WO2016104805A1 - ガラス板の製造方法、及び、ガラス板の製造装置 - Google Patents
ガラス板の製造方法、及び、ガラス板の製造装置 Download PDFInfo
- Publication number
- WO2016104805A1 WO2016104805A1 PCT/JP2015/086444 JP2015086444W WO2016104805A1 WO 2016104805 A1 WO2016104805 A1 WO 2016104805A1 JP 2015086444 W JP2015086444 W JP 2015086444W WO 2016104805 A1 WO2016104805 A1 WO 2016104805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- temperature
- region
- heater
- width direction
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B25/00—Annealing glass products
- C03B25/04—Annealing glass products in a continuous way
- C03B25/10—Annealing glass products in a continuous way with vertical displacement of the glass products
- C03B25/12—Annealing glass products in a continuous way with vertical displacement of the glass products of glass sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
- C03B17/064—Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
- C03B17/067—Forming glass sheets combined with thermal conditioning of the sheets
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B17/00—Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
- C03B17/06—Forming glass sheets
- C03B17/068—Means for providing the drawing force, e.g. traction or draw rollers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Definitions
- the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus.
- the method of manufacturing a glass plate (sheet glass) using the downdraw method is used.
- the sheet glass formed by the downdraw method has a product region (central region in the width direction) with a substantially constant plate thickness and ends (ears) located at both ends in the width direction of the product region where the plate thickness is thicker than the product region. It consists of.
- the boundary region between the product region and the end portion of the sheet glass is sandwiched between the conveyance rolls.
- the sheet glass is cooled (slowly cooled) so that warpage and distortion satisfy a certain quality standard.
- a temperature profile in the width direction of the sheet glass is designed in advance along the flow direction so that the warpage and distortion become predetermined values. That is, by performing temperature management so as to obtain a pre-designed temperature profile, it is possible to manufacture a glass plate having a warp and strain value assumed in advance. This makes it possible to produce a glass plate that meets the customer's warp and distortion quality standards. Therefore, strict temperature management is performed using a cooling device, a heater, or the like so that the sheet glass has a designed temperature profile.
- the transport roll used for transporting the sheet glass When cooling while transporting the sheet glass, the transport roll used for transporting the sheet glass is cooled so that the temperature of the transport roll becomes constant or lower in order to suppress deformation due to heat.
- the temperature difference between the transport roll and the sheet glass increases, and further, when the sheet glass becomes thin and the retained heat of the sheet glass decreases, the sheet glass is easily affected by the transport roll, It may be difficult to form a region where the conveyance roll sandwiches the sheet glass based on a predetermined temperature profile.
- the present invention can easily realize this temperature profile when trying to reproduce the designed temperature profile in the region where the conveyance roll sandwiches the sheet glass, even if it is a thin glass plate. It aims at providing the manufacturing method of the glass plate which can obtain the flatness (warpage amount) of a plate accurately, and the manufacturing apparatus of a glass plate.
- the present invention includes the following forms.
- Form 1 A molding step of forming a glass plate by letting molten glass flow down from the molded body; While the glass plate formed in the forming step is conveyed downward by a pair of rollers disposed below the molded body, the temperature of the glass plate is sequentially decreased with respect to the conveyance direction of the glass plate.
- the manufacturing method of the glass plate characterized by the above-mentioned.
- Form 2 In Form 1, In the forming step, a glass plate having both ends in the width direction of the glass plate and a center region in the width direction in which the thickness of the glass plate is thinner than the thickness of the glass plate at both ends sandwiched between the both ends is formed. And In the cooling step, The pair of rollers sandwiches a region between the central region in the width direction and the end, The glass plate is arranged so that the temperature in the central region in the width direction becomes uniform before the rollers are clamped, and the temperature in the central region in which the rollers are clamped is higher than the temperature in the central region in the width direction. To control the temperature.
- the heater in the cooling step, before the roller sandwiches the glass plate, the heater has a temperature distribution of the sandwiching region determined by the thickness of the glass plate at the both ends sandwiched between the both ends.
- the temperature of the glass plate is controlled so that the thickness of the glass plate decreases toward the center region in the width direction and toward the end.
- the heater includes a divided heater divided into a plurality in the width direction,
- the divided heater includes a sandwiching area corresponding heater provided at a position in the width direction corresponding to a sandwiching area sandwiched by the roller.
- the divided heater is sandwiched between both ends of the glass plate in the width direction, in addition to the sandwiching region corresponding heater, and the thickness of the glass plate is smaller than the thickness of the glass plate at the both ends.
- Including a heater for the central region provided at a position in the width direction corresponding to the central region The distance from the glass plate of the sandwiching region corresponding heater is made longer than the distance of the central region corresponding heater from the glass plate, and before the roller sandwiches the glass plate, the temperature of the sandwiching region is The output of the sandwiching region corresponding heater is controlled so as to be higher than the temperature of the central region in the width direction.
- the width direction center region has a first center region including the center in the width direction, and a second center region located between the first center region and the sandwiching region
- the heater corresponding to the central area includes a heater corresponding to the first central area provided at a position in the width direction corresponding to the first central area and a second center provided at a position in the width direction corresponding to the second central area.
- An area-compatible heater The distance from the glass plate of the heater corresponding to the second central region is made longer than the distance from the glass plate of the heater corresponding to the first central region, and before the roller sandwiches the glass plate, the second The output of the heater corresponding to the second central region is controlled so that the temperature of the central region is partially higher than the temperature of the first central region.
- Form 8 In any one of Forms 1-7, Between the glass plate and the heater, a soaking plate is disposed so as to face the surface of the glass plate, The temperature distribution of the glass plate is controlled by making the heat distribution in the width direction of the heater gentle by the heat equalizing plate.
- Form 9 A molded body for forming a glass plate by letting molten glass flow down; A pair of rollers disposed below the molded body and transporting the glass plate downward; A heater that controls the temperature of the glass plate so that the temperature sequentially decreases with respect to the conveying direction of the glass plate, The pair of rollers sandwich the glass plate while being cooled so that deformation due to heat is suppressed, The said heater controls the temperature of the area
- the manufacturing apparatus of the glass plate characterized by the above-mentioned.
- the present invention even if it is a thin glass plate, it can be realized when the designed temperature profile is to be reproduced in the region where the conveyance roll sandwiches the sheet glass, and the flatness (warpage) of the glass plate can be realized. Amount) can be obtained with high accuracy.
- a glass substrate for TFT (Thin Film Transistor) display is manufactured.
- the glass plate is manufactured using a downdraw method.
- the manufacturing method of the glass substrate which concerns on this embodiment is demonstrated, referring drawings.
- the glass substrate manufacturing method mainly includes a melting step S1, a clarification step S2, a forming step S3, a cooling step S4, and a cutting step S5.
- the melting step S1 is a step in which the glass raw material is melted.
- the glass raw material is put into a melting apparatus 11 arranged upstream.
- Glass raw materials for example, SiO 2, Al 2 O 3 , B 2 O 3, CaO, SrO, a composition of BaO or the like.
- a glass material having a strain point of 660 ° C. or higher is used.
- the glass raw material is melted by the melting device 11 to become a molten glass FG.
- the melting temperature is adjusted according to the type of glass. In this embodiment, the glass raw material is melted at 1500 ° C. to 1650 ° C.
- the molten glass FG is sent to the refining device 12 through the upstream pipe 23.
- the clarification step S2 is a step of removing bubbles in the molten glass FG.
- the molten glass FG from which bubbles have been removed in the refining device 12 is then sent to the forming device 40 through the downstream pipe 24.
