WO2016104419A1 - 分離膜エレメント - Google Patents

分離膜エレメント Download PDF

Info

Publication number
WO2016104419A1
WO2016104419A1 PCT/JP2015/085663 JP2015085663W WO2016104419A1 WO 2016104419 A1 WO2016104419 A1 WO 2016104419A1 JP 2015085663 W JP2015085663 W JP 2015085663W WO 2016104419 A1 WO2016104419 A1 WO 2016104419A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
sheet
separation
protrusions
protrusion
Prior art date
Application number
PCT/JP2015/085663
Other languages
English (en)
French (fr)
Inventor
洋帆 広沢
小川 博史
健児 林田
雅紀 遠藤
正士 伊藤
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15872987.1A priority Critical patent/EP3238813A4/en
Priority to US15/538,886 priority patent/US10183254B2/en
Priority to CN201580071099.7A priority patent/CN107106988B/zh
Priority to KR1020177017195A priority patent/KR20170101212A/ko
Priority to JP2015562993A priority patent/JP6634828B2/ja
Publication of WO2016104419A1 publication Critical patent/WO2016104419A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/08Patterned membranes

Definitions

  • the present invention relates to a separation membrane element used for separating components contained in a fluid such as liquid or gas.
  • Separation membranes used in separation methods using separation membrane elements are classified into microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes in terms of their pore sizes and separation functions. These membranes are used, for example, in the production of drinking water from seawater, brackish water and water containing harmful substances, industrial ultrapure water, wastewater treatment and recovery of valuable materials. It is properly used depending on the separation component and separation performance.
  • separation membrane elements There are various types of separation membrane elements, but they are common in that raw water is supplied to one side of the separation membrane and a permeated fluid is obtained from the other side.
  • the separation membrane element includes a large number of bundled separation membranes so that the membrane area per one separation membrane element is increased, that is, the amount of permeate fluid obtained per one separation membrane element is large. It is formed to become.
  • As the separation membrane element various shapes such as a spiral type, a hollow fiber type, a plate-and-frame type, a rotating flat membrane type, and a flat membrane integrated type have been proposed according to applications and purposes.
  • spiral separation membrane elements are widely used for reverse osmosis filtration.
  • the spiral separation membrane element includes a center tube and a laminate wound around the center tube.
  • the laminated body includes a supply-side channel material that supplies raw water (that is, water to be treated) to the separation membrane surface, a separation membrane that separates components contained in the raw water, and a permeation side that is separated from the supply-side fluid through the separation membrane. It is formed by laminating a permeate-side channel material for guiding fluid to the central tube.
  • the spiral separation membrane element is preferably used in that a large amount of permeated fluid can be taken out because pressure can be applied to the raw water.
  • a polymer net is mainly used as a supply-side channel material in order to form a supply-side fluid channel.
  • a stacked type separation membrane is used as the separation membrane.
  • Laminate type separation membranes are laminated from the supply side to the permeate side, a separation functional layer made of a crosslinked polymer such as polyamide, a porous resin layer (porous support layer) made of a polymer such as polysulfone, polyethylene terephthalate, etc.
  • a non-woven substrate made of the above polymer is provided.
  • a knitted member called a tricot having a smaller interval than the supply side channel material is used for the purpose of preventing the separation membrane from dropping and forming the permeation side channel.
  • Patent Document 1 proposes a separation membrane element including an unevenly shaped sheet as a permeate-side channel material.
  • a separation membrane that does not require a supply-side channel material such as a net or a permeation-side channel material such as a tricot by a channel material composed of an elastomer called a vane disposed on the separation membrane. Elements have been proposed.
  • Patent Document 3 proposes a separation membrane element provided with a flow path material in which yarns are arranged on a nonwoven fabric.
  • an object of the present invention is to provide a separation membrane element that can stabilize the separation and removal performance when the separation membrane element is operated under a particularly high pressure.
  • a separation membrane having a supply side surface and a permeation side surface, and forming a separation membrane pair by arranging the permeation side surfaces to face each other
  • a permeation-side flow path member provided between the permeation-side surfaces of the separation membrane, and the permeation-side flow path material includes a sheet and a plurality of protrusions provided on the sheet,
  • the sheet is a porous sheet having an opening portion on the surface, and has a dense weld portion, a rough weld portion and a non-weld portion on the surface, and the protrusion contains a resin
  • a separation membrane element having a portion impregnated in the aperture of the sheet.
  • a separation membrane element wherein the sheet has a close welding rate on the surface of 5% or more and 50% or less. Moreover, according to the preferable form of this invention, the separation membrane element whose surface open area rate in the said non-welding part is 15% or more and 70% or less is provided. Further, according to a preferred embodiment of the present invention, there is provided a separation membrane element wherein 30 or more pores having a pore diameter of 150 ⁇ m or more and 200 ⁇ m or less are provided in the perforated portion existing per 100 mm 2 on the sheet surface.
  • the separation membrane element whose arithmetic mean height of the surface of the said sheet
  • a high-efficiency and stable permeation side flow path can be formed, and a high-performance, high-efficiency separation membrane element having separation component removal performance and high permeation performance can be obtained.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of a separation membrane and a permeation side channel material in a separation membrane element of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of the membrane leaf.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the separation membrane.
  • FIG. 4 is a diagram illustrating an example of a method for disposing the permeate-side channel material on the membrane leaf.
  • FIG. 5 is a plan view showing a permeate-side channel material provided with protrusions continuously provided in the sheet length direction (second direction).
  • FIG. 6 is a plan view showing a permeate-side channel material provided with protrusions provided discontinuously in the length direction (second direction) of the sheet.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of a separation membrane and a permeation side channel material in a separation membrane element of the present invention.
  • FIG. 2 is a schematic configuration diagram showing an embodiment of the membrane leaf.
  • FIG. 7 is a cross-sectional view taken along the line AA of the separation membrane of FIGS.
  • FIG. 8 is a developed perspective view showing one embodiment of the separation membrane element.
  • FIG. 9 is a schematic cross-sectional view of the permeation side channel material.
  • FIG. 10 is a partially developed perspective view showing a first form of the separation membrane element.
  • FIG. 11 is a partially developed perspective view showing a second embodiment of the separation membrane element.
  • FIG. 12 is a partially developed perspective view showing a third embodiment of the separation membrane element.
  • weight means “weight”.
  • the separation membrane element of the present invention has a supply-side surface 21 and a permeation-side surface 22, and the permeation-side surfaces 22 are arranged so as to face each other. And a permeation-side flow path member 31 provided between the permeation-side surface 22 of the separation membrane 2.
  • the permeate-side channel material 31 includes a sheet 302 and a plurality of protrusions 301 provided on the sheet 302.
  • the sheet 302 is a porous sheet having an aperture on the surface, and has a dense weld 303, a rough weld 304, and a non-weld 305 on at least the surface.
  • the protrusion 301 contains a resin, and a part of the resin impregnates the opening portion of the sheet.
  • a separation membrane is a membrane that can separate components in the fluid supplied to the surface of the separation membrane and obtain a permeated fluid that has permeated the separation membrane.
  • the separation membrane can also include a membrane in which embossing or resin is arranged so as to form a flow path.
  • the separation membrane may be one that cannot form a flow path and expresses only a separation function.
  • FIG. 1 a schematic configuration diagram of a membrane leaf including an example of an embodiment of the separation membrane of the present invention is shown in FIG.
  • the membrane leaf 4 (sometimes simply referred to as “leaf” in this specification) includes a plurality of separation membranes 2 (2a, 2b).
  • the separation membrane 2a has a supply-side surface 21a and a transmission-side surface 22a
  • the separation membrane 2b has a supply-side surface 21b and a transmission-side surface 22b.
  • the two separated separation membranes 2a and 2b are configured such that the supply-side surface 21a of one separation membrane 2a and the supply-side surface 21b of the other separation membrane 2b sandwich a supply-side channel material (not shown). Are arranged so as to face each other.
  • a supply-side flow path is formed between the supply-side surfaces of the separation membranes facing each other.
  • the membrane leaf 4 may be configured by stacking a plurality of separation membranes 2 or may be configured by bending one separation membrane so that the surface 21 on the supply side faces each other.
  • the other separation membranes overlaid on the separation membranes 2a and 2b are such that the permeation side surfaces of the separation membranes face the permeation side surfaces 22a and 22b of the separation membranes 2a and 2b.
  • the “supply-side surface” of the separation membrane means a surface on the side to which raw water is supplied out of the two surfaces of the separation membrane.
  • the “permeate side surface” means the surface on the opposite side from which the permeated fluid that has passed through the separation membrane is discharged.
  • the separation membrane 2 includes a base material 201, a porous support layer 202, and a separation functional layer 203 as shown in FIG. 3, generally, the surface on the separation functional layer 203 side is the supply side.
  • the surface 21 and the surface on the base material 201 side are the surface 22 on the transmission side.
  • the x-axis may be referred to as a first direction and the y-axis may be referred to as a second direction.
  • the separation membrane 2 is rectangular, and the first direction and the second direction are parallel to the outer edge of the separation membrane 2.
  • the first direction may be referred to as the width direction
  • the second direction may be referred to as the length direction.
  • the first direction (width direction) is represented by a CD arrow
  • the second direction (length direction) is represented by an MD arrow.
  • the separation membrane a membrane having separation performance according to the method of use, purpose and the like is used.
  • the separation membrane may be formed of a single layer or a composite membrane including a separation functional layer and a substrate.
  • a porous support layer 202 is provided between the base material 201 and the separation function layer 203, and the base material 201, the porous support layer 202, and the separation function layer 203. It may be configured as a laminated body.
  • the thickness of the separation functional layer is not limited to a specific numerical value, but is preferably 5 nm or more and 3000 nm or less in terms of separation performance and transmission performance.
  • the thickness is preferably 5 nm or more and 300 nm or less.
  • the thickness of the separation functional layer can be in accordance with a normal separation membrane thickness measurement method.
  • the separation membrane is embedded with resin, and an ultrathin section is prepared by cutting the separation membrane, and the obtained section is subjected to processing such as staining. Thereafter, the thickness can be measured by observing with a transmission electron microscope.
  • the thickness of the pleats can be measured by observing the cross section of the pleat located above the porous support layer, and the number of pleats can be measured to obtain 20 from the average. .
  • the separation function layer may be a layer having both a separation function and a support function, or may have only a separation function.
  • the “separation function layer” refers to a layer having at least a separation function.
  • the separation functional layer has both a separation function and a support function
  • a layer containing cellulose, polyvinylidene fluoride, polyether sulfone, or polysulfone as a main component is preferably applied as the separation functional layer.
  • X contains Y as a main component means that the Y content in X is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, More preferably, it means 90% by mass or more, particularly preferably 95% by mass or more.
  • the total amount of these components only needs to satisfy the above range.
  • a crosslinked polymer is preferably used in terms of easy control of the pore diameter and excellent durability.
  • a polyamide separation functional layer, an organic-inorganic hybrid functional layer, or the like obtained by polycondensation of a polyfunctional amine and a polyfunctional acid halide is preferably used in terms of excellent separation performance of components in raw water.
  • These separation functional layers can be formed by polycondensation of monomers on the porous support layer.
  • the separation functional layer can contain polyamide as a main component.
  • a film is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide by a known method. For example, by applying a polyfunctional amine aqueous solution to the porous support layer, removing the excess amine aqueous solution with an air knife or the like, and then applying an organic solvent solution containing a polyfunctional acid halide, the polyamide separation functional layer Is obtained.
  • the separation functional layer may have an organic-inorganic hybrid structure containing Si element or the like.
  • the separation functional layer having an organic-inorganic hybrid structure can contain, for example, the following compounds (A) and (B): (A) a silicon compound in which a reactive group and a hydrolyzable group having an ethylenically unsaturated group are directly bonded to a silicon atom, and (B) a compound other than the compound (A) and having an ethylenically unsaturated group Compound.
  • the separation functional layer may contain a condensate of the hydrolyzable group of the compound (A) and a polymer of the ethylenically unsaturated group of the compounds (A) and / or (B). That is, the separation functional layer is A polymer formed by condensation and / or polymerization of only the compound (A), -The polymer formed by superposing
  • the polymer includes a condensate.
  • compound (A) may be condensed via a hydrolyzable group.
  • the organic-inorganic hybrid structure can be formed by a known method.
  • An example of a method for forming a hybrid structure is as follows.
  • a reaction solution containing the compound (A) and the compound (B) is applied to the porous support layer.
  • heat treatment may be performed.
  • a polymerization initiator, a polymerization accelerator and the like can be added during the formation of the separation functional layer.
  • the surface of the membrane may be hydrophilized with, for example, an alcohol-containing aqueous solution or an alkaline aqueous solution before use.
  • the porous support layer is a layer that supports the separation functional layer, and is also referred to as a porous resin layer.
  • a porous resin layer the material used for a porous support layer and its shape are not specifically limited, For example, you may form on a board
  • the porous support layer polysulfone, cellulose acetate, polyvinyl chloride, epoxy resin, or a mixture and laminate thereof is used. Among them, it is preferable to use polysulfone which has high chemical, mechanical and thermal stability and can easily control the pore diameter.
  • the porous support layer gives mechanical strength to the separation membrane and does not have a separation performance like a separation functional layer for components having a small molecular size such as ions.
  • the pore size and pore distribution of the porous support layer are not particularly limited.
  • the porous support layer may have uniform and fine pores, or the side on which the separation functional layer is formed. It may have a pore size distribution such that the diameter gradually increases from the surface to the other surface (base material side).
  • the projected area equivalent circle diameter of the pores measured using an atomic force microscope or an electron microscope on the surface on the side where the separation functional layer is formed is 1 nm or more and 100 nm or less. preferable.
  • the pores on the surface on the side where the separation functional layer is formed in the porous support layer preferably have a projected area equivalent circle diameter of 3 nm to 50 nm. .
  • the thickness of the porous support layer is not particularly limited, but is preferably in the range of 20 ⁇ m or more and 500 ⁇ m or less, and more preferably 30 ⁇ m or more and 300 ⁇ m or less for the purpose of giving strength to the separation membrane.
  • the form of the porous support layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic force microscope.
  • a scanning electron microscope after peeling off the porous support layer from the substrate, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation.
  • the sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 kV to 6 kV.
  • UHR-FE-SEM high resolution field emission scanning electron microscope
  • an S-900 electron microscope manufactured by Hitachi, Ltd. can be used. Based on the obtained electron micrograph, the film thickness of the porous support layer and the projected area equivalent circle diameter of the surface can be measured.
  • the thickness and the pore diameter of the porous support layer are average values, and the thickness of the porous support layer is an average value measured at intervals of 20 ⁇ m in a direction perpendicular to the thickness direction in cross-sectional observation, and measured at 20 points. .
  • a hole diameter is an average value of each projected area circle equivalent diameter measured about 200 holes.
  • the porous support layer is formed by applying a solution of polysulfone in N, N-dimethylformamide (hereinafter referred to as DMF) on a substrate to be described later, for example, on a densely woven polyester cloth or non-woven fabric. It can be produced by casting and wet coagulating it in water.
  • DMF N, N-dimethylformamide
  • the porous support layer is “Office of Saleen Water Research and Development Progress Report” no. 359 (1968).
  • the polymer concentration, the temperature of the solvent, and the poor solvent can be adjusted.
  • a predetermined amount of polysulfone is dissolved in DMF to prepare a polysulfone resin solution having a predetermined concentration.
  • this polysulfone resin solution is applied to a substrate made of polyester cloth or nonwoven fabric to a substantially constant thickness, and after removing the surface solvent in the air for a certain period of time, the polysulfone is coagulated in the coagulation liquid.
  • a porous support layer can be obtained.
  • the separation membrane can have a substrate.
  • the base material it is preferable to use a fibrous base material in terms of strength, unevenness forming ability and fluid permeability.
  • a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used.
  • long-fiber nonwoven fabrics have excellent film-forming properties, so when a polymer solution is cast, the solution penetrates through excessive penetration, and the separation membrane has a porous support layer. Can suppress the peeling of the porous support layer, the non-uniformity of the film due to the fluffing of the base material, and the occurrence of defects such as pinholes.
  • the base material is made of a long-fiber nonwoven fabric composed of thermoplastic continuous filaments, compared to a short-fiber nonwoven fabric, non-uniform film formation and film defects caused by fiber fluffing during polymer solution casting can be prevented. Can be suppressed.
  • the separation membrane is tensioned in the film-forming direction when continuously formed, it is preferable to use a long-fiber nonwoven fabric excellent in dimensional stability as a base material.
  • the fibers in the surface layer on the side opposite to the porous support layer are preferably longitudinally oriented compared to the fibers in the surface layer on the porous support layer side in terms of moldability and strength. According to such a structure, not only a high effect of preventing membrane breakage by maintaining strength is realized, but also a laminate comprising a porous support layer and a substrate when imparting irregularities to the separation membrane The moldability is improved, and the uneven shape on the surface of the separation membrane is stabilized, which is preferable.
  • the fiber orientation degree in the surface layer on the side opposite to the porous support layer of the long-fiber nonwoven fabric is preferably 0 ° or more and 25 ° or less, and the fibers in the surface layer on the porous support layer side
  • the orientation degree difference from the orientation degree is preferably 10 ° or more and 90 ° or less.
  • the process of manufacturing the separation membrane and the process of manufacturing the separation membrane element include a heating process.
  • the porous support layer or the separation functional layer may contract due to heating.
  • the shrinkage is remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired.
  • the difference between the fiber orientation degree in the surface layer opposite to the porous support layer and the fiber orientation degree in the surface layer on the porous support layer side is 10 ° or more and 90 ° or less, the change in the width direction due to heat Is also preferable.
  • the fiber orientation degree is an index indicating the direction of the fiber of the base material to which the porous support layer is fixed.
  • the fiber orientation degree is an average value of angles between the film forming direction when continuous film forming is performed, that is, the longitudinal direction of the substrate and the longitudinal direction of the fibers constituting the substrate. . That is, if the longitudinal direction of the fiber is parallel to the film forming direction, the fiber orientation degree is 0 °. Further, if the longitudinal direction of the fiber is perpendicular to the film forming direction, that is, parallel to the width direction of the substrate, the degree of orientation of the fiber is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • the degree of fiber orientation is measured as follows. First, ten small piece samples are randomly collected from the substrate. Next, the surface of the sample is photographed at 100 to 1000 times with a scanning electron microscope. In the photographed image, 10 fibers are selected for each sample, and the angle in the longitudinal direction of the fiber is measured when the longitudinal direction of the substrate is 0 °.
  • the longitudinal direction of the substrate refers to “Machine direction” at the time of manufacturing the substrate.
  • the longitudinal direction of the base material coincides with the film forming direction of the porous support layer and the MD direction of FIGS.
  • the CD direction in FIGS. 2 and 8 corresponds to “Cross direction” at the time of manufacturing the substrate.
  • the angle is measured for a total of 100 fibers per nonwoven fabric. For the 100 fibers thus measured, an average value is calculated from the angle in the longitudinal direction. The value obtained by rounding off the first decimal place of the obtained average value is the fiber orientation degree.
  • the thickness of the base material is selected so that the total thickness of the base material and the porous support layer is in the range of 30 ⁇ m to 300 ⁇ m, or in the range of 50 ⁇ m to 250 ⁇ m.
  • the permeation side channel material of the present invention is composed of a sheet and a projection.
  • seat is a porous sheet which has a hole part (henceforth a "surface hole part") on the surface. Due to the presence of apertures on the surface of the sheet, the protrusions are firmly fixed to the sheet, and the protrusions are not easily peeled off even in the process of cutting the permeate-side channel material during the manufacture of the separation membrane element. The manufacturing process can be stabilized.
  • the sheet has a densely welded portion, a coarsely welded portion, and a non-welded portion non-woven fabric on the surface, and protrusions are formed on the surface of the sheet.
  • the permeation-side channel material 31 is disposed on the permeation-side surface 22 of the separation membrane 2 in the membrane leaf 4 configured by stacking a plurality of separation membranes 2.
  • one separation membrane 2 is folded so that the supply-side surface 21 faces to form a membrane leaf 4, and a permeation-side channel material 31 is disposed on the permeation-side surface 22 side. ing.
  • the separation membrane is disposed so that the surfaces on the permeate side face each other, so that the projections are in contact with the surface on the permeate side of one of the separation membranes. This is because the sheet comes into contact with the permeation side surface of the other separation membrane, so that the same state is eventually obtained.
  • the sheet 302 constituting the permeate-side flow path member 31 may be arranged so that the second direction (length direction) coincides with the winding direction as shown in FIG. preferable. That is, in the separation membrane element of FIGS. 10 to 12 described later, the sheet 302 has a first direction (width direction of the separation membrane) parallel to the longitudinal direction of the water collecting pipe 6 and a second direction (length of the separation membrane). The direction is preferably arranged so as to be orthogonal to the longitudinal direction of the water collecting pipe 6.
  • the sheet 302 constituting the permeation side flow path member 31 exists in a region where the permeation side surfaces of the separation membrane are bonded to each other. That is, the two separation membranes are bonded to each other with the sheet constituting the permeation-side flow path member interposed therebetween, but it is preferable that the sheet exists between the separation membranes at least at a part of the bonded portion.
  • the size of the sheet 302 constituting the permeate-side channel material and the size of the separation membrane are substantially the same, but actually the sheet may be larger or the separation membrane is larger. Also good. When the separation membrane is larger, the sheet becomes a wall, so that the spread of the adhesive can be suppressed.
  • the sheet used in the present invention is a porous sheet, has a void, and has a hole on the surface thereof.
  • the material of the sheet is not particularly limited, but it is preferable to use a sheet formed from a nonwoven fabric from the viewpoint of impregnation control of the protrusions and handleability.
  • the sheet has a dense weld portion, a coarse weld portion, and a non-weld portion.
  • the close welding rate on the surface of the sheet is 5% or more and 50% or less.
  • the tightly welded portion is a region where a plurality of fibers are thermally fused, and the size of the tightly welded portion is different from the fiber diameter constituting the sheet. For example, when the surface of the sheet is observed with an electron microscope or the like, a portion having a width larger than the average diameter of the fibers constituting the sheet becomes a welded portion. Eight times or more becomes a dense welded part.
  • an average fiber diameter is an average value of the diameter measured about 50 arbitrary fibers which comprise a sheet
  • the surface open area ratio which is the gap between fibers, on the surface of the rough welded portion as viewed from the side where the protrusions are fixed, is 25% or more and 60% or less in order to improve the tensile strength and tear strength of the sheet. Is preferred.
  • the number of holes having a diameter of 150 ⁇ m or more and 200 ⁇ m or less is preferably 30 or more, and particularly preferably 100 or more, among the openings present per 100 mm 2 .
  • the ratio of the minor axis to the major axis in the densely welded portion (referred to as aspect ratio) when observed from the upper surface of the surface to which the protrusions are fixed is 0.1 or more in order to keep the rigidity of the sheet uniform. 0 or less, more preferably 0.3 or more and 0.8 or less.
  • the sheet may become a densely welded portion due to the heat of the molten resin. It can be calculated from the surface where the protrusion is fixed and the region where the protrusion is not fixed.
  • region which has not adhered are equivalent.
  • the non-welded portion is a region where the fibers constituting the sheet are not welded.
  • the surface open area ratio which is a gap between fibers, on the surface of the sheet viewed from the side where the protrusions are fixed is 15% to 70% in order to improve the tensile strength and tear strength of the sheet. Is preferred.
  • a protrusion is arrange
  • the rough welded portion 304 and the non-welded portion 305 may be mixed.
  • the width of the densely welded portion is preferably 2 mm or less, more preferably 1 mm or less.
  • the pitch is a horizontal distance between the position of the center of gravity of a certain tightly welded portion and the position of the center of gravity of another tightly welded portion adjacent to the tightly welded portion.
  • the sheet on which the protrusion is fixed is divided into a region where the protrusion is impregnated and a region where the protrusion is not impregnated. Therefore, in the present invention, when the protrusion is manufactured by applying a molten resin to the sheet and solidifying it, the heat shrinkage behavior of these two regions is different, so that the sheet curls as if it is uniformly impregnated. There is a tendency for quality deterioration to hardly occur.
  • Examples of the method for measuring the close deposition rate and the surface aperture ratio in the sheet include the following scanning method and microscope method.
  • the scanning method first, the permeate-side channel material cut to an arbitrary size is scanned with a digital scanner (for example, CanonScan N676U manufactured by Canon Inc.) on the surface to which the protrusion is fixed, and the obtained digital image is subjected to image analysis. Analyze with software (ImageJ).
  • the average value can be set as the close welding rate or the surface opening rate.
  • a high-accuracy shape measurement system KS-1100 manufactured by Keyence Corporation is used, and a photograph is taken from the surface on which the transmission-side channel material protrusions are fixed at a magnification of 100 times. Convert to black and white.
  • ImageJ image analysis software
  • the arithmetic average height of the surface refers to the average value of the absolute values of the height differences of the points with respect to the average surface. From the viewpoint of combining the impregnation of the protrusions into the sheet and the uniformity of the height, the arithmetic average height of the surface of the sheet is preferably 3 ⁇ m or more and 10 ⁇ m or less. When the arithmetic average height of the surface of the sheet is less than 3 ⁇ m, the height of the protrusions may be uniform, but the impregnation of the resin in the protrusions may not proceed and may be easily peeled off.
  • the thickness exceeds 10 ⁇ m, the impregnation of the resin in the protrusions into the sheet is good, but when the protrusions are arranged on the sheet, the shape of the protrusions is liable to collapse and the height tends to be uneven.
  • the arithmetic average height of such a surface can be controlled by changing the basis weight, the pressure bonding condition, and the fiber thickness.
  • the arithmetic average height of the surface tends to decrease as the roll temperature and the press pressure at the time of pressure bonding increase.
