WO2017050295A1 - 一种多天线信道测量方法和装置 - Google Patents

一种多天线信道测量方法和装置 Download PDF

Info

Publication number
WO2017050295A1
WO2017050295A1 PCT/CN2016/100134 CN2016100134W WO2017050295A1 WO 2017050295 A1 WO2017050295 A1 WO 2017050295A1 CN 2016100134 W CN2016100134 W CN 2016100134W WO 2017050295 A1 WO2017050295 A1 WO 2017050295A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
network device
antenna
wireless network
codebook
Prior art date
Application number
PCT/CN2016/100134
Other languages
English (en)
French (fr)
Inventor
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018515852A priority Critical patent/JP2018534836A/ja
Priority to EP16848176.0A priority patent/EP3343796B1/en
Publication of WO2017050295A1 publication Critical patent/WO2017050295A1/zh
Priority to US15/935,035 priority patent/US10530450B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0634Antenna weights or vector/matrix coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a multi-antenna channel measurement method and apparatus.
  • the system capacity is determined by the signal-to-noise ratio of the receiving end.
  • MIMO theoretically proves that the capacity of the system can increase with the increase of the number of transmitting and receiving antennas, thus improving the theoretical community of the system.
  • LTE systems are designed with MIMO and OFDMA as their basic physical layer technologies to maximize system capacity.
  • the transmitting end In order to improve the detection performance of the receiver, the transmitting end generally needs to pre-code the signal and then transmit it to reduce the interference of signals on different antennas to the receiving antenna.
  • the precoding used by the transmitting end needs to be obtained by the receiving end for feedback.
  • the UE In the LTE protocol, the UE generally indicates the optimal codebook used by the BS through the feedback PMI.
  • LTE supports four transmit antennas on the base station side and defines a four-antenna codebook.
  • the UE side needs to perform CSI calculation according to the cell-level reference signal CRS.
  • the size of the codebook is small due to the small number of antennas. It is also relatively small.
  • the UE side is relatively simple when performing PMI calculation and feedback.
  • LTE R10 the number of transmit antennas on the base station side can support up to eight, and the CRS supports only four transmit ports, and in each subframe. If the support of the eight antenna ports is too large, the cost of the pilot is too large. Therefore, the measurement feedback of the CSI is performed when the CSI-RS is sent in a sparse and dynamically configured CSI-RS.
  • the codebook is a wide beam codebook, the change is slower, and the UE feedback period is also longer.
  • the second codebook is a fast codebook (also called a short time codebook or a narrow beam codebook), and the purpose is to match the frequency selection of the channel. Short-term characteristics, the UE needs a shorter period for codebook feedback.
  • a single CSI-RS configuration can no longer support more antenna ports.
  • existing LTE CSI-RS A resource block RB (resource block) contains up to 40 resource elements RE (resource element), so by continuously expanding the number of CSI-RS ports, it is theoretically possible to support up to 40 orthogonal antenna ports.
  • RE resource element
  • Embodiments of the present invention provide a method, an apparatus, a communication system, and a terminal for multi-antenna channel measurement, which are applicable to channel measurement in a multi-antenna scenario.
  • the first aspect provides a method for multi-antenna channel measurement. From the perspective of a first wireless network device, the method includes:
  • the first wireless network device sends a first channel state information reference signal (CSI-RS) and a second CSI-RS to the second wireless network device, where the first CSI-RS and the second CSI-RS are respectively in orthogonal dimensions Sending on the antenna oscillator;
  • CSI-RS channel state information reference signal
  • the first radio network device sends a third CSI-RS to the second radio network device according to the first CSI measurement result, where the third CSI-RS is pre-coded according to the first CSI measurement result;
  • the first wireless network device receives a third CSI measurement result for the third CSI-RS that is fed back by the second wireless network device.
  • the method includes:
  • the second wireless network device receives the first channel state information reference signal (CSI-RS) and the second CSI-RS and performs CSI measurement based on the first CSI-RS and the second CSI-RS, the first CSI-RS and the first Two CSI-RSs are respectively transmitted on antenna elements of orthogonal dimensions;
  • CSI-RS channel state information reference signal
  • the second wireless network device feeds back, to the first wireless network device, a first CSI measurement result for the first CSI-RS and the second CSI-RS;
  • the second wireless network device receives a third CSI-RS, and the third CSI-RS is precoded according to the first CSI measurement result;
  • the second wireless network device feeds back a third CSI measurement result for the third CSI-RS to the first wireless network device.
  • the first wireless network device may be a base station
  • the second wireless network device may be a UE.
  • the foregoing orthogonal dimensions may be a vertical direction (dimension) and a horizontal direction (dimension).
  • the first CSI-RS and the second CSI-RS are configured by radio resource control (RRC), and configurations of the first CSI-RS and the second CSI-RS are included in different In the CSI process, or in the same enhanced CSI process.
  • RRC radio resource control
  • the configuration of the first CSI-RS and/or the second CSI-RS includes a first indication, to notify the second wireless network device that the currently sent CSI-RS is the first CSI-RS and/or a second CSI-RS, or, not a third CSI-RS; and/or,
  • a second indication configured to indicate that the first CSI-RS and/or the second CSI-RS are sent by an antenna vibrator in the same polarization direction, or the first CSI-RS and/or The second CSI-RS is emitted by antenna elements in two polarization directions.
  • the third CSI-RS is configured by using a radio resource control (RRC), where the configuration includes a third indication, to notify the second wireless network device that the currently sent CSI-RS is the third CSI-RS.
  • RRC radio resource control
  • the third CSI-RS is configured by using Radio Resource Control (RRC), where the configuration includes configuring multiple CSI-RS resources at the same time.
  • RRC Radio Resource Control
  • the first wireless network device sends a CSI-RS that is currently sent by the second wireless network device to the first CSI-RS or the second CSI-RS by adding an indication bit in the RRC configuration, or is not the third.
  • CSI-RS may only feed back the index of the wide beam codebook when feeding back the precoding matrix indication for the first CSI-RS or the second CSI-RS.
  • the first CSI-RS and the second CSI-RS are omnidirectional transmission.
  • the third CSI-RS is pre-coded according to the first CSI measurement result, including:
  • the third CSI-RS performs beamforming according to the first CSI measurement result.
  • the base station may pre-code the third CSI-RS symbol according to the CSI measurement result of the UE for the first CSI-RS and the second CSI-RS feedback, so that the third CSI-RS is performed on the wide beam fed back by the UE. send.
  • the CSI measurement workload of the UE can be reduced, and the complexity of calculating the CSI measurement result by the UE can be reduced.
  • the first CSI measurement result includes a first precoding matrix indication (PMI), corresponding to the first codebook.
  • PMI precoding matrix indication
  • the first CSI measurement result corresponds to a wide beam codebook
  • the wide beam codebook is used to indicate selection of a wide beam.
  • the wide beam codebook is a diagonal matrix including two sub-arrays (W 1 And the two sub-arrays respectively correspond to the selection of the wide beam in the two polarization directions of the antenna element.
  • the two sub-arrays are different.
  • the UE can select different wide beams in two polarization directions.
  • the two sub-arrays are the same. That is, the UE can select the same wide beam in both polarization directions, thereby reducing the feedback amount of the CSI measurement result of the UE.
  • the first codebook is a diagonal matrix (W 1 ) including two sub-arrays, where the two sub-arrays respectively correspond to two polarization directions of the antenna element.
  • the wide beam codebook or each column of each sub-array in the first codebook is a matrix a selected column, each subarray from the matrix The selected column constitutes a wide beam in the same polarization direction of the antenna element, the matrix
  • the i-th row and j-th column elements are If the first CSI measurement result is feedback for the first CSI-RS, I is half of the number of ports of the first CSI-RS, or if the first CSI measurement result is for the second CSI-RS Feedback, then I is half the number of ports of the second CSI-RS; K is the number of narrow beams supported by the system.
  • the wide beam codebook or the first codebook is a matrix corresponding to the antenna oscillator.
  • each column of the matrix is a matrix a selected one of the columns, each of the subarrays from the matrix
  • the selected column constitutes a wide beam in the same polarization direction of the antenna element, the matrix
  • the i-th row and j-th column elements are If the first CSI measurement result is the feedback for the first CSI-RS, the I is the number of ports of the first CSI-RS, or if the first CSI measurement result is the feedback for the second CSI-RS Then, I is the number of ports of the second CSI-RS; K is the number of narrow beams supported by the system.
  • the first PMI includes PMI1 for first CSI-RS feedback and PMI2 for second CSI-RS feedback, and both PMI1 and PMI2 correspond to a first codebook (also referred to as a wide beam codebook).
  • a first codebook also referred to as a wide beam codebook
  • the PMI1 is different from the PMI2.
  • the PMI1 and the PMI2 are jointly coded and then fed back through a part of the PMI, and the resources occupied by the part of the PMI may be the resources occupied by the PMI feedback wide beam codebook in the existing protocol, thereby reducing the UE feedback CSI measurement result. Occupy resources and reduce modifications to existing agreements; or,
  • the PMI1 is fed back through a partial PMI, and the PMI2 is fed back through another part of the PMI, wherein part of the PMI and another part of the PMI are the same PMI feedback, thereby utilizing the resources of the PMI feedback narrow beam codebook in the existing protocol to feed back the wide beam.
  • the codebook reduces the resources occupied by the UE to feed back the CSI measurement result; or
  • the PMI1 is fed back by the partial PMI, and the PMI2 is fed back by the partial PMI of another feedback, and the resources occupied by the partial PMI may be resources occupied by the PMI feedback wide beam codebook in the existing protocol. This will reduce modifications to existing protocols.
  • the first PMI includes PMI1 for first CSI-RS feedback or PMI2 for second CSI-RS feedback, and the PMI1 and the PMI2 are the same. In this way, the feedback amount of the CSI measurement result of the UE can be reduced.
  • the third CSI measurement result includes a third precoding matrix indication (PMI), corresponding to the second codebook.
  • PMI third precoding matrix indication
  • the third CSI measurement result corresponds to a narrow beam codebook (also referred to as a second codebook), where the narrow beam codebook is used to represent narrow beam selection and the corresponding wide beam in the wide beam codebook.
  • the wide beam corresponds to the selection of the in-phase factor between the antenna elements of different polarization directions.
  • the narrow beam codebook is a matrix W 2 , and Where Y 1 and Y 2 are each composed of a selection vector, Y 1 is used to represent a narrow beam set selection in a corresponding wide beam in a wide beam codebook in one polarization direction, and Y 2 is used to represent another polarization direction.
  • the narrow beam set selection in the corresponding wide beam in the wide beam codebook, ⁇ is the diagonal matrix formed by the in-phase factor between the antenna elements, and each element on the diagonal is used to represent the same column of Y 2 and Y 1 The phase difference between the antenna elements in different polarization directions.
  • the second codebook is a matrix W 2 , and Where Y 1 and Y 2 are each composed of a selection vector, Y 1 is used to indicate the corresponding column vector selection in the first codebook in one polarization direction, and Y 2 is used to represent the first codebook in the other polarization direction.
  • the corresponding column vector is selected, ⁇ is the diagonal matrix formed by the in-phase factor between the antenna elements, and each element on the diagonal is used to represent the phase factor between the column vectors corresponding to the same column of Y 2 and Y 1 .
  • the third CSI measurement result may further include information, such as an identifier, of the CSI-RS resource selected by the UE.
  • the third CSI-RS is pre-coded according to the first CSI measurement result, including:
  • the first wireless network device Determining, by the first wireless network device, the first CSI-RS corresponding to the first CSI measurement result a first dimension precoding matrix and a second dimension precoding matrix corresponding to the second CSI-RS;
  • the first wireless network device multiplies the third CSI-RS to be transmitted by a Kronecher product of a corresponding column in the first dimension precoding matrix and a corresponding column in the second dimension precoding matrix, wherein the corresponding column and the third The antenna port corresponding to the CSI-RS corresponds.
  • the first CSI-RS and the second CSI-RS are respectively configured in different CSI processes, or are configured in the same enhanced CSI process.
  • the configuration includes at least one of a sending period, a number of ports, a frequency domain resource occupied, and a wide beam selection of the antenna elements in different polarization directions.
  • the sending period of the first CSI-RS and the second CSI-RS is longer than the sending period of the third CSI-RS.
  • the third CSI measurement result further includes at least one of CQI and RI.
  • the method further includes: the first wireless network device notifying the second wireless network device, the first CSI-RS and/or the second CSI-RS is passed The antenna elements in the same polarization direction are emitted, or the first CSI-RS and/or the second CSI-RS are transmitted through antenna elements in two polarization directions.
  • the first wireless network device notifying the second wireless network device includes: the first wireless network device notifying the second wireless network device by using an RRC configured CSI process.
  • the method further includes: the second wireless network device knowing from the first wireless network device, the first CSI-RS and/or the second CSI-RS is Emitted by antenna elements in the same polarization direction, or the first CSI-RS and/or the second CSI-RS are transmitted through antenna elements in two polarization directions.
  • the second wireless network device is learned from the first wireless network device, including: the second The wireless network device is learned from the first wireless network device through an RRC configured CSI process.
  • a wireless network device including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses Any one of the methods involved in the first wireless network device as described in the first aspect is completed.
  • a wireless network device including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses Any one of the methods involved in the second wireless network device as described in the first aspect is completed.
  • an apparatus for multi-antenna channel measurement including a module for implementing any one of the methods involved in the foregoing first wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • an apparatus for multi-antenna channel measurement including a module for implementing any one of the methods involved in the foregoing second wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • a computer storage medium for storing instructions that, when executed, perform any of the methods involved in the first wireless network device or the second wireless network device.
  • a communication system including the wireless network device provided by the foregoing second aspect and the wireless network device provided by the third aspect.
  • 3GPP Third Generation Partnership Project
  • 3GPP Third Generation Partnership Project
  • 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (English: time) Division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division Multiple Carrier (English: Single Carrier FDMA, SC-FDMA for short), Carrier Sense Multiple Access with Collision Avoidance (English: Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier frequency division Multiple Carrier English: Single Carrier FDMA, SC-FDMA for short
  • Carrier Sense Multiple Access with Collision Avoidance English: Carrier Sense Multiple Access with Collision Avoidance
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (GPRS) network.
  • GSM global system for mobile communications/general packet radio service
  • GPRS general packet radio service
  • a typical 3G network is used.
  • the network includes a universal mobile telecommunications system (UMTS) network.
  • UMTS universal mobile telecommunications system
  • a typical 4G network includes a long term evolution (LTE) network.
  • LTE long term evolution
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • UTRAN universal terrestrial radio access network
  • the LTE network may also be referred to as an evolved universal land.
  • Radio access network English: evolved universal terrestrial radio access network, referred to as: E-UTRAN).
  • a cellular communication network can be divided into a cellular communication network and a wireless local area network (English: wireless local area networks, WLAN for short), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • MIMO multi-input multi-output, multi-input multi-output
  • User equipment (English: user equipment, abbreviated as UE) is a terminal device, which can be a mobile terminal device or a non-mobile terminal device. The device is mainly used to receive or send business data. User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc. The user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (English: base station, BS for short) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions. For example, providing base station functions in a 2G network
  • the device includes a base transceiver station (English: base transceiver station, BTS for short) and a base station controller (abbreviation: BSC).
  • BSC base station controller
  • the device that provides the base station function in the 3G network includes the node B (English abbreviation: NodeB)
  • the radio network controller English: radio network controller, abbreviated as: RNC
  • the device providing the base station function in the 4G network includes an evolved Node B (English: evolved NodeB, eNB for short), and provides the base station function in the WLAN.
  • the device is an access point (English: access point, abbreviation: AP).
  • a wireless network device refers to a device located in a wireless communication network.