- the forming step S3 is a step of forming the molten glass FG into a sheet-like glass (sheet glass) SG. Specifically, the molten glass FG overflows from the molded body 41 after being continuously supplied to the molded body 41 included in the molding apparatus 40. The overflowed molten glass FG flows down along the surface of the molded body 41. The molten glass FG is then merged at the lower end 41a of the molded body 41 and formed into a sheet glass SG.
- the sheet glass SG has side portions (ear portions, end portions) located at the ends in the width direction and a center region in the width direction sandwiched between the side portions. The plate thickness of the side part of the sheet glass SG is formed thicker than the plate thickness of the central region.
- the central region of the sheet glass SG is a region that becomes a glass substrate product having a certain plate thickness.
- region of the sheet glass SG into a thin plate of 0.4 mm or less the plate
- Cooling step S4 is a step of cooling (slow cooling) the sheet glass SG.
- the sheet glass SG is cooled to a temperature close to room temperature through the cooling step S4. Note that the thickness (plate thickness) of the glass substrate, the amount of warpage of the glass substrate, and the amount of strain of the glass substrate are determined according to the cooling state in the cooling step S4.
- the cutting step S5 is a step of cutting the sheet glass SG having a temperature close to room temperature into a predetermined size.
- size becomes a glass substrate through processes, such as end surface processing after that.
- the width direction of the sheet glass SG means a direction orthogonal to the direction (flow direction) in which the sheet glass SG flows down, that is, the horizontal direction.
- FIGS. 3 is a cross-sectional view of the molding apparatus 40.
- FIG. 4 is a side view of the molding apparatus 40.
- the forming apparatus 40 includes a passage through which the sheet glass SG passes and a space surrounding the passage.
- the space surrounding the passage is composed of an overflow chamber 20, a forming chamber 30, and a cooling chamber 80.
- the overflow chamber 20 constitutes a space in which the molten glass FG sent from the refining device 12 is formed into a sheet glass SG.
- the forming chamber 30 is disposed below the overflow chamber 20 and constitutes a space for adjusting the thickness and warpage amount of the sheet glass SG. In the forming chamber 30, a part of cooling process is performed.
- the sheet glass SG flows down along the surface of the molded body 41 and joins at the lower end portion 41a of the molded body 41 to be formed into the sheet glass SG.
- the temperature of the glass SG gradually decreases.
- the cooling chamber 80 is disposed below the overflow chamber 20 and constitutes a space for adjusting the strain amount of the sheet glass SG. Specifically, in the cooling chamber 80, the sheet glass SG that has passed through the forming chamber 30 is cooled to a temperature in the vicinity of room temperature via a slow cooling point and a strain point.
- the cooling chamber 80 includes a space divided into a plurality of portions by the heat insulating members 80a and 80b.
- the molding apparatus 40 mainly includes a molded body 41, a partition member 50, a cooling roller 51, a temperature adjustment unit 60, pull-down rollers 81a to 81g, heaters 82a to 82g, and a cutting device 90. Yes. Furthermore, the shaping
- the molded body 41 is provided in the overflow chamber 20.
- the molded body 41 forms the molten glass FG into a sheet-like glass plate by overflowing the molten glass FG.
- This glass plate is hereinafter referred to as sheet glass SG.
- the molded body 41 has a substantially pentagonal shape (a shape similar to a wedge shape) in cross-sectional shape.
- the substantially pentagonal tip corresponds to the lower end portion 41 a of the molded body 41.
- the molded body 41 has an inlet 42 at the first end (see FIG. 4).
- the inlet 42 is connected to the above-described downstream pipe 24, and the molten glass FG that has flowed out of the refining device 12 is poured into the molded body 41 from the inlet 42.
- a groove 43 is formed in the molded body 41.
- the groove 43 extends in the longitudinal direction of the molded body 41. Specifically, the groove 43 extends from the first end to the second end that is the end opposite to the first end. More specifically, the groove 43 extends in the left-right direction in FIG.
- the groove 43 is deepest in the vicinity of the inlet 42 and is formed so as to become gradually shallower as it approaches the second end.
- the molten glass FG poured into the molded body 41 overflows from the pair of top portions 41 b and 41 b of the molded body 41 and flows down along the pair of side surfaces (surfaces) 41 c and 41 c of the molded body 41. Thereafter, the molten glass FG joins at the lower end 41a of the molded body 41 to become the sheet glass SG.
- the liquidus temperature of the sheet glass SG at the lower end 41a of the molded body 41 is 1100 ° C. or higher, the liquidus viscosity is 2.5 ⁇ 10 5 poise or higher, and more preferably, the liquidus temperature is 1160.
- the liquid phase viscosity is 1.2 ⁇ 10 5 poise or more.
- edge part, edge part) of the sheet glass SG in the lower end part 41a of the molded object 41 is less than 10 5.7 Poise.
- the partition member 50 is a member that blocks heat transfer from the overflow chamber 20 to the forming chamber 30.
- the partition member 50 is arrange
- the partition member 50 is a heat insulating material.
- the partition member 50 blocks the movement of heat from the upper side to the lower side of the partition member 50 by partitioning the upper atmosphere and the lower atmosphere at the joining point of the molten glass FG.
- the cooling roller 51 is provided in the forming chamber 30. More specifically, the cooling roller 51 is disposed directly below the partition member 50. Moreover, the cooling roller 51 is arrange
- the cooling rollers 51 disposed on both sides in the thickness direction of the sheet glass SG operate in pairs. That is, both sides (width direction both ends) of sheet glass SG are inserted between two pairs of cooling rollers 51, 51,.
- the cooling roller 51 is air-cooled by an air-cooling tube passed through the inside.
- the cooling roller 51 contacts the side part (ear part) of the sheet glass SG, and quenches the side part (ear part) of the sheet glass SG by heat conduction (rapid cooling step).
- the viscosity of the side portion of the sheet glass SG in contact with the cooling roller 51 (specifically, 10 9.0 poise) a predetermined value is not less than.
- the cooling roller 51 is rotationally driven by a cooling roller drive motor 390 (see FIG. 5).
- the cooling roller 51 cools the side portion of the sheet glass SG and also has a function of pulling the sheet glass SG downward.
- the temperature adjustment unit 60 is a unit that is provided in the overflow chamber 20 and the forming chamber 30 and cools the sheet glass SG to the vicinity of the annealing point.
- the temperature adjustment unit 60 has a plurality of cooling units 61 to 65.
- the plurality of cooling units 61 to 65 are arranged in the width direction of the sheet glass SG and the flow direction of the sheet glass SG.
- the plurality of cooling units 61 to 65 include central area cooling units 61 to 63 and side cooling units 64 and 65.
- the central area cooling units 61 to 63 air-cool the central area CA in the width direction of the sheet glass SG.
- the central region CA in the width direction is referred to as a central region CA.
- the central region of the sheet glass SG is a central portion in the width direction of the sheet glass SG, and is a region including the effective width of the sheet glass SG and the vicinity thereof.
- the central region of the sheet glass SG is a portion sandwiched between both side portions of the sheet glass SG. Both side portions of the sheet glass SG are also referred to as both ear portions.
- the central area cooling units 61 to 63 are arranged along the flow direction at positions facing the surface of the central area CA of the sheet glass SG. Each unit included in the central area cooling units 61 to 63 can be controlled independently.
- the side part cooling units 64 and 65 water-cool the side part of the sheet glass SG.
