KR102202038B1 - 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치 - Google Patents

다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
KR102202038B1
KR102202038B1 KR1020187002973A KR20187002973A KR102202038B1 KR 102202038 B1 KR102202038 B1 KR 102202038B1 KR 1020187002973 A KR1020187002973 A KR 1020187002973A KR 20187002973 A KR20187002973 A KR 20187002973A KR 102202038 B1 KR102202038 B1 KR 102202038B1
Authority
KR
South Korea
Prior art keywords
dimension
codebook
matrix
csi
antenna
Prior art date
Application number
KR1020187002973A
Other languages
English (en)
Other versions
KR20180025915A (ko
Inventor
박해욱
김기준
박종현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20180025915A publication Critical patent/KR20180025915A/ko
Application granted granted Critical
Publication of KR102202038B1 publication Critical patent/KR102202038B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치가 개시된다. 구체적으로, 2차원(2-dimensional)의 다중 안테나 무선 통신 시스템에서 단말이 코드북 기반으로 신호를 송수신하기 위한 방법에 있어서, 기지국으로부터 다중 안테나 포트를 통해 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 수신하는 단계 및 채널 상태 정보를 상기 기지국에게 보고하는 단계를 포함하고, 상기 채널 상태 정보는 프리코딩 행렬을 지시하기 위한 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator)를 포함하고, 상기 PMI는 코드북으로부터 프리코딩 행렬의 세트를 선택하기 위한 제1 PMI 및 상기 프리코딩 행렬의 세트로부터 하나의 프리코딩 행렬을 선택하기 위한 제2 PMI를 포함하고, 상기 프리코딩 행렬의 세트에 속한 프리코딩 행렬의 제1 차원의 인덱스 및 제2 차원의 인덱스의 쌍은 (x,y), (x+2,y), (x,y+1), (x+1,y+1)이고, 상기 x 및 상기 y는 음수가 아닌 정수일 수 있다.

Description

다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 본 발명에서는 2차원 능동 안테나 시스템(2D AAS: 2-dimensional active antenna system)가 설치된 3차원 다중 입출력(3D MIMO: 3-dimensional Multi-Input Multi-Output) 시스템에서 코드북을 기반하여 신호를 송수신하는 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명의 목적은 2D-AAS 기반 3D MIMO를 지원하는 무선 통신 시스템에서 코드북을 구성하는 방법을 제안한다.
또한, 본 발명의 목적은 2D-AAS 기반 3D MIMO를 지원하는 무선 통신 시스템에서 DFT(discrete Fourier transform) 행렬을 이용한 코드북을 구성하는 방법을 제안한다.
또한, 본 발명의 목적은 2D-AAS 기반 3D MIMO를 지원하는 무선 통신 시스템에서 코드북을 기반으로 신호를 송수신하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 2차원(2-dimensional)의 다중 안테나 무선 통신 시스템에서 단말이 코드북 기반으로 신호를 송수신하기 위한 방법에 있어서, 기지국으로부터 다중 안테나 포트를 통해 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 수신하는 단계 및 채널 상태 정보를 상기 기지국에게 보고하는 단계를 포함하고, 상기 채널 상태 정보는 프리코딩 행렬을 지시하기 위한 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator)를 포함하고, 상기 PMI는 코드북으로부터 프리코딩 행렬의 세트를 선택하기 위한 제1 PMI 및 상기 프리코딩 행렬의 세트로부터 하나의 프리코딩 행렬을 선택하기 위한 제2 PMI를 포함하고, 상기 프리코딩 행렬의 세트에 속한 프리코딩 행렬의 제1 차원의 인덱스 및 제2 차원의 인덱스의 쌍은 (x,y), (x+2,y), (x,y+1), (x+1,y+1)이고, 상기 x 및 상기 y는 음수가 아닌 정수일 수 있다.
본 발명의 다른 일 양상은, 2차원(2-dimensional)의 다중 안테나 무선 통신 시스템에서 기지국이 코드북 기반으로 신호를 송수신하기 위한 방법에 있어서, 다중 안테나 포트를 통해 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 단말에게 전송하는 단계 및 상기 단말로부터 채널 상태 정보를 수신하는 단계를 포함하고, 상기 채널 상태 정보는 프리코딩 행렬을 지시하기 위한 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator)를 포함하고, 상기 PMI는 코드북으로부터 프리코딩 행렬의 세트를 선택하기 위한 제1 PMI 및 상기 프리코딩 행렬의 세트로부터 상기 프리코딩 행렬을 선택하기 위한 제2 PMI를 포함하고, 상기 프리코딩 행렬의 세트에 속한 프리코딩 행렬의 제1 차원의 인덱스 및 제2 차원의 인덱스의 쌍은 (x,y), (x+2,y), (x,y+1), (x+1,y+1)이고, 상기 x 및 상기 y는 음수가 아닌 정수일 수 있다.
바람직하게, 상기 제1 차원의 방향으로 연속되는 상기 프리코딩 행렬의 세트 간의 간격(spacing)은 2일 수 있다.
바람직하게, 상기 코드북은 제1 차원 안테나 포트를 위한 제1 행렬과 제2 차원 안테나 포트를 위한 제2 행렬의 크로네커 곱(Kronecker product)을 기반으로 생성된 프리코딩 행렬로 구성되고, 상기 프리코딩 행렬의 제1 차원의 인덱스에 의해 상기 제1 행렬이 특정되고, 상기 프리코딩 행렬의 제2 차원의 인덱스에 의해 상기 제2 행렬이 특정될 수 있다.
바람직하게, 상기 제1 PMI를 기반으로 상기 프리코딩 행렬의 세트에 속한 프리코딩 행렬의 제1 차원의 인덱스 및 제2 차원의 인덱스의 값이 정해질 수 있다.
바람직하게, 크로스-편파 안테나(cross-plarization)에서 제1 편파 안테나 포트와 제2 편파 안테나 포트 간 위상을 조절하기 위한 인자가 상기 제2 PMI를 기반으로
Figure 112018010697039-pct00001
중 하나로 결정될 수 있다.
바람직하게, 상기 코드북을 구성하는 프리코딩 행렬의 전체 개수는 제1 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 제2 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 상기 제1 차원에서 이용되는 오버샘플링 인자(oversampling factor) 및 상기 제2 차원에서 이용되는 내 오버샘플링 인자(oversampling factor)의 곱으로 정해질 수 있다.
바람직하게, 상기 제1 행렬은 아래 수학식에 의해 생성되는 DFT(Discrete Fourier Transform) 행렬에서 선택된 하나 이상의 열(column)로 구성되고,
[수학식]
Figure 112018010697039-pct00002
여기서, N_h는 제1 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수이며, Q_h는 상기 제1 차원에서 이용되는 오버샘플링 인자(oversampling factor)일 수 있다.
바람직하게, 상기 제2 행렬은 아래 수학식으로 생성되는 DFT(Discrete Fourier Transform) 행렬에서 선택된 하나 이상의 열(column)로 구성되고,
[수학식]
Figure 112018010697039-pct00003
여기서, N_v는 제2 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수이며, Q_v는 상기 제2 차원에서 이용되는 오버샘플링 인자(oversampling factor)일 수 있다.
본 발명의 실시예에 따르면, 특히 2D-AAS 기반 3D MIMO를 지원하는 무선 통신 시스템에서 코드북을 구성하는 방법을 정의함으로써, 송신단과 수신단 간에 원활하게 신호(또는 채널) 송수신을 수행할 수 있다.
또한, 본 발명의 실시예에 따르면, 2D-AAS 기반 3D MIMO를 지원하는 무선 통신 시스템에서 빔포밍 이득(beamforming gain)을 최대화할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 코드북 기반 프리코딩의 기본 개념을 설명하기 위한 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서, 64개의 안테나 요소(antenna elements)를 가지는 2차원 능동 안테나 시스템을 예시한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국 또는 단말이 AAS 기반의 3D(3-Dimension) 빔 형성이 가능한 다수의 송/수신 안테나를 갖고 있는 시스템을 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 교차 편파(cross polarization)를 가지는 2차원 안테나 시스템을 예시한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 2차원 AAS를 예시한다.
도 15 내지 도 44는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 45는 본 발명의 일 실시예에 따른 코드북 기반 신호를 송수신하기 위한 방법을 예시하는 도면이다.
도 46은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬룻으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure 112018010697039-pct00004
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure 112018010697039-pct00005
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
MIMO(Multi-Input Multi-Output)
MIMO 기술은 지금까지 일반적으로 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피하여, 다중 송신(Tx) 안테나와 다중 수신(Rx) 안테나를 사용한다. 다시 말해서, MIMO 기술은 무선 통신 시스템의 송신단 또는 수신단에서 다중 입출력 안테나를 사용하여 용량 증대 또는 성능 개성을 꾀하기 위한 기술이다. 이하에서는 'MIMO'를 '다중 입출력 안테나'라 칭하기로 한다.
더 구체적으로, 다중 입출력 안테나 기술은 하나의 완전한 메시지(total message)를 수신하기 위하여 한 개의 안테나 경로에 의존하지 않으며, 여러 개의 안테나를 통해 수신한 복수의 데이터 조각을 수집하여 완전한 데이터를 완성시킨다. 결과적으로, 다중 입출력 안테나 기술은 특정 시스템 범위 내에서 데이터 전송율을 증가시킬 수 있으며, 또한 특정 데이터 전송율을 통해 시스템 범위를 증가시킬 수 있다.
차세대 이동통신은 기존 이동통신에 비해 훨씬 높은 데이터 전송률을 요구하므로 효율적인 다중 입출력 안테나 기술이 반드시 필요할 것으로 예상된다. 이와 같은 상황에서 MIMO 통신 기술은 이동통신 단말과 중계기 등에 폭넓게 사용할 수 있는 차세대 이동통신 기술이며, 데이터 통신 확대 등으로 인해 한계 상황에 따라 다른 이동통신의 전송량 한계를 극복할 수 있는 기술로서 관심을 모으고 있다.
한편, 현재 연구되고 있는 다양한 전송효율 향상 기술 중 다중 입출력 안테나(MIMO) 기술은 추가적인 주파수 할당이나 전력증가 없이도 통신 용량 및 송수신 성능을 획기적으로 향상시킬 수 있는 방법으로서 현재 가장 큰 주목을 받고 있다.
도 5는 일반적인 다중 입출력 안테나(MIMO) 통신 시스템의 구성도이다.
도 5를 참조하면, 송신 안테나의 수를 N_T개로, 수신 안테나의 수를 N_R개로 동시에 늘리게 되면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가하므로, 전송 레이트(transfer rate)를 향상시키고, 주파수 효율을 획기적으로 향상시킬 수 있다. 이 경우, 채널 전송 용량의 증가에 따른 전송 레이트는 하나의 안테나를 이용하는 경우의 최대 전송 레이트(R_o)에 다음과 같은 레이트 증가율(R_i)이 곱해진 만큼으로 이론적으로 증가할 수 있다.
Figure 112018010697039-pct00006
즉, 예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다.
이와 같은 다중 입출력 안테나의 기술은 다양한 채널 경로를 통과한 심볼들을 이용하여 전송 신뢰도를 높이는 공간 다이버시티(spatial diversity) 방식과, 다수의 송신 안테나를 이용하여 다수의 데이터 심볼을 동시에 송신하여 전송률을 향상시키는 공간 멀티플렉싱(spatial multiplexing) 방식으로 나눌 수 있다. 또한 이러한 두 가지 방식을 적절히 결합하여 각각의 장점을 적절히 얻고자 하는 방식에 대한 연구도 최근 많이 연구되고 있는 분야이다.
각각의 방식에 대해 좀더 구체적으로 살펴보면 다음과 같다.
첫째로, 공간 다이버시티 방식의 경우에는 시공간 블록 부호 계열과, 다이버시티 이득과 부호화 이득을 동시에 이용하는 시공간 트렐리스(Trelis) 부호 계열 방식이 있다. 일반적으로 비트 오류율 개선 성능과 부호 생성 자유도는 트렐리스 부호 방식이 우수하지만, 연산 복잡도는 시공간 블록 부호가 간단하다. 이와 같은 공간 다이버서티 이득은 송신 안테나 수(N_T)와 수신 안테나 수(N_R)의 곱(N_T × N_R)에 해당되는 양을 얻을 수 있다.
둘째로, 공간 멀티플렉싱 기법은 각 송신 안테나에서 서로 다른 데이터 열을 송신하는 방법인데, 이때 수신기에서는 송신기로부터 동시에 전송된 데이터 사이에 상호 간섭이 발생하게 된다. 수신기에서는 이 간섭을 적절한 신호처리 기법을 이용하여 제거한 후 수신한다. 여기에 사용되는 잡음 제거 방식은 MLD(maximum likelihood detection) 수신기, ZF(zero-forcing) 수신기, MMSE(minimum mean square error) 수신기, D-BLAST (Diagonal-Bell Laboratories Layered Space-Time), V-BLAST(Vertical-Bell Laboratories Layered Space-Time) 등이 있으며, 특히 송신단에서 채널 정보를 알 수 있는 경우에는 SVD(singular value decomposition) 방식 등을 사용할 수 있다.
셋째로, 공간 다이버시티와 공간 멀티플렉싱의 결합된 기법을 들 수 있다. 공간 다이버시티 이득만을 얻을 경우 다이버시티 차수의 증가에 따른 성능개선 이득이 점차 포화되며, 공간 멀티플렉싱 이득만을 취하면 무선 채널에서 전송 신뢰도가 떨어진다. 이를 해결하면서 두 가지 이득을 모두 얻는 방식들이 연구되어 왔으며, 이 중 시공간 블록 부호 (Double-STTD), 시공간 BICM(STBICM) 등의 방식이 있다.
상술한 바와 같은 다중 입출력 안테나 시스템에 있어서의 통신 방법을 보다 구체적인 방법으로 설명하기 위해 이를 수학적으로 모델링하는 경우 다음과 같이 나타낼 수 있다.
먼저, 도 5에 도시된 바와 같이 N_T개의 송신 안테나와 N_R개의 수신 안테나가 존재하는 것을 가정한다.
먼저, 송신 신호에 대해 살펴보면, 이와 같이 N_T개의 송신 안테나가 있는 경우 최대 전송 가능한 정보는 N_T개 이므로, 이를 다음과 같은 벡터로 나타낼 수 있다.
Figure 112018010697039-pct00007
한편, 각각의 전송 정보 s_1, s_2, ..., s_N_T에 있어 전송 전력을 달리 할 수 있으며, 이때 각각의 전송 전력을 P_1, P_2, ..., P_N_T라 하면, 전송 전력이 조정된 전송 정보는 다음과 같은 벡터로 나타낼 수 있다.
Figure 112018010697039-pct00008
또한, 수학식 3의 전송 전력이 조정된 전송 정보를 전송 전력의 대각 행렬 P로 다음과 같이 나타낼 수 있다.
Figure 112018010697039-pct00009
한편, 수학식 4의 전송 전력이 조정된 정보 벡터는 그 후 가중치 행렬 W가 곱해져 실제 전송되는 N_T개의 전송 신호 x_1, x_2, ..., x_N_T를 구성한다. 여기서, 가중치 행렬은 전송 채널 상황 등에 따라 전송 정보를 각 안테나에 적절히 분배해 주는 역할을 수행한다. 이와 같은 전송 신호 x_1, x_2, ..., x_N_T를 벡터 x를 이용하여 다음과 같이 나타낼 수 있다.
Figure 112018010697039-pct00010
여기서, w_ij는 i번째 송신 안테나와 j번째 전송 정보간의 가중치를 나타내며, W는 이를 행렬로 나타낸 것이다. 이와 같은 행렬 W를 가중치 행렬(Weight Matrix) 또는 프리코딩 행렬(Precoding Matrix)라 부른다.
한편, 상술한 바와 같은 전송 신호(x)는 공간 다이버시티를 사용하는 경우와 공간 멀티플랙싱을 사용하는 경우로 나누어 생각해 볼 수 있다.
공간 멀티플랙싱을 사용하는 경우는 서로 다른 신호를 다중화하여 보내게 되므로, 정보 벡터 s의 원소들이 모두 다른 값을 가지게 되는 반면, 공간 다이버시티를 사용하게 되면 같은 신호를 여러 채널 경로를 통하여 보내게 되므로 정보 벡터 s의 원소들이 모두 같은 값을 갖게 된다.
물론, 공간 멀티플랙싱과 공간 다이버시티를 혼합하는 방법도 고려 가능하다. 즉, 예를 들어 3 개의 송신 안테나를 통하여 같은 신호를 공간 다이버시티를 이용하여 전송하고, 나머지는 각각 다른 신호를 공간 멀티플랙싱하여 보내는 경우도 고려할 수 있다.
다음으로, 수신신호는 N_R개의 수신 안테나가 있는 경우, 각 안테나의 수신신호 y_1, y_2, ..., y_N_R을 벡터 y로 다음과 같이 나타내기로 한다.
Figure 112018010697039-pct00011
한편, 다중 입출력 안테나 통신 시스템에 있어서의 채널을 모델링하는 경우, 각각의 채널은 송수신 안테나 인덱스에 따라 구분할 수 있으며, 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 h_ij로 표시하기로 한다. 여기서, h_ij의 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신안테나의 인덱스가 나중임에 유의한다.
이러한 채널은 여러 개를 한데 묶어서 벡터 및 행렬 형태로도 표시 가능하다. 벡터 표시의 예를 들어 설명하면 다음과 같다.
도 6은 다수의 송신 안테나에서 하나의 수신 안테나로의 채널을 나타낸 도이다.
도 6에 도시된 바와 같이 총 N_T개의 송신 안테나로부터 수신안테나 i로 도착하는 채널은 다음과 같이 표현 가능하다.
Figure 112018010697039-pct00012
또한, 상기 수학식 7과 같은 행렬 표현을 통해 N_T개의 송신 안테나로부터 N_R개의 수신 안테나를 거치는 채널을 모두 나타내는 경우 다음과 같이 나타낼 수 있다.
Figure 112018010697039-pct00013
한편, 실제 채널은 위와 같은 채널 행렬 H를 거친 후에 백색 잡음(AWGN: Additive White Gaussian Noise)가 더해지게 되므로, N_R개의 수신 안테나 각각에 더해지는 백색 잡음 n_1, n_2, ..., n_N_R을 백터로 표현하면 다음과 같다.
Figure 112018010697039-pct00014
상술한 바와 같은 전송 신호, 수신 신호, 채널, 및 백색 잡음의 모델링을 통해 다중 입출력 안테나 통신 시스템에서의 각각은 다음과 같은 관계를 통해 나타낼 수 있다.
Figure 112018010697039-pct00015
한편, 채널의 상태를 나타내는 채널 행렬 H의 행과 열의 수는 송수신 안테나 수에 의해서 결정된다. 채널 행렬 H는 앞서 살펴본 바와 같이 행의 수는 수신 안테나의 수 N_R과 같아지고, 열의 수는 송신 안테나의 수 N_T와 같아지게 된다. 즉, 채널 행렬 H는 N_R×N_T 행렬이 된다.
일반적으로, 행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수보다 클 수 없게 된다. 수식적으로 예를 들면, 채널 행렬 H의 랭크(rank(H))는 다음과 같이 제한된다.
Figure 112018010697039-pct00016
또한, 행렬을 고유치 분해(Eigen value decomposition)를 하였을 때, 랭크는 고유치(eigen value)들 중에서 0이 아닌 고유치들의 개수로 정의할 수 있다. 비슷한 방법으로, 랭크를 SVD(singular value decomposition) 했을 때 0이 아닌 특이값(singular value)들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 명세서에 있어, MIMO 전송에 대한 '랭크(Rank)'는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수'는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
이하, 앞서 설명한 MIMO 전송 기법들과 관련하여, 코드북 기반 프리코딩 기법에 대하여 보다 구체적으로 살펴본다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 코드북 기반 프리코딩의 기본 개념을 설명하기 위한 도면이다.
코드북 기반 프리코딩 방식에 따를 경우, 송신단과 수신단은 전송 랭크, 안테나 개수 등에 따라 미리 정해진 소정 개수의 프리코딩 행렬들을 포함하는 코드북 정보를 공유하게 된다.
즉, 피드백 정보가 유한한(finite) 경우에 프리코딩 기반 코드북 방식이 사용될 수 있다.
수신단은 수신 신호를 통해 채널 상태를 측정하여, 상술한 코드북 정보를 기반으로 유한한 개수의 선호하는 프리코딩 행렬 정보(즉, 해당 프리코딩 행렬의 인덱스)를 송신단에 피드백할 수 있다. 예를 들어, 수신단에서는 ML(Maximum Likelihood) 또는 MMSE(Minimum Mean Square Error) 방식으로 수신 신호를 측정하여 최적의 프리코딩 행렬을 선택할 수 있다.
도 7에서는 수신단이 송신단에 프리코딩 행렬 정보를 코드워드별로 전송하는 것을 도시하고 있으나, 이에 한정될 필요는 없다.
수신단으로부터 피드백 정보를 수신한 송신단은 수신된 정보에 기반하여 코드북으로부터 특정 프리코딩 행렬을 선택할 수 있다. 프리코딩 행렬을 선택한 송신단은 전송 랭크에 대응하는 개수의 레이어 신호에 선택된 프리코딩 행렬을 곱하는 방식으로 프리코딩을 수행하며, 프리코딩이 수행된 전송 신호를 복수의 안테나를 통해 전송할 수 있다. 프리코딩 행렬에서 행(row)의 개수는 안테나의 개수와 동일하며, 열(column)의 개수는 랭크 값과 동일하다. 랭크 값은 레이어의 개수와 동일하므로, 열(column)의 개수는 레이어 개수와 동일하다. 예를 들어, 전송 안테나의 개수가 4이고 레이어의 개수가 2인 경우에는 프리코딩 행렬이 4×2 행렬로 구성될 수 있다. 아래의 수학식 12는 이러한 경우의 프리코딩 행렬을 통하여 각각의 레이어에 매핑된 정보를 각각의 안테나에 매핑시키는 동작을 나타내는 것이다.