  • the arithmetic average height of the surface can be evaluated according to the method described in ISO25178.
  • an atomic force microscope, a laser microscope, or a non-contact three-dimensional measuring device can be used.
  • a non-contact three-dimensional measuring instrument for example, a one-shot 3D measurement macroscope manufactured by Keyence Corporation can be used, and high-precision and simple measurement can be performed while suppressing variations in results depending on the measurement location and scanning direction. preferable.
  • the arithmetic average height of the surface can be measured for the permeation-side channel material on the surface opposite to the front and back surfaces where the protrusions are not fixed.
  • the sheet Since the densely welded portions regularly exist on the surface of the sheet, the sheet has less rigidity spots, and wrinkles and tears during conveyance can be suppressed.
  • the pattern formed by the plurality of closely welded portions may be referred to as a “pattern”. It is preferable that there is a portion that exists regularly in the MD direction because the variation in rigidity of the sheet to which the protrusions are fixed becomes small, and thus the surrounding property of the separation membrane element is improved. In particular, a so-called lattice shape, staggered shape, or a combination thereof is more preferable.
  • the shape of the handle of the dense weld portion is not particularly limited.
  • Examples of the shape observed from the upper surface of the surface to which the protrusion is fixed include an ellipse, a circle, an ellipse, a trapezoid, a triangle, a rectangle, a square, a parallelogram, and a rhombus.
  • a conventionally known method such as laser irradiation, heat roll, or calendering can be employed.
  • embossing is preferable because a dense weld portion can be stably formed during production.
  • Embossing is a process in which a sheet is hot-pressed using an embossing roll, and is usually pressed by two rolls, a roll having a smooth surface and a hot roll having an embossed pattern.
  • the linear pressure during pressing is preferably 1 to 50 kg / cm. If the linear pressure is too low, sufficient strength cannot be imparted. If the linear pressure is too high, the fibers constituting the sheet are formed into a film. As a result, the protrusions tend not to be impregnated into the nonwoven fabric.
  • Embossing may be applied to either one or both sides of the sheet, but in the case of one side, the surface side where there is a height difference tends to have a lower adhesion rate than the other side. It is suitable about the point which impregnates a thing. However, since the densely welded portion exists in the thickness direction in contrast to the two sides, the rigidity is increased, and it is excellent in terms of stable conveyance.
  • the height difference of the tightly welded portion on the supply side surface of the separation membrane is preferably 0.1 mm or less, more preferably 0.07 mm or less. preferable.
  • Such a height difference is analyzed by, for example, an average height difference using a film thickness measuring instrument (manufactured by Anritsu Co., Ltd., KG601A), 30 points having a height difference of 5 ⁇ m or more are measured, and the values of the respective heights are summed up. Can be obtained by dividing the measured value by the total number of points.
  • transmission side channel material is 0.2 mm or less. This is because the sheet is preferably impregnated with an adhesive in order to seal between the permeation side surfaces of the stacked separation membranes. Further, as the sheet is made thinner, the protrusions described later become higher, the flow resistance as the permeate-side channel material is lowered, and the element performance tends to be improved.
  • the porosity of the sheet constituting the permeate side channel material is preferably 20% or more and 90% or less, and particularly preferably 45% or more and 80% or less.
  • the porosity means the ratio of the void per unit volume of the sheet, and is a value obtained by subtracting the weight when the sheet is dried from the weight when pure water is included in the sheet having a predetermined apparent volume. It can be obtained by expressing the value divided by the apparent volume of the sheet as a percentage (%).
  • the porosity of the sheet is 20% or more and 90% or less, the protrusions 301 can be impregnated and fixed, and it is easy to secure a space through which water can permeate in the sheet.
  • the component constituting the protrusion is not limited to a specific substance, but a resin is preferably used. Specifically, in view of chemical resistance, ethylene vinyl acetate copolymer resin, polyolefin such as polyethylene and polypropylene, and polyolefin copolymer are preferable.
  • the material of the permeate side channel material is urethane resin, epoxy resin, polyethersulfone, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, styrene-acrylonitrile copolymer Polymer, styrene-butadiene-acrylonitrile copolymer, polyacetal, polymethyl methacrylate, methacryl-styrene copolymer, cellulose acetate, polycarbonate, polyethylene terephthalate, polybutadiene terephthalate and fluororesin (ethylene trifluoride chloride, polyvinylidene fluoride, tetrafluoride) Ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, tetra
  • thermoplastic resin is easy to mold, it is possible to form a permeate-side channel material having a uniform shape, and the sheet and the protrusion may be the same material or different materials.
  • the protrusion may contain highly crystalline polypropylene and may satisfy the following requirements (a) and (b).
  • the content of the highly crystalline polypropylene is 20 to 95% by mass in the composition constituting the protrusion.
  • the melting endotherm ( ⁇ H) of the protrusion is 20 to 70 J / g.
  • curling of the permeation-side channel material in which the protrusion is formed on the sheet can be suppressed by setting the content of the high crystalline polypropylene to 95% by mass or less in the composition constituting the protrusion.
  • the handleability of the permeate-side channel material is improved, and for example, the permeability in the step of laminating the separation membrane pairs, which is one of the manufacturing steps of the separation membrane element, is remarkably improved.
  • the content of the highly crystalline polypropylene is more preferably 85% by mass or less, and further preferably 75% by mass or less.
  • the content of the highly crystalline polypropylene is more preferably 45% by mass or more, and further preferably 50% by mass or more.
  • the highly crystalline polypropylene examples include propylene homopolymer; propylene random copolymer; propylene block copolymer, and the like. These may be used alone or in combination of two or more.
  • the melting point of the highly crystalline polypropylene is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher.
  • the melting point is a value measured with a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • a sample is evaluated using a thermal analyzer such as a thermomechanical analyzer TMA / SS-6000 manufactured by Seiko Instruments Inc. under the conditions of probe: penetration probe, measurement load: 10 g, temperature increase rate: 5 ° C./min. The melting point can be measured.
  • the melt flow rate (MFR) of the highly crystalline polypropylene is preferably 10 to 2000 g / 10 minutes.
  • MFR melt flow rate
  • the MFR of the highly crystalline polypropylene is more preferably 30 to 1800 g / 10 min, and further preferably 50 to 1500 g / min.
  • the MFR is a value measured under conditions of 230 ° C. and a load of 2.16 kg in accordance with JIS-K7200 (1999).
  • the melting endotherm ( ⁇ H) of the protrusion is preferably 20 to 70 J / g. Since the melting endotherm ( ⁇ H) is 20 to 70 J / g, the sheet-curling and the stickiness of the protrusions are suppressed while the permeation-side channel material has good process passability.
  • the ⁇ H of the protrusion is more preferably 25 to 65 J / g, and further preferably 30 to 60 J / g.
  • the melting endotherm is a numerical value measured with a differential scanning calorimeter (DSC). For example, measurement was performed using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer, Inc., and a 10 mg sample was heated from 20 ° C. to 220 ° C.
  • the calorific value based on crystallization observed when the temperature is lowered can be obtained.
  • composition constituting the protrusion preferably contains a low crystalline ⁇ -olefin polymer, and the content thereof is preferably 5 to 60% by mass in the composition constituting the protrusion. .
  • the low crystalline ⁇ -olefin polymer of the present invention is an amorphous or low crystalline ⁇ -olefin polymer.
  • the low crystalline polypropylene such as atactic polypropylene or isotactic polypropylene having low stereoregularity.
  • linear ⁇ -olefin propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octade , 1-nonadecene, 1-eicosene and the like.
  • Examples of the branched ⁇ -olefin include 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-ethyl 1-hexene, 2,2,4-trimethyl-1-pentene, etc.); Propylene / olefin copolymer such as “Tuffmer” manufactured by Mitsui Chemicals, Inc. and “Tufselen” manufactured by Sumitomo Chemical Co., Ltd. as commercially available products Examples include coalescence. In the present invention, one or more of these can be used.
  • low crystalline ⁇ -olefin polymers include low crystalline polypropylene and propylene / olefin copolymers from the viewpoints of good compatibility with high crystalline polypropylene, versatility, and effect of improving sheet curl. preferable.
  • the content of the low crystalline ⁇ -olefin polymer is preferably 5 to 60% by mass with respect to the total amount of the composition constituting the protrusion.
  • the content of the low crystalline ⁇ -olefin polymer is preferably 5 to 60% by mass with respect to the total amount of the composition constituting the protrusion.
  • the content of the low crystalline ⁇ -olefin polymer is more preferably 10 to 55% by mass, and more preferably 15 to 50% by mass, from the viewpoint of the flexibility of the projection and the compressive deformation property under pressure. Further preferred.
  • the protrusion may contain one or more additives such as a heat fluidity improver, a filler, an antioxidant, and a lubricant as long as the object of the invention is not impaired.
  • additives such as a heat fluidity improver, a filler, an antioxidant, and a lubricant as long as the object of the invention is not impaired.
  • thermal fluidity improvers include, for example, synthetic waxes such as polyethylene wax, polypropylene wax, atactic polypropylene wax, and Fischer-Tropsch wax; petroleum waxes such as paraffin wax and microwax; natural waxes such as carnauba wax and beeswax; rosin, Rosin resins such as hydrogenated rosin, polymerized rosin, and rosin ester; Terpene resins such as terpenes, hydrogenated terpenes, aromatic modified terpenes, and aromatic modified hydrogenated terpenes; “Imabe” manufactured by Idemitsu Kosan Examples include hydrogenated petroleum resins such as “Alcon” (trade name) manufactured by Arakawa Chemical Industries, Ltd., “Petocol”, “Petrotac” (all trade names) manufactured by Tosoh Corporation, and the like, but are not limited thereto.
  • synthetic waxes such as polyethylene wax, polypropylene wax, atactic polypropylene wax,
  • the content can be appropriately set in order to adjust the melt viscosity of the composition constituting the protrusion, but in consideration of preventing the pressure resistance of the protrusion and the occurrence of bleeding out on the surface of the protrusion, It is preferable that it is 50 mass% or less in the composition which comprises a thing, and it is more preferable that it is 40 mass% or less.
  • the antioxidant examples include, but are not limited to, phenolic compounds; phosphorus compounds; hindered amine compounds; sulfur compounds. Moreover, you may use these individually or in mixture of 2 or more types. From the viewpoint of suppressing thermal decomposition of the composition at the time of forming the protrusion, the content is preferably 0.001 to 1% by mass with respect to the composition constituting the protrusion.
  • fatty acid amide compounds such as stearamide, oleic acid amide, erucic acid amide, ethylene bis stearic acid amide; metal soaps such as calcium stearate, zinc stearate, magnesium stearate, zinc stearate; fatty acid ester
  • a compound etc. can be illustrated, it is not limited to these. Moreover, you may use these individually or in mixture of 2 or more types.
  • fillers include, but are not limited to, inorganic compounds such as calcium carbonate, talc, alumina, silica, mica, and clay. These may be used alone or in admixture of two or more. From the viewpoint of moldability of the projection, thickening of the composition, and wear of the processing apparatus, the content is preferably 3 to 30% by mass with respect to the composition constituting the projection.
  • the tensile elongation of the protrusions fixed to the permeation side surface of the separation membrane is 5% or more. If the tensile elongation is 5% or more, even if the separation membrane is rolled or wound on a winder, damage and destruction of the protrusions can be suppressed, and a high-quality separation membrane can be obtained. Handleability is improved in the element manufacturing process.
  • the tensile elongation is more preferably 7% or more, still more preferably 10% or more.
  • the higher the tensile elongation the higher the energy required for fracture, which is preferable from the viewpoint of toughness. However, if the tensile elongation is excessively high, the amount of deformation under a constant stress increases, so 300% or less is preferable. 200% or less is more preferable.
  • the tensile elastic modulus of the protrusion is preferably 0.2 to 2.0 GPa.
  • the tensile elastic modulus is more preferably 0.25 GPa or more, and further preferably 0.30 GPa or more. The higher the tensile elastic modulus, the more the amount of compressive deformation of the projections during the pressing operation can be suppressed, but it is difficult to achieve 2.0 GPa or more substantially.
  • a tricot that has been widely used in the past is a knitted fabric, and is composed of three-dimensionally intersecting yarns. That is, the tricot has a two-dimensionally continuous structure. When such a tricot is applied as a permeate-side channel material, the height of the channel is smaller than the thickness of the tricot. That is, it is a structure with many ratios which do not become a groove.
  • a protrusion 301 shown in FIG. Therefore, since the height (that is, the thickness) of the protrusion 301 is used as the height of the groove of the flow path, the tricot having the same thickness as the protrusion of the present invention is applied as the sheet is thin and the protrusion is high.
  • the flow resistance (trench between the protrusions 301 and the surface opening portion of the sheet 302) is wider than the case, so that the flow resistance tends to be smaller.
  • discontinuous protrusions 301 are fixed on one sheet 302.
  • “Discontinuous” is a state in which a plurality of flow path members are provided at intervals. That is, when one protrusion 301 is peeled from the sheet 302, a plurality of protrusions 301 separated from each other are obtained.
  • members such as nets, tricots, and films exhibit a continuous and integral shape even when the flow path is separated from the sheet 302.
  • the separation membrane 2 can keep pressure loss low when incorporated in the separation membrane element 100 described later.
  • the protrusions 301 are formed discontinuously only in the first direction (the width direction of the sheet 302), and in FIG. 6, the first direction (the width direction of the sheet 302) and the first It is formed discontinuously in any of the two directions (the length direction of the separation membrane).
  • the permeate-side flow path 5 is formed in the space between the adjacent protrusions 301.
  • the protrusions 301 are discontinuously provided in the first direction, and are provided so as to be continuous from one end to the other end of the sheet 302 in the second direction. That is, as shown in FIG. 8, when the permeate-side channel material 31 is incorporated into the separation membrane element, the protrusions 301 are arranged so as to continue from the inner end to the outer end of the sheet 302 in the winding direction.
  • the inner side in the winding direction is the side close to the water collecting pipe 6 in the separation membrane, and the outer side in the winding direction is the side far from the water collecting pipe 6 in the separation membrane.
  • the protrusions are “continuous in the second direction” means that the protrusions 301 are provided without interruption as shown in FIG. 5 and the protrusions 301 are interrupted as shown in FIG. This includes both cases where the object 301 is substantially continuous.
  • the distance e between the protrusions 301 in the second direction is 5 mm or less. Satisfy that.
  • the distance e is more preferably 1 mm or less, and further preferably 0.5 mm or less.
  • the total value of the intervals e included from the beginning to the end of the row of protrusions 301 arranged in the second direction is preferably 100 mm or less, more preferably 30 mm or less, and more preferably 3 mm or less. Further preferred. In the form of FIG. 5, the interval e is 0 (zero).
  • membrane drop is suppressed during pressure filtration.
  • Membrane sagging is that the separation membrane falls into the channel and narrows the channel.
  • the protrusions 301 are discontinuously provided not only in the first direction but also in the second direction. That is, the protrusions 301 are provided at intervals in the length direction. However, as described above, the protrusions 301 are substantially continuous in the second direction, so that film sagging is suppressed. However, by providing the discontinuous protrusions 301 in the two directions as described above, the contact area between the protrusions and the fluid is reduced, so that the pressure loss is reduced.
  • this form is a configuration in which the permeation-side flow path 5 includes a branch point.
  • the permeating fluid is divided by the protrusions 301 and the sheet 302 while flowing through the permeation side flow path 5, and can further merge downstream.
  • the protrusions 301 are provided so as to be continuous from one end to the other end of the sheet 302 in the second direction.
  • the protrusion 301 is divided into a plurality of parts in the second direction, but these parts are provided so as to be arranged from one end to the other end of the sheet 302.
  • the projection is “provided from one end of the sheet to the other end” means that the projection 301 is provided to the edge of the sheet 302 and that there is a region where the projection 301 is not provided in the vicinity of the edge. And both. That is, the protrusions 301 need only be distributed in the second direction to such an extent that a flow path can be formed on the permeation side surface of the separation membrane, and there is a portion of the sheet 302 where the protrusions 301 are not provided. May be.
  • the protrusion 301 does not need to be provided in a portion (in other words, a contact portion) bonded to the separation membrane on the permeation side surface of the separation membrane.
  • a region where the protrusions 301 are not disposed may be provided at some locations such as the end of the separation membrane.
  • the protrusions 301 can be distributed almost uniformly over the entire sheet 302. However, similar to the distribution in the second direction, the protrusions 301 do not need to be provided on the adhesion portion of the separation membrane on the permeate side surface with the separation membrane. Further, for other specifications or manufacturing reasons, an area where the protrusions 301 are not arranged may be provided in some places such as the end of the sheet 302.
  • a to f indicate the following values.
  • e Interval between the projections 301 in the length direction of the separation membrane
  • f Length of the projection 301
  • each value is obtained by performing measurement at 30 or more locations on one separation membrane, and calculating an average value by dividing the sum of these values by the number of measurement total locations.
  • each value obtained as a result of the measurement at at least 30 locations should satisfy the range described below.
  • the length a is a distance from one end of the separation membrane 2 to the other end in the second direction (length direction of the separation membrane). When this distance is not constant, the length a can be obtained by measuring this distance at 30 or more positions in one separation membrane 2 and obtaining an average value.
  • the interval b between the protrusions 301 adjacent in the first direction corresponds to the width of the permeation side flow path 5.
  • the width of one permeation side flow path 5 is not constant in one cross section, that is, when the side surfaces of two adjacent projections 301 are not parallel, the width of one permeation side flow path 5 is within one cross section. Measure the average value of the maximum and minimum values and calculate the average value. As shown in FIG.
  • the interval b is preferably 0.05 mm or more, more preferably 0.2 mm or more, and further preferably 0.3 mm or more. Further, in terms of suppressing film sagging, the interval b is preferably 5 mm or less, more preferably 3 mm or less, still more preferably 2 mm or less, and particularly preferably 0.8 mm or less.
  • the interval b is preferably 0.05 mm or more and 5 mm or less, and within this range, the pressure loss can be reduced while suppressing the film sagging.
  • the interval b is more preferably 0.05 mm or more and 3 mm or less, further preferably 0.2 mm or more and 2 mm or less, and particularly preferably 0.3 mm or more and 0.8 mm or less.
  • the height c is a height difference between the protrusion and the surface of the sheet 302. As shown in FIG. 7, the height c is a difference in height between the highest portion of the protrusion 301 and the surface to which the protrusion 301 of the sheet 302 is fixed in a cross section perpendicular to the second direction. That is, as the height of the protrusion 301, the thickness of the portion impregnated in the sheet 302 is not considered.
  • the height c is a value obtained by measuring the heights of 30 or more protrusions 301 and averaging them.
  • the height c of the protrusion may be obtained by observing the cross section of the flow path material in the same plane, or may be obtained by observing the cross sections of the flow path material in a plurality of planes.
  • the height c can be appropriately selected according to the use conditions and purpose of the separation membrane element, but may be set as follows, for example.
  • the smaller the height c the larger the number of membranes filled per separation membrane element. Therefore, the height c is preferably 0.8 mm or less, more preferably 0.4 mm or less, and still more preferably 0.32 mm or less. These upper and lower limits can be combined.
  • the height c is preferably 0.03 mm to 0.8 mm (30 ⁇ m to 800 ⁇ m), and preferably 0.05 mm to 0.4 mm. More preferably, it is 0.1 mm or more and 0.32 mm or less.
  • the difference in height between two adjacent protrusions is small. If the difference in height is large, the separation membrane is distorted during pressure filtration, so that defects may occur in the separation membrane.
  • the difference in height between two adjacent protrusions is preferably 0.1 mm or less (100 ⁇ m or less), more preferably 0.06 mm or less, and further preferably 0.04 mm or less.
  • the maximum height difference of all the protrusions 301 provided on the sheet 302 is preferably 0.25 mm or less, more preferably 0.1 mm or less, and further preferably 0.03 mm or less. .
  • the width d of the protrusion 301 is measured as follows. First, in one section perpendicular to the first direction (the width direction of the separation membrane), the average value of the maximum width and the minimum width of one protrusion 301 is calculated. That is, in the protrusion 301 having a thin upper part and a thick lower part as shown in FIG. 7, the width of the lower part and the upper part of the channel material are measured, and the average value is calculated. By calculating such an average value in at least 30 cross-sections and calculating the arithmetic average thereof, the width d per film can be calculated.
  • the width d of the protrusion 301 is preferably 0.2 mm or more, and more preferably 0.3 mm or more. Since the width d is 0.2 mm or more, the shape of the protrusion can be maintained even when pressure is applied to the protrusion 301 or the sheet 302 during operation of the separation membrane element, and the permeate-side flow path is stably formed. Is done.
  • the width d is preferably 2 mm or less, and more preferably 1.5 mm or less. When the width d is 2 mm or less, a sufficient flow path on the permeate side of the separation membrane can be secured.
  • the pressure applied to the protrusions can be dispersed when the width d of the protrusions 301 is wider than the interval b of the protrusions 301 in the second direction.
  • the protrusion 301 is formed so that its length is larger than its width. Such a long protrusion 301 is also referred to as a “wall-like object”.
  • the distance e between the protrusions 301 in the second direction is the shortest distance between the protrusions 301 adjacent in the second direction (length direction of the separation film).
  • the protrusion 301 is continuously provided from one end to the other end of the separation membrane 2 in the second direction (in the separation membrane element, from the inner end to the outer end in the winding direction). If there is, the interval e is 0 mm.
  • the interval e is preferably 5 mm or less, more preferably 1 mm or less, and further preferably 0.5 mm or less. .
  • the distance e is within the above range, the mechanical load on the film is small even when the film is dropped, and the pressure loss due to the blockage of the flow path can be relatively small.
  • interval e is 0 mm.
  • the length f of the protrusion 301 is the length of the protrusion 301 in the length direction (that is, the second direction) of the separation membrane.
  • the length f is obtained by measuring the length of 30 or more protrusions 301 in one separation membrane and calculating the average value.
  • the length f of the protrusion 301 may be equal to or less than the length a of the separation membrane.
  • the length f is preferably 10 mm or more, more preferably 20 mm or more. Since the length f is 10 mm or more, the flow path is secured even under pressure.
  • the shape of the protrusion 301 is not particularly limited, but a shape that reduces the flow resistance of the channel and stabilizes the channel when permeated can be selected.
  • the shape of the protrusion 301 in any cross section perpendicular to the surface direction of the separation membrane may be a straight column shape, a trapezoidal shape, a curved column shape, or a combination thereof.
  • the protrusion 301 has a trapezoidal cross-sectional shape
  • the membrane that contacts the smaller side is likely to drop during pressure filtration.
  • the ratio of the length of the upper base to the length of the lower base of the flow path material is preferably 0.6 or more and 1.4 or less, and is 0.8 or more and 1.2 or less. Further preferred.
  • the shape of the protrusion 301 is preferably a straight column shape perpendicular to the separation membrane surface from the viewpoint of reducing flow resistance. Further, the protrusion 301 may be formed so that the width becomes smaller at a higher part, or conversely, the protrusion 301 may be formed so that the width becomes wider at a higher part, or the height from the surface of the separation membrane. Regardless, it may be formed to have the same width. However, the upper side of the protrusion 301 may be rounded in the cross section of the protrusion 301 as long as the protrusion is not significantly crushed during pressure filtration.
  • the protrusion 301 can be formed of a thermoplastic resin. If the projection 301 is a thermoplastic resin, the shape of the flow path material can be freely changed so that the required separation characteristics and permeation performance conditions can be satisfied by changing the processing temperature and the type of thermoplastic resin to be selected. Can be adjusted.
  • the shape of the projection 301 in the planar direction of the separation membrane may be linear as a whole as shown in FIGS. 5 and 6, and other shapes are, for example, curved, sawtooth, and wavy. There may be.
  • the protrusion 301 may have a broken line shape or a dot shape. From the viewpoint of reducing the flow resistance, a dot shape or a broken line shape is preferable. However, since protrusions are interrupted, the number of places where membrane sagging occurs during pressure filtration increases.
  • the adjacent projections may be arranged substantially parallel to each other. “Arranged substantially parallel” means, for example, that the projections do not intersect on the separation membrane, the angle formed by the longitudinal direction of two adjacent projections is 0 ° or more and 30 ° or less, and the angle is It includes that it is 0 ° or more and 15 ° or less, and that the angle is 0 ° or more and 5 ° or less.
  • the angle formed between the longitudinal direction of the protrusion 301 and the longitudinal direction of the water collecting pipe 6 is preferably 60 ° or more and 120 ° or less, more preferably 75 ° or more and 105 ° or less, and 85 ° or more and 95. More preferably, it is not more than 0 °.
  • the angle formed between the longitudinal direction of the protrusion and the longitudinal direction of the water collecting pipe is within the above range, the permeated water is efficiently collected in the water collecting pipe.
  • the separation membrane can be prevented from dropping when the separation membrane is pressurized in the separation membrane element.
  • the contact area between the separation membrane and the projection is large, that is, the area of the projection relative to the area of the separation membrane (projection area of the projection on the membrane surface of the separation membrane) is large.
  • the cross-sectional area of a flow path is wide. In order to ensure a large cross-sectional area of the flow path while ensuring a large contact area between the separation membrane and the projection perpendicular to the longitudinal direction of the flow path, the cross-sectional shape of the flow path Is preferably a concave lens.
  • the protrusion may have a straight column shape having no change in width in the cross-sectional shape in the direction perpendicular to the winding direction.
  • the protrusion is a trapezoidal wall-like object having a change in width in the cross-sectional shape perpendicular to the winding direction, an elliptical column,
  • the shape may be an elliptical cone, a quadrangular pyramid, or a hemisphere.
  • the shape of the protrusion 301 is not limited to the shape shown in FIGS.
  • the protrusions are arranged by fixing a molten material to the sheet 302, for example, by a hot melt method, the required separation characteristics can be changed by changing the processing temperature or the type of hot melt resin to be selected.
  • the shape of the protrusion 301 can be freely adjusted so that the condition of the transmission performance can be satisfied.
  • the planar shape of the protrusion 301 is linear in the length direction.
  • the protrusion 301 can be changed to another shape as long as it is convex to the surface of the separation membrane 2 and does not impair the desired effect as the separation membrane element. That is, the shape of the protrusion in the planar direction may be a curved line, a wavy line, or the like.
  • a plurality of protrusions included in one separation membrane may be formed so that at least one of the width and the length is different from each other.
  • the projected area ratio of the protrusions 301 to the permeation side surface of the separation membrane is 0.03 or more and 0.85 or less, particularly in terms of reducing the flow resistance of the permeation side flow path and forming the flow path stably. Is preferably 0.15 or more and 0.85 or less, more preferably 0.2 or more and 0.75 or less, and particularly preferably 0.3 or more and 0.6 or less.
  • the projected area ratio is the projected area of the channel material obtained when the separation membrane and the permeation side channel material are cut out at 5 cm ⁇ 5 cm and the permeation side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
  • the water that has permeated the separation membrane 2 passes through the permeation side flow path 5 and is collected in the water collecting pipe 6.
  • the separation membrane 2 water that has passed through a region far from the water collecting pipe 6, that is, a region in the vicinity of the outer end in the winding direction (region near the right end in FIG. 8) In the direction, it merges with the water that has passed through the inner area and heads toward the water collecting pipe 6. Therefore, in the permeation side channel 5, the amount of water present is smaller in the direction far from the water collecting pipe 6.