- the side cooling units 64 and 65 are arranged along the flow direction at positions facing the side surfaces of the sheet glass SG. Each unit included in the side cooling units 64 and 65 can be controlled independently.
- Pulling rollers (conveying rollers) 81a to 81g are provided in the cooling chamber 80, and pull down the sheet glass SG that has passed through the forming chamber 30 in the flow direction of the sheet glass SG.
- the pulling rollers 81a to 81g are arranged inside the cooling chamber 80 with a predetermined interval along the flow direction.
- a plurality of pulling rollers 81a to 81g are arranged on both sides in the thickness direction of the sheet glass SG (see FIG. 3) and on both sides in the width direction of the sheet glass SG (see FIG. 4). That is, the pulling rollers 81a to 81g pull down the sheet glass SG while contacting both sides in the width direction of the sheet glass SG and both sides in the thickness direction of the sheet glass SG.
- the pulling rollers 81a to 81g are driven by a pulling roller driving motor 391 (see FIG. 5). Further, the pulling rollers 81a to 81g rotate inward with respect to the sheet glass SG.
- the peripheral speed of the pull-down rollers 81a to 81g is larger as the downstream pull-down roller. That is, among the plurality of lowering rollers 81a to 81g, the peripheral speed of the lowering roller 81a is the smallest, and the peripheral speed of the lowering roller 81g is the highest.
- the pull-down rollers 81a to 81g arranged on both sides in the thickness direction of the sheet glass SG operate in pairs, and the pair of pull-down rollers 81a, 81a, ... pulls the sheet glass SG downward.
- the lowering rollers 81a to 81g sandwich the high-temperature sheet glass SG
- the lowering rollers 81a to 81g are air-cooled by air-cooling tubes passed through the lowering rollers 81a to 81g in order to prevent deformation due to heat.
- the temperature of the sheet glass SG decreases (viscosity increases).
- the sheet thickness of the central region of the sheet glass SG is to be formed into a thin sheet having a thickness of 0.4 mm or less, the retained heat of the sheet glass SG is small, and the temperature of the sheet glass SG is affected by the pulling rollers 81a to 81g.
- Cheap the sheet thickness of the central region of the sheet glass SG is to be formed into a thin sheet having a thickness of 0.4 mm or less
- the heater 82 (82a to 82g) is provided inside the cooling chamber 80 and adjusts the temperature of the internal space of the cooling chamber 80.
- a plurality of heaters 82a to 82g are arranged in the flow direction of the sheet glass SG and the width direction of the sheet glass SG. More specifically, seven heaters are arranged in the flow direction of the sheet glass SG, and seven heaters are arranged in the width direction of the sheet glass.
- the seven heaters arranged in the width direction respectively heat-treat the central area CA of the sheet glass SG and the side portions (ear portions) of the sheet glass SG including the clamping area RA that is held by the pulling rollers 81a to 81g.
- the outputs of the heaters 82a to 82g are controlled by a control device 500 described later.
- the temperature of the sheet glass SG is controlled by controlling the atmospheric temperature in the cooling chamber 80 by the heaters 82a to 82g.
- the sheet glass SG transitions from the viscous region to the elastic region through the viscoelastic region by temperature control.
- the temperature of the sheet glass SG is cooled from the temperature near the annealing point to the temperature near room temperature by the control of the heaters 82a to 82g.
- the annealing point is a temperature at which the viscosity becomes 10 13 poise, for example, 715.0 ° C.
- FIG. 6 is a view of the heater 82a that controls the ambient temperature in the cooling chamber 80 as seen from the back side
- FIG. 7 is a view of FIG. 6 as seen from the upstream side.
- the heater 82a is composed of a plurality of divided heaters 82a1 to 82a7 arranged in the width direction of the sheet glass SG.
- Each divided heater is provided at a position in the width direction corresponding to the outermost end regions R and L on the side of the sheet glass SG, and the divided heaters 82a1 and 82a7 for heating the outermost end regions R and L, a pulling roller 81a to 81g are provided at positions in the width direction corresponding to the inner end region sandwiched between the divided heaters 82a2 and 82a6 for heating the inner end region, and the first central region CA1 of the sheet glass SG.
- the heater is divided into divided heaters (heaters corresponding to the second center area) 82a3 and 82a5 for heating the second center area CA2. Since the inner end region is a region sandwiched by the pulling rollers 81a to 81g, this region is hereinafter referred to as a sandwiching region RA.
- the side portion of the sheet glass SG is a region in a range from, for example, 10 to 500 mm, or 10 to 300 mm from the both ends of the sheet glass SG toward the inner side in the width direction of the sheet glass SG.
- the sandwiching area RA for sandwiching the sheet glass SG is preferably in the range of, for example, 50 to 500 mm or 50 to 300 mm from the end of both sides toward the inner side in the width direction of the sheet glass SG among the side regions. .
- the outermost end regions R and L are regions located on the outer side in the width direction of the sheet glass SG with respect to the sandwiching region RA.
- the center area CA is an area on the inner side in the width direction of the sheet glass SG with respect to the sandwiching area RA.
- the central area CA is further divided into a first central area CA1 that is not adjacent to the sandwiching area RA and includes the center in the width direction of the sheet glass SG, and a second central area CA2 that is adjacent to the sandwiching area RA.
- the second central area CA2 is an area located on the inner side in the width direction of the sheet glass SG with respect to the clamping area RA, and is 20 to 80% of the central area CA from the clamping area RA toward the inner side in the width direction of the sheet glass SG. This is a region having a width of. 1st center area
- region CA1 is an area
- the outputs of the divided heaters 82a1 to 82a7 are independently controlled by the control device 500, the ambient temperature in the vicinity of the sheet glass SG passing through the cooling chamber 80 is controlled, and the temperature control of the sheet glass SG is performed.
- Each of the divided heaters 82a1 to 82a7 is independently controlled to realize the temperature profiles of the outermost end regions R and L, the sandwiching region RA, the first central region CA1, and the second central region CA2.
- the heaters arranged in the sheet glass width direction in the heaters 82b to 82g have the same configuration as that of the divided heaters 82a1 to 82a7, and thus the description thereof is omitted.
- thermocouple 380 serving as an atmospheric temperature detecting means for detecting the atmospheric temperature is provided in the vicinity of each of the heaters 82a to 82g. Specifically, the several thermocouple 380 is arrange
- a soaking plate 83 is installed in the space between the heaters 82a to 82g and the sheet glass SG so as to face the surface of the sheet glass SG.
- the soaking plate 83 receives the heat radiated from the heaters 82a to 82g, and diffuses the received heat over the entire surface of the soaking plate 83.
- the soaking plate 83 radiates heat from the facing surface toward the surface of the sheet glass SG.
- the soaking plate 83 is composed of one metal plate or a plurality of metal plates. Each of the heaters 82a to 82g radiates heat toward the corresponding heat equalizing plate 83.
- the soaking plate 83 corresponding to the heater 82a receives heat radiated from the heater 82a and radiates the received heat toward the surface of the sheet glass SG facing the soaking plate 83.
- the region in the sheet glass SG sandwiched between the pulling rollers 81a to 81g is a region where the temperature locally decreases.
- the soaking plate 83 diffuses the heat received from the heaters 82a to 82g over the entire surface of the soaking plate 83 and radiates it toward the surface of the sheet glass SG, whereby the temperature of the surface of the glass plate 3 is locally increased. Suppresses the decline. That is, in this embodiment, the temperature distribution of the sheet glass SG is controlled by using the soaking plate 83 to smoothen the heat distribution in the width direction of the sheet glass SG of the heaters 82a to 82g.