Figure 112018010697039-pct00017
수학식 12를 참조하면, 레이어에게 매핑된 정보는 x_1, x_2이고, 4×2 행렬의 각 요소 P_ij는 프리코딩에 사용되는 가중치이다. y_1, y_2, y_3, y_4는 안테나에 매핑되는 정보로서 각 OFDM 전송방식을 사용하여 각각의 안테나를 통하여 전송될 수 있다.
송신단에서 프리코딩되어 전송된 신호를 수신한 수신단은 송신단에서 이루어진 프리코딩의 역처리를 수행하여 수신 신호를 복원할 수 있다. 일반적으로 프리코딩 행렬은 U·U^H = I (여기서, U^H는 행렬 U의 에르미트(Hermit) 행렬을 의미함)와 같은 유니터리 행렬(U) 조건을 만족하는바, 상술한 프리코딩의 역처리는 송신단의 프리코딩에 이용된 프리코딩 행렬(P)의 에르미트(Hermit) 행렬(P^H)을 수신 신호에 곱하는 방식으로 이루어질 수 있다.
또한, 프리코딩은 다양한 방식의 안테나 구성에 대해서 양호한 성능을 가질 것이 요구되므로, 코드북 설계에 있어서 다양한 안테나 구성에 대한 성능을 고려할 필요가 있다. 이하에서는 다중 안테나의 예시적인 구성에 대하여 설명한다.
기존의 3GPP LTE 시스템(예를 들어, 3GPP LTE 릴리즈-8 또는 9 표준에 따른 시스템)에서는 하향링크에서 최대 4개의 전송 안테나를 지원하므로 4 전송 안테나에 대한 코드북이 설계되어 있다. 기존의 3GPP LTE의 진화인 3GPP LTE-A 시스템에서는 하향링크에서 최대 8 전송 안테나를 지원할 수 있다. 따라서, 최대 8 전송 안테나를 통한 하향링크 전송에 대하여 양호한 성능을 제공하는 프리코딩 코드북을 설계하는 것이 요구된다.
또한, 코드북 설계에 있어서는, 일정 계수 특성(constant modulus property), 유한 알파벳(infinite alphabet), 코드북 크기에 대한 제한, 네스티드 특성(nested property), 다양한 안테나 구성(antenna configuration)에 대한 양호한 성능을 제공할 것 등이 일반적으로 요구된다.
일정 계수 특성이란, 코드북을 구성하는 프리코딩 행렬의 각각의 채널 요소(channel component)의 크기(amplitude)가 일정한 특성을 의미한다. 이러한 특성에 따르면, 어떤 프리코딩 행렬이 사용되는지에 무관하게, 모든 안테나 각각으로부터 전송되는 전력 레벨이 동일하게 유지될 수 있다. 이에 따라, 전력 증폭기(Power Amplifier) 사용의 효율성을 높일 수 있다.
유한 알파벳(finite alphabet)이란, 예를 들어, 2 개의 전송 안테나의 경우에 프리코딩 행렬들을 스케일링 인자(scaling factor)를 제외하고 QPSK(Quadrature Phase Shift Keying) 알파벳 (즉, ±1, ±j) 만을 사용하여 구성하는 것을 의미한다. 이에 따라, 프리코더에서 프리코딩 행렬을 승산(multiplication)함에 있어서 계산의 복잡성을 완화할 수 있다.
코드북 크기는 소정의 크기 이하로 제한될 수 있다. 코드북의 크기가 클수록 다양한 경우에 대한 프리코딩 행렬들을 포함할 수 있으므로 채널 상태를 보다 정 밀하게 반영할 수 있지만, 그에 따라 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator)의 비트수가 증가하게 되고 이는 시그널링 오버헤드를 야기할 수 있기 때문이다.
네스티드 특성(nested property)이란, 높은 랭크 프리코딩 행렬의 일부분이 낮은 랭크 프리코딩 행렬로 구성되는 것을 의미한다. 이와 같이 프리코딩 행렬이 구성되면, 단말로부터 보고된 RI(Rank Indicator)에서 나타내는 채널 랭크보다 낮은 전송 랭크로 하향링크 전송을 하도록 기지국이 결정하는 경우에도, 적절한 성능을 보장할 수 있다. 또한, 이 특성에 따라 CQI(Channel Quality Information) 계산의 복잡성도 감소할 수 있다. 왜냐하면, 상이한 랭크에 대해 설계된 프리코딩 행렬들 중에서 프리코딩 행렬을 선택하는 동작을 할 때에, 프리코딩 행렬 선택을 위한 계산이 일부분 공유될 수 있기 때문이다.
다양한 안테나 구성(antenna configuration)에 대한 양호한 성능을 제공한다는 것은, 낮은 상관을 가진 안테나 구성, 높은 상관을 가진 안테나 구성 또는 크로스-편극 안테나 구성 등의 다양한 경우에 대해서 일정 기준 이상의 성능을 제공할 것이 요구된다는 의미이다.
참조 신호(RS: Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 상태 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 상태 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 무선 자원 무선 자원 관리(RRM: Radio Resource Management) 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 8을 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 8(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 8(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 즉, 이 CRS는 cell-specific한 시그널로, 광대역에 대해서 매 서브 프레임마다 전송된다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측(기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템(예를 들어, 릴리즈-8)에서는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 RS가 전송된다. 하향링크 신호 송신 측은 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다. 기지국의 송신 안테나가 4개일 경우 한 RB 에서의 CRS 패턴은 도 8과 같다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
이하 DRS에 대하여 좀 더 상세하게 기술하면, DRS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화(precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경없이 사용된다.
3GPP LTE 시스템(예를 들어, 릴리즈-8)은 최대로 4개의 전송 안테나를 지원하고, 랭크 1 빔포밍(beamforming)을 위한 DRS가 정의된다. 랭크 1 빔포밍을 위한 DRS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 하위 호환성(backward compatibility), 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서 LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation-RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
데이터 복조를 위해서 해당 시간-주파수 영역에서 스케줄링 된 UE에게 전용적(dedicated)으로 DM-RS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송되는 것이다.
LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS를 매 서브 프레임마다 전 대역에 전송하게 되면 RS 오버헤드가 지나치게 커지게 된다. 따라서 LTE-A 시스템에서는 MCS, PMI 등의 선택을 위한 CSI 측정 목적의 CSI-RS와 데이터 복조를 위한 DM-RS로 분리되어 두 개의 RS가 추가되었다. CSI-RS는 RRM 측정 등의 목적으로도 사용될 수는 있지만 CSI 획득의 주목적을 위해서 디자인되었다. CSI-RS는 데이터 복조에 사용되지 않으므로 매 서브 프레임마다 전송될 필요는 없다. 그러므로 CSI-RS의 오버헤드를 줄이기 위하여 시간 축 상에서 간헐적으로 전송하도록 한다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
데이터 복조를 위해서는 해당 시간-주파수 영역에서 스케줄링 된 UE에게 dedicated하게 DM-RS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송된다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통해 전송된다. 이때, 사용되는 안테나 포트는 각각 p=15, p=15,16, p=15,...,18, p=15,...,22이다. CSI-RS는 서브캐리어 간격 Δf=15kHz에 대해서만 정의될 수 있다.
CSI-RS 전송을 위해 설정된 서브프레임 내에서, CSI-RS 시퀀스는 아래 수학식 13과 같이 각 안테나 포트(p) 상의 참조 심볼(reference symbol)로서 이용되는 복소 변조 심볼(complex-valued modulation symbol) a_k,l^(p)에 매핑된다.
Figure 112018010697039-pct00018
상기 수학식 13에서, (k',l')(여기서, k'는 자원 블록 내 부반송파 인덱스이고, l'는 슬롯 내 OFDM 심볼 인덱스를 나타낸다.) 및 n_s의 조건은 아래 표 3 또는 표 4와 같은 CSI-RS 설정(configuration)에 따라 결정된다.
표 3는 일반 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure 112018010697039-pct00019
표 4는 확장 CP에서 CSI-RS 구성으로부터 (k',l')의 매핑을 예시한다.
Figure 112018010697039-pct00020
표 3 및 표 4를 참조하면, CSI-RS의 전송에 있어서, 이종 네트워크(HetNet: heterogeneous network) 환경을 포함하여 멀티 셀 환경에서 셀간 간섭(ICI: inter-cell interference)을 줄이기 위하여 최대 32개(일반 CP 경우) 또는 최대 28개(확장 CP 경우)의 서로 다른 구성(configuration)이 정의된다.
CSI-RS 구성은 셀 내의 안테나 포트의 개수 및 CP에 따라 서로 다르며, 인접한 셀은 최대한 서로 다른 구성을 가질 수 있다. 또한, CSI-RS 구성은 프레임 구조에 따라 FDD 프레임과 TDD 프레임에 모두 적용하는 경우와 TDD 프레임에만 적용하는 경우로 나눠질 수 있다.
표 3 및 표 4를 기반으로 CSI-RS 구성에 따라 (k',l') 및 n_s가 정해지고, 각 CSI-RS 안테나 포트에 따라 CSI-RS 전송에 이용하는 시간-주파수 자원이 결정된다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 참조 신호가 매핑되는 자원을 예시하는 도면이다.
도 9(a)는 1개 또는 2개의 CSI-RS 안테나 포트들에 의한 CSI-RS 전송에 사용 가능한 20가지 CSI-RS 구성들을 나타낸 것이고, 도 9(b)는 4개의 CSI-RS 안테나 포트들에 의해 사용 가능한 10가지 CSI-RS 구성들을 나타낸 것이며, 도 9(c)는 8개의 CSI-RS 안테나 포트들에 의해 CSI-RS 전송에 사용 가능한 5가지 CSI-RS 구성들을 나타낸 것이다.
이와 같이, 각 CSI-RS 구성에 따라 CSI-RS가 전송되는 무선 자원(즉, RE 쌍)이 결정된다.
특정 셀에 대하여 CSI-RS 전송을 위해 1개 혹은 2개의 안테나 포트가 설정되면, 도 9(a)에 도시된 20가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
마찬가지로, 특정 셀에 대하여 CSI-RS 전송을 위해 4개의 안테나 포트가 설정되면, 도 9(b)에 도시된 10가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다. 또한, 특정 셀에 대하여 CSI-RS 전송을 위해 8개의 안테나 포트가 설정되면, 도 9(c)에 도시된 5가지 CSI-RS 구성들 중 설정된 CSI-RS 구성에 따른 무선 자원 상에서 CSI-RS가 전송된다.
2개의 안테나 포트 별(즉, {15,16}, {17,18}, {19,20}, {21,22})로 각각의 안테나 포트에 대한 CSI-RS는 동일한 무선 자원에 CDM되어 전송된다. 안테나 포트 15 및 16를 예를 들면, 안테나 포트 15 및 16에 대한 각각의 CSI-RS 복소 심볼은 동일하나, 서로 다른 직교 코드(예를 들어, 왈시 코드(walsh code)가 곱해져서 동일한 무선 자원에 매핑된다. 안테나 포트 15에 대한 CSI-RS의 복소 심볼에는 [1, 1]이 곱해지고, 안테나 포트 16에 대한 CSI-RS의 복소 심볼에는 [1 -1]이 곱해져서 동일한 무선 자원에 매핑된다. 이는 안테나 포트 {17,18}, {19,20}, {21,22}도 마찬가지이다.
UE는 전송된 심볼에 곱해진 코드를 곱하여 특정 안테나 포트에 대한 CSI-RS를 검출할 수 있다. 즉, 안테나 포트 15에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 1]을 곱하고, 안테나 포트 16에 대한 CSI-RS를 검출하기 위해서 곱해진 코드 [1 -1]을 곱한다.
도 9(a) 내지 (c)를 참조하면, 동일한 CSI-RS 구성 인덱스에 해당하게 되면, 안테나 포트 수가 많은 CSI-RS 구성에 따른 무선 자원은 CSI-RS 안테나 포트 수가 적은 CSI-RS 구성에 따른 무선 자원을 포함한다. 예를 들어, CSI-RS 구성 0의 경우, 8개 안테나 포트 수에 대한 무선 자원은 4개 안테나 포트 수에 대한 무선 자원과 1 또는 2개의 안테나 포트 수에 대한 무선 자원을 모두 포함한다.
하나의 셀에서 복수의 CSI-RS 구성이 사용될 수 있다. 넌-제로 전력(NZP: non-zero power) CSI-RS는 0개 또는 1개 CSI-RS 구성만이 이용되고, 제로 전력(ZP: zero power) CSI-RS는 0개 또는 여러 개의 CSI-RS 구성이 이용될 수 있다.
상위 계층에 의해 설정되는 16 비트의 비트맵인 ZP CSI-RS(ZeroPowerCSI-RS)에서 1로 설정된 각 비트 별로, UE는 위의 표 3 및 표 4의 4개의 CSI-RS 열(column)에 해당하는 RE들에서(상위 계층에 의해 설정된 NZP CSI-RS를 가정하는 RE와 중복되는 경우를 제외) 제로 전송 전력을 가정한다. 최상위 비트(MSB: Most Significant Bit)는 가장 낮은 CSI-RS 구성 인덱스에 해당하고, 비트맵 내에서 그 다음의 비트는 순서대로 다음의 CSI-RS 구성 인덱스에 해당한다.
CSI-RS는 위의 표 3 및 표 4에서 (n_s mod 2)의 조건을 만족하는 하향링크 슬롯 및 CSI-RS 서브프레임 구성을 만족하는 서브프레임에서만 전송된다.
프레임 구조 타입 2(TDD)의 경우, 스페셜 서브프레임, 동기 신호(SS), PBCH 또는 SIB 1(SystemInformationBlockType1) 메시지 전송과 충돌되는 서브프레임 또는 페이징 메시지 전송을 위해 설정된 서브프레임에서 CSI-RS는 전송되지 않는다.
또한, 안테나 포트 세트 S(S={15}, S={15,16}, S={17,18}, S={19,20} 또는 S={21,22}) 내 속하는 어떠한 안테나 포트에 대한 CSI-RS가 전송되는 RE는 PDSCH 또는 다른 안테나 포트의 CSI-RS 전송에 사용되지 않는다.
CSI-RS 전송에 사용되는 시간-주파수 자원들은 데이터 전송에 사용될 수 없으므로, CSI-RS 오버헤드가 증가할수록 데이터 처리량(throughput)이 감소하게 된다. 이를 고려하여 CSI-RS는 매 서브프레임마다 전송되도록 구성되지 않고, 다수의 서브프레임에 해당하는 소정의 전송 주기마다 전송되도록 구성된다. 이 경우, 매 서브프레임마다 CSI-RS가 전송되는 경우에 비하여 CSI-RS 전송 오버헤드가 많이 낮아질 수 있다.
CSI-RS 전송을 위한 서브프레임 주기(이하, 'CSI 전송 주기'로 지칭함)(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)은 아래 표 5과 같다.
표 5은 CSI-RS 서브프레임 구성을 예시한다.
Figure 112018010697039-pct00021
표 5을 참조하면, CSI-RS 서브프레임 구성(I_CSI-RS)에 따라 CSI-RS 전송 주기(T_CSI-RS) 및 서브프레임 오프셋(Δ_CSI-RS)이 결정된다.
표 5의 CSI-RS 서브프레임 구성은 앞서 'SubframeConfig' 필드 및 'zeroTxPowerSubframeConfig' 필드 중 어느 하나로 설정될 수 있다. CSI-RS 서브프레임 구성은 NZP CSI-RS 및 ZP CSI-RS에 대하여 개별적으로(separately) 설정될 수 있다.
CSI-RS를 포함하는 서브프레임은 아래 수학식 14를 만족한다.
Figure 112018010697039-pct00022
수학식 14에서 T_CSI-RS는 CSI-RS 전송 주기, Δ_CSI-RS는 서브프레임 오프셋 값, n_f는 시스템 프레임 넘버, n_s는 슬롯 넘버를 의미한다.
서빙 셀에 대해 전송 모드 9(transmission mode 9)가 설정된 UE의 경우, UE는 하나의 CSI-RS 자원 구성이 설정될 수 있다. 서빙 셀에 대해 전송 모드 10(transmission mode 10)이 설정된 UE의 경우, UE는 하나 또는 그 이상의 CSI-RS 자원 구성(들)이 설정될 수 있다.
현재 LTE 표준에서 CSI-RS 구성은 안테나 포트 개수(antennaPortsCount), 서브프레임 구성(subframeConfig), 자원 구성(resourceConfig) 등으로 구성되어 있어, CSI-RS가 몇 개의 안테나 포트에서 전송되는지, CSI-RS가 전송될 서브프레임의 주기 및 오프셋이 어떻게 되는지, 그리고 해당 서브프레임에서 어떤 RE 위치(즉, 주파수와 OFDM 심볼 인덱스)에서 전송되는지 알려준다.
구체적으로 각 CSI-RS (자원) 구성을 위한 아래와 같이 파라미터가 상위 계층 시그널링을 통해 설정된다.
- 전송 모드 10이 설정된 경우, CSI-RS 자원 구성 식별자
- CSI-RS 포트 개수(antennaPortsCount): CSI-RS 전송을 위해 사용되는 안테나 포트의 개수를 나타내는 파라미터(예를 들어, 1 CSI-RS 포트, 2 CSI-RS 포트, 4 CSI-RS 포트, 8 CSI-RS 포트)
- CSI-RS 구성(resourceConfig) (표 3 및 표 4 참조): CSI-RS 할당 자원 위치에 관한 파라미터
- CSI-RS 서브프레임 구성(subframeConfig, 즉 I_CSI-RS) (표 5 참조): CSI-RS가 전송될 서브프레임 주기 및/또는 오프셋에 관한 파라미터
- 전송 모드 9가 설정된 경우, CSI 피드백을 위한 전송 파워(P_C): 피드백을 위한 참조 PDSCH 전송 파워에 대한 UE의 가정과 관련하여, UE가 CSI 피드백을 도출하고 1 dB 단계 크기로 [-8, 15] dB 범위 내에서 값을 취할 때, P_C는 PDSCH RE 당 에너지(EPRE: Energy Per Resource Element)와 CSI-RS EPRE의 비율로 가정된다.
- 전송 모드 10이 설정된 경우, 각 CSI 프로세스에 대하여 CSI 피드백을 위한 전송 파워(P_C). CSI 프로세스에 대하여 CSI 서브프레임 세트들 C_CSI,0 및 C_CSI,1가 상위 계층에 의해 설정되면, P_C는 CSI 프로세스의 각 CSI 서브프레임 세트 별로 설정된다.
- 임의 랜덤(pseudo-rnadom) 시퀀스 발생기 파라미터(n_ID)
- 전송 모드 10이 설정된 경우, QCL(QuasiCo-Located) 타입 B UE 가정을 위한 QCL 스크램블링 식별자(qcl-ScramblingIdentity-r11), CRS 포트 카운트(crs-PortsCount-r11), MBSFN 서브프레임 설정 리스트(mbsfn-SubframeConfigList-r11) 파라미터를 포함하는 상위 계층 파라미터('qcl-CRS-Info-r11')
UE가 도출한 CSI 피드백 값이 [-8, 15] dB 범위 내의 값을 가질 때, P_C는 CSI-RS EPRE에 대한 PDSCH EPRE의 비율로 가정된다. 여기서, PDSCH EPRE는 CRS EPRE에 대한 PDSCH EPRE의 비율이 ρ_A인 심볼에 해당한다.
서빙 셀의 동일한 서브프레임에서 CSI-RS와 PMCH이 함께 설정되지 않는다.
프레임 구조 타입 2에서 4개의 CRS 안테나 포트가 설정된 경우, UE는 일반 CP의 경우 [20-31] 세트(표 3 참조) 또는 확장 CP의 경우 [16-27] 세트(표 4 참조)에 속하는 CSI-RS 구성 인덱스가 설정되지 않는다.
UE는 CSI-RS 자원 구성의 CSI-RS 안테나 포트가 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay)에 대하여 QCL 관계를 가진다고 가정할 수 있다.
전송 모드 10 그리고 QCL 타입 B가 설정된 UE는 CSI-RS 자원 구성에 해당하는 안테나 포트 0-3과 CSI-RS 자원 구성에 해당하는 안테나 포트 15-22가 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift)에 대하여 QCL 관계라고 가정할 수 있다.
전송 모드 1-9가 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나의 ZP CSI-RS 자원 구성이 설정될 수 있다. 전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 UE는 하나 또는 그 이상의 ZP CSI-RS 자원 구성이 설정될 수 있다.
상위 계층 시그널링을 통해 ZP CSI-RS 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 리스트(zeroTxPowerResourceConfigList) (표 3 및 표 4 참조): 제로-파워 CSI-RS 구성에 관한 파라미터
- ZP CSI-RS 서브프레임 구성(eroTxPowerSubframeConfig, 즉 I_CSI-RS) (표 5 참조): 제로-파워 CSI-RS가 전송되는 서브프레임 주기 및/또는 오프셋에 관한 파라미터
서빙 셀의 동일한 서브프레임에서 ZP CSI-RS와 PMCH가 동시에 설정되지 않는다.
전송 모드 10이 설정된 UE의 경우, 서빙 셀에 대하여 하나 또는 그 이상의 CSI-IM(Channel-State Information - Interference Measurement) 자원 구성이 설정될 수 있다.
상위 계층 시그널링을 통해 각 CSI-IM 자원 구성을 위한 아래와 같은 파라미터가 설정될 수 있다.
- ZP CSI-RS 구성 (표 3 및 표 4 참조)
- ZP CSI RS 서브프레임 구성(I_CSI-RS) (표 5 참조)
CSI-IM 자원 구성은 설정된 ZP CSI-RS 자원 구성 중 어느 하나와 동일하다.
서빙 셀의 동일한 서브프레임 내 CSI-IM 자원과 PMCH가 동시에 설정되지 않는다.
매시브 MIMO(Massive MIMO)
다수의 안테나를 가지는 MIMO 시스템을 매시브 MIMO(Massive MIMO) 시스템으로 지칭할 수 있으며, 스펙트럼 효율(spectral efficiency), 에너지 효율(energy efficiency), 프로세싱 복잡도(processing complexity)를 향상 시키기 위한 수단으로써 주목 받고 있다.