  • the device may be a base station, a user equipment, or other network elements.
  • Wireless local area network (English: wireless local area networks, referred to as WLAN) refers to a local area network using radio waves as a data transmission medium, and the transmission distance is generally only several tens of meters.
  • An access point (English: access point, abbreviated as AP) that connects to a wireless network and can also be connected to a wired network device. It can be used as an intermediary point to connect wired and wireless Internet devices to each other and transmit data.
  • RRC radio resource control
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • Usually contains at least one of the following features:
  • the information provided by the non-access stratum of the broadcast core network is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition. It also supports the broadcast of upper layer information.
  • the RRC is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition.
  • the RRC connection between the UE and the UTRAN is established, re-established, maintained, and released.
  • the first signal connection of the UE is established, and an RRC connection is established by the UE's upper layer request.
  • the RRC connection setup procedure includes several steps of reselection of available cells, access grant control, and establishment of a layer 2 signal link.
  • the RRC connection release is also requested by the upper layer to tear down the last signal connection; or when the RRC link fails, it is initiated by the RRC layer. If the connection fails, the UE will request to re-establish an RRC connection. If the RRC connection fails, the RRC releases the allocated resources.
  • CRS cell-specific reference signal
  • PMI Precoding matrix indicator, the index corresponding to the codebook selected from the predefined codebook set.
  • CSI-RS channel state information-reference signal, channel state information-reference signal
  • the second wireless network device detects the CSI-RS sent by the first network device, and estimates from the first wireless network device and the second wireless network device that the precoding matrix information (PMI) represented by the channel direction is represented.
  • PMI precoding matrix information
  • a channel state that is composed of channel quality indication information (CQI) that characterizes channel quality and rank information (RI) that characterizes the number of simultaneous transmission layers of multiple antennas.
  • CQI channel quality indication information
  • RI rank information
  • CQI channel quality indicator, channel quality indicator
  • RI rank indicator, rank indicator
  • Omnidirectional transmission Compared to beamforming and transmission, it means that beamforming is not performed before transmission.
  • Precoding matrix A matrix consisting of eigenvectors used to characterize the channel direction between the first wireless network device and the second wireless network device.
  • the first codebook a wide beam codebook for indicating the selection of a wide beam.
  • the second codebook a narrow beam codebook, which is used to indicate the narrow beam selection in the corresponding wide beam in the wide beam codebook and the selection of the in-phase factor between the antenna elements in different polarization directions corresponding to the wide beam.
  • 1 is a schematic diagram of communication between a base station and a UE
  • FIG. 2 is a simplified schematic diagram of the internal structure of a base station and a UE
  • FIG. 3 is a schematic diagram of an antenna array of a base station
  • FIG. 4 is a schematic diagram of a CSI measurement process according to an embodiment of the present invention.
  • 5a and 5b are schematic diagrams showing a manner of transmitting a CSI-RS according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of mapping relationship between a beam and a CSI-RS port number according to an embodiment of the present invention
  • FIG. 7a and 7b are schematic diagrams of an 8-antenna port CSI-RS according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an apparatus for measuring multiple antenna channels according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another apparatus for measuring multiple antenna channels according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • a wireless network device which may be a base station, which may be used to communicate with one or more user devices, or may be used with one or more functions having partial user devices.
  • the base station performs communication (such as communication between the macro base station and the micro base station, such as an access point);
  • the wireless network device can also be a user equipment, and the user equipment can be used for communication by one or more user equipments (such as D2D communication). It can also be used to communicate with one or more base stations.
  • User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
  • User equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing Devices, satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
  • a base station may also be referred to as an access point, a node, a Node B, and an evolved node.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame to an IP packet, wherein the access network includes an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the management of air interface attributes and can also be a gateway between the wired network and the wireless network.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
  • Embodiments of the present invention may form the subject of the non-typo as W1, while not emphasize the difference, to express their meaning is the same.
  • the network architecture and the service scenario described in the embodiments of the present invention are for a clearer description of the present disclosure.
  • the technical solutions of the embodiments of the present invention are not limited to the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention may be known as the evolution of the network architecture and the appearance of new service scenarios. The same applies to similar technical issues.
  • the embodiment of the present invention can be applied to a time division duplexing (TDD) scenario or a frequency division duplexing (FDD) scenario.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the embodiment of the present invention is described in the context of a 4G network in a wireless communication network. It should be noted that the solution in the embodiment of the present invention may also be applied to other wireless communication networks, and the corresponding names may also be used in other wireless communication networks. Replace the name of the corresponding function.
  • a single CSI-RS configuration can no longer support more antenna ports.
  • existing LTE CSI-RS A resource block RB (resource block) contains up to 40 resource elements RE (resource element), so by continuously expanding the number of CSI-RS ports, it is theoretically possible to support up to 40 orthogonal antenna ports.
  • RE resource element
  • the UE needs to estimate the optimal CSI corresponding to the BS by estimating the channel corresponding to all the antenna ports, the calculation complexity of the UE side is too high when the antenna port is increased.
  • the UE generally needs to take all possible pre- The coding codebook performs ergodic calculation.
  • the computational complexity of the UE is also greatly increased. Because the number of codebooks increases, the feedback amount on the UE side increases sharply, and the resources occupied by the uplink control channel need to be increased, thereby reducing the number of codebooks. The data throughput of the upstream users.
  • a multi-antenna channel measurement scheme is provided, which is applicable to channel measurement in a scenario with a large number of antenna ports.
  • multiple antennas are in physical
  • the upper refers to a multi-antenna vibrator, which can be logically referred to as a multi-antenna port.
  • the solution provided by the embodiment of the present invention can reduce the CSI-RS pilot overhead when the antenna port is large, reduce the complexity of the CSI calculation on the UE side, and reduce the feedback overhead of the UE, and is especially applicable to the number of antennas.
  • Systems where the channel is not reciprocal such as the FDD Massive MIMO system.
  • the method or device in the embodiment of the present invention may be applied between a base station and a user equipment, and may also be applied between a base station and a base station (such as a macro base station and a micro base station), and may also be applied to user equipments and users.
  • a base station and a base station such as a macro base station and a micro base station
  • user equipments and users may also be applied to user equipments and users.
  • Between devices such as D2D scenarios), in all embodiments of the present invention, communication between a base station and a UE is taken as an example for description.
  • FIG. 1 is a schematic diagram of communication between a base station and a UE.
  • the base station can communicate with one or more UEs.
  • the antenna of the base station may be composed of a plurality of antenna elements, and the antenna may be referred to as an antenna array.
  • signals to be transmitted can be mapped to multiple antenna ports.
  • the antenna port is a logical concept, mainly to distinguish different orthogonal pilots, and the antenna oscillator is a physical concept.
  • an antenna port can correspond to one antenna element or multiple antenna elements. The mapping relationship between the specific antenna port and the antenna element can be determined according to system requirements.
  • FIG. 2 is a simplified schematic diagram of the internal structure of a base station and a UE.
  • the base station may include an antenna array, a duplexer, a transmitter (TX) and a receiver (RX) (sometimes, TX and RX are collectively referred to as a transceiver TRX), and a baseband processing section.
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the base station may further include a control portion for performing multi-user scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
  • the UE may include an antenna, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as a transceiver TRX), and a baseband processing section.
  • TX transmitter
  • RX receiver
  • the UE has a single antenna. It can be understood that the UE can also have multiple antennas (ie, an antenna array).
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the UE may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • FIG. 3 is a schematic diagram of an antenna array of a base station.
  • the antenna array includes a plurality of antenna elements in the same polarization direction and antenna elements in the other polarization direction.
  • Such an antenna array can be referred to as a dual polarized antenna.
  • the two polarization directions may be cross polarization, such as one left-handed and the other right-handed; or one +45° and the other -45°.
  • Figure 4 shows a schematic diagram of CSI-RS measurements between a base station and a UE.
  • the CSI measurement process may include the following steps:
  • the base station transmits a first CSI-RS (CSI-RS-1) to the UE.
  • CSI-RS-1 CSI-RS
  • the base station sends a second CSI-RS (CSI-RS-2) to the UE.
  • CSI-RS-2 CSI-RS
  • the first CSI-RS and the second CSI-RS may respectively correspond to the vibrators in two orthogonal dimensions of the antenna array of the base station. As shown in FIG. 4, the first CSI-RS corresponds to the vibrator in the vertical direction. The second CSI-RS corresponds to a vibrator in the horizontal direction.
  • the base station may configure the first CSI-RS and the second CSI-RS for the UE by using an RRC configuration/reconfiguration message (referred to as RRC configuration) after the UE accesses the system.
  • RRC configuration an RRC configuration/reconfiguration message
  • the first CSI-RS and the second CSI-RS may respectively include CSI processes in two CSI processes.
  • a CSI process is configured through the RRC information element.
  • the information element that can be included in a CSI process configuration message is given below (cited in Section 6.3.2 of 3GPP TS 36.331):
  • the csi-ProcessId-r11 indicates the process ID of the CSI process
  • csi-RS-ConfigNZPId-r11 and csi-IM-ConfigId-r11 respectively indicate the identification number and interference measurement CSI corresponding to the non-zero-power CSI-RS in the CSI process.
  • the identifier corresponding to the RS, and the CSI-RS resources corresponding to the two identifiers constitute a group of CSI-RS resources.
  • the non-zero power CSI-RS corresponding to csi-RS-ConfigNZPId-r11 is configured through the CSI-RS-ConfigNZP information element, and the content of the CSI-RS-ConfigNZP information element is as follows (cited in Section 6.3.2 of 3GPP TS 36.331):
  • the antennaPortsCount-r11 indicates the number of antenna ports (which may be simply referred to as CSI-RS ports) corresponding to the non-zero power CSI-RS.
  • the resourceConfig-r11 indicates the configuration type corresponding to the non-zero-power CSI-RS, indicating its corresponding physical time-frequency resource.
  • FIG. 7a is a schematic diagram of a CSI-RS resource allocation of an 8-antenna port in an existing LTE, and shows a physical time-frequency resource block occupied by a CSI-RS.
  • a physical time-frequency resource block includes 12 consecutive sub-carriers and a time domain in the frequency domain.
  • Two consecutive sub-frames each of which contains 7 (corresponding to a normal cyclic prefix) or 6 (corresponding to an extended cyclic prefix) time domain symbol.
  • One square in the figure represents a time-frequency resource particle: a symbol and frequency in the time domain Domain one subcarrier.
  • the logical port of the CSI-RS in the LTE is the port 15-22, and each adjacent two ports mutually multiplex two adjacent time-frequency resources by using an Orthogonal Cover Code.
  • the interference measurement CSI-RS corresponding to csi-IM-ConfigId-r11 can be configured through the csi-IM-Config-r11 information element, and its corresponding antenna
  • the number of ports is equal to the number of antenna ports corresponding to the non-zero-power CSI-RS in the CSI process (the default is the same in the existing standards).
  • the antenna ports corresponding to the interference measurement CSI-RS and the non-zero power CSI-RS in the existing standard are also the same by default.
  • the first CSI-RS and the second CSI-RS may be separately configured by two independent CSI processes.
  • the first CSI-RS and the second CSI-RS may also be configured by using an enhanced CSI-RS process, where two sets of CSI-RS resources may be configured in the enhanced CSI-RS process.
  • the CSI-RS resources correspond to CSI-RS resources of vertical dimension (first CSI-RS) and horizontal dimension (second CSI-RS) respectively:
  • the csi-ProcessId-r13 indicates the process ID of the CSI process
  • the csi-RS-ConfigNZPId-Horizontal-r13 indicates the identification number corresponding to the non-zero-power CSI-RS included in the CSI-RS of the horizontal dimension
  • csi-IM-ConfigId -Horizontal-r13 represents the identification number corresponding to the interference measurement CSI-RS included in the CSI-RS of the horizontal dimension
  • the CSI-RS resources corresponding to the two identification numbers constitute a set of horizontally dimensioned CSI-RS resources.
  • csi-RS-ConfigNZPId-Vertical-r13 represents the identification number corresponding to the non-zero power CSI-RS included in the vertical dimension CSI-RS
  • csi-IM-ConfigId-Vertical-r13 represents the interference included in the vertical dimension CSI-RS.
  • the CSI-RS corresponding to the CSI-RS resources is formed by the CSI-RS resources corresponding to the CSI-RS resources.
  • the configuration may include a sending period, a number of ports, a frequency domain resource occupied, and whether the wide beam selection of the antenna elements in different polarization directions is the same, whether the antenna vibrator in the single polarization direction is in the dual polarization direction. At least one of an antenna element or the like.
  • the number of antenna ports corresponding to the first CSI-RS and the second CSI-RS are respectively one of a CSI-RS port configuration supported by the system, such as 2, 4, 8, 12, and 16.
  • the value of the specific number of antenna ports may be determined according to standard requirements or system requirements, and is not limited herein.
  • a cross-polarized antenna is generally used, and the number of antenna elements in each column can refer to the number of antenna elements in a column in a certain polarization direction (for example, the same pole in the vertical direction in FIG. 3)
  • the direction includes 8 antenna oscillators, and can also refer to the number of antennas in a row in two cross-polarization directions (for example, two polarization directions in the vertical direction in FIG. 3 include 16 antenna elements), and each row of antenna oscillators
  • the number can refer to the number of antenna elements in a row in a certain polarization direction (for example, the same polarization direction in the horizontal direction in FIG.
  • the two polarization directions in the horizontal direction include 8 antenna elements.
  • the two-dimensional antenna array of the antenna of the base station includes an antenna element in a vertical direction and an antenna element in a horizontal direction.
  • the base station may select a column of antenna elements from a vertical direction of the two-dimensional antenna array, and select a row of antenna elements from a horizontal direction.
  • the specific selection method may be random or preset, or may be selected according to a certain principle, and the vertical direction and the horizontal direction may be selected. The same can also be different, and the specific selection can be determined according to the actual needs or design of the system, and will not be described here.
  • each vibrator in the vertical direction corresponds to one port in the first CSI-RS
  • each vibrator in the horizontal direction corresponds to one port in the second CSI-RS, the first CSI-RS and the second CSI-RS. Both are omnidirectional.
  • the base station may indicate, in addition to the number of CSI-RS antenna ports, whether the antenna oscillators of different polarization directions are selected when the corresponding CSI feedback is used.
  • the same codebook (such as indicating whether the UE adopts the subsequent feedback mode (2a) or (2b)).
  • the number of CSI-RS antenna ports is configured by using non-zero power CSI-RS resources in the CSI process.
  • the two different CSI-RS transmission modes may not affect the selection and feedback of the first codebook of the subsequent UE.
  • the codebook selection and feedback default and polarization directions in the other polarization direction such as the polarization direction 2 1 is the same.
  • the two CSI-RS transmission modes may be respectively as follows. Since the first CSI-RI and the second CSI-RI are similar in the transmission mode, they are not distinguished in the description:
  • the first transmission mode is as shown in Fig. 5a, and the CSI-RS is emitted from the antenna element in the same polarization direction. This is different from the multi-antenna transmission method in the existing LTE.
  • the second transmission method is as shown in Fig. 5b, and the CSI-RS is emitted from antenna elements in two polarization directions. This is the same as the CSI-RS transmission method of the 8-antenna in the existing LTE.
  • the sending manner of the first CSI-RS may be any one of the foregoing two sending modes (1a) and (1b), and the sending manner of the second CSI-RS may also be the two sending methods (1a) described above. And any of (1b).
  • time sequence of S1 and S3 is not limited in the embodiment of the present invention.
  • the UE performs CSI measurement on the first CSI-RS according to the RRC configuration of the base station and the received first CSI-RS, and feeds back an index corresponding to the first codebook in the precoding matrix of the first CSI-RS ( The portion of the PMI is indicated for the precoding matrix, corresponding to the wide beam codebook.