- the soaking plate 83 is preferably a nickel metal plate that can be used at a high temperature and has high thermal conductivity. From the viewpoint of forming a smooth temperature distribution along the width direction of the sheet glass SG, the thermal conductivity of the soaking plate 83 is preferably 10 W / (m ⁇ K) or more. Further, the soaking plate 83 may be coated with a ceramic coating to form a ceramic layer or an oxide film may be formed on the surface in order to improve the radiation rate of heat from the surface. From the viewpoint of suppressing foreign matters such as dust from adhering to the surface of the sheet glass SG, it is preferable that a passive film (super black treatment film) having a thickness of about 1 ⁇ m is formed on the surface of the soaking plate 83.
- a passive film super black treatment film
- the cutting device 90 cuts the sheet glass SG cooled to a temperature near room temperature in the cooling chamber 80 into a predetermined size.
- the cutting device 90 cuts the sheet glass SG at predetermined time intervals. Thereby, the sheet glass SG becomes a plurality of glass plates PG.
- the cutting device 90 is driven by a cutting device drive motor 392 (see FIG. 5).
- the control device 500 includes a CPU, a RAM, a ROM, a hard disk, and the like, and controls various devices included in the glass plate manufacturing apparatus 100.
- the control device 500 receives signals from various sensors (eg, thermocouple 380) and switches (eg, main power switch 381) included in the glass substrate manufacturing apparatus 100.
- switches eg, main power switch 381 included in the glass substrate manufacturing apparatus 100.
- the temperature control unit 60, heaters 82a to 82g, divided heaters 82a1 to 82a7, cooling roller driving motor 390, pulling roller driving motor 391, cutting device driving motor 392, and the like are controlled.
- the temperature management of the flow direction and the width direction of the sheet glass SG is performed in cooling process S4.
- the temperature management is performed based on the temperature profile TP1.
- the temperature profile TP1 is a temperature distribution along the width direction of the sheet glass SG with respect to the ambient temperature in the vicinity of the sheet glass SG.
- the temperature profile TP1 is a target temperature distribution. That is, the temperature management is performed so as to realize the temperature profile TP1.
- the temperature management is performed using the heaters 82a to 82g including the pulling rollers 81a to 81g and the divided heaters 82a1 to 82a7 described above.
- the temperature of the sheet glass SG is managed by controlling the atmospheric temperature of the sheet glass SG.
- the temperature of the sheet glass SG and the atmospheric temperature controlled by the heaters 82a to 82g including the pulling rollers 81a to 81g and the divided heaters 82a1 to 82a7 are basically the same values.
- FIG. 8 shows a temperature profile at a predetermined height position of the sheet glass SG.
- FIG. 9 is a figure which shows the temperature distribution of the sheet glass SG in the predetermined height position of the sheet glass SG.
- the cooling step S4 is a step of cooling the sheet glass SG conveyed to the cooling chamber 80 through the forming step S3.
- the temperature management of the sheet glass SG is performed based on the temperature profile TP1. Since the sheet glass SG is cooled by the pulling rollers 81a to 81g in the conventional manufacturing method, the temperature of the sandwiching area RA becomes lower than the temperature of the first central area CA1 of the sheet glass SG as shown in FIG. Yes.
- the temperature is easily influenced by the pulling rollers 81a to 81g, and the temperature of the sandwiching area RA of the sheet glass SG is lowered. It's easy to do.
- a temperature difference occurs between the sandwiching area RA and the second central area CA2 adjacent to the sandwiching area RA, warping and distortion are caused. For this reason, it is necessary to control the temperature distribution so as to achieve a target temperature distribution in the cooling chamber 80 so that the temperature drop of the sandwiching region RA of the sheet glass SG is suppressed.
- the temperature profile TP1 executed in the cooling step S4 will be described in detail.
- the temperature profile TP1 is a temperature distribution of the ambient temperature in the vicinity of the sheet glass SG realized by the divided heaters 82a1 to 82a7 in the cooling chamber 80. Since this temperature distribution is reflected in the temperature distribution of the sheet glass SG immediately before being held by the lowering rollers 81a to 81g, the temperature profile TP1 is also the temperature distribution of the sheet glass SG immediately before being held by the lowering rollers 81a to 81g. is there. In the temperature profile TP1, the temperature of the first central region CA1 is uniform, and the temperatures at the ends of the outermost end regions R and L are lower than the temperature of the first central region CA1.
- the temperature profile TP2 is an ideal temperature profile in which the temperatures of the first central region CA1, the second central region CA2, and the sandwiching region RA are uniform.
- the uniform temperature of the first central region CA1 means that the temperature of the first central region CA1 is included in a predetermined temperature range with respect to the reference temperature.
- the predetermined temperature range is a range of the reference temperature ⁇ 20 ° C.
- the reference temperature is an average temperature in the width direction of the first central region CA1.
- the temperature of the sandwiching region RA is higher than the temperature of the first central region CA1.
- a temperature difference TD between the maximum temperature of the sandwiching region RA and the temperature of the first central region CA1 is, for example, 30 ° C. to 150 ° C.
- the temperature of the sandwiching area RA is lowered by the contact of the lowering rollers 81a to 81g. For this reason, by increasing the maximum temperature of the sandwiching area RA by 30 ° C. to 150 ° C. higher than the temperature of the first central area CA1, the cooling by the pulling rollers 81a to 81g is alleviated, and as shown in the temperature profile TP2, The temperatures of the first central region CA1, the second central region CA2, and the sandwiching region RA in the glass SG can be made uniform.
- the pair of lowering rollers 81a to 81g sandwich the sheet glass SG while being cooled so that deformation due to heat is suppressed, and the divided heaters 82a1 to 82a7 sandwich the sheet glass SG cooled by the lowering rollers 81a to 81g.
- the temperature of the region RA is controlled to be uniform in the width direction of the sheet glass SG.
- the temperature of the sandwiching area RA shows a gentle mountain-shaped curve because the heat equalizing plate 83 diffuses the heat received from the divided heaters 82a2 and 82a6 over the entire surface.
- the temperatures of the second central region CA2 and the outermost end regions R and L adjacent to the sandwiching region RA are also increased. This is because the effect of cooling by the pulling rollers 81a to 81g extends not only to the clamping area RA but also to the second central area CA2 and the outermost edge areas R and L adjacent to the clamping area RA.
- the second central region CA2 adjacent to the sandwiching region RA and a part of the outermost end regions R and L are made higher than the temperature of the first central region CA1, thereby including the sandwiching region RA. Further, warpage and distortion can also be suppressed in the adjacent region.
- the pair of pulling rollers 81a to 81g sandwich the region between the first central region CA1 and the outermost end regions R and L, and the divided heaters 82a1 to 82a7 have the temperature of the first central region CA1. Is uniform, and the temperature of the sheet glass SG before the lowering rollers 81a to 81g are nipped is controlled so that the temperature of the nipping region RA is higher than the temperature of the first central region CA1.
- the temperature difference TD between the maximum temperature of the sandwiching region RA and the temperature of the first central region CA1 is the largest on the upstream side, that is, the space heated by the heater 82a, and gradually decreases toward the downstream side.
- the space heated by the heater 82g is the smallest.
- the temperature difference TD in the space heated by each of the heaters 82a to 82g gradually decreases to 150 ° C, 130 ° C, 110 ° C, 90 ° C, 70 ° C, 50 ° C, and 30 ° C. This is because the upstream side where the temperature of the sheet glass SG is higher is more susceptible to cooling by the pulling roller 81, so that the temperature difference TD is increased and the cooling by the pulling roller 81 is eased.