최근 3GPP에서는 미래의 이동 통신 시스템의 스펙트럼 효율성에 대한 요구사항을 만족시키기 위하여 매시브 MIMO 시스템에 대한 논의가 시작되었다. 매시브 MIMO는 전-차원 MIMO(FD-MIMO: Full-Dimension MIMO)로도 지칭된다.
LTE 릴리즈(Rel: release)-12 이후의 무선 통신 시스템에서는 능동 안테나 시스템(AAS: Active Antenna System)의 도입이 고려되고 있다.
신호의 위상 및 크기를 조정할 수 있는 증폭기와 안테나가 분리되어 있는 기존의 수동 안테나 시스템과 달리, AAS는 각각의 안테나가 증폭기와 같은 능동 소자를 포함하도록 구성된 시스템을 의미한다.
AAS는 능동 안테나 사용에 따라 증폭기와 안테나를 연결하기 위한 별도의 케이블, 커넥터, 기타 하드웨어 등이 필요하지 않고, 따라서 에너지 및 운용 비용 측면에서 효율성이 높은 특징을 갖는다. 특히, AAS는 각 안테나 별 전자식 빔 제어(electronic beam control) 방식을 지원하기 때문에 빔 방향 및 빔 폭을 고려한 정교한 빔 패턴 형성 또는 3차원 빔 패턴을 형성하는 등의 진보된 MIMO 기술을 가능하게 한다.
AAS 등의 진보된 안테나 시스템의 도입으로 다수의 입출력 안테나와 다차원 안테나 구조를 갖는 대규모 MIMO 구조 또한 고려되고 있다. 일례로, 기존의 일자 형 안테나 배열과 달리 2차원(2D: 2-Dimension) 안테나 배열을 형성할 경우, AAS의 능동 안테나에 의해 3차원 빔 패턴을 형성할 수 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서, 64개의 안테나 요소(antenna elements)를 가지는 2차원 능동 안테나 시스템을 예시한다.
도 10에서는 일반적인 2차원(2D: 2 Dimension) 안테나 배열을 예시하고 있으며, 도 10과 같이 N_t=N_v·N_h개의 안테나가 정방형의 모양을 갖는 경우를 고려할 수 있다. 여기서, N_h는 수평 방향으로 안테나 열의 개수를 N_v는 수직 방향으로 안테나 행의 개수를 나타낸다.
이러한 2D 구조의 안테나 배열을 이용하면, 3차원 공간에서 전송 빔을 제어할 수 있도록 무선 파장(radio wave)이 수직 방향(고도(elevation)) 및 수평 방향(방위각(azimuth))으로 모두 제어될 수 있다. 이러한 타입의 파장 제어 메커니즘을 3차원 빔포밍으로 지칭할 수 있다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 기지국 또는 단말이 AAS 기반의 3D(3-Dimension) 빔 형성이 가능한 다수의 송/수신 안테나를 갖고 있는 시스템을 예시한다.
도 11은 앞서 설명한 예를 도식화한 것으로서, 2차원 안테나 배열(즉, 2D-AAS)를 이용한 3D MIMO 시스템을 예시한다.
송신 안테나 관점에서 상기 3차원 빔 패턴을 활용할 경우, 빔의 수평 방향뿐만 아니라 수직 방향으로의 준-정적 또는 동적인 빔 형성을 수행할 수 있으며 일례로 수직 방향의 섹터 형성 등의 응용을 고려할 수 있다.
또한, 수신 안테나 관점에서는 대규모 수신 안테나를 활용하여 수신 빔을 형성할 때, 안테나 배열 이득(antenna array gain)에 따른 신호 전력 상승 효과를 기대할 수 있다. 따라서, 상향링크의 경우, 기지국이 다수의 안테나를 통해 단말로부터 전송되는 신호를 수신할 수 있으며, 이때 단말은 간섭 영향을 줄이기 위해 대규모 수신 안테나의 이득을 고려하여 자신의 송신 전력을 매우 낮게 설정할 수 있는 장점이 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 교차 편파(cross polarization)를 가지는 2차원 안테나 시스템을 예시한다.
편파(Polarization)를 고려한 2D 평면 배열 안테나(planar antenna array) 모델의 경우, 도 12와 같이 도식화할 수 있다.
수동적 안테나(passive antenna)에 따른 기존의 MIMO 시스템과 달리, 능동 안테나에 기반한 시스템은 각 안테나 요소에 부착된(또는 포함된) 능동 소자(예를 들어, 증폭기)에 가중치를 적용함으로써 안테나 요소의 이득(gain)을 동적으로 조절할 수 있다. 방사 패턴(radiation pattern)은 안테나 요소의 개수, 안테나 간격(spacing) 등과 같은 안테나 배치(arrangement)에 의존하므로, 안테나 시스템은 안테나 요소 레벨에서 모델링될 수 있다.
도 12의 예시와 같은 안테나 배열 모델을 (M, N, P)로 나타낼 수 있으며, 이는 안테나 배열 구조를 특징 짓는 파라미터에 해당된다.
M은 각 열(즉, 수직 방향에서)에서 같은 편파(polarization)를 가지고 있는 안테나 요소(antenna element)의 개수(즉, 각 열에서 +45°경사(slant)를 가지고 있는 안테나 요소의 개수 또는 각 열에서 -45°경사(slant)를 가지고 있는 안테나 요소의 개수)를 나타낸다.
N은 수평 방향의 열의 개수(즉, 수평 방향에서 안테나 요소의 개수)를 나타낸다.
P는 편파(polarization)의 차원(dimension)의 개수를 나타낸다. 도 12의 경우와 같이 교차 편파(cross polarization)의 경우 P=2이나, 동일 편파(co-polarization)의 경우 P=1이다.
안테나 포트(antenna port)는 물리적 안테나 요소(physical antenna element)로 매핑될 수 있다. 안테나 포트(antenna port)는 해당 안테나 포트와 관련된 참조 신호에 의해 정의될 수 있다. 예를 들어, LTE 시스템에서 안테나 포트 0는 CRS(Cell-specific Reference Signal)와 관련되고, 안테나 포트 6는 PRS(Positioning Reference Signal)와 관련될 수 있다.
일례로, 안테나 포트와 물리적 안테나 요소 간은 일대일 매핑될 수 있다. 단일의 교차 편파(cross polarization) 안테나 요소가 하향링크 MIMO 또는 하향링크 전송 다이버시티를 위해 사용되는 경우 등이 이에 해당될 수 있다. 예를 들어, 안테나 포트 0는 하나의 물리적 안테나 요소에 매핑되는 반면, 안테나 포트 1은 다른 물리적 안테나 요소에 매핑될 수 있다. 이 경우, 단말 입장에서는, 2개의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 참조 신호와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 참조 신호와 관련된다.
다른 일례로, 단일의 안테나 포트는 다중의 물리적 안테나 요소에 매핑될 수 있다. 빔포밍(beamforming)을 위해 사용되는 경우 등이 이에 해당될 수 있다. 빔포밍은 다중의 물리적 안테나 요소를 이용함으로써, 하향링크 전송이 특정 단말에게 향하도록 할 수 있다. 일반적으로 다중의 교차 편파(cross polarization) 안테나 요소의 다중의 열(column)로 구성되는 안테나 배열(antenna array)를 사용하여 이를 달성할 수 있다. 이 경우, 단말 입장에서는, 단일의 안테나 포트로부터 발생된 단일의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 CRS와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 CRS와 관련된다.
즉, 안테나 포트는 기지국에서 물리적 안테나 요소로부터 전송된 실제 하향링크 전송이 아닌 단말 입장에서의 하향링크 전송을 나타낸다.
다른 일례로, 다수의 안테나 포트가 하향링크 전송을 위해 사용되나, 각 안테나 포트는 다중의 물리적 안테나 요소에 매핑될 수 있다. 이 경우는 안테나 배열이 하향링크 MIMO 또는 하향링크 다이버시티를 위해 사용되는 경우 등이 이에 해당될 수 있다. 예를 들어, 안테나 포트 0 및 1은 각각 다중의 물리적 안테나 요소에 매핑될 수 있다. 이 경우, 단말 입장에서는, 2개의 하향링크 전송이 존재한다. 하나는 안테나 포트 0을 위한 참조 신호와 관련되고, 또 다른 하나는 안테나 포트 1을 위한 참조 신호와 관련된다.
FD-MIMO 에서는, 데이터 스트림의 MIMO 프리코딩은 안테나 포트 가상화, 트랜스시버 유닛(또는 송수신 유닛)(TXRU: transceiver unit) 가상화, 안테나 요소 패턴을 거칠 수 있다.
안테나 포트 가상화는 안테나 포트 상의 스트림이 TXRU 상에서 프리코딩된다. TXRU 가상화는 TXRU 신호가 안테나 요소 상에서 프리코딩된다. 안테나 요소 패턴은 안테나 요소로부터 방사되는 신호는 방향성의 이득 패턴(directional gain pattern)을 가질 수 있다.
기존의 송수신기(transceiver) 모델링에서는, 안테나 포트와 TXRU 간의 정적인 일대일 매핑이 가정되고, TXRU 가상화 효과는 TXRU 가상화 및 안테나 요소 패턴의 효과 모두를 포함하는 정적인 (TXRU) 안테나 패턴으로 합쳐진다.
안테나 포트 가상화는 주파수-선택적인 방법으로 수행될 수 있다. LTE에서 안테나 포트는 참조 신호(또는 파일럿)와 함께 정의된다. 예를 들어, 안테나 포트 상에서 프리코딩된 데이터 전송을 위해, DMRS가 데이터 신호와 동일한 대역폭에서 전송되고, DMRS와 데이터 모두 동일한 프리코더(또는 동일한 TXRU 가상화 프리코딩)로 프리코딩된다. CSI 측정을 위해 CSI-RS는 다중의 안테나 포트를 통해 전송된다. CSI-RS 전송에 있어서, 단말에서 데이터 프리코딩 벡터를 위한 TXRU 가상화 프리코딩 행렬을 추정할 수 있도록 CSI-RS 포트와 TXRU 간의 매핑을 특징짓는 프리코더는 고유한 행렬로 설계될 수 있다.
TXRU 가상화 방법은 1차원 TXRU 가상화(1D TXRU virtualization)와 2차원 TXRU 가상화(2D TXRU virtualization)이 논의되며, 이에 대하여 아래 도면을 참조하여 설명한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 트랜스시버 유닛 모델을 예시한다.
1D TXRU 가상화에 있어서, M_TXRU 개의 TXRU은 동일한 편파(polarization)을 가지는 단일의 열(column) 안테나 배열로 구성되는 M개의 안테나 요소와 관련된다.
2D TXRU 가상화에 있어서, 앞서 도 12의 안테나 배열 모델 구성 (M, N, P)에 상응하는 TXRU 모델 구성은 (M_TXRU, N, P)로 나타낼 수 있다. 여기서, M_TXRU는 2D 같은 열, 같은 편파(polarization)에 존재하는 TXRU의 개수를 의미하며, M_TXRU ≤ M을 항상 만족한다. 즉, TXRU의 총 개수는 M_TXRU×N×P와 같다.
TXRU 가상화 모델은 안테나 요소와 TXRU와의 상관 관계에 따라 도 13(a)와 같이 TXRU 가상화(virtualization) 모델 옵션-1: 서브-배열 분할 모델(sub-array partition model)과 도 13(b)와 같이 TXRU 가상화 모델 옵션-2: 전역 연결(full-connection) 모델로 구분될 수 있다.
도 13(a)를 참조하면, 서브-배열 분할 모델(sub-array partition model)의 경우, 안테나 요소는 다중의 안테나 요소 그룹으로 분할되고, 각 TXRU는 그룹 중 하나와 연결된다.
도 13(b)를 참조하면, 전역 연결(full-connection) 모델의 경우, 다중의 TXRU의 신호가 결합되어 단일의 안테나 요소(또는 안테나 요소의 배열)에 전달된다.
도 13에서 q는 하나의 열(column) 내 M개의 같은 편파(co-polarized)를 가지는 안테나 요소들의 송신 신호 벡터이다. w는 광대역 TXRU 가상화 가중치 벡터(wideband TXRU virtualization weight vector)이며, W는 광대역 TXRU 가상화 가중치 행렬(wideband TXRU virtualization weight matrix)이다. x는 M_TXRU 개의 TXRU들의 신호 벡터이다.
여기서, 안테나 포트와 TXRU들과의 매핑은 일대일(1-to-1) 또는 일대다(1-to-many)일 수 있다.
도 13에서 TXRU와 안테나 요소 간의 매핑(TXRU-to-element mapping)은 하나의 예시를 보여주는 것일 뿐이고, 본 발명이 이에 한정되는 것은 아니며 하드웨어 관점에서 이 밖에 다양한 형태로 구현될 수 있는 TXRU와 안테나 요소 간의 매핑에도 본 발명이 동일하게 적용될 수 있다.
2D AAS를 기반으로 동작하는 3D MIMO 시스템을 위한 코드북 설계 방법
본 발명에서는 앞서 도 10 및 도 12에서 예시한 것과 같이, 2D AAS를 위하여 DFT(discrete Fourier transform) 기반으로 코드북을 구성(설계)하는 방법을 제안한다.
LTE-A에서는 피드백 채널의 정확도를 높이기 위하여 8 Tx(transmitter) 코드북의 프리코딩 행렬 지시자(PMI: Precoding Matrix Indicator)를 장기(long term) 및/또는 광대역(wideband) 프리코더인 W_1과 단기(short term) 및/또는 서브-밴드(sub-band)인 W_2 둘로 나누어 설계한다.
두 채널 정보로부터 하나의 최종 PMI를 구성하는 수학식은 아래 수학식 15과 같이, W_1과 W_2의 곱으로 표현된다.
Figure 112018010697039-pct00023
수학식 15에서 은 W_1과 W_2로부터 생성된 프리코더이며, UE는 이 정보를 기지국으로 피드백 한다. norm (A) 은 행렬 Α 의 각 열(column) 별 놈(norm)이 1로 정규화(normalization)된 행렬을 의미한다.
LTE에 정의된 8Tx 코드북에서 W_1과 W_2의 구체적인 구조는 아래 수학식 16과 같다.
Figure 112018010697039-pct00024
여기서 i_1, i_2는 각각 W_1과 W_2의 인덱스를 나타내며,
Figure 112018010697039-pct00025
은 k번째 원소의 값이 1이고, 나머지 값들은 0인 길이가 M인 선택 벡터(selection vector)를 나타낸다.
위와 같은 코드워드(codeword) 구조는 교차 편파 안테나(cross polarized antenna)를 사용하고 안테나 간 간격이 조밀한 경우(예를 들어, 인접 안테나 간 거리가 신호 파장의 반 이하인 경우), 발생하는 채널의 상관(correlation) 특성을 반영하여 설계한 구조이다. 교차 편파 안테나의 경우 안테나를 수평 안테나 그룹(horizontal antenna group)과 수직(vertical antenna group)으로 구분 할 수 있는데, 각 안테나 그룹은 균등 선형 배열(ULA: uniform linear array) 안테나의 특성을 가지며, 두 안테나 그룹은 동일한 위치(co-located)에 위치될 수 있다. 따라서 각 그룹의 안테나 간 상관(correlation)은 동일한 선형 위상 증가(LPI: linear phase increment) 특성을 가지며, 안테나 그룹 간 상관(correlation)은 위치 회전(phase rotation)된 특성을 갖는다.
코드북은 채널을 양자화(quantization)한 값이기 때문에 소스(source)에 해당하는 채널의 특성을 그대로 반영하여 코드북을 설계하는 것이 필요하다.
설명의 편의를 위해 상기 구조로 만든 랭크(rank) 1 코드워드를 예로 들면 이러한 채널 특성이 수학식 16을 만족하는 코드워드에 반영되었음을 확인할 수 있다.
Figure 112018010697039-pct00026
수학식 17에서 코드워드(codeword)는 N_t(Tx 안테나 수) X 1의 벡터로 표현되며 상위 벡터
Figure 112018010697039-pct00027
와 하위 벡터
Figure 112018010697039-pct00028
둘로 구조화 되어있고, 각각은 수평 안테나 그룹과 수직 안테나 그룹의 상관(correlation) 특성을 보여준다.
Figure 112018010697039-pct00029
는 각 안테나 그룹의 안테나 간 상관(correlation) 특성을 반영하여 선형 위상 증가(LPI)를 가지는 벡터로 표현하는 것이 유리하며, 대표적인 예로 DFT 행렬이 이용될 수 있다.
이러한 코드북 구조는 2D AAS를 사용하는 시스템에도 적용이 가능하며, 수식으로 표현하면 아래 수학식 18과 같다.
Figure 112018010697039-pct00030
여기서 W_1은 채널의 장기(long-term) 성격을 나타내며 광대역(wideband) 단위로 피드백되며, W_2는 채널의 단기(short-term) 성격을 나타내며 서브밴드(subband) 단위로 피드백 되며 주로 선택(selection)과 위상 일치(co-phasing)(교차 편파 안테나의 경우)의 역할을 수행하게 된다. 또한 아래 첨자(subscript) H와 V는 각각 수평과 수직 방향을 의미하며,
Figure 112018010697039-pct00031
는 크로네커 곱(Kronecker product)을 의미한다.
W_1V는 아래 수학식 19와 같은 DFT 코드북 D 행렬내의 열들로 이루어진 D 행렬의 부분집합(subset)으로 선택된다. DFT 코드북은 아래 수학식 19와 같이 만들 수 있다.
Figure 112018010697039-pct00032
수학식 19에서 Q v 는 오버샘플링 인자(oversampling factor)이고, N v 는 수직 안테나 포트(vertical antenna port)의 개수다.
여기서 안테나 포트는 안테나 가상화(antenna virtualization)에 따라서 안테나 요소(antenna element)가 해당될 수 있으며, 이하 설명의 편의를 위해 본 명세서에서는 안테나 포트라고 지칭한다.
또한, 이와 유사하게 W_1H는 아래 수학식 20과 같은 D 행렬 내의 열들로 이루어진 D 행렬의 부분집합(subset)으로 선택된다. DFT 코드북은 아래 수학식 20과 같이 만들 수 있다.
Figure 112018010697039-pct00033
수학식 20에서 Q h 는 오버샘플링 인자(oversampling factor)이고, N h 는 수평 안테나 포트(horizontal antenna port)의 개수다.
또한, 상술한 바와 같이, 코드북 내 프리코딩 행렬 W는 W = W 1 W 2와 같이 나타낼 수 있다. 이때, W1은
Figure 112018010697039-pct00034
와 같이 도출할 수 있다. 여기서, X 1 는 N_1xL_1 행렬이고, L_1개의 열 벡터로 구성될 수 있다. 이때, 열 벡터는 길이가 N_1이며, O_1 배로 오버샘플링된 DFT 벡터,
Figure 112018010697039-pct00035
에 해당될 수 있다. 또한, X 2 는 N_2xL_2 행렬이고, L_2개의 열 벡터로 구성될 수 있다. 이때, 열 벡터는 길이가 N_2이며, O_2 배로 오버샘플링된 DFT 벡터, 즉
Figure 112018010697039-pct00036
에 해당될 수 있다. 여기서, N_1은 제1 차원(예를 들어, 수평 도메인)에서 동일한 편파 당 안테나 포트의 개수를 나타내고, N_2는 제2 차원(예를 들어, 수직 도메인)에서 동일한 편파 당 안테나 포트의 개수를 나타낸다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 2D AAS를 예시한다.
도 14(a)는 8 트랜스시버 유닛(또는 송수신 유닛)(TXRU: transceiver unit) 2D AAS를 예시하고, 도 14(b)는 12 TXRU 2D AAS를 예시하고, 도 14(c)는 16 TXRU 2D AAS를 예시한다.
도 14에서 M은 동일한 편파(polarization)을 가지는 단일의 열(column)(즉, 제1 차원)의 안테나 포트의 개수이고, N은 동일한 편파(polarization)을 가지는 단일의 행(row)(즉, 제2 차원)의 안테나 포트의 개수이다. P는 편파(polarization)의 차원(dimension)의 개수를 나타낸다. Q는 전체 TXRU(안테나 포트)의 개수를 나타낸다.
이하 본 발명에서 제안하는 코드북은 도 14에서 예시하는 2D AAS에 적용이 가능하다. 또한, 도 14에서 예시한 2D AAS로 한정되는 것은 아니며, 도 14의 예시 이외의 안테나 구성에서도 본 발명이 확장 적용될 수 있다.
먼저, (M, N, P, Q)=(2, 2, 2, 8)인 경우를 살펴본다. 이 경우, +45°경사(slant) 안테나 (도 14에서 "/" 안테나)가 수평 방향으로 2개, 수직 방향으로 2개씩 위치하게 되며, N h = 2,N v = 2 가 된다.
수평 방향의 오버샘플링 인자(oversampling factor) 값 Q h 및 수직 방향의 오버샘플링 인자(oversampling factor) 값 Q v 에 따라 각각 W_1H와 W_1V를 구성하는 코드북을 이루는 열의 개수(즉, 프리코딩 행렬의 개수)는 각각 N h Q h,N v Q v 가 된다. W_1을 구성하는 전체 코드북 C_1은 수평, 수직 안테나 포트와 상응되는 코드북들의 크로네커 곱(Kroenecker product)로 구성되기 때문에, 전체 코드북 C_1을 구성하는 열의 수는 N h Q h N v Q v 가 되며, 8 TXRU인 경우이므로, 4Q h Q v 가 된다.
이처럼 오버샘플링 인자(oversampling factor)와 수신 단말이 기지국으로 피드백하는 PMI의 비트 수 등에 따라서 코드북의 종류가 다양하게 구성될 수 있다.
이하, W_1에 상응하는 피드백 비트 수를 L_1, W_2에 상응하는 피드백 비트 수를 L_2라고 정의한다.
또한, 상기 설명한 N h,Q h,N v,Q v 의 파라미터들은 도 14에 나타난 것과 같이 안테나 포트 수에 따라 상이할 수 있으며, 기지국이 단말에게 RRC 시그널링 등을 통하여 알려 주거나 단말과 사전에 정의된 값을 사용 할 수도 있다.
