first indication information, a transmission parameter of the second data
  • the communication module 410 is further configured to: transmit the second data to the network device by using a transmission parameter of the second data.
  • the first data is data that is autonomously sent by the terminal device.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times by using different transmission modes.
  • the communication module 410 is specifically configured to:
  • the first data is transmitted to the network device multiple times using different multiple input multiple output MIMO transmission modes.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times using different antenna ports.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times using different precoding matrices.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times using different antenna array blocks.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times using different beams.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times with different transmit powers.
  • the communication module 410 is further configured to:
  • the first data is transmitted to the network device multiple times using different demodulation reference signal DMRS sequences.
  • the different transmission modes include a first transmission mode
  • the determining module 420 is further configured to:
  • the first transmission mode Determining, by the first transmission mode and the first correspondence, the first resource pool corresponding to the first transmission mode, where the first correspondence relationship is a correspondence between multiple transmission modes and multiple resource pools, and each transmission mode corresponds to Different resource pools;
  • the communication module 410 is further configured to: in the first resource pool, transmit the first data to the network device by using the first transmission mode.
  • the transmission mode adopted by the terminal device to perform the multiple transmission is that the network device is pre-configured to the terminal device, or is pre-configured by the terminal device and the network device. As agreed, or determined by the terminal device.
  • the communication module 410 is specifically configured to:
  • the determining module 420 is specifically configured to:
  • the transmission parameter used for the primary transmission indicated by the first indication information is determined as a transmission parameter of the second data.
  • the transmission parameter comprises at least one of the following:
  • Time domain resources Time domain resources, frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antenna ports, precoding matrices, antenna array blocks, beams, and transmit power.
  • the first indication information is specifically used to indicate an index of the one-time transmission in the at least one transmission, or a resource or resource index used by the one-time transmission.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 400 respectively implement the method shown in FIG. 2 .
  • the corresponding process of the terminal device in 200 is not described here for brevity.
  • FIG. 5 shows a schematic block diagram of a network device 500 in accordance with an embodiment of the present application.
  • the network device 500 includes:
  • the communication module 510 is configured to receive first data that is transmitted by the terminal device at least once, send the first indication information to the terminal device, and receive the second data that is sent by the terminal device by using the transmission parameter of the second data.
  • the first indication information is used to indicate one transmission in at least one transmission of the first data, and the first indication information is used by the terminal device to determine a transmission parameter of the second data.
  • the transmission parameter comprises at least one of the following:
  • Time domain resources Time domain resources, frequency domain resources, code domain resources, DMRS sequences, MIMO transmission modes, antenna ports, precoding matrices, antenna array blocks, beams, and transmit power.
  • the first indication information is specifically used to indicate an index of the one-time transmission in the at least one transmission, or a resource or resource index used by the one-time transmission.
  • the first indication information is specifically used to indicate a primary transmission that is optimal for transmission quality in the at least one transmission determined by the network device.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above operations and/or functions of the respective units in the network device 500 respectively implement the method shown in FIG.
  • the corresponding process of the network device in 300 is not described here for brevity.
  • the embodiment of the present application further provides a terminal device 600, which may be the terminal device 400 in FIG. 4, which can be used to execute the content of the terminal device corresponding to the method 200 in FIG. .
  • the device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 630 may be a central processing unit ("CPU"), and the processor 630 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the communication module 410 in FIG. 4 can be implemented by the input interface 610 and the output interface 620 of FIG. 6, and the determination module 420 of FIG. 4 can be implemented by the processor 630 of FIG.
  • the embodiment of the present application further provides a network device 700, which may be the network device 500 in FIG. 5, which can be used to execute the content of the network device corresponding to the method 300 in FIG. .
  • the device 700 includes an input interface 710, an output interface 720, a processor 730, and a memory 740.
  • the input interface 710, the output interface 720, the processor 730, and the memory 740 can be connected by a bus system.
  • the memory 740 is configured to store programs, instructions or code.
  • the processor 730 is configured to execute a program, an instruction or a code in the memory 740 to control the input interface 710 to receive a signal, control the output interface 720 to send a signal, and complete the operations in the foregoing method embodiments.
  • the processor 730 may be a central processing unit (“CPU"), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • Software modules can be located in random access memory, flash memory, read-only memory, programmable only Read memory or electrically erasable programmable memory, registers, etc. are well-known storage media in the field.