- FIG. 10 is a diagram showing an arrangement example of the divided heaters 82a1 to 82a7. If the divided heaters 82a1 to 82a7 are brought closer to the sheet glass SG side and the soaking plate 83 side without changing the outputs of the divided heaters 82a1 to 82a7, the temperature of the sheet glass SG increases. The heat of the split heaters 82a1 to 82a7 is diffused on the surface of the soaking plate 83, but if the split heaters 82a1 to 82a7 are too close to the soaking plate 83, the heat may not be diffused by the soaking plate 83.
- the distance from the sheet glass SG of the divided heaters (nipping area corresponding heaters) 82a2 and 82a6 is made longer than the distance from the sheet glass SG of the divided heater (first center area corresponding heater) 82a4, and the pulling rollers 81a ⁇
- the positions of the divided heaters 82a3 and 82a5 facing the second central area CA2 adjacent to the sandwiching area RA are shifted to the back side by the distance D2 from the position of the divided heater 82a4, and the outputs of the divided heaters 82a3 and 82a5 are increased.
- the distance D2 is smaller than the distance D1.
- the temperature of the second central region CA2 is increased because it is affected by the cooling by the pulling roller 81. Since the second central region CA2 is less affected by the cooling by the pulling roller 81 than the sandwiching region RA, the temperature distribution of the second central region CA2 needs to be a gentler curve than the temperature distribution of the sandwiching region RA.
- the split heater (2) is set so that the temperature of the second central region CA2 is partially higher than the temperature of the first central region CA1.
- the temperature of the sandwiching region RA cooled by the pulling rollers 81a to 81g is increased above the temperature of the first central region CA1, thereby reducing the pulling roller. Cooling by 81a to 81g can be alleviated, and warping and distortion occurring in the sandwiching area RA can be suppressed. Further, in the sheet glass SG before being sandwiched by the pulling rollers 81a to 81g, the temperatures of the outermost end regions R and L and the second central region CA2, that is, the region adjacent to the sandwiching region RA are set to the first central region.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
溶融ガラスを成形体から流下させてガラス板を成形する成形工程と、
前記成形体の下方に配置される一対のローラによって、前記成形工程で成形された前記ガラス板を下方に搬送しながら、前記ガラス板の搬送方向に対して順次温度が下がるよう前記ガラス板の温度を制御するヒータによって、前記ガラス板を冷却する冷却工程と、を備え、
前記冷却工程では、
前記一対のローラは、熱による変形が抑制されるよう冷却されながら前記ガラス板を挟持し、
前記ヒータは、前記一対のローラにより冷却された前記ガラス板の領域の温度を、前記ガラス板の幅方向で均一になるよう制御する、ことを特徴とするガラス板の製造方法。
形態1において、
前記成形工程では、前記ガラス板の幅方向の両端と、前記両端に挟まれた前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域と、を有するガラス板が成形され、
前記冷却工程では、
前記一対のローラは、前記幅方向中央領域と前記端との間の領域を挟持し、
前記ヒータは、前記ローラが挟持する前、前記幅方向中央領域の温度が均一になり、かつ、前記ローラが挟持する挟持領域の温度が前記幅方向中央領域の温度より高くなるよう、前記ガラス板の温度を制御する。
形態1又は2において、前記冷却工程では、前記ヒータは、前記ローラが前記ガラス板を挟持する前、前記挟持領域の温度分布が、前記両端に挟まれた、前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域及び前記端に向かって低くなるよう前記ガラス板の温度を制御する。
形態1~3のいずれか1つの形態において、
前記ヒータは、前記幅方向に複数に分割された分割ヒータを含み、
前記分割ヒータは、前記ローラが挟持する挟持領域に対応する幅方向の位置に設けられた挟持領域対応ヒータを含む。
形態4において、前記分割ヒータは、前記挟持領域対応ヒータの他に、前記ガラス板の幅方向の両端に挟まれた、前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域に対応する幅方向の位置に設けられた中央領域対応ヒータを含み、
前記挟持領域対応ヒータの前記ガラス板からの距離を、前記中央領域対応ヒータの前記ガラス板からの距離に比べて遠くし、前記ローラが前記ガラス板を挟持する前、前記挟持領域の温度が前記幅方向中央領域の温度より高くなるように、前記挟持領域対応ヒータの出力を制御する。
形態5において、前記幅方向中央領域は、前記幅方向の中心を含む第1中央領域と、前記第1中央領域と前記挟持領域との間に位置する第2中央領域を有し、
前記中央領域対応ヒータは、前記第1中央領域に対応する幅方向の位置に設けられた第1中央領域対応ヒータと、前記第2中央領域に対応する幅方向の位置に設けられた第2中央領域対応ヒータと、を含み、
前記第2中央領域対応ヒータの前記ガラス板からの距離を、前記第1中央領域対応ヒータの前記ガラス板からの距離に比べて遠くし、前記ローラが前記ガラス板を挟持する前、前記第2中央領域の温度が前記第1中央領域の温度より部分的に高くなるように、前記第2中央領域対応ヒータの出力を制御する。
形態3において、前記挟持領域における前記温度分布の最高温度と前記幅方向中央領域の温度と間の温度差が、前記ガラス板の前記搬送方向の上流側から下流側に向かって徐々に小さくなる。
形態1~7のいずれか1つの形態において、
前記ガラス板と前記ヒータとの間には、前記ガラス板の表面と対向するように均熱板が配置され、
前記ヒータの前記幅方向の熱分布を前記均熱板によりなだらかにすることにより、前記ガラス板の温度分布を制御する。
溶融ガラスを流下させてガラス板を成形する成形体と、
前記成形体の下方に配置され、前記ガラス板を下方に搬送する一対のローラと、
前記ガラス板の搬送方向に対して順次温度が下がるよう前記ガラス板の温度を制御するヒータと、を備え、