본 발명에서는 적어도 W_1 행렬이 이중(dual) 구조를 갖는 2D AAS를 위한 코드북 디자인에서 W_1과 W_2를 구성/설정하는 방법을 제안한다.
이하, 본 발명의 설명에 있어서, 설명의 편의를 위해 2D 안테나 어레이에서 제1 차원(dimension)/도메인(domain)은 수평 차원/도메인으로 지칭하고, 제2 차원/도메인은 수직 차원/도메인을 지칭하는 것으로 설명하나, 본 발명이 이에 한정되는 것은 아니다.
또한, 이하, 본 발명의 설명에 있어서, 특별한 설명이 없는 한 각 수학식에서 사용되는 동일한 변수들은 동일한 기호로 표시될 수 있으며, 동일하게 해석될 수 있다.
또한, 이하 본 발명의 설명에 있어서, 빔(beam)은 해당 빔(beam)을 생성하기 위한 프리코딩 행렬로 해석될 수 있으며, 빔 그룹은 프리코딩 행렬의 세트(또는 프리코딩 벡터의 세트)와 동일한 의미로 해석될 수 있다. 또한, 빔(beam)(또는 빔 쌍(beam pair))를 선택한다는 것은 해당 빔(beam)을 생성할 수 있는 프리코딩 행렬(또는 벡터)를 선택한다는 의미로 해석될 수 있다.
1. 8 TXRU
도 14(a)와 같은 8 TXRU 2D AAS를 위한 코드북을 구성하는 방법을 살펴본다. 이하, Q h = 4,Q v = 2,L 1 = 4,L 2 = 4 인 경우를 가정한다.
이 경우, 전체 코드북 C1을 구성하는 열(column)의 수는 32 (= N h Q h N v Q v =2*4*2*2)이다. 그리고, 각 열(column)은 4 Tx DFT 벡터로 구성된다.
이 열(column)중에서, 수신 단말은 기지국이 전송한 참조 신호(예를 들어, CSI-RS 등)을 이용하여 장기(long-term) / 광대역(wide band) 관점에서 수신 단말에 적합한 W_1의 인덱스를 기지국에 보고(즉, 피드백)할 수 있다.
이 때, 각 인덱스에 상응하는 W_1을 구성하는 방법은 선택(selection)과 위상 일치(co-phasing)을 담당하는 W_2 행렬의 피드백 비트 수인 L_2와 상관관계에 있을 수 있다. 편의상 선택(selection)에 상응하는 비트 수를 L_2S, 위상 일치(co-phasing)에 상응하는 비트 수를 L_2C라 정의하며, 이때 L_2=L_2S+L_2C의 관계가 성립한다.
예를 들어, L_2S=2 인 경우, 각 인덱스에 상응하는 W_1은 22 = 4개의 열로 이루어 질 수 있다. 이 경우, W_1과 W_2를 구성하는 방법은 다음과 같다.
먼저, 내부 프리코더(inner precoder) W 1 은 첫 번째 코드북 C 1 으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_1을 다음 수학식 21과 같이 구성할 수 있다.
Figure 112018010697039-pct00037
여기서, i_1은 W_1(즉, 프리코딩 행렬의 세트)의 인덱스(즉, W_1을 특정하기 위한 제1 PMI)를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스(즉, 프리코딩 행렬의 세트 내에서 선택된 프리코딩을 특정하기 위한 제2 PMI)이다.
상술한 바와 같이 전체 코드북 C1을 구성하는 열(column)의 수는 N h Q h N v Q v 개(수학식 21의 경우, 32)이며, 각각의 열(column)은 프리코딩 행렬(또는 프리코딩 벡터)(W_m)에 해당하며, m의 인덱스로 식별될 수 있다.
또한, 전체 코드북 C1을 구성하는 프리코딩 행렬을 2차원 형태로 나타낼 수 있으며(아래 도 15 참조), 이 경우 각각의 프리코딩 행렬(W_m)은, 제1 차원(즉, 수평 차원)에서의 인덱스 h와 제2 차원(즉, 수직 차원)에서의 인덱스 v로 특정될 수 있다. 즉, 인덱스 m은 (h,v)와 같은 인덱스 쌍에 일대일로 매핑될 수 있다.
또한, 제1 차원의 인덱스 h에 의해 제1 차원 안테나 포트를 위한 제1 행렬(또는 제1 벡터)(예를 들어, 수평 성분의 행렬(또는 벡터)) v_h가 특정되고, 제2 차원의 인덱스 v에 의해 제2 차원 안테나 포트를 위한 제2 행렬(또는 제2 벡터)(예를 들어, 수평 성분의 행렬(또는 벡터)) v_v가 특정될 수 있다. 그리고, w_m는 DFT 행렬 형태를 가지며, v_h와 v_v의 크로네커 곱(Kronecker product) 곱으로 생성될 수 있다.
i_1에 의해 전체 코드북에서 하나 이상의 프리코딩 행렬로 구성되는 프리코딩 행렬의 세트(예를 들어, 4개의 프리코딩 행렬)가 정해지고, 정해진 프리코딩 행렬의 세트 내에서 i_2에 의해 하나의 프리코딩 행렬이 정해질 수 있다. 다시 말해, i_1에 의해 프리코딩 행렬의 세트에 속하는 하나 이상의 프리코딩 행렬의 프리코딩 행렬 인덱스 m 값 또는 프리코딩 인덱스 쌍 (h,v)의 값이 정해질 수 있다. 그리고, 정해진 프리코딩 행렬의 세트 내에서 i_2에 의해 하나의 프리코딩 행렬 인덱스 m 값 또는 프리코딩 인덱스 쌍 (h,v) 값이 정해질 수 있다.
위 수학식 21을 도식화하면 도 15와 같다.
도 15는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 15에서 0-31의 숫자들은 전체 코드북 C_1을 구성하는 열(즉, 프리코딩 행렬 w_m)의 인덱스를 나타낸다. 즉, 전체 프리코딩 행렬의 인덱스 m을 나타낸다. m은 0 내지 N_h*Q_h*N_v*Q_v 값을 가질 수 있다.
또한, 도 15에서는 전체 코드북 C_1을 구성하는 열(즉, 프리코딩 행렬 w_m)을 2차원의 형태로 나타낸 것이다. h, v는 전체 코드북 C_1을 구성하는 각 열(즉, 프리코딩 행렬 w_m)의 수평 성분에 대한 인덱스(즉, w_m을 구성하는 DFT 벡터 중 수평 성분에 대한 인덱스), 수직 성분에 대한 인덱스(즉, w_m을 구성하는 DFT 벡터 중 수직 성분에 대한 인덱스)를 나타낸다. 즉, h는 0 내지 N_h*Q_h 값(도 15의 경우 0 내지 7)을 가질 수 있으며, v는 0 내지 N_v*Q_v 값(도 15의 경우, 0 내지 3)의 가질 수 있다.
또한, 도 15에서 도시된 각 박스는 W_1(i_1)(즉, W_1(0), W_1(1), W_1(2), W_1(3))을 나타낸다. 즉, i_1에 의해 W_1(i_1)의 박스가 정해질 수 있다. 도 15를 참조하면, W_1(0)은 m=0, 1, 2, 3인 프리코딩 행렬로 구성될 수 있다. 이를 수평 차원에서의 인덱스와 수직 차원에서의 인덱스의 쌍으로 표기하면, (h,v) = (0,0), (1,0), (2,0), (3,0)인 프리코딩 행렬로 구성될 수 있다. W_1(1)은 m=2, 3, 4, 5인 프리코딩 행렬(즉, (h,v) = (2,0), (3,0), (4,0), (5,0)인 프리코딩 행렬)로 구성될 수 있다. W_1(2)은 m=4, 5, 6, 7인 프리코딩 행렬(즉, (h,v) = (4,0), (5,0), (6,0), (7,0)인 프리코딩 행렬)로 구성될 수 있다. W_1(3)은 m=6, 7, 0, 1인 프리코딩 행렬로 구성(즉, (h,v) = (6,7), (7,0), (0,0), (1,0)인 프리코딩 행렬)될 수 있다. W_1(4) 내지 W_1(15)에 대해서도 동일한 방식으로 구성될 수 있다.
이처럼, W_1은 고정된(동일한) 수직성분에 대해서 각각 네 개의 수평성분의 부분 집합으로 구성되며, 연속되는(인접한) W_1들간에 수평 성분 2개씩 중복(overlap)될 수 있다. 즉, 수평 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 2에 해당할 수 있다. 예를 들어, 도 15와 같이 W_1의 인덱스가 0-3인 W_1들을 구성하는 프리코딩 행렬(w_m)은 모두 동일한 수직 성분 행렬
Figure 112018010697039-pct00038
로 구성될 수 있다.
도 15와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y)에 해당할 수 있다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
이를 앞서 위의 예와 같이 수평 차원과 수직 차원에서의 인덱스 쌍으로 표현하면, (h,v), (h+1,v), (h+2,v), (h+3,v)와 같다. 이하 본 명세서에서 설명한 다른 코드북 구성 방식에서도 마찬가지로 x,y의 인덱스는 수평 차원과 수직 차원으로 고려한 경우에 h,v로 대체될 수 있다.
수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)에 따라, x 값이 가질 수 있는 값이 상이하게 정해질 수 있다. 예를 들어, 도 15의 예시와 같이 제1 차원(예를 들어, 수평 차원) 방향에서 간격(spacing)이 2인 경우, x는 2의 배수의 값을 가질 수 있다. 반면, 제1 차원(예를 들어, 수평 차원) 방향에서 간격(spacing)이 1인 경우, x는 1의 배수의 값을 가질 수 있다. 마찬가지로, 수직 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)에 따라 y 값이 가질 수 있는 값이 상이하게 정해질 수 있다.
이하, 본 발명의 설명에 있어서, 앞서 수학식 21 및 도 15에 대한 설명과 동일한 부분에 대해서는 별도의 설명을 생략하고, 차이가 있는 부분 위주로 설명한다.
다른 실시의 예로써, W_1을 다음 수학식 22와 같이 구성할 수도 있다.
Figure 112018010697039-pct00039
위 수학식 22를 도식화하면 도 16과 같다.
도 16은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 16을 참조하면, W_1들이 각각 수직, 수평 성분 2개씩 가지고 있으며, 연속되는 W_1들 간에 하나의 수평성분이 중복(overlap)된다. 즉, 수평 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 1에 해당할 수 있다.
예를 들어, W_1의 인덱스가 0-7인 경우, W_1에 포함되는 w_m은 수직 성분 행렬
Figure 112018010697039-pct00040
로 구성될 수 있다. 또한, W_1의 인덱스가 8-15인 경우, W_1에 포함되는 w_m은 수직 성분 행렬
Figure 112018010697039-pct00041
로 구성될 수 있다.
도 16과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x,y+1), (x+1,y+1)에 해당할 수 있다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)에 따라, x 값이 가질 수 있는 값이 상이하게 정해질 수 있다. 예를 들어, 제1 차원(예를 들어, 수평 차원) 방향에서 간격(spacing)이 2인 경우, x는 2의 배수의 값을 가질 수 있다. 반면, 도 16의 예시와 같이 수평 차원 방향에서 간격(spacing)이 1인 경우, x는 1의 배수의 값을 가질 수 있다. 마찬가지로, 수직 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)에 따라 y 값이 가질 수 있는 값이 상이하게 정해질 수 있다.
또 다른 실시의 예로써, W_1을 다음 수학식 23과 같이 구성할 수도 있다.
Figure 112018010697039-pct00042
위 수학식 23을 도식화하면 도 17과 같다.
도 17은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 17을 참조하면, 빔 그룹핑 시 수직 도메인의 길이가 μ 만큼 설정될 수 있다. 도 17에서는 μ = 2 인 경우를 예시한다.
도 17과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x,y+μ), (x+1,y+μ)에 해당할 수 있다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
그리고, 수평 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 1에 해당할 수 있다.
또 다른 실시의 예로써, W_1을 다음 수학식 24와 같이 구성할 수도 있다.
Figure 112018010697039-pct00043
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다.
위 수학식 24를 도식화하면 도 18과 같다.
도 18은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 18을 참조하면, W_1들이 각각 수직, 수평 성분 2개씩 가지고 있으며, 연속되는 W_1들 간에 하나의 수직 성분이 중복(overlap)된다. 즉, 수직 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수직 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 1에 해당할 수 있다.
예를 들어, W_1의 인덱스가 {0,4,8,12}인 경우, W_1에 포함되는 w_m은 수평 성분 행렬
Figure 112018010697039-pct00044
로 구성될 수 있으며, W_1의 인덱스가 {1,5,9,13}인 경우, W_1에 포함되는 w_m은 수평 성분 행렬
Figure 112018010697039-pct00045
로 구성될 수 있다.
도 18과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+1,y), (x+1,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
그리고, 수직 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수직 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 1에 해당할 수 있다.
또 다른 실시의 예로써, W_1을 다음 수학식 25와 같이 구성할 수도 있다.
Figure 112018010697039-pct00046
위 수학식 25를 도식화하면 도 19 및 도 20과 같다.
도 19는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 19를 참조하면, W_1은 지그재그(zig-zag) 패턴(또는 체크 패턴)으로 구성될 수 있다. 즉, W_1(0)의 경우, {w_0, w_2, w_9, w_11}으로 구성될 수 있다.
도 19와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+2,y), (x+1,y+1), (x+3,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
그리고, 수평 차원 방향으로 연속되는(인접한) W_1들 간에 2개의 프리코딩 행렬이 중복(overlap)된다. 이를 다시 표현하면, 수평 차원 방향에서 연속되는(인접한) 프리코딩 행렬의 세트 간의 간격(spacing)은 2에 해당할 수 있다.
앞서 도 19의 예시에서는 W_1의 패턴은 W_1의 빔 그룹들이 {w_0, w_2, w_9, w_11}인 경우를 고려한 결과이다.
또한, 상기 지그재그(Zig-zag 패턴)(또는 체크 패턴)의 여집합으로 W_1이 구성될 수 있다.
도 20은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 20을 참조하면, 앞서 도 19의 예시와 같은 지그재그(Zig-zag 패턴)(또는 체크 패턴)을 {w_0, w_1, w_2, w_3, w_8, w_9, w_10, w_11}으로 이루어진 2 X 4 직사각형 빔 그룹에서, 여집합 {w_1, w_3, w_8, w_10}을 고려한 경우를 예시한다.
도 20과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x+1,y), (x,y+1), (x+2,y+1), (x+3,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
도 20의 경우, W_1 빔 그룹(즉, 프리코딩 행렬의 세트) 간 간격(spacing)이 2인 경우를 고려한 것이며, 하기 기술될 지그재그(Zig-zag 패턴)(또는 체크 패턴)들에 대해서도, 상기 설명한 도 20에서 나타날 수 있는 지그재그(Zig-zag 패턴)(또는 체크 패턴)의 실시예가 용이하게 적용됨은 자명하다.
상술한 지그재그(zig-zag) 패턴(또는 체크 패턴)의 경우, 수평으로 인접한 프리코딩 행렬의 세트 간 열의 인덱스가 1 또는 2 떨어진 경우만을 설명했지만, 이를 일반화할 수 있다. 이를 수식으로 표현하여 다음 수학식 26과 같다.
Figure 112018010697039-pct00047
위 수학식 26을 도식화하면 도 21과 같다.
도 21은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 21을 참조하면, W_1을 구성하는 w_m은 수평으로 열의 인덱스가 a, b 값만큼, 수직으로 열의 인덱스가 c 값만큼 떨어진 것을 고려할 수 있다.
도 21과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+a,y), (x+b,y+c), (x+a+b,y+c)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
위 지그재그 패턴의 구성 방식의 경우, 수평으로 각각 B h 개의 W_1이 존재하고, 이러한 W_1 그룹들이 수직으로는 총 Bv / 2 개가 존재한다. 이와 유사하게 수평으로 각각 B h / 2 개의 W_1을 만들고, 이러한 W_1 그룹들이 수직으로 B v 4개가 존재하도록 만들 수가 있는데 이를 수식화 하면 아래 수학식 27과 같다.
Figure 112018010697039-pct00048
위 수학식 26은 수식 (11)은 지그재그(Zig-zag 패턴)(또는 체크 패턴)의 일반화한 수식을 나타낸다. 수학식 26에서 3개 파라미터 a, b 및/또는 c를 조정하면, 앞서 설명한 정방형 패턴(square pattern)(도 18 참조)을 도출할 수 있다. 즉, 앞서 수학식 26에서 α = -l,b = 0,c = 0 으로 설정을 하면, 정방형 패턴(square pattern)(도 18 참조)을 도출할 수 있다. 또는, 도 22와 같은 블록 모양의 패턴이 도출될 수 있다.
도 22는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 22를 참조하면, 앞서 수학식 26에서 α = 0,b = 2,c = 0 으로 설정하면, 도 22(a)와 같은 패턴이 구성될 수 있다. 도 22의 패턴의 경우, 빔 그룹 간격(spacing)을 2로 설정하면, 빔 그룹 간 중복 없이, 빔-그리드(GoB: grid of beam)의 모든 영역을 커버할 수 있는 장점이 있다.
도 22(a)와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y+1), (x+3,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
또한, 도 22(b)는 2 X 4 빔 그룹에서 도 22(a)의 여집합을 나타낸다. 도 22(b)와 같은 W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y+1), (x+1,y+1), (x+2,y), (x+3,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
또한, 이러한 특징을 가지는 패턴으로는 도 23과 같은 "V" 패턴 또한 고려할 수 있다.
도 23은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 23(a)과 같이 수학식 26에서 3개 파라미터 a, b 및/또는 c를 조정하면, "V" 패턴이 도출될 수 있다.
도 23(a)와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y+1), (x+2,y+1), (x+3,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
도 23(b)는 2 X 4 빔 그룹에서 도 23(a)의 여집합을 나타낸다.
도 23(b)와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y+1), (x+1,y), (x+2,y), (x+3,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
도 23(c)는 V 패턴의 하나의 실시 예를 나타낸다. 이때, 수평으로 8개의 빔이 있는 상황을 고려하였고, 빔 그룹은 가로로 2씩 이격(spacing) 되는 상황을 예시한다.
앞서 설명한 도 22 및 도 23의 패턴들의 경우, 모든 GoB를 커버할 수 있는 장점이 있지만, W_1이 짝수 또는 홀수만을 선택하는 것으로 표현 될 수 있는 코드북 서브샘플링(codebook subsamping)을 고려하는 경우, 중복을 허용하는 도 20에서 예시된 도 19에서 예시된 지그재그(Zig-zag 패턴)(또는 체크 패턴)에 비하여, 서브샘플링(subsampling) 허용시 GoB를 덜 균등하게 커버하게 되어, 그 성능 열화가 발생될 수도 있다.
지금까지, W_1가 4개의 열로 구성되는 실시예를 기술하였다. 이를 이용했을 때, W_2를 구성하는 방법은 아래와 같다.
전송 랭크(transmission rank)가 1인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00049
으로부터 선택될 수 있다.
랭크 1의 경우, 앞서 설명한 바와 같이 W_1이 구성되고, W_1에 포함되는 프리코딩 행렬(또는 벡터) 중에서 하나의 프리코딩 행렬이 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 28과 같이 구성할 수 있다.
Figure 112018010697039-pct00050
여기서, e k 는 k번째 원소만 1의 값을 가지고, 나머지는 0의 값을 갖는 선택(selection) 벡터이다. k(즉, 선택 인덱스)의 값(즉, 1 내지 4 중에 하나의 값)은 i_2에 의해 정해진다.
즉, 프리코딩 행렬의 세트 W_1에 속한 프리코딩 행렬 중에서 k 번째 프리코딩 행렬이 선택되며, k는 프리코딩 행렬 내 속한 프리코딩 행렬을 구분하기 위한 인덱스를 의미할 수도 있다.
이때, k는 앞서 수학식 21 등과 같은 W_1을 구성하기 위한 수식에서 W_1에 속한 w_m의 좌측부터 우측으로의 순서대로 인덱싱될 수 있다.
또는, 프리코딩 행렬의 세트 W_1 내 속한 프리코딩 행렬 w_m은 제1 차원의 인덱스(즉, x 또는 h)가 증가되는 순서대로 그 다음에 제2 차원의 인덱스(즉, y 또는 v)가 증가되는 순서대로 k 값이 인덱싱될 수 있다. 예를 들어, 앞서 도 19의 예시에서, {w_0, w_2, w_9, w_11}은 순서대로 각각 k={1, 2, 3, 4}로 인덱싱될 수 있다. 또는 반대로, 제2 차원의 인덱스(즉, y 또는 v)가 증가되는 순서대로 그 다음에 제1 차원의 인덱스(즉, x 또는 h)가 증가되는 순서대로 k 값이 인덱싱될 수 있다. 예를 들어, 앞서 도 19의 예시에서, {w_0, w_9, w_2, w_11}은 순서대로 각각 k={1, 2, 3, 4}로 인덱싱될 수 있다.
또는, 프리코딩 행렬의 세트 W_1 내 속한 프리코딩 행렬 w_m은 제1 차원의 인덱스(즉, x 또는 h)가 증가되는 순서대로 k 값이 인덱싱될 수도 있다. 예를 들어, 앞서 도 19의 예시에서, {w_0, w_9, w_2, w_11}은 순서대로 각각 k={1, 2, 3, 4}로 인덱싱될 수 있다.
φ 는 편파 안테나 포트(polarization antenna port) 그룹 간의 위상 일치(co-phasing) 역할을 수행한다. 다시 말해, φ 는 크로스-편파 안테나(cross-plarization)에서 제1 편파 안테나 포트와 제2 편파 안테나 포트 간 위상을 조절하기 위한 인자를 나타내며,
Figure 112018010697039-pct00051
중 하나로 정해질 수 있다.
수학식 28에서 나타나 있듯이, L_2S=2, L_2C=2 로 전체 L_2는 4비트가 된다.