  • the first codebook is W 1v .
  • the UE performs CSI measurement on the second CSI-RS according to the RRC configuration of the base station and the received second CSI-RS, and feeds back an index corresponding to the first codebook in the precoding matrix of the second CSI-RS ( The portion of the PMI is indicated for the precoding matrix, corresponding to the wide beam codebook.
  • the first codebook is W 1h .
  • the design of the first codebook and the design of the codebook index fed back by the UE in S2 and/or S4 may refer to the design in the existing LTE protocol.
  • the design in the existing LTE protocol is as follows:
  • table VIII for the LTE R12 antenna structure double codebook of rank 1 precoding codebook and the corresponding codebook index i 1 W 1 represents a first codebook corresponding to the codebook index
  • i 2 represents a second codebook
  • the codebook index corresponding to W 2 when the UE feeds back, it can directly feed back i 1 and i 2 , where i 1 is an integer value of 0-15, which can represent the selected one of the 16 wide beams; 2 is also an integer value of 0-15, which can represent the selected narrow beam in each wide beam (in the case of rank 1), since each wide beam includes 4 narrow beams, and 4 narrow There are four kinds of phase conditions corresponding to the beam, so i 2 has 16 values.
  • the base station may determine the corresponding precoding codebook according to the following table. among them, a codebook synthesized by the first codebook W 1 and the second codebook W 2 when the rank is 1,
  • i 1 0, 1, 2, 3...15;
  • i 2 0, 1, 2, 3...15.
  • W 1 is in the following form:
  • i 1 i 1 th represents the beam width
  • the beam width of each of four consecutive narrow beam configuration (column vector), and thus Includes 4 column vectors (one for each narrow beam).
  • a codebook with an 8 antenna rank of 1 a total of 16 wide beams are included, so each wide beam can be indexed using 16 i 1 values.
  • each wide beam can be defined.
  • Each column corresponds to a narrow beam, corresponding to one of the following matrix C:
  • c k is a column vector containing 4 elements
  • [C] y k represents the element value of the yth row and the kth column in the matrix C.
  • the second codebook W 2 is a narrow beam selection (one or several column vectors, related to the value of the rank) and a polarized antenna in a wide beam (all column vectors in W 1 including two polarization directions)
  • the in-phase factor selection is combined to form a codebook with 8 antenna ranks of 1 in LTE.
  • the first codebook W 1h fed back by the UE includes N h narrow beams, and W 1v includes N v narrow beams.
  • the first codebook is for a wide beam codebook.
  • the manner in which the UE performs CSI measurement and the first codebook feedback in S2 and/or S4 may refer to a manner in the prior art, such as a manner already defined in the 3GPP protocol, such as a first codebook and/or a
  • the feedback of the two codebooks can be performed by indexing.
  • the CSI measurement result fed back by the UE may include a first PMI, where the first PMI includes PMI1 for the first CSI-RS feedback and PMI2 for the second CSI-RS feedback.
  • the PMI1 is different from the PMI2.
  • the PMI1 and the PMI2 are jointly encoded and fed back through a partial PMI, or
  • the PMI1 is fed back through a partial PMI, and the PMI2 is fed back through another part of the PMI, or
  • the PMI1 is fed back through a partial PMI, and the PMI2 is fed back through the partial PMI of another feedback.
  • the first PMI includes PMI1 for first CSI-RS feedback or PMI2 for second CSI-RS feedback, and the PMI1 and the PMI2 are the same.
  • the UE can simultaneously indicate that the base stations PMI1 and PMI2 are the same. Thereby, the resources occupied by the CSI feedback of the UE are reduced.
  • the UE may not feed back any one of the second codebook, CQI, and RI in S2 and/or S4.
  • the second codebook is a narrow beam codebook.
  • the feedback manner of W 1h and/or W 1v may be one of the following (2a) and (2b), and the specific feedback manner may be determined according to the final standard selection or system design:
  • the feedback manner of W 1h and/or W 1v may be in the form of W 1 supported by existing LTE.
  • the W 1 currently supported by LTE is composed of one block diagonal matrix (in this case, the first CSI-RS or the second CSI-RS are transmitted according to the above (1b) manner), and two identical non-zero sub-arrays are included.
  • Composition namely: Where X is the feedback of a wide beam composed of a plurality of narrow beams corresponding to the same polarization direction. In one example, the X in the upper left corner is the feedback of the wide beam corresponding to the polarization direction of +45°, and the X in the lower right corner is -45° polarization direction corresponding to the feedback of the wide beam.
  • Each column of X can physically correspond to a narrow beam, and mathematically each column of X corresponds to a matrix.
  • the i-th row and j-th column elements are Wherein I is the number of ports in the same polarization direction (corresponding to the number of rows of X), which is half of the number of CSI-RS ports, K is the number of narrow beams supported by the system, and the wide beam X is composed of multiple narrow beams, narrow The number of beams may be the number of columns included in X. In LTE, one wide beam X may contain 4 or 8 or other number of narrow beams. In order to reduce the amount of feedback, the system generally limits the maximum number of narrow beams supported. For example, in the LTE 8 antenna codebook scheme, the maximum number of narrow beams is 32, that is, K is 32.
  • the form of W 1 is no longer
  • I is the number of ports of the CSI-RS and K is the number of all narrow beams supported by the system.
  • the UE feeds back the index corresponding to X.
  • the base station can obtain the other polarization direction according to the feedback in the polarization direction corresponding to the X index.
  • X (or an index of X) for precoding of a subsequent third CSI-RS (CSI-RS-3).
  • CSI-RS-3 CSI-RS-3
  • the UE may only feed back the index corresponding to X, and after receiving the index corresponding to the X, the base station obtains W 1 according to the index corresponding to the X.
  • the first codebooks W 1v and W 1h correspond to a wide beam in the vertical direction and a wide beam in the horizontal direction, respectively.
  • the beam widths corresponding to the horizontal and vertical wide beams and the included wide beam numbers may be different, that is, the X of W 1h and W 1v are different, that is, the number of columns and rows included in X. At least one of the number and the element is different.
  • the beam width corresponding to the horizontal and vertical wide beams and the number of wide beams included are the same, that is, the W of W 1h and W 1v are the same, including the same number of columns, the number of rows, and each Elements.
  • the UE may use the resources occupied by i 1 and i 2 in the foregoing existing LTE protocol to respectively feed back indexes corresponding to X of W 1v and W 1h , and the base station receives After that, the codebooks of W 1v and W 1h are determined according to i 1 and i 2 .
  • the UE may separately use the resources occupied by i 1 in the foregoing existing LTE protocol to respectively feed back indexes corresponding to X of W 1v and W 1h .
  • the base station After receiving the base station, the base station determines the codebooks of W 1v and W 1h according to the received i 1 .
  • W 1v, W 1h is the same as X
  • the UE may use the existing LTE protocols occupied i 1 W 1v resource feedback of X and W 1h corresponding to the index, and by other fields (or The field informs the base stations W 1v and W 1h that X is the same.
  • the format of the W 1v and W 1h codebooks may be the same as or different from the W 1 in the existing LTE protocol.
  • the number of narrow beams that can be supported is greater than 32, or the number of wide beams is greater than 16, or the number of narrow beams included in each wide beam is not 4, and the corresponding design of W 1 is correspondingly changed.
  • W 1h and/or W 1v may not be in the form of W 1 supported by existing LTE (in this case, the first CSI-RS or the second CSI-RS are transmitted in the above manner (1b)).
  • the first codebooks W 1h and W 1v fed back by the UE may perform wide beam selection for each polarization direction (ie, the narrow beams included in the wide beam in each polarization direction are different), in the form of W 1 Can be modified to This ensures that each polarization direction selects an independently optimal beam set.
  • the UE feeds back the codebook index of X 1 and X 2 for each CSI-RS, and may perform feedback X 1 by using resources occupied by i 1 in the existing LTE protocol, since feedback i 2 is not needed at this time. Therefore, the resources occupied by i 2 can be used to feed back the codebook index corresponding to X 2 , or X 1 and X 2 are jointly encoded and fed back, and the joint coding can use differential coding, such as feeding back the complete X 1 codebook. And a differential codebook composed of beams different in X 2 and X 1 .
  • some of the columns corresponding to X 1 and X 2 may be the same, meaning that the narrow beam corresponding to the column is superior to the antennas of both polarization directions. It can be understood that the feedback mode (2b) has a maximum overhead of (2a) of (2a) compared to the feedback mode in (2a).
  • the first codebooks W 1v and W 1h correspond to a wide beam in the vertical direction and a wide beam in the horizontal direction, respectively.
  • the horizontal and vertical wide beam corresponding to the beam width and beam width may not contain the same number, i.e., W 1h X-1 and X-W 1v different from 1, and / or W 1h the X different from 22 and W 1v of X, i.e., W 1h of X 1 and W 1v, X 1 (X 2 W 1v and / or W 1h of X 2) included in the number of columns, number of rows, the elements At least one of the differences.
  • the horizontal and vertical wide beam corresponding to the beam width and comprising a number of broad beam are identical, i.e., X 1 and W 1h W 1v of X 1, X 2 and W 1h of Same as X 2 of W 1v , including the same number of columns, number of rows, and each element.
  • the time sequence of S2 and S4 is not limited in the embodiment of the present invention. It can be understood that S2 is after S1 and S4 is after S3. S2 and S4 can feed back at the same time, such as feedback in the same PMI.
  • the base station sends a third CSI-RS to the UE.
  • the configuration information of the third CSI-RS may be configured to the UE by using an RRC, a MAC layer control element, or a physical control channel.
  • the third CSI-RS is sent by the base station according to the codebook indicated by W 1h and W 1v fed back by the UE in S2 and S4.
  • N v1 is the number of columns (narrow beam number) included in one polarization direction (polarization direction 1) in the vertical direction
  • N v2 is included in the other polarization direction (polarization direction 2) in the vertical direction.
  • N h1 is the number of columns (narrow beam number) included in one polarization direction (polarization direction 1) in the horizontal direction
  • N h2 is another polarization direction in the horizontal direction (pole Direction 2)
  • Each port can correspond to a pre-coded narrow beam.
  • the mapping between the narrow beam and the CSI-RS port number can be as shown in Figure 6. In Figure 6, one port corresponds to a narrow beam. In other examples, Multiple ports can correspond to one narrow beam.
  • antenna port mapping is performed first according to one dimension, such as horizontal dimension, and then port mapping is performed according to another dimension, such as vertical dimension. It should be noted that Figure 6 only gives an indication and only draws one.
  • the polarization direction port mapping map is similar to the other polarization direction port mapping, and is not described here.
  • the third CSI-RS is pre-coded according to the first CSI measurement result, including:
  • the first wireless network device multiplies the third CSI-RS to be transmitted by a Kronecher product of a corresponding column in the first dimension precoding matrix and a corresponding column in the second dimension precoding matrix, wherein the corresponding column and the third The antenna port corresponding to the CSI-RS corresponds.
  • the method of beamforming may be one of (3a) and (3b), and specifically (3a) or (3b) may be determined according to standard selection or system design, and is not limited herein. among them,
  • this * N h -1 transmits a CSI-RS ports to zeroth through N v of the antenna element in all directions and the same polarization (e.g., + 45 ° polarized antenna), a first N v * N h To the 2*N v *N h -1 CSI-RS port is transmitted on the antenna of another polarization direction (such as -45° polarized antenna) as an example, it can be understood that the CSI-RS port and The relationship between the antenna elements can also be other situations than the one described herein.
  • the mth (m is greater than or equal to 0, less than 2*N v *V h -1) CSI pilots (another name of the RS) port multiplies the CSI-RS symbols by the precoding matrix W 1h before transmitting the CSI-RS Mth mod N h column of the diagonal matrix X h With the diagonal array X v in the precoding matrix W 1v Column Kronecher product Where mod is the modulo, To round up, the Kronecher product is a matrix multiplication operation in the prior art.
  • the number of third CSI-RS ports may be less than 2*N v *V h , in which case:
  • the base station can use the bit sequence when configuring the third CSI-RS Indicates the relationship between the port and the precoding matrix.
  • the total 4 bits are 1, that is, the third CSI-RS requires 8 antenna ports (4 in each polarization direction), and the antenna port of the 8 antenna port CSI-RS shown in FIG. 7a 15 to antenna port 18 will be pre-coded in the same polarization direction and then transmitted, and antenna port 19 to antenna port 22 will be separately coded in another polarization direction and then transmitted;
  • the base station configures the enhanced third CSI-RS for the UE, where the third CSI-RS may include multiple CSI-RS resources, and the number of each CSI-RS resource port is supported by current LTE, for example, CSI-RS resources include 2 or 4 or 8 CSI-RS port ports, and each CSI-RS resource is occupied. Different physical time-frequency resources.
  • the base station When performing the third CSI-RS transmission, the base station respectively corresponds each narrow beam to a different port of a different CSI-RS resource. As shown in FIG.
  • the third CSI-RS needs to transmit 8 narrow beams (4 in each polarization direction, assuming one polarization direction label beam 0-beam 3, and another polarization direction beam label beam 4- Beam 7) occupies a total of 8 orthogonal pilot resources.
  • the third CSI-RS may be composed of CSI-RS resources of four two-antenna ports, and is recorded as CSI-RS resource 1 to CSI-RS resource 4.
  • the base station performs CSI-RS resource 1 transmission, its port The corresponding CSI-RS needs to be pre-coded and transmitted through the beam 0.
  • the CSI-RS corresponding to the port 16 needs to be pre-coded and transmitted through the beam 4.
  • the CSI corresponding to the port 15 - The RS needs to be pre-coded and transmitted through the beam 1.
  • the CSI-RS corresponding to the port 16 needs to be pre-coded and transmitted through the beam 5.
  • the CSI-RS resource 3 is sent, the CSI-RS corresponding to the port 15 needs to pass.
  • the CSI-RS corresponding to the port 16 needs to be pre-coded and transmitted through the beam 6.
  • the CSI-RS resource 4 is transmitted, the CSI-RS corresponding to the port 15 needs to be pre-processed through the beam 3.
  • the CSI-RS corresponding to port 16 needs to be pre-coded by beam 7 and then transmitted.
  • the configuration is only an example. How many CSI-RS resources are configured and the configuration of each CSI-RS resource (including the number of ports, occupied time-frequency resources, etc.) can be dynamically determined by the base station.
  • this * N h -1 transmits a CSI-RS ports to zeroth through N v on all antenna elements and the same polarization direction (e.g., + 45 ° polarized antenna), a first N v * N h To the 2*N v *N h -1 CSI-RS port is transmitted on the antenna of another polarization direction (such as -45° polarized antenna) as an example, it can be understood that the CSI-RS port and The relationship between the antenna elements can also be other situations than the one described herein.
  • CSI-RS ports are transmitted on all antennas of the same polarization direction (eg, left-polarized antenna), and pilot symbols are multiplied by pre-coding before transmission.
  • the mth (m is greater than or equal to N h1 *N v1 , less than 2*N h1 *N v1 -1) CSI-RS ports are transmitted on all other polarization directions of the antenna (eg right-right polarized antenna), pilot symbols Multiply the rmodN h2 column of the lower right diagonal matrix X 2,h in the precoding matrix W 1h before transmission With the pre-coding matrix W 1v in the lower right diagonal array X 2, h Column Kronecher product Where r mN h1 * N v1 . (ie, the CSI-RS port is multiplied by the diagonal matrix corresponding to the polarization direction of the antenna element that transmits the CSI-RS).
  • the number of third CSI-RS ports may be less than N v1 *V h1 +N v2 *V h2 .
  • the base station can use the bit sequence when configuring the third CSI-RS. Indicates the relationship between the port and the precoding matrix. The nth bit is 1.
  • the UE receives the third CSI-RS, and performs the CSI measurement on the third CSI-RS configured in the S5.
  • the third CSI-RS has different configurations, and the CSI information fed back by the UE is also different. Refer to the standard decision or the actual system design.
  • the third CSI measurement result includes a third precoding matrix indication (PMI).
  • PMI third precoding matrix indication
  • the third CSI measurement result corresponds to a narrow beam codebook, where the narrow beam codebook is used to indicate a narrow beam selection in a corresponding wide beam in the wide beam codebook and an antenna oscillator corresponding to the wide beam.
  • the choice of the in-phase factor is not limited to a narrow beam codebook, where the narrow beam codebook is used to indicate a narrow beam selection in a corresponding wide beam in the wide beam codebook and an antenna oscillator corresponding to the wide beam.
  • (4a) and (4b) may be included. Which form can be referred to the standard decision or the actual system design.
  • the UE feeds back a second precoding matrix (W 2 ) composed of the selected narrow beam and the quantized in-phase coefficients between the differently polarized antennas.
  • the specific feedback form may be an index corresponding to the feedback of the second precoding matrix in the existing LTE protocol. Further, the UE also feeds back RI and CQI. Thereby the base station obtains the synthesized precoding matrix required for data transmission.
  • the selected narrow beam refers to column selection of the first codebook
  • the quantized in-phase coefficient between different polarization antennas refers to antennas of two different polarization directions (each antenna of the same polarization direction may include one antenna element)
  • the quantized phase difference existing between the plurality of antenna elements can also be included.
  • the narrow beam codebook is a second precoding matrix W 2 , and
  • Y 1 and Y 2 are each composed of a selection vector
  • Y 1 is used to represent a narrow beam set selection in a corresponding wide beam in a wide beam codebook in one polarization direction
  • Y 2 is used to represent another polarization direction.
  • the narrow beam set selection in the corresponding wide beam in the wide beam codebook, ⁇ is the diagonal matrix formed by the in-phase factor between the antenna elements, and each element on the diagonal is used to represent the same column of Y 2 and Y 1 The phase difference between the antenna elements in different polarization directions.
  • the second precoding matrix may be one of two forms (4a.1) and (4a.2). Which form can be referred to the standard decision or the actual system design. specific,
  • the second precoding matrix is configured to select the same beam in each polarization direction, and then add a quantized in-phase coefficient between different polarization antennas;
  • (4a.2) is somewhat different from the existing LTE, mainly for the first codebook is (2b), and the BS performs beamforming transmission on the CSI-RS by using (3b) precoding when performing the third CSI-RS transmission.
  • the second precoding matrix is configured to include different beams for each polarization direction, and the quantized in-phase coefficients between the different polarization antennas, that is, Y can be independent in the foregoing LTE second precoding matrix. The choice is made, ie Y 1 is not equal to Y 2 .
  • a second precoding matrix composed of quantized in-phase coefficients.
  • the specific feedback form may be the same as or similar to the feedback form of the second codebook in the existing LTE protocol.
  • the UE can also feed back the RI and the CQI. Thereby the base station obtains the synthesized precoding matrix required for data transmission.
  • the second precoding matrix is the same as in (4a), and the difference between the solution and (4a) is reflected in the CSI- RS resource selection feedback.
  • the measurement initiation period of the first CSI-RS and the second CSI-RS may be greater than the measurement initiation period of the third CSI-RS for acquiring the short-term codebook, that is, there may be multiple times between the first CSI-RS measurement initiation or the second CSI-RS measurement initiation.
  • the combination of the wideband CSI-RS (the first CSI-RS, the second CSI-RS) and the narrowband CSI-RS (the third CSI-RS) provided in the embodiment of the present invention can be performed in multiple antenna port scenarios.
  • the UE side computational complexity is reduced, the feedback amount on the UE side is reduced, the resources occupied by the uplink control channel are reduced, and the data throughput of the uplink user is increased.
  • an embodiment of the present invention further provides an apparatus for multi-antenna channel measurement, which may be a wireless network device 10, where the wireless network device 10 corresponds to a first wireless network in the foregoing method. device.
  • the first wireless network device may be a base station or other devices, which is not limited herein.
  • the wireless network device includes a processor 110, a memory 120, a bus system 130, a receiver 140, and a transmitter 150.
  • the processor 110, the memory 120, the receiver 140 and the transmitter 150 are connected by a bus system 130 for storing instructions for executing instructions stored in the memory 120 to control the receiver 140 to receive.
  • the signal, and controlling the transmitter 150 to transmit a signal completes the steps of the first wireless network device (e.g., base station) in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless access device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that implements the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements processing by executing code in the memory.
  • the functions of the device 110, the receiver 140 and the transmitter 150 may be implemented by using a general-purpose computer.
  • the embodiment of the present invention further provides another apparatus for multi-antenna channel measurement, and the apparatus may be a wireless network device 20, where the wireless network device 20 corresponds to the second wireless in the foregoing method.
  • the apparatus may be a wireless network device 20, where the wireless network device 20 corresponds to the second wireless in the foregoing method.
  • Internet equipment The second wireless network device may be a UE, or may be a micro base station or a small base station, which is not limited herein.
  • the wireless network device includes a processor 210, a memory 220, a bus system 230, a receiver 240, and a transmitter 250.
  • the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive.
  • Signaling, and controlling the transmitter 250 to transmit a signal completes the steps of the second wireless network device (such as a UE) in the above method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless access device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • the embodiment of the present invention further provides a communication system, including the foregoing first wireless network device and one or more second wireless network devices.
  • the processor 110 or 210 may be a central processing unit ("CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 120 or 220 can include read only memory and random access memory and provides instructions and data to the processor 310.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system 130 or 230 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 110 or 210 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the deposit The storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be directed to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another
  • the manner of division, such as multiple units or components, may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供一种多天线信道测量的方法、装置、通信系统和终端,其中,基站发送第一信道状态信息参考信号(CSI-RS)和第二CSI-RS给终端,所述第一CSI-RS和第二CSI-RS分别在正交维度的天线振子上发送;所述基站接收所述终端反馈的针对第一CSI-RS和第二CSI-RS的第一CSI测量结果;所述基站根据所述第一CSI测量结果发送第三CSI-RS给所述终端,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码;和所述基站接收所述终端反馈的针对第三CSI-RS的第三CSI测量结果。从而达到多天线端口下,降低信道测量终端侧计算复杂度,减少信道测量反馈所占资源的目的。

Description

一种多天线信道测量方法和装置
本申请要求于2015年9月25日递交国际专利局、申请号为CN201510623199.8,发明名称为“一种多天线信道测量方法和装置”的国际专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别是涉及一种多天线信道测量方法和装置。
背景技术
传统信息论角度分析可以知道,系统容量由接收端信噪比决定,多用户进行多址时,本质上是如何划分或者共享系统容量,无论是TDMA、CDMA还是(O)FDMA,理论上都不会提升系统容量界,而仅仅是不同的容量划分方法。而MIMO的出现,从理论上证明了系统的容量可以随着收发天线数目的增加而增加,因此把系统的理论界提升了。LTE系统在进行设计时,将MIMO和OFDMA作为其基本的物理层技术,以最大化系统容量。为了提升接收机检测性能,发射端一般需要对要先对信号进行预编码然后发送,以减小不同天线上信号到接收天线时的干扰。在FDD系统中,由于无法使用信道互易性,发射端使用的预编码需要接收端进行反馈来获得,在LTE协议中,一般是UE通过反馈PMI来指示BS对其使用的最优码本。
LTE在初始版本中(Release 8),支持基站侧4根发射天线,且定义了四天线的码本,UE侧需要依据小区级参考信号CRS进行CSI计算,由于天线数目较少,码本的尺寸也比较小,UE侧在进行PMI计算和反馈时,也比较简单;在LTE R10中,基站侧的发送天线数目最大可以支持8个,CRS只支持4 个发射端口,且在每个子帧中都有,若支持8个天线端口则导频导致开销太大,因此引入了发送较为稀疏、可动态配置的CSI-RS进行8天线时CSI的测量反馈,此时为了降低UE侧进行PMI计算的复杂度,并且减少反馈量,8天线的码本采用双码本结构,即系统的码本W由第一码本W1和第二码本W2构成,即W=W1W2,第一码本为宽波束码本,变化较慢,UE反馈周期也较长,第二码本为快变码本(也称为短时码本或窄波束码本),目的是匹配信道的频选、短时特性,UE需要较短的周期进行码本反馈。
随着基站天线数目的进一步增加,并且天线由线阵变为两维的面阵时,单个CSI-RS配置已经无法支持更多的天线端口,从理论上而言,现有LTE的CSI-RS在一个资源块RB(resource block)内最多包含40个资源单元RE(resource element),因此通过不停地扩展CSI-RS的端口数目,理论上可以支持到40个正交的天线端口。但是随着天线数目的继续增加,当前按照每个天线端口占用一个正交导频的CSI-RS分配方法以及UE通过测量全部天线端口并反馈完整PMI的方法已经无能为继了。因而在天线端口增多的趋势下给出一个合适的信道测量方法,是一个亟需解决的问题。
发明内容
本发明实施例提供一种多天线信道测量的方法、装置,通信系统和终端,以适用在多天线场景下的信道测量。
第一方面提供一种多天线信道测量的方法,从第一无线网络设备的角度,该方法包括:
第一无线网络设备发送第一信道状态信息参考信号(CSI-RS)和第二CSI-RS给第二无线网络设备,所述第一CSI-RS和第二CSI-RS分别在正交维度的天线振子上发送;
所述第一无线网络设备接收所述第二无线网络设备反馈的针对第一CSI-RS和第二CSI-RS的第一CSI测量结果;
所述第一无线网络设备根据所述第一CSI测量结果发送第三CSI-RS给所述第二无线网络设备,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码;和
所述第一无线网络设备接收所述第二无线网络设备反馈的针对第三CSI-RS的第三CSI测量结果。
从第二无线网络设备的角度,该方法包括:
第二无线网络设备接收第一信道状态信息参考信号(CSI-RS)和第二CSI-RS并基于第一CSI-RS和第二CSI-RS进行CSI测量,所述第一CSI-RS和第二CSI-RS分别在正交维度的天线振子上发送;
所述第二无线网络设备向所述第一无线网络设备反馈针对第一CSI-RS和第二CSI-RS的第一CSI测量结果;
所述第二无线网络设备接收第三CSI-RS,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码;和
所述第二无线网络设备向所述第一无线网络设备反馈针对第三CSI-RS的第三CSI测量结果。
可选的,第一无线网络设备可以为基站,第二无线网络设备可以为UE。
可选的,前述正交维度可以为垂直方向(维度)和水平方向(维度)。
可选的,所述第一CSI-RS和所述第二CSI-RS通过无线资源控制(RRC)进行配置,所述第一CSI-RS和所述第二CSI-RS的配置包括在不同的CSI进程中,或者,在同一个增强型的CSI进程中。
可选的,所述第一CSI-RS和/或第二CSI-RS的配置包括第一指示,用于告知第二无线网络设备当前所发送的CSI-RS为第一CSI-RS和/或第二CSI-RS,或者,不是第三CSI-RS;和/或,
第二指示,用于指示所述第一CSI-RS和/或所述第二CSI-RS是通过同一个极化方向上的天线振子发出的,或者,所述第一CSI-RS和/或所述第二CSI-RS是通过两个极化方向上的天线振子发出的。
可选的,第三CSI-RS通过无线资源控制(RRC)进行配置,所述配置包括第三指示,用于告知第二无线网络设备当前所发送的CSI-RS为第三CSI-RS。
可选的,第三CSI-RS通过无线资源控制(RRC)进行配置,所述配置包括同时配置多个CSI-RS资源。
可选的,所述第一无线网络设备通过在RRC配置中增加指示位告知第二无线网络设备当前所发送的CSI-RS为第一CSI-RS或第二CSI-RS,或者,不是第三CSI-RS。这样,UE在反馈针对第一CSI-RS或第二CSI-RS的预编码矩阵指示时,可以仅反馈宽波束码本的索引。
可选的,所述第一CSI-RS和第二CSI-RS为全向发送。
可选的,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码包括:
所述第三CSI-RS依据第一CSI测量结果进行过波束赋形。
这样,基站可以依据UE针对第一CSI-RS和第二CSI-RS反馈的CSI测量结果,对第三CSI-RS符号进行预编码,使得第三CSI-RS在UE所反馈的宽波束上进行发送。从而,可以减小UE的CSI测量工作量,降低UE计算CSI测量结果的复杂度。
可选的,所述第一CSI测量结果包括第一预编码矩阵指示(PMI),对应第一码本。
可选的,所述第一CSI测量结果对应宽波束码本,所述宽波束码本用于表示宽波束的选择。
可选的,基站通过两个极化方向上的天线振子发送第一CSI-RS和/或第二CSI-RS时,所述宽波束码本为一个包含两个子阵的对角阵(W1),所述两个子阵分别对应所述天线振子的两个极化方向上的宽波束的选择。
可选的,所述两个子阵不同。
这样,UE可以在两个极化方向上选择不同的宽波束。
可选的,所述两个子阵相同。即,UE可以在两个极化方向上选择相同的宽波束,从而降低UE的CSI测量结果的反馈量。
可选的,第一码本为一个包含两个子阵的对角阵(W1),所述两个子阵分别对应天线振子的两个极化方向。
可选的,宽波束码本或第一码本中每个子阵的每一列为矩阵
Figure PCTCN2016100134-appb-000001
中所选择的一列,所述每个子阵从矩阵
Figure PCTCN2016100134-appb-000002
中所选择列构成所述天线振子的同一个极化方向上的宽波束,所述矩阵
Figure PCTCN2016100134-appb-000003
的第i行、第j列元素为
Figure PCTCN2016100134-appb-000004
其中若所述第一CSI测量结果为针对第一CSI-RS的反馈,则I为第一CSI-RS的端口数目的一半,或者,若所述第一CSI测量结果为针对第二CSI-RS的反馈,则I为第二CSI-RS的端口数目的一半;K为系统支持的窄波束数目。
可选的,基站通过同一个极化方向上的天线振子发送第一CSI-RS和/或第二CSI-RS时,所述宽波束码本或第一码本为一个矩阵,对应天线振子的同一 个极化方向,该矩阵的每一列为矩阵
Figure PCTCN2016100134-appb-000005
中所选择的的一列,所述每个子阵从矩阵
Figure PCTCN2016100134-appb-000006
中所选择列构成所述天线振子的同一个极化方向上的宽波束,所述矩阵
Figure PCTCN2016100134-appb-000007
的第i行、第j列元素为
Figure PCTCN2016100134-appb-000008
其中若所述第一CSI测量结果为针对第一CSI-RS的反馈,则I为第一CSI-RS的端口数目,或者,若所述第一CSI测量结果为针对第二CSI-RS的反馈,则I为第二CSI-RS的端口数目;K为系统支持的窄波束数目。
可选的,所述第一PMI包括针对第一CSI-RS反馈的PMI1和针对第二CSI-RS反馈的PMI2,PMI1和PMI2均对应第一码本(也称为宽波束码本)。
可选的,所述PMI1和所述PMI2不同。
可选的,所述PMI1和PMI2联合编码后通过部分PMI进行反馈,部分PMI所占用的资源均可以为现有协议中PMI反馈宽波束码本所占用的资源,从而降低UE反馈CSI测量结果所占用的资源,且减少对现有协议的修改;或者,
所述PMI1通过部分PMI反馈,所述PMI2通过另一部分PMI反馈,其中,部分PMI和另一部分PMI为同一次PMI反馈,从而利用了现有协议中PMI反馈窄波束码本的资源来反馈宽波束码本,降低UE反馈CSI测量结果所占用的资源;或者,
所述PMI1通过部分PMI反馈,且,所述PMI2通过另一次反馈的所述部分PMI反馈,所述部分PMI所占用的资源均可以为现有协议中PMI反馈宽波束码本所占用的资源,这样可以减少对现有协议的修改。
可选的,所述第一PMI包括针对第一CSI-RS反馈的PMI1或针对第二CSI-RS反馈的PMI2,所述PMI1和所述PMI2相同。这样,可以降低UE的CSI测量结果的反馈量。
可选的,所述第三CSI测量结果包括第三预编码矩阵指示(PMI),对应第二码本。
可选的,所述第三CSI测量结果对应窄波束码本(也称为第二码本),所述窄波束码本用于表示宽波束码本中对应的宽波束中的窄波束选择和该宽波束对应的不同极化方向的天线振子之间的同相因子的选择。
可选的,所述窄波束码本为矩阵W2,且,
Figure PCTCN2016100134-appb-000009
其中Y1和Y2均由选择向量构成,Y1用于表示一个极化方向上的宽波束码本中对应的宽波束中的窄波束集合选择,Y2用于表示另一个极化方向上的宽波束码本中对应的宽波束中的窄波束集合选择,Ψ为天线振子间的同相因子构成的对角阵,对角线上每一个元素用于表征Y2和Y1相同列所对应的不同极化方向上的天线振子间的相位差。
可选的,所述第二码本为矩阵W2,且,
Figure PCTCN2016100134-appb-000010
其中Y1和Y2均由选择向量构成,Y1用于表示一个极化方向上的第一码本中对应的列向量选择,Y2用于表示另一个极化方向上的第一码本中对应的列向量选择,Ψ为天线振子间的同相因子构成的对角阵,对角线上每一个元素用于表征Y2和Y1相同列所对应的列向量之间的相位因子。
可选的,所述第三CSI测量结果还可以包括UE所选择的CSI-RS资源的信息,如标识。
可选的,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码包括:
第一无线网络设备依据所述第一CSI测量结果确定第一CSI-RS对应的第 一维度预编码矩阵和第二CSI-RS对应的第二维度预编码矩阵;
第一无线网络设备将待发送的第三CSI-RS乘以第一维度预编码矩阵中相应列与第二维度预编码矩阵中相应列的Kronecher积,其中,所述相应列与所述第三CSI-RS所对应的天线端口相对应。
可选的,所述第一CSI-RS和所述第二CSI-RS分别在不同的CSI进程中进行配置,或者,在同一个增强型的CSI进程中进行配置。
可选的,所述配置包括发送周期,端口数目,所占用的频域资源,不同极化方向的天线振子的宽波束选择是否相同中的至少一项。
可选的,所述第一CSI-RS和第二CSI-RS的发送周期比所述第三CSI-RS的发送周期长。
可选的,所述第三CSI测量结果还包括CQI,RI中的至少一项。
可选的,从第一无线网络设备的角度,该方法还包括所述第一无线网络设备告知第二无线网络设备,所述第一CSI-RS和/或所述第二CSI-RS是通过同一个极化方向上的天线振子发出的,或者,所述第一CSI-RS和/或所述第二CSI-RS是通过两个极化方向上的天线振子发出的。
可选的,所述第一无线网络设备告知第二无线网络设备包括:所述第一无线网络设备通过RRC配置的CSI进程告知所述第二无线网络设备。
可选的,从第一无线网络设备的角度,该方法还包括所述第二无线网络设备从第一无线网络设备获知,所述第一CSI-RS和/或所述第二CSI-RS是通过同一个极化方向上的天线振子发出的,或者,所述第一CSI-RS和/或所述第二CSI-RS是通过两个极化方向上的天线振子发出的。
可选的,所述第二无线网络设备从第一无线网络设备获知包括:所述第二 无线网络设备通过RRC配置的CSI进程从所述第一无线网络设备获知。
第二方面,还提供一种无线网络设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第一方面中所描述的第一无线网络设备所涉及的任意一种方法。
第三方面,还提供一种无线网络设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第一方面中所描述的第二无线网络设备所涉及的任意一种方法。
第四方面,还提供一种多天线信道测量的装置,包括一些模块,用于实现前述第一无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第五方面,还提供一种多天线信道测量的装置,包括一些模块,用于实现前述第二无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第六方面,还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述第一无线网络设备或第二无线网络设备所涉及的任意一种方法。
第七方面,还提供一种通信系统,包括前述第二方面提供的无线网络设备和第三方面提供的无线网络设备。
为了便于理解,示例的给出了与部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(英文:3rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文:code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(英文:time division multiple access,简称:TDMA)、频分多址(英文:frequency division multiple access,简称FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,简称:OFDMA)、单载波频分多址(英文:single Carrier FDMA,简称:SC-FDMA)、载波侦听多路访问/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络或者4G网络。典型的2G网络包括全球移动通信系统(英文:global system for mobile communications/general packet radio service,简称:GSM)网络或者通用分组无线业务(英文:general packet radio service,简称:GPRS)网络,典型的3G网络包括通用移动通信系统(英文:universal mobile telecommunications system,简称:UMTS)网络,典型的4G网络包括长期演进(英文:long term evolution,简称:LTE)网络。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文:universal terrestrial radio access network,简称:UTRAN),LTE网络有时也可以称为演进型通用陆地 无线接入网(英文:evolved universal terrestrial radio access network,简称:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文:wireless local area networks,简称:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
MIMO:多输入多输出,multi-input multi-output
FDD:频分双工,frequency division duplexing
用户设备(英文:user equipment,简称:UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,简称:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(英文:base station,简称:BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能 的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(英文:base station controller,简称:BSC),3G网络中提供基站功能的设备包括节点B(英文简称:NodeB)和无线网络控制器(英文:radio network controller,简称:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文:evolved NodeB,简称:eNB),在WLAN中,提供基站功能的设备为接入点(英文:access point,简称:AP)。
无线网络设备,是指位于无线通信网络中的设备。该设备可以是基站,也可以是用户设备,还可以是其他网元。
无线局域网络(英文:wireless local area networks,简称:WLAN),是指采用无线电波作为数据传送媒介的局域网,传送距离一般只有几十米。
接入点(英文:access point,简称:AP),连接无线网络,亦可以连接有线网络的设备。它能当作中介点,使得有线与无线上网的设备互相连接、传输数据。
RRC(radio resource control):无线资源控制协议
RRC处理UE和UTRAN之间控制平面的第三层信息。通常包含以下功能中的至少一项:
广播核心网非接入层提供的信息。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。也支持上层信息的广播。
将广播信息关联到接入层。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。
建立、重新建立、维持和释放在UE和UTRAN之间的RRC连接。为了 建立UE的第一个信号连接,由UE的高层请求建立一个RRC的连接。RRC连接建立过程包括可用小区的重新选择、接入许可控制以及2层信号链路的建立几个步骤。RRC连接释放也是由高层请求,用于拆除最后的信号连接;或者当RRC链路失败的时候由RRC本层发起。如果连接失败,UE会要求重新建立RRC连接。如果RRC连接失败,RRC释放已经分配的资源。
CRS:小区级参考信号,cell-specific reference signal
PMI:预编码矩阵指示,precoding matrix indicator,从预定义码本集合中选取的码本所对应的索引。
CSI:信道状态信息,channel state information
CSI-RS:信道状态信息-参考信号,channel state information-reference signal
MAC:介质访问控制media access control
FDD Massive MIMO:频分双工大型MIMO
CSI测量:第二无线网络设备针对第一网络设备发送的CSI-RS进行检测,从中估计出第一无线网络设备与第二无线网络设备之间的包括由表征信道方向的预编码矩阵信息(PMI)、表征信道质量的信道质量指示信息(CQI)以及表征多天线同时传输层数的秩信息(RI)共同组成的信道状态。
CQI:信道质量指示,channel quality indicator
RI:秩指示,rank indicator
全向发送:相较于波束赋形后发送,指发送前不进行波束赋形。
预编码矩阵:由用于表征第一无线网络设备与第二无线网络设备之间信道方向的特征向量构成的矩阵。
第一码本:宽波束码本,用于表示宽波束的选择。
第二码本:窄波束码本,用于表示宽波束码本中对应的宽波束中的窄波束选择和该宽波束对应的不同极化方向上的天线振子之间的同相因子的选择。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为基站和UE之间进行通信的示意图;
图2为基站和UE的内部结构的简化示意图;
图3为基站的天线阵列示意图;
图4为本发明实施例中CSI测量过程的示意图;
图5a和图5b为本发明实施例中CSI-RS的发送方式示意图;
图6为本发明实施例中波束与CSI-RS端口编号的映射关系示意图;
图7a和图7b为本发明实施例中8天线端口CSI-RS的示意图;
图8为本发明实施例提供的多天线信道测量的装置的示意图;
图9为本发明实施例提供的另一多天线信道测量的装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机 相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
此外,本申请结合无线网络设备来描述各个方面,该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线网络设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、智能电话、无线本地环路(WLL)站、个人数字助理(PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点 B(eNB)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(IP)网络。基站还可以对空中接口属性的管理进行协调,并且还可以是有线网络和无线网络之间的网关。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发 明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。
本发明实施例依托无线通信网络中4G网络的场景进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
随着基站天线数目的进一步增加,并且天线由线阵变为两维的面阵时,单个CSI-RS配置已经无法支持更多的天线端口,从理论上而言,现有LTE的CSI-RS在一个资源块RB(resource block)内最多包含40个资源单元RE(resource element),因此通过不停地扩展CSI-RS的端口数目,理论上可以支持到40个正交的天线端口。但是随着天线数目的继续增加,当前按照每个天线端口占用一个正交导频的CSI-RS分配方法以及UE通过测量全部天线端口并反馈完整PMI的方法已经无能为继了。如果UE需要通过估计所有天线端口对应的信道,计算BS对应的最优CSI,当天线端口增加时,UE侧的计算复杂度太高(在进行CSI计算时,UE端一般需要将所有可能的预编码码本进行遍历计算,当天线数目太多时,UE的计算复杂度也大大增加);因为码本数目增加,导致UE侧的反馈量急剧增加,进而需要增加上行控制信道占用的资源,降低了上行用户的数据吞吐量。
在本发明实施例中给出了一种多天线信道测量的方案,适用于天线端口较多的场景下的信道测量。可以理解的是,本发明实施例中,多天线在物理 上是指多天线振子,在逻辑上可以指多天线端口。通过本发明实施例所给的方案,可以达到减小天线端口较多时CSI-RS导频开销、降低UE侧测量CSI计算复杂度、降低UE反馈开销等效果,尤其适用于天线数目较多、上下行信道不互易的系统,如FDD Massive MIMO系统。
需指出的是,本发明实施例中的方法或装置可以应用于基站和用户设备之间,也可以应用于基站和基站(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本发明所有实施例中,以基站和UE之间的通信为例进行描述。
图1所示为基站和UE之间进行通信的示意图。
基站可以和一个或多个UE进行通信。
基站的天线可以由多个天线振子构成,此时天线可以称为天线阵列。在基站的逻辑层面,可以将要发送的信号映射到多个天线端口。需要指出的是,天线端口是一个逻辑概念,主要是为了区分不同的正交导频,而天线振子是一个物理概念。实际中,一个天线端口既可以对应一个天线振子,也可以对应多个天线振子,具体天线端口与天线振子之间的映射关系,可依据系统需求决定。
图2所示为基站和UE的内部结构的简化示意图。
基站可以包括天线阵列,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分 用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,基站还可以包括控制部分,用于进行多用户调度和资源分配、导频调度、用户物理层参数配置等。
UE可以包括天线,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。在图2中,UE具有单天线。可以理解的是,UE也可以具有多天线(即天线阵列)。
其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,UE也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(CSI)、判断下行数据包是否接收成功等等。
图3所示为基站的天线阵列示意图。
该天线阵列包括多个同一个极化方向上的天线振子,和另一个极化方向上的天线振子。
通常情况下,这种天线阵列可以称为双极化天线。两个极化方向可以为交叉极化,如一个左旋,另一个右旋;或,一个+45°,另一个-45°。图4所示为基站和UE之间CSI-RS测量的示意图。
示例的,如图4所示,CSI测量过程可以包括如下步骤:
S1.基站向UE发送第一CSI-RS(CSI-RS-1)。
S3.基站向UE发送第二CSI-RS(CSI-RS-2)。
可选的,第一CSI-RS和第二CSI-RS可以分别对应基站的天线阵列的两个正交的维度上的振子,如图4所示,第一CSI-RS对应垂直方向的振子,第二CSI-RS对应水平方向的振子。
可选的,基站可以在UE接入系统后,通过RRC配置/重配置消息(简称RRC配置),为UE配置第一CSI-RS和第二CSI-RS。
可选的,第一CSI-RS和第二CSI-RS可以分别包括在两个CSI进程中CSI进程。一个CSI进程是通过RRC信息元素配置的,下方给出一个CSI进程配置消息可以包含的信息元素(引自3GPP TS 36.331中6.3.2节):
Figure PCTCN2016100134-appb-000011
Figure PCTCN2016100134-appb-000012
其中csi-ProcessId-r11表示该CSI进程的进程号,csi-RS-ConfigNZPId-r11和csi-IM-ConfigId-r11分别表示该CSI进程中非零功率CSI-RS对应的标识号和干扰测量CSI-RS对应的标识号,这两个标识号对应的CSI-RS资源组成了一组CSI-RS资源。csi-RS-ConfigNZPId-r11对应的非零功率CSI-RS是通过CSI-RS-ConfigNZP信息元素进行配置的,CSI-RS-ConfigNZP信息元素内容如下(引自3GPP TS 36.331中6.3.2节):
Figure PCTCN2016100134-appb-000013
Figure PCTCN2016100134-appb-000014
其中antennaPortsCount-r11表示非零功率CSI-RS对应的天线端口(可以简称为CSI-RS端口)的数目。resourceConfig-r11表示该非零功率CSI-RS对应的配置类型,指示其对应的物理时频资源。图7a是现有LTE一种8天线端口CSI-RS资源配置,给出一个CSI-RS所占物理时频资源块示意图,一个物理时频资源块包含频域12个连续的子载波、时域两个连续的子帧,每个子帧包含7个(对应正常循环前缀)或6个(对应扩展循环前缀)时域符号,图中一个方格代表一个时频资源颗粒:时域一个符号、频域一个子载波。LTE中CSI-RS的逻辑端口为端口15-22,每相邻两个端口通过正交覆盖码(Orthogonal Cover Code)共同复用两个相邻的时频资源。csi-IM-ConfigId-r11对应的干扰测量CSI-RS可以通过csi-IM-Config-r11信息元素进行配置的,其对应的天线 端口数目等于该CSI进程中非零功率CSI-RS对应的天线端口数目(现有标准中默认相同)。此外,现有标准中干扰测量CSI-RS和非零功率CSI-RS对应的天线端口也是默认相同的。
第一CSI-RS和第二CSI-RS可以通过两个独立的CSI进程分别进行配置。
可选的,第一CSI-RS和第二CSI-RS也可以通过一个增强型的CSI进程进行配置,其中,增强型CSI-RS进程中可以同时配置两组CSI-RS资源。如下所示,CSI-RS资源分别对应垂直维度(第一CSI-RS)和水平维度(第二CSI-RS)的CSI-RS资源:
Figure PCTCN2016100134-appb-000015
Figure PCTCN2016100134-appb-000016
其中,csi-ProcessId-r13表示该CSI进程的进程号,csi-RS-ConfigNZPId-Horizontal-r13表示水平维度的CSI-RS所包括的非零功率CSI-RS对应的标识号,csi-IM-ConfigId-Horizontal-r13表示水平维度的CSI-RS所包括的干扰测量CSI-RS对应的标识号,这两个标识号对应的CSI-RS资源组成了一组水平维度的CSI-RS资源。csi-RS-ConfigNZPId-Vertical-r13表示垂直维度的CSI-RS所包括的非零功率CSI-RS对应的标识号,csi-IM-ConfigId-Vertical-r13表示垂直维度的CSI-RS所包括的干扰测量CSI-RS对应的标识号,这两个标识号对应的CSI-RS资源组成了一组垂直维度的CSI-RS资源。
可选的,所述配置可以包括发送周期,端口数目,所占用的频域资源,不同极化方向的天线振子的宽波束选择是否相同,采用单极化方向的天线振子还是双极化方向的天线振子等中的至少一项。
可选的,第一CSI-RS和第二CSI-RS对应的天线端口数目分别为系统支持的CSI-RS端口配置中的某一个值,如2、4、8、12和16等。具体天线端口数目的值可以依据标准要求或系统需求而定,在此不予限定。
其中,对于二维天线阵列,如图3所示,一般使用交叉极化天线,每一列天线振子数目既可以指某一极化方向上的一列天线振子数目(比如图3中垂直方向上同一极化方向包括8个天线振子),也可以指两个交叉极化方向上的一列天线振子数目(比如图3中垂直方向上两个极化方向包括16个天线振子),同理每一行天线振子数目既可以指某一极化方向上的一行天线振子数目(比如图3中水平方向上同一极化方向包括4个天线振子),也可以指一行中两个交叉极化天线振子的总数目(比如图3中水平方向上两个极化方向包括8个天线振子)。在本发明实施例中,当描述两个极化方向时,如图3所示,共有64个天线振子,描述为每一行天线振子数目为8,共8行,或,每一列天线振子数目为16,共4列,当描述一个极化方向时,描述为每一行天线振子数目为4,共8行,或,每一列天线振子数目为8,共4列。当然,也可以采用其他方式描述,具体按照哪种表述,既可以预定义,也可以由基站自行决定如何实现。
可选的,以基站的天线的二维天线阵列包括垂直方向的天线振子和水平方向的天线振子为例,基站可以从二维天线阵列的垂直方向选取一列天线振子,从水平方向选取一行天线振子。具体选取方式可以是随机的,也可以是预设的,还可以是根据某种原则选取的,垂直方向和水平方向的选取方式可 以相同也可以不同,具体如何选取可以根据系统实际需求或设计确定,在此不予赘述。示例的,垂直方向上的每个振子对应第一CSI-RS中的一个端口,水平方向上的每个振子对应第二CSI-RS中的一个端口,第一CSI-RS和第二CSI-RS均进行全向发送。
可选的,基站在配置第一CSI-RS和/或第二CSI-RS的时候,除了CSI-RS天线端口数目外,还可以指示相应的CSI反馈时,不同极化方向的天线振子是否选用相同码本(如指示UE采用后续反馈方式(2a)还是(2b))。其中,CSI-RS天线端口数目是通过CSI进程中的非零功率的CSI-RS资源配置的。
CSI-RS是否对应由同一个极化方向天线振子发出还是由两个交叉极化方向上的天线振子发送(即第一CSI-RS或第二CSI-RS具有两种不同的CSI-RS发送方式)。这两种不同的CSI-RS发送方式,可以不影响后续UE第一码本的选择和反馈。比如,当CSI-RS仅通过同一个极化方向(如极化方向1)的天线振子发送时,另一个极化方向(如极化方向2)上的码本选择和反馈默认和极化方向1相同。具体的,这两种CSI-RS发送方式可以分别如下所述,由于第一CSI-RI和第二CSI-RI在发送方式上是类似的,在此描述时不予区分:
(1a)第一种发送方式如图5a所示,CSI-RS从同一个极化方向上的天线振子发出。这与现有的LTE中的多天线发送方式不同。
(1b)第二种发送方式如图5b所示,CSI-RS从两个极化方向上的天线振子发出。这与现有LTE中8天线的CSI-RS发送方式一样。
第一CSI-RS的发送方式可以为上面所述两种发送方式(1a)和(1b)中任意一种,第二CSI-RS的发送方式也可以为上面所述两种发送方法(1a)和(1b)中任意一种。
可选的,S1和S3的时间先后在本发明实施例中不予限定。
S2.UE按照基站的RRC配置及接收到的第一CSI-RS,对第一CSI-RS进行CSI测量,并反馈针对第一CSI-RS的预编码矩阵中的第一码本对应的索引(为预编码矩阵指示PMI中的部分,对应宽波束码本),在本实施例中记该第一码本为W1v
S4.UE按照基站的RRC配置及接收到的第二CSI-RS,对第二CSI-RS进行CSI测量,并反馈针对第二CSI-RS的预编码矩阵中的第一码本对应的索引(为预编码矩阵指示PMI中的部分,对应宽波束码本),在本实施例中记该第一码本为W1h。可选的,S2和/或S4中UE所反馈的第一码本的设计和码本索引的设计可以参考现有LTE协议中的设计。现有LTE协议中的设计如下:
(引自TS 36.213中7.2.4节,由于字母下标与本发明实施例其他下标相重,采用了其他字母进行描述,如m由p代替,n由q代替,j由y代替)下表为LTE R12中八天线双码本结构中秩为1时的预编码码本以及对应的码本索引,i1表示第一码本W1对应的码本索引,i2表示第二码本W2对应的码本索引,UE在反馈时,可以直接反馈i1和i2,其中i1为0-15中的1个整数值,可以表示16个宽波束中被选中的那一个;i2也为0-15中的1个整数值,可以表示每个宽波束中选中的那一个窄波束(秩为1的情况),由于每个宽波束中包括4个窄波束,而4个窄波束对应的相位情况有4种,故i2有16个值。基站收到UE所反馈的i1和i2后,可以依据下表确定对应的预编码码本。其中,
Figure PCTCN2016100134-appb-000017
表示秩为1时由第一码本W1和第二码本W2合成的码本,
Figure PCTCN2016100134-appb-000018
Figure PCTCN2016100134-appb-000019
其中:
Figure PCTCN2016100134-appb-000020
p=2i1,2i1+1,2i1+4,2i1+3;
q=0,1,2,3;
i1=0,1,2,3…15;
i2=0,1,2,3…15。
上述码本对应表格中,W1为如下形式:
Figure PCTCN2016100134-appb-000021
其中i1表示第i1个宽波束,每个宽波束由四个连续的窄波束构成(列向量),因而
Figure PCTCN2016100134-appb-000022
包括4个列向量(每列对应1个窄波束)。对于8天线秩为1的码本,一共包含16个宽波束,因此可以使用16个i1值对每个宽波束进行索引。其中,左上角的
Figure PCTCN2016100134-appb-000023
对应一个极化方向,右下角的
Figure PCTCN2016100134-appb-000024
对应另一个极化方向。
由于系统支持的窄波束为32个,对应16个宽波束,则可以定义每个宽波 束
Figure PCTCN2016100134-appb-000025
Figure PCTCN2016100134-appb-000026
中每一列对应一个窄波束,对应如下矩阵C中的一列:
Figure PCTCN2016100134-appb-000027
其中ck为包含4个元素的列向量,[C]y,k表示矩阵C中第y行、第k列的元素值。
第二码本W2是由在宽波束中(W1中的所有列向量,包括两个极化方向)进行窄波束选择(一个或者几个列向量,和秩的值有关)和极化天线间的同相因子选择共同构成,LTE中8天线秩为1的码本中,W2包括4种可能的波束选择和四个可能的极化天线同相(co-phasing)因子,一共构成16个可选矩阵(故i2=0,1,2,3…15),对应如下:
Figure PCTCN2016100134-appb-000028
Figure PCTCN2016100134-appb-000029
Ψ∈{1,-1,j,-j}
其中
Figure PCTCN2016100134-appb-000030
为4x1的选择向量,仅有第f个元素为1,剩余元素为0,Ψ为极化天线间的同相因子,表征两个极化天线间波束的相位差,这样由W1*W2即可以得到最终合成的预编码矩阵。
可选的,图4中,UE反馈的第一码本W1h中包含Nh个窄波束,W1v中包含Nv个窄波束。其中,第一码本对于宽波束码本。
可选的,在S2和/或S4中UE进行CSI测量和第一码本反馈的方式可以参考现有技术中的方式,比如3GPP协议中已经定义的方式,如第一码本和/或第二码本的反馈可以采用索引的方式进行。
可选的,S2和/或S4中,UE反馈的CSI测量结果可以包括第一PMI,其中第一PMI包括针对第一CSI-RS反馈的PMI1和针对第二CSI-RS反馈的PMI2。
可选的,所述PMI1和所述PMI2不同。
可选的,所述PMI1和PMI2联合编码后通过部分PMI进行反馈,或者,
所述PMI1通过部分PMI反馈,所述PMI2通过另一部分PMI反馈,或者,
所述PMI1通过部分PMI反馈,且,所述PMI2通过另一次反馈的所述部分PMI反馈。
可选的,所述第一PMI包括针对第一CSI-RS反馈的PMI1或针对第二CSI-RS反馈的PMI2,所述PMI1和所述PMI2相同。此时,UE可以同时指示基站PMI1和PMI2相同。从而,降低UE的CSI反馈所占的资源。
可选的,在S2和/或S4中UE可以不反馈第二码本、CQI和RI中的任意一个。其中,第二码本为窄波束码本。
可选的,W1h和/或W1v的反馈方式可以为以下(2a)和(2b)中的一种,具体为何种反馈方式,可以视最终标准选择或是系统设计而定:
(2a)W1h和/或W1v的反馈方式可以是现有LTE所支持的W1的形式。
LTE当前所支持的W1是由一个块对角阵组成(此时第一CSI-RS或第二CSI-RS均按照上述(1b)方式进行发送),共包含两个相同的非零子阵组成,即:
Figure PCTCN2016100134-appb-000031
其中X为同一个极化方向对应的由多个窄波束组成的宽波束的反馈,在一个示例中,左上角的X为+45°极化方向对应的宽波束的反馈,右下角的X为-45°极化方向对应的宽波束的反馈。X的每一列在物理上都可以对应成一个窄波束,数学上X的每一列分别对应矩阵
Figure PCTCN2016100134-appb-000032
的某一列,矩阵
Figure PCTCN2016100134-appb-000033
的第i行、第j列元素为
Figure PCTCN2016100134-appb-000034
其中I为同一个极化方向上的端口数目(对应X的行数),为该CSI-RS端口数目的一半,K为系统支持的窄波束数目,宽波束X由多个窄波束组成,窄波束数目可以为X 包含的列的数目,在LTE中,一个宽波束X可以包含4个或者8个或者其他数目个窄波束。为了降低反馈量,系统一般会限制最大支持的窄波束数目,比如LTE 8天线码本方案中,最多包含32个窄波束,即K为32。
对于CSI-RS按照前述(1a)方式(即仅在同一个极化方向上发送CSI-RS)发送时,W1的形式不再是
Figure PCTCN2016100134-appb-000035
形式的块对角阵了,而是等于X,即W1=[X],X的每一列都是矩阵
Figure PCTCN2016100134-appb-000036
的某一列,矩阵
Figure PCTCN2016100134-appb-000037
的第i行、第j列元素为
Figure PCTCN2016100134-appb-000038
其中I为该CSI-RS的端口数目,K为系统支持的所有窄波束数目。
对于W1=[X]的情况,UE反馈X对应的索引,基站收到X对应的索引后,可以自行根据该X索引所对应的极化方向上的反馈,获得另一个极化方向上的X(或X的索引),用于后续第三CSI-RS(CSI-RS-3)的预编码。通常情况,默认另一个极化方向上的X和所反馈的极化方向上的X相同。
对于
Figure PCTCN2016100134-appb-000039
的形式,为了降低反馈所占的资源,UE可以仅反馈X对应的索引,而由基站收到该X对应的索引后,自行根据该X对应的索引获得W1
在本申请中,第一码本W1v、W1h分别对应垂直方向的宽波束和水平方向的宽波束。在一个可选的示例中,水平和垂直两种宽波束对应的波束宽度以及包含的宽波束号可能均不相同,亦即W1h、W1v的X不同,即X所包括的列数、行数、元素中的至少一项不同。在另一个可选的示例中,水平和垂直两种宽波束对应的波束宽度以及包含的宽波束数目均相同,亦即W1h和W1v的X相同,包括相同的列数、行数和每个元素。
可选的,在W1v、W1h的X不同时,UE可以利用前述现有LTE协议中的i1和i2所占用的资源分别反馈W1v、W1h的X所对应的索引,基站收到后,根据i1和i2确定W1v、W1h的码本。
可选的,在W1v、W1h的X不同时,UE可以分两次利用前述现有LTE协议中的i1所占用的资源分别反馈W1v、W1h的X所对应的索引。基站收到后,分别根据收到的i1确定W1v、W1h的码本。
可选的,在W1v、W1h的X相同时,UE可以利用前述现有LTE协议中的i1所占用的资源反馈W1v和W1h的X所对应的索引,并通过其他字段(或域)告知基站W1v、W1h的X相同。
可以理解的是,W1v、W1h的码本的形式可以和现有LTE协议中W1相同,也可以不同,比如根据系统演进,可支持的窄波束数目大于32,或是宽波束数目大于16,或是每个宽波束包含的窄波束数目不为4等,那么相应的W1的设计也相应的改变。
(2b)W1h和/或W1v也可以不是现有LTE所支持的W1的形式(此时第一CSI-RS或第二CSI-RS均按照上述(1b)方式进行发送)。
比如,UE反馈的第一码本W1h和W1v,可以针对每个极化方向分别进行宽波束选择(即每个极化方向上的宽波束所包括的窄波束不同),W1的形式可以修改为
Figure PCTCN2016100134-appb-000040
这样可以保证每个极化方向都选择独立最优的波束集合。
可选的,UE针对每个CSI-RS反馈X1、X2的码本索引,可以通过现有LTE协议中的i1所占用的资源进行反馈X1,由于此时不需要反馈i2,因此可以将i2所占用的资源用来反馈X2对应的码本索引,或者将X1、X2进行联合编码再反 馈,所述联合编码可以使用差分编码,如反馈完整的X1码本以及X2与X1不同的波束构成的差分码本。
在一个示例中,X1、X2对应的某些列可以相同,意味着该列对应的窄波束对两个极化方向的天线而言都较优。可以理解的是,反馈模式(2b)相较于(2a)中的反馈模式,(2b)的最大开销为(2a)的两倍。
第一码本W1v、W1h分别对应垂直方向的宽波束和水平方向的宽波束。在一个可选的示例中,水平和垂直两种宽波束对应的波束宽度以及包含的宽波束号可能均不相同,亦即W1h的X1与W1v的X1不同,和/或W1h的X2与W1v的X2不同,即W1h的X1和W1v的X1(和/或W1h的X2与W1v的X2)所包括的列数、行数、元素中的至少一项不同。在另一个可选的示例中,水平和垂直两种宽波束对应的波束宽度以及包含的宽波束号均相同,亦即W1h的X1与W1v的X1相同,且W1h的X2与W1v的X2相同,包括相同的列数、行数和每个元素。
可选的,S2和S4的时间先后在本发明实施例中不予限定。可以理解的是,S2在S1后,S4在S3后即可。S2和S4可以同时反馈,比如在同一个PMI中反馈。
S5.基站向UE发送第三CSI-RS。
可选的,第三CSI-RS的配置信息可以通过RRC,MAC层控制元素,或,物理控制信道,配置给UE。
可选的,第三CSI-RS为基站按照UE在S2和S4中反馈的W1h、W1v指示的码本进行波束赋形后发送的。第三CSI-RS对应的CSI-RS资源共包含Nv1*Nh1+Nv2*Nh2(当Nv1=Nv2=Nv且Nh1=Nh2=Nh时,为2*Nv*Nh)个CSI-RS端口,或者小于Nv1*Nh1+Nv2*Nh2(2*Nv*Nh)个CSI-RS端口。其中,Nv1为垂直方向上 一个极化方向(极化方向1)所包含的列的数目(窄波束数),Nv2为垂直方向上另一个极化方向(极化方向2)所包含的列的数目(窄波束数),Nh1为水平方向上一个极化方向(极化方向1)所包含的列的数目(窄波束数),Nh2为水平方向上另一个极化方向(极化方向2)所包含的列的数目(窄波束数)。每个端口可以对应一个经过预编码后的窄波束,窄波束与CSI-RS端口编号的映射关系可以如图6所示,在图6中,一个端口对应一个窄波束,在其他示例中,也可以多个端口对应一个窄波束。在图6中,按照一个维度先进行天线端口映射,如水平维度,然后按照另外一个维度进行端口映射,如垂直维度,需要注意的是,图6仅仅给出一种示意,且仅仅画出一个极化方向端口映射图,另一个极化方向端口映射与其类似,此处不再赘述。
可选的,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码包括:
第一无线网络设备依据所述第一CSI测量结果确定第一CSI-RS对应的第一维度预编码矩阵和第二CSI-RS对应的第二维度预编码矩阵;
第一无线网络设备将待发送的第三CSI-RS乘以第一维度预编码矩阵中相应列与第二维度预编码矩阵中相应列的Kronecher积,其中,所述相应列与所述第三CSI-RS所对应的天线端口相对应。
可选的,波束赋形的方法可以为(3a)和(3b)中的一种,具体为(3a)还是(3b)可以依据标准选择或系统设计而定,在此不予限定。其中,
(3a)对于W1h、W1v采用上述反馈方式(2a)或(2c)进行反馈的情况,即
Figure PCTCN2016100134-appb-000041
(对应方式(2a)),或,W1=X(对应方式(2b))的情况
可选的,在此以第0至第Nv*Nh-1个CSI-RS端口在所有同一极化方向的天 线振子上发送(如+45°极化天线),第Nv*Nh至第2*Nv*Nh-1个CSI-RS端口在另一极化方向的天线上发送(如-45°极化天线)为例进行描述,可以理解的是,CSI-RS端口和天线振子之间的关系还可以为其他情况,而非此描述的情形。
第m(m大于等于0,小于2*Nv*Vh-1)个CSI导频(RS的另一种称呼)端口在发送CSI-RS前将CSI-RS符号乘以预编码矩阵W1h中对角阵Xh的第m mod Nh
Figure PCTCN2016100134-appb-000042
与预编码矩阵W1v中对角阵Xv的第
Figure PCTCN2016100134-appb-000043
Figure PCTCN2016100134-appb-000044
的kronecher积
Figure PCTCN2016100134-appb-000045
其中,mod为取模,
Figure PCTCN2016100134-appb-000046
为向上取整,Kronecher积为现有技术中的一种矩阵乘运算。
如前所描述的,第三CSI-RS端口数目可以小于2*Nv*Vh,这种情况下:
(3a.1)基站可以在配置第三CSI-RS时,使用比特序列
Figure PCTCN2016100134-appb-000047
指示端口与预编码矩阵之间的关系,第m个比特为1(即bm=1),表明经过
Figure PCTCN2016100134-appb-000048
进行预编码的CSI-RS是存在的,且其对应第
Figure PCTCN2016100134-appb-000049
(同一极化方向)、
Figure PCTCN2016100134-appb-000050
(另一极化方向)个CSI-RS端口。在一个示例中,共有4位比特为1,即第三CSI-RS需要8个天线端口(每个极化方向各占4个),图7a中所示的8天线端口CSI-RS的天线端口15至天线端口18将分别进行同一极化方向预编码后进行发送,天线端口19至天线端口22将分别进行另一极化方向预编码后进行发送;
(3a.2)基站为UE配置增强后的第三CSI-RS,该第三CSI-RS可以包含多个CSI-RS资源,每个CSI-RS资源端口数目为当前LTE所支持的,例如每个CSI-RS资源包括2个或者4个或者8个CSI-RS端口端口,每个CSI-RS资源占用 不同的物理时频资源。基站在进行该第三CSI-RS发送时,将各窄波束分别对应到不同CSI-RS资源的不同端口上。如图7b所示,假设第三CSI-RS需要发送8个窄波束(每个极化方向各4个,假设一个极化方向标号波束0-波束3,另一极化方向波束标号波束4-波束7),共占用8个正交的导频资源。按照本方案,第三CSI-RS可以由4个两天线端口的CSI-RS资源构成,记为CSI-RS资源1至CSI-RS资源4,基站在进行CSI-RS资源1发送时,其端口15对应的CSI-RS需要经过波束0进行预编码后发送,端口16对应的CSI-RS需要经过波束4进行预编码后发送;基站在进行CSI-RS资源2发送时,其端口15对应的CSI-RS需要经过波束1进行预编码后发送,端口16对应的CSI-RS需要经过波束5进行预编码后发送;基站在进行CSI-RS资源3发送时,其端口15对应的CSI-RS需要经过波束2进行预编码后发送,端口16对应的CSI-RS需要经过波束6进行预编码后发送;基站在进行CSI-RS资源4发送时,其端口15对应的CSI-RS需要经过波束3进行预编码后发送,端口16对应的CSI-RS需要经过波束7进行预编码后发送。所述仅是一种举例,具体配置多少CSI-RS资源以及每个CSI-RS资源的配置(包括端口数目、占用的时频资源等)可以由基站动态决定。
(3b)对于W1h、W1v采用上述反馈方式(2b)进行反馈的情况,即
Figure PCTCN2016100134-appb-000051
的情况
可选的,在此以第0至第Nv*Nh-1个CSI-RS端口在所有同一极化方向的天线振子上发送(如+45°极化天线),第Nv*Nh至第2*Nv*Nh-1个CSI-RS端口在另一极化方向的天线上发送(如-45°极化天线)为例进行描述,可以理解的是,CSI-RS端口和天线振子之间的关系还可以为其他情况,而非此描述的情形。
第m(m大于等于0,小于Nh1*Nv1-1)个CSI-RS端口在所有同一极化方向的天线上发送(如左极化天线),导频符号在发送前乘以预编码矩阵W1h中左上对角阵X1,h的第mmodNh1
Figure PCTCN2016100134-appb-000052
与预编码矩阵W1v中左上对角阵X1,v的第
Figure PCTCN2016100134-appb-000053
Figure PCTCN2016100134-appb-000054
的kronecher积
Figure PCTCN2016100134-appb-000055
第m(m大于等于Nh1*Nv1,小于2*Nh1*Nv1-1)个CSI-RS端口在所有另一极化方向的天线上发送(如右极化天线),导频符号在发送前乘以预编码矩阵W1h中右下对角阵X2,h的第rmodNh2
Figure PCTCN2016100134-appb-000056
与预编码矩阵W1v中右下对角阵X2,h的第
Figure PCTCN2016100134-appb-000057
Figure PCTCN2016100134-appb-000058
的kronecher积
Figure PCTCN2016100134-appb-000059
其中r=m-Nh1*Nv1。(即CSI-RS端口与其发送该CSI-RS的天线振子的极化方向相对应的对角阵进行相乘)。
可选的,第三CSI-RS端口数目可以小于Nv1*Vh1+Nv2*Vh2。这种情况下,基站可以在配置第三CSI-RS时,使用比特序列
Figure PCTCN2016100134-appb-000060
指示端口与预编码矩阵之间的关系,第n比特为1,如果n小于Nh1*Nv1,表明经过
Figure PCTCN2016100134-appb-000061
进行预编码的CSI-RS是存在的,其对应第
Figure PCTCN2016100134-appb-000062
(同一极化方向)个CSI-RS端口,如果n大于等于Nh1*Nv1,表明经过
Figure PCTCN2016100134-appb-000063
进行预编码的CSI-RS是存在的,其对应第
Figure PCTCN2016100134-appb-000064
(同一极化方向)个CSI-RS端口,其中r=m-Nh1*Nv1
S6.UE接收第三CSI-RS,针对S5中配置的第三CSI-RS进行CSI测量,由于第三CSI-RS有不同的配置方式,UE反馈的CSI信息也有区别,具体为哪种形式可以参考标准的决定或实际系统的设计。
可选的,所述第三CSI测量结果包括第三预编码矩阵指示(PMI)。
可选的,所述第三CSI测量结果对应窄波束码本,所述窄波束码本用于表示宽波束码本中对应的宽波束中的窄波束选择和该宽波束对应的天线振子之间的同相因子的选择。
具体的,可以包括和(4a)和(4b)中的一种。具体为哪种形式可以参考标准的决定或实际系统的设计。
(4a)针对前述(3a.1)或(3b)的情况
UE反馈由所选的窄波束和不同极化天线间的量化同相系数共同构成的第二预编码矩阵(W2)。具体反馈形式可以如现有LTE协议中的反馈第二预编码矩阵所对应的索引。进一步的,UE还反馈RI以及CQI。从而使基站得到数据传输需要的合成的预编码矩阵。其中所选窄波束是指对第一码本进行列选择,不同极化天线间的量化同相系数是指两个不同极化方向的天线(每个同一极化方向的天线可以包括1个天线振子,也可包括多个天线振子)之间存在的经过量化后的相位差。
可选的,所述窄波束码本为第二预编码矩阵W2,且,
Figure PCTCN2016100134-appb-000065
其中Y1和Y2均由选择向量构成,Y1用于表示一个极化方向上的宽波束码本中对应的宽波束中的窄波束集合选择,Y2用于表示另一个极化方向上的宽波束码本中对应的宽波束中的窄波束集合选择,Ψ为天线振子间的同相因子构成的对角阵,对角线上每一个元素用于表征Y2和Y1相同列所对应的不同极化方向上的天线振子间的相位差。
可选的,第二预编码矩阵可以为两种形式(4a.1)和(4a.2)中的一种。具体为哪种形式可以参考标准的决定或实际系统的设计。具体的,
(4a.1)与现有LTE中类似,主要针对第一码本为(2a),且BS在进行第三CSI-RS发送时,采用(3a.1)的预编码对CSI-RS进行波束成形(赋形)发送的情况,第二预编码矩阵的构成上包括在每个极化方向选取相同的波束,然后加上一个不同极化天线间的量化同相系数;
(4a.2)与现有LTE有些区别,主要针对第一码本为(2b),且BS在进行第三CSI-RS发送时,采用(3b)的预编码对CSI-RS进行波束成形发送的情况,第二预编码矩阵的构成上包括每个极化方向选取不同的波束,再加上不同极化天线间的量化同相系数,即前面所述LTE第二预编码矩阵中,Y可以独立的进行选择,即Y1不等于Y2
(4b)针对前述(3a.2)的情况
UE反馈第三CSI-RS配置的多个CSI-RS资源中的一个CSI-RS资源对应的ID、以及由所选的CSI-RS资源中的一个或者多个窄波束ID和不同极化天线间的量化同相系数构成的第二预编码矩阵。具体反馈形式可以和现有LTE协议中第二码本的反馈形式相同或类似。进一步的,UE还可以反馈RI以及CQI。从而使基站得到数据传输需要的合成的预编码矩阵。
可以理解的是,在第三CSI-RS只配置一个CSI-RS资源的情况下,所述第二预编码矩阵与(4a)中相同,本方案与(4a)中的不同体现在对CSI-RS资源的选择反馈。
可以理解的是,由于第一CSI-RS和第二CSI-RS的主要作用是为了获取宽波束码本W1,因此第一CSI-RS和第二CSI-RS的测量发起周期(包括基站发送和UE反馈)可以大于用于获取短时码本的第三CSI-RS的测量发起周期,即两次第一CSI-RS测量发起或是第二CSI-RS测量发起之间可以存在多次第三 CSI-RS的测量。
通过本发明实施例中提供的宽带CSI-RS(第一CSI-RS,第二CSI-RS)和窄带CSI-RS(第三CSI-RS)结合的方式,可以在多个天线端口的场景下,降低UE侧计算复杂度,减少UE侧的反馈量,进而减少上行控制信道占用的资源,增加上行用户的数据吞吐量。
根据前述方法,如图8所示,本发明实施例还提供一种用于多天线信道测量的装置,该装置可以为无线网络设备10,该无线网络设备10对应上述方法中的第一无线网络设备。第一无线网络设备可以为基站,也可以为其他设备,在此不予限定。
该无线网络设备包括处理器110、存储器120、总线系统130、接收器140和发送器150。其中,处理器110、存储器120、接收器140和发送器150通过总线系统130相连,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中第一无线网络设备(如基站)的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线接入设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理 器110,接收器140和发送器150的功能。
无线网络设备所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图9所示,本发明实施例还提供另一种用于多天线信道测量的装置,该装置可以为无线网络设备20,该无线网络设备20对应上述方法中的第二无线网络设备。第二无线网络设备可以为UE,也可以为微基站或小基站,在此不予限定。
该无线网络设备包括处理器210、存储器220、总线系统230、接收器240和发送器250。其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中第二无线网络设备(如UE)的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线接入设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
第二无线网络设备所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的第一无线网络设备和一个或多于一个第二无线网络设备。
应理解,在本发明实施例中,处理器110或210可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器120或220可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统130或230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器110或210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存 储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另 外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种多天线信道测量的方法,其特征在于,包括
    第一无线网络设备发送第一信道状态信息参考信号(CSI-RS)和第二CSI-RS给第二无线网络设备,所述第一CSI-RS和第二CSI-RS分别在正交维度的天线振子上发送;
    所述第一无线网络设备接收所述第二无线网络设备反馈的针对第一CSI-RS和第二CSI-RS的第一CSI测量结果;
    所述第一无线网络设备根据所述第一CSI测量结果发送第三CSI-RS给所述第二无线网络设备,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码;和
    所述第一无线网络设备接收所述第二无线网络设备反馈的针对第三CSI-RS的第三CSI测量结果。
  2. 一种多天线信道测量的方法,其特征在于,包括
    第二无线网络设备接收第一信道状态信息参考信号(CSI-RS)和第二CSI-RS并基于第一CSI-RS和第二CSI-RS进行CSI测量,所述第一CSI-RS和第二CSI-RS分别在正交维度的天线振子上发送;
    所述第二无线网络设备向所述第一无线网络设备反馈针对第一CSI-RS和第二CSI-RS的第一CSI测量结果;
    所述第二无线网络设备接收第三CSI-RS,所述第三CSI-RS依据所述第一CSI测量结果进行过预编码;和
    所述第二无线网络设备向所述第一无线网络设备反馈针对第三CSI-RS的第三CSI测量结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一CSI-RS和所述第二CSI-RS通过无线资源控制(RRC)进行配置,所述第一CSI-RS和所述第二CSI-RS的配置包括在不同的CSI进程中,或者,在同一个增强型的CSI进程中。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述第一CSI-RS和/或第二CSI-RS的配置包括第一指示,用于告知第二无线网络设备当前所发送的CSI-RS为第一CSI-RS和/或第二CSI-RS;和/或,
    第二指示,用于指示所述第一CSI-RS和/或所述第二CSI-RS是通过同一个极化方向上的天线振子发出的,或者,所述第一CSI-RS和/或所述第二CSI-RS是通过两个极化方向上的天线振子发出的。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,第三CSI-RS通过无线资源控制(RRC)进行配置,所述配置包括第三指示,用于告知第二无线网络设备当前所发送的CSI-RS为第三CSI-RS。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,第三CSI-RS通过无线资源控制(RRC)进行配置,所述配置包括同时配置多个CSI-RS资源。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述第一CSI测量结果包括第一预编码矩阵指示(PMI),对应第一码本。
  8. 根据权利要求7所述的方法,其特征在于,所述第一PMI包括针对第一CSI-RS反馈的PMI1和针对第二CSI-RS反馈的PMI2,所述PMI1和PMI2均对 应第一码本。
  9. 根据权利要求8所述的方法,其特征在于,所述PMI1和PMI2联合编码后通过部分PMI进行反馈,或者,
    所述PMI1通过部分PMI反馈,所述PMI2通过另一部分PMI反馈,或者,
    所述PMI1通过部分PMI反馈,且,所述PMI2通过另一次反馈的所述部分PMI反馈。
  10. 根据权利要求7至9任意一项所述的方法,其特征在于,所述第一码本为一个包含两个子阵的对角阵(W1),所述两个子阵分别对应天线振子的两个极化方向,
    其中,每个子阵的每一列为矩阵
    Figure PCTCN2016100134-appb-100001
    中所选择的一列,所述每个子阵从矩阵
    Figure PCTCN2016100134-appb-100002
    中所选择列构成所述天线振子的同一个极化方向上的宽波束,所述矩阵
    Figure PCTCN2016100134-appb-100003
    的第i行、第j列元素为
    Figure PCTCN2016100134-appb-100004
    i∈{1,2,...,I},j∈{1,2,...,K},其中若所述第一CSI测量结果为针对第一CSI-RS的反馈,则I为第一CSI-RS的端口数目的一半,或者,若所述第一CSI测量结果为针对第二CSI-RS的反馈,则I为第二CSI-RS的端口数目的一半;K为系统支持的窄波束数目。
  11. 根据权利要求7至9任意一项所述的方法,其特征在于,所述第一码本为一个矩阵,对应天线振子的同一个极化方向,该矩阵的每一列为矩阵
    Figure PCTCN2016100134-appb-100005
    中所选择的的一列,所述每个子阵从矩阵
    Figure PCTCN2016100134-appb-100006
    中所选择列构成所述天线振子的同一个极化方向上的宽波束,所述矩阵
    Figure PCTCN2016100134-appb-100007
    的第i行、第j列元素为
    Figure PCTCN2016100134-appb-100008
    i∈{1,2,...,I},j∈{1,2,...,K},其中若所述第一CSI测量结果为针对第一CSI-RS的反馈,则I为第一CSI-RS的端口数目,或者,若所述第一CSI测量 结果为针对第二CSI-RS的反馈,则I为第二CSI-RS的端口数目;K为系统支持的窄波束数目。
  12. 根据权利要求1至11任意一项所述的方法,其特征在于,所述第三CSI测量结果包括第三预编码矩阵指示(PMI),对应第二码本。
  13. 根据权利要求12所述的方法,其特征在于,所述第三CSI测量结果还包括CQI,RI中的至少一项。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二码本为矩阵W2,且,
    Figure PCTCN2016100134-appb-100009
    其中Y1和Y2均由选择向量构成,Y1用于表示一个极化方向上的第一码本中对应的列向量选择,Y2用于表示另一个极化方向上的第一码本中对应的列向量选择,Ψ为天线振子间的同相因子构成的对角阵,对角线上每一个元素用于表征Y2和Y1相同列所对应的列向量之间的相位因子。
  15. 根据权利要求12至14任意一项所述的方法,其特征在于,所述第三CSI测量结果还包括所选的CSI-RS资源的标识。
  16. 一种无线网络设备,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如权利要求1至15任意一项所述的方法。
PCT/CN2016/100134 2015-09-25 2016-09-26 一种多天线信道测量方法和装置 WO2017050295A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018515852A JP2018534836A (ja) 2015-09-25 2016-09-26 マルチアンテナチャネル測定方法及び装置
EP16848176.0A EP3343796B1 (en) 2015-09-25 2016-09-26 Multi-antenna channel measurement method and apparatus
US15/935,035 US10530450B2 (en) 2015-09-25 2018-03-25 Multi-antenna channel measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510623199.8A CN106559121B (zh) 2015-09-25 2015-09-25 一种多天线信道测量方法和装置
CN201510623199.8 2015-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/935,035 Continuation US10530450B2 (en) 2015-09-25 2018-03-25 Multi-antenna channel measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2017050295A1 true WO2017050295A1 (zh) 2017-03-30

Family

ID=58385628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100134 WO2017050295A1 (zh) 2015-09-25 2016-09-26 一种多天线信道测量方法和装置

Country Status (5)

Country Link
US (1) US10530450B2 (zh)
EP (1) EP3343796B1 (zh)
JP (1) JP2018534836A (zh)
CN (1) CN106559121B (zh)
WO (1) WO2017050295A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019141499A1 (en) * 2018-01-16 2019-07-25 Sony Mobile Communications Inc. Operating devices in a wireless communication system
WO2019222935A1 (zh) * 2018-05-23 2019-11-28 南通朗恒通信技术有限公司 被用于无线通信中的定位的方法和装置
US11736210B2 (en) 2017-05-05 2023-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Interference measurements and channel state information feedback for multi-user multiple-in multiple-out

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106603128A (zh) * 2015-10-18 2017-04-26 株式会社Ntt都科摩 生成主码本的配置项的方法和电子设备
WO2017078798A1 (en) * 2015-11-03 2017-05-11 Intel Corporation Antenna port multiplexing
KR20180098032A (ko) * 2017-02-24 2018-09-03 삼성전자주식회사 무선 통신 시스템에서 기준 신호를 전송하기 위한 장치 및 방법
WO2018176324A1 (zh) * 2017-03-30 2018-10-04 华为技术有限公司 数据交互的方法、终端设备及网络设备
CN110999109B (zh) * 2017-05-23 2021-10-22 华为技术有限公司 信道状态信息相关反馈上报和信道状态信息获取
CN109150256B (zh) * 2017-06-16 2022-01-14 华为技术有限公司 通信方法、通信装置和系统
WO2019028860A1 (en) 2017-08-11 2019-02-14 Qualcomm Incorporated SCALABLE METHOD FOR BEAM SELECTION INDICATION
CN109428637B (zh) * 2017-08-28 2022-02-01 华为技术有限公司 一种csi-rs测量反馈方法及设备
CN109495149B (zh) * 2017-09-11 2021-10-15 华为技术有限公司 通信方法、网络设备、终端设备和系统
CN114696928A (zh) * 2017-09-29 2022-07-01 大唐移动通信设备有限公司 一种干扰测量方法、用户终端和网络侧设备
WO2019095309A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 信道状态信息的反馈方法、通信装置和系统
CN109803414B (zh) * 2017-11-17 2021-10-26 华为技术有限公司 资源分配的方法和装置
CN110034802B (zh) 2018-01-12 2021-08-20 大唐移动通信设备有限公司 一种信息传输方法及装置
US10623081B2 (en) 2018-01-29 2020-04-14 Qualcomm Incorporated Autonomous reception beam refinement and tracking
WO2019152849A1 (en) 2018-02-02 2019-08-08 Cornell University Channel charting in wireless systems
CN110290551B (zh) * 2018-03-19 2023-02-28 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112425091A (zh) 2018-07-30 2021-02-26 索尼公司 在无线通信系统中操作设备
JP7422738B2 (ja) * 2018-08-10 2024-01-26 ソニーグループ株式会社 偏波情報共有のための方法
WO2020047774A1 (zh) * 2018-09-05 2020-03-12 华为技术有限公司 信道信息处理方法和装置
EP3888262A1 (en) * 2019-01-29 2021-10-06 Huawei Technologies Co., Ltd. Methods and apparatus for beam management for device communications
CN111726155B (zh) * 2019-03-21 2022-06-10 大唐移动通信设备有限公司 Csi反馈方法、接收方法、终端和网络侧设备
US10778298B1 (en) 2019-03-29 2020-09-15 At&T Intellectual Property I, L.P. Context-based precoding matrix computations for radio access network for 5G or other next generation network
CN110174649A (zh) * 2019-05-07 2019-08-27 加特兰微电子科技(上海)有限公司 射频前端收发装置、车载雷达收发系统
CN111158335B (zh) * 2019-11-19 2021-08-20 潍柴动力股份有限公司 多ecu系统的针脚功能匹配方法及存储介质
CN111479281B (zh) * 2020-04-10 2022-08-19 展讯通信(上海)有限公司 小区测量方法及装置、存储介质、终端
CN113872649B (zh) * 2020-06-30 2023-03-10 华为技术有限公司 一种信道状态信息的反馈方法及通信装置
KR102402854B1 (ko) * 2020-09-01 2022-05-26 주식회사 엘지유플러스 기지국 장치 및 이의 빔포밍 방법
US20230246691A1 (en) * 2020-09-02 2023-08-03 Qualcomm Incorporated Inter-stream interference measurement for non-linear precoding techniques
CN115623497A (zh) * 2021-07-12 2023-01-17 华为技术有限公司 信道信息获取方法和通信装置
WO2024002095A1 (en) * 2022-06-27 2024-01-04 Mediatek Inc. Method and apparatus for uplink signal precoding and reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840868A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种指示和反馈信道质量信息的方法、设备及系统
WO2014161145A1 (en) * 2013-04-02 2014-10-09 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to antenna units, base station and user equipment
WO2015020464A1 (en) * 2013-08-07 2015-02-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2015054895A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Method and apparatus for configuration of csi-rs for 3-d mimo
CN104662812A (zh) * 2012-09-20 2015-05-27 三星电子株式会社 用于在无线通信系统中传送和接收信道状态信息的方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369971B2 (en) * 2011-09-28 2016-06-14 Sharp Kabushiki Kaisha Mobile station device, communication system, communication method, and integrated circuit
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
KR101987232B1 (ko) 2012-11-02 2019-09-30 주식회사 팬택 다중 안테나 시스템에서 참조 신호의 전송장치 및 방법
WO2014113992A1 (zh) * 2013-01-28 2014-07-31 富士通株式会社 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
US20140301492A1 (en) * 2013-03-08 2014-10-09 Samsung Electronics Co., Ltd. Precoding matrix codebook design for advanced wireless communications systems
CN104348592B (zh) 2013-08-02 2019-03-15 夏普株式会社 配置csi过程的方法和基站以及csi反馈方法和用户设备
CN104753628B (zh) * 2013-12-26 2019-12-10 中兴通讯股份有限公司 一种信道信息反馈方法、系统及基站和终端
CN104811229B (zh) * 2014-01-24 2020-09-08 中兴通讯股份有限公司 信道状态信息处理方法、装置、终端及基站
CN105245310B (zh) * 2014-07-09 2020-01-14 中兴通讯股份有限公司 一种下行导频信号的处理方法及系统
KR102574004B1 (ko) * 2015-01-19 2023-09-01 퀄컴 인코포레이티드 Fd-mimo 를 위한 csi 피드백 오버헤드 감축
WO2016115655A1 (en) * 2015-01-19 2016-07-28 Qualcomm Incorporated Enhanced csi feedback for fd-mimo
US20180041973A1 (en) * 2015-01-30 2018-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Estimating Joint CSI based on Multiple CSI Reports
WO2016122395A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) A csi report framework for enhanced separate dimension feedback
CN106033986B (zh) * 2015-03-19 2020-02-04 电信科学技术研究院 一种大规模数模混合天线及信道状态信息反馈方法和装置
CN113708805A (zh) * 2015-03-31 2021-11-26 索尼公司 无线通信系统中的电子设备和无线通信方法
KR102202038B1 (ko) * 2015-07-23 2021-01-12 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662812A (zh) * 2012-09-20 2015-05-27 三星电子株式会社 用于在无线通信系统中传送和接收信道状态信息的方法和装置
CN103840868A (zh) * 2012-11-20 2014-06-04 电信科学技术研究院 一种指示和反馈信道质量信息的方法、设备及系统
WO2014161145A1 (en) * 2013-04-02 2014-10-09 Panasonic Intellectual Property Corporation Of America Method of mapping csi-rs ports to antenna units, base station and user equipment
WO2015020464A1 (en) * 2013-08-07 2015-02-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2015054895A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Method and apparatus for configuration of csi-rs for 3-d mimo

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11736210B2 (en) 2017-05-05 2023-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Interference measurements and channel state information feedback for multi-user multiple-in multiple-out
WO2019141499A1 (en) * 2018-01-16 2019-07-25 Sony Mobile Communications Inc. Operating devices in a wireless communication system
WO2019222935A1 (zh) * 2018-05-23 2019-11-28 南通朗恒通信技术有限公司 被用于无线通信中的定位的方法和装置
CN111971992A (zh) * 2018-05-23 2020-11-20 上海朗帛通信技术有限公司 被用于无线通信中的定位的方法和装置
CN111971992B (zh) * 2018-05-23 2022-06-21 上海朗帛通信技术有限公司 被用于无线通信中的定位的方法和装置
US11470573B2 (en) 2018-05-23 2022-10-11 Shanghai Langbo Communication Technology Company Limited Method and device for positioning in wireless communication
US11895615B2 (en) 2018-05-23 2024-02-06 Shanghai Langbo Communication Technology Company Limited Method and device for positioning in wireless communication

Also Published As

Publication number Publication date
JP2018534836A (ja) 2018-11-22
US10530450B2 (en) 2020-01-07
CN106559121A (zh) 2017-04-05
CN106559121B (zh) 2021-07-09
EP3343796B1 (en) 2020-07-15
US20180212662A1 (en) 2018-07-26
EP3343796A4 (en) 2018-09-19
EP3343796A1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
WO2017050295A1 (zh) 一种多天线信道测量方法和装置
JP7003111B2 (ja) 高度csiフィードバックオーバヘッド低減のための構成可能コードブック
KR102365349B1 (ko) 첨단 무선 통신 시스템에서의 첨단 csi 보고
JP6920416B2 (ja) 更に最適化されたオーバーヘッドを有するマルチビームコードブック
WO2018127151A1 (zh) 一种预编码矩阵指示方法、装置和系统
WO2018028310A1 (zh) 用于确定预编码矩阵的方法和装置
JP6267336B2 (ja) プリコーディングマトリクス指標を決定する方法、受信装置、および送信装置
KR102293682B1 (ko) 첨단 무선 통신 시스템의 csi 보고를 위한 프리코더 코드북
JP2018533865A (ja) Csi報告のためのcsi−rsポート選択のための方法及びシステム
WO2014005257A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
US10469142B2 (en) Advanced CSI reporting for hybrid class A/B operation
WO2014101242A1 (zh) 报告信道状态信息csi的方法、用户设备和基站
WO2012159343A1 (zh) 一种发送分集方法、相关设备及系统
KR20100133883A (ko) 다중 안테나 시스템에서의 코드북 설계 방법 및 데이터 전송 방법
US20220263560A1 (en) Channel state information reporting method and communications apparatus
EP2643988A1 (en) Multi-layer beamforming with partial channel state information
WO2017167156A1 (zh) Dmrs的发送方法及装置
EP2983318B1 (en) Mobile station, base station, and communication control method
WO2017185982A1 (zh) 准共位置类型的处理方法、装置及计算机存储介质
WO2018058464A1 (zh) 传输信号的方法、终端设备和网络设备
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2023272676A1 (en) Systems and methods for uplink codebook based transmission
CN115943721A (zh) 用于ptrs和dmrs端口关联以用于在多个波束上传输pusch的系统和方法
WO2024069543A2 (en) Csi report with cqi values
CN117203905A (zh) 为端口选择码本增强配置W1、W2和Wf的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018515852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848176

Country of ref document: EP