  • the permeation-side flow path material 31 does not exist in the region near the end portion on the outer side in the winding direction, and the flow resistance in that region increases, the influence on the water production amount of the entire separation membrane element is slight. is there.
  • the formation accuracy of the protrusions is low, and the resin forming the protrusions is continuously applied in the first direction (the width direction of the separation membrane).
  • the influence on the amount of fresh water as a separation membrane element is small. In this region, the same applies when the resin forming the protrusions is applied without any gap in the surface direction (xy plane) of the separation membrane.
  • FIG. 9 is a cross-sectional view of the end portion on the outer side in the winding direction of the permeation-side flow path member 31 cut in the length direction of the protrusion 301.
  • the protrusion 301 is fixed to the sheet 302, and the protrusion 301 extends to the front side of the outer end portion in the winding direction of the transmission side flow path member 31.
  • FIG. 9 shows a form in which the protrusions 301 are continuously provided in the length direction.
  • the various forms described above are applied as the protrusions 301. It is.
  • FIG. 9 is a cross-sectional view of the end portion on the outer side in the winding direction of the permeation-side flow path member 31 cut in the length direction of the protrusion 301.
  • a region where the protrusions 301 are provided is indicated by R2, and a region where the protrusions 301 (permeation-side flow path material) are not provided is indicated by R3. That is, the region R2 is a region where a permeate side flow path is formed.
  • the length of the separation membrane 2 in the MD direction is L1
  • the length of the protrusion 301 in the MD direction is L2
  • the length of the region R3 in which the protrusion 301 is not present is L3.
  • the MD direction represents the length direction of the separation membrane and the winding direction of the separation membrane.
  • the length L3 in the second direction (the length direction of the separation membrane) of the region R3, which is a region provided in the section and in which the permeate-side flow channel is not formed is The proportion of the length L1 in the second direction (corresponding to the above-mentioned “separation membrane length a”) is preferably 0% or more and 30% or less, more preferably 0% or more and 10% or less. % To 3% is particularly preferable. This ratio is called a defect ratio.
  • FIG. 9 shows a form in which the protrusions 301 are not provided in the region R3.
  • the region R3 may be a region provided with continuous protrusions in the width direction.
  • the separation membrane element 100 includes the water collecting pipe 6 and the separation membrane 2 wound around the water collecting pipe 6 with any of the above-described configurations.
  • the separation membrane 2 is wound around the water collecting pipe 6, and is arranged so that the width direction of the separation membrane 2 is along the longitudinal direction of the water collecting pipe 6. As a result, the separation membrane 2 is disposed such that the length direction is along the winding direction. Therefore, as shown in FIG. 8, the protrusions 301 are disposed discontinuously on at least the longitudinal direction of the water collecting pipe 6 on the permeation side surface 22 of the separation membrane 2. That is, the permeate-side channel 5 is formed so as to be continuous from the outer end to the inner end of the separation membrane in the winding direction. As a result, the permeated water can easily reach the central water collecting pipe 6, that is, the flow resistance is reduced, so that a large amount of fresh water can be obtained.
  • “Inside in winding direction” and “outside in winding direction” are as shown in FIG. That is, the “inner end in the winding direction” and the “outer end in the winding direction” correspond to the end closer to the water collecting pipe 6 and the far end in the separation membrane 2, respectively.
  • the protrusion does not need to reach the edge of the separation membrane, for example, in FIG. At the end of the envelope-like membrane (separation membrane 2), no protrusion may be provided.
  • the separation membrane pair 1 is formed so that the permeation side surfaces 22 of the separation membrane 2 face each other.
  • the separation membrane 2 membrane leaf 4 bent so that the supply-side surface 21 is opposed to each other is superimposed on the other-side surface 22 of one separation membrane 2.
  • an envelope-like membrane is formed.
  • the envelope membrane is a pair of separation membranes arranged so that the surfaces on the permeate side facing each other face each other.
  • the envelope-shaped membrane is rectangular, and the permeate side surface is rectangular in the separation membrane so that the permeate flows into the water collecting pipe 6, and is opened only on one side in the winding direction, and on the other three sides. Is sealed.
  • the permeate is isolated from the raw water by this envelope membrane.
  • Sealing includes a form bonded by an adhesive or hot melt, a form fused by heating or laser, and a form in which a rubber sheet is sandwiched. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
  • the inner end in the winding direction is closed by folding or sealing. Since the supply side surface of the separation membrane is sealed rather than folded, bending at the end of the separation membrane hardly occurs. By suppressing the occurrence of bending in the vicinity of the crease, the generation of voids between the separation membranes and the occurrence of leaks due to the voids are suppressed when wound.
  • the recovery rate of the envelope film is obtained as follows. That is, an air leak test (air leak test) of the separation membrane element is performed in water, and the number of envelope-shaped membranes in which the leak has occurred is counted. Based on the count result, the ratio of (number of envelope films in which air leak has occurred / number of envelope films used for evaluation) is calculated as the recovery rate of the envelope film.
  • a specific air leak test method is as follows.
  • the end of the central pipe of the separation membrane element is sealed, and air is injected from the other end.
  • the injected air passes through the holes of the water collecting pipe and reaches the permeation side of the separation membrane.
  • the separation membrane is not sufficiently folded and bent near the fold, Will move through the gap.
  • the air moves to the supply side of the separation membrane, and the air reaches the water from the end (supply side) of the separation membrane element.
  • air leak can be confirmed as the generation of bubbles.
  • the membrane leaf is formed by folding, the longer the leaf (that is, the longer the original separation membrane), the longer the time required for folding the separation membrane.
  • sealing the supply side surface of the separation membrane instead of folding, an increase in manufacturing time can be suppressed even if the leaf is long.
  • the separation membranes facing each other may have the same configuration or different configurations. That is, in the separation membrane element, the above-described permeation-side flow path material only needs to be provided on at least one of the opposing permeation-side surfaces. Separation membranes that do not include may be alternately stacked. However, for convenience of explanation, in the separation membrane element and the explanation related thereto, the “separation membrane” includes a separation membrane that does not include the permeate-side channel material (for example, a membrane that has the same configuration as the separation membrane).
  • the separation membranes facing each other on the permeation side surface or the supply side surface of the separation membrane may be two different separation membranes, or may be a folded one membrane. .
  • the sheet 302 includes the protrusions 301.
  • a permeate-side flow path is formed inside the envelope-shaped membrane, that is, between the permeate-side surfaces of the facing separation membrane.
  • the separation membrane element 100 has a supply-side channel material 32 in which the projected area ratio with respect to the separation membrane 2 exceeds 0 and is less than 1 between the surfaces 21 on the supply side of the facing separation membrane 2. Is provided.
  • the projected area ratio of the supply-side channel material is preferably 0.03 or more and 0.50 or less, more preferably 0.10 or more and 0.40 or less, and particularly preferably 0.15 or more and 0.35 or less. .
  • the projected area ratio is the projected area of the channel material obtained when the separation membrane and the supply-side channel material are cut out at 5 cm ⁇ 5 cm and the supply-side channel material is projected onto a plane parallel to the surface direction of the separation membrane. Is divided by the cut-out area (25 cm 2 ).
  • the height (thickness) of the supply-side channel material is preferably more than 0.5 mm and not more than 2.0 mm, and more preferably not less than 0.6 mm and not more than 1.0 mm in consideration of the balance of each performance and operation cost as described later. preferable.
  • the shape of the supply-side channel material is not particularly limited, and may have a continuous shape or a discontinuous shape.
  • Examples of the channel material having a continuous shape include members such as a film and a net.
  • the continuous shape means that it is continuous over the entire range of the flow path material.
  • the continuous shape may include a portion where a part of the flow path material is discontinuous to such an extent that a problem such as a decrease in the amount of water produced does not occur.
  • the definition of “discontinuity” is as described above in ⁇ Transmission side channel material>.
  • the material of the supply side channel material is not particularly limited, and may be the same material as the separation membrane or a different material.
  • the water collection pipe 6 is not particularly limited as long as it is configured to allow permeate to flow therethrough.
  • a cylindrical member having a side surface provided with a plurality of holes is used as the water collecting pipe 6, for example.
  • FIGS. 10 to 12 show separation membrane elements 100A, 100B, and 100C of the first to third forms.
  • FIG. 10 is an explanatory view showing the separation membrane element 100A of the first embodiment partially disassembled, and a plurality of separation membranes 2 are wound around the water collecting pipe 6.
  • FIG. 10 is an explanatory view showing the separation membrane element 100A of the first embodiment partially disassembled, and a plurality of separation membranes 2 are wound around the water collecting pipe 6.
  • FIG. 10 the separation membrane element 100A further includes the following configuration.
  • the separation membrane element 100A includes the end plates 92 with holes at both ends (that is, the first end and the second end).
  • an outer package 81 is wound around the outer peripheral surface of the wound separation membrane (hereinafter referred to as “wrapping body”).
  • the holeless end plate 91 described later does not include a hole through which raw water can pass, whereas the holed end plate 92 includes a plurality of holes through which the raw water can pass.
  • the separation membrane 2 forms an envelope-shaped membrane 11, and the permeate-side flow path material 31 provided with the protrusions 301 is disposed inside the envelope-shaped membrane 11 as described above.
  • a supply-side channel material 32 is disposed between the envelope films 11.
  • the protrusions 301 of the permeate-side channel material 31 are shown as dot shapes, but the shape of the permeate-side channel material is not limited to this shape as described above.
  • the raw water 101 supplied from the first end of the separation membrane element 100A flows into the supply-side flow path through the hole of the end plate 92. In this way, the raw water 101 in contact with the supply side surface of the separation membrane 2 is separated into the permeated water 102 and the concentrated water 103 by the separation membrane 2.
  • the permeated water 102 flows into the water collecting pipe 6 through the permeate side flow path.
  • the permeated water 102 that has passed through the water collection pipe 6 flows out of the separation membrane element 100A from the second end of the separation membrane element 100A.
  • the concentrated water 103 flows out of the separation membrane element 100A from the hole of the end plate 92 provided at the second end through the supply side flow path.
  • the separation membrane element 100B includes a holeless end plate 91 that is disposed at the first end and has no holes, and a holed end plate 92 that is disposed at the second end and has holes. Further, the separation membrane element 100B includes a porous member 82 that is further wound around the outermost surface of the surrounded separation membrane 2.
  • the porous member 82 a member having a plurality of holes through which raw water can pass is used. These holes provided in the porous member 82 may be referred to as raw water supply ports. As long as the porous member 82 has a plurality of holes, the material, size, thickness, rigidity and the like are not particularly limited. By adopting a member having a relatively small thickness as the porous member 82, the membrane area per unit volume of the separation membrane element can be increased.
  • the thickness of the porous member 82 is, for example, preferably 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.2 mm or less.
  • the porous member 82 may be a member having flexibility or flexibility that can be deformed so as to follow the outer peripheral shape of the wound body. More specifically, as the porous member 82, a net, a porous film, or the like can be applied. The net and the porous film may be formed in a cylindrical shape so that the wound body can be accommodated therein, or may be long and wound around the wound body.
  • the porous member 82 is disposed on the outer peripheral surface of the separation membrane element 100B. By providing the porous member 82 in this manner, holes are provided on the outer peripheral surface of the separation membrane element 100B. It can be said that the “outer peripheral surface” is a portion excluding the first end surface and the second end surface in the entire outer peripheral surface of the separation membrane element 100B. In this embodiment, the porous member 82 is disposed so as to cover almost the entire outer peripheral surface of the wound body.
  • raw water is supplied from the outer peripheral surface of the separation membrane element 100B (the outer peripheral surface of the wound body) via the porous member 82. Therefore, even if the separation membrane element 100B is repeatedly operated or the separation membrane element 100B is operated under a high pressure condition, deformation of the wound body due to the surrounding separation membrane 2 and the like being pushed out in the longitudinal direction ( It is possible to suppress so-called telescopes. Furthermore, in this embodiment, since raw
  • the raw water does not flow into the separation membrane element 100B from the surface of the first end.
  • the raw water 101 is supplied to the separation membrane 2 through the porous member 82 from the outer peripheral surface of the separation membrane element 100B.
  • the raw water 101 supplied in this way is divided into permeated water 102 and concentrated water 103 by the separation membrane.
  • the permeated water 102 passes through the water collection pipe 6 and is taken out from the second end of the separation membrane element 100B.
  • the concentrated water 103 flows out of the separation membrane element 100B through the hole of the end plate 92 with a hole at the second end.
  • a third embodiment of a separation membrane element 100C will be described with reference to FIG.
  • symbol is attached
  • the separation membrane element 100 ⁇ / b> C is the same as the element of the second embodiment except that the separation membrane element 100 ⁇ / b> C is disposed at each of the first end and the second end and includes the end plate 92 with holes.
  • the separation membrane element 100C includes a porous member 82, like the separation membrane element 100B.
  • the raw water 101 is not only supplied from the outer peripheral surface of the separation membrane element 100C to the envelope through the hole of the porous member 82, but also the end plate 92 with a hole at the first end.
  • the separation membrane element 100 ⁇ / b> C is supplied to the winding body through the first hole.
  • the permeated water 102 and the concentrated water 103 are discharged from the second end to the outside of the separation membrane element 100C, similarly to the separation membrane element 100A of the first form.
  • the separation membrane Before or after the chemical treatment, the separation membrane may be uneven by embossing or the like, or a flow path material may be formed on the permeation side surface and / or the supply side surface of the separation membrane with a resin. Also good.
  • unevenness processing is performed on the separation membrane, a difference in height can be imparted to the supply side of the separation membrane by methods such as embossing, hydraulic forming, and calendering.
  • the separation membrane and the supply side channel are manufactured after the separation membrane is manufactured by arranging the permeation side channel material on the separation membrane. What is necessary is just to superimpose a material.
  • the method of arranging the protrusions includes, for example, a process of arranging a soft material on the sheet and a process of curing it.
  • thermoplastic resin, ultraviolet curable resin, chemical polymerization, hot melt, drying and the like are used for the arrangement of the protrusions.
  • thermoplastic resins and hot melts are preferably used.
  • a step of placing the softened material on a separation membrane It includes a step of fixing on the sheet by curing by cooling.
  • Examples of the method for arranging the protrusions include coating, printing, and spraying.
  • Examples of the equipment used include a nozzle type hot melt applicator, a spray type hot melt applicator, a flat nozzle type hot melt applicator, a roll type coater, an extrusion type coater, a printing machine, and a sprayer.
  • the membrane leaf may be formed by folding the separation membrane so that the surface on the supply side faces inward, or two separate separation membranes may be formed. It may be formed by bonding so that the surfaces on the supply side face each other.
  • the manufacturing method of the separation membrane element includes a step of sealing the inner end portion in the winding direction of the separation membrane on the surface on the supply side.
  • the two separation membranes are overlapped so that the surfaces on the supply side face each other.
  • the inner end in the winding direction of the stacked separation membranes, that is, the left end in FIG. 8 is sealed so that the permeated water can flow into the water collecting pipe 6.
  • Examples of the method of “sealing” include adhesion by an adhesive or hot melt, fusion by heating or laser, and a method of sandwiching a rubber sheet. Sealing by adhesion is particularly preferable because it is the simplest and most effective.
  • a supply-side channel material formed separately from the separation membrane may be disposed between the supply-side surfaces of the overlapped separation membranes.
  • the arrangement of the supply-side flow path material can be omitted by providing a height difference in advance on the supply-side surface of the separation membrane by embossing or resin coating.
  • Either the supply-side sealing or the permeation-side sealing may be performed first, or the supply-side sealing is performed while stacking separation membranes. And the sealing of the surface on the transmission side may be performed in parallel.
  • the adhesive or hot melt at the end in the width direction is allowed to allow the adjacent separation membranes to shift in the length direction due to winding. It is preferable to complete the solidification or the like, that is, the solidification for forming an envelope-like film, after the winding is completed.
  • Envelope-shaped Membrane A sheet (permeation-side flow path material) in which one separation membrane is folded so that the permeation side faces inward and the above-described protrusions are provided between the opposing separation membranes. By sandwiching and adhering, or by stacking two separation membranes so that the permeation side faces inward, a sheet comprising the above-mentioned protrusions between one separation membrane and another separation membrane ( An envelope-like film can be formed by laminating together with a permeation side flow path material). In the rectangular envelope film, the other three sides are sealed so that only one end in the length direction is opened. Sealing can be performed by adhesion with an adhesive or hot melt, or fusion by heat or laser.
  • a sheet may exist between the separation membranes, or the sheet may be arranged inside the sealing part of the separation membrane.
  • the adhesive used for forming the envelope film preferably has a viscosity in the range of 40 P (poise) to 150 P (poise), more preferably 50 P (poise) to 120 P (poise). If the adhesive viscosity is too high, wrinkles are likely to occur when the laminated leaves are wrapped around the water collection pipe. Wrinkles may impair the performance of the separation membrane element. Conversely, if the adhesive viscosity is too low, the adhesive may flow out of the end of the leaf and soil the device. Moreover, when an adhesive adheres to a portion other than the portion to be bonded, the performance of the separation membrane element is impaired, and the work efficiency is significantly reduced due to the processing operation of the adhesive that has flowed out.
  • the amount of adhesive applied is preferably such that the width of the portion where the adhesive is applied after the membrane leaf is wrapped around the water collection tube is 10 mm or more and 100 mm or less. As a result, the separation membrane is securely bonded, and the inflow of the raw water to the permeate side is suppressed. In addition, the effective membrane area of the separation membrane element can be secured relatively large.
  • a urethane-based adhesive is preferable, and in order to make the viscosity in a range of 40 P (poise) or more and 150 P (poise) or less, the main component isocyanate and the curing agent polyol are mixed with an isocyanate / polyol weight ratio of 1 / What mixed so that it might become 5 or more and 1 or less is preferable.
  • the viscosity of the adhesive is obtained by measuring the viscosity of a mixture in which the main agent, the curing agent alone, and the blending ratio are defined in advance with a B-type viscometer (JIS K 6833).
  • the separation membranes When a sheet exists in the sealing part, the separation membranes can be bonded to each other through the sheet by an adhesive soaked in the sheet. Moreover, when there is no sheet
  • a conventional element manufacturing apparatus can be used to manufacture the separation membrane element.
  • a method described in a reference document Japanese Patent Publication No. 44-14216, Japanese Patent Publication No. 4-11928, Japanese Unexamined Patent Publication No. 11-226366 may be used. it can. Details are as follows.
  • the separation membrane When the separation membrane is wound around the water collecting pipe, the separation membrane is arranged so that the closed end of the leaf, that is, the closed portion of the envelope-shaped membrane faces the water collecting pipe.
  • the separation membrane By winding the separation membrane around the water collecting pipe in such an arrangement, the separation membrane is wound in a spiral shape.
  • a spacer such as a tricot or base material is wound around the water collection pipe, the adhesive applied to the water collection pipe will not flow easily when the separation membrane element is wrapped, leading to suppression of leakage, and the flow path around the water collection pipe Is secured stably.
  • the spacer may be wound longer than the circumference of the water collecting pipe.
  • the method of manufacturing a separation membrane element may include further winding a film, a filament, and the like around the wound body of the separation membrane formed as described above. Further steps such as edge cutting for aligning the end of the separation membrane in the longitudinal direction of the water collecting pipe, attachment of an end plate, and the like may be included.
  • the separation membrane element may be further used as a separation membrane module by being connected in series or in parallel and housed in a pressure vessel.
  • the separation membrane element and the separation membrane module described above can be combined with a pump that supplies fluid to them, a device that pretreats the fluid, and the like to form a fluid separation device.
  • a separation device for example, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
  • the operating pressure when passing through the water to be treated is preferably 0.2 MPa or more and 5 MPa or less.
  • the salt removal rate decreases, but as the raw water temperature decreases, the membrane permeation flux also decreases.
  • the pH of the raw water is in a neutral region, even if the raw water is a high salt concentration liquid such as seawater, the generation of scales such as magnesium is suppressed, and the deterioration of the membrane is also suppressed.
  • the fluid to be treated by the separation membrane element is not particularly limited, but when used for water treatment, as raw water, seawater, brine, drainage, etc., 500 mg / L or more and 100 g / L or less TDS (Total Dissolved Solids: total dissolved solids) For example).
  • TDS indicates the total dissolved solid content, and is expressed by “mass / volume”, but 1 L may be expressed as 1 kg and may be expressed by “weight ratio”.
  • the solution filtered through a 0.45 ⁇ m filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 ° C. or higher and 40.5 ° C. or lower. Convert.
  • the thickness of the sheet and the height of the protrusions were measured with a high-precision shape measuring system KS-1100 manufactured by Keyence Corporation. Specifically, the height of the projections was analyzed for average height difference from the measurement result on the transmission side of 5 cm ⁇ 5 cm using a high precision shape measurement system KS-1100 manufactured by Keyence Corporation. Thirty points having a height difference of 10 ⁇ m or more were measured, and the value obtained by dividing the sum of the height values by the number of total measurement points (30 points) was taken as the height of the protrusion.
  • the apparent volume (cm 3 ) of the dried sample was measured, and the weight was then measured by adding pure water to the sample.
  • the value obtained by subtracting the dry weight of the sample from the weight of the sample containing water, that is, the weight of the water (g: volume of water cm 3 ) entering the voids of the substrate was calculated and divided by the apparent volume of the sample.
  • the porosity was obtained as a percentage (%).
  • TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in raw water) ⁇
  • peeling rate The permeation-side channel material with protrusions fixed to the sheet was cut at 5 m / min in the CD direction using a single blade, and the ratio of the number of stripes peeled off from the sheet to the total number of protrusions was calculated to give a peeling rate It was. In addition, the peeling rate implemented this evaluation 100 times and made it the average value.
  • Example 1 A non-woven fabric made of polyethylene terephthalate fibers (yarn diameter: 1 dtex, thickness: about 0.09 mm, density: 0.80 g / cm 3 ), a 15.0% by weight DMF solution of polysulfone at a thickness of 180 ⁇ m at room temperature (25 ° C.)
  • the porous support layer (thickness: 0.13 mm) consisting of a fiber-reinforced polysulfone support membrane is prepared by immediately immersing it in pure water and leaving it for 5 minutes and then immersing it in warm water at 80 ° C. for 1 minute. did.
  • porous support layer roll was unwound, and 1.9% by mass of m-PDA (metaphenylenediamine) and 4.5% by mass of ⁇ -caprolactam were applied to the polysulfone surface, and nitrogen was blown from an air nozzle.
  • m-PDA metalphenylenediamine
  • ⁇ -caprolactam ⁇ -caprolactam
  • the separation membrane thus obtained was folded and cut so that the effective area at the separation membrane element was 37.0 m 2, and the net (thickness: 0.7 mm, pitch: 5 mm ⁇ 5 mm, fiber diameter: 350 ⁇ m, Twenty-six leaves having a width of 900 mm and a leaf length of 800 mm were produced using a projected area ratio of 0.13) as a supply-side channel material.
  • protrusions were formed over the entire sheet. That is, when a separation membrane element is used while adjusting the temperature of a backup roll to 20 ° C. using an applicator loaded with a comb-shaped shim having a slit width of 0.5 mm and a pitch of 0.9 mm, it is perpendicular to the longitudinal direction of the water collection pipe.
  • a highly crystalline PP MFR 1000 g / 10 min, melting point 161 ° C. linearly perpendicular to the longitudinal direction of the water collecting pipe from the inner end to the outer end in the winding direction.
  • a composition pellet comprising 60% by mass and a low crystalline ⁇ -olefin polymer (Idemitsu Kosan Co., Ltd .; low stereoregular polypropylene “L-MODU ⁇ S400” (trade name)) 40% by mass was obtained at a resin temperature of 205 ° C. It was applied linearly at a running speed of 10 m / min. The sheet was a non-woven fabric as shown in Table 1.
  • the shape of the obtained protrusions is that the total thickness of the sheet and the height of the protrusions is 0.26 mm, the protrusion width is 0.5 mm, and the protrusions adjacent in the first direction and the second direction are The interval was 0.4 mm and the pitch was 0.9 mm.
  • a permeate-side channel material is laminated on the permeate side surface of the obtained leaf, and is collected in an ABS (acrylonitrile-butadiene-styrene) water collecting pipe (width: 1,020 mm, diameter: 30 mm, 40 holes ⁇ straight line).
  • the film was wound in a spiral shape, and a film was further wound around the outer periphery. After fixing with tape, edge cutting, end plate attachment, and filament winding were performed to produce a separation membrane element having a diameter of 8 inches. Both end plates were perforated end plates. That is, in this example, the separation membrane element of the first form shown in FIG. 10 was produced.
  • Examples 2 to 12 A separation membrane and a separation membrane element were produced in the same manner as in Example 1 except that the sheet was a non-woven fabric as shown in Tables 1 to 3 and the protrusions were as shown in Tables 1 to 3.
  • the separation membrane element was placed in a pressure vessel and operated under the above conditions to obtain permeated water, the amount of water produced, the desalting rate, and the peeling rate were as shown in Tables 1 to 3.
  • Example 13 and 14 The separation membrane roll to which the wall-like material obtained in Example 1 was fixed was folded and cut so that the width at the separation membrane element was 256 mm and the effective area was 0.5 m 2, and the net (thickness: 510 ⁇ m, pitch: Two leaves were produced using 2 mm ⁇ 2 mm, fiber diameter: 255 ⁇ m, projected area ratio: 0.21) as a supply-side channel material.
  • a permeate-side channel material was produced in the same manner as in Example 1 except that the sheet was made of a non-woven fabric as shown in Table 4 and the protrusions were made as shown in Table 4. After that, the permeate-side channel material is stacked on the permeate side of the leaf, and the two leaves are spirally wound around the ABS water collecting pipe (width: 300 mm, outer diameter: 17 mm, number of holes 8 x 2 lines) A separation membrane element wound around was prepared, a film was wound around the outer periphery and fixed with tape, and then edge cutting and end plate mounting were performed to produce a 2-inch element.
  • the separation membrane elements of Examples 1 to 12 of the present invention obtain a sufficient amount of permeated water having a high desalination rate even when operated for a long time. It can be said that it has stable separation performance.
  • the separation membrane element of the present invention can be particularly suitably used for brine or seawater desalination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 本発明の分離膜エレメントは、供給側の面と透過側の面とを有し、透過側の面同士が向かい合うように配置されることで分離膜対を形成する分離膜と、分離膜の透過側の面の間に設けられる透過側流路材と、を備え、透過側流路材は、シートと該シート上に設けられた複数の突起物とを備え、シートは表面に開孔部を有する多孔質シートであり、かつその表面に密溶着部と、粗溶着部および非溶着部とを有し、突起物は樹脂を含有し、該樹脂の一部がシートの開孔部に含浸している。