앞서 예시한 도 15 내지 도 20에서 볼 수 있듯이, 서로 연접한 W1끼리는 두 개의 빔들이 서로 중복(overlap)이 된다. 즉, 도 15의 예시와 같이, W_1(0)는 {0,1,2,3}의 빔 그룹으로 이루어져 있고, W_1(1)은 {2,3,4,5}의 빔 그룹으로 구성되며, {2,3}이 중복(overlap)된다. 이 경우, 전체 코드북들의 빔 레졸루션(resolution)을 높일 수 있는 방법 중의 하나는 선택 벡터(selection vector) e i 에 회전 계수(rotation coefficient)(예를 들어,
Figure 112018010697039-pct00052
)를 곱할 수 있다. 여기서,
Figure 112018010697039-pct00053
혹은
Figure 112018010697039-pct00054
혹은 시스템 성능에 맞춘 임의의 회전 계수에 해당할 수 있다.
보다 구체적으로, 회전 계수(rotation coefficient)는
Figure 112018010697039-pct00055
혹은
Figure 112018010697039-pct00056
혹은
Figure 112018010697039-pct00057
혹은
Figure 112018010697039-pct00058
혹은 임의의 값이 설정될 수 있다.
이 경우, 수학식 28은 아래 수학식 29로 표현될 수 있다.
Figure 112018010697039-pct00059
여기서 i는 선택 벡터 e i 의 인덱스이다.
전송 랭크(transmission rank)가 2인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00060
으로부터 선택될 수 있다.
랭크 2 이상의 경우, 랭크 1의 경우와 마찬가지로 프리코딩 행렬의 세트에 포함된 프리코딩 행렬 중에서 하나의 프리코딩 행렬이 선택될 수 있다. 이때, 프리코딩 행렬은 각 레이어 별로 적용되는 프리코딩 벡터로 구성될 수 있다. 그리고, 상술한 바와 같이 W_1이 구성되고, W_1에 포함되는 프리코딩 백터 중에서 각 레이어 별로 적용되는 프리코딩 벡터가 선택될 수 있다. 즉, 랭크 2 이상의 경우에서 프리코딩 벡터의 세트는 랭크 1의 경우에서 프리코딩 행렬의 세트에 해당할 수 있다. 그리고, 각 레이어 별로 선택된 프리코딩 벡터로 구성되는 프리코딩 행렬이 도출될 수 있다. 따라서, 랭크 2 이상의 경우 프리코딩 행렬의 세트는 각 레이어에 대한 프리코딩 벡터의 다양한 조합에 따라 생성된 프리코딩 행렬들의 집합을 의미할 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 30과 같이 구성할 수 있다.
Figure 112018010697039-pct00061
수학식 30에 나타나있듯이, L_2S=3, L_2C=1 로 전체 L_2는 4 비트가 된다.
랭크가 2인 경우에도, 수학식 29와 마찬가지로 α i 를 도입할 수 있으며, 이를 수식으로 나타내면, 아래 수학식 31과 같다.
Figure 112018010697039-pct00062
랭크 1에 상응하는 수학식 28 및 29, 랭크 2에 상응하는 수학식 30 및 31은 서로 조합되어 사용될 수 있다. 보다 구체적인 실시 예로, 수학식 28과 30의 조합, 혹은 수학식 29과 31의 조합, 혹은 수학식 29와 30의 조합, 혹은 수학식 29와 31의 조합에 의해 W_2가 구성될 수 있다.
수학식 29와 수학식 31의 경우처럼, 후술하는 코드북 W_2를 구성할 때, 특정 회전 계수(rotation coefficient) α i 를 고려한 코드북도 이용될 수 있다.
지금까지, L_1=4, L_2=4인 경우를 고려하였다. 그러나, 고정된 L_2=4에 대하여, L_1을 5, 6, 7, 8, 9 비트 등으로 확장할 때, 앞서 설명한 W_1을 구성하는 패턴들(도 15 내지 도 23)을 쉽게 확장 적용하여 사용할 수 있다. 도 15 내지 도 23에서 나타난 32개의 빔들은 오버샘플링 인자(oversampling factor)와 안테나 포트(antenna port)의 차원수(dimensionality)에 의해 결정된다. 즉, 전체 빔의 수는 B T = N h Q h N v Q v 이며, 열의 개수는 수평 DFT 행렬인 W_1H의 열의 개수 B h = N h Q h , 행의 개수는 수직 DFT 행렬의 W_1V의 열의 수인 B v = N v Q v 가 된다. 오버샘플링(Oversampling)에 따른 L_1 비트 수는 아래 표 6과 같이 정리될 수 있다.
표 6은 (2,2,2,8) AAS에서, L_2가 4일 때, 오버샘플링(oversampling)에 따른 L_1 비트 수를 예시한다.
Figure 112018010697039-pct00063
이를 이용하여 앞서 수학식 21을 일반화하여 표현하면, 아래 수학식 32와 같다. 즉, 표 6과 같은 L_1 비트 수가 결정/설정되면 이에 따라 수학식 32와 같은 형태로 본 발명에서 제안하는 W_1 구성 방식이 일반화될 수 있다.
Figure 112018010697039-pct00064
또한, 수평부분은 기존에 존재하는 3GPP 릴리즈(realease)-12의 4 Tx 코드북을 사용할 수도 있다. 이 경우 수학식 32는 아래 수학식 33과 같이 표현될 수 있다.
Figure 112018010697039-pct00065
여기서, μ 는 같은 W_1 그룹내의 빔끼리의 간격을 의미하며, μ = 8 인 경우, 수평 방향은 기존 릴리즈-12 4 Tx 코드북과 동일하다.
앞서 수학식 22, 수학식 23, 수학식 24, 수학식 26 및 수학식 27은 일반화된 수학식 32에서 함수 m(i 1,i 2) 를 변경하면, 일반화가 가능하다.
수학식 32에서 함수 m(i 1,i 2) 를 아래 수학식 34와 같이 변경하면, 수학식 22를 일반화할 수 있다.
Figure 112018010697039-pct00066
또한, 수학식 32에서 함수 m(i 1,i 2) 를 아래 수학식 35와 같이 변경하면, 수학식 23을 일반화할 수 있다.
Figure 112018010697039-pct00067
또한, 수학식 32에서 함수 m(i 1,i 2) 를 아래 수학식 36과 같이 변경하면, 수학식 24를 일반화할 수 있다.
Figure 112018010697039-pct00068
또한, 수학식 32에서 함수 m(i 1,i 2) 를 아래 수학식 37과 같이 변경하면, 수학식 26을 일반화할 수 있다.
Figure 112018010697039-pct00069
또한, 수학식 32에서 함수 m(i 1,i 2) 를 아래 수학식 38과 같이 변경하면, 수학식 27을 일반화할 수 있다.
Figure 112018010697039-pct00070
또한, 수학식 32에서 W_1을 구성하는 열의 인덱스들의 집합을 수평이 아닌 수직으로 묶는 방법도 가능하며, 이를 수식으로 나타내면 아래 수학식 39와 같다.
Figure 112018010697039-pct00071
W_1을 구성하는 벡터가 4개인 또 다른 실시예로서, W_1을 다음 수학식 40과 같이 구성할 수 있다.
Figure 112018010697039-pct00072
위 수학식 40을 도식화하면 도 24와 같다.
도 24는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 24를 참조하면, 백슬래시(back slash) 패턴으로 W_1이 구성될 수 있다. 도 24에서와 같은 백슬래스 패턴의 경우, W_1을 구성하는 빔의 간격이 9로 설정될 수 있다.
도 24와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y+1), (x+2,y+2), (x+3,y+3)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
또한, W_1을 구성하는 빔의 간격을 8로 설정하게 되면, 수직 스트라이프(vertical stripe) 패턴을 구성 할 수 있다.
수학식 40에서 m(i 1,i 2) 를 아래 수학식 41로 변경하면 이를 일반화할 수 있다.
Figure 112018010697039-pct00073
여기서, μ 는 W_1을 구성하는 빔 벡터 사이의 일정한 간격을 나타낸다. i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다.
도 17 및 도 21(또는 도 22, 도 23)과 같이 W_1을 구성할 때, 구성되는 빔의 인덱스가 수평 혹은 수직으로 연속하거나 혹은 갭(gap)이 설정됨으로써, W_1이 구성될 수 있다.
또한, 주어진 수직도메인 하나에 수평성분의 빔들로만 구성되는 수학식 32, 33가 있다. 수학식 32는 수평으로 연속되는 빔들로 이루어졌고, 수학식 33은 수평으로 8의 간격을 가지는 빔들로 구성된다.
이러한 코드북 구성방법은 기지국 안테나 레이아웃(layout)에 따라서 적응적으로 적용될 수 있다. 즉, 안테나 포트 레이아웃(layout)이 수평으로 넓은 경우(예를 들어, TXRU 서브어레이 모델 등), W_1내에 빔들이 간격이 넓은 수학식 33을 이용하거나, 도 21(또는 도 22, 도 23)의 수평 간격을 정하는 변수들을 상대적으로 넓게 설정 할 수 있다.
반대로 수평 안테나 포트 레이아웃(layout)이 좁은 경우는 수학식 32를 이용하거나, 도 21(또는 도 22, 도 23)의 수평 간격을 정하는 변수들을 상대적으로 좁게 설정 할 수 있다. 수직은 경우도 마찬가지 방식으로 확장 적용할 수 있다. 또한 수직 혹은 수평빔의 세분화(granularity)에 따라서 도 17, 도 21(또는 도 22, 도 23)의 빔 간격을 결정하는 변수들을 이용하여 적응적으로 설정할 수 있다.
지금까지는 2D AAS에서 장기(long-term) 관점의 W_1의 피드백 비트 수를 증가시키는 경우를 살펴 보았다. 이는 시스템 오버헤드 관점에서, 단기(short-term) W_2의 피드백 비트 수를 증가시키는 경우 보다 유리하다. 하지만, 대규모 안테나 포트를 사용하는 2D AAS에서는 W_2의 비트 수를 증가시키는 경우도 고려할 수 있다.
본 발명에 따른 다른 실시예로서, 도 14(a)와 같은 8 TXRU 2D AAS를 위한 코드북을 구성하는 방법을 살펴본다. 이하, Q h = 16,Q v = 4,L l = 6 인 경우를 가정한다.
이 경우, 전체 코드북은 C_1을 구성하는 열(column)의 수는 256개(= N h Q h N v Q v =2*16*2*4)이다. 그리고, 각 열(column)은 4 Tx DFT 벡터로 구성된다.
이 C_1의 열(column) 중에서, W_1은 i_1에 따라서 8개의 DFT 벡터(즉, 8개의 열)로 이루어 지는 것을 고려할 수 있다. 이 경우에도, L_2=4인 경우와 유사하게 W1을 구성하는 여러 개의 패턴을 고려할 수 있다.
본 발명에 따른 일 실시예로써, W_1을 다음 수학식 42과 같이 구성할 수 있다.
Figure 112018010697039-pct00074
위 수학식 42을 도식화하면 도 25와 같다.
도 25는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 25에서 0-255의 숫자들은 전체 코드북 C_1을 구성하는 열의 인덱스를 나타내며, h, v는 각각 C_1의 원소인 W_1 내의 w_m을 구성하는 DFT 벡터 중 수평, 수직 성분을 나타낸다.
도 25를 참조하면, W_1은 8개의 열로 구성되고, 인접한 i_1을 갖는 W_1 간에는 4개의 빔이 중복(overlap)될 수 있다.
도 25와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y), (x+4,y), (x+5,y), (x+6,y), (x+7,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
수학식 42를 일반화하면 아래 수학식 43와 같다.
Figure 112018010697039-pct00075
다른 실시의 예로써, W_1을 다음 수학식 44와 같이 구성할 수도 있다.
Figure 112018010697039-pct00076
위 수학식 44를 도식화하면 도 26과 같다.
도 26은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 26을 참조하면, W_1은 수평 성분이 4개, 수직 성분이 2개로 구성되고, 인접한 i_1을 갖는 W_1 간에는 2개의 수평 성분이 중복(overlap)될 수 있다.
도 26과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y), (x,y+1), (x+1,y+1), (x+2,y+1), (x+3,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
다른 실시의 예로써, W_1을 다음 수학식 45와 같이 구성할 수도 있다.
Figure 112018010697039-pct00077
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
위 수학식 45를 도식화하면 도 27과 같다.
도 27은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 27을 잠조하면, W_1은 수평 성분이 4개, 수직 성분이 2개로 구성되고, 인접한 i_1을 갖는 W_1 간에는 1개의 수직 성분이 중복(overlap)될 수 있다.
도 27과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y), (x,y+1), (x+1,y+1), (x+2,y+1), (x+3,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
다른 실시의 예로써, W_1을 다음 수학식 46과 같이 구성할 수도 있다.
Figure 112018010697039-pct00078
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
위 수학식 46을 도식화하면 도 28과 같다.
도 28은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 28을 참조하면, W_1은 수평 성분이 2개, 수직 성분이 4개로 구성되고, 인접한 i_1을 갖는 W_1 간에는 2개의 수직 성분이 중복(overlap)될 수 있다.
도 28과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x,y+1), (x+1,y+1), (x,y+2), (x+1,y+2), (x,y+3), (x+1,y+3)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
다른 실시의 예로써, W_1을 다음 수학식 47과 같이 구성할 수도 있다.
Figure 112018010697039-pct00079
위 구성 방식의 경우, 수평으로 각각 B h 개의 W_1이 존재하고, 이러한 W_1 그룹들이 수직으로는 총 B v / 2 개가 존재한다. 이와 유사하게 수평으로 각각 B h /2 개의 W_1을 만들고, 이러한 W_1 그룹들이 수직으로 B v 4개가 존재하도록 만들 수가 있는데 이를 수식화 하면 아래 수학식 48과 같다.
Figure 112018010697039-pct00080
위 수학식 47을 도식화하면 도 29와 같다.
도 29는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 29를 참조하면, 4 X 4 정사각형에 속한 열 인덱스 중에서 W_1을 구성하는 빔 벡터를 체크 패턴으로 8개 선택될 수 있다. 수학식 47은 이를 일반화한 수식이다.
도 29와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y+1), (x+2,y), (x+3,y+1), (x,y+2), (x+1,y+3), (x+2,y+2), (x+3,y+3)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
앞서 수학식 42 내지 수학식 48을 이용하여 W_1을 구성했을 때, W_2를 구성하는 방법은 다음과 같다.
전송 랭크(transmission rank)가 1인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00081
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 49와 같이 구성할 수 있다.
Figure 112018010697039-pct00082
수학식 49에 나타나있듯이, L_2S=3, L_2C=2 로 전체 L_2는 5 비트가 된다.
전송 랭크(transmission rank)가 2인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00083
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 50과 같이 구성할 수 있다.
Figure 112018010697039-pct00084
수학식 50에 나타나있듯이, L_2S=4, L_2C=1 로 전체 L_2는 5 비트가 된다.
여기서, 선택 벡터들의 조합은 다음과 같은 방법으로 구할 수 있다.
1) 동일한 벡터들의 조합으로 8 쌍(pair)를 만들고 나머지 8 쌍은 서로 연접한 벡터들의 조합을 우선으로 채우는 방법
이 방법의 일례로 아래 수학식 51과 같이 구성할 수 있다.
Figure 112018010697039-pct00085
2) 최종 코드북 W를 계산했을 때, 가능한 모든 쌍에 대해서 코달 거리(chordal distance)가 최대화되도록 벡터의 조합을 구성하는 방법
여기서 행렬 A와 B의 코달 거리(chordal distance)는 아래 수학식 52와 같이 정의된다.
Figure 112018010697039-pct00086
수학식 52에서
Figure 112018010697039-pct00087
는 프로베니우스 놈(Frobenius norm) 연산을 의미한다. 이 방법의 일례로 앞서 수학식 50과 같이 구성될 수 있다.
3) 아래 수학식 53과 같이 동일한 벡터들의 조합으로 8 쌍을 만들고, 위상 일치(co-phasing)를 2 비트 만들어, 총 5 비트를 만드는 조합이 이용될 수도 있다.
Figure 112018010697039-pct00088
또한, L_2=6 비트를 고려하면 다음과 같은 W_2 구성을 고려할 수 있다.
전송 랭크(transmission rank)가 1인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00089
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 54와 같이 구성할 수 있다.
Figure 112018010697039-pct00090
수학식 54에 나타나있듯이, L_2S=3, L_2C=3 로 전체 L_2는 6 비트가 된다.
전송 랭크(transmission rank)가 2인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00091
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 55와 같이 구성할 수 있다.
Figure 112018010697039-pct00092
수학식 55에 나타나있듯이, L_2S=4, L_2C=2 로 전체 L_2는 6 비트가 된다.
본 발명에 따른 다른 일 실시예로써, W_2를 다음 수학식 56과 같이 구성할 수 있다.
Figure 112018010697039-pct00093
수학식 56에 나타나있듯이, L_2S=5, L_2C=1 로 전체 L_2는 6 비트가 된다.
앞서 수학식 50에서 설명한 (Y_1, Y_2) 쌍을 정하는 방식은 수학식 55 및 수학식 56에도 동일하게 적용될 수 있다.
2. 12 TXRU
도 14(b)와 같은 12 TXRU 2D AAS를 위한 코드북을 구성하는 방법을 살펴본다. 도 14(b)와 같이, 12 TXRU 같은 경우, 2D 안테나 패널의 모양에 따라서, (3,2,2,12)와 (2,3,2,12) 두 가지 경우로 나눌 수 있다.
이하, 설명의 편의를 위해 (2,3,2,12) 경우에 대하여 설명을 하나 본 발명이 이에 한정되는 것은 아니며, (3,2,2,12)의 경우도 후술될 (2,3,2,12) 코드북 설계 방식과 유사하게 코드북을 확장 적용할 수 있다.
먼저, Q h = 2,Q v =2,L l = 4 인 경우를 가정한다.
이 경우, 수평으로 3 Tx 안테나 포트, 수직으로 2 Tx 안테나 포트를 가지고 있으므로, 최종 W_1을 구성하는 열은 6 Tx DFT 벡터로 구성되며, 구조는 다음 수학식 57과 같다.
Figure 112018010697039-pct00094
여기서, m은 8 TXRU의 경우와 마찬가지로, i_1, i_2의 함수로 주어진다.
먼저, 8 TXRU의 경우와 마찬가지로, W_1을 구성하는 열의 개수(즉, 빔의 수)가 전체 코드북 C_1에서 4개인 것을 선택한 경우를 먼저 고려할 수 있다.
본 발명에 따른 일 실시예로써, W_1을 다음 수학식 58과 같이 구성할 수 있다.
Figure 112018010697039-pct00095
위 수학식 58을 도식화하면 도 30과 같다.
도 30은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 30을 참조하면, 열의 수가 2의 멱수가 아니므로, 고정된 수직 인덱스에 대하여, W_1이 3개씩 구성할 수 있으며, 총 12개의 W_1을 구성할 수 있다.
도 30과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
주어진 L_1=4을 이용하여 구성할 수 있는 W_1은 총 16개이다. 이때, 12개의 W_1만 사용하는 경우와, 16개의 W_1을 사용하는 경우를 고려할 수 있다.
1) 12개의 W_1만 사용하는 경우
앞서 수학식 32를 이용하여 W_1이 구성될 수 있다.
만약, W_1에 대한 (단말의) 피드백 정보를 (기지국이) 디코딩하여 얻은 결과가 12, 13, 14, 15 값을 얻게 되면, (기지국은) W_1에 대하여 에러가 발생했다고 판단할 수 있다.
본 발명에서는 이와 같이 W_1 피드백과 같은 특정 보고 타입(reporting type) 내에 예약된 상태(reserved states)(예를 들어, 위의 예에서는 12, 13, 14, 15)가 존재할 때, 이를 활용하여 수신단에서 에러 체크를 할 수 있도록 할 수 있다. 이에 따라, 그 다음 이어지는 피드백 시점(feedback instances)가 해당 에러에 의해 무의미한 보고가 되는 것을 방지할 수 있는 일련의 기술을 제안한다. 예를 들어 다음과 같은 방법들 중에 적어도 하나의 방법이 적용될 수 있다.
1-A) 기지국은 비주기적인 CSI 요청(Aperiodic CSI request) 신호/메시지를 단말에 전송함으로써, W_1을 포함한 CSI 정보를 비주기적인 피드백을 통해 다시 수신할 수 있다.
1-B) 주기적인 피드백 체인(Periodic feedback chain)을 이용하는 경우, 기지국은 오류 발생한 W_1이 다음 주기에 보고될 때까지, 수신되는 그 밖의 CSI(예를 들어, W_1과 피드백 계위가 낮거나 주기가 짧은 CSI, 일례로 W_2 및/또는 CQI 등)를 모두 무시할 수 있다.
1-C) 주기적인 피드백 체인(Periodic feedback chain)을 이용하는 경우, 기지국은 특정 B-비트 지시자(예를 들어, B=1)를 #n번째 서브프레임(SF: subframe)에 시그널링(예를 들어, DCI)하여, (오류가 발생한) 보고 타입(예를 들어, W_1)을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다.
여기서, B-비트 지시자에 의해, #(n-k) SF 이전에(예를 들어, k는 사전에 정의되거나 단말에 설정될 수 있음) 가장 최근 보고된 상기 특정 보고 타입(예를 들어, W_1)을 피드백한 CSI 프로세스(CSI process)에 대하여 (오류가 발생한) 보고 타입(예를 들어, W_1)을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다. 그리고/또는, 해당 CSI 프로세스가 상기 예약된 상태(reserved states) 등이 포함된 특정 X 포트(예를 들어, X=12) CSI 보고가 설정된 경우, 해당 CSI 프로세스의 #n SF 이후 최초로 나타나는 특정 주기적인 보고 시점(periodic reporting instance(s))에 상기 (오류가 발생한) 보고 타입(예를 들어, W_1)을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다.
또한, 불필요한 상향링크 오버헤드(uplink overhead)를 방지하기 위해, 다음의 유효한 상기 (오류가 발생한) 보고 타입(예를 들어, W_1)의 CSI 보고 시점(CSI reporting instance)가 나타나기 이전까지의 그 밖의 CSI(예를 들어, W_1과 피드백 계위가 낮거나 주기가 짧은 CSI, 일례로 W_2 및/또는 CQI 등)를 모두 드랍(drop)하도록(즉, 단말이 전송하지 않도록) 정의되거나 단말에 설정될 수 있다.