前記一対のローラは、熱による変形が抑制されるよう冷却されながら前記ガラス板を挟持し、
前記ヒータは、前記一対のローラにより冷却された前記ガラス板の領域の温度を、前記ガラス板の幅方向で均一になるよう制御する、ことを特徴とするガラス板の製造装置。
まず、図1および図2を参照して、ガラス基板の製造方法に含まれる複数の工程および複数の工程に用いられるガラス基板の製造装置100を説明する。ガラス基板の製造方法は、図1に示すように、主として、溶融工程S1と、清澄工程S2と、成形工程S3と、冷却工程S4と、切断工程S5とを含む。
まず、図3および図4に、成形装置40の概略構成を示す。図3は、成形装置40の断面図である。図4は、成形装置40の側面図である。
成形体41は、オーバーフローチャンバー20内に設けられる。成形体41は、溶融ガラスFGをオーバーフローさせることによって、溶融ガラスFGをシート状のガラス板へと成形する。このガラス板は、以降、シートガラスSGという。
仕切り部材50は、オーバーフローチャンバー20からフォーミングチャンバー30への熱の移動を遮断する部材である。仕切り部材50は、溶融ガラスFGの合流ポイントの近傍に配置されている。また、図3に示すように、仕切り部材50は、合流ポイントで合流した溶融ガラスFG(シートガラスSG)の厚み方向両側に配置される。仕切り部材50は、断熱材である。仕切り部材50は、溶融ガラスFGの合流ポイントの上側雰囲気および下側雰囲気を仕切ることにより、仕切り部材50の上側から下側への熱の移動を遮断する。
冷却ローラ51は、フォーミングチャンバー30内に設けられる。より具体的に、冷却ローラ51は、仕切り部材50の直下に配置されている。また、冷却ローラ51は、シートガラスSGの厚み方向両側、且つ、シートガラスSGの幅方向両側に配置される。シートガラスSGの厚み方向両側に配置された冷却ローラ51は対で動作する。すなわち、シートガラスSGの両側部(幅方向両端部)は、二対の冷却ローラ51,51,・・・によって挟み込まれる。
温度調整ユニット60は、オーバーフローチャンバー20内及びフォーミングチャンバー30内に設けられ、シートガラスSGを徐冷点近傍まで冷却するユニットである。温度調整ユニット60は、複数の冷却ユニット61~65を有する。複数の冷却ユニット61~65は、シートガラスSGの幅方向およびシートガラスSGの流れ方向に配置される。具体的に、複数の冷却ユニット61~65には、中央領域冷却ユニット61~63と、側部冷却ユニット64,65とが含まれる。中央領域冷却ユニット61~63は、シートガラスSGの幅方向中央領域CAを空冷する。幅方向中央領域CAは以降、中央領域CAという。ここで、シートガラスSGの中央領域とは、シートガラスSGの幅方向中央部分であって、シートガラスSGの有効幅およびその近傍を含む領域である。言い換えると、シートガラスSGの中央領域は、シートガラスSGの両側部に挟まれた部分である。シートガラスSGの両側部は、両耳部ともいう。中央領域冷却ユニット61~63は、シートガラスSGの中央領域CAの表面に対向する位置に、流れ方向に沿って配置される。中央領域冷却ユニット61~63に含まれる各ユニットは、独立して制御可能である。また、側部冷却ユニット64,65は、シートガラスSGの側部を水冷する。側部冷却ユニット64,65は、シートガラスSGの側部の表面に対向する位置に、流れ方向に沿って配置される。側部冷却ユニット64,65に含まれる各ユニットは、独立して制御可能である。
引下げローラ(搬送ローラ)81a~81gは、冷却チャンバー80内に設けられ、フォーミングチャンバー30内を通過したシートガラスSGを、シートガラスSGの流れ方向へ引き下げる。引下げローラ81a~81gは、冷却チャンバー80の内部で、流れ方向に沿って所定の間隔を空けて配置される。引下げローラ81a~81gは、シートガラスSGの厚み方向両側(図3参照)、および、シートガラスSGの幅方向両側(図4参照)に複数配置される。すなわち、引下げローラ81a~81gは、シートガラスSGの幅方向の両側部、かつ、シートガラスSGの厚み方向の両側に接触しながらシートガラスSGを下方に引き下げる。
ヒータ82(82a~82g)は、冷却チャンバー80の内部に設けられ、冷却チャンバー80の内部空間の温度を調整する。具体的に、ヒータ82a~82gは、シートガラスSGの流れ方向およびシートガラスSGの幅方向に複数配置される。より具体的には、シートガラスSGの流れ方向には、7つのヒータが配置され、シートガラスの幅方向には7つのヒータが配置される。幅方向に配置される7つのヒータは、シートガラスSGの中央領域CAと、引下げローラ81a~81gが挟持する挟持領域RAを含む、シートガラスSGの側部(耳部)とをそれぞれ熱処理する。ヒータ82a~82gは、後述する制御装置500によって出力が制御される。これにより、冷却チャンバー80内部を通過するシートガラスSGの近傍の雰囲気温度が制御される。ヒータ82a~82gによって冷却チャンバー80内の雰囲気温度が制御されることによって、シートガラスSGの温度制御が行われる。また、温度制御により、シートガラスSGは、粘性域から粘弾性域を経て弾性域へと推移する。このように、ヒータ82a~82gの制御により、冷却チャンバー80では、シートガラスSGの温度が、徐冷点近傍の温度から室温近傍の温度まで冷却される。ここで、徐冷点は、粘度が1013poiseとなるときの温度であり、例えば、715.0℃である。
中央領域CAは、さらに、挟持領域RAと隣接せず、シートガラスSGの幅方向の中心を含む第1中央領域CA1と、挟持領域RAと隣接する第2中央領域CA2とに分かれている。第2中央領域CA2は、挟持領域RAに対してシートガラスSGの幅方向内側に位置する領域であり、挟持領域RAからシートガラスSGの幅方向内側に向かって、中央領域CAの20~80%の幅を有する領域である。第1中央領域CA1は、第2中央領域CA2からシートガラスSGの幅方向内側の領域である。
なお、ヒータ82b~82gにおけるシートガラスの幅方向に配置されるヒータは、分割ヒータ82a1~82a7と同様の構成であるため、説明を省略する。
切断装置90は、冷却チャンバー80内で室温近傍の温度まで冷却されたシートガラスSGを、所定のサイズに切断する。切断装置90は、所定の時間間隔でシートガラスSGを切断する。これにより、シートガラスSGは、複数のガラス板PGになる。切断装置90は、切断装置駆動モータ392(図5を参照)によって駆動される。
制御装置500は、CPU、RAM、ROM、およびハードディスク等から構成されており、ガラス板の製造装置100に含まれる種々の機器の制御を行う。
本実施形態に係るガラス基板の製造方法では、冷却工程S4において、シートガラスSGの流れ方向および幅方向の温度管理を行っている。温度管理は、温度プロファイルTP1に基づいて行われる。温度プロファイルTP1とは、シートガラスSG近傍の雰囲気温度についての、シートガラスSGの幅方向に沿った温度分布である。言い換えると、温度プロファイルTP1は、目標の温度分布である。すなわち、温度管理は、温度プロファイルTP1を実現させるように行われる。温度管理は、上述した、引下げローラ81a~81g、分割ヒータ82a1~82a7を備えるヒータ82a~82gを用いて行われる。
冷却工程S4は、成形工程S3を経て、冷却チャンバー80に搬送されたシートガラスSGを冷却する工程である。冷却工程S4では、温度プロファイルTP1に基づいて、シートガラスSGの温度管理が行われる。シートガラスSGは、従来の製造方法では、引下げローラ81a~81gによって冷却されるため、図9に示すように、挟持領域RAの温度がシートガラスSGの第1中央領域CA1の温度より低くなっている。シートガラスSGの中央領域CAの板厚が0.4mm以下となるような薄いシートガラスSGでは、その温度は引下げローラ81a~81gによる影響を受けやすく、シートガラスSGの挟持領域RAの温度は低下しやすい。挟持領域RAと挟持領域RAに隣接する第2中央領域CA2との間で温度差が生じると、反り、歪の原因となる。このため、シートガラスSGの挟持領域RAの温度低下が抑制されるように、冷却チャンバー80内において目標とする温度分布になるように、温度分布を制御する必要がある。以下、冷却工程S4で実行される温度プロファイルTP1を詳細に説明する。