Description

分離膜エレメント
 本発明は、液体、気体等の流体に含まれる成分を分離するために使用される分離膜エレメントに関する。
 海水およびかん水などに含まれるイオン性物質を除くための技術においては、近年、省エネルギーおよび省資源のためのプロセスとして、分離膜エレメントによる分離法の利用が拡大している。分離膜エレメントによる分離法に使用される分離膜は、その孔径や分離機能の点から、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、正浸透膜に分類される。これらの膜は、例えば海水、かん水および有害物を含んだ水などからの飲料水の製造、工業用超純水の製造、並びに排水処理および有価物の回収などに用いられており、目的とする分離成分及び分離性能によって使い分けられている。
 分離膜エレメントとしては様々な形態があるが、分離膜の一方の面に原水を供給し、他方の面から透過流体を得る点では共通している。分離膜エレメントは、束ねられた多数の分離膜を備えることで、1個の分離膜エレメントあたりの膜面積が大きくなるように、つまり1個の分離膜エレメントあたりに得られる透過流体の量が大きくなるように形成されている。分離膜エレメントとしては、用途や目的にあわせて、スパイラル型、中空糸型、プレート・アンド・フレーム型、回転平膜型、平膜集積型などの各種の形状が提案されている。
 例えば、逆浸透ろ過には、スパイラル型分離膜エレメントが広く用いられる。スパイラル型分離膜エレメントは、中心管と、中心管の周囲に巻き付けられた積層体とを備える。積層体は、原水(つまり被処理水)を分離膜表面へ供給する供給側流路材、原水に含まれる成分を分離する分離膜、及び分離膜を透過し供給側流体から分離された透過側流体を中心管へと導くための透過側流路材が積層されることで形成される。スパイラル型分離膜エレメントは、原水に圧力を付与することができるので、透過流体を多く取り出すことができる点で好ましく用いられている。
 スパイラル型分離膜エレメントでは、一般的に、供給側流体の流路を形成させるために、供給側流路材として、主に高分子製のネットが使用される。また、分離膜として、積層型の分離膜が用いられる。積層型の分離膜は、供給側から透過側に積層された、ポリアミドなどの架橋高分子からなる分離機能層、ポリスルホンなどの高分子からなる多孔性樹脂層(多孔性支持層)、ポリエチレンテレフタレートなどの高分子からなる不織布の基材を備えている。また、透過側流路材としては、分離膜の落ち込みを防き、かつ透過側の流路を形成させる目的で、供給側流路材よりも間隔の細かいトリコットと呼ばれる編み物部材が使用される。
 近年、造水コストの低減への要求の高まりから、分離膜エレメントの高性能化が求められている。例えば、分離膜エレメントの分離性能の向上、および単位時間あたりの透過流体量の増大のために、各流路部材等の分離膜エレメント部材の性能向上が提案されている。
 具体的には、特許文献1では、透過側流路材として、凹凸賦形されたシートを備える分離膜エレメントが提案されている。特許文献2では、分離膜上に配置されたベーンと称されるエラストマーから構成される流路材によって、ネットなどの供給側流路材やトリコットなどの透過側流路材を必要としない分離膜エレメントが提案されている。また、特許文献3では、糸を不織布上に配置した流路材を備えた分離膜エレメントが提案されている。
日本国特開2006-247453号公報 日本国特表2012-518538号公報 米国特許出願公開第2012-0261333号明細書
 しかし、上記した分離膜エレメントは、分離性能、特に長期間にわたり運転を行った際の安定性能の点では、十分とは言えない。
 そこで、本発明は、特に高い圧力をかけて分離膜エレメントを運転した時の分離除去性能を安定化させることのできる分離膜エレメントを提供することを目的とする。
 上記目的を達成するため、本発明によれば、供給側の面と透過側の面とを有し、透過側の面同士が向かい合うように配置されることで分離膜対を形成する分離膜と、前記分離膜の前記透過側の面の間に設けられる透過側流路材と、を備え、前記透過側流路材は、シートと該シート上に設けられた複数の突起物とを備え、前記シートは表面に開孔部を有する多孔質シートであり、かつその表面に密溶着部と、粗溶着部および非溶着部とを有し、前記突起物は樹脂を含有し、該樹脂の一部が前記シートの前記開孔部に含浸している分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記シートの、表面における密溶着率が5%以上50%以下である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記非溶着部における表面開孔率が15%以上70%以下である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記シート表面の、100mmあたりに存在する前記開孔部の内、孔径150μm以上200μm以下のものが30個以上である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記シート表面の、面の算術平均高さが3μm以上10μm以下である分離膜エレメントが提供される。
 また、本発明の好ましい形態によれば、前記シート表面における溶着部が柄を構成する分離膜エレメントが提供される。
 本発明によって、高効率かつ安定した透過側流路を形成することができ、分離成分の除去性能と高い透過性能を有する高性能、高効率の分離膜エレメントを得ることができる。
図1は、本発明の分離膜エレメントにおける分離膜と透過側流路材の構成を説明する概略構成図である。 図2は、膜リーフの一形態を示す概略構成図である。 図3は、分離膜の概略構成を示す断面図である。 図4は、透過側流路材を膜リーフに配置する方法の一例を示す図である。 図5は、シートの長さ方向(第2方向)において連続的に設けられた突起物を備える透過側流路材を示す平面図である。 図6は、シートの長さ方向(第2方向)において不連続的に設けられた突起物を備える透過側流路材を示す平面図である。 図7は、図5および図6の分離膜のA-A線断面図である。 図8は、分離膜エレメントの一形態を示す展開斜視図である。 図9は、透過側流路材の断面模式図である。 図10は、分離膜エレメントの第1形態を示す一部展開斜視図である。 図11は、分離膜エレメントの第2形態を示す一部展開斜視図である。 図12は、分離膜エレメントの第3形態を示す一部展開斜視図である。
 以下、本発明の実施の一形態について、詳細に説明する。
 尚、本明細書において、「質量」は「重量」のことを意味するものとする。
 本発明の分離膜エレメントは、図1に示すように、供給側の面21と透過側の面22とを有し、透過側の面22同士が向かい合うように配置されることで分離膜対1を形成する分離膜2と、該分離膜2の透過側の面22の間に設けられる透過側流路材31を備えるものである。透過側流路材31はシート302と該シート302上に設けられた複数の突起物301とを備えている。シート302は表面に開孔部を有する多孔質シートであり、少なくともその表面には、密溶着部303と、粗溶着部304および非溶着部305を有している。突起物301は樹脂を含有し、樹脂の一部がシートの開孔部に含浸している。
〔1.分離膜〕
(1-1)分離膜の概要
 分離膜とは、分離膜表面に供給される流体中の成分を分離し、分離膜を透過した透過流体を得ることができる膜である。分離膜は流路を形成するようにエンボス加工や樹脂などが配置されたものも含むことができる。また、分離膜は、流路を形成できず分離機能のみを発現するものであってもよい。
 このような分離膜の例として、本発明の分離膜の実施形態の一例を含む膜リーフの概略構成図を図2に示す。膜リーフ4(本明細書において、単に「リーフ」と称することがある。)は、複数の分離膜2(2a,2b)を含む。分離膜2aは供給側の面21aと透過側の面22aを有し、分離膜2bは供給側の面21bと透過側の面22bを有している。重ねられた2枚の分離膜2a,2bは、一方の分離膜2aの供給側の面21aと、他方の分離膜2bの供給側の面21bとが、図示しない供給側流路材を挟んで、互いに対向するように配置される。膜リーフ4において、互いに向かい合う分離膜の供給側の面の間には供給側流路が形成される。膜リーフ4は、複数の分離膜2が重ねられて構成されてもよく、1枚の分離膜が供給側の面21が向かい合うように折り曲げられて構成されてもよい。
 また、図示はしないが、さらにその分離膜2a,2b上に重ねられる他の分離膜は、その分離膜の透過側の面が、分離膜2a,2bの透過側の面22a,22bに対向するように配置される。
 本明細書において、分離膜の「供給側の面」とは、分離膜の2つの面のうち、原水が供給される側の表面を意味する。「透過側の面」とは、その逆側で、分離膜を透過した透過流体が排出される側の表面を意味する。後述するように分離膜2が、図3に示すように、基材201、多孔性支持層202及び分離機能層203を備える場合は、一般的に、分離機能層203側の面が供給側の面21であり、基材201側の面が透過側の面22である。
 また、図2、図5~9にx軸、y軸、z軸の方向軸を示す。x軸を第1方向、y軸を第2方向と称することがある。図2に示すように、分離膜2は長方形であり、第1方向および第2方向は、分離膜2の外縁に平行である。第1方向を幅方向と称し、第2方向を長さ方向と称することがある。また図2中、第1方向(幅方向)をCDの矢印で表わし、第2方向(長さ方向)をMDの矢印で表わす。
(1-2)分離膜
<概要>
 分離膜としては、使用方法、目的等に応じた分離性能を有する膜が用いられる。分離膜は、単一層によって形成されていてもよいし、分離機能層と基材とを備える複合膜であってもよい。例えば、図3に示すように、複合膜においては、基材201と分離機能層203との間に多孔性支持層202が設けられ、これら基材201、多孔性支持層202および分離機能層203の積層体として構成されていてもよい。
<分離機能層>
 分離機能層の厚みは具体的な数値に限定されないが、分離性能と透過性能の点で5nm以上3000nm以下であることが好ましい。特に逆浸透膜、正浸透膜、ナノろ過膜では5nm以上300nm以下であることが好ましい。
 分離機能層の厚みは、通常の分離膜の膜厚測定法に準ずることができる。例えば、分離膜を樹脂により包埋し、それを切断することで超薄切片を作製し、得られた切片に染色などの処理を行う。その後、透過型電子顕微鏡により観察することで、厚みの測定が可能である。また、分離機能層がひだ構造を有する場合、多孔性支持層より上に位置するひだの断面観察によりひだの肉厚を測定し、ひだの数を20個測定し、その平均から求めることができる。
 分離機能層は、分離機能および支持機能の両方を有する層であってもよいし、分離機能のみを備えていてもよい。なお、「分離機能層」とは、少なくとも分離機能を備える層を指す。
 分離機能層が分離機能および支持機能の両方を有する場合、分離機能層としては、セルロース、ポリフッ化ビニリデン、ポリエーテルスルホン、またはポリスルホンを主成分として含有する層が好ましく適用される。
 なお、本明細書において、「XがYを主成分として含有する」とは、XにおけるYの含有率が、通常50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である場合を意味する。また、Yに該当する複数の成分が存在する場合は、それら複数の成分の合計量が、上述の範囲を満たせばよい。
 一方、多孔性支持層で支持される分離機能層としては、孔径制御が容易であり、かつ耐久性に優れるという点で架橋高分子が好ましく使用される。特に、原水中の成分の分離性能に優れるという点で、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層、有機-無機ハイブリッド機能層などが好適に用いられる。これらの分離機能層は、多孔性支持層上でモノマーを重縮合することによって形成可能である。
 例えば、分離機能層は、ポリアミドを主成分として含有することができる。このような膜は、公知の方法により、多官能アミンと多官能酸ハロゲン化物とを界面重縮合することで形成される。例えば、多孔性支持層に多官能アミン水溶液を塗布し、余分なアミン水溶液をエアーナイフなどで除去し、その後、多官能酸ハロゲン化物を含有する有機溶媒溶液を塗布することで、ポリアミド分離機能層が得られる。
 また、分離機能層は、Si元素などを有する有機-無機ハイブリッド構造を有してもよい。有機-無機ハイブリッド構造を有する分離機能層は、例えば、以下の化合物(A)、(B)を含有することができる:
 (A)エチレン性不飽和基を有する反応性基および加水分解性基がケイ素原子に直接結合したケイ素化合物、ならびに
 (B)前記化合物(A)以外の化合物であってエチレン性不飽和基を有する化合物。
 具体的には、分離機能層は、化合物(A)の加水分解性基の縮合物ならびに化合物(A)および/または(B)のエチレン性不飽和基の重合物を含有してもよい。すなわち、分離機能層は、
  ・化合物(A)のみが縮合および/または重合することで形成された重合物、
  ・化合物(B)のみが重合して形成された重合物、並びに
  ・化合物(A)と化合物(B)との共重合物
のうちの少なくとも1種の重合物を含有することができる。なお、重合物には縮合物が含まれる。また、化合物(A)と化合物(B)との共重合物中で、化合物(A)は加水分解性基を介して縮合していてもよい。
 有機-無機ハイブリッド構造は、公知の方法で形成可能である。ハイブリッド構造の形成方法の一例は次のとおりである。化合物(A)および化合物(B)を含有する反応液を多孔性支持層に塗布する。余分な反応液を除去した後、加水分解性基を縮合させるためには、加熱処理すればよい。化合物(A)および化合物(B)のエチレン性不飽和基の重合方法としては、熱処理、電磁波照射、電子線照射、プラズマ照射を行えばよい。重合速度を速める目的で分離機能層形成の際に重合開始剤、重合促進剤等を添加することができる。
 なお、いずれの分離機能層についても、使用前に、例えばアルコール含有水溶液、アルカリ水溶液によって膜の表面を親水化させてもよい。
<多孔性支持層>
 多孔性支持層は、分離機能層を支持する層であり、多孔性樹脂層とも言い換えられる。
 多孔性支持層に使用される材料やその形状は特に限定されないが、例えば、多孔性樹脂によって基板上に形成されてもよい。多孔性支持層としては、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、エポキシ樹脂あるいはそれらを混合、積層したものが使用される。中でも、化学的、機械的、熱的に安定性が高く、孔径が制御しやすいポリスルホンを使用することが好ましい。
 多孔性支持層は、分離膜に機械的強度を与え、かつイオン等の分子サイズの小さな成分に対して分離機能層のような分離性能を有さない。多孔性支持層の有する孔のサイズおよび孔の分布は特に限定されないが、例えば、多孔性支持層は、均一で微細な孔を有してもよいし、あるいは分離機能層が形成される側の表面からもう一方の面(基材側)にかけて径が徐々に大きくなるような孔径の分布を有してもよい。
 なお、いずれの場合でも、分離機能層が形成される側の表面で原子間力顕微鏡または電子顕微鏡などを用いて測定された細孔の投影面積円相当径は、1nm以上100nm以下であることが好ましい。特に界面重合反応性および分離機能層の保持性の点で、多孔性支持層において分離機能層が形成される側の表面における孔は、3nm以上50nm以下の投影面積円相当径を有することが好ましい。
 多孔性支持層の厚みは特に限定されないが、分離膜に強度を与えるため等の理由から、20μm以上500μm以下の範囲にあることが好ましく、より好ましくは30μm以上300μm以下である。
 多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間力顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金-パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3kV~6kVの加速電圧で、高分解能電界放射型走査電子顕微鏡(UHR-FE-SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、株式会社日立製作所製S-900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真に基づいて、多孔性支持層の膜厚、表面の投影面積円相当径を測定することができる。
 多孔性支持層の厚みおよび孔径は、平均値であり、多孔性支持層の厚みは、断面観察で厚み方向に直交する方向に20μm間隔で測定し、20点の厚みを測定した平均値である。また、孔径は、200個の孔について測定された、各投影面積円相当径の平均値である。
 次に、多孔性支持層の形成方法について説明する。多孔性支持層は、例えば、ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載する。)溶液を、後述する基材、例えば密に織ったポリエステル布あるいは不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、製造することができる。
 多孔性支持層は、”オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って形成することができる。なお、所望の形態を得るために、ポリマー濃度、溶媒の温度、貧溶媒は調整可能である。
 例えば、所定量のポリスルホンをDMFに溶解し、所定濃度のポリスルホン樹脂溶液を調製する。次いで、このポリスルホン樹脂溶液をポリエステル布あるいは不織布からなる基材上に略一定の厚さに塗布した後、一定時間空気中で表面の溶媒を除去した後、凝固液中でポリスルホンを凝固させることによって多孔性支持層を得ることができる。
<基材>
 分離膜の強度、寸法安定性等の観点から、分離膜は基材を有することができる。基材としては、強度、凹凸形成能および流体透過性の点で繊維状基材を用いることが好ましい。
 基材としては、長繊維不織布及び短繊維不織布のいずれも好ましく用いることができる。特に、長繊維不織布は、優れた製膜性を有するので、高分子重合体の溶液を流延した際に、その溶液が過浸透により裏抜けすること、分離膜が多孔性支持層を備える場合はその多孔性支持層が剥離すること、さらには基材の毛羽立ち等により膜が不均一化すること、及びピンホール等の欠点が生じること等を抑制できる。また、基材が熱可塑性連続フィラメントより構成される長繊維不織布からなることにより、短繊維不織布と比べて、高分子溶液流延時に繊維の毛羽立ちによって起きる膜の不均一化および膜欠点の発生を抑制することができる。さらに、分離膜は、連続製膜されるときに、製膜方向に対し張力がかけられるので、寸法安定性に優れる長繊維不織布を基材として用いることが好ましい。
 長繊維不織布は、成形性、強度の点で、多孔性支持層とは反対側の表層における繊維が、多孔性支持層側の表層の繊維よりも縦配向であることが好ましい。そのような構造によれば、強度を保つことで膜破れ等を防ぐ高い効果が実現されるだけでなく、分離膜に凹凸を付与する際の、多孔性支持層と基材とを含む積層体としての成形性も向上し、分離膜表面の凹凸形状が安定するので好ましい。
 より具体的には、長繊維不織布の、多孔性支持層とは反対側の表層における繊維配向度は、0°以上25°以下であることが好ましく、また、多孔性支持層側の表層における繊維配向度との配向度差が10°以上90°以下であることが好ましい。
 分離膜の製造工程や分離膜エレメントの製造工程においては加熱する工程が含まれるが、加熱により多孔性支持層または分離機能層が収縮する現象が起きる場合がある。特に連続製膜において張力が付与されていない幅方向において、収縮は顕著である。収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。基材において、多孔性支持層とは反対側の表層における繊維配向度と多孔性支持層側の表層における繊維配向度との差が10°以上90°以下であると、熱による幅方向の変化を抑制することもでき、好ましい。
 ここで、繊維配向度とは、多孔性支持層が固定される基材の繊維の向きを示す指標である。具体的には、繊維配向度とは、連続製膜を行う際の製膜方向、つまり基材の長手方向と、該基材を構成する繊維の長手方向との間の角度の平均値である。つまり、繊維の長手方向が製膜方向と平行であれば、繊維配向度は0°である。また、繊維の長手方向が製膜方向に直角であれば、すなわち基材の幅方向に平行であれば、その繊維の配向度は90°である。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
 繊維配向度は以下のように測定される。まず、基材からランダムに小片サンプル10個を採取する。次に、そのサンプルの表面を走査型電子顕微鏡で100~1000倍で撮影する。撮影像の中で、各サンプルあたり10本の繊維を選び、基材の長手方向を0°としたときの、繊維の長手方向の角度を測定する。ここで、基材の長手方向とは、基材製造時の“Machine direction”を指す。また、基材の長手方向は、多孔性支持層の製膜方向および図2、図8のMD方向に一致する。図2、図8のCD方向は、基材製造時の“Cross direction”に一致する。
 こうして、1枚の不織布あたり計100本の繊維について、角度の測定が行われる。こうして測定された100本の繊維について、長手方向の角度から平均値を算出する。得られた平均値の小数点以下第一位を四捨五入して得られる値が、繊維配向度である。
 基材と多孔性支持層との厚みの合計は、30μm以上300μm以下の範囲内、または50μm以上250μm以下の範囲内にあるように、基材の厚みが選択されることが好ましい。
(1-3)透過側流路材
<概要>
 本発明の透過側流路材は、シートと突起物から構成される。シートは、その表面に開孔部(以下、「表面開孔部」ともいう)を有する多孔質シートである。シートの表面に開孔部が存在することで、突起物のシートへの固着が強固になり、分離膜エレメントの製造時に透過側流路材をカットする工程においても、突起物の剥離が生じにくく、製造プロセスを安定化させることができる。
 シートは後述するように、表面に密溶着部と、粗溶着部および非溶着部不織布を有しており、シート表面に突起物が形成される。
 また、透過側流路材31は、複数の分離膜2が重ねられて構成される膜リーフ4において、分離膜2の透過側の面22に配置される。図4においては、1枚の分離膜2がその供給側の面21が対向するように折り曲げられて膜リーフ4が形成され、その透過側の面22側に透過側流路材31が配置されている。この時、透過側流路材31の突起物301が分離膜2の透過側の面22に接するか、または透過側流路材31のシート302が分離膜2の透過側の面22に接するかは任意である。つまり、膜リーフ4の巻囲時または膜リーフ4の積層時に、分離膜は透過側の面同士が対向するように配置されるので、一方の分離膜の透過側の面には突起物が接触し、他方の分離膜の透過側の面にはシートが接触するため、結局は同一の状態となるからである。透過側流路材の構成の詳細は以下のとおりである。
<透過側流路材>
 透過側流路材31を構成するシート302は、本発明の分離膜エレメントにおいて、図4に示したように第2方向(長さ方向)が巻回方向と一致するように配置されることが好ましい。つまり、後述する図10~図12の分離膜エレメントにおいて、シート302は、第1方向(分離膜の幅方向)が集水管6の長手方向に平行であり、第2方向(分離膜の長さ方向)が集水管6の長手方向に直交するように配置されることが好ましい。
 また、透過側流路材31を構成するシート302は、分離膜の透過側の面同士を接着する領域に存在する。つまり、2枚の分離膜は、透過側流路材を構成するシートを間に挟んで接着されるが、その接着部分の少なくとも一部において、分離膜間に当該シートが存在することが好ましい。図4では、透過側流路材を構成するシート302の大きさと分離膜の大きさとは略同一であるが、実際には、シートの方が大きくてもよいし、分離膜の方が大きくてもよい。分離膜の方が大きい場合は、シートが壁となるため接着剤の広がりを抑制することができる。
(シート)
 上記したように、本発明で用いるシートは多孔質シートであり、空隙を有し、その表面には開孔部を有する。
 シートとしては、その材質は特に限定されないが、突起物の含浸制御や取り扱い性の観点から不織布から形成されたシートを用いることが好ましい。
 本発明において、シートは密溶着部と、粗溶着部および非溶着部を有する。
 また、本発明において、シートの引張強力や引裂き強力を向上させるために、該シートの表面における密溶着率を5%以上50%以下にすることが好ましい。密溶着率を前記範囲とすることで、シートの繊維間の開孔率が突起物の固定(含浸)に好適な量となり、またシートの保形性も高まり搬送時にもシートの形状が崩れ難くなる。また、目付量を低減できるため、シートの繊維間の開孔量が多くなり突起物がシートに含浸しやすくなる。