이러한 동작의 지원을 통해, 에러가 발견된 특정 주기적인 CSI 보고 시점(periodic CSI reporting instance) 이후의 연속된 주기적인 CSI 보고 시점에 대하여 불필요한 상향링크 오버헤드를 방지하거나 곧바로 CSI 보고의 재전송을 지시함으로써 효과적인 주기적 보고가 수행되도록 하는 장점이 있다.
2) 16개의 W_1만 사용하는 경우
추가적으로 4개의 W_1 구성 패턴을 추가하는 방법으로써, 이를 일반화된 수식으로 나타내면 아래 수학식 59와 같다.
Figure 112018010697039-pct00096
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
위 수학식 59를 도식화하면 도 31과 같다.
도 31은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 31에서는 앞서 수학식 59에서 i_1=12, 13, 14, 15인 경우, 수직 패턴을 고려한 경우를 예시한다.
다른 실시의 예로는 앞서 도 18 내지 도 21(또는 도 22, 도 23)의 패턴이 적용될 수 있다.
W_1을 구성하는 열의 개수가 4이므로, L_2=4인 경우 W_2는 구성하는 방법은 앞서 기술한 수학식 28 또는 수학식 30을 이용하여 구성될 수 있다.
앞서 설명한 예에서는 L_1=4이고, 앞서 수학식 28을 이용하는 경우를 예시하고 있으나, 본 발명에 이에 한정되는 것은 아니며, 앞서 표 6에서 예시된 모든 경우에 대하여 앞서 수학식 32 내지 수학식 39를 이용하여 위의 방식을 쉽게 확장하여 적용할 수 있다.
다음으로, W_1을 구성하는 열의 개수(즉, 빔의 수)가 6인 경우를 고려할 수 있다.
본 발명에 따른 일 실시예로써, W_1을 다음 수학식 60과 같이 구성할 수 있다.
Figure 112018010697039-pct00097
위 수학식 60을 도식화하면 도 32와 같다.
도 32는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 32를 참조하면, W_1을 이루는 열들의 인덱스가 주어진 수직 성분 인덱스에 대해서 수평으로 연속적인 경우이다.
도 32와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x+3,y), (x+4,y), (x+5,y)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
다른 실시예로서, 수학식 60에서 함수 m(i 1,i 2) 를 아래 수학식 61와 같이 변경함으로써 W_1을 구성할 수 있다.
Figure 112018010697039-pct00098
수학식 61와 같은 함수 m(i 1,i 2) 가 적용된 수학식 60을 도식화하면 도 33과 같다.
도 33은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 33을 참조하면, 수평성분 3개와 수직성분 2개를 가진 DFT 벡터로 이루어진 직사각형 모양의 패턴으로 W_1이 구성될 수 있다. 이 경우, 수직으로 연접한 W_1끼리는 3개의 빔이 중복(overlap)된다.
도 33과 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x,y+1), (x+1,y+1), (x+2,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
도 32 및 도 33의 예시 외에도, W_1 간에 두 개의 빔이 overlap 되는 경우를 고려할 수 있다. 하지만, 12 TXRU의 경우에는 W1의 인덱스가 2의 멱수로 표현이 되지 못하므로 앞서 설명한 W_1을 4개의 빔으로 구성하는 경우처럼, 인덱스를 모두 사용하지 못하는 경우가 생긴다.
이를 수식으로 나타내면 아래 수학식 62와 같다. 앞서 수학식 59에서 함수 m(i 1,i 2) 를 아래 수학식 62와 같이 변경함으로써 W_1을 구성할 수 있다.
Figure 112018010697039-pct00099
위 수학식 62을 도식화하면 도 34와 같다.
도 34는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 34와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x+2,y), (x,y+1), (x+1,y+1), (x+2,y+1)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
또한, 앞서 수학식 59에서 함수 m(i 1,i 2) 를 아래 수학식 63과 같이 변경함으로써 W_1을 구성할 수 있다.
Figure 112018010697039-pct00100
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
위 수학식 63을 도식화하면 도 35와 같다.
도 35는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 35와 같은 W_1의 구성 방법을 일반적으로 표현하면, W_1을 구성하는 프리코딩 행렬의 제1 차원에서의 인덱스와 제2 차원에서의 인덱스의 쌍은 (x,y), (x+1,y), (x,y+1), (x+1,y+1), (x,y+2), (x+1,y+2)에 해당한다. 여기서, x 및 y는 음수가 아닌 정수에 해당한다.
앞서 수학식 60 내지 수학식 63을 이용하여 W_1은 6개의 열로 구성되고, 이 때, W_2를 구성하는 방법은 다음과 같다.
전송 랭크(transmission rank)가 1인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00101
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 64와 같이 구성할 수 있다.
Figure 112018010697039-pct00102
수학식 52에서 나타나 있듯이, L_2S=3, L_2C=2 로 전체 L_2는 5비트가 된다.
전송 랭크(transmission rank)가 2인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00103
으로부터 선택될 수 있다.
본 발명에 따른 일 실시예로써, W_2를 다음 수학식 65와 같이 구성할 수 있다.
Figure 112018010697039-pct00104
수학식 65에 나타나있듯이, L_2S=4, L_2C=1 로 전체 L_2는 5 비트가 된다.
또한, 아래 수학식 66과 같이, 랭크 2를 구성할 때, 빔 쌍을 자기 자신의 빔으로 구성된 경우 3 비트와 위상 일치(co-phasing) 2 비트를 고려할 수 있다.
Figure 112018010697039-pct00105
앞서 수학식 64 내지 수학식 66은 L_2=5 비트인 경우를 예시하고 있으나, L_2=6 비트인 경우 다음과 같다.
전송 랭크(transmission rank)가 1인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00106
으로부터 선택될 수 있다.
W_2를 다음 수학식 67과 같이 구성할 수 있다.
Figure 112018010697039-pct00107
수학식 54에 나타나있듯이, L_2S=3, L_2C=3 로 전체 L_2는 6 비트가 된다.
전송 랭크(transmission rank)가 2인 경우, 외부 프리코더(outer precoder) W 2 는 두 번째 코드북
Figure 112018010697039-pct00108
으로부터 선택될 수 있다.
W_2를 다음 수학식 68과 같이 구성할 수 있다.
Figure 112018010697039-pct00109
수학식 68에 나타나있듯이, L_2S=4, L_2C=2 로 전체 L_2는 6 비트가 된다.
또는, W_2를 다음 수학식 69와 같이 구성할 수 있다.
Figure 112018010697039-pct00110
수학식 68에 나타나있듯이, L_2S=5, L_2C=1 로 전체 L_2는 6 비트가 된다.
수학식 67 및 수학식 69의 경우, 각각 L_2S 가 3 비트와 5 비트로 구성되어 있으므로, 각각 (Y_1,Y_2) 쌍을 8개와 32개를 표현할 수 있다. 하지만, 수학식 67 및 수학식 69에서 볼 수 있듯이, (Y_1,Y_2) 쌍이 6개와 21개의 경우 밖에 없기 때문에, 이 경우를 제외한 쌍을 지시하는 인덱스가 단말로부터 피드백 되면, 기지국은 전송 오류로 인식하며, 이 경우 기지국은 다음과 같이 동작 할 수 있다.
2-A) 비주기적인 CSI 요청(Aperiodic CSI request) 신호/메시지를 수신 단말에 송신하여, W_2의 정보를 비주기적인 피드백을 통하여 다시 수신 할 수 있다.
2-B) 주기적인 피드백 체인(Periodic feedback chain)을 이용하는 경우, 기지국은 오류가 발생한 W_2이 다음 주기에 보고될 때까지, 수신되는 그 밖의 특정 CSI들을 무시할 수 있다.
2-C) 또는, 앞서 1-C)에서 설명한 제안 동작 방식을 오류가 발생한 W_2에 대해 유사하게 적용할 수 있다.
주기적인 피드백 체인(Periodic feedback chain)을 이용하는 경우, 기지국은 특정 B-비트 지시자(예를 들어, B=1)를 #n번째 서브프레임(SF: subframe)에 시그널링(예를 들어, DCI)하여, (오류가 발생한) W_2을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다.
여기서, B-비트 지시자에 의해, #(n-k) SF 이전에(예를 들어, k는 사전에 정의되거나 단말에 설정될 수 있음) 가장 최근 보고된 W_2을 피드백한 CSI 프로세스(CSI process)에 대하여 (오류가 발생한) W_2을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다. 그리고/또는, 해당 CSI 프로세스의 #n SF 이후 최초로 나타나는 특정 주기적인 보고 시점(periodic reporting instance(s))에 상기 (오류가 발생한) W_2을 오버라이딩(overriding)하여 예외적으로 재전송을 하도록 할 수 있다.
또한, 불필요한 상향링크 오버헤드(uplink overhead)를 방지하기 위해, 다음의 유효한 상기 (오류가 발생한) W_2의 CSI 보고 시점(CSI reporting instance)가 나타나기 이전까지의 그 밖의 CSI를 모두 드랍(drop)하도록(즉, 단말이 전송하지 않도록) 정의되거나 단말에 설정될 수 있다.
또한, 앞서 수학식 55의 경우는 L_2S가 4이므로, 수학식 51과 수학식 52에서 설명한 방법을 이용하여 (Y_1,Y_2) 쌍이 선택될 수 있다.
지금까지는 (2,3,2,12)를 위한 코드북 설계를 설명했다. (3,2,2,12)의 경우도 이와 유사하게 확장 적용될 수 있다. 차이점은 최종 W_1을 구성하는 열을 이루는 6 Tx DFT 벡터가 아래 수학식 57과 같이 구성된다.
Figure 112018010697039-pct00111
여기서 m(i 1,i 2) 은 W)1 과 W)2의 피드백 인덱스인 i_1, i_2의 함수로써 상기 기술한 W_1을 구성하는 방식에 관한 함수이다. 이를 이용하여 상기 기술한 12 TXRU를 위한 코드북 설계 방식을 확장 적용하여 코드북 W를 구성할 수 있다.
지금까지는 기지국 안테나 포트 패널 크기에 부합하는 DFT 벡터로 코드북을 구성하는 방법을 제안하였다. 즉, 수평성분으로 예를 들어 설명하면, (2,2,2,8)인 경우, 2 Tx DFT 벡터, (3,2,2,12)는 3 Tx DFT 벡터로 구성된다. 하지만, 기존 LTE 기반의 시스템에서 적용되는 코드북은 2의 멱수인 2,4,8 등의 형태이며, 2의 멱수가 아닌 3, 6 Tx 코드북을 이용하게 되면, 수신 단말 구현 등의 복잡도가 높아질 것으로 예상된다.
이를 위하여, 본 발명에서는 수평 혹은 수직 혹은 수평, 수직 성분으로 2의 멱수가 아닌 안테나 포트를 사용하는 2D AAS 안테나 시스템에서 2의 멱수로 구성되는 DFT 벡터를 이용하여 코드북을 구성하는 방법을 제안한다.
아래 수학식 71은 오버샘플링 인자(oversampling factor)가 Q_h인 4Tx DFT 코드북 C_4Tx를 나타낸다.
Figure 112018010697039-pct00112
오버샘플링은 코드북의 빔 세분화(beam granularity)를 높이기 위하여 사용되며, 이는 4Q h × 4Q h DFT 행렬의 1,2,3,4번째 행들로 이루어진 행렬을 구성함으로써 구현될 수 있다. 이러한 오버샘플링 DFT 행렬을 구성하는 원리를 적용하여, 2의 멱수가 아닌 안테나 포트 P를 가진 P Tx 코드북을 구성하는 방법은 다음과 같다.
3-A) P보다 크고 가장 가까운 2의 멱수를 구한다. 즉, 2N-1 < P < 2N 을 만족하는 N을 구할 수 있다.
3-B) 시스템에서 주어진 오버샘플링 인자 Q를 이용하여, NQ × NQ DFT 행렬을 구성할 수 있다.
3-C) 이 행렬에서 1,... , P번째 행과 1,... , PQ열로 이루어진 부분 행렬 C_PTx을 계산할 수 있다.
수평, 수직 성분 모두 2의 멱수가 아닌 안테나 포트로 구성된 경우는 위의 프로세스를 반복하여 또 다른 코드북 C' _PTx를 구성한 후 C_PTx 와 C' _PTx의 코드북의 크로네커 곱(kronecker product)으로 전체 코드북을 구성할 수 있다.
3. 16 TXRU
도 14(C)와 같은 16 TXRU 2D AAS를 위한 코드북을 구성하는 방법을 살펴본다. 도 14(C)와 같이, 16 TXRU의 경우, 안테나 구성에 따라서, (2,4,2,16)과 (4,2,2,16)으로 구성될 수 있다.
(2,4,2,16)의 경우, W_1을 구성하는 코드북 C_1을 구성하는 8 Tx DFT 벡터는 다음 수학식 72와 같이 구성된다.
Figure 112018010697039-pct00113
(4,2,2,16)의 경우, W_1을 구성하는 코드북 C_1을 구성하는 8 Tx DFT 벡터는 다음 수학식 73과 같이 구성된다.
Figure 112018010697039-pct00114
여기서 m(i 1,i 2) 은 W_1과 W_2의 피드백 인덱스인 i_1, i_2의 함수로써 상기 기술한 W_1을 구성하는 방식에 관한 함수이다.
16 TXRU의 경우 m(i 1,i 2) 을 구성하는 방법은 8 TXRU의 경우에 사용된 패턴을 재사용 할 수 있다. 즉, W_1이 4개의 열로 구성되는 경우 W1을 구성하는 방법은 앞서 수학식 32 내지 39와 수학식 72, 73을 조합함으로써 구성될 수 있다.
예를 들어, (2,4,2,16)를 사용하는 시스템에서 도 15의 패턴을 이용하여 코드북을 구성하면 아래 수학식 74와 같다.
Figure 112018010697039-pct00115
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
이때, 랭크 1과 2인 경우에 W_2는 각각 수학식 28 및 30으로 구성될 수 있다.
또한, W_1이 8개의 열로 구성되는 경우, 수학식 43, 44, 45, 46과 수학식 72, 73을 조합함으로써 구성될 수 있다.
예를 들어 (2,4,2,16)를 사용하는 시스템에서 도 25의 패턴을 이용하여 코드북을 구성하면 아래 수학식 75와 같다.
Figure 112018010697039-pct00116
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다. B_h는 수평 안테나 포트의 수와 오버샘플링 인자의 곱을 나타내고, B_v는 수직 안테나 포트의 수와 오버샘플링 인자의 곱을 나타낸다.
이때, 랭크 1인 경우 W_2는 앞서 수학식 49 또는 54와 같이 구성될 수 있다. 또한, 랭크 2인 경우 W_2는 각각 앞서 수학식 50 또는 55 또는 56과 같이 구성될 수 있다.
앞서 설명한 본 발명의 실시예에서는, 설명의 편의를 위하여, 수직과 수평 성분의 DFT 벡터를 구성할 때, 위상 오프셋이 없는 경우를 가정하여, DFT 벡터를 구하고, 이 DFT 벡터들을 크로네커 곱(kronecker product) 연산을 이용하여, 전체 코드북 벡터를 구성하는 방법을 설명하였다.
즉, 앞서 수학식 19 및 20에서 오프셋을 고려한 것을 수식으로 나타내면 각각 수학식 76 및 77과 같다.
Figure 112018010697039-pct00117
Figure 112018010697039-pct00118
여기서, δ h δ v 는 각각 수직, 수평 DFT 벡터의 위상 오프셋을 나타낸다. 위와 같은 오프셋을 고려한 코드북을 구성하는 실시예에서는 특정 코드북 위상에 상응하는 안테나 틸팅(tiliting) 각도를 이용하지 않는 경우, 오프셋을 설정함으로써 코드북을 구성할 수 있다.
또한, 설명의 편의를 위하여, 전체 열의 개수가 행의 개수보다 많은 행렬(fat matrix)의 빔 인덱스를 수평 방향을 우선으로 기술을 하였다. 빔 인덱스를 수직으로 하는 경우, 앞서 도 15는 도 36과 같이 나타낼 수 있다.
도 36은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
이 경우, 전체 코드북 및 W_1, W_2 구성 방식은 상기 설명한 방식과 동일하지만, 수식으로 표현할 때, 빔 인덱싱 방식의 차이에 따라서 달라질 수 있다. 예를 들어, 수학식 21은 아래 수학식 78로 나타낼 수 있다.
Figure 112018010697039-pct00119
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다.
위의 실시예와 같이, 앞서 설명한 W_1 구성 방식은 빔 인덱싱이 수직으로 바뀌더라도 용이하게 확장 적용될 수 있다.
본 발명에서 설명된 W_1의 구성방식은 구성방식에 따라서, 서로 수평 혹은 수직 도메인에서 연접한 W_1끼리 W_1을 구성하는 빔의 개수의 반만큼 중복되는 경우가 발생될 수 있다.
즉, 앞서 도 36에서 W_1(0)과 W_1(1)의 경우, 8번, 12번 인덱스의 빔을 동시에 포함하고 있다. 하지만, 중복을 고려하지 않은 W_1의 구성 방식도 이용될 수 있다.
이러한, 수평 도메인으로 중복이 존재하는 경우, 기존의 W_1 구성방식에서, 짝수 인덱스 {0,2,4,6,...} 혹은 홀수 인덱스 {1,3,5,...}만을 선택하여 W_1을 재구성할 수 있다. 또는, 특정 수의 배수, 예를 들어 4이면 (0, 4, 8, ...)등으로 구성될 수 있다.
앞서 도 18의 예시와 같이 수직 도메인으로 중복(overlap)이 발생하는 디자인의 경우, 동일한 수직 도메인으로 이루어진 W_1의 개수를 N_w1이라 정의하면, 기존의 W_1의 구성방식에서 {0,1,..., (N_w1)-1, 2N_w1,...}의 인덱스를 이용하여 W_1을 재구성함으로써, W_1끼리 중복이 없는 빔들로 구성될 수 있다. 혹은, 특정 수의 배수, 예를 들어 수직으로 4만큼 이동된 경우, {0,1,..., (N_w1)-1, 4N_w1,...} 등의 인덱스를 이용하여 W_1이 구성될 수 있다.
수직 혹은 수평 도메인으로 중복이 있는 W_1 구성방법들의 경우, 위 두 가지 원리(principle)를 이용하여 빔의 중복을 없앨 수 있다.
이와 같이, W_1을 구성함으로써, W_1의 피드백 비트수인 L_1을 줄일 수 있는 효과가 있다.
앞서 본 발명의 실시예에서는 3D-MIMO를 위해서 도 14에 나타난 안테나 레이아웃(layout)에 적용 가능한 다양한 코드북 디자인 방법들을 제안하였다. 이러한 코드북 디자인 방법들에 대하여, 기지국은 다음과 같은 방법들의 시그널링을 이용하여 단말이 어떤 코드북을 사용해야 하는지 단말에게 알려 줄 수 있다.
A. 기지국은 8, 12, 16 등의 안테나 포트 수를 RRC 시그널링을 통해 단말에게 알려 줄 수 있다.
만약, 12, 16 안테나 포트 레이아웃은 각각 가로로 긴 사각형 모양과 세로로 긴 사각형 모양이 있으며, 기지국은 각 안테나 포트 레이아웃에 적합한 코드북을 1 비트 지시자를 RRC 시그널링을 통해 단말에게 알려줄 수 있다. 예를 들어, 0이면 가로로 긴 사각형 안테나 레이아웃, 1이면 세로로 긴 사각형 안테나 레이아웃으로 단말은 인식할 수 있으며, 1 비트 지시자를 통해 단말은 단말은 각 안테나 레이아웃에 적합한 코드북을 생성할 수 있다.
i. 추가적으로, 안테나 레이아웃에 1차원 형상도 고려하는 경우(즉, 12 안테나 포트의 경우 (1,6,2), (6,1,2), 16 안테나 포트의 경우 (1,8,2), (8,1,2)), 기지국은 2 비트 지시자 혹은 비트맵을 RRC 시그널링을 통해 단말에게 알려줄 수 있다. 단말은 이를 이용하여 코드북을 구성할 수 있다.
ii. 추가적으로, 단말이 상기 설명한 코드북을 일부 또는 모두 사용하는 경우, 상기 설명한 코드북 구성 방법들을 비트맵 형태로 단말에 알려 줄 수 있다.
iii. 비주기적인 CSI 보고(aperiodic CSI reporting)의 경우, 기지국은 W_1과 W_2에 상응하는 비트 수인, L_1, L_2를 RRC 시그널링을 통해 명시적(explicit)으로 단말에 알려주거나 또는 비트맵 형태로 단말에 알려 줄 수 있다. 그러면, 단말은 각 해당 비트 수에 상응하는 미리 정해진 코드북을 구성하여 사용할 수 있다. 또한, L_1, L_2 에 상응하는 상기 설명한 코드북들을 비트맵을 비트맵 형태로 단말에 알려주어, 단말이 코드북을 구성할 수도 있다.
B. 기지국은 8, 12, 16 등의 안테나 포트 수에 상응하는 레이아웃들의 구성 방법 즉 수평, 수직 안테나 포트 수를 단말에 명시적으로 알려 줄 수 있다. 즉, (M, N) 혹은 (M, N, P)에 해당하는 정보를 단말에 RRC 시그널링을 통하여 알려 줄 수 있으며, 단말은 이에 상응하는 코드북을 미리 정해진 위에 설명한 방법들 중의 하나의 방법으로 코드북을 구성할 수 있다.
i. 추가적으로, 단말이 상기 설명한 코드북을 일부 또는 모두 사용하는 경우, 상기 설명한 코드북 구성 방법들을 비트맵 형태로 단말에 알려 줄 수 있다.
ii. 비주기적 CSI 보고(aperiodic CSI reporting)의 경우, 기지국은 W_1과 W_2에 상응하는 비트 수인, L_1, L_2 를 RRC 시그널링을 통해 단말에게 명시적으로 알려주거나, 비트맵 형태로 단말에 알려 줄 수 있다. 그러면, 단말은 각 해당 비트 수에 상응하는 미리 정해진 코드북을 구성하여 사용할 수 있다. 또한, L_1, L_2 에 상응하는 상기 설명한 코드북들을 비트맵 형태로 단말에 알려주어, 단말이 코드북을 구성할 수 있다.