  • the storage medium is located in the memory 740, and the processor 730 reads the information in the memory 740 and combines its hardware to perform the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the communication module 510 in FIG. 5 can be implemented by the input interface 710 and the output interface 720 of FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present application or the part contributing to the prior art or the part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种传输数据的方法、终端设备和网络设备,该方法包括:终端设备向网络设备至少一次传输第一数据;所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输;所述终端设备根据所述第一指示信息,确定第二数据的传输参数;所述终端设备采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。

Description

传输数据的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种传输数据的方法、终端设备和网络设备。
背景技术
在5G系统中引入了基于免授权(grant-free,也称为免调度)的上行数据传输方式,终端设备可以不需要网络设备的调度信令,自主发起上行数据传输。但是,由于终端设备不知道当前上行信道的情况,该终端设备可能无法采用最佳的传输方式,从而很难达到较大的传输增益,导致传输可靠性较低。
因此,需要一种传输数据的方法,能够提高上行传输的可靠性。
发明内容
本申请实施例提供一种传输数据的方法、终端设备和网络设备,能够提高上行传输的可靠性。
第一方面,提供了一种传输数据的方法,包括:
终端设备向网络设备至少一次传输第一数据;
所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输;
所述终端设备根据所述第一指示信息,确定第二数据的传输参数;
所述终端设备采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。
因此,本申请实施例的传输数据的方法,所述终端设备可以向网络设备至少一次传输第一数据,从而所述网络设备根据所述至少一次传输的接收情况,在所述至少一次传输中确定传输质量最优的一次传输,然后所述网络设备可以向所述终端设备发送第一指示信息,用于指示所述网络设备确定的所述一次传输,从而所述终端设备可以根据所述第一指示信息,确定第二数据的传输参数,进而使用所述第二数据的传输参数,进行所述第二数据的传输,从而能够提升上行传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述第一数据为所述终端设备自主发送的数据。
结合第一方面,在第一方面的某些实现方式中,所述终端设备向网络设备至少一次传输第一数据,包括:
所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的多输入多输出MIMO传输模式向所述网络设备多次传输所述第一数据。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的天线端口向所述网络设备多次传输所述第一数据。
例如,所述终端设备第一传输所述第一数据可以采用第一天线端口,第二次传输所述第一数据可以采用第二天线端口,其中,所述第一天线端口和所述第二天线端口不同。
需要说明的是,在本申请实施例中,所述第一天线端口可以包括至少一个天线端口,所述第二天线端口也可以包括至少一个天线端口,所述第一天线端口和所述第二天线端口不同可以指所述第一天线端口包括的至少一个天线端口和所述第二天线端口包括的至少一个天线端口部分不同或全部不同。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的预编码矩阵向所述网络设备多次传输所述第一数据。
例如,所述终端设备可以通过轮询的方式从预配置的预编码矩阵集合中获取每次传输所述第一数据使用的预编码矩阵。作为示例而非限定,所述终端设备可以预存储一个包含N个预编码矩阵的预编码矩阵集合,对于所述第一数据的第k次传输,终端设备可以利用所述预编码矩阵集合中的索引为m的预编码矩阵对所述第一数据进行预编码,其中,N为大于1的整数,k为 大于或等于1的整数,m=(k-1)mod N。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的天线阵列块向所述网络设备多次传输所述第一数据。
可选地,所述终端设备可以通过轮询的方式从多个天线阵列块中获取每次传输所述第一数据使用的天线阵列块。例如,若终端设备包括N个天线阵列块,对于所述第一数据的第k次传输,所述终端设备可以通过索引号为p的天线阵列块进行传输,其中,N为大于1的整数,k为大于或等于1的整数,p=(k-1)mod N
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的波束向所述网络设备多次传输所述第一数据。
可选地,所述终端设备可以通过轮询的方式从多个波束中确定每次传输所述第一数据所使用的波束。例如,终端设备预先确定了N个波束,其中,N为大于1的整数,所述N个波束可以用于所述终端设备向网络设备传输数据,所述终端设备可以轮换使用所述N个波束中的波束向所述网络设备传输所述第一数据。作为示例而非限定,对于所述第一数据的第k次传输,可以利用所述N个波束中的索引为q的波束传输所述第一数据,其中,q=(k-1)mod N。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的发送功率向所述网络设备多次传输所述第一数据。
例如,所述终端设备第一次传输所述第一数据时可以采用较低的发送功率以节约功率,第二次传输所述第一数据时,所述终端设备可以采用相对较高的发送功率,以提高传输成功的概率,也就是说,第k+1次传输可以采用比第k次传输更高的发送功率,直到达到最高的发送功率。
结合第一方面,在第一方面的某些实现方式中,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的解调参考信号DMRS序列向所述网络设备多 次传输所述第一数据。
结合第一方面,在第一方面的某些实现方式中,所述不同的传输方式包括第一传输方式,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备根据第一传输方式以及第一对应关系,确定所述第一传输方式对应的第一资源池,所述第一对应关系是多个传输方式和多个资源池的对应关系,每个传输方式对应的资源池不同;
在所述第一资源池中,使用所述第一传输方式向所述网络设备传输所述第一数据。
可选地,在本申请实施例中,所述对应关系可以为多种MIMO传输模式和多个资源池的对应关系,也可以为多个天线端口和多个资源池的对应关系,或者也可以为多个发送功率和多个资源池的对应关系等。
可选地,所述终端设备传输所述第一数据使用的多个传输方式和多个资源池的对应关系可以是网络设备预配置给终端设备的,所述网络设备在资源池中检测所述第一数据时,可以根据所述资源池以及所述对应关系确定所述终端设备传输数据采用的传输方式,从而根据确定的所述传输方式接收所述第一数据。