温度プロファイルTP1は、冷却チャンバー80内において分割ヒータ82a1~82a7によって実現される、シートガラスSGの近傍の雰囲気温度の温度分布である。この温度分布が、引下げローラ81a~81gに挟持される直前のシートガラスSGの温度分布に反映されるので、温度プロファイルTP1は引下げローラ81a~81gに挟持される直前のシートガラスSGの温度分布でもある。温度プロファイルTP1は、第1中央領域CA1の温度が均一であり、最外端部領域R,Lの末端の温度は、第1中央領域CA1の温度よりも低い。また、温度プロファイルTP2は、第1中央領域CA1,第2中央領域CA2及び挟持領域RAの温度が均一となる理想の温度プロファイルである。ここで、第1中央領域CA1の温度が均一であるとは、第1中央領域CA1の温度が、基準温度に対して所定の温度域に含まれることをいう。所定の温度域とは、基準温度±20℃の範囲である。基準温度は、第1中央領域CA1の幅方向の平均温度である。また、温度プロファイルTP1は、挟持領域RAの温度が、第1中央領域CA1の温度よりも高い。挟持領域RAの温度の最高温度と第1中央領域CA1の温度との温度差TDは、例えば、30℃~150℃である。挟持領域RAの温度は、引下げローラ81a~81gが接触することにより、温度が低下してしまう。このため、挟持領域RAの最高温度を第1中央領域CA1の温度より、30℃~150℃高くすることにより、引下げローラ81a~81gによる冷却を緩和して、温度プロファイルTP2に示すように、シートガラスSGにおける第1中央領域CA1,第2中央領域CA2及び挟持領域RAの温度を均一にすることができる。すなわち、一対の引下げローラ81a~81gは、熱による変形が抑制されるよう冷却されながらシートガラスSGを挟持し、分割ヒータ82a1~82a7は、引下げローラ81a~81gにより冷却されたシートガラスSGの挟持領域RAの温度を、シートガラスSGの幅方向で均一になるよう制御する。挟持領域RAの温度は、分割ヒータ82a2,82a6から受けた熱を均熱板83が表面全体に拡散させるため、山なり状の緩やかな曲線を示す。挟持領域RAの温度を、第1中央領域CA1の温度より高くするのに伴って、挟持領域RAに隣接する第2中央領域CA2及び最外端部領域R,Lの温度も高くする。これは、引下げローラ81a~81gによる冷却の影響は、挟持領域RAだけでなく、挟持領域RAに隣接する第2中央領域CA2及び最外端部領域R,Lにも及ぶためである。挟持領域RAだけでなく、挟持領域RAに隣接する第2中央領域CA2及び最外端部領域R,Lの一部を、第1中央領域CA1の温度より高くすることにより、挟持領域RAを含めた隣接領域についても、反り、歪を抑制することができる。
このように、一対の引下げローラ81a~81gは、第1中央領域CA1と最外端部領域R,Lとの間の領域を挟持し、分割ヒータ82a1~82a7は、第1中央領域CA1の温度が均一になり、かつ、挟持領域RAの温度が第1中央領域CA1の温度より高くなるよう、引下げローラ81a~81gが挟持する前のシートガラスSGの温度を制御する。
また、挟持領域RAに隣接する第2中央領域CA2に対向する分割ヒータ82a3,82a5の位置を、分割ヒータ82a4の位置より距離D2だけ背面側にずらし、分割ヒータ82a3,82a5の出力を高める。距離D2は、距離D1よりも小さい。挟持領域RAに隣接する第2中央領域CA2においても、引下げローラ81による冷却の影響を受けるため、第2中央領域CA2の温度を高める。第2中央領域CA2は挟持領域RAより引下げローラ81による冷却の影響が小さいため、第2中央領域CA2の温度分布を挟持領域RAの温度分布よりなだらかな曲線にする必要がある。このため、分割ヒータ82a4の位置より、距離D2だけ背面側にずらし、分割ヒータ82a3,82a5の出力を高めることによって実現できる。すなわち、分割ヒータ(第2中央領域対応ヒータ)82a3,82a5のシートガラスSGからの距離を、分割ヒータ(第1中央領域対応ヒータ)82a4のシートガラスSGからの距離に比べて遠くし、引き下げローラ81a~81gがシートガラスSGを挟持する前、図8に示す温度プロファイルTP1のように、第2中央領域CA2の温度が第1中央領域CA1の温度より部分的に高くなるように、分割ヒータ(第2中央領域対応ヒータ)82a3,82a5の出力を制御することが好ましい。
距離D1,D2が大きくなるほど、温度分布はなだらかな曲線になるため、距離D1<距離D2、分割ヒータ82a2,82a6の出力<分割ヒータ82a3,82a5の出力、とすることもできる。温度分布の幅方向の急激な変化を抑制し、挟持領域RAと第2中央領域CA2の反り、歪を制御することができる。
12 清澄装置
40 成形装置
41 成形体
51 冷却ローラ
60 温度調整ユニット
81a~81g 引下げローラ
82a~82g ヒータ
82a1~82a7 分割ヒータ
90 切断装置
100 ガラス基板の製造装置
500 制御装置
Claims (9)
- 溶融ガラスを成形体から流下させてガラス板を成形する成形工程と、
前記成形体の下方に配置される一対のローラによって、前記成形工程で成形された前記ガラス板を下方に搬送しながら、前記ガラス板の搬送方向に対して順次温度が下がるよう前記ガラス板の温度を制御するヒータによって、前記ガラス板を冷却する冷却工程と、を備え、
前記冷却工程では、
前記一対のローラは、熱による変形が抑制されるよう冷却されながら前記ガラス板を挟持し、
前記ヒータは、前記一対のローラにより冷却された前記ガラス板の領域の温度を、前記ガラス板の幅方向で均一になるよう制御する、ことを特徴とするガラス板の製造方法。 - 前記成形工程では、前記ガラス板の幅方向の両端と、前記両端に挟まれた、前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域と、を有するガラス板が成形され、
前記冷却工程では、
前記一対のローラは、前記幅方向中央領域と前記端との間の領域を挟持し、
前記ヒータは、前記ローラが前記ガラス板を挟持する前、前記幅方向中央領域の温度が均一になり、かつ、前記ローラが挟持する挟持領域の温度が前記幅方向中央領域の温度より高くなるよう、前記ガラス板の温度を制御する、請求項1に記載のガラス板の製造方法。 - 前記冷却工程では、前記ヒータは、前記ローラが前記ガラス板を挟持する前、前記挟持領域の温度分布が、前記両端に挟まれた、前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域及び前記端に向かって低くなるよう前記ガラス板の温度を制御する、請求項1または2に記載のガラス板の製造方法。
- 前記ヒータは、前記幅方向に複数に分割された分割ヒータを含み、
前記分割ヒータは、前記ローラが挟持する挟持領域に対応する幅方向の位置に設けられた挟持領域対応ヒータを含む、請求項1~3のいずれか1項に記載のガラス板の製造方法。 - 前記分割ヒータは、前記挟持領域対応ヒータの他に、前記ガラス板の幅方向の両端に挟まれた、前記両端における前記ガラス板の厚さより前記ガラス板の厚さが薄い幅方向中央領域に対応する幅方向の位置に設けられた中央領域対応ヒータを含み、
前記挟持領域対応ヒータの前記ガラス板からの距離を、前記中央領域対応ヒータの前記ガラス板からの距離に比べて遠くし、前記ローラが前記ガラス板を挟持する前、前記挟持領域の温度が前記幅方向中央領域の温度より高くなるように、前記挟持領域対応ヒータの出力を制御する、請求項4に記載のガラス板の製造方法。 - 前記幅方向中央領域は、前記幅方向の中心を含む第1中央領域と、前記第1中央領域と前記挟持領域との間に位置する第2中央領域を有し、
前記中央領域対応ヒータは、前記第1中央領域に対応する幅方向の位置に設けられた第1中央領域対応ヒータと、前記第2中央領域に対応する幅方向の位置に設けられた第2中央領域対応ヒータと、を含み、
前記第2中央領域対応ヒータの前記ガラス板からの距離を、前記第1中央領域対応ヒータの前記ガラス板からの距離に比べて遠くし、前記ローラが前記ガラス板を挟持する前、前記第2中央領域の温度が前記第1中央領域の温度より部分的に高くなるように、前記第2中央領域対応ヒータの出力を制御する、請求項5に記載のガラス板の製造方法。 - 前記挟持領域における前記温度分布の最高温度と前記幅方向中央領域の温度と間の温度差が、前記ガラス板の前記搬送方向の上流側から下流側に向かって徐々に小さくなる、請求項3に記載のガラス板の製造方法。
- 前記ガラス板と前記ヒータとの間には、前記ガラス板の表面と対向するように均熱板が配置され、
前記ヒータの前記幅方向の熱分布を前記均熱板によりなだらかにすることにより、前記ガラス板の温度分布を制御する、請求項1~7のいずれか1項に記載のガラス板の製造方法。 - 溶融ガラスを流下させてガラス板を成形する成形体と、
前記成形体の下方に配置され、前記ガラス板を下方に搬送する一対のローラと、
前記ガラス板の搬送方向に対して順次温度が下がるよう前記ガラス板の温度を制御するヒータと、を備え、
前記一対のローラは、熱による変形が抑制されるよう冷却されながら前記ガラス板を挟持し、
前記ヒータは、前記一対のローラにより冷却された前記ガラス板の領域の温度を、前記ガラス板の幅方向で均一になるよう制御する、
ことを特徴とするガラス板の製造装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580071369.4A CN107108316B (zh) | 2014-12-27 | 2015-12-26 | 玻璃板的制造方法、及玻璃板的制造装置 |
JP2016566581A JPWO2016104805A1 (ja) | 2014-12-27 | 2015-12-26 | ガラス板の製造方法、及び、ガラス板の製造装置 |
KR1020177017167A KR102459796B1 (ko) | 2014-12-27 | 2015-12-26 | 유리판의 제조 방법, 및 유리판의 제조 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-266880 | 2014-12-27 | ||
JP2014266880 | 2014-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016104805A1 true WO2016104805A1 (ja) | 2016-06-30 |
Family
ID=56150815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/086444 WO2016104805A1 (ja) | 2014-12-27 | 2015-12-26 | ガラス板の製造方法、及び、ガラス板の製造装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2016104805A1 (ja) |
KR (1) | KR102459796B1 (ja) |
CN (1) | CN107108316B (ja) |
TW (1) | TWI577646B (ja) |
WO (1) | WO2016104805A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6708970B2 (ja) * | 2016-12-15 | 2020-06-10 | 日本電気硝子株式会社 | ガラス物品の製造方法 |
CN111116014B (zh) * | 2019-12-30 | 2021-08-13 | 彩虹显示器件股份有限公司 | 一种成型装置温度场的控制方法 |
CN112919787B (zh) * | 2021-01-29 | 2023-05-16 | 彩虹显示器件股份有限公司 | 一种玻璃基板翘曲判断和调整方法 |
CN115304253B (zh) * | 2022-06-20 | 2024-03-29 | 杭州乾智坤达新材料科技有限公司 | 一种柔性玻璃生产设备及其生产工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508803A (ja) * | 2005-09-22 | 2009-03-05 | コーニング インコーポレイテッド | 反りのレベルの低い平らなガラスを製造する方法 |
JP2010229020A (ja) * | 2009-02-27 | 2010-10-14 | Corning Inc | ガラスリボンのビード部分の温度調節 |
WO2013105667A1 (ja) * | 2012-01-13 | 2013-07-18 | AvanStrate株式会社 | ガラス基板の製造方法及び成形装置 |
JP2013216526A (ja) * | 2012-04-06 | 2013-10-24 | Avanstrate Inc | ガラス基板の製造方法 |
WO2014082000A1 (en) * | 2012-11-26 | 2014-05-30 | Corning Incorporated | Thermal control of the bead portion of a glass ribbon |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5241223B2 (ja) * | 2007-12-20 | 2013-07-17 | 日本電気硝子株式会社 | ガラス板の製造方法及び製造設備 |
WO2012133842A1 (ja) | 2011-03-31 | 2012-10-04 | AvanStrate株式会社 | ガラス基板の製造方法およびガラス基板の製造装置 |
US9290403B2 (en) * | 2013-02-25 | 2016-03-22 | Corning Incorporated | Repositionable heater assemblies for glass production lines and methods of managing temperature of glass in production lines |
-
2015
- 2015-12-26 JP JP2016566581A patent/JPWO2016104805A1/ja active Pending
- 2015-12-26 WO PCT/JP2015/086444 patent/WO2016104805A1/ja active Application Filing
- 2015-12-26 CN CN201580071369.4A patent/CN107108316B/zh active Active
- 2015-12-26 KR KR1020177017167A patent/KR102459796B1/ko active IP Right Grant
- 2015-12-28 TW TW104144133A patent/TWI577646B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009508803A (ja) * | 2005-09-22 | 2009-03-05 | コーニング インコーポレイテッド | 反りのレベルの低い平らなガラスを製造する方法 |
JP2010229020A (ja) * | 2009-02-27 | 2010-10-14 | Corning Inc | ガラスリボンのビード部分の温度調節 |
WO2013105667A1 (ja) * | 2012-01-13 | 2013-07-18 | AvanStrate株式会社 | ガラス基板の製造方法及び成形装置 |
JP2013216526A (ja) * | 2012-04-06 | 2013-10-24 | Avanstrate Inc | ガラス基板の製造方法 |
WO2014082000A1 (en) * | 2012-11-26 | 2014-05-30 | Corning Incorporated | Thermal control of the bead portion of a glass ribbon |
Also Published As
Publication number | Publication date |
---|---|
KR102459796B1 (ko) | 2022-10-26 |
TWI577646B (zh) | 2017-04-11 |
CN107108316A (zh) | 2017-08-29 |
KR20170100525A (ko) | 2017-09-04 |
CN107108316B (zh) | 2021-01-29 |
JPWO2016104805A1 (ja) | 2017-10-19 |
TW201625492A (zh) | 2016-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5177790B2 (ja) | ガラスリボンの製造装置及びその製造方法 | |
JP5076443B2 (ja) | ガラスリボンの製造装置及びその製造方法 | |
TWI387565B (zh) | 玻璃帶的製造裝置及其製造方法 | |
TWI545091B (zh) | Method for manufacturing glass substrates | |
WO2016104805A1 (ja) | ガラス板の製造方法、及び、ガラス板の製造装置 | |
TWI598304B (zh) | Manufacturing method of a glass substrate, and manufacturing apparatus of a glass substrate | |
JP2015105206A (ja) | ガラス板の製造方法、及び、ガラス板 | |
JP2019064904A (ja) | ガラス基板の製造方法、及びガラス基板製造装置 | |
CN109574471B (zh) | 玻璃板的制造方法 | |
TW201542472A (zh) | 玻璃基板之製造方法、及玻璃基板之製造裝置 | |
JP6714676B2 (ja) | ガラス基板の製造方法、及びガラス基板製造装置 | |
JP7010644B2 (ja) | ガラス基板の製造方法、及びガラス基板製造装置 | |
JP6676119B2 (ja) | ガラス板の製造方法 | |
JP6619492B2 (ja) | ガラス板の製造方法及びガラス板の製造装置 | |
JP2019064860A (ja) | ガラス基板の製造方法、及びガラス基板製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873373 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177017167 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016566581 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873373 Country of ref document: EP Kind code of ref document: A1 |