C. 기지국은 레가시 코드북을 포함하는 안테나 포트수가 8인 경우, 1 비트 지시자를 RRC 시그널링을 통해서 단말에 알려 줄 수 있다. 단말은 이를 통하여, 레가시 코드북 또는 (2,2,2)를 위한 코드북을 생성 할 수 있다.
i. 추가적으로, 단말이 상기 설명한 코드북을 일부 또는 모두 사용하는 경우, 상기 설명한 코드북 구성 방법들을 비트맵 형태로 단말에 알려 줄 수 있다.
ii. 비주기적 CSI 보고(aperiodic CSI reporting)의 경우, 기지국은 W_1과 W_2에 상응하는 비트 수인, L_1, L_2 를 RRC 시그널링을 통해 명시적으로 단말에게 알려주거나, 비트맵 형태로 단말에 알려 줄 수 있다. 그러면, 단말은 각 해당 비트 수에 상응하는 미리 정해진 코드북을 구성하여 사용할 수 있다. 또한, L_1, L_2 에 상응하는 상기 설명한 코드북들을 비트맵 형태로 단말에 알려주어, 단말이 코드북을 구성할 수 있다.
3D MIMO 시스템의 일례로 도 14에서 예시하는 안테나 포트 레이아웃에서 안테나 포트 간의 간격(spacing)은 코드북 디자인에 많은 영향을 준다. 즉, 안테나 포트 간의 간격(spacing)이 큰 경우(예를 들어, 안테나 포트 가상화 혹은 안테나 요소들의 물리적 거리가 큰 경우)와 작은 경우에 따라서 코드북을 어떻게 구성하느냐에 따라서 성능이 차이가 나기 때문이다.
통상적으로, 안테나 포트 간의 간격(spacing)이 큰 경우는, W_1의 빔 그룹을 구성할 때, 빔 간의 간격(spacing)이 크도록 구성하는 것이 바람직하며, 안테나 포트 간의 간격(spacing)이 작은 경우, W_1의 빔 그룹을 구성할 때, 빔 간의 간격(spacing)이 작도록 구성하는 것이 바람직하다. 이처럼 다양한 환경에 맞춘 코드북 디자인 적용을 위하여 본 발명에서는 다음과 같은 방법을 제안한다.
본 발명에 따른 일 실시예로서, 주어진 수직 성분의 빔에 대해서 W_1을 구성하는 수평 성분의 빔들이 연속적으로 묶이게 되는 수학식 32가 이용될 수 있다. 또는, 수평 성분의 빔들이 특정 인덱스 그룹 μ = 8 (혹은 임의의 μ 사전에 정의되거나, 기지국이 RRC 시그널링을 통하여 단말에 알려줄 수 있다.)를 유지한 채 구성이 되는 수학식 33이 이용될 수 있다.
(2,4,2,16)에서 W_1이 네 개의 빔으로 구성되는 경우에 코드북 구성을 위한 수식을 다시 쓰게 되면 아래 수학식 79 및 80과 같다.
Figure 112018010697039-pct00120
Figure 112018010697039-pct00121
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다.
1. 기지국은 1 비트 시그널링을 통하여, 안테나 포트의 간격(spacing)에 적합한 코드북을 단말에 알려 줄 수 있다. 즉, 1 비트를 이용하여 수학식 79 또는 수학식 80에 대한 정보를 단말에 알려줄 수 있다. 단말은 이를 이용하여 코드북을 재구성 할 수 있다.
2. 코드북을 구성 시, 수학식 79 및 수학식 80가 포함되는 W_1을 구성하며, 이를 수식으로 나타내면 수학식 81과 같다.
Figure 112018010697039-pct00122
여기서, i_1은 W_1의 인덱스를 나타내며, i_2는 W_2의 선택에 상응하는 인덱스이다.
이 경우, W_1에 상응하는 페이로드 크기가 1 비트 증가할 수 있지만, 단말의 광대역(wideband)/장기(longterm) 성분의 코드북 선택의 폭을 넓혀줄 수 있는 효과가 있다.
3. 앞서 2.의 방식에서 페이로드 크기를 증가 시키지 않는 방법으로, 수학식 79 및 수학식 80에서 각각 1/2로 서브샘플링(subsampling)하는 방법이 이용될 수도 있다. 즉, 수학식 79 및 수학식 80에서 i_1의 인덱스를 홀수 혹은 짝수만을 취하여, 조합할 수 있다.
4. 앞서 2.에서 설명한 두 개의 코드 북의 병합에 관한 제안방법은 수학식 79 및 수학식 80의 조합 외 앞서 설명한 다양한 코드북 디자인들에 확장 적용될 수 있다.
16 포트 CSI-RS를 위한 2D 코드북 설계
앞서 도 14(c)와 같이, 본 발명에 따른 일 실시예에서는 16 TXRU를 위한 코드북 설계 방법을 제안한다.
제안하는 코드북은 아래 수학식 82와 같이 이중 코드북(dual codebook)구조를 가진다.
Figure 112018010697039-pct00123
여기서, W_1은 장기(long term) 및/또는 광대역(wideband) 채널 특성에 해당하고, W_2는 단기(short-term) 및/또는 서브밴드(subband) 채널 특성에 해당한다. 또한, W_1는 2개의 편파 그룹 내에서 빔 방향성을 나타내는 2개의 동일한 서브 행렬(sub matrices)을 포함하고, W_2는 W_1의 빔 선택 및 양자화된 편파 위상에 해당한다. 이중 코드북 구조로 인하여, 서로 다른 피드백 주기를 설정함으로써 피드백(즉, W_1을 위한 장기 피드백 및 W_2를 위한 단기 피드백) 오버헤드를 절감할 수 있다.
레가시 시스템의 코드북과 비교하여, 2D 안테나 어레이를 위한 코드북 설계 내 주요 차이점은 수직 도메인 내 추가적인 자유도(degrees of freedom)를 이용한다는 점이다. 이를 위하여, 아래 수학식 83과 같이 블록 대각 구조(block diagonal structure)를 유지한 채, 수평의 DFT 행렬과 수직의 DFT 행렬의 크로네커 곱(Kronecker product)이 W_1 내 도입된다.
Figure 112018010697039-pct00124
여기서,
Figure 112018010697039-pct00125
은 W_1을 위한 인덱스이고, L 1 은 W_1을 위한 피드백 비트 수이다. X(i 1) 는 i 1 에 따라 수평 및 수직 빔-그리드(grid-of-beam) 벡터의 선택된 열의 크로네커 곱(Kronecker product)이다.
1. W_1을 위한 코드북 설계
먼저, 전체 열의 개수가 행의 개수보다 많은 행렬(fat matrix)인 W_1를
Figure 112018010697039-pct00126
와 같이 정의한다.
여기서, X H and X V 는 각각 수평 도메인 및 수직 도메인을 위한 fat matrix이다.
X H
Figure 112018010697039-pct00127
와 같은 N-Tx DFT 벡터로부터 구성될 수 있다. 여기서, B h = NO H ,
Figure 112018010697039-pct00128
이다. O H 는 수평 도메인에서 오버샘플링 인자(oversampling factor)를 지시한다.
유사하게, X V
Figure 112018010697039-pct00129
와 같은 M-Tx DFT 벡터로부터 구성될 수 있다. 여기서, B V = MO V ,
Figure 112018010697039-pct00130
이다. O V 는 수직 도메인에서 오버샘플링 인자(oversampling factor)를 지시한다.
크로네커 곱(Kronecker product) 연산 후에, fat matrix X 내 전체 빔의 개수는 B T = B H B V = M·O v·N·O H 와 같다. 그리고, X는
Figure 112018010697039-pct00131
와 같이 나타낼 수 있다. 여기서,
Figure 112018010697039-pct00132
이다. 예를 들어,
Figure 112018010697039-pct00133
일 수 있다.
W_1을 위한 피드백 오버헤드, L_1은 오버샘플링 인자와 W_1을 위한 빔 그룹과 밀접하게 관련된다.
이하, 각 안테나 구성에 대하여 다음과 같은 오버샘플링 인자를 고려한다.
(4,2,2,16) : O_V=2, 4, 8 및 O_H=8,16
(2,4,2,16) : O_V=4, 8, 16 및 O_H=8
X의 i 1 번째 서브셋으로 정의되고 W_1의 빔 그룹핑과 관련되는 X(i 1) 를 결정하는 방법을 제안한다.
이하, X(i 1) 는 4개의 빔을 포함한다고 가정하고, X(i 1) 를 구성하기 위한 3가지 옵션을 다음과 같이 제안한다.
도 37은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
옵션 1: 수평적 스트라이프(Horizontal stripe)
도 37(a)를 참조하면, 주어진 수직 빔에 대하여, 수평 도메인에서 연속적인 4개의 빔이 선택된다. 이 옵션에서, 인접한(adjacent) X(i 1) 간에 2개의 빔이 중복(overlap)된다. 이 경우, X(i 1) 는 아래 수학식 84과 같이 정해질 수 있다.
Figure 112018010697039-pct00134
옵션 2: 직사각형(Rectangle)
도 37(b)를 참조하면, 수평 도메인 및 수직 도메인 모두에서 연속적인 2개의 빔이 선택된다. 이 옵션에서, 인접한(adjacent) X(i 1) 간에 2개의 빔의 중복(overlap)된다. 이 경우, X(i 1) 는 아래 수학식 85과 같이 정해질 수 있다.
Figure 112018010697039-pct00135
옵션 2: 체크 패턴(Check pattern)
도 37(c)를 참조하면, 4개의 연속적인 수평 빔과 2개의 연속적인 수직 빔으로 구성되는 8개의 빔에서, 4개의 빔이 하나 건너 하나 씩(one across the one) 선택된다. 즉, 체크 패턴으로 선택된다. 이 옵션에서, 인접한(adjacent) X(i 1) 간에 2개의 빔의 중복(overlap)된다. 이 경우, X(i 1) 는 아래 수학식 86과 같이 정해질 수 있다.
Figure 112018010697039-pct00136
옵션 2 및 3은 옵션 1에 비하여 수직 도메인에서 추가적인 자유도를 가질 수 있다.
도 38은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
X(i 1) 를 위한 8개의 빔이 L 1 비트 장기(long term) 피드백된다면, 상술한 옵션 2(즉, 도 38(a)의 경우, 옵션 4: 직사각형(rectangle) 패턴) 및 옵션 3(즉, 도 38(b)의 경우, 옵션 5: 체크 패턴(Check pattern))이 적용될 수 있다. 즉, 도 38(a) 및 도 38(b)와 같이, 인접한(adjacent) X(i 1) 간에 8 빔 중에서 4개의 빔이 중복된다.
옵션 4 및 옵션 5에 해당하는 X(i 1) 는 각각 아래 수학식 87 및 88과 같이 정해질 수 있다.
Figure 112018010697039-pct00137
Figure 112018010697039-pct00138
결과적은, W_1 행렬은 수학식 83과, 수학식 84, 85, 86, 87, 88 중 어느 하나를 이용하여 구성될 수 있다.
2. W_2를 위한 코드북 설계
옵션 1, 2, 및 3의 경우에 있어서, X(i 1) 는 4개의 빔으로 구성되므로, 3GPP 릴리즈 12 4Tx 코드북에서 W_2를 재사용할 수도 있다.
따라서, 랭크 1의 경우, W_2는 아래 수학식 89와 같이 정해질 수 있다.
Figure 112018010697039-pct00139
여기서, Y∈{e 1,e 2,e 3,e 4} 이고,
Figure 112018010697039-pct00140
는 (i 2+1) 번째 원소만이 1이고, 나머지는 모두 0인 4개의 원소를 가지는 선택 벡터(selection vector)이다. 그리고,
Figure 112018010697039-pct00141
는 2개의 편파 그룹 간에 위상 일치(co-phasing)의 양자화 레졸루션(quantization resolution)을 증가시키기 위한 회전(rotation) 항(term)이다.
랭크 2의 경우, W_2는 아래 수학식 90과 같이 정해질 수 있다.
Figure 112018010697039-pct00142
여기서, (Y 1,Y 2)∈{(e 1,e 1),(e 2,e 2),(e 3,e 3),(e 4,e 4),(e 1,e 2),(e 2,e 3),(e 1,e 4),(e 2,e 4)} 이다. 따라서, W_2 피드백을 위해 L 2 = 4 비트가 요구된다.
옵션 4 및 5에서, X(i 1) 는 8개 빔으로 구성되므로, 이는 W_2를 위한 추가적인 피드백 비트가 증가된다.
유사하게, 랭크 1의 경우, W_2는 아래 수학식 91과 같이 정해질 수 있다.
Figure 112018010697039-pct00143
여기서, Y∈{e 1,e 2,e 3,e 4,e 5,e 6,e 7,e 8} 이고,
Figure 112018010697039-pct00144
는 (i 2 + 1) 번째 원소만이 1이고, 나머지는 모두 0인 8개의 원소를 가지는 선택 벡터(selection vector)이다. 그리고,
Figure 112018010697039-pct00145
이다.
랭크 2의 경우, W_2는 아래 수학식 92와 같이 정해질 수 있다.
Figure 112018010697039-pct00146
여기서,
Figure 112018010697039-pct00147
이다. 수학식 92에서 선택 쌍(selection pair)은 모든 가능한 코드북 쌍의 코달 거리(Chordal distance)를 비교함으로써 획득될 수 있다. 옵션 4 및 5에서, 단기 피드백을 위해 5비트가 요구된다(즉, L 2 = 5)
3. 성능 평가
Cat-2 기준치(baseline)와 16-TXRU를 위한 다양한 코드북 설계 간의 성능을 평가한다. 공정한 비교를 위해, 아래 표 7에서 표기된 CSI-RS 오버헤드를 고려한다.
표 7은 2D 코드북 설계를 위한 파라미터를 예시한다.
Figure 112018010697039-pct00148
논-프리코딩 기반 방식(non-precoded based scheme)에서 RS 파워 제한으로 인하여, CSI-RS 디-부스팅 인자(de-boosting factor)가 시뮬레이션이 도입된다. CSI-RS 디-부스팅 인자(de-boosting factor)가 2인 것은 Cat-2 기준치에서의 CSI-RS 전송 파워에 비하여 절반임을 나타낸다. 또한, CSI-RS 피드백 주기의 증가에 기반한 방식이 CSI-RS 오버헤드의 증가에 기반한 방식에 비하여 향상된 성능을 제공할 수 있기 때문에 10ms 피드백 주기가 가정된다.
표 8은 3D-UMi(3D-Urban Micro) 시나리오에서 코드북 옵션 1의 (4, 2, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00149
표 8은 3D UMi 시나리오에서 코드북 옵션 1과 수평 및 수직 도메인에서 다양한 오버샘플링 인자를 적용한 (4, 2, 2, 16)에 대한 비교 결과를 나타내고, 3D UMa(3D-Urban Macro)에서의 시뮬레이션 결과는 아래 표 15에서 예시된다. 시뮬레이션에서, CSI-RS 포트는 TXRU에 일대일로 매핑된다. 또한, 셀 연관(cell association)은 첫 번째 TXRU에 매핑되는 CRS 포트 0로부터 참조 신호 수신 파워(RSRP: reference signal received power)에 기반하고, 수직 빔 선택 이득(margin)은 3dB를 가정한다. 상세한 평가 가정은 표 11에서 예시된다. 표 8에서 볼 수 있듯이, 보다 큰 오버샘플링 인자는 보다 큰 성능 이득을 제공한다. 그러나, O_H=16 및 O_H=8 케이스에 대한 성능을 비교하면, 2가지의 인자가 유사한 성능을 보여준다. 특히, O_H=16 및 O_H=8 케이스는 평균 및 5% UE 수율 측면에서 각각 Cat-2 baseline 대비 16.9% 및 60.4% 이득까지 제공한다. 반면, O_H=8, O_V=8 케이스는 17% 및 58.1% 이득만을 제공한다. 표 12에서, 편파(polarization) 별 행(column) 별 4 TXRU를 가지고 단일의 TXRU가 100 도의 틸팅(tilting)을 가지는 동일한 행과 편파 내 2개의 인접한 안테나 요소로 가상화되는 (8, 2, 2, 16)에서 유사한 경향이 발견된다. 따라서, W_1을 위한 피드백 비트를 고려하여 O_H=8 and O_V=8를 선택하는 것이 바람직할 수 있다.
표 9는 3D-UMi 시나리오에서 코드북 옵션 1의 (2, 4, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00150
표 9는 3D UMi 시나리오에서 코드북 옵션 1과 수직 도메인에서 다양한 오버샘플링 인자를 적용한 (2, 4, 2, 16)에 대한 비교 결과를 나타낸다. 3D UMa(3D-Urban Macro)에서의 시뮬레이션 결과는 아래 표 15에서 예시된다. 100도의 틸팅(tilting) 각도를 가지는 (4, 4, 2, 16) 및 (8, 4, 2, 16)에 대한 결과는 각각 표 13 및 표 14에서 보여준다. 또한, 3D-UMa 500m 시나리오에 대한 시뮬레이션 결과는 표 16에서 보여준다.
높은(tall) 안테나 포트 레이아웃 케이스와 유사하게, fat 안테나 포트 레이아웃 케이스에서 더 큰 오버샘플링 인자는 보다 큰 수율 성능을 제공한다. W_1를 위한 피드백 비트의 관점에서, O_H=8, O_V=8는 W_1=8 비트를 요구하는 반면, O_H=9, O_V=8는 W_1=9 비트를 요구한다. 두 케이스 간에 한계 성능(marginal performance) 향상으로 인하여, O_H=8, O_V=8가 tall 및 fat 안테나 포트 레이아웃 모두에서 더 좋은 해결책을 제시할 수 있다.
따라서, W_1을 위한 피드백 비트를 고려하여, 16-TXRU를 위한 오버샘플링 인자는 O_H=8, O_V=8가 결정되는 것이 바람직하다.
또한, 2D 안테나 어레이를 위한 코드북 설계는 본 발명에 따른 5가지 옵션 중에서 하나가 선택되는 것이 바람직하다.
표 10에서 제안된 코드북 설계 옵션의 성능을 비교한다. 옵션 1, 2 및 3에서 W_1은 4개의 빔으로 구성되므로, W_2를 위한 피드백 비트는 4이다. 반면, 옵션 4 및 5의 경우, W_2를 위해 5 비트가 요구된다. 단기 수직 빔 선택을 이용함으로써, 옵션 2 및 3은 옵션 1에 비하여 약간의 성능 이득을 제공한다. 옵션 1, 4 및 5를 비교하면, W_2의 추가적인 피드백 비트를 소비할 때, 평균 및 5% UE 수율에서 각각 2.6% 및 4.6%까지의 성능 이득을 얻을 수 있다. 코드북 옵션 간에, 체크 패턴에 기반한 코드북 설계는 우수한 성능으로 인하여 16-TXRU를 위한 좋은 후보가 될 수 있다.
표 10은 3D-UMi 시나리오에서 O_H=8, O_V=8가 적용될 때 (4, 2, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00151
표 10을 참조하면, 옵션 1과 다르게, 옵션 2, 3, 4, 5는 주어진 오버샘플링 인자에 대해서 단기 수직 선택(short-term vertical selection)이 가능하며, 조금 더 최적화할 수 있는 여지가 있으므로, 더 더 좋은 성능을 보일 것이 예상된다.
결국, W_1을 위한 피드백 비트를 고려하여, 16-TXRU를 위한 오버샘플링 인자는 O_H=8, O_V=8가 결정되는 것이 바람직하다.
또한, 2D 안테나 어레이를 위한 코드북 설계는 본 발명에 따른 5가지 옵션 중에서 하나가 선택되는 것이 바람직하다.
표 11은 시뮬레이션 파라미터와 가정을 예시한다.
Figure 112018010697039-pct00152
표 12는 3D-UMi 시나리오에서 코드북 옵션 1의 (8, 2, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00153
표 13은 3D-UMi 시나리오에서 코드북 옵션 1의 (4, 4, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00154
표 14는 3D-UMi 시나리오에서 코드북 옵션 1의 (8, 4, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00155
표 15는 3D-UMa 500m 시나리오에서 코드북 옵션 1의 (4, 2, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00156
표 16은 3D-UMa 500m 시나리오에서 코드북 옵션 1의 (2, 4, 2, 16) 안테나 레이아웃에 대한 성능을 예시한다.
Figure 112018010697039-pct00157
상기 적용된 체크 패턴(즉, W1 빔 그룹간에 수평으로 2빔, 수직으로 1 빔씩 간격을 두고 구성)을 이용하게 되면, 도 37의 옵션 3에서 예시된 바와 같이 주어진 전체 빔 N h Q h N v Q v 을 포함하지 못하는 경우가 발생하게 된다.
이를 방지 하기 위하여 도 39와 같은 새로운 체크 패턴(혹은 지그재그(zigzag) 패턴)이 이용될 수 있다.
도 39는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 39를 참조하면, 앞서 도 37의 옵션 3에서 나타난 것과 같이, W_1의 홀수 인덱스에 해당하는 패턴에 대해서만 반전시켜 도 39와 같이 만들 수 있다. 상기 방식은 W_1의 짝수 인덱스를 반전시켜 구성될 수도 있다.
또한, 앞서 옵션 1에서는 수평 스트라이프(horizontal stripe)(즉, 빔이 주어진 동일한 수직 빔에서 수평으로 2개의 빔이 중복) 패턴을 나타낸다. 만약 상기 패턴에서 W_1의 페이로드 사이즈를 줄이기 위하여, 수직 인덱스 중 홀수 (짝수) 혹은 특정 수의 배수로 선택을 하게 된다면, 특정 수직 빔에 대한 빔을 고려할 수 없게 된다.
도 40은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 40에서는 수직 인덱스 기준으로 짝수만 선택한 경우에 대한 예시이다. 이 경우, 홀수 수직 인덱스에 해당하는 빔들은 선택 될 수가 없다. 이를 해결하기 위하여 도 41과 같이 변형된 수평 스트라이프(horizontal stripe) 패턴이 고려될 수 있다.