结合第一方面,在第一方面的某些实现方式中,所述终端设备进行所述多次传输采用的传输方式是所述网络设备预配置给所述终端设备的,或由所述终端设备和所述网络设备预先约定的,或由所述终端设备确定的。
结合第一方面,在第一方面的某些实现方式中,所述终端设备接收所述网络设备发送的第一指示信息,包括:
所述终端设备接收所述网络设备发送的用于调度所述第二数据的下行控制信息DCI,所述DCI包括所述第一指示信息。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据所述第一指示信息,确定第二数据的传输参数,包括:
所述终端设备将所述第一指示信息指示的所述一次传输所用的传输参数确定为所述第二数据的传输参数。
结合第一方面,在第一方面的某些实现方式中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线 端口、预编码矩阵、天线阵列块、波束和发送功率。
结合第一方面,在第一方面的某些实现方式中,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
第二方面,提供了一种传输数据的方法,包括:网络设备接收终端设备至少一次传输的第一数据;
所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输,所述第一指示信息用于所述终端设备确定第二数据的传输参数;
所述网络设备接收所述终端设备采用所述第二数据的传输参数发送的所述第二数据。
结合第二方面,在第二方面的某些实现方式中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
结合第二方面,在第二方面的某些实现方式中,所述第一指示信息具体用于指示所述网络设备确定的所述至少一次传输中的传输质量最优的一次传输。
因此,本申请实施例的传输数据的方法,所述网络设备可以接收终端设备至少一次传输的第一数据,根据所述至少一次传输的接收情况,在所述至少一次传输中确定传输质量最优的一次传输,然后向所述终端设备发送第一指示信息,用于指示所述网络设备确定的所述一次传输,从而所述终端设备可以根据所述第一指示信息,确定第二数据的传输参数,进而使用所述第二数据的传输参数,向所述网络设备传输所述第二数据,从而能够提升上行传输的可靠性。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法,或者上述第二方面或第二方面的任一可选的实现方式中的方法。
附图说明
图1是根据本申请实施例的通信系统的示意性图。
图2是根据本申请实施例的传输数据的方法的示意性流程图。
图3是根据本申请实施例的传输数据的设备的示意性框图。
图4是根据本申请实施例的终端设备的示意性框图。
图5是根据本申请实施例的网络设备的示意性框图。
图6是根据本申请另一实施例的终端设备的示意性框图。
图7是根据本申请另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或未来的5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在无线通信系统100中,终端设备可以采用基于grant-free的上行数据传输方式,或者也可以称为自主上行传输方式,向另一终端设备或网络设备发送数据。采用基于grant-free的上行传输方式,终端设备不需要接收其他设备的调度指令即可自主向另一终端设备或网络设备发送数据。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是根据本申请实施例的传输数据的方法200的示意性流程图,如图2所示,所述方法200包括:
S210,终端设备向网络设备至少一次传输第一数据。
其中,所述终端设备可以为图1所示的无线通信系统中的终端设备,所述网络设备可以为图1所示的无线通信系统中的网络设备。
具体的,所述终端设备可以向网络设备传输一次所述第一数据,或者也可以向所述网络设备多次传输所述第一数据,所述第一数据是所述终端设备自主发送的数据,或者说,所述第一数据是终端设备基于grant-free的上行传输方式发送的数据。
可选的,所述终端设备自主发送的所述第一数据可以在没有接收到网络设备的调度指令的情况下发送的,或者也可以是在未收到网络设备的确认/否定确认(Acknowledgement/Negative ACKnowledgement,ACK/NACK)信息的情况下发送的。例如,所述第一数据可以是终端设备不基于网络设备的 上行授权(UL grant)而进行的上行grant-free的传输,此情况下,终端设备不需要检测到网络设备通过下行控制信道发送的下行控制信息(Downlink Control Information,DCI),就可以自主进行所述第一数据的一次或多次传输。
若所述第一数据的至少一次传输包括多次传输,进一步地,所述S210可以包括:
所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据。
即所述终端设备可以采用不同的传输方式进行所述第一数据的多次传输,或者说,每次传输对应的传输方式不同。
应理解,在本申请实施例中,所述多次传输所传输的数据包可以完全相同,也可以不完全相同,但都至少包含所述第一数据。例如,终端设备在第一次传输时传输的数据包可以包括第一数据和第三数据,第二次传输时传输的数据包可以包括第一数据和第四数据。
由于不同的MIMO传输模式对传输性能的影响不同,所述终端设备采用不同的传输模式向网络设备多次传输所述第一数据,所述网络设备可以根据所述多次传输的接收情况,在所述多次传输中确定传输质量最优的一次传输,进一步地,所述网络设备可以向终端设备发送第一指示信息,通知所述终端设备传输质量最优的一次传输,从而所述终端设备可以根据传输质量最优的所述一次传输使用的传输参数,确定后续进行数据传输使用的传输参数,从而能够提升上行传输的可靠性。
可选地,作为一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的多输入多输出MIMO传输模式向所述网络设备多次传输所述第一数据。
其中,多输入多输出(Multiple-Input Multiple-Output,MIMO)传输模式具体指传输信号使用的MIMO技术,例如,MIMO传输模式可以包括发送分集,基于码本的预编码,基于非码本的预编码、单天线端口传输和波束赋形等传输模式。
具体而言,所述终端设备可以多次传输所述第一数据可以采用不同的MIMO传输模式。例如,所述多次传输包括两次传输,所述终端设备进行所 述第一数据的两次传输可以分别采用上述MIMO传输模式中的两种传输模式,作为示例而非限定,所述终端设备第一次传输所述第一数据可以采用基于非码本预编码(non-codebook based precoding)的MIMO传输模式,第二次传输所述第一数据可以采用发送分集的MIMO传输模式。
由于采用不同的MIMO传输模式,对所述第一数据的传输性能的影响不同,例如,采用基于非码本预编码的MIMO传输模式可能能够获得更高的预编码增益,但是信道互易性可能是非理想的,因此,可能导致传输失败,而采用发送分集或者单天线端口的MIMO传输模式,可能能够获得更稳定的传输性能,因此,所述终端设备使用不同的MIMO传输模式传输所述第一数据,以便于所述网络设备从多种MIMO传输模式中确定传输质量最优的MIMO传输模式,进一步地,可以通知所述终端设备哪种MIMO传输模式的传输质量最优,从而所述终端设备可以使用该MIMO传输模式进行后续的数据传输,从而提升上行传输的可靠性。
可选地,作为另一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的天线端口向所述网络设备多次传输所述第一数据。
具体而言,所述终端设备可以多次传输所述第一数据可以采用不同的天线端口。例如,多次传输包括两次传输,所述终端设备第一传输所述第一数据可以采用第一天线端口,第二次传输所述第一数据可以采用第二天线端口,其中,所述第一天线端口和所述第二天线端口不同。
需要说明的是,在本申请实施例中,所述第一天线端口可以包括至少一个天线端口,所述第二天线端口也可以包括至少一个天线端口,所述第一天线端口和所述第二天线端口不同可以指所述第一天线端口包括的至少一个天线端口和所述第二天线端口包括的至少一个天线端口部分不同或全部不同。
例如,若终端设备包括N个天线端口,对于所述第一数据的第k次传输,所述终端设备可以通过索引号为n的天线端口进行传输,其中,N为大于1的整数,k为大于或等于1的整数,n=(k-1)mod N,即n为(k-1)对N求模得到的整数。其中,不同的天线端口可以采用不同的波束进行赋形,或者采用不同的预编码矩阵进行预编码,或者不同的天线端口可以映射到不同 的物理天线上。
可选地,作为再一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的预编码矩阵向所述网络设备多次传输所述第一数据。
也就是说,所述终端设备可以多次传输所述第一数据可以采用不同的预编码矩阵。在一种可能的实现方式中,所述终端设备可以通过轮询的方式从预配置的预编码矩阵集合中获取每次传输所述第一数据使用的预编码矩阵。例如,所述终端设备可以预存储一个包含N个预编码矩阵的预编码矩阵集合,对于所述第一数据的第k次传输,终端设备可以利用所述预编码矩阵集合中的索引为m的预编码矩阵对所述第一数据进行预编码,其中,N为大于1的整数,k为大于或等于1的整数,m=(k-1)mod N。
可选地,作为再一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的天线阵列块向所述网络设备多次传输所述第一数据。
也就是说,所述终端设备可以多次传输所述第一数据可以采用不同的天线阵列块,在一种可能的实施例中,所述终端设备可以通过轮询的方式从多个天线阵列块中获取每次传输所述第一数据使用的天线阵列块。例如,若终端设备包括N个天线阵列块,对于所述第一数据的第k次传输,所述终端设备可以通过索引号为p的天线阵列块进行传输,其中,N为大于1的整数,k为大于或等于1的整数,p=(k-1)mod N。
其中,一个天线阵列块也称为一个Panel,一个Panel由一组天线阵子组成,不同的天线阵列块连接独立的射频模块,可以独立的发送信号。
可选地,作为再一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的波束向所述网络设备多次传输所述第一数据。
也就是说,所述终端设备多次传输所述第一数据可以采用不同的波束。例如,所述终端设备第一次传输所述第一数据可以采用第一波束,第二次传输所述第一数据可以采用与第一波束不同的第二波束。
应理解,在本申请实施例中,所述第一波束可以包括至少一个波束,所 述第二波束也可以包括至少一个波束,所述第一波束和第二波束不同可以指所述第一波束包括的至少一个波束和所述第二波束包括的至少一个波束部分不同或全部不同。
在一种可能的实施例中,所述终端设备可以通过轮询的方式从多个波束中确定每次传输所述第一数据所使用的波束。例如,终端设备预先确定了N个波束,其中,N为大于1的整数,所述N个波束可以用于所述终端设备向网络设备传输数据,所述终端设备可以轮换使用所述N个波束中的波束向所述网络设备传输所述第一数据。作为示例而非限定,对于所述第一数据的第k次传输,可以利用所述N个波束中的索引为q的波束传输所述第一数据,其中,q=(k-1)mod N。其中,所述N个波束可以由网络设备指示给终端设备,即所述网络设备可以给所述终端设备配置所述N个波束,例如,所述网络设备可以通过半静态信令(例如,无线资源控制(Radio Resource Control,RRC)信令)或动态信令(例如,DCI)给所述终端设备配置所述N个波束。
可选地,作为再一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的发送功率向所述网络设备多次传输所述第一数据。
具体而言,所述终端设备多次传输所述第一数据可以采用不同的发送功率。例如,所述终端设备第一次传输所述第一数据时可以采用较低的发送功率以节约功率,第二次传输所述第一数据时,所述终端设备可以采用相对较高的发送功率,以提高传输成功的概率,也就是说,第k+1次传输可以采用比第k次传输更高的发送功率,直到达到最高的发送功率。
可选地,在本申请实施例中,所述终端设备对第一数据的第k+1次传输相对于第k次传输提高的发送功率的大小(可以称为功率增加值,或功率步进值)可以由网络设备预配置给所述终端设备,或者所述终端设备也可以采用固定的功率增加值或者功率步进值。
可选地,作为再一个实施例,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备采用不同的解调参考信号DMRS序列向所述网络设备多次传输所述第一数据。
其中,解调参考信号(DeModulation Reference Signal,DMRS)序列用 于上行控制和数据信道的相关解调,因此,不同的DMRS序列能够影响上行的解调性能。
可选地,在一些实施例中,所述不同的传输方式包括第一传输方式,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
所述终端设备根据第一传输方式以及第一对应关系,确定所述第一传输方式对应的第一资源池,所述第一对应关系是多个传输方式和多个资源池的对应关系,每个传输方式对应的资源池不同;
在所述第一资源池中,使用所述第一传输方式向所述网络设备传输所述第一数据。
也就是说,所述终端设备多次传输所述第一数据可以在不同的资源池中传输。可选地,所述终端设备传输所述第一数据采用的多种传输方式可以和多个资源池具有对应关系,所述终端设备可以根据传输所述第一数据采用的传输方式,以及所述对应关系,确定传输所述第一数据使用的资源池,从而在采用所述传输方式传输所述第一数据时,所述终端设备可以在所述资源池中进行。例如,所述终端设备可以在采用第一传输方式传输第一数据时,可以根据所述第一传输方式以及多种传输方式和多个资源池的对应关系,确定所述第一传输方式对应的第一资源池,从而在使用所述第一传输方式传输所述第一数据时,可以在所述第一资源池中传输所述第一数据。
可选地,在本申请实施例中,所述对应关系可以为多种MIMO传输模式和多个资源池的对应关系,也可以为多个天线端口和多个资源池的对应关系,或者也可以为多个发送功率和多个资源池的对应关系等。
可选地,所述终端设备传输所述第一数据使用的多个传输方式和多个资源池的对应关系可以是网络设备预配置给终端设备的,所述网络设备在资源池中检测所述第一数据时,可以根据所述资源池以及所述对应关系确定所述终端设备传输数据采用的传输方式,从而根据确定的所述传输方式接收所述第一数据。
综合上述实施例,所述终端设备多次传输所述第一数据可以采用不同的MIMO传输模式,或不同的天线端口,或不同的预编码矩阵,或不同的天线阵列块,或不同的波束,或不同的发送功率,或不同的DMRS序列。也就是说,多次传输所述第一数据所述第一数据使用的MIMO传输模式、天线 端口、预编码矩阵、天线阵列块、波束、发送功率和DMRS序列中的至少一项不同。
可选地,在本申请实施例中,所述终端设备进行所述多次传输采用的传输方式可以是所述网络设备预配置给所述终端设备的,或者也可以是由所述终端设备和所述网络设备预先约定的,或者可以由所述终端设备自主确定的。
S220,所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输。
具体的,所述网络设备可以根据所述第一数据的至少一次传输的接收情况,在所述至少一次传输中确定传输质量最优的一次传输,所述第一指示信息可以用于指示所述至少一次传输中的传输质量最优的一次传输,从而所述终端设备可以根据所述第一指示信息,确定用于后续数据传输的传输参数。
例如,所述第一指示信息可以指示所述一次传输在所述至少一次传输中的索引,也可以指示所述一次传输所用的资源或资源索引,或者所述第一指示信息也可以指示所述一次传输所在的时隙的索引,需要说明的是,这里的资源可以是时域资源,或频域资源,或码资源等。
可选地,所述S220可以具体包括:
所述终端设备接收所述网络设备发送的用于调度所述第二数据的下行控制信息DCI,所述DCI包括所述第一指示信息。
例如,所述第一数据的最大传输次数为8,则在所述DCI中采用3比特的指示域来承载所述第一指示信息,作为示例而非限定,可以设置在3比特的指示域为000时指示所述第一数据的第一次传输,3比特的指示域为001指示所述第一数据的第二次传输等。
S230,所述终端设备根据所述第一指示信息,确定第二数据的传输参数;
具体的,所述终端可以将所述第一指示信息指示的一次传输所用的传输参数确定为所述第二数据的传输参数,或者也可以对所述第一指示信息指示的一次传输所用的传输参数进行调整,将调整后的传输参数确定为所述第二数据的传输参数等。
可选地,在本申请实施例中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
进一步地,在S240中,所述终端设备采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。
因此,本申请实施例的传输数据的方法,所述终端设备可以向网络设备至少一次传输第一数据,从而所述网络设备根据所述至少一次传输的接收情况,在所述至少一次传输中确定传输质量最优的一次传输,然后所述网络设备可以向所述终端设备发送第一指示信息,用于指示所述网络设备确定的所述一次传输,从而所述终端设备可以根据所述第一指示信息,确定第二数据的传输参数,进而使用所述第二数据的传输参数,进行所述第二数据的传输,从而能够提升上行传输的可靠性。
上文结合图2,从终端设备的角度详细描述了根据本申请实施例的传输数据的方法,下文结合图3,从网络设备的角度详细描述根据本申请实施例的传输数据的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图3是根据本申请另一实施例的传输数据的方法的示意性流程图,如图3所示,所述方法300包括:
S310,网络设备接收终端设备至少一次传输的第一数据;
S320,所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输,所述第一指示信息用于所述终端设备确定第二数据的传输参数;
S330,所述网络设备接收所述终端设备采用所述第二数据的传输参数发送的所述第二数据。
可选地,在一些实施例中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
可选地,在一些实施例中,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
可选地,在一些实施例中,所述第一指示信息具体用于指示所述网络设备确定的所述至少一次传输中的传输质量最优的一次传输。
因此,本申请实施例的传输数据的方法,所述网络设备可以接收终端设备至少一次传输的第一数据,根据所述至少一次传输的接收情况,在所述至少一次传输中确定传输质量最优的一次传输,然后向所述终端设备发送第一 指示信息,用于指示所述网络设备确定的所述一次传输,从而所述终端设备可以根据所述第一指示信息,确定第二数据的传输参数,进而使用所述第二数据的传输参数,向所述网络设备传输所述第二数据,从而能够提升上行传输的可靠性。
上文结合图2和图3,详细描述了本申请的方法实施例,下文结合图4至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括:
通信模块410,用于向网络设备至少一次传输第一数据,接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输;
确定模块420,用于根据所述第一指示信息,确定第二数据的传输参数;
所述通信模块410还用于:采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。
可选地,在一些实施例中,所述第一数据为所述终端设备自主发送的数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的传输方式向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410具体用于:
采用不同的多输入多输出MIMO传输模式向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的天线端口向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的预编码矩阵向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的天线阵列块向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的波束向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的发送功率向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述通信模块410还用于:
采用不同的解调参考信号DMRS序列向所述网络设备多次传输所述第一数据。
可选地,在一些实施例中,所述不同的传输方式包括第一传输方式,所述确定模块420还用于:
根据第一传输方式以及第一对应关系,确定所述第一传输方式对应的第一资源池,所述第一对应关系是多个传输方式和多个资源池的对应关系,每个传输方式对应的资源池不同;
所述通信模块410还用于:在所述第一资源池中,使用所述第一传输方式向所述网络设备传输所述第一数据。
可选地,在一些实施例中,所述终端设备进行所述多次传输采用的传输方式是所述网络设备预配置给所述终端设备的,或由所述终端设备和所述网络设备预先约定的,或由所述终端设备确定的。
可选地,在一些实施例中,所述通信模块410具体用于:
接收所述网络设备发送的用于调度所述第二数据的下行控制信息DCI,所述DCI包括所述第一指示信息。
可选地,在一些实施例中,所述确定模块420具体用于:
将所述第一指示信息指示的所述一次传输所用的传输参数确定为所述第二数据的传输参数。
可选地,在一些实施例中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
可选地,在一些实施例中,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图5示出了根据本申请实施例的网络设备500的示意性框图。如图5所示,该网络设备500包括:
通信模块510,用于接收终端设备至少一次传输的第一数据,向所述终端设备发送第一指示信息,以及接收所述终端设备采用所述第二数据的传输参数发送的所述第二数据,其中,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输,所述第一指示信息用于所述终端设备确定第二数据的传输参数。
可选地,在一些实施例中,所述传输参数包括以下中的至少一项:
时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
可选地,在一些实施例中,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
可选地,在一些实施例中,所述第一指示信息具体用于指示所述网络设备确定的所述至少一次传输中的传输质量最优的一次传输。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
如图6所示,本申请实施例还提供了一种终端设备600,该终端设备600可以为图4中的终端设备400,其能够用于执行与图2中方法200对应的终端设备的内容。该设备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。所述存储器640用于存储包括程序、指令或代码。所述处理器630,用于执行所述存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。 例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图4中的通信模块410可以用图6的输入接口610和输出接口620实现,图4中的确定模块420可以用图6的处理器630实现。
如图7所示,本申请实施例还提供了一种网络设备700,该网络设备700可以为图5中的网络设备500,其能够用于执行与图3中方法300对应的网络设备的内容。该设备700包括:输入接口710、输出接口720、处理器730以及存储器740,该输入接口710、输出接口720、处理器730和存储器740可以通过总线系统相连。所述存储器740用于存储包括程序、指令或代码。所述处理器730,用于执行所述存储器740中的程序、指令或代码,以控制输入接口710接收信号、控制输出接口720发送信号以及完成前述方法实施例中的操作。
应理解,在本申请实施例中,该处理器730可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只 读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,图5中的通信模块510可以用图7的输入接口710和输出接口720实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (40)

  1. 一种传输数据的方法,其特征在于,包括:
    终端设备向网络设备至少一次传输第一数据;
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输;
    所述终端设备根据所述第一指示信息,确定第二数据的传输参数;
    所述终端设备采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一数据为所述终端设备自主发送的数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备向网络设备至少一次传输第一数据,包括:
    所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的多输入多输出MIMO传输模式向所述网络设备多次传输所述第一数据。
  5. 根据权利要求3或4所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的天线端口向所述网络设备多次传输所述第一数据。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的预编码矩阵向所述网络设备多次传输所述第一数据。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的天线阵列块向所述网络设备多次传输所述第一数据。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,所述终端 设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的波束向所述网络设备多次传输所述第一数据。
  9. 根据权利要求3至8中任一项所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的发送功率向所述网络设备多次传输所述第一数据。
  10. 根据权利要求3至9中任一项所述的方法,其特征在于,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备采用不同的解调参考信号DMRS序列向所述网络设备多次传输所述第一数据。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,所述不同的传输方式包括第一传输方式,所述终端设备采用不同的传输方式向所述网络设备多次传输所述第一数据,包括:
    所述终端设备根据第一传输方式以及第一对应关系,确定所述第一传输方式对应的第一资源池,所述第一对应关系是多个传输方式和多个资源池的对应关系,每个传输方式对应的资源池不同;
    在所述第一资源池中,使用所述第一传输方式向所述网络设备传输所述第一数据。
  12. 根据权利要求3至11中任一项所述的方法,其特征在于,所述终端设备进行所述多次传输采用的传输方式是所述网络设备预配置给所述终端设备的,或由所述终端设备和所述网络设备预先约定的,或由所述终端设备确定的。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的第一指示信息,包括:
    所述终端设备接收所述网络设备发送的用于调度所述第二数据的下行控制信息DCI,所述DCI包括所述第一指示信息。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述终端设备根据所述第一指示信息,确定第二数据的传输参数,包括:
    所述终端设备将所述第一指示信息指示的所述一次传输所用的传输参数确定为所述第二数据的传输参数。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述传 输参数包括以下中的至少一项:
    时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
  17. 一种传输数据的方法,其特征在于,包括:
    网络设备接收终端设备至少一次传输的第一数据;
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输,所述第一指示信息用于所述终端设备确定第二数据的传输参数;
    所述网络设备接收所述终端设备采用所述第二数据的传输参数发送的所述第二数据。
  18. 根据权利要求17所述的方法,其特征在于,所述传输参数包括以下中的至少一项:
    时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一指示信息具体用于指示所述网络设备确定的所述至少一次传输中的传输质量最优的一次传输。
  21. 一种终端设备,其特征在于,包括:
    通信模块,用于向网络设备至少一次传输第一数据,接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输;
    确定模块,用于根据所述第一指示信息,确定第二数据的传输参数;
    所述通信模块还用于:采用所述第二数据的传输参数,向所述网络设备传输所述第二数据。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一数据为 所述终端设备自主发送的数据。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的传输方式向所述网络设备多次传输所述第一数据。
  24. 根据权利要求23所述的终端设备,其特征在于,所述通信模块具体用于:
    采用不同的多输入多输出MIMO传输模式向所述网络设备多次传输所述第一数据。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的天线端口向所述网络设备多次传输所述第一数据。
  26. 根据权利要求23至25中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的预编码矩阵向所述网络设备多次传输所述第一数据。
  27. 根据权利要求23至26中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的天线阵列块向所述网络设备多次传输所述第一数据。
  28. 根据权利要求23至27中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的波束向所述网络设备多次传输所述第一数据。
  29. 根据权利要求23至28中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的发送功率向所述网络设备多次传输所述第一数据。
  30. 根据权利要求23至29中任一项所述的终端设备,其特征在于,所述通信模块还用于:
    采用不同的解调参考信号DMRS序列向所述网络设备多次传输所述第一数据。
  31. 根据权利要求23至30中任一项所述的终端设备,其特征在于,所述不同的传输方式包括第一传输方式,所述确定模块还用于:
    根据第一传输方式以及第一对应关系,确定所述第一传输方式对应的第一资源池,所述第一对应关系是多个传输方式和多个资源池的对应关系,每 个传输方式对应的资源池不同;
    所述通信模块还用于:在所述第一资源池中,使用所述第一传输方式向所述网络设备传输所述第一数据。
  32. 根据权利要求23至31中任一项所述的终端设备,其特征在于,所述终端设备进行所述多次传输采用的传输方式是所述网络设备预配置给所述终端设备的,或由所述终端设备和所述网络设备预先约定的,或由所述终端设备确定的。
  33. 根据权利要求21至32中任一项所述的终端设备,其特征在于,所述通信模块具体用于:
    接收所述网络设备发送的用于调度所述第二数据的下行控制信息DCI,所述DCI包括所述第一指示信息。
  34. 根据权利要求21至33中任一项所述的终端设备,其特征在于,所述确定模块具体用于:
    将所述第一指示信息指示的所述一次传输所用的传输参数确定为所述第二数据的传输参数。
  35. 根据权利要求21至34中任一项所述的终端设备,其特征在于,所述传输参数包括以下中的至少一项:
    时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线端口、预编码矩阵、天线阵列块、波束和发送功率。
  36. 根据权利要求21至35中任一项所述的终端设备,其特征在于,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
  37. 一种网络设备,其特征在于,包括:
    通信模块,用于接收终端设备至少一次传输的第一数据,向所述终端设备发送第一指示信息,以及接收所述终端设备采用所述第二数据的传输参数发送的所述第二数据,其中,所述第一指示信息用于指示所述第一数据的至少一次传输中的一次传输,所述第一指示信息用于所述终端设备确定第二数据的传输参数。
  38. 根据权利要求37所述的网络设备,其特征在于,所述传输参数包括以下中的至少一项:
    时域资源、频域资源、码域资源、DMRS序列、MIMO传输模式、天线 端口、预编码矩阵、天线阵列块、波束和发送功率。
  39. 根据权利要求37或38所述的网络设备,其特征在于,所述第一指示信息具体用于指示所述一次传输在所述至少一次传输中的索引,或所述一次传输所用的资源或资源索引。
  40. 根据权利要求37至39中任一项所述的网络设备,其特征在于,所述第一指示信息具体用于指示所述网络设备确定的所述至少一次传输中的传输质量最优的一次传输。
PCT/CN2017/094507 2017-07-26 2017-07-26 传输数据的方法、终端设备和网络设备 WO2019019055A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019560342A JP2020532148A (ja) 2017-07-26 2017-07-26 データ伝送方法、端末装置及びネットワーク装置
EP17919365.1A EP3606103B1 (en) 2017-07-26 2017-07-26 Data transmission method, terminal device and network device
US16/621,676 US10931358B2 (en) 2017-07-26 2017-07-26 Data transmission method, terminal device and network device
KR1020197032203A KR20200031068A (ko) 2017-07-26 2017-07-26 데이터를 전송하는 방법, 단말 장치와 네트워크 장치
CN201780091768.6A CN110731066B (zh) 2017-07-26 2017-07-26 传输数据的方法、终端设备和网络设备
PCT/CN2017/094507 WO2019019055A1 (zh) 2017-07-26 2017-07-26 传输数据的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094507 WO2019019055A1 (zh) 2017-07-26 2017-07-26 传输数据的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019019055A1 true WO2019019055A1 (zh) 2019-01-31

Family

ID=65039340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094507 WO2019019055A1 (zh) 2017-07-26 2017-07-26 传输数据的方法、终端设备和网络设备

Country Status (6)

Country Link
US (1) US10931358B2 (zh)
EP (1) EP3606103B1 (zh)
JP (1) JP2020532148A (zh)
KR (1) KR20200031068A (zh)
CN (1) CN110731066B (zh)
WO (1) WO2019019055A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207964A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Intra-user equipment prioritization of transmissions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194624A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
CN112584557A (zh) * 2020-11-02 2021-03-30 光华临港工程应用技术研发(上海)有限公司 一种基于物联网的终端设备及网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098770A (zh) * 2009-12-14 2011-06-15 布鲁旺德通讯有限公司 用于在lte蜂窝网络中的数据通信的方法和装置
CN105430590A (zh) * 2014-09-01 2016-03-23 电信科学技术研究院 一种传输以及配置突发周期业务的方法及设备
CN106411475A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 一种反馈传输方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121291B2 (ja) * 2007-04-20 2013-01-16 株式会社ニューフレアテクノロジー データ転送システム
EP2587704B1 (en) * 2010-06-22 2019-01-02 LG Electronics Inc. Method and device for determining precoding information for uplink multi-antenna transmission
CN102404029B (zh) 2010-09-13 2014-08-06 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
CN102111246B (zh) * 2011-01-12 2017-03-29 中兴通讯股份有限公司 反馈信道状态信息的方法和用户设备
US9439174B2 (en) * 2012-03-27 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting beam information in wireless communication system
US9913261B2 (en) * 2012-10-18 2018-03-06 Lg Electronics Inc. Method and apparatus for receiving or transmitting downlink control signal in wireless communication system
US9036608B2 (en) * 2012-11-09 2015-05-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive transmission mode switching
US9451625B2 (en) * 2013-09-19 2016-09-20 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing interference characteristics for interference mitigation
CN104640211B (zh) 2013-11-08 2019-06-25 电信科学技术研究院 一种发送和接收数据的方法、系统及设备
CN103716081B (zh) 2013-12-20 2019-08-06 中兴通讯股份有限公司 下行波束确定方法、装置及系统
JP5878595B2 (ja) * 2014-07-11 2016-03-08 株式会社Nttドコモ ユーザ端末、無線通信システムおよび無線通信方法
EP3248299A1 (en) 2015-01-15 2017-11-29 Telefonaktiebolaget LM Ericsson (publ) A wireless device, a radio node, and methods therein
US10135562B2 (en) * 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
ES2773506T3 (es) * 2015-06-25 2020-07-13 Huawei Tech Co Ltd Procedimiento y aparato de transmisión de datos de enlace ascendente
CN106888507B (zh) 2016-08-12 2019-01-08 中国移动通信有限公司研究院 信息传输方法、终端及基站
CN108111267B (zh) * 2017-05-05 2022-05-20 中兴通讯股份有限公司 信号的传输方法和系统及控制信息的发送方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098770A (zh) * 2009-12-14 2011-06-15 布鲁旺德通讯有限公司 用于在lte蜂窝网络中的数据通信的方法和装置
CN105430590A (zh) * 2014-09-01 2016-03-23 电信科学技术研究院 一种传输以及配置突发周期业务的方法及设备
CN106411475A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 一种反馈传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606103A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021207964A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Intra-user equipment prioritization of transmissions

Also Published As

Publication number Publication date
US20200195331A1 (en) 2020-06-18
KR20200031068A (ko) 2020-03-23
EP3606103A4 (en) 2020-04-08
CN110731066A (zh) 2020-01-24
JP2020532148A (ja) 2020-11-05
EP3606103B1 (en) 2020-11-25
CN110731066B (zh) 2020-12-01
EP3606103A1 (en) 2020-02-05
US10931358B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
US11924129B2 (en) Signal transmission method, terminal device, and network device
US11089599B2 (en) Information transmission method and device
US11665697B2 (en) Method for transmitting downlink control information, terminal device and network device
TWI746711B (zh) 傳輸信號的方法、終端設備和網絡設備
WO2018170690A1 (zh) 无线通信方法和设备
WO2018170691A1 (zh) 上行传输的方法、终端设备和网络设备
TWI759517B (zh) 資料傳輸的方法和終端設備
EP3629647A1 (en) Method for uplink data transmission, terminal device and network device
CN110140298B (zh) 传输数据的方法和设备
WO2019019055A1 (zh) 传输数据的方法、终端设备和网络设备
CN110089066B (zh) 下行链路控制信道与非周期性信道状态信息-参考信号之间的冲突避免
US11159290B2 (en) Device and method for handling a sounding reference signal transmission
TWI771502B (zh) 計算通道品質指示cqi的方法、終端設備和網路設備
WO2018072062A1 (zh) 信息传输方法和装置
WO2022205459A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017919365

Country of ref document: EP

Effective date: 20191031

NENP Non-entry into the national phase

Ref country code: DE