 密溶着率とは、シートの突起物が固着している側の面において、シートに突起物を固着した後の、突起物が固着されていない部分のシートの面積に対する、密溶着部が占める面積との比率である。
 密溶着部とは複数の繊維が熱融着された領域であり、密溶着部の大きさはシートを構成する繊維径と異なる。例えばシートの表面を電子顕微鏡などで観察し、シートを構成する繊維の平均径よりも大きい幅を有する部分が溶着部となり、平均繊維径の1.8倍未満であれば粗溶着部、1.8倍以上が密溶着部となる。なお、平均繊維径とは、シートを構成し、他の繊維と溶着していない任意の繊維50本について測定した直径の平均値のことである。
 粗溶着部における、シートを突起物が固着される側から見た表面の、繊維間の空隙である表面開孔率は、シートの引張強力や引裂き強力を向上させるために25%以上60%以下が好ましい。
 特に、シートを突起物が固着される側から見た表面に存在する孔について、孔径150μm以上の孔数が多いほど、溶融樹脂が孔を通過する際の抵抗が下がり、含浸が進むため好ましい。具体的には、突起物が固着したシートについて、100mmあたりに存在する開孔の内、孔径150μm以上200μm以下の孔が30個以上であることが好ましく、100個以上が特に好ましい。
 突起物が固着した面の表面上部から観察したときの、密溶着部における長径に対する短径の比率(アスペクト比とよぶ)は、シートの剛性の均一性を保つために、0.1以上1.0以下であり、より好ましくは0.3以上0.8以下である。
 なお、突起物を剥離除去し、固着していたシートの領域を観察すると、溶融樹脂をシートに塗布して冷却固化する場合は、溶融樹脂の熱によってシートが密溶着部となる場合があるため、突起物が固着している面、かつ固着していない領域で算出することができる。なお、突起物が固着している領域と、固着していない領域のシートの物性は同等である。
 非溶着部とは、シートを構成する繊維が溶着していない領域である。非溶着部における、シートを突起物が固着される側から見た表面の、繊維間の空隙である表面開孔率は、シートの引張強力や引裂き強力を向上させるために15%以上70%以下が好ましい。なお、突起物が直線上に配置される場合には、シートと接する突起物の面積の20%以上が表面開孔部に配置されることが好ましい。
 なお、本発明において、図1に示したように、粗溶着部304と非溶着部305は混在している場合がある。
 密溶着部の幅が広すぎると、突起物が含浸できない領域が広がることから、密溶着部の幅は2mm以下が好ましく、より好ましくは1mm以下である。同様の理由から、ピッチは1mm以上50mm以下で適宜設計するのが好ましい。ピッチとは、ある密溶着部の重心位置と、この密溶着部に隣接する別の密溶着部の重心位置との水平距離である。
 非溶着部では突起物の樹脂の含浸が進み、溶着部で含浸が進まないため、突起物が固定されたシートは該突起物がシートに含浸した領域と含浸していない領域に分かれる。よって、本発明において突起物をシートに溶融樹脂を塗布して固化させて製造する際は、これら2つの領域の熱収縮挙動が異なるため、均一に含浸した場合のようなシートがカールするような品質低下が起こりにくい傾向にある。
(密溶着率および表面開孔率の測定方法)
 シートにおける密溶着率および表面開孔率の測定方法としては、例えば、次に示すスキャニング法やマイクロスコープ法が挙げられる。
 スキャニング法では、まず、任意のサイズにカットした透過側流路材をデジタルスキャナー(例えば、キャノン株式会社製CanoScan N676U)で、突起物が固着した面についてスキャンし、得られたデジタル画像を画像解析ソフト(ImageJ)で解析する。続いて、得られた画像の突起物が固着していない領域について、密溶着率または表面開孔率(%)=100×(密溶着部または開孔部の面積/切り出し面積)として算出したり、この操作を繰り返し、その平均値を密溶着率または表面開孔率とすることができる。
 また、マイクロスコープ法では、例えばキーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で透過側流路材突起物が固着した面から撮影し、テクスチャの数値をゼロにして画像を白黒化する。続いて、得られたデジタル画像を画像解析ソフト(ImageJ)で解析し、得られた画像の突起物が固着していない領域について、密溶着率または表面開孔率(%)=100×(密溶着部または開孔部の面積/切り出し面積)として算出することを回繰り返し、その平均値を密溶着率または表面開孔率とすることができる。
(面の算術平均高さ)
 面の算術平均高さとは表面の平均面に対して、各点の高さの差の絶対値の平均値を指す。突起物のシートへの含浸と、高さの均一性を兼備させる観点から、シートの表面の算術平均高さは3μm以上10μm以下であることが好ましい。シートの表面の算術平均高さが3μmを下回る場合は、突起物の高さは均一になるものの、突起物中の樹脂のシートへの含浸が進まず剥離しやすくなる場合がある。10μmを超える場合は、突起物中の樹脂のシートへの含浸が良好になるものの突起物をシート上に配置させる際に突起物の形状が崩れやすく高さが不均一になる傾向にある。
 このような面の算術平均高さは、例えばシートが不織布の場合は目付量、圧着条件、繊維の太さを変更することで制御可能である。
 例えば、圧着時におけるロール温度、プレス圧力が大きくなるほど面の算術平均高さが低くなる傾向にある。
 また、面の算術平均高さはISO25178に記載の方法に従って評価することができ、例えば原子間力顕微鏡やレーザー顕微鏡、非接触三次元測定器を用いることができる。非接触三次元測定器としては、例えばキーエンス社製ワンショット3D測定マクロスコープを用いることができ、測定箇所や走査方向に依存する結果のバラツキを抑えながら高精度かつ簡便に測定することができるため好ましい。
 なお、面の算術平均高さは透過側流路材について、突起物が固着していない面と表裏反対の面について測定することができる。
(密溶着部の柄)
 シートの表面に密溶着部が規則的に存在することでシートの剛性斑が少なくなり、搬送時のシワや破れなどを抑制できる。シートに設けられた複数の密溶着部が模様を形成し、MD方向に同様に配列されている領域がある場合は、複数の密溶着部が形成する模様を“柄”と呼ぶこともある。MD方向にわたって規則的に存在する箇所があると、突起物が固着したシートの剛性のばらつきが小さくなるため、分離膜エレメントの巻囲性が向上するため好ましい。特に、いわゆる格子状や千鳥状、あるいはその組み合わせがさらに好ましい。
 密溶着部の柄の形状は特に限定されないない。突起物が固着した面の表面上部から観察した形では、楕円、円、長円、台形、三角形、長方形、正方形、平行四辺形、菱形などが挙げられる。
(溶着方法)
 シートを溶着する方法としてはレーザー照射や熱ロール、カレンダ加工など従来公知の方法を採用できる。熱ロールで溶着させる場合は、製造時に安定に密溶着部を形成できる点からエンボス加工が好ましい。
 エンボス加工とは、シートをエンボスロールを用いて熱プレス処理するものであり、通常は表面が平滑なロールとエンボス柄を有する熱ロールの2本のロールによってプレスされる。プレス時の線圧としては1~50kg/cmであることが好ましく、線圧が低すぎる場合には十分な強度が付与できず、線圧が高すぎる場合にはシートを構成する繊維がフィルム化してしまい、突起物が不織布へ含浸し難くなる傾向にある。
 エンボス加工は、シートの片面、両面のいずれにも施してよいが、片面の場合は、高低差が存在する面側が、もう一方の面側よりも密溶着率が低くなる傾向にあるため、突起物を含浸させる点については好適である。ただし、両面に施した方が密溶着部が厚み方向で対照的に存在することになるため剛性が高まり、安定に搬送させる点に関しては優れている。
(エンボス加工によるシートの高低差)
 エンボス加工によってシートに高低差が付与される場合は、分離膜エレメントの分離特性や水透過性能が要求される条件を満足するように加圧熱処理条件を変更することで自由に調整することができる。しかしながら、高低差が深すぎるとエレメント化した場合にベッセルに充填できる膜リーフ数が少なくなる。そのため、エレメントの造水能力が低下し、造水量を増加させるための運転コストが高くなる。
 従って、上述した各性能のバランスや運転コストを考慮すると、分離膜においては、分離膜の供給側表面の密溶着部の高低差は、好ましくは0.1mm以下が好ましく、0.07mm以下がさらに好ましい。
 このような高低差は、たとえば膜厚測定器(Anritsu社製、KG601A)を用いて平均の高低差を解析し、5μm以上の高低差のある30箇所を測定し、各高さの値を総和した値を測定総箇所の数で割って求めることができる。
(透過側流路材を構成するシートの厚み)
 透過側流路材を構成するシートの厚みは0.2mm以下であることが好ましい。なぜなら、重ねられた分離膜の透過側の面の間を封止するために、シートには接着剤が含浸することが好ましいからである。また、シートを薄くするほど後述する突起物が高くなり、透過側流路材としての流動抵抗が低下し、エレメント性能が向上する傾向にある。
(透過側流路材を構成するシートの空隙率)
 透過側流路材を構成するシートの空隙率は20%以上90%以下が好ましく、45%以上80%以下が特に好ましい。ここで、空隙率とは、シートの単位体積当たりの空隙の割合をいい、所定の見かけ体積を有するシートに純水を含ませたときの重量から、シートの乾燥時の重量を差し引いた値を、シートの見かけ体積で除した値を百分率(%)で表すことで得ることができる。
 シートの空隙率が20%以上90%以下であることで、突起物301を含浸させて固定することができ、さらにシート中において水が透過できる空間を確保しやすくなる。
<突起物の構成成分>
 突起物を構成する成分としては、具体的な物質には限定されないが、樹脂が好ましく用いられる。具体的には、耐薬品性の点で、エチレン酢酸ビニル共重合体樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィンやポリオレフィン共重合体などが好ましい。また、透過側流路材の材料として、ウレタン樹脂、エポキシ樹脂、ポリエーテルスルホン、ポリアクリロニトリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、スチレン-アクリロニトリル共重合体、スチレン-ブタジエン-アクリロニトリル共重合体、ポリアセタール、ポリメチルメタクリレート、メタクリル-スチレン共重合体、酢酸セルロール、ポリカーボネート、ポリエチレンテレフタレート、ポリブタジエンテレフタレートやフッ素樹脂(三フッ化塩化エチレン、ポリフッ化ビニリデン、四フッ化エチレン、四フッ化エチレン-六フッ化プロピレン共重合、四フッ化エチレン-パーフルオロアルコキシエチレン共重合、四フッ化エチレン-エチレン共重合など)などのポリマーも選択できる。なお、これらの材料は、単独もしくは2種類以上からなる混合物として用いられる。特に、熱可塑性樹脂は成形が容易であるため、均一な形状の透過側流路材を形成することができ、シートと突起物が同素材であっても、異素材であってもよい。
<<ポリプロピレンから構成される突起物>>
 また、突起物が以下の構成を取ることで、耐圧性および柔軟性のバランスを両立でき、運転安定性を向上することができる。すなわち突起物は高結晶性ポリプロピレンを含んでもよく、かつ下記要件(a)および(b)を満たしてもよい。
(a)高結晶性ポリプロピレンの含有量が、突起物を構成する組成物中、20~95質量%である。
(b)前記突起物の融解吸熱量(ΔH)が20~70J/gである。
 この場合、高結晶性ポリプロピレンの含有量を、突起物を構成する組成物中、95質量%以下とすることで、シート上に突起物が形成された透過側流路材のカールを抑制できる。それによって、透過側流路材の取扱性が向上し、例えば分離膜エレメントの製造工程の一つである、分離膜対を積層する工程での通過性が格段に良くなる。高結晶性ポリプロピレンの含有量は85質量%以下であることがより好ましく、75質量%以下であることが更に好ましい。
 一方、高結晶性ポリプロピレンの含有量を、突起物を構成する組成物中、20質量%以上とすることで、シートのカールが改善されるだけでなく、例えば本発明の分離膜エレメントを、2MPaを超えるような加圧条件で運転しても、突起物の圧縮変形を抑制でき、その結果、分離膜エレメント性能(特に造水性能)の低下を抑制でき、安定した性能を発現できる。圧縮変形量を抑制する点から、高結晶性ポリプロピレンの含有量は、45質量%以上であることがより好ましく、50質量%以上であることが更に好ましい。
 高結晶性ポリプロピレンとは、例えばプロピレン単独重合体;プロピレンランダム共重合体;プロピレンブロック共重合体等が挙げられ、これらを単独で、または2種以上混合して用いてもよい。また高結晶性ポリプロピレンの融点は140℃以上であることが好ましく、150℃以上であることがより好ましい。なお融点は、示差走査熱量計(DSC)にて測定される値である。たとえば、試料を、セイコーインスツルメンツ社製 熱機械分析装置TMA/SS-6000等の熱分析装置を用いて、プローブ:針入プローブ、測定荷重:10g、昇温速度:5℃/分の条件で評価に供することで融点を測定することができる。
 更には高結晶性ポリプロピレンのメルトフローレイト(MFR)は10~2000g/10分であることが好ましい。MFRをこのような範囲とすることで、透過側流路材の溶融成形が容易となる。また溶融成形温度を低く設定することが可能となり、その結果、溶融成形時の分離膜の熱による損傷や分離膜性能の低下を抑制でき、さらには分離膜の透過側の面への固着性が良好となる。高結晶性ポリプロピレンのMFRは30~1800g/10分であることがより好ましく、50~1500g/分であることが更に好ましい。なおMFRはJIS-K7200(1999)に則って230℃、荷重2.16kgの条件下で測定した値である。
 突起物の融解吸熱量(ΔH)は20~70J/gであるとよい。融解吸熱量(ΔH)が20~70J/gであることで、シートのカールを抑えつつ、かつ突起物のべたつきが抑制されるため、透過側流路材の工程通過性が良好である。
 突起物のΔHは、25~65J/gであることがより好ましく、30~60J/gであることが更に好ましい。なお融解吸熱量は、示差走査熱量計(DSC)にて測定される数値である。例えば、パーキンエルマー社製示差走査熱量計DSC-7型を用いて測定し、試料10mgを、昇温速度10℃/分にて20℃から220℃まで昇温し、220℃で10分間保持した後、降温速度10℃/分にて20℃まで降温させる測定において、降温した際に観測される、結晶化に基づく発熱量とすることができる。
 さらに、突起物を構成する組成物には、低結晶性α-オレフィン系ポリマーを含むことが好ましく、その含有量は、突起物を構成する組成物中、5~60質量%であることが好ましい。
 本発明の低結晶性α-オレフィン系ポリマーとは、非晶性または低結晶性のα-オレフィン系ポリマーであり、例えばアタクチックポリプロピレンや立体規則性が低いアイソタクチックポリプロピレン等の低結晶性ポリプロピレン;エチレンおよび炭素数3~20のα-オレフィンからなる群から選ばれたエチレン・α-オレフィン共重合体(炭素数3~20のα-オレフィンとしては、直鎖状及び分岐状のα-オレフィンが含まれ、具体的には、直鎖状のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン等が例示され、分岐状のα-オレフィンとしては、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2-エチル-1-ヘキセン、2,2,4-トリメチル-1-ペンテン等が挙げられる);市販品として、三井化学株式会社製「タフマー」、住友化学株式会社製「タフセレン」等のプロピレン・オレフィン共重合体等を例示できる。本発明においては、これらのうち1種または2種以上を用いることができる。なかでも低結晶性α-オレフィン系ポリマーとしては、高結晶性ポリプロピレンとの良好な相溶性、汎用性、シートのカール改善効果等の観点から、低結晶性ポリプロピレンおよびプロピレン・オレフィン共重合体がより好ましい。
 低結晶性α-オレフィン系ポリマーの含有量は、突起物を構成する組成物の全量に対して、5~60質量%であることが好ましい。低結晶性α-オレフィン系ポリマーの含有量を5質量%以上とすることで、突起物に柔軟性を付与でき、また高結晶性ポリプロピレンの結晶化速度を遅延させることができ、その結果、シートのカールを抑制できる。一方、低結晶性α-オレフィン系ポリマーの含有量が60質量%を超えると、シートのカールを大きく改善できるものの、突起物の柔軟性が著しく高くなり、例えば2MPaを超えるような加圧条件で運転すると、突起物の圧縮変形量が大きくなり、その結果、流路閉塞によって、分離膜エレメント性能(特に造水性能)が大きく低下する場合がある。低結晶性α-オレフィン系ポリマーの含有量は、突起物の柔軟性および加圧下における圧縮変形性の点から、10~55質量%であることがより好ましく、15~50質量%であることが更に好ましい。
 また本発明において、突起物には、発明の目的を損なわない範囲で、熱流動性向上剤、フィラー、酸化防止剤、滑剤等の添加剤を1種類あるいは2種類以上含んでいてもよい。
 熱流動性向上剤としては、例えば、ポリエチレンワックス、ポリプロピレンワックス、アタクチックポリプロピレンワックス、フィッシャー・トロプシュワックス等の合成ワックス;パラフィンワックス、マイクロワックス等の石油ワックス;カルナウバロウ、ミツロウ等の天然ワックス;ロジン、水添ロジン、重合ロジン、ロジンエステル等のロジン系樹脂;テルペン、水素化テルペン、芳香族変性テルペン、芳香族変性水素化テルペン等のテルペン系樹脂;出光興産株式会社製「アイマーブ」(商品名)、荒川化学工業株式会社製「アルコン」(商品名)、東ソー株式会社製「ペトコール」、「ペトロタック」(いずれも商品名)等の水素化石油樹脂等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上混合して用いてもよい。これらのうち、組成物の熱流動性向上効果、高結晶性ポリプロピレンとの相溶性、加熱溶融時の組成物の耐熱分解性の点から、合成ワックス、テルペン系樹脂、水素化石油樹脂が好ましい。またその含有量は、突起物を構成する組成物の溶融粘度を調整するため、適宜設定できるが、突起物の耐圧性低下や突起物表面へのブリードアウトの発生を防ぐことを考慮すると、突起物を構成する組成物中、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。
 酸化防止剤としては、フェノール系化合物;リン系化合物;ヒンダードアミン系化合物;イオウ系化合物等を例示できるが、これらに限定されない。またこれらを単独で、または2種以上を混合して用いてもよい。突起物の成形時、組成物の熱分解を抑制する点から、含有量は、突起物を構成する組成物に対して、0.001~1質量%であることが好ましい。
 滑剤としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド系化合物;ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸亜鉛等の金属せっけん;脂肪酸エステル系化合物等を例示できるが、これらに限定されない。また、これらを単独で、また2種以上を混合して用いてもよい。
 フィラーとしては、炭酸カルシウム、タルク、アルミナ、シリカ、マイカ、クレー等無機系化合物等を例示できるが、これらに限定されない。またこれらを単独で、また2種以上を混合して用いてもよい。突起物の成形性、組成物の増粘、加工装置の摩耗の点から、含有量は、突起物を構成する組成物に対して、3~30質量%であることが好ましい。
 本発明において、分離膜の透過側の面に固着する突起物の引張伸度は5%以上であることが好ましい。引張伸度が5%以上である場合、分離膜をロール搬送したり、巻取機に巻き取っても、突起物の破損や破壊を抑制でき、高品質な分離膜を得ることができ、またエレメント製造工程において、取扱性が良好となる。引張伸度は7%以上であることがより好ましく、10%以上であることが更に好ましい。また、引張伸度は、高いほど破壊に要するエネルギーが高くなり、靭性の点からは好ましいが、過度に高くすると、定応力下での変形量が大きくなってしまうため、300%以下が好ましく、200%以下がより好ましい。
 本発明において、突起物の引張弾性率は0.2~2.0GPaであることが好ましい。引張弾性率を0.2GPa以上とすることで、分離膜エレメントを2.0MPaを超えるような加圧条件下で運転しても、突起物の圧縮変形量を抑制でき、その結果、造水性能の低下を抑制できる。引張弾性率は、0.25GPa以上であることがより好ましく、0.30GPa以上であることが更に好ましい。引張弾性率は高ければ高いほど、加圧運転時の突起物の圧縮変形量を抑制できるが、実質的に2.0GPa以上を達成することは困難である。
<突起物の形状および配置>
<<概要>>
 従来広く用いられているトリコットは編み物であり、立体的に交差した糸で構成されている。つまり、トリコットは、二次元的に連続した構造を有している。このようなトリコットが透過側流路材として適用された場合、流路の高さはトリコットの厚みよりも小さくなる。すなわち、溝とならない割合が多い構造である。
 これに対して、本発明の構成の例として、図5等に示す突起物301が、シート302に配置されている。よって、突起物301の高さ(つまり厚み)が流路の溝の高さとして活用されるため、シートが薄く突起物が高いほど、本発明の突起物と同じ厚みを有するトリコットが適用された場合よりも、流路(突起物301の間の溝やシート302の表面開孔部)が広く存在するため、流動抵抗はより小さくなる傾向にある。
 また、図5~図7に示した形態では、不連続な複数の突起物301が、1つのシート302上に固着されている。「不連続」とは、複数の流路材が、間隔を置いて設けられている状態である。つまり、1枚の突起物301をシート302から剥離すると、互いに分かれた複数の突起物301が得られる。これに対して、ネット、トリコットおよびフィルム等の部材は、流路がシート302から分離されても、連続した一体の形状を示す。
 シート302上に不連続な複数の突起物301が設けられていることで、分離膜2は、後述の分離膜エレメント100に組み込まれたときに、圧力損失を低く抑えることができる。このような構成の一例として、図5では、突起物301は第1方向(シート302の幅方向)においてのみ不連続に形成されおり、図6では第1方向(シート302の幅方向)および第2方向(分離膜の長さ方向)のいずれにおいても不連続に形成されている。
 図5および図6において、隣接する突起物301の間の空間に、透過側流路5が形成される。
 突起物301は、図5に示す形態では、第1方向において不連続に設けられると共に、第2方向において、シート302の一端から他端まで連続するように設けられる。つまり、図8のように分離膜エレメントに透過側流路材31が組み込まれたときに、突起物301は、巻回方向におけるシート302の内側端部から外側端部まで連続するように配置される。巻回方向の内側とは、分離膜において集水管6に近い側であり、巻回方向の外側とは、分離膜において集水管6から遠い側である。
 突起物が「第2方向において連続する」とは、図5のように突起物301が途切れることなく設けられている場合と、図6のように、突起物301が途切れる箇所はあるが、突起物301が実質的に連続している場合の両方を包含する。「実質的に連続する」形態とは、好ましくは、図6に示すように、第2方向における突起物301の間隔e(つまり突起物301において途切れている部分の長さ)が5mm以下であることを満たす。特に、間隔eは、1mm以下を満たすことがより好ましく、0.5mm以下であることがさらに好ましい。また、第2方向において並ぶ一列の突起物301の先頭から最後尾までに含まれる間隔eの合計値が、100mm以下であることが好ましく、30mm以下であることがより好ましく3mm以下であることがさらに好ましい。なお、図5の形態では、間隔eは0(ゼロ)である。
 図5のように突起物301が第2方向に途切れずに設けられている場合、加圧ろ過時に膜落ち込みが抑制される。膜落ち込みとは、分離膜が流路に落ち込んで流路を狭めることである。
 図6では、突起物301は、第1方向だけでなく第2方向においても不連続に設けられている。つまり、突起物301は、長さ方向において間隔をおいて設けられている。ただし、上述したように、突起物301が第2方向において実質的に連続していることで、膜落ち込みが抑制される。しかしながら、このように、2つの方向において不連続な突起物301が設けられることで、突起物と流体との接触面積が小さくなるので圧力損失が小さくなる。この形態は、透過側流路5が分岐点を備える構成であるとも言い換えられる。つまり、図6の構成において、透過流体は、透過側流路5を流れながら、突起物301やシート302によって分けられ、さらに下流で合流することができる。
 上述したように、図5では、突起物301が、第2方向においてシート302の一端から他端まで連続するように設けられている。また、図6では第2方向において突起物301は複数の部分に分割されているが、これらの複数の部分が、シート302の一端から他端まで並ぶように設けられている。
 突起物が「シートの一端から他端まで設けられている」とは、突起物301がシート302の縁まで設けられている形態と、縁近傍において突起物301が設けられていない領域がある形態との両方を包含する。つまり、突起物301は、分離膜の透過側の面における流路を形成できる程度に、第2方向に渡って分布していればよく、シート302において、突起物301が設けられない部分があってもよい。例えば、分離膜の透過側の面において、分離膜と接着された部分(接触部分と言い換えられる。)には、突起物301が設けられる必要はない。また、その他の仕様上または製造上の理由により、分離膜の端部などの一部の箇所に、突起物301が配置されない領域が設けられていてもよい。
 第1方向においても、突起物301は、シート302の全体にわたってほぼ均等に分布することができる。ただし、第2方向における分布と同様に、分離膜の透過側の面における分離膜との接着部分には、突起物301が設けられる必要はない。また、その他の仕様上または製造上の理由により、シート302の端部などの一部の箇所に、突起物301が配置されない領域が設けられていてもよい。
<<突起物の寸法>>
 図5~図7において、a~fは下記値を指す。
 a:分離膜の長さ
 b:分離膜の幅方向における突起物301の間隔
 c:突起物301の高さ(突起物301の最も高い部分とシートの突起物301固定面との高低差)
 d:突起物301の幅
 e:分離膜の長さ方向における突起物301の間隔
 f:突起物301の長さ
 値a、b、c、d、e、fの測定には、例えば、市販の形状測定システムまたはマイクロスコープなどを用いることができる。各値は、1枚の分離膜において30箇所以上で測定を行い、それらの値を総和した値を測定総箇所の数で割って平均値を算出することで求められる。このように、少なくとも30箇所における測定の結果得られる各値が、以下に記載する範囲を満たせばよい。
(分離膜の長さa)
 長さaは、第2方向(分離膜の長さ方向)における分離膜2の一端から他端までの距離である。この距離が一定でない場合、1枚の分離膜2において30箇所以上の位置でこの距離を測定し、平均値を求めることで長さaを得ることができる。
(分離膜の幅方向における突起物の間隔b)
 第1方向(分離膜の幅方向)において隣接する突起物301の間隔bは、透過側流路5の幅に相当する。1つの断面において1つの透過側流路5の幅が一定でない場合、つまり隣り合う2つの突起物301の側面が平行でない場合は、1つの断面内で、1つの透過側流路5の幅の最大値と最小値の平均値を測定し、その平均値を算出する。図7に示すように、第2方向に垂直な断面において、突起物301は上が細く下が太い台形状を示す場合、まず、隣接する2つの突起物301の上部間の距離と下部間の距離を測定して、その平均値を算出する。任意の30箇所以上の断面において、隣接する2つの突起物301の間隔を測定して、それぞれの断面において平均値を算出する。そして、こうして得られた平均値の相加平均値をさらに算出することで、間隔bが算出される。
 間隔bが大きくなるにつれて圧力損失が小さくなるものの、膜落ち込みが生じやすくなる。逆に間隔bが小さいほど膜落ち込みが生じにくくなるが、圧力損失は大きくなる。圧力損失を考慮すると、間隔bは0.05mm以上が好ましく、より好ましくは0.2mm以上、さらに好ましくは0.3mm以上である。また、膜落ち込みの抑制という面では、間隔bは5mm以下が好ましく、より好ましくは3mm以下、さらに好ましくは2mm以下、特に好ましくは0.8mm以下である。
 これらの上限および下限は任意に組み合わせられる。例えば、間隔bは、0.05mm以上5mm以下であることが好ましく、この範囲であれば、膜落ち込みを抑えながら圧力損失を小さくすることができる。間隔bはより好ましくは、0.05mm以上3mm以下であり、さらに好ましくは0.2mm以上2mm以下であり、特に好ましくは0.3mm以上0.8mm以下である。
(突起物の高さc)
 高さcとは、突起物とシート302の表面との高低差である。図7に示すように、高さcは、第2方向に垂直な断面における、突起物301の最も高い部分とシート302の突起物301が固定された面との高さの差である。すなわち、突起物301の高さとしては、シート302中に含浸している部分の厚みは考慮しない。高さcは、30箇所以上の突起物301について高さを測定し、平均して得られる値である。突起物の高さcは、同一の平面内における流路材の断面の観察によって得られてもよいし、複数の平面における流路材の断面の観察によって得られてもよい。
 高さcは、分離膜エレメントの使用条件および目的などに応じて適宜選択できるが、例えば以下のように設定されてもよい。
 高さcが大きい方が流動抵抗は小さくなる。よって、高さcは0.03mm以上が好ましく、より好ましくは0.05mm以上、さらに好ましくは0.1mm以上である。その一方で、高さcが小さい方が、1つの分離膜エレメント当たりに充填される膜の数が多くなる。よって、高さcは、0.8mm以下が好ましく、より好ましくは0.4mm以下、さらに好ましくは0.32mm以下である。これらの上限および下限は組み合わせ可能であり、例えば、高さcは、0.03mm以上0.8mm以下(30μm以上800μm以下)であることが好ましく、0.05mm以上0.4mm以下であることがより好ましく、0.1mm以上0.32mm以下であることがさらに好ましい。
 また、隣り合う2つの突起物の高さの差が小さいことが好ましい。高さの差が大きいと加圧ろ過時に分離膜の歪みが生じるので、分離膜に欠陥が発生することがある。隣接する2つの突起物の高低差は、0.1mm以下(100μm以下)であることが好ましく、0.06mm以下であることがより好ましく、0.04mm以下であることがさらに好ましい。
 同様の理由から、シート302に設けられた全ての突起物301の最大高低差は0.25mm以下であることが好ましく、より好ましくは0.1mm以下であり、さらに好ましくは0.03mm以下である。
(流路材の幅d)
 突起物301の幅dは、次のように測定される。まず、第1方向(分離膜の幅方向)に垂直な1つの断面において、1つの突起物301の最大幅と最小幅の平均値を算出する。つまり、図7に示すような上部が細く下部が太い突起物301においては、流路材下部の幅と上部の幅を測定し、その平均値を算出する。このような平均値を少なくとも30箇所の断面において算出し、その相加平均を算出することで、1枚の膜当たりの幅dを算出することができる。
 突起物301の幅dは、好ましくは0.2mm以上であり、より好ましくは0.3mm以上である。幅dが0.2mm以上であることで、分離膜エレメントの運転時に突起物301やシート302に圧力がかかっても、突起物の形状を保持することができ透過側流路が安定的に形成される。幅dは、好ましくは2mm以下であり、より好ましくは1.5mm以下である。幅dが2mm以下であることで、分離膜の透過側の面側の流路を十分確保することができる。
 突起物301の幅dが第2方向での突起物301の間隔bよりも広いことで、突起物にかかる圧力を分散することができる。
 突起物301は、その長さがその幅よりも大きくなるように形成されている。このように長い突起物301は「壁状物」とも称される。
(分離膜の長さ方向における突起物の間隔e)
 第2方向(分離膜の長さ方向)における突起物301の間隔eは、第2方向(分離膜の長さ方向)において隣り合う突起物301間の最短距離である。図5に示すように、突起物301が第2方向において分離膜2の一端から他端まで(分離膜エレメント内では、巻回方向の内側端部から外側端部まで)連続して設けられている場合、間隔eは0mmである。また、図6に示すように、突起物301が第2方向において途切れている場合、間隔eは、好ましくは5mm以下であり、より好ましくは1mm以下であり、さらに好ましくは0.5mm以下である。間隔eが上記範囲内であることで、膜落ち込みが生じても膜への機械的負荷が小さく、流路閉塞による圧力損失を比較的小さくすることができる。なお、間隔eの下限は、0mmである。
(突起物の長さf)
 突起物301の長さfは、分離膜の長さ方向(つまり第2方向)における突起物301の長さである。長さfは、1枚の分離膜内で、30個以上の突起物301の長さを測定し、その平均値を算出することで求められる。突起物301の長さfは、分離膜の長さa以下であればよい。突起物301の長さfが分離膜の長さaと同等のときは、突起物301が分離膜の巻回方向内側端部から外側端部へ連続的に設けられていることを指す。長さfは、好ましくは10mm以上であり、より好ましくは20mm以上である。長さfが10mm以上であることで、圧力下でも流路が確保される。
(突起物の形状)
 突起物301の形状は特に限定されないが、流路の流動抵抗を少なくし、透過させた際の流路を安定化させるような形状が選択され得る。これらの点で、分離膜の面方向に垂直ないずれかの断面において、突起物301の形状は、直柱状や台形状、曲柱状、あるいはそれらの組み合わせでもよい。
 突起物301の断面形状が台形の場合、上底の長さと下底の長さとの差が大きすぎると、小さい方に接する膜で加圧ろ過時の膜落込みが生じやすくなる。例えば、流路材の上底の方が下底よりも短い場合、その間の流路においては、上部の幅は下部の幅よりも広い。よって、上の膜が下に向かって落ち込みやすい。そこで、このような落ち込みを抑制するために、流路材の下底の長さに対する上底の長さの比率は0.6以上1.4以下が好ましく、0.8以上1.2以下がさらに好ましい。
 突起物301の形状は、流動抵抗を低減する観点から、分離膜表面に対して垂直な直柱状であることが好ましい。また、突起物301は、高い箇所ほど幅が小さくなるように形成されていてもよいし、逆に高い箇所ほど幅が広くなるように形成されていてもよいし、分離膜表面からの高さによらず、同じ幅を有するように形成されていてもよい。
 ただし、加圧ろ過時の突起物の潰れが著しくない範囲であれば、突起物301の断面において、その上辺が丸みを帯びていてもよい。
 突起物301は熱可塑性樹脂で形成可能である。突起物301が熱可塑性樹脂であれば、処理温度および選択する熱可塑性樹脂の種類を変更することで、要求される分離特性や透過性能の条件を満足できるように自由に流路材の形状を調整することができる。
 また、突起物301の分離膜の平面方向における形状は、図5および図6に示すように、全体として直線状であってもよく、その他の形状として、例えば曲線状、鋸歯状、波線状であってもよい。また、これらの形状において、突起物301は破線状やドット状であってもよい。流動抵抗を低減する観点からドット状や破線状が好ましいが、突起物が途切れるために加圧ろ過時の膜落ち込みが発生する箇所が多くなるため、用途に応じて適宜設定すればよい。
 また、突起物301のシート302の平面方向における形状が直線状である場合、隣り合う突起物は、互いに略平行に配置されていてもよい。「略平行に配置される」とは、例えば、突起物が分離膜上で交差しないこと、隣り合う2つの突起物の長手方向のなす角度が0°以上30°以下であること、上記角度が0°以上15°以下であること、及び上記角度が0°以上5°以下であること等を包含する。
 また、突起物301の長手方向と集水管6の長手方向との成す角度は、60°以上120°以下であることが好ましく、75°以上105°以下であることがより好ましく、85°以上95°以下であることがさらに好ましい。突起物の長手方向と集水管の長手方向との成す角度が上記範囲であることで、透過水が効率良く集水管に集められる。
 流路を安定して形成するには、分離膜エレメントにおいて分離膜が加圧されたときの分離膜の落ち込みを抑制できることが好ましい。そのためには、分離膜と突起物との接触面積が大きいこと、つまり分離膜の面積に対する突起物の面積(分離膜の膜面に対する突起物の投影面積)が大きいことが好ましい。一方で、圧力損失を低減させるには、流路の断面積が広いことが好ましい。流路の断面としては、流路の長手方向に対して垂直な分離膜と突起物との接触面積を大きく確保しつつ、かつ流路の断面積を広く確保するには、流路の断面形状は凹レンズ状であることが好ましい。また、突起物は、巻回方向に垂直な方向での断面形状において、幅に変化のない直柱状であってもよい。また、分離膜性能に影響を与えない範囲内であれば、突起物は、巻回方向に垂直な方向での断面形状において、幅に変化があるような台形状の壁状物、楕円柱、楕円錐、四角錐あるいは半球のような形状であってもよい。
 突起物301の形状は、図5~図7に示す形状に限定されるものではない。シート302に、例えばホットメルト法のように、溶融した材料を固着させることで突起物を配置する場合は、処理温度や選択するホットメルト用樹脂の種類を変更することで、要求される分離特性および透過性能の条件を満足できるように、突起物301の形状を自由に調整することができる。
 図5では、突起物301の平面形状は、長さ方向において直線状である。ただし、突起物301は、分離膜2の表面に対して凸であり、かつ分離膜エレメントとしての所望の効果が損なわれない範囲であれば、他の形状に変更可能である。すなわち、突起物の平面方向における形状は、曲線状および波線状等であってもよい。また、1つの分離膜に含まれる複数の突起物が、幅および長さの少なくとも一方が互いに異なるように形成されていてもよい。
(投影面積比)
 分離膜の透過側の面に対する突起物301の投影面積比は、特に透過側流路の流動抵抗を低減し、流路を安定に形成させる点では、0.03以上0.85以下であることが好ましく、0.15以上0.85以下であることがより好ましく、0.2以上0.75以下であることがさらに好ましく、0.3以上0.6以下であることが特に好ましい。なお、投影面積比とは、分離膜と透過側流路材を5cm×5cmで切り出し、透過側流路材を分離膜の面方向に平行な平面に投影した時に得られる流路材の投影面積を、切り出し面積(25cm)で割った値である。
(欠点率)
 図8に示すように、分離膜2を透過した水は透過側流路5を通過して集水管6に集められる。分離膜2において、集水管6から遠い領域、つまり巻回方向外側の端部近傍の領域(図8における右側端部に近い領域)を透過した水は、集水管6に向かう間に、巻回方向において、より内側の領域を透過した水と合流し、集水管6へ向かう。よって、透過側流路5においては、集水管6から遠い方が、存在する水量が少ない。
 そのため、巻回方向外側の端部近傍の領域において、透過側流路材31が存在せず、その領域での流動抵抗が高くなっても、分離膜エレメント全体の造水量に与える影響は軽微である。同様の理由で、巻回方向外側の端部近傍の領域において、突起物の形成精度が低く、突起物を形成する樹脂が第1方向(分離膜の幅方向)において連続して塗布されていても、分離膜エレメントとしての造水量に与える影響は小さい。この領域において、分離膜の面方向(x-y平面)において、突起物を形成する樹脂が隙間無く塗布されている場合も同様である。
 図9は、透過側流路材31の巻回方向外側の端部を、突起物301の長さ方向に切断した断面図である。図9において、シート302に突起物301が固着され、該突起物301は、透過側流路材31の巻回方向外側端部の手前まで延在している。なお、図9では説明の便宜上、突起物301が長さ方向に連続に設けられている形態を示しているが、突起物301として上述の種々の形態が適用されることは、すでに述べたとおりである。
 図9において、突起物301が設けられている領域をR2、突起物301(透過側流路材)が設けられていない領域をR3で示している。つまり、領域R2は透過側流路が形成されている領域である。また分離膜2のMD方向の長さをL1、突起物301のMD方向の長さ(すなわち領域R2の長さ)をL2、突起物301が存在しない領域R3のMD方向の長さをL3で示している。ここでMD方向は、分離膜の長さ方向および分離膜の巻回方向を表す。
 図9に示すように、透過側流路材31におけるシートの巻回方向外側の端部から突起物301の巻回方向外側の端部までの距離、つまり、分離膜2の巻回方向外側端部に設けられた領域であって、透過側流路が形成されていない領域である、領域R3の第2方向(分離膜の長さ方向)における長さL3が、透過側流路材31の第2方向における長さL1(上述の“分離膜の長さa”に相当する。)に対して占める割合は、0%以上30%以下が好ましく、0%以上10%以下がさらに好ましく、0%以上3%以下が特に好ましい。この割合を欠点率と称する。
 欠点率は、(L3/L1)×100(%)で表される。
 なお、図9では説明の便宜上、領域R3に突起物301が設けられていない形態を示している。ただし、領域R3は、幅方向に連続な突起物が設けられた領域であってもよい。
〔2.分離膜エレメント〕
(2-1)概要
 図8に示すように、分離膜エレメント100は、集水管6と、上述したいずれかの構成を備えて集水管6の周囲に巻回された分離膜2を備える。
(2-2)分離膜
<概要>
 図8に示すように、分離膜2は、集水管6の周囲に巻回されており、分離膜2の幅方向が集水管6の長手方向に沿うように配置される。その結果、分離膜2は、長さ方向が巻回方向に沿うように配置される。
 よって、図8に示すように、突起物301は、分離膜2の透過側の面22において、少なくとも集水管6の長手方向に対して不連続状に配置される。つまり、透過側流路5は、巻回方向において分離膜の外側端部から内側端部まで連続するように形成される。その結果、透過水が中心の集水管6へ到達し易く、すなわち流動抵抗が小さくなるので、大きな造水量が得られる。
 「巻回方向の内側」及び「巻回方向の外側」は、図8に示す通りである。つまり、「巻回方向の内側端部」及び「巻回方向の外側端部」とはそれぞれ、分離膜2において集水管6に近い方の端部、及び遠い方の端部に該当する。
 上述したように、突起物は分離膜の縁まで達していなくてもよいので、例えば、図8において、巻回方向における封筒状膜(分離膜2)の外側端部、及び集水管長手方向における封筒状膜(分離膜2)の端部では、突起物が設けられていなくてもよい。
<封筒状膜>
 本発明において、図1に示すように、分離膜2は分離膜エレメントに組み込まれる際に、分離膜2の透過側の面22同士が対向するように配置された分離膜対1を形成する。
 本発明の一実施形態において、供給側の面21が対向するようにして折り曲げられた分離膜2(膜リーフ4)が重ねられることで、一方の分離膜2の透過側の面22に他の分離膜2の透過側の面22が対向するように配置されることで、封筒状膜が形成される。封筒状膜は、向かい合う透過側の面が対向するように配置された2枚1組の分離膜対である。封筒状膜は長方形状であり、透過水が集水管6に流れるように、透過側の面の間が分離膜の長方形状において、巻回方向内側の一辺のみにおいて開放され、他の三辺においては封止される。透過水はこの封筒状膜によって原水から隔離される。
 封止としては、接着剤またはホットメルトなどにより接着されている形態、加熱またはレーザーなどにより融着されている形態、およびゴム製シートが挟みこまれている形態が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましい。
 また、分離膜の供給側の面において、巻回方向における内側端部は、折りたたみ又は封止により閉じられている。分離膜の供給側面が、折り畳まれているのではなく封止されていることで、分離膜の端部における撓みが発生しにくい。折り目近傍での撓みの発生が抑制されることで、巻囲したときに分離膜間での空隙の発生およびこの空隙によるリークの発生が抑制される。
 こうしてリークの発生が抑制されることで、封筒状膜の回収率が向上する。封筒状膜の回収率は、次のように求められる。すなわち、水中で分離膜エレメントのエアリークテスト(air leak test)を行って、リークが発生した封筒状膜数をカウントする。そのカウント結果に基づいて、(エアリークが発生した封筒状膜の数/評価に供した封筒状膜の数)の比率を、封筒状膜の回収率として算出する。
 具体的なエアリークテストの方法は、以下のとおりである。分離膜エレメントの中心パイプの端部を封止し、もう一方の端部から空気を注入する。注入された空気は集水管の孔を通過して分離膜の透過側に到達するが、上記のように分離膜の折りたたみが不十分で折り目近傍で撓みが生じたりして空隙が存在すると、空気がその空隙を移動してしまう。その結果、分離膜の供給側へ空気が移動し、分離膜エレメントの端部(供給側)から水中に空気が到達する。このようにエアリークを気泡の発生として確認することができる。
 折り畳みによって膜リーフを形成する場合、リーフが長いほど(つまり元の分離膜が長いほど)分離膜の折りたたみに要する時間は長い。しかし、分離膜の供給側面を、折り畳みでなく封止することで、リーフが長くても製造時間の増大を抑制することができる。
 なお、膜リーフおよび封筒状膜において、互いに対向する分離膜は、同じ構成を備えてもよいし、異なる構成を備えてもよい。すなわち、分離膜エレメントにおいて、向かい合う透過側の面のうち、少なくとも一方に上述の透過側流路材が設けられていればよいので、透過側流路材を備える分離膜と、透過側流路材を備えない分離膜とが交互に重ねられていてもよい。ただし、説明の便宜上、分離膜エレメントおよびそれに関係する説明においては、「分離膜」は、透過側流路材を備えない分離膜(たとえば分離膜と同じ構成を備える膜)を含む。
 分離膜の透過側の面において、または供給側の面において、互いに対向する分離膜は、2枚の異なる分離膜であってもよいし、1枚の膜が折りたたまれたものであってもよい。
(2-3)透過側流路
 上述したように、透過側流路材31において、シート302は突起物301を備えている。突起物301によって、封筒状膜の内側、つまり向かい合う分離膜の透過側の面の間には、透過側流路が形成される。
(2-4)供給側流路
(流路材)
 分離膜エレメント100は、図1に示したように、向かい合う分離膜2の供給側の面21の間に、分離膜2に対する投影面積比が0を超えて1未満となる供給側流路材32を備える。
 供給側流路材の投影面積比は0.03以上0.50以下であることが好ましく、さらに好ましくは0.10以上0.40以下、特に好ましくは、0.15以上0.35以下である。投影面積比が0.03以上0.50以下であることで、流動抵抗が比較的小さく抑えられる。なお、投影面積比とは、分離膜と供給側流路材を5cm×5cmで切り出し、供給側流路材を分離膜の面方向に平行な平面に投影した時に得られる流路材の投影面積を、切り出し面積(25cm)で割った値である。
 供給側流路材の高さ(厚み)は、後述するように各性能のバランスや運転コストを考慮すると0.5mmを超えて2.0mm以下が好ましく、0.6mm以上1.0mm以下がさらに好ましい。
 供給側流路材の形状は特に限定されず、連続形状を有していてもよいし、不連続な形状を有していてもよい。連続形状を有する流路材としては、フィルムおよびネットといった部材が挙げられる。ここで、連続形状とは、実質的に流路材の全範囲において連続であることを意味する。連続形状には、造水量が低下するなどの不具合が生じない程度に、流路材の一部が不連続となる箇所が含まれていてもよい。なお、「不連続」の定義については、上記<透過側の流路材>で説明したとおりである。なお、供給側流路材の材料は特に限定されず、分離膜と同素材であっても異素材であってもよい。
(2-5)集水管
 集水管6は、その中を透過水が流れるように構成されていればよく、材質、形状、大きさ等は特に限定されない。集水管6としては、例えば、複数の孔が設けられた側面を有する円筒状の部材が用いられる。
(2-6)第1形態
 より具体的な形態として、図10~図12に、第1~第3の形態の分離膜エレメント100A,100B,100Cを示す。
 図10は、第1形態の分離膜エレメント100Aを部分的に分解して示す説明図であり、集水管6の周りに、複数枚の分離膜2が巻回されている。また、分離膜エレメント100Aは、上述した構成に加えて、さらに以下の構成を備える。
 すなわち、分離膜エレメント100Aは、その両端(すなわち第1端および第2端)に孔付端板92を備える。また、分離膜エレメント100Aにおいて、巻囲された分離膜(以下、「巻囲体」と称する。)の外周面には、外装体81が巻囲されている。
 なお、後述の孔無し端板91は原水が通過可能な孔を備えていないのに対して、孔付端板92は、原水を通過させることができる複数の孔を備える。
 また、分離膜2は、封筒状膜11を形成しており、封筒状膜11の内側には、上述したとおり、突起物301が設けられた透過側流路材31が配置されている。封筒状膜11同士の間には、供給側流路材32が配置されている。
 なお、便宜上、図10~図12では、透過側流路材31の突起物301はドット形状として示されるが、上述したように透過側流路材の形状は、この形状に限定されない。
 次に、分離膜エレメント100Aを用いた水処理について説明する。分離膜エレメント100Aの第1端から供給された原水101は、端板92の孔を通って、供給側流路に流入する。こうして、分離膜2の供給側の面に接触した原水101は、分離膜2によって、透過水102と濃縮水103とに分離される。透過水102は、透過側流路を経て、集水管6に流入する。集水管6を通った透過水102は、分離膜エレメント100Aの第2端から分離膜エレメント100Aの外へと流出する。濃縮水103は、供給側流路を通って、第2端に設けられた端板92の孔から分離膜エレメント100Aの外部へ流出する。
(2-7)第2形態
 図11を参照して、第2形態の分離膜エレメント100Bについて説明する。なお、既に説明した構成要素については、同符号を付してその説明を省略する。
 分離膜エレメント100Bは、その第1端に配置され、かつ孔を有さない孔無し端板91と、第2端に配置され、かつ孔を有する孔付端板92とを備える。また、分離膜エレメント100Bは、巻囲された分離膜2の最外面にさらに巻き付けられた多孔性部材82を備える。
 多孔性部材82としては、原水を通過させることができる複数の孔を有する部材が用いられる。多孔性部材82に設けられたこれらの孔は、原水の供給口と言い換えられてもよい。多孔性部材82は、複数の孔を有していれば、その材質、大きさ、厚み、剛性等は、特に限定されるものではない。多孔性部材82として、比較的小さい厚みを有する部材を採用することで、分離膜エレメントの単位体積当たりの膜面積を増大させることができる。
 多孔性部材82の厚みは、例えば、1mm以下が好ましく、より好ましくは0.5mm以下、さらに好ましくは0.2mm以下である。また、多孔性部材82は、巻囲体の外周形状に沿うように変形することができる、柔軟性又は可撓性を有する部材であってもよい。より具体的には、多孔性部材82として、ネット、多孔性フィルム等が適用可能である。ネット及び多孔性フィルムは、巻囲体を内部に収容できるように筒状に形成されていてもよいし、長尺状であって、巻囲体の周囲に巻き付けられていてもよい。
 多孔性部材82は、分離膜エレメント100Bの外周面に配置される。多孔性部材82がこのように設けられることで、孔が分離膜エレメント100Bの外周面に設けられる。「外周面」とは、特に、分離膜エレメント100Bの外周面全体のうち、上述の第1端の面及び第2端の面を除く部分であるとも言える。本実施形態では、多孔性部材82は、巻囲体の外周面のほぼ全体を覆うように配置される。
 本実施形態によると、分離膜エレメント100Bの外周面(巻囲体の外周面)から多孔性部材82を介して原水が供給される。よって、分離膜エレメント100Bが繰り返し運転されても、又は分離膜エレメント100Bが高圧条件下で運転されても、巻囲された分離膜2等が長手方向に押し出されることによる巻囲体の変形(いわゆるテレスコープ)の抑制が可能である。さらに本実施形態では、原水が圧力容器(図示しない)と分離膜エレメントの間の隙間から供給されるので、原水の異常な滞留の発生が抑制される。
 分離膜エレメント100Bにおいては、第1端の端板が孔無し端板91なので、第1端の面からは、分離膜エレメント100B内に原水は流入しない。原水101は、分離膜2に対して、分離膜エレメント100Bの外周面から、多孔性部材82を介して供給される。こうして供給された原水101は、分離膜によって透過水102と濃縮水103に分けられる。透過水102は、集水管6を通って、分離膜エレメント100Bの第2端から取り出される。濃縮水103は、第2端の孔付端板92の孔を通って、分離膜エレメント100B外に流出する。
(2-8)第3形態
 図12を参照して、第3形態の分離膜エレメント100Cについて説明する。なお、既に説明した構成要素については、同符号を付してその説明を省略する。
 分離膜エレメント100Cは、その第1端および第2端にそれぞれ配置され、孔付端板92を備える以外は、第2形態のエレメントと同一である。また、分離膜エレメント100Cは、分離膜エレメント100Bと同様に、多孔性部材82を備える。
 この構成により、本実施形態では、原水101は、多孔性部材82の孔を通って分離膜エレメント100Cの外周面から巻囲体に供給されるだけでなく、第1端の孔付端板92の孔を通って、分離膜エレメント100Cの第1端から巻囲体に供給される。透過水102及び濃縮水103は、第1形態の分離膜エレメント100Aと同様に、第2端から分離膜エレメント100Cの外部に排出される。
 分離膜エレメント100Cの一端(つまり孔付端板92)だけでなく、分離膜エレメント100Cの外周面からも多孔性部材82を介して巻囲体に原水が供給されるので、巻囲体の変形の抑制が可能である。また、本形態においても、原水が圧力容器と分離膜エレメントの間の隙間から供給されるので、異常な滞留の発生が抑制される。
〔3.分離膜エレメントの製造方法〕
 分離膜エレメントの製造方法における各工程について、以下に説明する。
(3-1)分離膜の製造および後加工
 分離膜の製造方法については上述したが、簡単にまとめると以下のとおりである。
 良溶媒に樹脂を溶解し、得られた樹脂溶液を基材にキャストして純水中に浸漬して多孔性支持層と基材を複合させる。その後、上述したように、多孔性支持層上に分離機能層を形成する。さらに、必要に応じて分離性能、透過性能を高めるべく、塩素、酸、アルカリ、亜硝酸などの化学処理を施し、さらにモノマー等を洗浄し分離膜の連続シートを作製する。
 なお、化学処理の前または後で、エンボス等によって分離膜に凹凸を形成してもよいし、樹脂によって分離膜の透過側の面および/または供給側の面に、流路材を形成してもよい。
 分離膜に凹凸加工を施す場合は、エンボス成形、水圧成形、カレンダ加工といった方法で分離膜の供給側に高低差を付与することもできる。
 供給側流路がネット等の連続的に形成された部材である場合は、分離膜に透過側流路材が配置されることで分離膜が製造された後、この分離膜と供給側流路材とを重ね合わせればよい。
 突起物を配置する方法は、例えば、柔らかな材料をシート上に配置する工程と、それを硬化する工程とを備える。具体的には、突起物の配置には、熱可塑性樹脂、紫外線硬化樹脂、化学重合、ホットメルト、乾燥等が利用される。特に、熱可塑性樹脂やホットメルトは好ましく用いられ、具体的には、熱により樹脂等の材料を軟化する(つまり熱溶融する)工程、軟化した材料を分離膜上に配置する工程、この材料を冷却により硬化することでシート上に固着させる工程を含む。
 突起物を配置する方法としては、例えば、塗布、印刷、噴霧等が挙げられる。また、使用される機材としては、ノズル型のホットメルトアプリケーター、スプレー型のホットメルトアプリケーター、フラットノズル型のホットメルトアプリケーター、ロール型コーター、押出型コーター、印刷機、噴霧器などが挙げられる。
(3-2)膜リーフの形成
 膜リーフは、上述したように、供給側の面が内側を向くように分離膜を折りたたむことで形成されてもよいし、別々の2枚の分離膜を、供給側の面が向かい合うように貼り合わせることで形成されてもよい。
 分離膜エレメントの製造方法は、分離膜の巻回方向における内側端部を、供給側の面において封止する工程を備えることが好ましい。封止する工程においては、2枚の分離膜を、互いの供給側の面が向かい合うように重ねる。さらに、重ねられた分離膜の巻回方向における内側端部、つまり図8における左側端部を、透過水が集水管6に流入可能なように封止する。
 「封止」する方法としては、接着剤またはホットメルトなどによる接着、加熱またはレーザーなどによる融着、およびゴム製シートを挟みこむ方法が挙げられる。接着による封止は、最も簡便で効果が高いために特に好ましい。
 このとき、重ねられた分離膜の供給側の面同士の間に、分離膜とは別に形成された供給側流路材を配置してもよい。上述したように、エンボスまたは樹脂塗布等によって分離膜の供給側の面にあらかじめ高低差を設けることで、供給側流路材の配置を省略することもできる。
 供給側の面の封止と透過側の面の封止(封筒状膜の形成)とは、どちらかが先に行われてもよいし、分離膜を重ねながら、供給側の面の封止と透過側の面の封止とを並行して行ってもよい。ただし、巻回時における分離膜でのシワの発生を抑制するためには、隣り合う分離膜が巻回によって長さ方向にずれることを許容するように、幅方向端部における接着剤またはホットメルトの固化等、つまり封筒状膜を形成するための固化等を、巻回の終了後に完了させることが好ましい。
(3-3)封筒状膜の形成
 1枚の分離膜を透過側面が内側を向くように折り畳んで、かつ対向する分離膜の間に上述の突起物を備えるシート(透過側流路材)を挟んで、貼り合わせることで、または2枚の分離膜を透過側面が内側を向くように重ねて、かつ一枚の分離膜ともう一枚の分離膜の間に上述の突起物を備えるシート(透過側流路材)を挟んで貼り合わせることで、封筒状膜を形成することができる。長方形状の封筒状膜においては、長さ方向の一端のみが開口するように、他の3辺を封止する。封止は、接着剤またはホットメルト等による接着、熱またはレーザーによる融着等により実行できる。
 このとき、封止されている部分では、分離膜の間にシートが存在してもよいし、シートは分離膜の封止部分より内側に配置されていてもよい。
 封筒状膜の形成に用いられる接着剤は、粘度が40P(ポアズ)以上150P(ポアズ)以下の範囲内であることが好ましく、さらに50P(ポアズ)以上120P(ポアズ)以下がより好ましい。接着剤粘度が高すぎる場合には、積層したリーフを集水管に巻囲するときに、しわが発生し易くなる。しわは、分離膜エレメントの性能を損なうことがある。逆に、接着剤粘度が低すぎる場合には、リーフの端部から接着剤が流出して装置を汚すことがある。また、接着すべき部分以外に接着剤が付着すると、分離膜エレメントの性能が損なわれると共に、流出した接着剤の処理作業により作業効率が著しく低下する。
 接着剤の塗布量は、膜リーフを集水管に巻囲した後に、接着剤が塗布される部分の幅が10mm以上100mm以下であるような量であることが好ましい。これによって、分離膜が確実に接着されるので、原水の透過側への流入が抑制される。また、分離膜エレメントの有効膜面積も比較的大きく確保することができる。
 接着剤としてはウレタン系接着剤が好ましく、粘度を40P(ポアズ)以上150P(ポアズ)以下の範囲とするには、主剤のイソシアネートと硬化剤のポリオールとを、イソシアネート/ポリオールの重量比率が1/5以上1以下となるように混合したものが好ましい。接着剤の粘度は、予め主剤、硬化剤単体、及び配合割合を規定した混合物の粘度をB型粘度計(JIS K 6833)で測定したものである。
 封止部分にシートが存在する場合、シート内に染みこんだ接着剤によって、シートを介して分離膜同士が接着することができる。また、封止部分にはシートがない場合は、分離膜は直接貼り合わされる。
(3-4)分離膜の巻回
 分離膜エレメントの製造には、従来のエレメント製作装置を用いることができる。また、エレメント作製方法としては、参考文献(日本国特公昭44-14216号公報、日本国特公平4-11928号公報、日本国特開平11-226366号公報)に記載される方法を用いることができる。詳細は以下の通りである。
 集水管の周囲に分離膜を巻回するときは、分離膜を、リーフの閉じられた端部、つまり封筒状膜の閉口部分が集水管を向くように配置する。このような配置で集水管の周囲に分離膜を巻きつけることで、分離膜をスパイラル状に巻回する。
 集水管にトリコットや基材のようなスペーサーを巻回しておくと、分離膜エレメント巻囲時に集水管へ塗布した接着剤が流動し難く、リークの抑制につながり、さらには集水管周辺の流路が安定に確保される。なお、スペーサーは集水管の円周より長く巻回しておけばよい。
(3-5)その他の工程
 分離膜エレメントの製造方法は、上述のように形成された分離膜の巻回体の外側に、フィルムおよびフィラメント等をさらに巻きつけることを含んでいてもよいし、集水管の長手方向における分離膜の端を切りそろえるエッジカット、端板の取り付け等のさらなる工程を含んでいてもよい。
〔4.分離膜エレメントの利用〕
 分離膜エレメントは、さらに、直列または並列に接続して圧力容器に収納されることで、分離膜モジュールとして使用されてもよい。
 また、上記の分離膜エレメント、分離膜モジュールは、それらに流体を供給するポンプや、その流体を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、例えば原水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 流体分離装置の操作圧力は高い方が除去率は向上するが、運転に必要なエネルギーも増加すること、また、分離膜エレメントの供給流路、透過流路の保持性を考慮すると、膜モジュールに被処理水を透過する際の操作圧力は、0.2MPa以上5MPa以下が好ましい。原水温度が高くなると塩除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上45℃以下が好ましい。また、原水のpHが中性領域にある場合、原水が海水などの高塩濃度の液体であっても、マグネシウムなどのスケールの発生が抑制され、また、膜の劣化も抑制される。
 分離膜エレメントによって処理される流体は特に限定されないが、水処理に使用する場合、原水としては、海水、かん水、排水等の500mg/L以上100g/L以下のTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」で表されるが、1Lを1kgと見なして「重量比」で表されることもある。定義によれば、0.45μmのフィルターで濾過した溶液を39.5℃以上40.5℃以下の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
(シートの厚みおよび突起物の高さ)
 シートの厚みと突起物の高さはキーエンス社製高精度形状測定システムKS-1100で測定した。具体的には、突起物の高さは、キーエンス社製高精度形状測定システムKS-1100を用い、5cm×5cmの透過側の測定結果から平均の高低差を解析した。10μm以上の高低差のある30箇所を測定し、各高さの値を総和した値を測定総箇所(30箇所)の数で割って求めた値を突起物の高さとした。
(透過側流路材のピッチおよび間隔、幅、長さ)
 キーエンス社製高精度形状測定システムKS-1100を用い、分離膜の透過側における流路材の頂点から、隣の流路材の頂点までの水平距離を200箇所について測定し、その平均値をピッチとして算出した。
 また、間隔b、間隔e、幅d、長さfについては、ピッチを測定した写真において、上述の方法で測定した(図5および図6参照)。
(密溶着部間のピッチ)
 キーエンス社製高精度形状測定システムKS-1100を用い、ある密溶着部の重心位置と、この密溶着部に隣接する別の密溶着部の重心位置との水平距離を50箇所について測定した。
(スキャニング法による密溶着率および表面開孔率)
 50mm×50mmにカットした透過側流路材をデジタルスキャナー(キャノン株式会社製CanoScan N676U)で、突起物が固着した面についてスキャンし、得られたデジタル画像を画像解析ソフト(ImageJ)で解析した。得られた画像の突起物が固着していない領域について、密溶着率または表面開孔率(%)=100×(密溶着部または開孔部の面積/切り出し面積)として算出した。この操作を50回繰り返し、その平均値を密溶着率または表面開孔率とした。
(マイクロスコープ法による密溶着率および表面開孔率)
 キーエンス社製高精度形状測定システムKS-1100を用い、倍率100倍で透過側流路材突起物が固着した面から撮影し、テクスチャの数値をゼロにして画像を白黒化した。得られたデジタル画像を画像解析ソフト(ImageJ)で解析した。得られた画像の突起物が固着していない領域について、密溶着率または表面開孔率(%)=100×(密溶着部または開孔部の面積/切り出し面積)として算出した。この操作を30回繰り返し、その平均値を密溶着率または表面開孔率とした。
(空隙率)
 乾燥したサンプルの見かけ体積(cm)を測定し、続いてそのサンプルに純水を含ませて重量を測定した。水を含んだサンプル重量からサンプルの乾燥時の重量を差し引いた値、つまり基材の空隙に入り込んだ水の重量(g:すなわち水の体積cm)を算出し、サンプルの見かけ体積で除した百分率(%)として、空隙率を得た。
(面の算術平均高さ)
 透過側流路材の突起物が配置されている面と、表裏反対側の面について、キーエンス社製ワンショット3D測定マクロスコープを用いて、下記の条件で任意の30箇所を測定し、得られた面の算術平均高さの平均値とした。
 測定倍率:40倍
 測定範囲:5mm×5mm
 フィルター:ガウシアン
 終端効果の補正:有効
 Sフィルター:なし
 Lフィルター:0.8mm
(造水量)
 分離膜または分離膜エレメントについて、供給水として、濃度1,000mg/L、pH6.5のNaCl水溶液を用い、運転圧力0.7MPa、温度25℃の条件下で100時間運転した後に10分間のサンプリングを行い、膜の単位面積あたり、かつ1日あたりの透水量(立方メートル)を造水量(m/日)として表した。
(脱塩率(TDS除去率))
 造水量の測定における10分間の運転で用いた原水およびサンプリングした透過水について、TDS濃度を伝導率測定により求め、下記式からTDS除去率を算出した。
  TDS除去率(%)=100×{1-(透過水中のTDS濃度/原水中のTDS濃度)}
(剥離率)
 シートに突起物が固着した透過側流路材について、片刃を用いてCD方向に5m/minにて裁断し、突起物の総数に対するシートから剥離したストライプの本数との比を算出して剥離率とした。なお、剥離率は本評価を100回実施し、その平均値とした。
(欠点率)
 全ての壁状物に対して分離膜の長さL1と、分離膜の長さに対して集水管から遠方の端部から壁状物が存在しない距離または一面に塗布されている長さL3を測定し、欠点率(%)=L3/L1×100の式に基づいて算出した上で、1個の壁状物当たりの平均値を求めた。以下、得られた平均値を「欠点率」と表記する。
(実施例1)
 ポリエチレンテレフタレート繊維からなる不織布(糸径:1デシテックス、厚み:約0.09mm、密度0.80g/cm)上にポリスルホンの15.0質量%のDMF溶液を180μmの厚みで室温(25℃)にてキャストし、ただちに純水中に浸漬して5分間放置し、80℃の温水で1分間浸漬することによって繊維補強ポリスルホン支持膜からなる、多孔性支持層(厚さ0.13mm)を作製した。
 その後、多孔性支持層ロールを巻き出し、ポリスルホン表面に、m-PDA(メタフェニレンジアミン)の1.9質量%、ε-カプロラクタム4.5質量%水溶液中を塗布し、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.06質量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布した。
 その後、膜から余分な溶液をエアーブローで除去し、50℃の熱水で洗浄し分離膜ロールを得た。
 このように得られた分離膜を、分離膜エレメントでの有効面積が37.0mとなるように折り畳み断裁加工し、ネット(厚み:0.7mm、ピッチ:5mm×5mm、繊維径:350μm、投影面積比:0.13)を供給側流路材として幅900mmかつリーフ長800mmで26枚のリーフを作製した。
 一方で、突起物をシート全体に渡って形成した。すなわち、スリット幅0.5mm、ピッチ0.9mmの櫛形シムを装填したアプリケーターを用いて、バックアップロールを20℃に温度調節しながら、分離膜エレメントとした場合に集水管の長手方向に対して垂直かつ封筒状膜とした場合に巻回方向の内側端部から外側端部まで集水管の長手方向に対して垂直になるよう直線状に、高結晶性PP(MFR1000g/10分、融点161℃)60質量%と低結晶性α-オレフィン系ポリマー(出光興産株式会社製;低立体規則性ポリプロピレン「L-MODU・S400」(商品名))40質量%からなる組成物ペレットを樹脂温度205℃、走行速度10m/minで直線状に塗布した。なお、シートは表1の通りの不織布であった。
 得られた突起物の形状は、シートの厚みと突起物の高さの合計が0.26mmであり、突起物幅が0.5mmであり、第1方向および第2方向において隣接する突起物の間隔が0.4mmであり、ピッチが0.9mmであった。
 得られたリーフの透過側面に透過側流路材を積層し、ABS(アクリロニトリル-ブタジエン-スチレン)製集水管(幅:1,020mm、径:30mm、孔数40個×直線状1列)にスパイラル状に巻き付け、外周にさらにフィルムを巻き付けた。テープで固定した後に、エッジカット、端板の取り付けおよびフィラメントワインディングを行うことで、直径が8インチの分離膜エレメントを作製した。なお、端板は両方とも孔付き端板であった。つまり、本実施例では、図10に示す第1形態の分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、濃度1,000mg/L、pH6.5のNaCL水溶液を用い、運転圧力0.7MPa、運転温度25℃、pH6.5で運転(回収率15%)したところ、造水量および脱塩率、剥離率は表1の通りであった。
(実施例2~12)
 シートを表1~3の通りの不織布とし、突起物を表1~3の通りにした以外は全て実施例1と同様にして、分離膜および分離膜エレメントを作製した。
 分離膜エレメントを圧力容器に入れて、上述の条件で運転を行って透過水を得たところ、造水量および脱塩率、剥離率は表1~3の通りであった。
(実施例13、14)
 実施例1で得た壁状物を固着した分離膜ロールを、分離膜エレメントでの幅が256mm、有効面積が0.5mとなるように折り畳み断裁加工し、ネット(厚み:510μm、ピッチ:2mm×2mm、繊維径:255μm、投影面積比:0.21)を供給側流路材として2枚のリーフを作製した。
 一方で、シートを表4の通りの不織布とし、突起物を表4の通りにした以外は全て実施例1と同様にして透過側流路材を作製した。
 その後、リーフの透過側面に透過側流路材を積層し、ABS製集水管(幅:300mm、外径:17mm、孔数8個×直線状2列)に巻き付けながら2枚のリーフをスパイラル状に巻き付けた分離膜エレメントを作製し、外周にフィルムを巻き付け、テープで固定した後に、エッジカット、端板取りつけを行い、2インチエレメントを作製した。
 分離膜エレメントを圧力容器に入れて、濃度1,000mg/L、pH6.5のNaCL水溶液を用い、運転圧力0.7MPa、運転温度25℃、pH6.5で運転(回収率15%)したところ、造水量および脱塩率、剥離率は表4の通りであった。
(比較例1)
 シートとして二軸延伸ポリエステルフィルム(東レ株式会社製ルミラー、厚み0.03mm)を使用したところ、溶着率が高すぎるため突起物がシートに含浸せず、搬送時に突起物が剥離する箇所があり流路材を得ることができなかった。
(比較例2)
 シートを表5の通りの不織布とし、実施例1と同様の方法で突起物を配置したところ、シートには密溶着部が存在せず、粗溶着部および非溶着部のみであったため、突起物を固着させた際に裏抜けが生じ流路材を得ることができなかった。
 表1~表5に示す結果から明らかなように、本発明の実施例1~12の分離膜エレメントは、長時間にわたり運転しても、高い脱塩率を有する充分な量の透過水を得ることができ、優れた分離性能を安定して備えていると言える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年12月26日出願の日本特許出願(特願2014-264344)、2015年4月22日出願の日本特許出願(特願2015-087253)及び2015年7月30日出願の日本特許出願(特願2015-150355)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の分離膜エレメントは、特に、かん水や海水の脱塩に好適に用いることができる。
   1 分離膜対
  11 封筒状膜
   2 分離膜
   2a 分離膜(一方の分離膜)
   2b 分離膜(他方の分離膜)
  21 供給側の面
  21a 供給側の面
  21b 供給側の面
  22 透過側の面
  22a 透過側の面
  22b 透過側の面
 201 基材
 202 多孔性支持層
 203 分離機能層
  31 透過側流路材
  32 供給側流路材
 301 突起物
 302 シート
 303 密溶着部
 304 粗溶着部
 305 非溶着部
   4 膜リーフ
   5 透過側流路
   6 集水管
  81 外装体
  82 多孔性部材
  91 孔無し端板
  92 孔付端板
 100 分離膜エレメント
   a 分離膜の長さ
   b 分離膜の幅方向における突起物の間隔
   c 突起物の高さ
   d 突起物の幅
   e 分離膜の長さ方向における突起物の間隔
   f 突起物の長さ
  R2 分離膜の巻回方向内側から外側に向けて突起物が設けられている領域
  R3 分離膜の巻回方向外側端部において突起物が設けられていない領域
  L1 分離膜の長さ
  L2 領域R2の長さ
  L3 領域R3の長さ
100A 分離膜エレメント(第1形態)
100B 分離膜エレメント(第2形態)
100C 分離膜エレメント(第3形態)
 101 原水
 102 透過水
 103 濃縮水

Claims (6)

  1.  供給側の面と透過側の面とを有し、透過側の面同士が向かい合うように配置されることで分離膜対を形成する分離膜と、
     前記分離膜の前記透過側の面の間に設けられる透過側流路材と、を備え、
     前記透過側流路材は、シートと該シート上に設けられた複数の突起物とを備え、
     前記シートは表面に開孔部を有する多孔質シートであり、かつその表面に密溶着部と、粗溶着部および非溶着部とを有し、
     前記突起物は樹脂を含有し、該樹脂の一部が前記シートの前記開孔部に含浸している分離膜エレメント。
  2.  前記シートの、表面における密溶着率が5%以上50%以下である請求項1に記載の分離膜エレメント。
  3.  前記非溶着部における表面開孔率が15%以上70%以下である請求項1または2に記載の分離膜エレメント。
  4.  前記シート表面の、100mmあたりに存在する前記開孔部の内、孔径150μm以上200μm以下のものが30個以上である請求項1~3のいずれか1項に記載の分離膜エレメント。
  5.  前記シート表面の、面の算術平均高さが3μm以上10μm以下である請求項1~4のいずれか1項に記載の分離膜エレメント。
  6.  前記シート表面における溶着部が柄を構成する請求項1~5のいずれか1項に記載の分離膜エレメント。
PCT/JP2015/085663 2014-12-26 2015-12-21 分離膜エレメント WO2016104419A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15872987.1A EP3238813A4 (en) 2014-12-26 2015-12-21 Separation membrane element
US15/538,886 US10183254B2 (en) 2014-12-26 2015-12-21 Separation membrane element
CN201580071099.7A CN107106988B (zh) 2014-12-26 2015-12-21 分离膜元件
KR1020177017195A KR20170101212A (ko) 2014-12-26 2015-12-21 분리막 엘리먼트
JP2015562993A JP6634828B2 (ja) 2014-12-26 2015-12-21 分離膜エレメント

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014264344 2014-12-26
JP2014-264344 2014-12-26
JP2015087253 2015-04-22
JP2015-087253 2015-04-22
JP2015150355 2015-07-30
JP2015-150355 2015-07-30

Publications (1)

Publication Number Publication Date
WO2016104419A1 true WO2016104419A1 (ja) 2016-06-30

Family

ID=56150438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085663 WO2016104419A1 (ja) 2014-12-26 2015-12-21 分離膜エレメント

Country Status (6)

Country Link
US (1) US10183254B2 (ja)
EP (1) EP3238813A4 (ja)
JP (1) JP6634828B2 (ja)
KR (1) KR20170101212A (ja)
CN (1) CN107106988B (ja)
WO (1) WO2016104419A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052124A1 (ja) * 2016-09-16 2018-03-22 日東電工株式会社 スパイラル型膜エレメント
WO2018079511A1 (ja) * 2016-10-31 2018-05-03 東レ株式会社 分離膜エレメント

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190046929A1 (en) * 2016-01-29 2019-02-14 Toray Industries, Inc. Separation membrane element
KR102170603B1 (ko) 2016-04-27 2020-10-27 도레이 카부시키가이샤 분리막 엘리먼트
US20220347686A1 (en) * 2019-09-16 2022-11-03 University Of Notre Dame Du Lac Size-based asymmetric nanopore membrane (anm) filtration for high-efficiency exosome isolation, concentration, and fractionation
JP2022185228A (ja) * 2021-06-02 2022-12-14 スリーエム イノベイティブ プロパティズ カンパニー フィルタ
DE202022000813U1 (de) 2022-03-31 2022-04-20 Evonik Operations Gmbh Umgeformte Blechspacer für Spiralwickelmodule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
WO2007114069A1 (ja) * 2006-03-31 2007-10-11 Toray Industries, Inc. 液体分離素子、流路材およびその製造方法
WO2013047744A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜および分離膜エレメント
JP2014522294A (ja) * 2011-04-13 2014-09-04 ジーエフディー ファブリックス,インク. 流体ろ過システムのフィルターエレメント

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3367504A (en) 1964-12-21 1968-02-06 Gulf General Atomic Inc Spirally wrapped reverse osmosis membrane cell
JPS4414216Y1 (ja) 1966-09-16 1969-06-16
JPH0628703B2 (ja) 1990-04-27 1994-04-20 東レ株式会社 スパイラル型液体分離素子
JPH0614216A (ja) 1992-06-24 1994-01-21 Victor Co Of Japan Ltd 画質改善装置
JPH11226366A (ja) 1998-02-19 1999-08-24 Toray Ind Inc 流体分離膜エレメントの製造方法および装置ならびに流体分離膜エレメント
EP1349973A2 (en) 2000-12-22 2003-10-08 Mitsui Chemicals, Inc. Melt-blown nonwoven fabric
JP5724180B2 (ja) * 2007-07-31 2015-05-27 東レ株式会社 分離膜支持体およびその製造方法
EP2401064A1 (en) * 2009-02-25 2012-01-04 Pratt & Whitney Rocketdyne Inc. Fluid separation system with reduced fouling
JP2011101864A (ja) * 2009-11-11 2011-05-26 Nitto Denko Corp 分離膜ユニット及びこれを備えた分離膜エレメント
TW201318690A (zh) 2011-09-29 2013-05-16 Toray Industries 分離膜、分離膜元件及分離膜之製造方法
WO2013080391A1 (ja) * 2011-12-02 2013-06-06 東レ株式会社 分離膜エレメントおよび分離膜エレメントの製造方法
US9808767B2 (en) * 2013-10-31 2017-11-07 Toray Industries, Inc. Separation membrane element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
WO2007114069A1 (ja) * 2006-03-31 2007-10-11 Toray Industries, Inc. 液体分離素子、流路材およびその製造方法
JP2014522294A (ja) * 2011-04-13 2014-09-04 ジーエフディー ファブリックス,インク. 流体ろ過システムのフィルターエレメント
WO2013047744A1 (ja) * 2011-09-29 2013-04-04 東レ株式会社 分離膜および分離膜エレメント

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052124A1 (ja) * 2016-09-16 2018-03-22 日東電工株式会社 スパイラル型膜エレメント
JP2018047456A (ja) * 2016-09-16 2018-03-29 日東電工株式会社 スパイラル型膜エレメント
JP7037306B2 (ja) 2016-09-16 2022-03-16 日東電工株式会社 スパイラル型膜エレメント
US11433356B2 (en) 2016-09-16 2022-09-06 Nitto Denko Corporation Spiral membrane element
WO2018079511A1 (ja) * 2016-10-31 2018-05-03 東レ株式会社 分離膜エレメント
JPWO2018079511A1 (ja) * 2016-10-31 2019-09-19 東レ株式会社 分離膜エレメント
US11065580B2 (en) 2016-10-31 2021-07-20 Toray Industries, Inc. Separation membrane element
JP7067060B2 (ja) 2016-10-31 2022-05-16 東レ株式会社 分離膜エレメント

Also Published As

Publication number Publication date
US20170361280A1 (en) 2017-12-21
JP6634828B2 (ja) 2020-01-22
CN107106988A (zh) 2017-08-29
KR20170101212A (ko) 2017-09-05
EP3238813A1 (en) 2017-11-01
CN107106988B (zh) 2020-09-22
EP3238813A4 (en) 2018-07-11
JPWO2016104419A1 (ja) 2017-11-30
US10183254B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6136269B2 (ja) 水処理用分離膜エレメント
WO2016104419A1 (ja) 分離膜エレメント
JP6111668B2 (ja) 分離膜エレメント、および分離膜エレメントの製造方法
WO2015016253A1 (ja) 分離膜エレメント
JP2017148805A (ja) 分離膜、分離膜エレメントおよび分離膜の製造方法
JP6179402B2 (ja) 分離膜エレメント
KR20160078358A (ko) 분리막 엘리먼트
JP5888439B2 (ja) 分離膜、シート流路材および分離膜エレメント
JP6179403B2 (ja) 分離膜および分離膜エレメント
JP2015071159A (ja) 分離膜エレメント
JP2014064973A (ja) 分離膜および分離膜エレメント
JP2015006661A (ja) 分離膜エレメント
JP2016144794A (ja) 複合半透膜および複合半透膜エレメント
JP2016068081A (ja) 分離膜エレメント
JP2017029912A (ja) 分離膜エレメント
JP2015142911A (ja) 分離膜および分離膜エレメント
JP2018023971A (ja) 流路材および分離膜エレメント
JP2017013056A (ja) 分離膜エレメント
JP2015085322A (ja) 分離膜エレメント
JP2015091574A (ja) 分離膜エレメント
JP2017013055A (ja) 分離膜エレメント
JP2017104851A (ja) 分離膜および分離膜エレメント
JP2016026865A (ja) 分離膜エレメント
JP2015127051A (ja) 分離膜エレメント

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562993

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177017195

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538886

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872987

Country of ref document: EP