도 41은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 41을 참조하면, W_1의 홀수 인덱스에 대해서 수직 인덱스를 1 증가시킨 경우를 예시한다. 이와 같이 구성하면, 도 40의 패턴에 비하여 좀더 많은 수직 성분의 빔을 고려할 수 있기 때문에 성능이 향상될 것으로 기대된다.
앞서 도 39에서 설명한 방식은 체크 패턴을 이루는 2 X 4 직사각형 대신 4 X 2 를 이용한 직사각형을 이용하여 구성된 체크 패턴에 대해서도 동일하게 적용될 수 있다.
도 42은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 42를 참조하면, 체크 패턴 (혹은 지그재그 패턴)을 일반화할 수 있다.
이를 수식으로 나타내면 아래 수학식 93과 같다.
Figure 112018010697039-pct00158
앞서 도 40 및 41에서 설명한 방식은 수평 스트라이트를 수직 도메인으로 반전시킨 수직 스트라이프(vertical stripe)에 대해서도 동일하게 적용될 수 있다.
도 43은 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 43을 참조하면, 수평 인덱스 기준으로 짝수만 선택한 경우, 수직 스트라이프(Vertical stripe) 패턴을 예시한다.
도 44는 본 발명의 일 실시예에 따른 코드북을 구성하는 방법을 설명하기 위한 도면이다.
도 44를 참조하면, W_1의 홀수 인덱스에 대해서 수평 인덱스를 1 증가시킨 경우, 수직 스트라이프(Vertical stripe) 패턴을 예시한다.
도 45는 본 발명의 일 실시예에 따른 코드북 기반으로 신호를 송수신하기 위한 방법을 예시한다.
도 45를 참조하면, 기지국(eNB)은 단말(UE)에게 다중 안테나 포트를 통해 참조 신호(예를 들어, CSI-RS 등)를 전송한다(S4501).
단말은 채널 상태 정보를 기지국에게 보고한다(S4502).
여기서, 채널 상태 정보는 CQI, RI, PMI, PTI 등을 포함할 수 있으며, 단말은 기지국으로부터 수신한 참조 신호를 이용하여 CQI, RI, PMI, PTI 등을 도출할 수 있다.
특히, 본 발명에 따르면, PMI는 코드북으로부터 프리코딩 행렬의 세트를 선택하기 위한 제1 PMI 및 프리코딩 행렬의 세트로부터 하나의 프리코딩 행렬을 선택하기 위한 제2 PMI를 포함할 수 있다.
여기서, 코드북은 앞서 수학식 19 내지 93 및/또는 도 15 내지 도 44의 예시에서 설명한 방식으로 구성될 수 있다.
여기서, 다중 레이어(layer)에 적용되는 프리코딩 행렬은 각 레이어 별로 적용되는 프리코딩 벡터들로 구성될 수 있다. 이때, 각 레이어 별로 적용되는 각각의 프리코딩 벡터는 제1 PMI에 의해 정해지는 프리코딩 벡터의 세트 내에서 정해지고, 각각의 프리코딩 벡터들에 대한 조합은 제2 PMI에 의해 정해질 수 있다. 여기서, 제1 PMI에 의해 정해지는 프리코딩 벡터의 세트는 1 레이어에 대한 프리코딩 행렬의 세트에 해당할 수 있다. 따라서, 다중 레이어의 경우 프리코딩 행렬의 세트는 각 레이어에 대한 프리코딩 벡터의 다양한 조합에 따라 생성된 프리코딩 행렬들의 집합을 의미할 수 있다.
일례로, 코드북은 제1 차원(예를 들어, 수평 차원) 안테나 포트를 위한 제1 행렬과 제2 차원(예를 들어, 수직 차원) 안테나 포트를 위한 제2 행렬의 크로네커 곱(Kronecker product)을 기반으로 생성된 프리코딩 행렬로 구성될 수 있다.
전체 코드북을 구성하는 프리코딩 행렬을 2차원 형태로 나타낼 수 있으며, 이 경우 각각의 프리코딩 행렬은, 제1 차원(즉, 수평 차원)에서의 인덱스와 제2 차원(즉, 수직 차원)에서의 인덱스로 특정될 수 있다. 또한, 프리코딩 행렬의 제1 차원의 인덱스에 의해 제1 행렬이 특정되고, 프리코딩 행렬의 제2 차원의 인덱스에 의해 상기 제2 행렬이 특정될 수 있다.
또한, 제1 PMI를 기반으로 프리코딩 행렬의 세트에 속한 프리코딩 행렬의 제1 차원의 인덱스 및 제2 차원의 인덱스의 값이 정해질 수 있다.
앞서 설명한 바와 같이, 다양한 방식으로 프리코딩 행렬의 세트가 구성될 수 있다. 이 경우, 기지국은 프리코딩 행렬의 세트를 구성하는 방식, 제1 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 제2 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 제1 차원에서 이용되는 오버샘플링 인자(oversampling factor), 제2 차원에서 이용되는 오버샘플링 인자(oversampling factor)를 RRC(Radio Resource Control) 메시지 등을 통해 앞서 S4501 단계 이전에 단말에게 전송할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 46은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 46을 참조하면, 무선 통신 시스템은 기지국(4610)과 기지국(4610) 영역 내에 위치한 다수의 단말(4620)을 포함한다.
기지국(4610)은 프로세서(processor, 4611), 메모리(memory, 4612) 및 RF부(radio frequency unit, 4613)을 포함한다. 프로세서(4611)는 앞서 도 1 내지 도 45에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(4611)에 의해 구현될 수 있다. 메모리(4612)는 프로세서(4611)와 연결되어, 프로세서(4611)를 구동하기 위한 다양한 정보를 저장한다. RF부(4613)는 프로세서(4611)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(4620)은 프로세서(4621), 메모리(4622) 및 RF부(4623)을 포함한다. 프로세서(4621)는 앞서 도 1 내지 도 45에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(4621)에 의해 구현될 수 있다. 메모리(4622)는 프로세서(4621)와 연결되어, 프로세서(4621)를 구동하기 위한 다양한 정보를 저장한다. RF부(4623)는 프로세서(4621)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(4612, 4622)는 프로세서(4611, 4621) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(4611, 4621)와 연결될 수 있다. 또한, 기지국(4610) 및/또는 단말(4620)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (11)

  1. 무선 통신 시스템에서 단말이 채널 상태 정보(channel state information, CSI)를 보고하기 위한 방법에 있어서,
    기지국으로부터 다중 안테나 포트들 상에서 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 수신하는 단계; 및
    상기 채널 상태 정보를 상기 기지국에게 보고하는 단계를 포함하고,
    상기 채널 상태 정보는 코드북과 관련된 제 1 정보 및 상기 코드북으로부터 하나의 프리코딩 행렬을 선택하기 위한 제 2 정보를 포함하고,
    상기 코드북은 복수의 프리코딩 행렬들을 포함하고,
    각 프리코딩 행렬은 제 1 차원 안테나 포트에 대한 제 1 행렬 및 제 2 차원 안테나 포트에 대한 제 2 행렬에 기초하여 생성되고,
    상기 제 1 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 1 차원과 관련된 인덱스에 의해 결정되고,
    상기 제 2 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 2 차원과 관련된 인덱스에 의해 결정되고,
    상기 선택된 프리코딩 행렬의 제 1 차원과 관련된 인덱스 및 제 2 차원과 관련된 인덱스의 쌍은 (x,y), (x+2,y), (x+1,y+1), (x+3,y+1)이고,
    상기 x 및 상기 y는 음수가 아닌 정수인 방법.
  2. 제1항에 있어서,
    상기 복수의 프리코딩 행렬들 중 연속하는 프리코딩 행렬들 간의 간격(spacing)은 제 1 차원 방향에서 2인 방법.
  3. 삭제
  4. 제1항에 있어서,
    상기 복수의 프리코딩 행렬들 각각의 제1 차원과 관련된 인덱스 및 제2 차원과 관련된 인덱스의 값은 상기 제 1 정보에 기초하여 결정되는 방법.
  5. 제1항에 있어서,
    크로스-편파 안테나(cross-plarization)에서 제1 편파 안테나 포트와 제2 편파 안테나 포트 간 위상을 조절하기 위한 인자가 상기 제2 정보를 기반으로
    Figure 112020053997177-pct00159
    중 하나로 결정되는 방법.
  6. 제1항에 있어서,
    상기 복수의 프리코딩 행렬들을 구성하는 프리코딩 행렬들의 전체 개수는 제1 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 제2 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수, 상기 제1 차원에서 이용되는 오버샘플링 인자(oversampling factor) 및 상기 제2 차원에서 이용되는 내 오버샘플링 인자(oversampling factor)에 의해 결정되는 방법.
  7. 제1항에 있어서,
    상기 제1 행렬은 아래 수학식에 의해 생성되는 DFT(Discrete Fourier Transform) 행렬에서 선택된 하나 이상의 열(column)로 구성되고,
    [수학식]
    Figure 112019131606281-pct00160

    여기서, N_h는 제1 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수이며, Q_h는 상기 제1 차원에서 이용되는 오버샘플링 인자(oversampling factor)인 방법.
  8. 제1항에 있어서,
    상기 제2 행렬은 아래 수학식으로 생성되는 DFT(Discrete Fourier Transform) 행렬에서 선택된 하나 이상의 열(column)로 구성되고,
    [수학식]
    Figure 112019131606281-pct00161

    여기서, N_v는 제2 차원에서 동일 편파(polarization)를 가지는 안테나 포트의 개수이며, Q_v는 상기 제2 차원에서 이용되는 오버샘플링 인자(oversampling factor)인 방법.
  9. 무선 통신 시스템에서 기지국이 채널 상태 정보(channel state information, CSI)를 수신하기 위한 방법에 있어서,
    다중 안테나 포트들 상에서 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 단말에게 전송하는 단계; 및
    상기 단말로부터 채널 상태 정보를 수신하는 단계를 포함하고,
    상기 채널 상태 정보는 코드북과 관련된 제 1 정보 및 상기 코드북으로부터 하나의 프리코딩 행렬을 선택하기 위한 제 2 정보를 포함하고,
    상기 코드북은 복수의 프리코딩 행렬들을 포함하고,
    각 프리코딩 행렬은 제 1 차원 안테나 포트에 대한 제 1 행렬 및 제 2 차원 안테나 포트에 대한 제 2 행렬에 기초하여 생성되고,
    상기 제 1 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 1 차원과 관련된 인덱스에 의해 결정되고,
    상기 제 2 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 2 차원과 관련된 인덱스에 의해 결정되고,
    상기 선택된 프리코딩 행렬의 제 1 차원과 관련된 인덱스 및 제 2 차원과 관련된 인덱스의 쌍은 (x,y), (x+2,y), (x+1,y+1), (x+3,y+1)이고,
    상기 x 및 상기 y는 음수가 아닌 정수인 방법.
  10. 제9항에 있어서,
    상기 복수의 프리코딩 행렬들 중 연속하는 프리코딩 행렬들 간의 간격(spacing)은 제 1 차원 방향에서 2인 방법.
  11. 무선 통신 시스템에서 채널 상태 정보(channel state information, CSI)를 보고하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 RF (radio frequency) 모듈; 및
    상기 RF 모듈에 기능적으로 연결되는 프로세서를 포함하고, 상기 프로세서는,
    기지국으로부터 다중 안테나 포트들 상에서 채널 상태 정보 참조 신호(CSI-RS: Channel State Information Reference Signal)을 수신하도록 상기 RF 모듈을 제어하고; 및
    상기 채널 상태 정보를 상기 기지국에게 보고하도록 상기 RF 모듈을 제어하되,
    상기 채널 상태 정보는 코드북과 관련된 제 1 정보 및 상기 코드북으로부터 하나의 프리코딩 행렬을 선택하기 위한 제 2 정보를 포함하고,
    상기 코드북은 복수의 프리코딩 행렬들을 포함하고,
    각 프리코딩 행렬은 제 1 차원 안테나 포트에 대한 제 1 행렬 및 제 2 차원 안테나 포트에 대한 제 2 행렬에 기초하여 생성되고,
    상기 제 1 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 1 차원과 관련된 인덱스에 의해 결정되고,
    상기 제 2 행렬은 상기 복수의 프리코딩 행렬들 각각의 제 2 차원과 관련된 인덱스에 의해 결정되고,
    상기 선택된 프리코딩 행렬의 제 1 차원과 관련된 인덱스 및 제 2 차원과 관련된 인덱스의 쌍은 (x,y), (x+2,y), (x+1,y+1), (x+3,y+1)이고,
    상기 x 및 상기 y는 음수가 아닌 정수인 단말.
KR1020187002973A 2015-07-23 2016-07-25 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치 KR102202038B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201562196275P 2015-07-23 2015-07-23
US62/196,275 2015-07-23
US201562232466P 2015-09-25 2015-09-25
US62/232,466 2015-09-25
US201562237611P 2015-10-06 2015-10-06
US62/237,611 2015-10-06
US201562239292P 2015-10-09 2015-10-09
US62/239,292 2015-10-09
US201562254668P 2015-11-12 2015-11-12
US62/254,668 2015-11-12
PCT/KR2016/008100 WO2017014612A1 (ko) 2015-07-23 2016-07-25 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치

Publications (2)

Publication Number Publication Date
KR20180025915A KR20180025915A (ko) 2018-03-09
KR102202038B1 true KR102202038B1 (ko) 2021-01-12

Family

ID=57834954

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187002973A KR102202038B1 (ko) 2015-07-23 2016-07-25 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (2) US10476575B2 (ko)
EP (1) EP3327950A4 (ko)
JP (1) JP6763942B2 (ko)
KR (1) KR102202038B1 (ko)
CN (1) CN107925466B (ko)
WO (1) WO2017014612A1 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102202038B1 (ko) 2015-07-23 2021-01-12 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
CN106559121B (zh) * 2015-09-25 2021-07-09 华为技术有限公司 一种多天线信道测量方法和装置
US11212039B2 (en) * 2016-01-05 2021-12-28 Intel Corporation Acknowledgment management techniques for uplink multi-user transmissions
US10771213B2 (en) * 2016-03-31 2020-09-08 Lg Electronics Inc. Method for transmitting feedback information for DM-RS based downlink transmission in wireless communication system and apparatus therefor
WO2017166219A1 (en) * 2016-03-31 2017-10-05 Qualcomm Incorporated Channel covariance feedback for enhanced fd-mimo
CN109450505B (zh) * 2016-05-13 2019-11-15 华为技术有限公司 一种信道信息发送方法、数据发送方法和设备
US10917158B2 (en) 2016-05-26 2021-02-09 Qualcomm Incorporated System and method for beam switching and reporting
US10541741B2 (en) 2016-05-26 2020-01-21 Qualcomm Incorporated System and method for beam switching and reporting
US10425138B2 (en) 2016-05-26 2019-09-24 Qualcomm Incorporated System and method for beam switching and reporting
US10181891B2 (en) 2016-05-26 2019-01-15 Qualcomm Incorporated System and method for beam switching and reporting
US10651899B2 (en) 2016-05-26 2020-05-12 Qualcomm Incorporated System and method for beam switching and reporting
US10498406B2 (en) 2016-05-26 2019-12-03 Qualcomm Incorporated System and method for beam switching and reporting
KR102414697B1 (ko) * 2016-07-29 2022-06-29 삼성전자 주식회사 다수의 배열 안테나를 사용하는 이동통신 시스템에서 csi-rs 포트 공유를 위한 기준신호 설정 방법 및 장치
JP6693405B2 (ja) * 2016-12-20 2020-05-13 株式会社デンソー ガスセンサ素子およびガスセンサユニット
US10536205B2 (en) 2017-04-26 2020-01-14 Samsung Electronics Co., Ltd. Method and apparatus to CSI reporting using multiple antenna panels in advanced wireless communication systems
CN116800311A (zh) * 2017-05-05 2023-09-22 华为技术有限公司 传输预编码矩阵的指示方法和设备
CN109391436B (zh) * 2017-08-12 2021-12-03 华为技术有限公司 预编码矩阵子集限制的方法和传输装置
CN109981511B (zh) * 2017-12-27 2021-09-03 华为技术有限公司 基于非正交多址的数据传输
US10608723B2 (en) * 2018-02-15 2020-03-31 Qualcomm Incorporated Techniques for assisted beam refinement
WO2019200595A1 (zh) * 2018-04-19 2019-10-24 上海诺基亚贝尔股份有限公司 通信方法和通信设备
CN111971937B (zh) * 2018-05-09 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110830092B (zh) * 2018-08-10 2021-10-26 华为技术有限公司 指示预编码矩阵和确定预编码矩阵的方法以及通信装置
WO2020043282A1 (en) 2018-08-29 2020-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Receiver, transmitter, system and method employing space-delay precoding
US10594380B1 (en) 2018-09-28 2020-03-17 At&T Intellectual Property I, L.P. Channel state information determination using demodulation reference signals in advanced networks
EP3667940A1 (en) * 2018-12-11 2020-06-17 Nokia Technologies Oy Enhanced frequency compression for overhead reduction for csi reporting and usage
CN109525292B (zh) * 2018-12-24 2021-08-13 东南大学 一种采用比特级优化网络的信道信息压缩反馈方法
EP3935743A1 (en) * 2019-03-08 2022-01-12 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Csi reporting and codebook structure for doppler-delay codebook-based precoding in a wireless communications systems
US11290167B2 (en) * 2019-04-19 2022-03-29 Samsung Electronics Co., Ltd. Frequency division duplex channel state information acquisition based on Kronecker product
WO2021018402A1 (en) 2019-08-01 2021-02-04 Huawei Technologies Co., Ltd. Adaptive kronecker product mimo precoding for a multi-antenna network entity and a wireless communication device and corresponding methods
CN115004566A (zh) * 2020-01-31 2022-09-02 高通股份有限公司 下行链路控制信息中的同相因子指示
KR20210119002A (ko) 2020-03-23 2021-10-05 삼성디스플레이 주식회사 전자 장치 및 통신 방법
JP7346474B2 (ja) * 2021-03-02 2023-09-19 ソフトバンク株式会社 無線通信システム
WO2023202609A1 (en) * 2022-04-21 2023-10-26 Mediatek Inc. Method and apparatus for uplink signal precoding and reporting

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102217206B (zh) * 2009-01-05 2014-10-08 马维尔国际贸易有限公司 用于mimo通信系统的预编码码本
US8509338B2 (en) * 2010-05-05 2013-08-13 Motorola Mobility Llc Method and precoder information feedback in multi-antenna wireless communication systems
WO2011162520A2 (ko) * 2010-06-22 2011-12-29 엘지전자 주식회사 채널 상태 정보 전송 방법 및 장치
CN102082639B (zh) * 2010-11-08 2014-01-29 大唐移动通信设备有限公司 信道状态信息的传输方法和设备
CN102111246B (zh) * 2011-01-12 2017-03-29 中兴通讯股份有限公司 反馈信道状态信息的方法和用户设备
CN102122983B (zh) * 2011-04-18 2014-08-06 电信科学技术研究院 一种码本的生成、信息的发送、反馈方法及设备
US8913682B2 (en) * 2012-05-18 2014-12-16 Samsung Electronics Co., Ltd. Apparatus and method for channel state information codeword construction for a cellular wireless communication system
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
JP6127146B2 (ja) 2012-09-28 2017-05-10 インターデイジタル パテント ホールディングス インコーポレイテッド 多次元アンテナ構成を使用する無線通信
KR20150143413A (ko) 2013-03-11 2015-12-23 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
US9647735B2 (en) * 2013-05-31 2017-05-09 Intel IP Corporation Hybrid digital and analog beamforming for large antenna arrays
CN103546247A (zh) * 2013-09-28 2014-01-29 河北工业大学 用于td-lte-a中继系统的八天线双码本设计方法
CN105519022A (zh) 2013-09-30 2016-04-20 富士通株式会社 信息反馈方法、码本确定方法、用户设备和基站
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치
US9667328B2 (en) * 2014-03-31 2017-05-30 Samsung Electronics Co., Ltd. Precoding matrix codebook design and periodic channel state information feedback for advanced wireless communication systems
CN103929280B (zh) * 2014-03-31 2017-06-23 电信科学技术研究院 多级码本的生成方法和装置、以及码本反馈方法和装置
US9806781B2 (en) 2015-04-29 2017-10-31 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
WO2016183737A1 (en) 2015-05-15 2016-11-24 Qualcomm Incorporated Enhanced csi procedures for fd-mimo
KR102202038B1 (ko) 2015-07-23 2021-01-12 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP R1-152484
3GPP R1-152892
3GPP R1-153406*

Also Published As

Publication number Publication date
JP2018528654A (ja) 2018-09-27
US10819412B2 (en) 2020-10-27
EP3327950A1 (en) 2018-05-30
CN107925466B (zh) 2021-04-20
WO2017014612A1 (ko) 2017-01-26
CN107925466A (zh) 2018-04-17
US10476575B2 (en) 2019-11-12
KR20180025915A (ko) 2018-03-09
US20180219603A1 (en) 2018-08-02
JP6763942B2 (ja) 2020-09-30
EP3327950A4 (en) 2019-03-27
US20190268058A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
KR102202038B1 (ko) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
US11316566B2 (en) Codebook-based signal transmission/reception method in multi-antenna wireless communication system, and device for same
KR102157559B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
US10911110B2 (en) Method for transceiving channel state information and apparatus therefor in multiple-antenna wireless communication system
KR102076847B1 (ko) 다중 안테나 무선 통신 시스템에서 코드북 기반 신호 송수신 방법 및 이를 위한 장치
KR102222929B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치
US11018737B2 (en) Codebook-based signal transmission and reception method in multi-antenna wireless communication system and apparatus therefor
US10944183B2 (en) Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and device therefor
US11201654B2 (en) Method of transmitting/receiving channel state information reference signal in wireless communication system and device for same
JP2020511899A (ja) 無線通信システムにおけるチャネル状態情報送受信方法及びそのための装置
US10651901B2 (en) Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant