WO2016104214A1 - Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method - Google Patents

Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method Download PDF

Info

Publication number
WO2016104214A1
WO2016104214A1 PCT/JP2015/084907 JP2015084907W WO2016104214A1 WO 2016104214 A1 WO2016104214 A1 WO 2016104214A1 JP 2015084907 W JP2015084907 W JP 2015084907W WO 2016104214 A1 WO2016104214 A1 WO 2016104214A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
compound
layer film
Prior art date
Application number
PCT/JP2015/084907
Other languages
French (fr)
Japanese (ja)
Inventor
匠 樋田
越後 雅敏
佐藤 隆
牧野嶋 高史
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020177017342A priority Critical patent/KR20170099908A/en
Priority to JP2016566122A priority patent/JP7026439B2/en
Priority to CN201580070416.3A priority patent/CN107108549A/en
Priority to EP15872783.4A priority patent/EP3239141A4/en
Priority to SG11201705038XA priority patent/SG11201705038XA/en
Priority to US15/539,560 priority patent/US10745372B2/en
Publication of WO2016104214A1 publication Critical patent/WO2016104214A1/en
Priority to IL253109A priority patent/IL253109A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means

Definitions

  • the present invention relates to a compound, a resin, an underlayer film forming material for lithography, an underlayer film for lithography, a pattern forming method, and a purification method.
  • the light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • KrF excimer laser 248 nm
  • ArF excimer laser (193 nm)
  • simply thinning the resist makes it difficult to obtain a resist pattern film thickness sufficient for substrate processing. Therefore, not only the resist pattern but also a process of creating a resist underlayer film between the resist and the semiconductor substrate to be processed and providing the resist underlayer film with a function as a mask during substrate processing is required.
  • a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist can be used.
  • a material for forming such a resist underlayer film for lithography it contains a resin component having at least a substituent that generates a sulfonic acid residue when a predetermined energy is applied and a solvent, and a solvent.
  • An underlayer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1). Further, a resist underlayer film for lithography having a low dry etching rate selection ratio compared to the resist can be given.
  • a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (for example, see Patent Document 2). Furthermore, a resist underlayer film for lithography having a lower dry etching rate selectivity than the semiconductor substrate can be mentioned.
  • a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group It has been proposed (for example, see Patent Document 3).
  • an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known.
  • a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
  • the inventors of the present invention provide a lithographic lower layer containing a naphthalene formaldehyde polymer containing a specific structural unit and an organic solvent as a material that is excellent in optical characteristics and etching resistance and is soluble in a solvent and applicable to a wet process.
  • a film-forming composition has been proposed (see, for example, Patent Documents 4 and 5).
  • a silicon nitride film formation method for example, refer to Patent Document 6
  • a silicon nitride film CVD formation method for example, Patent Document 7
  • an intermediate layer material for a three-layer process a material containing a silsesquioxane-based silicon compound is known (for example, see Patent Documents 8 and 9).
  • the present invention has been made in view of the above-mentioned problems, and its purpose is useful for forming a photoresist underlayer film, a wet process is applicable, and excellent heat resistance and etching resistance.
  • Another object of the present invention is to provide a compound and resin, a lower layer film forming material, and a pattern forming method, which are further improved in solubility in a safe solvent.
  • each X independently represents an oxygen atom or a sulfur atom, or non-bridged
  • R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms
  • Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms
  • each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group
  • at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, m
  • the crosslinking reactive compound is at least one selected from the group consisting of aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates and unsaturated hydrocarbon group-containing compounds.
  • Resin. [9] Resin as described in [6] containing the structure represented by following formula (2). (In the formula (2), each X independently represents an oxygen atom, a sulfur atom, or a non-bridged group, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms.
  • Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms.
  • at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms
  • each R 3 is independently a single bond or a straight chain having 1 to 20 carbon atoms.
  • a material for forming an underlayer film for lithography comprising the compound according to any one of [1] to [5] and / or the resin according to any one of claims 6 to 11.
  • the underlayer film forming material for lithography according to [12] further comprising an organic solvent.
  • a resist pattern forming method comprising: [18] A step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography described in any one of [12] to [15]; Forming an intermediate layer film on the lower layer film using a resist intermediate layer film material containing silicon atoms (B-2); Forming at least one photoresist layer on the intermediate film (B-3); After the step (B-3), a step (B-4) of i
  • a compound that is useful for forming a photoresist underlayer film is applicable to a wet process, has excellent heat resistance and etching resistance, and has further improved solubility in a safe solvent, A resin and a material for forming a lower layer film for lithography can be realized.
  • each X independently represents an oxygen atom or a sulfur atom, or non-bridged
  • R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms
  • Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms
  • each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group
  • at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms
  • m is each independently an integer of 1 to 6
  • p is each independently 0 or 1
  • n is an integer of 1 to
  • the compound of this embodiment is useful for forming a photoresist underlayer film, can be applied to a wet process, has excellent heat resistance and etching resistance, and is soluble in a safe solvent. Is further improved.
  • the compound of this embodiment has high heat resistance, a relatively high carbon concentration, a relatively low oxygen concentration, and a high solvent solubility because of its structural characteristics.
  • each X independently represents an oxygen atom, a sulfur atom, or no bridge.
  • the case where X is non-crosslinked means that the compound represented by the formula (1) is a compound represented by the following formula (1B).
  • R 1 , R 2 , m, p and n are the same as described above.
  • R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms.
  • the compound of the present embodiment has a configuration in which each benzene ring is bonded via R 1 .
  • the 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms.
  • R 2 is independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 1 to It is a monovalent group selected from the group consisting of 30 alkoxy groups, aryloxy groups having 6 to 30 carbon atoms, and hydroxyl groups, and m bonds to each aromatic ring.
  • at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms.
  • M is an integer of 1 to 6 independently. Each p is independently 0 or 1. n is an integer of 1 to 4.
  • An alkanehexyl group having 2 to 30 carbon atoms, and when n 4, an alkaneoctyl group having 3 to 30 carbon atoms.
  • Examples of the 2n-valent group include those having a linear, branched or cyclic structure.
  • the 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the alkoxy group having 1 to 30 carbon atoms is selected from a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group consisting of a combination of two or more thereof. And a group composed of an oxygen atom.
  • the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
  • the alkoxy group may have a double bond, a hetero atom, or a halogen atom.
  • the alkoxy group having 1 to 30 carbon atoms is not particularly limited, but is preferably a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group.
  • the aryloxy group having 6 to 30 carbon atoms is a group composed of an aromatic hydrocarbon group having 6 to 30 carbon atoms and an oxygen atom, and contributes to improving the solubility of the compound represented by the formula (1).
  • Specific examples of such an aryloxy group having 6 to 30 carbon atoms include, but are not limited to, phenyloxy group, methylphenyloxy group, dimethylphenyloxy group, trimethylphenyloxy group, ethylphenyloxy group, propylphenyl group Oxy group, butylphenyloxy group, cyclohexylphenyloxy group, biphenyloxy group, terphenyloxy group, naphthyloxy group, fluorenyloxy group, anthracyloxy group, pyrenyloxy group, methylpyrenyloxy group, dimethylpyrenyloxy group Groups and the like.
  • the compound represented by the formula (1) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions.
  • the substrate has a relatively low molecular weight and low viscosity, it is easy to uniformly fill every corner of a step even on a substrate having a step (particularly, a fine space or a hole pattern).
  • the material for forming a lower layer film for lithography using this tends to have a relatively advantageous improvement in embedding characteristics and planarization characteristics.
  • it is a compound having a relatively high carbon concentration, high etching resistance is also imparted.
  • having an alkoxy group having 1 to 30 carbon atoms further improves the solubility in a safe solvent for highly stabilizing the product quality.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1A) from the viewpoint of improving heat resistance by forming a rigid structure.
  • R 1 , R 2 , m, p and n are the same as described above.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (1B) from the viewpoint of improving the safety solvent solubility.
  • R 1 , R 2 , m, p and n are the same as described above.
  • the compound represented by the formula (1A) is more preferably a compound represented by the formula (1A-1) from the viewpoint of improving the heat resistance by improving the degree of crosslinking during baking by introducing an R 5 O group.
  • each R 4 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or 2 to 10 carbon atoms.
  • R 5 is a monovalent group having 1 to 30 carbon atoms, and is a linear hydrocarbon group, branched hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group And a monovalent group consisting of a combination of two or more thereof, which may have a double bond, a hetero atom, or a halogen atom, wherein the alicyclic hydrocarbon group As for, a bridged alicyclic hydrocarbon group is also included, wherein m 3 is each independently an integer of 0 to 4, where at least one m 3 is 1 and m 4 is each independently And m 3 + m 4 is an integer of 1 to 4, and R 1 , n and p are the same as above.
  • R 1 , n and p are the same as above.
  • the compound represented by the formula (1B) is more preferably a compound represented by the formula (1B-1) from the viewpoint of further improving the solubility of the safe solvent by introducing the R 5 O group. .
  • the compound represented by the formula (1-2) is an embodiment in which X ⁇ O in the formula (1-2), that is, the following formula (1A-2), from the viewpoint of improving heat resistance by forming a rigid structure. It is more preferable that it is a compound represented by these.
  • R 1 and p have the same meanings as described in the formula (1).
  • R 6 has the same meaning as R 2 described in Formula (1), and m 6 is an integer of 1 to 3.
  • the compound represented by the formula (1-2) is an embodiment in which X is non-crosslinked in the formula (1-2), that is, in the following formula (1B-2) More preferably, it is a compound represented.
  • R 1 and p have the same meanings as described in the formula (1).
  • R 6 has the same meaning as R 2 described in Formula (1), and m 6 is an integer of 1 to 3.
  • the compound represented by the above formula (1A-2) is preferably a compound represented by the following formula (1A-3).
  • R 1 has the same meaning as described in the formula (1)
  • R 5 has the same meaning as that described in the formula (1A-1).
  • the compound represented by the above formula (1B-2) is preferably a compound represented by the following formula (1B-3).
  • R 1 has the same meaning as described in the formula (1)
  • R 5 has the same meaning as described in the formula (1A-1).
  • R 2 , X and m are as defined in the above formula (1).
  • the compound represented by the formula (1A-2) may be a compound represented by the following formula (BisN-1-CH1) or the following formula (BisN-1-CH2). Particularly preferred.
  • the compound represented by the formula (1A-2) may be a compound represented by the following formula (BisN-1-PH1) or the following formula (BisN-1-PH2). preferable.
  • the compound represented by the formula (1) can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited. For example, under normal pressure, a phenol or thiophenol corresponding to the desired compound structure and an aldehyde or ketone corresponding to the desired compound structure are subjected to a polycondensation reaction in the presence of an acid catalyst. A compound represented by the formula (1) can be obtained. Moreover, it can also carry out under pressure as needed. By changing the reaction conditions, it is possible to control the generation ratio between the structure when X is crosslinked and the structure when X is non-crosslinked.
  • the reaction temperature when the reaction temperature is increased, the reaction time is increased, and the acid strength of the acid catalyst is increased, the generation ratio of the structure crosslinked with X tends to increase.
  • the reaction temperature when the reaction temperature is lowered, the reaction time is shortened, and the acid strength of the acid catalyst is weakened, the generation ratio of the structure that is non-crosslinked with X tends to increase.
  • the reaction temperature is lowered, the reaction time is shortened, and the acid strength of the acid catalyst is weakened, the generation ratio of the structure that is non-crosslinked with X tends to increase.
  • emphasizing high solvent solubility a higher ratio of the structure when X is non-crosslinked is preferable, while when emphasizing high heat resistance, a higher ratio of the structure when crosslinked with X is preferable. .
  • phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use hydroquinone because a xanthene structure can be easily formed.
  • thiophenols examples include, but are not particularly limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use benzenedithiol because a thioxanthene structure can be easily formed.
  • aldehydes examples include formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, hexylaldehyde, decylaldehyde, undecylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehyde, Chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phen
  • benzaldehyde hydroxybenzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phenanthrenecarboxaldehyde , Pyrenecarboxaldehyde, glyoxal, glutaraldehyde, phthalaldehyde, naphthalene dicarboxyaldehyde, biphenyl dicarboxaldehyde, anthracene dicarboxalde
  • ketones examples include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, and the like. However, it is not particularly limited to these. These can be used alone or in combination of two or more.
  • cyclopentanone cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone and anthraquinone from the viewpoint of giving high heat resistance.
  • the acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known, and specific examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, silicotungstic acid, phosphotungstic acid,
  • an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling.
  • an acid catalyst 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
  • a reaction solvent may be used.
  • the reaction solvent is not particularly limited as long as the reaction between the aldehyde or ketone to be used and the phenol or thiophenol proceeds, and can be appropriately selected from known ones. , Water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of these solvent can be suitably set according to the raw material to be used, the kind of acid catalyst to be used, and also reaction conditions.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw materials.
  • the reaction temperature is not particularly limited, but is usually in the range of 10 to 200 ° C.
  • the reaction temperature is preferably higher, and specifically in the range of 60 to 200 ° C.
  • the reaction method can be appropriately selected from known methods, and is not particularly limited.
  • the reaction method may be a method in which phenols or thiophenols, aldehydes or ketones, and an acid catalyst are charged all at once, phenols or thiols.
  • phenols, aldehydes or ketones are dropped in the presence of an acid catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, acid catalysts, etc. existing in the system, a general technique such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg, By taking it, the target compound can be obtained.
  • reaction conditions 1 mol to excess of phenols or thiophenols and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of aldehyde or ketone, and 50 to 150 ° C. at normal pressure. The reaction proceeds for about 20 minutes to 100 hours.
  • the target product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the solid obtained by filtration is dried, followed by column chromatography. Separating and purifying from the by-product, and performing solvent distillation, filtration, and drying, a compound that is a precursor of the compound represented by the formula (1), which is the target product, can be obtained.
  • the precursor compound obtained by the above method can be obtained by a known method, for example, by replacing the hydrogen atom of at least one phenolic hydroxyl group with a monovalent group having 1 to 30 carbon atoms.
  • a compound represented by the formula (1) can be obtained.
  • the method for replacing the hydrogen atom of the phenolic hydroxyl group with a monovalent group having 1 to 30 carbon atoms is not particularly limited.
  • the precursor compound is reacted with a halogenated hydrocarbon compound in the presence of a base catalyst. Can be obtained by dehydrohalogenation reaction.
  • the halogenated hydrocarbon compound is not particularly limited, but a halogenated hydrocarbon compound having 1 to 30 carbon atoms is preferably used.
  • the halogenated hydrocarbon compound is composed of a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a group composed of two or more thereof, and a halogen atom.
  • the alicyclic hydrocarbon group includes a bridged cyclic hydrocarbon group.
  • the halogenated hydrocarbon compound may have a double bond, a hetero atom, or another type of halogen atom.
  • halogenated hydrocarbon compound examples include methyl chloride, methyl bromide, methyl iodide, propyl chloride, propyl bromide, propyl iodide, butyl chloride, butyl bromide, butyl iodide, heptyl chloride, heptyl bromide, Examples include heptyl iodide, hexyl chloride, hexyl bromide, hexyl iodide, decyl chloride, decyl bromide, decyl iodide, or a compound group represented by the following formula (5), but are not particularly limited thereto. These can be used individually by 1 type or in combination of 2 or more types.
  • Y represents a chlorine atom, a bromine atom or an iodine atom.
  • a base catalyst sodium carbonate, potassium carbonate, triethylamine, ammonia, sodium hydroxide, etc.
  • organic solvent such as dimethylformamide
  • 0.1 to 10 halogenated hydrocarbon compounds are used per 1 mol of the precursor compound.
  • the mole is reacted at 0 to 150 ° C. for about 0.5 to 20 hours.
  • at least one phenolic hydroxyl group in the obtained precursor compound can be converted into an alkoxyl group.
  • the compound represented by the formula (1) is obtained by filtration, washing with alcohols such as methanol, washing with water, separation by filtration, and drying.
  • the molecular weight of the compound represented by the formula (1) is not particularly limited, but the weight average molecular weight Mw is preferably 350 to 5,000, and more preferably 400 to 3,000. In addition, said Mw can be measured by the method as described in the Example mentioned later.
  • the compound represented by the formula (1) can be used as it is as a material for forming a lower layer film for lithography. Moreover, it can be used also as resin obtained by using the compound represented by said Formula (1) as a monomer. For example, it can also be used as a resin obtained by reacting a compound represented by the formula (1) with a compound having crosslinking reactivity. Examples of the resin obtained using the compound represented by the formula (1) as a monomer include those having a structure represented by the following formula (2). That is, the lower layer film forming material for lithography of the present embodiment may contain a resin having a structure represented by the following formula (2).
  • each X independently represents an oxygen atom or a sulfur atom, or non-bridged
  • R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms
  • the hydrogen group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms
  • each R 2 is independently a straight chain having 1 to 10 carbon atoms.
  • R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms
  • each R 3 independently represents a single bond or 1 to 20 carbon atoms.
  • a linear or branched alkylene group m 2 are each independently Is an integer from 1 to 5
  • p are each independently 0 or 1
  • n is an integer of 1-4.
  • each X independently represents an oxygen atom, a sulfur atom, or no crosslinking.
  • the case where X is non-crosslinked means that the structure represented by the formula (2) is a structure represented by the following formula (2B).
  • R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, and each aromatic ring is bonded through this R 1 .
  • the 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms.
  • R 2 each independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 1 to 30 carbon atoms.
  • a monovalent group selected from the group consisting of an alkoxy group having 5 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms and a hydroxyl group, each having m 2 bonded to the aromatic ring.
  • at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms.
  • Each R 3 is independently a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms.
  • n 2 is each independently an integer of 1 to 5
  • p is each independently 0 or 1
  • n is an integer of 1 to 4.
  • the 2n-valent group has the same meaning as described in the description relating to the formula (1).
  • the structure represented by the formula (2) is preferably a structure represented by the following formula (2A) from the viewpoint of improving heat resistance by forming a rigid structure.
  • the structure represented by the formula (2A) is a structure represented by the following formula (2A-1) from the viewpoint of improving heat resistance by improving the degree of crosslinking during baking by introducing an R 5 O group. Is preferred.
  • the structure represented by the formula (2B) is preferably a structure represented by the following formula (2B-1) from the viewpoint of improving the safety solvent solubility.
  • the crosslinkable compound is not particularly limited as long as it can oligomerize the compound represented by the formula (1), and a known compound can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
  • the resin having the structure represented by the formula (2) are not limited to the following, but the compound represented by the formula (1) is condensed with an aldehyde which is a compound having a crosslinking reactivity, and the like. And a novolak resin.
  • aldehyde for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde
  • examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural.
  • aldehydes can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
  • an acid catalyst can be used.
  • the acid catalyst used here can be appropriately selected from known ones and is not particularly limited.
  • inorganic acids and organic acids are widely known, and specific examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron
  • organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling.
  • 1 type can be used individually or in combination of 2 or more types.
  • the amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the acid catalyst to be used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by weight with respect to 100 parts by mass of the reaction raw material. The amount is preferably 100 parts by mass.
  • Indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
  • aldehydes may not be used.
  • a reaction solvent can also be used.
  • the reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned.
  • a solvent can be used individually by 1 type or in combination of 2 or more types.
  • the amount of these solvents used can be appropriately set according to the raw material used, the type of acid catalyst used, and the reaction conditions.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited.
  • the reaction temperature is usually in the range of 10 to 200 ° C.
  • the reaction method can select and use a well-known method suitably, although it does not specifically limit,
  • the method of charging the compound represented by said Formula (1), aldehydes, and a catalyst collectively, said Formula (1) There is a method in which a compound or an aldehyde represented by (2) is dropped in the presence of a catalyst.
  • the obtained compound can be isolated according to a conventional method, and is not particularly limited.
  • a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted.
  • a novolak resin as the target product can be obtained.
  • the resin having the structure represented by the formula (2) may be a homopolymer of the compound represented by the formula (1), but is a copolymer with other phenols. May be.
  • the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
  • the resin having the structure represented by the formula (2) may be copolymerized with a polymerizable monomer in addition to the other phenols described above.
  • the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene.
  • the resin having the structure represented by the above formula (2) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (1) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the formula (1) and the above-mentioned copolymerization monomer, it is represented by the formula (1). It may be a ternary or more (for example, ternary to quaternary) copolymer of the above compound, the above-mentioned phenols, and the above-mentioned copolymerization monomer.
  • the molecular weight of the resin having the structure represented by the formula (2) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the molecular weight of the resin having the structure represented by the formula (2) is such that the dispersity (weight average molecular weight Mw / number average molecular weight Mn) is 1. Those within the range of 2 to 7 are preferred.
  • the compound represented by the formula (1) and / or the resin having the structure represented by the formula (2) has high solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable. More specifically, these compounds and / or resins preferably have a solubility in 1-methoxy-2-propanol (PGME) or propylene glycol monomethyl ether acetate (PGMEA) of 10% by mass or more.
  • PGME 1-methoxy-2-propanol
  • PGMEA propylene glycol monomethyl ether acetate
  • the solubility with respect to PGME or PGMEA is defined as “the mass of the compound and / or resin ⁇ (the mass of the compound and / or the resin + the mass of the solvent) ⁇ 100 (mass%)”.
  • the material for forming a lower layer film for lithography of the present embodiment contains at least one substance selected from the group consisting of the compound of the present embodiment and the resin of the present embodiment. More specifically, the material for forming a lower layer film for lithography of the present embodiment is obtained by reacting the compound represented by the formula (1) and the compound represented by the formula (1) with a compound having a crosslinking reaction. It contains at least one substance selected from the group consisting of resins.
  • the content of the compound of the present embodiment and / or the resin of the present embodiment is not particularly limited, but includes an organic solvent.
  • the total amount is preferably 1 to 33 parts by mass, more preferably 2 to 25 parts by mass, and still more preferably 3 to 20 parts by mass with respect to 100 parts by mass.
  • the underlayer film forming material for lithography of the present embodiment may contain other components such as a crosslinking agent, an acid generator, and an organic solvent, as necessary.
  • these optional components will be described.
  • the lower layer film forming material for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing.
  • a crosslinking agent that can be used in this embodiment include double bonds such as melamine compounds, guanamine compounds, glycoluril compounds or urea compounds, epoxy compounds, thioepoxy compounds, isocyanate compounds, azide compounds, alkenyl ether groups, and the like.
  • the compound include those substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group, but are not particularly limited thereto.
  • these crosslinking agents can be used individually by 1 type or in combination of 2 or more types. These may be used as additives, but these crosslinkable groups may be introduced as pendant groups in the polymer side chain.
  • a compound containing a hydroxy group can also be used as a crosslinking agent.
  • the melamine compound include, but are not limited to, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, or a mixture thereof, hexamethoxyethyl melamine, hexa
  • examples include acyloxymethyl melamine, compounds in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated, or a mixture thereof.
  • epoxy compound examples include, but are not limited to, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like. .
  • the guanamine compound include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylolguanamine, tetramethoxymethylguanamine, and tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetra Examples include compounds in which 1 to 4 methylol groups of acyloxyguanamine and tetramethylolguanamine are acyloxymethylated, or a mixture thereof.
  • glycoluril compound examples include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, tetramethylolglycoluril are methoxymethylated or Examples thereof include a mixture thereof, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or a mixture thereof.
  • urea compound examples include, but are not limited to, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated, or a mixture thereof, tetramethoxyethyl urea, and the like. Can be mentioned.
  • the compound containing an alkenyl ether group include, but are not limited to, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol.
  • the content of the crosslinking agent is not particularly limited, but is 5 to 50 with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment.
  • the amount is preferably part by mass, more preferably 10 to 40 parts by mass.
  • the lower layer film forming material for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat.
  • an acid generator those that generate acid by thermal decomposition and those that generate acid by light irradiation are known, and any of them can be used.
  • R 101a , R 101b and R 101c are each independently a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an alkenyl group, an oxoalkyl group or an oxoalkenyl group, and 6 to 6 carbon atoms.
  • 20 aryl groups, aralkyl groups having 7 to 12 carbon atoms, or aryloxoalkyl groups, part or all of hydrogen atoms of these groups may be substituted with alkoxy groups or the like.
  • R 101b and R 101c may form a ring. When a ring is formed, R 101b and R 101c each independently represent an alkylene group having 1 to 6 carbon atoms.
  • K ⁇ represents a non-nucleophilic counter ion.
  • R 101d , R 101e , R 101f and R 101g are each independently represented by adding a hydrogen atom to R 101a , R 101b and R 101c .
  • R 101d and R 101e , R 101d and R 101e and R 101f may form a ring, and in the case of forming a ring, R 101d and R 101e and R 101d , R 101e and R 101f have 3 carbon atoms.
  • R 101a , R 101b , R 101c , R 101d , R 101e , R 101f and R 101g may be the same as or different from each other.
  • Specific examples of the alkyl group include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group.
  • alkenyl groups include, but are not limited to, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups, and cyclohexenyl groups.
  • Examples of the oxoalkyl group include, but are not limited to, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2- An oxoethyl group, a 2- (4-methylcyclohexyl) -2-oxoethyl group, and the like can be given.
  • Examples of the oxoalkenyl group include, but are not limited to, a 2-oxo-4-cyclohexenyl group, a 2-oxo-4-propenyl group, and the like.
  • aryl group examples include, but are not limited to, phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group.
  • alkoxyphenyl group such as m-tert-butoxyphenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, Alkylphenyl groups such as dimethylphenyl group, alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group, alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group, dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group, dimethoxy naphthyl group Group, diethoxynaphthy Dialkoxy naphthyl group such as a group.
  • aralkyl group For example, a benzyl group, a phenylethyl group, a phenethyl group etc. are mentioned.
  • aryloxoalkyl groups include, but are not limited to, 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, and the like. And 2-aryl-2-oxoethyl group.
  • non-nucleophilic counter ion of K ⁇ examples include, but are not limited to, halide ions such as chloride ion and bromide ion, triflate, 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, and the like.
  • the heteroaromatic ring is not limited to the following, but an imidazole derivative (for example, imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methyl) Pyrrolidine, pyrrolidinone, N-methylpyrrolidone, etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethyl) Pyridine, triethyl
  • imidazole derivative for example, imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, etc.
  • the onium salts of the formulas (P1a-1) and (P1a-2) have a function as a photoacid generator and a thermal acid generator.
  • the onium salt of the formula (P1a-3) has a function as a thermal acid generator.
  • R 102a and R 102b each independently represent a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms.
  • R 103 represents a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms.
  • R 104a and R 104b each independently represent a 3-oxoalkyl group having 3 to 7 carbon atoms.
  • K ⁇ represents a non-nucleophilic counter ion.
  • R 102a and R 102b include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group.
  • R 103 include, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 103 includes, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene.
  • R 104a and R 104b include, but are not limited to, 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like.
  • K - is the formula (P1a-1), can be exemplified the same ones as described in (P1a-2) and (P1a-3).
  • R 105 and R 106 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms or halogen. An aryl group or an aralkyl group having 7 to 12 carbon atoms.
  • alkyl group for R 105 and R 106 examples include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl.
  • halogenated alkyl group examples include, but are not limited to, a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group.
  • aryl group examples include, but are not limited to, phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert- Alkoxyphenyl groups such as butoxyphenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, dimethylphenyl group, etc.
  • An alkylphenyl group is mentioned.
  • halogenated aryl group examples include, but are not limited to, a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5-pentafluorophenyl group, and the like.
  • aralkyl group examples include, but are not limited to, a benzyl group and a phenethyl group.
  • R 107 , R 108 and R 109 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, or aryl having 6 to 20 carbon atoms.
  • R 108 and R 109 may be bonded to each other to form a cyclic structure.
  • R 108 and R 109 each represent a linear or branched alkylene group having 1 to 6 carbon atoms. .
  • Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 .
  • the alkylene group for R 108 and R 109 is not limited to the following, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
  • R 101a and R 101b are the same as above.
  • R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms, and part or all of the hydrogen atoms of these groups May further be substituted with a linear or branched alkyl group or alkoxy group having 1 to 4 carbon atoms, a nitro group, an acetyl group, or a phenyl group.
  • R 111 represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups are further An alkyl group or alkoxy group having 1 to 4 carbon atoms; a phenyl group optionally substituted with an alkyl group, alkoxy group, nitro group or acetyl group having 1 to 4 carbon atoms; a heteroaromatic group having 3 to 5 carbon atoms; Alternatively, it may be substituted with a chlorine atom or a fluorine atom.
  • the arylene group of R 110 is not limited to the following, and examples thereof include a 1,2-phenylene group and a 1,8-naphthylene group.
  • the alkylene group include, but are not limited to, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3-diyl group, and the like.
  • the alkenylene group include, but are not limited to, 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group, and the like.
  • the alkyl group for R 111 include the same groups as R 101a to R 101c .
  • alkenyl group examples include, but are not limited to, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group. Group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl group and the like.
  • alkoxyalkyl group examples include, but are not limited to, for example, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, Ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, A methoxypentyl group, an ethoxypentyl group, a methoxyhexyl group, a methoxyheptyl group, etc. are mentioned.
  • the optionally substituted alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert- A butyl group etc. are mentioned.
  • alkoxy group having 1 to 4 carbon atoms include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and tert-butoxy group.
  • Examples of the phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group include, but are not limited to, for example, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group , P-acetylphenyl group, p-nitrophenyl group and the like.
  • Examples of the heteroaromatic group having 3 to 5 carbon atoms include, but are not limited to, a pyridyl group and a furyl group.
  • the acid generator include, but are not limited to, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, triethyl camphorsulfonate Ammonium, pyridinium camphorsulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p- tert-butoxyphenyl) phenyliodonium, p-toluene
  • triphenylsulfonium trifluoromethanesulfonate trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid Triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid cyclo
  • the content of the acid generator is not particularly limited, but the content of the compound of the present embodiment and / or the resin of the present embodiment is 0.1 parts by mass.
  • the amount is preferably 1 to 50 parts by mass, and more preferably 0.5 to 40 parts by mass.
  • the material for forming a lower layer film for lithography according to the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
  • the basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, A nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like are exemplified, but not limited thereto.
  • primary aliphatic amines include, but are not limited to, ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, Examples include pentylamine, tert-amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
  • secondary aliphatic amines include, but are not limited to, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyl Examples include tetraethylenepentamine.
  • tertiary aliphatic amines include, but are not limited to, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine , Tripentylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N ′ -Tetramethylmethylenediamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyltetraethylenepentamine and the like.
  • hybrid amines include, but are not limited to, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine, and the like.
  • aromatic amines and heterocyclic amines include, but are not limited to, aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2 -Methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitro Aniline, 3,5-dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenyl (p-
  • nitrogen-containing compounds having a carboxy group include, but are not limited to, aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine). Glycylleucine, leucine, methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like.
  • aminobenzoic acid indolecarboxylic acid
  • amino acid derivatives for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine.
  • nitrogen-containing compound having a sulfonyl group examples include, but are not limited to, 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like.
  • Specific examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include, but are not limited to, 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3- Indolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino- 1-propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine,
  • amide derivatives include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like.
  • imide derivative include, but are not limited to, phthalimide, succinimide, maleimide and the like.
  • the content of the basic compound is not particularly limited, but is 0.001 to 2 with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment. It is preferably part by mass, more preferably 0.01 to 1 part. By making it into the above preferred range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
  • Organic solvent The material for forming a lower layer film for lithography of the present embodiment may contain an organic solvent. Any known organic solvent can be used as long as it can dissolve at least the compound of this embodiment and / or the resin of this embodiment. Specific examples of organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate, ethyl acetate and butyl acetate.
  • ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate,
  • Ester solvents such as isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate, alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol, aromatics such as toluene, xylene and anisole Examples thereof include, but are not limited to, hydrocarbons. These organic solvents can be used individually by 1 type or in combination of 2 or more types.
  • cyclohexanone propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate, and anisole are particularly preferable from the viewpoint of safety.
  • the content of the organic solvent is not particularly limited, but is 100 to 10,000 parts by mass with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment from the viewpoint of solubility and film formation.
  • the amount is preferably 200 to 5,000 parts by mass.
  • the material for forming a lower layer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling absorbance.
  • other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heterocyclic ring or aromatic ring such as methacrylate, vinyl naphthalene, polyacenaphthylene and other naphthalene rings, phenanthrenequinone, biphenyl rings such as fluorene, hetero rings having hetero atoms such as thiophene and indene; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure
  • the lower layer film for lithography of this embodiment is formed from the lower layer film forming material for lithography of this embodiment.
  • the resist pattern forming method of the present embodiment includes a step (A-1) of forming a lower layer film on a substrate using the lower layer film forming material for lithography of the present embodiment, and at least on the lower layer film.
  • the circuit pattern forming method of this embodiment includes a step (B-1) of forming a lower layer film on a substrate using the lower layer film forming material for lithography of the present embodiment, and a silicon film on the lower layer film.
  • B-2 resist intermediate layer film material containing atoms
  • B-3 a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4)
  • the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask.
  • the formation method of the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the above-described material for forming an underlayer film for lithography, and a known method can be applied.
  • a known method can be applied.
  • the lower layer film forming material for lithography described above onto a substrate by a known coating method such as spin coating or screen printing or a printing method the lower layer film is removed by evaporating an organic solvent or the like. Can be formed.
  • baking is preferably performed in order to suppress the occurrence of the mixing phenomenon with the upper layer resist and to promote the crosslinking reaction.
  • the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C.
  • the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds.
  • the thickness of the lower layer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. It is preferable.
  • a silicon-containing resist layer thereon or a single-layer resist made of ordinary hydrocarbons in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to produce a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
  • a silicon-containing resist layer or a single layer resist made of normal hydrocarbon is formed on the lower layer film, and in the case of a three-layer process, a silicon-containing layer is formed on the lower layer film.
  • a single-layer resist layer not containing silicon can be formed on the intermediate layer and further on the silicon-containing intermediate layer.
  • the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
  • a silicon-containing resist material for a two-layer process from the point of resistance to oxygen gas etching, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used.
  • a silicon atom-containing polymer a known polymer used in this type of resist material can be used.
  • a polysilsesquioxane-based intermediate layer is preferably used as the silicon-containing intermediate layer for the three-layer process.
  • the intermediate layer With an effect as an antireflection film, reflection tends to be effectively suppressed.
  • the k value increases and the substrate reflection tends to increase, but by suppressing the reflection in the intermediate layer, The substrate reflection can be reduced to 0.5% or less.
  • polysilsesquioxane crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced is preferably used for 193 nm exposure.
  • an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used.
  • the intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known.
  • the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method.
  • the upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
  • the lower layer film of this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
  • a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film.
  • prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds.
  • a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development.
  • the thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
  • the exposure light may be appropriately selected and used according to the photoresist material to be used.
  • high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
  • the resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film of this embodiment. Therefore, by using the lower layer film of this embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
  • gas etching is preferably used as the etching of the lower layer film in the two-layer process.
  • gas etching etching using oxygen gas is suitable.
  • an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas can be added.
  • the latter gas is used for side wall protection for preventing undercut of the pattern side wall.
  • gas etching is also preferably used in the etching of the intermediate layer in the three-layer process.
  • the gas etching the same one as described in the above two-layer process can be applied.
  • the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask.
  • the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
  • a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is formed by a CVD method, an ALD method, or the like.
  • the method for forming the nitride film is not limited to the following, and examples thereof include methods described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7).
  • a photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
  • BARC organic antireflection film
  • an intermediate layer based on polysilsesquioxane is also preferably used.
  • the resist intermediate layer film As an antireflection film, reflection tends to be effectively suppressed.
  • Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). The thing which was done is mentioned.
  • Etching of the next substrate can also be performed by a conventional method.
  • the substrate is SiO 2 or SiN
  • etching mainly using a chlorofluorocarbon gas if p-Si, Al, or W is chlorine or bromine gas, Etching mainly composed of can be performed.
  • p-Si, Al, or W is chlorine or bromine gas
  • Etching mainly composed of can be performed.
  • the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing.
  • the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
  • the lower layer film of this embodiment is characterized by excellent etching resistance of these substrates.
  • a known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, ⁇ -Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. .
  • the substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, ⁇ -Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used.
  • the thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
  • the compound of the present embodiment or the resin of the present embodiment may be used for the above purification alone, but two or more kinds may be mixed and used for the above purification. Moreover, the compound of this embodiment or the resin of this embodiment may contain various surfactants, various crosslinking agents, various acid generators, various stabilizers, and the like.
  • the organic solvent that is not arbitrarily miscible with water used in the present embodiment is not particularly limited, but is an organic solvent having a solubility in water of less than 30% at room temperature, more preferably less than 20%, Particularly preferred is an organic solvent that can be safely applied to a semiconductor manufacturing process of less than 10%.
  • the amount of the organic solvent to be used is usually relative to the resin obtained by the reaction of the compound represented by the formula (1) or the compound represented by the formula (1) with a compound having a crosslinking reaction. About 1 to 100 times the mass is used.
  • solvents include, but are not limited to, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone, methyl isobutyl ketone and ethyl isobutyl ketone.
  • Ketones such as cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone, glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, methylene chloride, chlorine Halogenated hydrocarbons such as Holm and the like.
  • glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates
  • aliphatic hydrocarbons such as
  • toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate.
  • Methyl isobutyl ketone, ethyl acetate, and the like have a relatively high saturation solubility and a relatively low boiling point of the compound of the present embodiment or the resin of the present embodiment. It becomes possible to reduce the load in the.
  • These solvents can be used alone or in combination of two or more.
  • the acidic aqueous solution used in the present embodiment is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • aqueous solutions in which generally known organic and inorganic compounds are dissolved in water.
  • a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is dissolved in water, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid
  • an organic acid such as citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water.
  • acidic aqueous solutions can be used alone or in combination of two or more.
  • one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid
  • Aqueous solutions of carboxylic acids such as succinic acid, tartaric acid, and citric acid are more preferred
  • aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are more preferred
  • the pH of the acidic aqueous solution used in this embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound of this embodiment or the resin of this embodiment. Normally, the pH range is about 0 to 5, preferably about 0 to 3.
  • the amount of acidic aqueous solution used in the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and from the viewpoint of ensuring operability in consideration of the total amount of liquid, the amount used is It is preferable to adjust. From the above viewpoint, the amount of the aqueous solution used is usually 10 to 200% by mass, preferably 20 to 100% by mass with respect to the solution of the compound of the present embodiment or the resin of the present embodiment dissolved in an organic solvent. .
  • the metal component is extracted by bringing the acidic aqueous solution as described above into contact with the compound of the present embodiment or the resin of the present embodiment and a solution containing an organic solvent that is arbitrarily immiscible with water. be able to.
  • the solution (A) further contains an organic solvent that is arbitrarily mixed with water.
  • an organic solvent arbitrarily mixed with water is included, the amount of the compound of the present embodiment or the resin of the present embodiment can be increased, the liquid separation property is improved, and purification can be performed with high pot efficiency. It tends to be possible.
  • the method for adding an organic solvent arbitrarily mixed with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
  • the organic solvent arbitrarily mixed with water used in the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable.
  • the amount of the organic solvent arbitrarily mixed with the water to be used is not particularly limited as long as the solution phase and the aqueous phase are separated from each other. About 1 to 100 times the mass is used.
  • the solvent arbitrarily mixed with water used in the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane, alcohols such as methanol, ethanol and isopropanol, acetone, Examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), and glycol ethers such as propylene glycol monoethyl ether.
  • ethers such as tetrahydrofuran and 1,3-dioxolane
  • alcohols such as methanol, ethanol and isopropanol
  • acetone examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol mono
  • N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable.
  • These solvents can be used alone or in combination of two or more.
  • the temperature at the time of contacting the solution (A) with the acidic aqueous solution is usually 20 to 90 ° C., and preferably 30 to 80 ° C.
  • extraction operation is not specifically limited, For example, after mixing well by stirring etc., it is performed by leaving still. Thereby, the metal content contained in the solution containing the compound of the present embodiment or the resin of the present embodiment and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of the compound of this embodiment or the resin of this embodiment can be suppressed.
  • the compound of the present embodiment or the resin of the present embodiment is decanted or the like. And a solution containing the organic solvent is recovered.
  • the standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the organic solvent and the aqueous phase.
  • the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
  • the solution (A) it is preferable to include a step of performing an extraction process with water after performing an extraction process by bringing the solution (A) into contact with an acidic aqueous solution. That is, after performing the above extraction process using an acidic aqueous solution, the solution containing the compound of this embodiment or the resin of this embodiment and the organic solvent extracted and recovered from the aqueous solution is further subjected to an extraction process with water. It is preferable to provide.
  • the extraction treatment with water is not particularly limited.
  • the extraction treatment with water can be performed by mixing well by stirring and then allowing to stand.
  • the solution obtained after the standing is separated into a solution phase and an aqueous phase containing the compound of the present embodiment or the resin of the present embodiment and an organic solvent, and an aqueous phase, and therefore the compound of the present embodiment or the resin of the present embodiment by decantation or the like.
  • a solution phase containing an organic solvent can be recovered.
  • the water used here is a thing with little metal content, for example, ion-exchange water etc. according to the objective of this embodiment.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
  • the water that can be mixed into the compound of the present embodiment thus obtained or the solution containing the resin of the present embodiment and an organic solvent can be easily removed by performing an operation such as vacuum distillation. Moreover, an organic solvent can be added as needed, and the density
  • the method of isolating the compound of the present embodiment or the resin of the present embodiment from the obtained compound of the present embodiment or the solution containing the resin of the present embodiment and an organic solvent is not particularly limited, and is removed under reduced pressure and reprecipitated. Can be carried out by a known method such as separation by, and combinations thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
  • Carbon concentration and oxygen concentration Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis.
  • GC-MS analysis measurement was performed using Agilent 5975 / 6890N manufactured by Agilent.
  • the molecular weight was determined by field desorption mass spectrometry (FD-MS) analysis.
  • Evaluation A Thermal decomposition temperature is ⁇ 150 ° C.
  • Evaluation C Thermal decomposition temperature ⁇ 150 ° C (solubility) At 23 ° C., the compound was dissolved in cyclohexanone (CHN) so as to be a 5 mass% solution, and then allowed to stand at 5 ° C. for 30 days. The results were evaluated according to the following criteria. Evaluation A: Visually confirmed no deposit Evaluation C: Visually confirmed presence of deposit
  • the molecular weight of the obtained BisN-1-CH1 was 548.
  • the carbon concentration was 85.3% by mass, and the oxygen concentration was 8.8% by mass.
  • the obtained BisN-1-CH2 had a molecular weight of 630. Moreover, carbon concentration was 85.7 mass% and oxygen concentration was 7.6 mass%.
  • the obtained BisN-1-PH1 had a molecular weight of 542.
  • the carbon concentration was 86.3% by mass, and the oxygen concentration was 8.9% by mass.
  • the obtained BisN-1-PH2 had a molecular weight of 618.
  • the carbon concentration was 87.4% by mass, and the oxygen concentration was 7.8% by mass.
  • the obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17.
  • the carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
  • Acid generator Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate manufactured by Midori Kagaku Co. (denoted as “DTDPI” in the table)
  • Cross-linking agent Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd. (indicated in the table as “Nikalac”)
  • Organic solvent cyclohexanone (indicated in the table as “CHN”)
  • Etching resistance was evaluated according to the following procedure. First, a novolac underlayer film was prepared under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (BisN-1-CH1) used in Example 1.
  • novolak PSM4357 manufactured by Gunei Chemical Co., Ltd.
  • the compound of the following formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy- ⁇ -butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyro 0.38 g of nitrile was dissolved in 80 mL of tetrahydrofuran, polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane to give a product resin. Coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure.
  • the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide.
  • ELIONX electron beam lithography apparatus
  • PEB baked at 115 ° C. for 90 seconds
  • TMAH aqueous solution of
  • Table 1 shows the results of observing the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns.
  • Comparative Example 2 Except for using CR-1, it was carried out in the same manner as in Examples 1 to 4 and Comparative Example 1, and an underlayer film forming material was prepared and spin-coated on a silicon substrate, and then at 240 ° C. for 60 seconds and further at 400 ° C. Was baked for 120 seconds to prepare a lower layer film having a thickness of 200 nm. Thereafter, etching resistance was evaluated. The results are shown in Table 1.
  • Example 1 using BisN-1-CH1, which is a compound satisfying the configuration of the present embodiment, Example 2 using BisN-1-CH2, and BisN-1-PH1 were used.
  • Example 3 and Example 4 using BisN-1-PH2 it was confirmed that the heat resistance, solubility, and etching resistance were all good.
  • Comparative Example 1 using the polyphenol compound BisN-1 the heat resistance and etching resistance were good, but the solubility was poor.
  • the etching resistance was poor.
  • Comparative Example 1 it was confirmed that the resist pattern shape after development was poor and there were many defects. This is presumably because BisN-1 used in Comparative Example 1 has low solubility in the coating solvent. Further, it was confirmed that Examples 1 to 4 were significantly superior in both resolution and sensitivity as compared with Comparative Example 3 in which the formation of the lower layer film was omitted. From the difference in the resist pattern shape after development, it was shown that the lower layer film forming materials for lithography in Examples 1 to 4 had good adhesion to the resist material.
  • Example 5 The lower layer film forming material for lithography used in Example 1 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, thereby forming a lower layer having a thickness of 80 nm. A film was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on this intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer.
  • the silicon-containing intermediate layer material As the silicon-containing intermediate layer material, a silicon atom-containing polymer described in JP-A-2007-226170 ⁇ Synthesis Example 1> was used. Next, the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide. By developing with (TMAH) aqueous solution for 60 seconds, a positive resist pattern of 55 nm L / S (1: 1) was obtained.
  • ELIONX electron beam lithography apparatus
  • the silicon-containing intermediate layer film (SOG) was dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern was A dry etching process for the lower layer film using the mask and a dry etching process for the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
  • Example 5 The pattern cross section (shape of the SiO 2 film after etching) of Example 5 obtained as described above was observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd. As a result, it was confirmed that in Example 5 using the lower layer film satisfying the configuration of the present embodiment, the shape of the SiO 2 film after etching in the multi-layer resist processing is rectangular, and no defects are observed, which is good. It was.
  • the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for printed wiring boards, an electrical laminate mounted on electrical equipment / electronic equipment / industrial equipment, etc. ⁇ Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment It can be used widely and effectively in an agent, a resist resin for a semiconductor, a resin for forming a lower layer film and the like. In particular, the present invention can be used particularly effectively in the field of lithography lower layer films and multilayer resist lower layer films.

Abstract

A compound which is represented by formula (1). (In formula (1), each X independently represents an oxygen atom or a sulfur atom, or alternatively represents being non-crosslinked; R1 represents a single bond or a 2n-valent group having 1-30 carbon atoms, said group optionally having an alicyclic hydrocarbon group, a double bond, a heteroatom or an aryl group having 6-30 carbon atoms; each R2 independently represents a linear, branched or cyclic alkyl group having 1-10 carbon atoms, an aryl group having 6-10 carbon atoms, an alkenyl group having 2-10 carbon atoms, an alkoxy group having 1-30 carbon atoms, an aryloxy group having 6-30 carbon atoms, or a hydroxyl group, provided that at least one R2 is an alkoxy group having 1-30 carbon atoms or an aryloxy group having 6-30 carbon atoms; each m independently represents an integer of 1-6; each p independently represents 0 or 1; and n represents an integer of 1-4.)

Description

化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法Compound, resin, lower layer film forming material for lithography, lower layer film for lithography, pattern forming method and purification method
 本発明は、化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び精製方法に関する。 The present invention relates to a compound, a resin, an underlayer film forming material for lithography, an underlayer film for lithography, a pattern forming method, and a purification method.
 半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。現在の汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。 In the manufacture of semiconductor devices, microfabrication by lithography using a photoresist material is performed. In recent years, further miniaturization by pattern rules has been demanded as LSI is highly integrated and increased in speed. Lithography using light exposure, which is currently used as a general-purpose technology, is approaching the essential resolution limit derived from the wavelength of the light source.
 レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むと、解像度の問題又は現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。このような要望に対して、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作成し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってくる。 The light source for lithography used for resist pattern formation is shortened from KrF excimer laser (248 nm) to ArF excimer laser (193 nm). However, as the miniaturization of the resist pattern progresses, there arises a problem of resolution or a problem that the resist pattern collapses after development. Therefore, it is desired to reduce the thickness of the resist. In response to such a demand, simply thinning the resist makes it difficult to obtain a resist pattern film thickness sufficient for substrate processing. Therefore, not only the resist pattern but also a process of creating a resist underlayer film between the resist and the semiconductor substrate to be processed and providing the resist underlayer film with a function as a mask during substrate processing is required.
 現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(例えば、特許文献1参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献2参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を挙げることができる。このようなリソグラフィー用レジスト下層膜を形成するための材料として、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(例えば、特許文献3参照)。 Currently, various types of resist underlayer films for such processes are known. For example, unlike a resist underlayer film having a high etching rate, a resist underlayer film for lithography having a dry etching rate selection ratio close to that of a resist can be used. As a material for forming such a resist underlayer film for lithography, it contains a resin component having at least a substituent that generates a sulfonic acid residue when a predetermined energy is applied and a solvent, and a solvent. An underlayer film forming material for a multilayer resist process has been proposed (see, for example, Patent Document 1). Further, a resist underlayer film for lithography having a low dry etching rate selection ratio compared to the resist can be given. As a material for forming such a resist underlayer film for lithography, a resist underlayer film material containing a polymer having a specific repeating unit has been proposed (for example, see Patent Document 2). Furthermore, a resist underlayer film for lithography having a lower dry etching rate selectivity than the semiconductor substrate can be mentioned. As a material for forming such a resist underlayer film for lithography, there is a resist underlayer film material containing a polymer obtained by copolymerizing a repeating unit of acenaphthylenes and a repeating unit having a substituted or unsubstituted hydroxy group. It has been proposed (for example, see Patent Document 3).
 一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。 On the other hand, as a material having high etching resistance in this type of resist underlayer film, an amorphous carbon underlayer film formed by CVD using methane gas, ethane gas, acetylene gas or the like as a raw material is well known. However, from the viewpoint of the process, a resist underlayer film material capable of forming a resist underlayer film by a wet process such as spin coating or screen printing is required.
 また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物を提案している(例えば、特許文献4及び5参照。)。 In addition, the inventors of the present invention provide a lithographic lower layer containing a naphthalene formaldehyde polymer containing a specific structural unit and an organic solvent as a material that is excellent in optical characteristics and etching resistance and is soluble in a solvent and applicable to a wet process. A film-forming composition has been proposed (see, for example, Patent Documents 4 and 5).
 なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(例えば、特許文献6参照)や、シリコン窒化膜のCVD形成方法(例えば、特許文献7参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(例えば、特許文献8及び9参照)。 In addition, regarding the formation method of the intermediate layer used in the formation of the resist underlayer film in the three-layer process, for example, a silicon nitride film formation method (for example, refer to Patent Document 6) or a silicon nitride film CVD formation method (for example, Patent Document 7) is known. As an intermediate layer material for a three-layer process, a material containing a silsesquioxane-based silicon compound is known (for example, see Patent Documents 8 and 9).
特開2004-177668号公報JP 2004-177668 A 特開2004-271838号公報JP 2004-271838 A 特開2005-250434号公報JP 2005-250434 A 国際公開第2009/072465号International Publication No. 2009/072465 国際公開第2011/034062号International Publication No. 2011/034062 特開2002-334869号公報JP 2002-334869 A 国際公開第2004/066377号International Publication No. 2004/066377 特開2007-226170号公報JP 2007-226170 A 特開2007-226204号公報JP 2007-226204 A
 上述したように、従来数多くのリソグラフィー用下層膜形成材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い水準で両立させ、かつ製品品質を高度に安定させる為の安全溶媒への溶解性の更なる改善が求められている。 As described above, a number of materials for forming a lower layer film for lithography have been proposed, but not only have solvent solubility to which a wet process such as spin coating or screen printing can be applied, but also have heat resistance and etching resistance. There is a need for further improvements in solubility in safe solvents to achieve a high level of compatibility and to stabilize product quality at a high level.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、フォトレジスト下層膜を形成するために有用であって、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れ、かつ安全溶媒への溶解性が更に改善された化合物及び樹脂、下層膜形成材料及びパターン形成方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is useful for forming a photoresist underlayer film, a wet process is applicable, and excellent heat resistance and etching resistance. Another object of the present invention is to provide a compound and resin, a lower layer film forming material, and a pattern forming method, which are further improved in solubility in a safe solvent.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、上記課題を解決できることを見出し、本発明を完成するに到った。 As a result of intensive studies in order to solve the above problems, the present inventors have found that the above problems can be solved by using a compound or resin having a specific structure, and have completed the present invention.
 すなわち、本発明は、以下[1]~[19]を提供する。
[1]
 下記式(1)で表される、化合物。
Figure JPOXMLDOC01-appb-C000011
 
(式(1)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、mは各々独立して、1~6の整数であり、pは各々独立して、0又は1であり、nは1~4の整数である。)
[2]
 前記式(1)で表される化合物が下記式(1A-2)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000012
 
(式(1A-2)中、R及びpは前記と同様であり、Rは、前記式(1)で説明したRと同義であり、mは、各々独立して1~3の整数である。)
[3]
 前記式(1)で表される化合物が下記式(1B-2)で表される化合物である、[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000013
 
(式(1B-2)中、R及びpは前記と同様であり、Rは、前記式(1)で説明したRと同義であり、mは、各々独立して1~3の整数である。)
[4]
 前記式(1A-2)で表される化合物が下記式(BisN-1-CH1)又は下記式(BisN-1-CH2)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
[5]
 前記式(1A-2)で表される化合物が下記式(BisN-1-PH1)又は下記式(BisN-1-PH2)で表される化合物である、[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
[6]
 [1]~[5]のいずれか1項に記載の化合物をモノマーとして得られる、樹脂。
[7]
 [1]~[5]のいずれか1項に記載の化合物と架橋反応性のある化合物との反応によって得られる、請求項6に記載の樹脂。
[8]
 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる少なくとも1つである、[7]に記載の樹脂。
[9]
 下記式(2)で表される構造を含む、[6]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000018
 
(式(2)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、Rは各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは各々独立して、1~5の整数であり、pは各々独立して0又は1であり、nは1~4の整数である。)
[10]
 前記式(2)で表される構造を有する樹脂が、下記式(2A)で表される構造を有する樹脂である、[9]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000019
 
(式(2A)中、R、R、R、m、p及びnは、前記と同様である。)
[11]
 前記式(2)で表される構造を有する樹脂が、下記式(2B)で表される構造を有する樹脂である、[9]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000020
 
(式(2B)中、R、R、R、m、p及びnは、前記と同様である。)
[12]
 [1]~[5]のいずれか1項に記載の化合物及び/又は請求項6~11のいずれか1項に記載の樹脂を含有する、リソグラフィー用下層膜形成材料。
[13]
 有機溶媒をさらに含有する、[12]に記載のリソグラフィー用下層膜形成材料。
[14]
 酸発生剤をさらに含有する、[12]又は[13]に記載のリソグラフィー用下層膜形成材料。
[15]
 架橋剤をさらに含有する、[12]~[14]のいずれか1項に記載のリソグラフィー用下層膜形成材料。
[16]
 [12]~[15]のいずれか1項に記載のリソグラフィー用下層膜形成材料から形成される、リソグラフィー用下層膜。
[17]
 基板上に、[12]~[15]のいずれか1項に記載のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(A-1)と、
 前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
 前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、
 を有するレジストパターン形成方法。
[18]
 基板上に、[12]~[15]のいずれか1項に記載のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(B-1)と、
 前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成工程(B-2)と、
 前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
 前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、
 前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
 を有する、回路パターン形成方法。
[19]
 水と任意に混和しない有機溶媒、及び[1]~[5]のいずれか1項に記載の化合物又は[6]~[11]のいずれか1項に記載の樹脂を含有する溶液(A)と、酸性の水溶液と、を接触させて抽出する工程を含む、精製方法。
That is, the present invention provides the following [1] to [19].
[1]
The compound represented by following formula (1).
Figure JPOXMLDOC01-appb-C000011

(In the formula (1), each X independently represents an oxygen atom or a sulfur atom, or non-bridged, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group, And at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, m is each independently an integer of 1 to 6, and p is each independently 0 or 1 and n is an integer of 1 to 4.)
[2]
The compound according to [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1A-2).
Figure JPOXMLDOC01-appb-C000012

(In the formula (1A-2), R 1 and p are the same as described above, R 6 has the same meaning as R 2 described in the formula (1), and each m 6 independently represents 1 to 3 Is an integer.)
[3]
The compound according to [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1B-2).
Figure JPOXMLDOC01-appb-C000013

(In formula (1B-2), R 1 and p are as defined above, R 6 has the same meaning as R 2 described in formula (1), and m 6 is independently 1 to 3 Is an integer.)
[4]
The compound according to [2], wherein the compound represented by the formula (1A-2) is a compound represented by the following formula (BisN-1-CH1) or the following formula (BisN-1-CH2).
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

[5]
The compound according to [2], wherein the compound represented by the formula (1A-2) is a compound represented by the following formula (BisN-1-PH1) or the following formula (BisN-1-PH2).
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

[6]
[1] A resin obtained by using the compound according to any one of [1] to [5] as a monomer.
[7]
The resin according to claim 6, which is obtained by reacting the compound according to any one of [1] to [5] with a compound having a crosslinking reactivity.
[8]
The crosslinking reactive compound is at least one selected from the group consisting of aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates and unsaturated hydrocarbon group-containing compounds. [7] Resin.
[9]
Resin as described in [6] containing the structure represented by following formula (2).
Figure JPOXMLDOC01-appb-C000018

(In the formula (2), each X independently represents an oxygen atom, a sulfur atom, or a non-bridged group, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms. Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms. A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group, Here, at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, and each R 3 is independently a single bond or a straight chain having 1 to 20 carbon atoms. a Jo or branched alkylene group, m 2 are each independently 1 to Of integers, p is independently 0 or 1, n is an integer of 1-4.)
[10]
The resin according to [9], wherein the resin having a structure represented by the formula (2) is a resin having a structure represented by the following formula (2A).
Figure JPOXMLDOC01-appb-C000019

(In formula (2A), R 1 , R 2 , R 3 , m 2 , p and n are the same as described above.)
[11]
The resin according to [9], wherein the resin having a structure represented by the formula (2) is a resin having a structure represented by the following formula (2B).
Figure JPOXMLDOC01-appb-C000020

(In formula (2B), R 1 , R 2 , R 3 , m 2 , p and n are the same as described above.)
[12]
A material for forming an underlayer film for lithography, comprising the compound according to any one of [1] to [5] and / or the resin according to any one of claims 6 to 11.
[13]
The underlayer film forming material for lithography according to [12], further comprising an organic solvent.
[14]
The underlayer film forming material for lithography according to [12] or [13], further containing an acid generator.
[15]
The material for forming an underlayer film for lithography according to any one of [12] to [14], further comprising a crosslinking agent.
[16]
[12] A lithography lower layer film formed from the lithography lower layer film forming material according to any one of [15] to [15].
[17]
A step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography described in any one of [12] to [15];
Forming at least one photoresist layer on the lower layer film (A-2);
After the step (A-2), a step of irradiating a predetermined region of the photoresist layer with radiation and developing (A-3);
A resist pattern forming method comprising:
[18]
A step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography described in any one of [12] to [15];
Forming an intermediate layer film on the lower layer film using a resist intermediate layer film material containing silicon atoms (B-2);
Forming at least one photoresist layer on the intermediate film (B-3);
After the step (B-3), a step (B-4) of irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern;
After the step (B-4), the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the obtained lower layer film pattern is etched. Forming a pattern on the substrate by etching the substrate as a mask (B-5);
A circuit pattern forming method.
[19]
A solution (A) containing an organic solvent which is not arbitrarily miscible with water, and the compound according to any one of [1] to [5] or the resin according to any one of [6] to [11] And a step of bringing the aqueous solution into contact with an acidic aqueous solution for extraction.
 本発明によれば、フォトレジスト下層膜を形成するために有用であって、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れ、かつ安全溶媒への溶解性が更に改善された化合物、樹脂及びリソグラフィー用下層膜形成材料を実現することができる。 According to the present invention, a compound that is useful for forming a photoresist underlayer film, is applicable to a wet process, has excellent heat resistance and etching resistance, and has further improved solubility in a safe solvent, A resin and a material for forming a lower layer film for lithography can be realized.
 以下、本発明の実施の形態(以下、本実施形態と称する)について説明する。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。 Hereinafter, an embodiment of the present invention (hereinafter referred to as the present embodiment) will be described. In addition, this embodiment is an illustration for demonstrating this invention, and this invention is not limited only to this embodiment.
[化合物]
 本実施形態の化合物は、下記式(1)で表される。
[Compound]
The compound of this embodiment is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000021
 
(式(1)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、mは各々独立して、1~6の整数であり、pは各々独立して、0又は1であり、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000021

(In the formula (1), each X independently represents an oxygen atom or a sulfur atom, or non-bridged, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group, And at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, m is each independently an integer of 1 to 6, and p is each independently 0 or 1 and n is an integer of 1 to 4.)
 上記構造を有するため、本実施形態の化合物は、フォトレジスト下層膜を形成するために有用であって、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れ、かつ安全溶媒への溶解性が更に改善される。なお、本実施形態の化合物は、その構造上の特徴から、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高いということができる。このような所定の構造を有する化合物をリソグラフィー用下層膜形成材料として用いた場合、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができ、さらには、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。 Since it has the above structure, the compound of this embodiment is useful for forming a photoresist underlayer film, can be applied to a wet process, has excellent heat resistance and etching resistance, and is soluble in a safe solvent. Is further improved. In addition, it can be said that the compound of this embodiment has high heat resistance, a relatively high carbon concentration, a relatively low oxygen concentration, and a high solvent solubility because of its structural characteristics. When a compound having such a predetermined structure is used as a material for forming an underlayer film for lithography, the deterioration of the film during high-temperature baking is suppressed, and an underlayer film having excellent etching resistance against oxygen plasma etching or the like can be formed. Furthermore, since the adhesiveness with the resist layer is also excellent, an excellent resist pattern can be obtained.
 上記式(1)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表す。ここで、Xが無架橋である場合とは、式(1)で表される化合物が、下記式(1B)で表される化合物であることを意味する。
Figure JPOXMLDOC01-appb-C000022
 
(式(1B)中、R、R、m、p及びnは、前記と同様である。)
In the above formula (1), each X independently represents an oxygen atom, a sulfur atom, or no bridge. Here, the case where X is non-crosslinked means that the compound represented by the formula (1) is a compound represented by the following formula (1B).
Figure JPOXMLDOC01-appb-C000022

(In formula (1B), R 1 , R 2 , m, p and n are the same as described above.)
 上記Rは、単結合又は炭素数1~30の2n価の基である。本実施形態の化合物は、Rを介して各々のベンゼン環が結合した構成を有する。ここで、2n価の基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~30のアリール基を有していてもよい。 R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms. The compound of the present embodiment has a configuration in which each benzene ring is bonded via R 1 . Here, the 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms.
 上記Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基及び水酸基からなる群より選択される1価の基であり、各芳香環にm個ずつ結合している。ここで、Rの少なくとも1つは、炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基である。 R 2 is independently a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 1 to It is a monovalent group selected from the group consisting of 30 alkoxy groups, aryloxy groups having 6 to 30 carbon atoms, and hydroxyl groups, and m bonds to each aromatic ring. Here, at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms.
 また、mは、各々独立して、1~6の整数である。pは、各々独立して0又は1である。nは1~4の整数である。 M is an integer of 1 to 6 independently. Each p is independently 0 or 1. n is an integer of 1 to 4.
 なお、前記2n価の基とは、n=1のときには、炭素数1~30のアルキレン基、n=2のときには、炭素数1~30のアルカンテトライル基、n=3のときには、炭素数2~30のアルカンヘキサイル基、n=4のときには、炭素数3~30のアルカンオクタイル基のことを表す。前記2n価の基としては、例えば、直鎖状、分岐状又は環状構造を有するものが挙げられる。 The 2n-valent group is an alkylene group having 1 to 30 carbon atoms when n = 1, an alkanetetrayl group having 1 to 30 carbon atoms when n = 2, and a carbon number when n = 3. An alkanehexyl group having 2 to 30 carbon atoms, and when n = 4, an alkaneoctyl group having 3 to 30 carbon atoms. Examples of the 2n-valent group include those having a linear, branched or cyclic structure.
 また、前記2n価の基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。 The 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group.
 さらに、炭素数1~30のアルコキシ基とは、直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びそれらの二以上の組み合わせからなる基より選ばれる基と、酸素原子とから構成される基である。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、該アルコキシ基は、二重結合、ヘテロ原子、ハロゲン原子を有していてもよい。 Further, the alkoxy group having 1 to 30 carbon atoms is selected from a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group consisting of a combination of two or more thereof. And a group composed of an oxygen atom. Here, the alicyclic hydrocarbon group includes a bridged alicyclic hydrocarbon group. The alkoxy group may have a double bond, a hetero atom, or a halogen atom.
 炭素数1~30のアルコキシ基としては、特に限定されないが、好ましくは、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、フルオロフェニルオキシ基、クロロフェニルオキシ基、ブロモフェニルオキシ基、ヨードフェニルオキシ基、ヒドロキシフェニルオキシ基、メトキシフェニルオキシ基、アミノフェニルオキシ基、ニトロフェニルオキシ基、シアノフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、フルオロナフチルオキシ基、クロロナフチルオキシ基、ブロモナフチルオキシ基、ヨードナフチルオキシ基、ヒドロキシナフチルオキシ基、メトキシナフチルオキシ基、アミノナフチルオキシ基、ニトロナフチルオキシ基、シアノナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、より好ましくは、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、フルオロフェニルオキシ基、クロロフェニルオキシ基、ブロモフェニルオキシ基、ヨードフェニルオキシ基、ヒドロキシフェニルオキシ基、メトキシフェニルオキシ基、アミノフェニルオキシ基、ニトロフェニルオキシ基、シアノフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、フルオロナフチルオキシ基、クロロナフチルオキシ基、ブロモナフチルオキシ基、ヨードナフチルオキシ基、ヒドロキシナフチルオキシ基、メトキシナフチルオキシ基、アミノナフチルオキシ基、ニトロナフチルオキシ基、シアノナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、さらに好ましくは、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、メトキシフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、メトキシナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、特に好ましくは、シクロヘキシルオキシ基、フェニルオキシ基が挙げられる。 The alkoxy group having 1 to 30 carbon atoms is not particularly limited, but is preferably a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group. Group, cyclohexenyloxy group, isophoronyloxy group, norbornanyloxy group, adamantyloxy group, tricyclodecanyloxy group, pyridinyloxy group, phenyloxy group, methylphenyloxy group, dimethylphenyloxy group, ethylphenyloxy Group, fluorophenyloxy group, chlorophenyloxy group, bromophenyloxy group, iodophenyloxy group, hydroxyphenyloxy group, methoxyphenyloxy group, aminophenyloxy group, nitrophenyloxy group, shear Phenyloxy group, phenylphenyloxy group, phenyloxyphenyloxy group, naphthyloxy group, methylnaphthyloxy group, dimethylnaphthyloxy group, ethylnaphthyloxy group, fluoronaphthyloxy group, chloronaphthyloxy group, bromonaphthyloxy group, iodo Naphtyloxy group, hydroxynaphthyloxy group, methoxynaphthyloxy group, aminonaphthyloxy group, nitronaphthyloxy group, cyanonaphthyloxy group, phenylnaphthyloxy group, phenyloxynaphthyloxy group, anthracenyloxy group, pyrenyloxy group, fullyl Olenyloxy group, more preferably cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclohexenyloxy group, isophoronyloxy group, norborna Ruoxy group, adamantyloxy group, tricyclodecanyloxy group, pyridinyloxy group, phenyloxy group, methylphenyloxy group, dimethylphenyloxy group, ethylphenyloxy group, fluorophenyloxy group, chlorophenyloxy group, bromophenyloxy group, Iodophenyloxy group, hydroxyphenyloxy group, methoxyphenyloxy group, aminophenyloxy group, nitrophenyloxy group, cyanophenyloxy group, phenylphenyloxy group, phenyloxyphenyloxy group, naphthyloxy group, methylnaphthyloxy group, Dimethylnaphthyloxy, ethylnaphthyloxy, fluoronaphthyloxy, chloronaphthyloxy, bromonaphthyloxy, iodonaphthyloxy, hydroxynaphthyloxy Xyl, methoxynaphthyloxy, aminonaphthyloxy, nitronaphthyloxy, cyanonaphthyloxy, phenylnaphthyloxy, phenyloxynaphthyloxy, anthracenyloxy, pyrenyloxy, fluorenyloxy More preferably, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, cyclohexenyloxy group, isophoronyloxy group, norbornanyloxy group, adamantyloxy group, tricyclodecanyloxy group, pyridinyloxy group, phenyl Oxy group, methylphenyloxy group, dimethylphenyloxy group, ethylphenyloxy group, methoxyphenyloxy group, phenylphenyloxy group, phenyloxyphenyloxy group, naphthyloxy group, methylna Tyloxy group, dimethylnaphthyloxy group, ethylnaphthyloxy group, methoxynaphthyloxy group, phenylnaphthyloxy group, phenyloxynaphthyloxy group, anthracenyloxy group, pyrenyloxy group, fluorenyloxy group, particularly preferably Examples thereof include a cyclohexyloxy group and a phenyloxy group.
 炭素数6~30のアリールオキシ基は、炭素数6~30の芳香族炭化水素基と酸素原子から構成される基であり、式(1)で表される化合物の溶解性向上に寄与する。このような炭素数6~30のアリールオキシ基の具体例としては、以下に限定されないが、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、トリメチルフェニルオキシ基、エチルフェニルオキシ基、プロピルフェニルオキシ基、ブチルフェニルオキシ基、シクロヘキシルフェニルオキシ基、ビフェニルオキシ基、ターフェニルオキシ基、ナフチルオキシ基、フルオレニルオキシ基、アントラシルオキシ基、ピレニルオキシ基、メチルピレニルオキシ基、ジメチルピレニルオキシ基等が挙げられる。 The aryloxy group having 6 to 30 carbon atoms is a group composed of an aromatic hydrocarbon group having 6 to 30 carbon atoms and an oxygen atom, and contributes to improving the solubility of the compound represented by the formula (1). Specific examples of such an aryloxy group having 6 to 30 carbon atoms include, but are not limited to, phenyloxy group, methylphenyloxy group, dimethylphenyloxy group, trimethylphenyloxy group, ethylphenyloxy group, propylphenyl group Oxy group, butylphenyloxy group, cyclohexylphenyloxy group, biphenyloxy group, terphenyloxy group, naphthyloxy group, fluorenyloxy group, anthracyloxy group, pyrenyloxy group, methylpyrenyloxy group, dimethylpyrenyloxy group Groups and the like.
 前記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性及び平坦化特性が比較的に有利に高められる傾向にある。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。さらには、炭素数1~30のアルコキシ基を有することにより、製品品質を高度に安定させる為の安全溶媒への溶解性が更に改善される。 The compound represented by the formula (1) has a relatively low molecular weight, but has high heat resistance due to the rigidity of its structure, and therefore can be used under high temperature baking conditions. In addition, since the substrate has a relatively low molecular weight and low viscosity, it is easy to uniformly fill every corner of a step even on a substrate having a step (particularly, a fine space or a hole pattern). As a result, the material for forming a lower layer film for lithography using this tends to have a relatively advantageous improvement in embedding characteristics and planarization characteristics. Moreover, since it is a compound having a relatively high carbon concentration, high etching resistance is also imparted. Furthermore, having an alkoxy group having 1 to 30 carbon atoms further improves the solubility in a safe solvent for highly stabilizing the product quality.
 ここで、前記式(1)で表される化合物は、剛直構造形成による耐熱性向上の点で、下記式(1A)で表される化合物であることが好ましい。 Here, the compound represented by the formula (1) is preferably a compound represented by the following formula (1A) from the viewpoint of improving heat resistance by forming a rigid structure.
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
 前記式(1A)中、R、R、m、p及びnは、前記と同様である。 In the formula (1A), R 1 , R 2 , m, p and n are the same as described above.
 また、前記式(1)で表される化合物は、安全溶媒溶解性向上の点で、下記式(1B)で表される化合物であることが好ましい。 In addition, the compound represented by the formula (1) is preferably a compound represented by the following formula (1B) from the viewpoint of improving the safety solvent solubility.
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
 前記式(1B)中、R、R、m、p及びnは、前記と同様である。 In the formula (1B), R 1 , R 2 , m, p and n are the same as described above.
 前記式(1A)で表される化合物は、RO基導入によるベーク時の架橋度向上による耐熱性向上の点で、式(1A-1)で表される化合物であることがより好ましい。 The compound represented by the formula (1A) is more preferably a compound represented by the formula (1A-1) from the viewpoint of improving the heat resistance by improving the degree of crosslinking during baking by introducing an R 5 O group.
Figure JPOXMLDOC01-appb-C000025
 
(式(1A-1)中、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基又は水酸基であり、Rは、炭素数1~30の1価の基であり、直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びそれらの二以上の組み合わせからなる1価の基より選ばれる基である。該基は二重結合、ヘテロ原子、ハロゲン原子を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。mは、各々独立して0~4の整数であり、ここで、少なくとも1つのmは1であり、mは、各々独立して0~3の整数であり、m+mは1~4の整数であり、R、n及びpは、前記と同様である。)
Figure JPOXMLDOC01-appb-C000025

(In formula (1A-1), each R 4 independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or 2 to 10 carbon atoms. R 5 is a monovalent group having 1 to 30 carbon atoms, and is a linear hydrocarbon group, branched hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group And a monovalent group consisting of a combination of two or more thereof, which may have a double bond, a hetero atom, or a halogen atom, wherein the alicyclic hydrocarbon group As for, a bridged alicyclic hydrocarbon group is also included, wherein m 3 is each independently an integer of 0 to 4, where at least one m 3 is 1 and m 4 is each independently And m 3 + m 4 is an integer of 1 to 4, and R 1 , n and p are the same as above. Like.)
 前記式(1B)で表される化合物は、RO基導入による更なる安全溶媒溶解性向上の点で、の点で、式(1B-1)で表される化合物であることがより好ましい。 The compound represented by the formula (1B) is more preferably a compound represented by the formula (1B-1) from the viewpoint of further improving the solubility of the safe solvent by introducing the R 5 O group. .
Figure JPOXMLDOC01-appb-C000026
 
(式(1B-1)中、R、R、R、m、m、n及びpは前記と同様である。)
Figure JPOXMLDOC01-appb-C000026

(In formula (1B-1), R 1 , R 4 , R 5 , m 3 , m 4 , n and p are the same as described above.)
 また、低分子量である観点から、前記式(1)で表される化合物は、式(1)においてn=1である態様、すなわち下記式(1-2)で表される化合物であることが好ましい。 From the viewpoint of low molecular weight, the compound represented by the formula (1) is an embodiment in which n = 1 in the formula (1), that is, a compound represented by the following formula (1-2). preferable.
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
 前記式(1-2)中、X、R及びpは前記式(1)で説明しものと同義であり、Rは、前記式(1)で説明したRと同義であり、mは、1~3の整数である。 In the formula (1-2), X, R 1 and p have the same meanings as those explained in the formula (1), R 6 has the same meaning as R 2 explained in the formula (1), m 6 is an integer of 1 to 3.
 また、前記式(1-2)で表される化合物は、剛直構造形成による耐熱性向上の観点から、前記式(1-2)においてX=Oである態様、すなわち下記式(1A-2)で表される化合物であることがより好ましい。 In addition, the compound represented by the formula (1-2) is an embodiment in which X═O in the formula (1-2), that is, the following formula (1A-2), from the viewpoint of improving heat resistance by forming a rigid structure. It is more preferable that it is a compound represented by these.
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
 前記式(1A-2)中、R及びpは、前記式(1)で説明したものと同義である。Rは、前記式(1)で説明したRと同義であり、mは、1~3の整数である。 In the formula (1A-2), R 1 and p have the same meanings as described in the formula (1). R 6 has the same meaning as R 2 described in Formula (1), and m 6 is an integer of 1 to 3.
 また、前記式(1-2)で表される化合物は、安全溶媒溶解性向上の観点から、前記式(1-2)においてXが無架橋である態様、すなわち下記式(1B-2)で表される化合物であることがより好ましい。 In addition, from the viewpoint of improving the safety solvent solubility, the compound represented by the formula (1-2) is an embodiment in which X is non-crosslinked in the formula (1-2), that is, in the following formula (1B-2) More preferably, it is a compound represented.
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
 前記式(1B-2)中、R及びpは、前記式(1)で説明したものと同義である。Rは、前記式(1)で説明したRと同義であり、mは、1~3の整数である。 In the formula (1B-2), R 1 and p have the same meanings as described in the formula (1). R 6 has the same meaning as R 2 described in Formula (1), and m 6 is an integer of 1 to 3.
 溶解度と耐熱性の兼備の観点から、上記式(1A-2)で表される化合物は、下記式(1A-3)で表される化合物であることが好ましい。 From the viewpoint of combining solubility and heat resistance, the compound represented by the above formula (1A-2) is preferably a compound represented by the following formula (1A-3).
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
 前記式(1A-3)中、Rは前記式(1)で説明しものと同義であり、Rは、前記式(1A-1)で説明したものと同義である。 In the formula (1A-3), R 1 has the same meaning as described in the formula (1), and R 5 has the same meaning as that described in the formula (1A-1).
 溶解度と耐熱性の兼備の観点から、上記式(1B-2)で表される化合物は、下記式(1B-3)で表される化合物であることが好ましい。 From the viewpoint of combining solubility and heat resistance, the compound represented by the above formula (1B-2) is preferably a compound represented by the following formula (1B-3).
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
 前記式(1B-3)中、Rは前記式(1)で説明しものと同義であり、Rは、前記式(1A-1)で説明したものと同義である。 In the formula (1B-3), R 1 has the same meaning as described in the formula (1), and R 5 has the same meaning as described in the formula (1A-1).
 前記式(1)で表される化合物の具体例を、以下に例示するが、ここで列挙した限りではない。 Specific examples of the compound represented by the formula (1) are illustrated below, but are not limited to those listed here.
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000042
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000043
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000044
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000045
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000046
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000047
 
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000048
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000049
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000050
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000051
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000052
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000053
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000054
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000055
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000056
 
Figure JPOXMLDOC01-appb-C000057
 
Figure JPOXMLDOC01-appb-C000057
 
 前記式中、R、X及びmは、上記式(1)で説明したものと同義である。 In the above formula, R 2 , X and m are as defined in the above formula (1).
 前記式(1)で表される化合物の具体例を、さらに以下に例示するが、ここで列挙した限りではない。 Specific examples of the compound represented by the formula (1) are further exemplified below, but are not limited to those listed here.
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000058
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000059
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000060
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000061
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000062
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000063
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000064
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000065
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000066
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000067
 
Figure JPOXMLDOC01-appb-C000068
 
Figure JPOXMLDOC01-appb-C000068
 
 前記式中、Xは、前記式(1)で説明したものと同義であり、Rは、前記式(1A-1)で説明したものと同義である。 In the above formula, X has the same meaning as described in the formula (1), and R 5 has the same meaning as described in the formula (1A-1).
 また、溶解性の観点から、前記式(1A-2)で表される化合物が、下記式(BisN-1-CH1)又は下記式(BisN-1-CH2)で表される化合物であることが特に好ましい。 From the viewpoint of solubility, the compound represented by the formula (1A-2) may be a compound represented by the following formula (BisN-1-CH1) or the following formula (BisN-1-CH2). Particularly preferred.
Figure JPOXMLDOC01-appb-C000069
 
Figure JPOXMLDOC01-appb-C000069
 
   
 また、溶解性の観点から、前記式(1A-2)で表される化合物が、下記式(BisN-1-PH1)又は下記式(BisN-1-PH2)で表される化合物であることも好ましい。 From the viewpoint of solubility, the compound represented by the formula (1A-2) may be a compound represented by the following formula (BisN-1-PH1) or the following formula (BisN-1-PH2). preferable.
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000071
 
Figure JPOXMLDOC01-appb-C000072
 
Figure JPOXMLDOC01-appb-C000072
 
 前記式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、所望とする化合物の構造に対応するフェノール類或いはチオフェノール類と、所望とする化合物の構造に対応するアルデヒド類或いはケトン類とを酸触媒下にて重縮合反応させることによって、前記式(1)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。反応条件を変更することにより、Xで架橋した場合の構造とXが無架橋である場合の構造との生成比率を制御しうる。例えば、反応温度を高くし、反応時間を長くし、酸触媒の酸強度を強くすると、Xで架橋した構造の生成比率が高くなる傾向にある。一方、反応温度を低くし、反応時間を短くし、酸触媒の酸強度を弱くすると、Xで無架橋である構造の生成比率が高くなる傾向にある。高溶媒溶解性を重視する場合、Xが無架橋である場合の構造の比率が高い方が好ましく、一方で高耐熱性を重視する場合、Xで架橋した場合の構造の比率が高い方が好ましい。 The compound represented by the formula (1) can be appropriately synthesized by applying a known technique, and the synthesis technique is not particularly limited. For example, under normal pressure, a phenol or thiophenol corresponding to the desired compound structure and an aldehyde or ketone corresponding to the desired compound structure are subjected to a polycondensation reaction in the presence of an acid catalyst. A compound represented by the formula (1) can be obtained. Moreover, it can also carry out under pressure as needed. By changing the reaction conditions, it is possible to control the generation ratio between the structure when X is crosslinked and the structure when X is non-crosslinked. For example, when the reaction temperature is increased, the reaction time is increased, and the acid strength of the acid catalyst is increased, the generation ratio of the structure crosslinked with X tends to increase. On the other hand, when the reaction temperature is lowered, the reaction time is shortened, and the acid strength of the acid catalyst is weakened, the generation ratio of the structure that is non-crosslinked with X tends to increase. When emphasizing high solvent solubility, a higher ratio of the structure when X is non-crosslinked is preferable, while when emphasizing high heat resistance, a higher ratio of the structure when crosslinked with X is preferable. .
 前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ハイドロキノンを用いることがキサンテン構造を容易に作ることができる点でより好ましい。 Examples of the phenols include, but are not limited to, phenol, methylphenol, methoxybenzene, catechol, resorcinol, hydroquinone, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use hydroquinone because a xanthene structure can be easily formed.
 前記チオフェノール類としては、例えば、ベンゼンチオール、メチルベンゼンチオール、メトキシベンゼンチオール、ベンゼンジチオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンゼンジチオールを用いることがチオキサンテン構造を容易に作ることができる点でより好適である。 Examples of the thiophenols include, but are not particularly limited to, benzenethiol, methylbenzenethiol, methoxybenzenethiol, benzenedithiol, and the like. These can be used individually by 1 type or in combination of 2 or more types. Among these, it is more preferable to use benzenedithiol because a thioxanthene structure can be easily formed.
 前記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、アントラセンジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒドを用いることが、高い耐熱性を与える点で好ましい。 Examples of the aldehydes include formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, hexylaldehyde, decylaldehyde, undecylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehyde, Chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phenanthrenecarboxaldehyde, pyrene Examples include ruboxaldehyde, glyoxal, glutaraldehyde, phthalaldehyde, naphthalene dicarboxyaldehyde, biphenyl dicarboxaldehyde, bis (diformylphenyl) methane, bis (diformylphenyl) propane, and benzenetricarboxaldehyde. There is no particular limitation. These can be used individually by 1 type or in combination of 2 or more types. Among these, benzaldehyde, hydroxybenzaldehyde, fluorobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, dimethylbenzaldehyde, ethylbenzaldehyde, propylbenzaldehyde, butylbenzaldehyde, cyclohexylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarboxaldehyde, phenanthrenecarboxaldehyde , Pyrenecarboxaldehyde, glyoxal, glutaraldehyde, phthalaldehyde, naphthalene dicarboxyaldehyde, biphenyl dicarboxaldehyde, anthracene dicarboxaldehyde, bis (diformylphenyl) methane, bis (diformylphenyl) propane, benzene It is preferred from the viewpoint of giving high heat resistance to use a tri-carboxaldehyde.
 前記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独でまたは2種以上を組み合わせて使用することができる。これらのなかでも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノンを用いることが、高い耐熱性を与える点で好ましい。 Examples of the ketones include acetone, methyl ethyl ketone, cyclobutanone, cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone, anthraquinone, and the like. However, it is not particularly limited to these. These can be used alone or in combination of two or more. Among these, it is preferable to use cyclopentanone, cyclohexanone, norbornanone, tricyclohexanone, tricyclodecanone, adamantanone, fluorenone, benzofluorenone, acenaphthenequinone, acenaphthenone and anthraquinone from the viewpoint of giving high heat resistance.
 上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、それらの具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸および固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。 The acid catalyst used in the above reaction can be appropriately selected from known ones and is not particularly limited. As such an acid catalyst, inorganic acids and organic acids are widely known, and specific examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid However, it is not particularly limited to these. Among these, an organic acid and a solid acid are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferably used from the viewpoint of production such as availability and ease of handling. In addition, about an acid catalyst, 1 type can be used individually or in combination of 2 or more types. The amount of the acid catalyst used can be appropriately set according to the raw material used, the type of catalyst used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reactive raw material. It is preferable that it is a mass part.
 上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類或いはケトン類とフェノール類或いはチオフェノール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができるが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができる。上記反応温度としては、特に限定されないが、通常10~200℃の範囲である。本実施形態の一般式(1)で示される化合物として、キサンテン構造或いはチオキサンテン構造を形成するためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、フェノール類或いはチオフェノール類、アルデヒド類或いはケトン類、酸触媒を一括で仕込む方法や、フェノール類或いはチオフェノール類やアルデヒド類或いはケトン類を酸触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や酸触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。 In the above reaction, a reaction solvent may be used. The reaction solvent is not particularly limited as long as the reaction between the aldehyde or ketone to be used and the phenol or thiophenol proceeds, and can be appropriately selected from known ones. , Water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, or a mixed solvent thereof. In addition, a solvent can be used individually by 1 type or in combination of 2 or more types. Moreover, the usage-amount of these solvent can be suitably set according to the raw material to be used, the kind of acid catalyst to be used, and also reaction conditions. The amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material. Furthermore, the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw materials. The reaction temperature is not particularly limited, but is usually in the range of 10 to 200 ° C. In order to form a xanthene structure or a thioxanthene structure as the compound represented by the general formula (1) of the present embodiment, the reaction temperature is preferably higher, and specifically in the range of 60 to 200 ° C. The reaction method can be appropriately selected from known methods, and is not particularly limited. However, the reaction method may be a method in which phenols or thiophenols, aldehydes or ketones, and an acid catalyst are charged all at once, phenols or thiols. There is a method in which phenols, aldehydes or ketones are dropped in the presence of an acid catalyst. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, acid catalysts, etc. existing in the system, a general technique such as raising the temperature of the reaction kettle to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg, By taking it, the target compound can be obtained.
 好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、フェノール類又はチオフェノール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることにより進行する。 As preferable reaction conditions, 1 mol to excess of phenols or thiophenols and 0.001 to 1 mol of acid catalyst are used with respect to 1 mol of aldehyde or ketone, and 50 to 150 ° C. at normal pressure. The reaction proceeds for about 20 minutes to 100 hours.
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、濾過により得られた固形物を乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である前記式(1)で表される化合物の前駆体となる化合物を得ることができる。 After completion of the reaction, the target product can be isolated by a known method. For example, the reaction solution is concentrated, pure water is added to precipitate the reaction product, cooled to room temperature, filtered and separated, and the solid obtained by filtration is dried, followed by column chromatography. Separating and purifying from the by-product, and performing solvent distillation, filtration, and drying, a compound that is a precursor of the compound represented by the formula (1), which is the target product, can be obtained.
 前記方法で得られた前駆体化合物に、公知の方法により、例えば、少なくとも1つのフェノール性水酸基の水素原子を炭素数1~30の一価の基に置換すること等により、目的物である前記式(1)で表される化合物を得ることができる。 The precursor compound obtained by the above method can be obtained by a known method, for example, by replacing the hydrogen atom of at least one phenolic hydroxyl group with a monovalent group having 1 to 30 carbon atoms. A compound represented by the formula (1) can be obtained.
 フェノール性水酸基の水素原子を炭素数1~30の一価の基に置換する方法は特に限定されないが、例えば、前記前駆体化合物に、塩基触媒存在下にて、ハロゲン化炭化水素化合物を反応させることによる脱ハロゲン化水素反応にて得ることができる。 The method for replacing the hydrogen atom of the phenolic hydroxyl group with a monovalent group having 1 to 30 carbon atoms is not particularly limited. For example, the precursor compound is reacted with a halogenated hydrocarbon compound in the presence of a base catalyst. Can be obtained by dehydrohalogenation reaction.
 前記ハロゲン化炭化水素化合物としては、特に限定されないが、炭素数1~30のハロゲン化炭化水素化合物が好適に用いられる。ハロゲン化炭化水素化合物は、直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びそれらの二以上の組み合わせからなる基とハロゲン原子から構成される。ここで、前記脂環式炭化水素基については、有橋環式炭化水素基も含まれる。該ハロゲン化炭化水素化合物は、二重結合、ヘテロ原子又は別種のハロゲン原子を有していてもよい。 The halogenated hydrocarbon compound is not particularly limited, but a halogenated hydrocarbon compound having 1 to 30 carbon atoms is preferably used. The halogenated hydrocarbon compound is composed of a linear hydrocarbon group, a branched hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, a group composed of two or more thereof, and a halogen atom. Here, the alicyclic hydrocarbon group includes a bridged cyclic hydrocarbon group. The halogenated hydrocarbon compound may have a double bond, a hetero atom, or another type of halogen atom.
 前記ハロゲン化炭化水素化合物は、例えば、塩化メチル、臭化メチル、ヨウ化メチル、塩化プロピル、臭化プロピル、ヨウ化プロピル、塩化ブチル、臭化ブチル、ヨウ化ブチル、塩化ヘプチル、臭化ヘプチル、ヨウ化ヘプチル、塩化ヘキシル、臭化ヘキシル、ヨウ化ヘキシル、塩化デシル、臭化デシル、ヨウ化デシル又は下記式(5)で表される化合物群等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。 Examples of the halogenated hydrocarbon compound include methyl chloride, methyl bromide, methyl iodide, propyl chloride, propyl bromide, propyl iodide, butyl chloride, butyl bromide, butyl iodide, heptyl chloride, heptyl bromide, Examples include heptyl iodide, hexyl chloride, hexyl bromide, hexyl iodide, decyl chloride, decyl bromide, decyl iodide, or a compound group represented by the following formula (5), but are not particularly limited thereto. These can be used individually by 1 type or in combination of 2 or more types.
Figure JPOXMLDOC01-appb-C000073
 
Figure JPOXMLDOC01-appb-C000073
 
 前記式(5)中、Yは、塩素原子、臭素原子又はヨウ素原子を表す。 In the formula (5), Y represents a chlorine atom, a bromine atom or an iodine atom.
 ジメチルホルムアミド等の有機溶媒中、塩基触媒(炭酸ナトリウム、炭酸カリウム、トリエチルアミン、アンモニアまたは水酸化ナトリウム等)の存在下で、前記前駆体化合物1モルに対し、ハロゲン化炭化水素化合物0.1~10モルを0~150℃で0.5~20時間程度反応させる。この反応により、前記得られた前駆体化合物中の少なくとも1つのフェノール性水酸基をアルコキシル基に変換することができる。次いで、濾過、メタノール等のアルコール類による洗浄、水洗、濾過による分離後、乾燥させることにより前記式(1)で表される化合物が得られる。 In the presence of a base catalyst (sodium carbonate, potassium carbonate, triethylamine, ammonia, sodium hydroxide, etc.) in an organic solvent such as dimethylformamide, 0.1 to 10 halogenated hydrocarbon compounds are used per 1 mol of the precursor compound. The mole is reacted at 0 to 150 ° C. for about 0.5 to 20 hours. By this reaction, at least one phenolic hydroxyl group in the obtained precursor compound can be converted into an alkoxyl group. Next, the compound represented by the formula (1) is obtained by filtration, washing with alcohols such as methanol, washing with water, separation by filtration, and drying.
 前記式(1)で表される化合物の分子量は、特に限定されないが、重量平均分子量Mwが350~5,000であることが好ましく、より好ましくは、400~3,000である。なお、上記Mwは、後述する実施例に記載の方法により測定することができる。 The molecular weight of the compound represented by the formula (1) is not particularly limited, but the weight average molecular weight Mw is preferably 350 to 5,000, and more preferably 400 to 3,000. In addition, said Mw can be measured by the method as described in the Example mentioned later.
[樹脂]
 前記式(1)で表される化合物は、リソグラフィー用下層膜形成材料として、そのまま使用することができる。また、前記式(1)で表される化合物をモノマーとして得られる樹脂としても使用することができる。例えば、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。前記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(2)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用下層膜形成材料は、下記式(2)に表される構造を有する樹脂を含有するものであってもよい。
[resin]
The compound represented by the formula (1) can be used as it is as a material for forming a lower layer film for lithography. Moreover, it can be used also as resin obtained by using the compound represented by said Formula (1) as a monomer. For example, it can also be used as a resin obtained by reacting a compound represented by the formula (1) with a compound having crosslinking reactivity. Examples of the resin obtained using the compound represented by the formula (1) as a monomer include those having a structure represented by the following formula (2). That is, the lower layer film forming material for lithography of the present embodiment may contain a resin having a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000074
 
(式(2)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、Rは各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは各々独立して、1~5の整数であり、pは各々独立して0又は1であり、nは1~4の整数である。)
Figure JPOXMLDOC01-appb-C000074

(In the formula (2), each X independently represents an oxygen atom or a sulfur atom, or non-bridged, R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, The hydrogen group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms. A chain, branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group. Wherein at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, and each R 3 independently represents a single bond or 1 to 20 carbon atoms. a linear or branched alkylene group, m 2 are each independently Is an integer from 1 to 5, p are each independently 0 or 1, n is an integer of 1-4.)
 前記式(2)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表す。ここで、Xが無架橋である場合とは、式(2)に表される構造が、下記式(2B)で表される構造であることを意味する。 In the formula (2), each X independently represents an oxygen atom, a sulfur atom, or no crosslinking. Here, the case where X is non-crosslinked means that the structure represented by the formula (2) is a structure represented by the following formula (2B).
Figure JPOXMLDOC01-appb-C000075
 
(式(2B)中、R、R、R、m、n及びpは、前記と同様である。)
Figure JPOXMLDOC01-appb-C000075

(In formula (2B), R 1 , R 2 , R 3 , m 2 , n and p are the same as described above.)
 前記式(2)中、Rは、単結合又は炭素数1~30の2n価の基であり、このRを介して各々の芳香環が結合している。ここで、2n価の基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよい。 In the formula (2), R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, and each aromatic ring is bonded through this R 1 . Here, the 2n-valent group may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms.
 Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基及び水酸基からなる群より選択される1価の基であり、芳香環に各々m個ずつ結合している。ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基である。 R 2 each independently represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or 1 to 30 carbon atoms. A monovalent group selected from the group consisting of an alkoxy group having 5 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms and a hydroxyl group, each having m 2 bonded to the aromatic ring. Here, at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms.
 Rは、各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基である。 Each R 3 is independently a single bond or a linear or branched alkylene group having 1 to 20 carbon atoms.
 mは、各々独立して、1~5の整数であり、pは、各々独立して、0又は1であり、nは1~4の整数である。なお、前記2n価の基とは、前記式(1)に係る説明において記載した内容と同義である。 m 2 is each independently an integer of 1 to 5, p is each independently 0 or 1, and n is an integer of 1 to 4. The 2n-valent group has the same meaning as described in the description relating to the formula (1).
 ここで、前記式(2)で表される構造は、剛直構造形成による耐熱性向上の観点から、下記式(2A)で表される構造であることが好ましい。 Here, the structure represented by the formula (2) is preferably a structure represented by the following formula (2A) from the viewpoint of improving heat resistance by forming a rigid structure.
Figure JPOXMLDOC01-appb-C000076
 
(式(2A)中、R、R、R、m、n及びpは、前記と同様である。)
Figure JPOXMLDOC01-appb-C000076

(In formula (2A), R 1 , R 2 , R 3 , m 2 , n and p are the same as described above.)
 ここで、前記式(2A)で表される構造は、RO基導入によるベーク時の架橋度向上による耐熱性向上の点で、下記式(2A-1)で表される構造であることが好ましい。 Here, the structure represented by the formula (2A) is a structure represented by the following formula (2A-1) from the viewpoint of improving heat resistance by improving the degree of crosslinking during baking by introducing an R 5 O group. Is preferred.
Figure JPOXMLDOC01-appb-C000077
 
(式(2A-1)中、R、R、R、m、m、n及びpは前記と同様である。)
Figure JPOXMLDOC01-appb-C000077

(In the formula (2A-1), R 1 , R 4 , R 5 , m 3 , m 4 , n and p are the same as described above.)
 また、前記式(2B)で表される構造は、安全溶媒溶解性向上の観点から、下記式(2B-1)で表される構造であることが好ましい。 In addition, the structure represented by the formula (2B) is preferably a structure represented by the following formula (2B-1) from the viewpoint of improving the safety solvent solubility.
Figure JPOXMLDOC01-appb-C000078
 
(式(2B-1)中、R、R、R、m、m、n及びpは前記と同様である。)
Figure JPOXMLDOC01-appb-C000078

(In the formula (2B-1), R 1 , R 4 , R 5 , m 3 , m 4 , n and p are the same as above.)
 架橋反応性のある化合物としては、前記式(1)で表される化合物をオリゴマー化し得るものであれば特に限定されず、公知のものを使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。 The crosslinkable compound is not particularly limited as long as it can oligomerize the compound represented by the formula (1), and a known compound can be used. Specific examples thereof include, but are not limited to, aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like.
 前記式(2)で表される構造を有する樹脂の具体例としては、以下に限定されないが、前記式(1)で表される化合物を架橋反応性のある化合物であるアルデヒドとの縮合反応等によってノボラック化した樹脂が挙げられる。 Specific examples of the resin having the structure represented by the formula (2) are not limited to the following, but the compound represented by the formula (1) is condensed with an aldehyde which is a compound having a crosslinking reactivity, and the like. And a novolak resin.
 ここで、前記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらの中でも、ホルムアルデヒドが好ましい。なお、これらのアルデヒド類は、1種を単独で、又は2種以上を組み合わせて用いることができる。また、上記アルデヒド類の使用量は、特に限定されないが、前記式(1)で表される化合物1モルに対して、0.2~5モルが好ましく、より好ましくは0.5~2モルである。 Here, as an aldehyde used when novolak-forming the compound represented by the formula (1), for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propylaldehyde, phenylacetaldehyde, phenylpropylaldehyde, hydroxybenzaldehyde, Examples thereof include, but are not limited to, chlorobenzaldehyde, nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde, and furfural. Among these, formaldehyde is preferable. In addition, these aldehydes can be used individually by 1 type or in combination of 2 or more types. The amount of the aldehyde used is not particularly limited, but is preferably 0.2 to 5 mol, more preferably 0.5 to 2 mol, relative to 1 mol of the compound represented by the formula (1). is there.
 前記式(1)で表される化合物とアルデヒドとの縮合反応において、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、それらの具体例としては、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸および固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で、又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。なお、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、アルデヒド類を用いなくてもよい。 In the condensation reaction between the compound represented by the formula (1) and the aldehyde, an acid catalyst can be used. The acid catalyst used here can be appropriately selected from known ones and is not particularly limited. As such an acid catalyst, inorganic acids and organic acids are widely known, and specific examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid, oxalic acid, Malonic acid, succinic acid, adipic acid, sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfone Acids, organic acids such as naphthalene sulfonic acid, naphthalene disulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, boron trifluoride, silicotungstic acid, phosphotungstic acid, silicomolybdic acid or phosphomolybdic acid However, it is not particularly limited to these. Among these, organic acids and solid acids are preferable from the viewpoint of production, and hydrochloric acid or sulfuric acid is preferable from the viewpoint of production such as availability and ease of handling. In addition, about an acid catalyst, 1 type can be used individually or in combination of 2 or more types. The amount of the acid catalyst used can be appropriately set according to the raw material to be used, the type of the acid catalyst to be used, and the reaction conditions, and is not particularly limited, but is 0.01 to 100 parts by weight with respect to 100 parts by mass of the reaction raw material. The amount is preferably 100 parts by mass. Indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, α-pinene, β-pinene In the case of a copolymerization reaction with a compound having a non-conjugated double bond such as limonene, aldehydes may not be used.
 前記式(1)で表される化合物とアルデヒドとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。 In the condensation reaction between the compound represented by the formula (1) and the aldehyde, a reaction solvent can also be used. The reaction solvent in this polycondensation can be appropriately selected from known solvents and is not particularly limited. Examples thereof include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, and mixed solvents thereof. Can be mentioned. In addition, a solvent can be used individually by 1 type or in combination of 2 or more types.
 また、これらの溶媒の使用量は、使用する原料及び使用する酸触媒の種類、さらには反応条件などに応じて適宜設定できる。上記溶媒の使用量としては、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。 Also, the amount of these solvents used can be appropriately set according to the raw material used, the type of acid catalyst used, and the reaction conditions. The amount of the solvent used is not particularly limited, but is preferably in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the reaction raw material.
 さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されない。上記反応温度としては、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、前記式(1)で表される化合物、アルデヒド類、触媒を一括で仕込む方法や、前記式(1)で表される化合物やアルデヒド類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。 Furthermore, the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material, and is not particularly limited. The reaction temperature is usually in the range of 10 to 200 ° C. In addition, the reaction method can select and use a well-known method suitably, Although it does not specifically limit, The method of charging the compound represented by said Formula (1), aldehydes, and a catalyst collectively, said Formula (1) There is a method in which a compound or an aldehyde represented by (2) is dropped in the presence of a catalyst. After completion of the polycondensation reaction, the obtained compound can be isolated according to a conventional method, and is not particularly limited. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, a general method such as raising the temperature of the reaction vessel to 130 to 230 ° C. and removing volatile components at about 1 to 50 mmHg is adopted. As a result, a novolak resin as the target product can be obtained.
 ここで、前記式(2)で表される構造を有する樹脂は、前記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。 Here, the resin having the structure represented by the formula (2) may be a homopolymer of the compound represented by the formula (1), but is a copolymer with other phenols. May be. Examples of the copolymerizable phenols include phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol, methoxyphenol, methoxyphenol, Although propylphenol, pyrogallol, thymol, etc. are mentioned, it is not specifically limited to these.
 また、前記式(2)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、前記式(2)で表される構造を有する樹脂は、前記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、前記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、前記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。 Further, the resin having the structure represented by the formula (2) may be copolymerized with a polymerizable monomer in addition to the other phenols described above. Examples of the copolymerization monomer include naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene. , Norbornadiene, vinylnorbornaene, pinene, limonene and the like, but are not particularly limited thereto. The resin having the structure represented by the above formula (2) is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the above formula (1) and the above-described phenols. Even if it is a binary or more (for example, 2-4 quaternary) copolymer of the compound represented by the formula (1) and the above-mentioned copolymerization monomer, it is represented by the formula (1). It may be a ternary or more (for example, ternary to quaternary) copolymer of the above compound, the above-mentioned phenols, and the above-mentioned copolymerization monomer.
 なお、前記式(2)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、前記式(2)で表される構造を有する樹脂の分子量は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲内のものが好ましい。 The molecular weight of the resin having the structure represented by the formula (2) is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. Further, from the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components in the baking, the molecular weight of the resin having the structure represented by the formula (2) is such that the dispersity (weight average molecular weight Mw / number average molecular weight Mn) is 1. Those within the range of 2 to 7 are preferred.
 前記式(1)で表される化合物及び/又は式(2)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)に対する溶解度が10質量%以上であることが好ましい。ここで、PGME又はPGMEAに対する溶解度とは、「化合物及び/又は樹脂の質量÷(化合物及び/又は樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記化合物及び/又は樹脂10gがPGMEA90gに対して溶解すると評価されるのは、前記化合物及び/又は樹脂のPGMEAに対する溶解度が「10質量%以上」となる場合であり、溶解しないと評価されるのは、当該溶解度が「10質量%未満」となる場合である。 The compound represented by the formula (1) and / or the resin having the structure represented by the formula (2) has high solubility in a solvent from the viewpoint of easier application of a wet process. It is preferable. More specifically, these compounds and / or resins preferably have a solubility in 1-methoxy-2-propanol (PGME) or propylene glycol monomethyl ether acetate (PGMEA) of 10% by mass or more. Here, the solubility with respect to PGME or PGMEA is defined as “the mass of the compound and / or resin ÷ (the mass of the compound and / or the resin + the mass of the solvent) × 100 (mass%)”. For example, it is evaluated that 10 g of the compound and / or resin is dissolved in 90 g of PGMEA when the solubility of the compound and / or resin in PGMEA is “10% by mass or more” and is not dissolved. The case where the solubility is “less than 10% by mass”.
[リソグラフィー用下層膜形成材料]
 本実施形態のリソグラフィー用下層膜形成材料は、本実施形態の化合物及び本実施形態の樹脂からなる群より選ばれる少なくとも1つの物質を含有するものである。より詳細には、本実施形態のリソグラフィー用下層膜形成材料は、前記式(1)で表される化合物及び前記式(1)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂からなる群より選ばれる少なくとも1つの物質を含有するものである。
[Underlayer film forming material for lithography]
The material for forming a lower layer film for lithography of the present embodiment contains at least one substance selected from the group consisting of the compound of the present embodiment and the resin of the present embodiment. More specifically, the material for forming a lower layer film for lithography of the present embodiment is obtained by reacting the compound represented by the formula (1) and the compound represented by the formula (1) with a compound having a crosslinking reaction. It contains at least one substance selected from the group consisting of resins.
 本実施形態のリソグラフィー用下層膜形成材料が後述する任意成分である有機溶媒を含む場合、本実施形態の化合物及び/又は本実施形態の樹脂の含有量は、特に限定されないが、有機溶媒を含む総量100質量部に対して、1~33質量部であることが好ましく、より好ましくは2~25質量部、さらに好ましくは3~20質量部である。 When the material for forming a lower layer film for lithography of the present embodiment includes an organic solvent which is an optional component described later, the content of the compound of the present embodiment and / or the resin of the present embodiment is not particularly limited, but includes an organic solvent. The total amount is preferably 1 to 33 parts by mass, more preferably 2 to 25 parts by mass, and still more preferably 3 to 20 parts by mass with respect to 100 parts by mass.
 本実施形態のリソグラフィー用下層膜形成材料は、必要に応じて、架橋剤、酸発生剤、有機溶媒等の他の成分を含んでいてもよい。以下、これらの任意成分について説明する。 The underlayer film forming material for lithography of the present embodiment may contain other components such as a crosslinking agent, an acid generator, and an organic solvent, as necessary. Hereinafter, these optional components will be described.
[架橋剤]
 本実施形態のリソグラフィー用下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤の具体例としては、メラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたものなどが挙げるが、これらに特に限定されない。なお、これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよいが、これら架橋性基をポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
[Crosslinking agent]
The lower layer film forming material for lithography of the present embodiment may contain a crosslinking agent as necessary from the viewpoint of suppressing intermixing. Specific examples of the crosslinking agent that can be used in this embodiment include double bonds such as melamine compounds, guanamine compounds, glycoluril compounds or urea compounds, epoxy compounds, thioepoxy compounds, isocyanate compounds, azide compounds, alkenyl ether groups, and the like. Examples of the compound include those substituted with at least one group selected from a methylol group, an alkoxymethyl group, and an acyloxymethyl group, but are not particularly limited thereto. In addition, these crosslinking agents can be used individually by 1 type or in combination of 2 or more types. These may be used as additives, but these crosslinkable groups may be introduced as pendant groups in the polymer side chain. A compound containing a hydroxy group can also be used as a crosslinking agent.
 メラミン化合物の具体例としては、以下に限定されないが、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。エポキシ化合物の具体例としては、以下に限定されないが、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが挙げられる。 Specific examples of the melamine compound include, but are not limited to, hexamethylol melamine, hexamethoxymethyl melamine, a compound in which 1 to 6 methylol groups of hexamethylol melamine are methoxymethylated, or a mixture thereof, hexamethoxyethyl melamine, hexa Examples include acyloxymethyl melamine, compounds in which 1 to 6 methylol groups of hexamethylol melamine are acyloxymethylated, or a mixture thereof. Specific examples of the epoxy compound include, but are not limited to, tris (2,3-epoxypropyl) isocyanurate, trimethylolmethane triglycidyl ether, trimethylolpropane triglycidyl ether, triethylolethane triglycidyl ether, and the like. .
 グアナミン化合物の具体例としては、以下に限定されないが、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。グリコールウリル化合物の具体例としては、以下に限定されないが、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。ウレア化合物の具体例としては、以下に限定されないが、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。 Specific examples of the guanamine compound include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylolguanamine, tetramethoxymethylguanamine, and tetramethylolguanamine are methoxymethylated, or a mixture thereof, tetramethoxyethylguanamine, tetra Examples include compounds in which 1 to 4 methylol groups of acyloxyguanamine and tetramethylolguanamine are acyloxymethylated, or a mixture thereof. Specific examples of the glycoluril compound include, but are not limited to, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril, tetramethoxyglycoluril, tetramethoxymethylglycoluril, tetramethylolglycoluril are methoxymethylated or Examples thereof include a mixture thereof, a compound in which 1 to 4 methylol groups of tetramethylol glycoluril are acyloxymethylated, or a mixture thereof. Specific examples of the urea compound include, but are not limited to, tetramethylol urea, tetramethoxymethyl urea, a compound in which 1 to 4 methylol groups of tetramethylol urea are methoxymethylated, or a mixture thereof, tetramethoxyethyl urea, and the like. Can be mentioned.
 アルケニルエーテル基を含む化合物の具体例としては、以下に限定されないが、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。 Specific examples of the compound containing an alkenyl ether group include, but are not limited to, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2-propanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol. Divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, hexanediol divinyl ether, 1,4-cyclohexanediol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, trimethylolpropane And trivinyl ether.
 本実施形態のリソグラフィー用下層膜形成材料において、架橋剤の含有量は、特に限定されないが、本実施形態の化合物及び/又は本実施形態の樹脂の含有量100質量部に対して、5~50質量部であることが好ましく、より好ましくは10~40質量部である。上記の好ましい範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。 In the lower layer film forming material for lithography of the present embodiment, the content of the crosslinking agent is not particularly limited, but is 5 to 50 with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment. The amount is preferably part by mass, more preferably 10 to 40 parts by mass. By setting it as the above preferable range, the occurrence of the mixing phenomenon with the resist layer tends to be suppressed, the antireflection effect is enhanced, and the film forming property after crosslinking tends to be enhanced.
[酸発生剤]
 本実施形態のリソグラフィー用下層膜形成材料は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。当業界において酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
[Acid generator]
The lower layer film forming material for lithography of the present embodiment may contain an acid generator as necessary from the viewpoint of further promoting the crosslinking reaction by heat. In the industry, as an acid generator, those that generate acid by thermal decomposition and those that generate acid by light irradiation are known, and any of them can be used.
 酸発生剤としては、
1)下記一般式(P1a-1)、(P1a-2)、(P1a-3)又は(P1b)のオニウム塩、
2)下記一般式(P2)のジアゾメタン誘導体、
3)下記一般式(P3)のグリオキシム誘導体、
4)下記一般式(P4)のビススルホン誘導体、
5)下記一般式(P5)のN-ヒドロキシイミド化合物のスルホン酸エステル、
6)β-ケトスルホン酸誘導体、
7)ジスルホン誘導体、
8)ニトロベンジルスルホネート誘導体、
9)スルホン酸エステル誘導体
等が挙げられるが、これらに特に限定されない。なお、これらの酸発生剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
As an acid generator,
1) Onium salts of the following general formula (P1a-1), (P1a-2), (P1a-3) or (P1b)
2) a diazomethane derivative of the following general formula (P2),
3) a glyoxime derivative of the following general formula (P3),
4) A bissulfone derivative of the following general formula (P4),
5) A sulfonic acid ester of an N-hydroxyimide compound of the following general formula (P5),
6) β-ketosulfonic acid derivative,
7) a disulfone derivative,
8) Nitrobenzyl sulfonate derivative,
9) Examples thereof include, but are not particularly limited to, sulfonic acid ester derivatives. In addition, these acid generators can be used individually by 1 type or in combination of 2 or more types.
Figure JPOXMLDOC01-appb-C000079
 
Figure JPOXMLDOC01-appb-C000079
 
 上記式中、R101a、R101b、R101cはそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20のアリール基、又は炭素数7~12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ独立して炭素数1~6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、それぞれ独立してR101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3~10のアルキレン基を示し、又は、式中の窒素原子を環の中に有する複素芳香族環を示す。 In the above formula, R 101a , R 101b and R 101c are each independently a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an alkenyl group, an oxoalkyl group or an oxoalkenyl group, and 6 to 6 carbon atoms. 20 aryl groups, aralkyl groups having 7 to 12 carbon atoms, or aryloxoalkyl groups, part or all of hydrogen atoms of these groups may be substituted with alkoxy groups or the like. R 101b and R 101c may form a ring. When a ring is formed, R 101b and R 101c each independently represent an alkylene group having 1 to 6 carbon atoms. K represents a non-nucleophilic counter ion. R 101d , R 101e , R 101f and R 101g are each independently represented by adding a hydrogen atom to R 101a , R 101b and R 101c . R 101d and R 101e , R 101d and R 101e and R 101f may form a ring, and in the case of forming a ring, R 101d and R 101e and R 101d , R 101e and R 101f have 3 carbon atoms. Represents a alkylene group of ˜10, or a heteroaromatic ring having a nitrogen atom in the formula in the ring.
 上記のR101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよい。具体的には、アルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、以下に限定されないが、例えば、2-オキソシクロペンチル基、2-オキソシクロヘキシル基等の他、2-オキソプロピル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。オキソアルケニル基としては、以下に限定されないが、例えば、2-オキソ-4-シクロヘキセニル基、2-オキソ-4-プロペニル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、ナフチル基等や、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、以下に限定されないが、例えば、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては、以下に限定されないが、例えば、塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1-トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4-フルオロベンゼンスルホネート、1,2,3,4,5-ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。 R 101a , R 101b , R 101c , R 101d , R 101e , R 101f and R 101g may be the same as or different from each other. Specific examples of the alkyl group include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group. , Heptyl group, octyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group, norbornyl group, adamantyl group and the like. Examples of alkenyl groups include, but are not limited to, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups, and cyclohexenyl groups. Examples of the oxoalkyl group include, but are not limited to, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2- An oxoethyl group, a 2- (4-methylcyclohexyl) -2-oxoethyl group, and the like can be given. Examples of the oxoalkenyl group include, but are not limited to, a 2-oxo-4-cyclohexenyl group, a 2-oxo-4-propenyl group, and the like. Examples of the aryl group include, but are not limited to, phenyl group, naphthyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group. An alkoxyphenyl group such as m-tert-butoxyphenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, Alkylphenyl groups such as dimethylphenyl group, alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group, alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group, dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group, dimethoxy naphthyl group Group, diethoxynaphthy Dialkoxy naphthyl group such as a group. Although not limited to the following as an aralkyl group, For example, a benzyl group, a phenylethyl group, a phenethyl group etc. are mentioned. Examples of aryloxoalkyl groups include, but are not limited to, 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group, and the like. And 2-aryl-2-oxoethyl group. Examples of the non-nucleophilic counter ion of K include, but are not limited to, halide ions such as chloride ion and bromide ion, triflate, 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, and the like. Fluoroalkyl sulfonates, tosylate, benzene sulfonate, 4-fluorobenzene sulfonate, aryl sulfonates such as 1,2,3,4,5-pentafluorobenzene sulfonate, and alkyl sulfonates such as mesylate and butane sulfonate.
 また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環である場合、その複素芳香族環としては、以下に限定されないが、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。 In addition, when R 101d , R 101e , R 101f , and R 101g are heteroaromatic rings having a nitrogen atom in the formula, the heteroaromatic ring is not limited to the following, but an imidazole derivative ( For example, imidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methyl) Pyrrolidine, pyrrolidinone, N-methylpyrrolidone, etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethylpyridine, trimethyl) Pyridine, triethylpi Gin, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine derivatives, piperazine derivatives, morpholine Derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinolinecarbonitrile, etc.), isoquinoline derivatives, cinnori Derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine derivatives, guanine derivatives, guanosine derivatives , Uracil derivatives, uridine derivatives and the like.
 前記式(P1a-1)と式(P1a-2)のオニウム塩は、光酸発生剤及び熱酸発生剤としての機能を有する。前記式(P1a-3)のオニウム塩は熱酸発生剤としての機能を有する。 The onium salts of the formulas (P1a-1) and (P1a-2) have a function as a photoacid generator and a thermal acid generator. The onium salt of the formula (P1a-3) has a function as a thermal acid generator.
Figure JPOXMLDOC01-appb-C000080
 
Figure JPOXMLDOC01-appb-C000080
 
 前記式(P1b)中、R102a、R102bはそれぞれ独立して炭素数1~8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1~10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ独立して炭素数3~7の2-オキソアルキル基を示す。K-は非求核性対向イオンを表す。 In the formula (P1b), R 102a and R 102b each independently represent a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. R 103 represents a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms. R 104a and R 104b each independently represent a 3-oxoalkyl group having 3 to 7 carbon atoms. K represents a non-nucleophilic counter ion.
 上記R102a、R102bの具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103の具体例としては、以下に限定されないが、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4-シクロへキシレン基、1,2-シクロへキシレン基、1,3-シクロペンチレン基、1,4-シクロオクチレン基、1,4-シクロヘキサンジメチレン基等が挙げられる。R104a、R104bの具体例としては、以下に限定されないが、2-オキソプロピル基、2-オキソシクロペンチル基、2-オキソシクロヘキシル基、2-オキソシクロヘプチル基等が挙げられる。K-は式(P1a-1)、(P1a-2)及び(P1a-3)で説明したものと同様のものを挙げることができる。 Specific examples of R 102a and R 102b include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, and a hexyl group. A heptyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, a cyclopropylmethyl group, a 4-methylcyclohexyl group, a cyclohexylmethyl group, and the like. Specific examples of R 103 include, but are not limited to, methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene. Group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, 1,4-cyclooctylene group, 1,4-cyclohexanedimethylene group and the like. Specific examples of R 104a and R 104b include, but are not limited to, 2-oxopropyl group, 2-oxocyclopentyl group, 2-oxocyclohexyl group, 2-oxocycloheptyl group and the like. K - is the formula (P1a-1), can be exemplified the same ones as described in (P1a-2) and (P1a-3).
Figure JPOXMLDOC01-appb-C000081
 
Figure JPOXMLDOC01-appb-C000081
 
 前記式(P2)中、R105、R106はそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6~20のアリール基又はハロゲン化アリール基、又は炭素数7~12のアラルキル基を示す。 In the formula (P2), R 105 and R 106 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms or halogen. An aryl group or an aralkyl group having 7 to 12 carbon atoms.
 R105、R106のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、以下に限定されないが、例えば、トリフルオロメチル基、1,1,1-トリフルオロエチル基、1,1,1-トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、以下に限定されないが、例えば、フェニル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としては、以下に限定されないが、例えば、フルオロフェニル基、クロロフェニル基、1,2,3,4,5-ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、以下に限定されないが、例えば、ベンジル基、フェネチル基等が挙げられる。 Examples of the alkyl group for R 105 and R 106 include, but are not limited to, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl. Group, heptyl group, octyl group, amyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, norbornyl group, adamantyl group and the like. Examples of the halogenated alkyl group include, but are not limited to, a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group. Examples of the aryl group include, but are not limited to, phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert- Alkoxyphenyl groups such as butoxyphenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, dimethylphenyl group, etc. An alkylphenyl group is mentioned. Examples of the halogenated aryl group include, but are not limited to, a fluorophenyl group, a chlorophenyl group, a 1,2,3,4,5-pentafluorophenyl group, and the like. Examples of the aralkyl group include, but are not limited to, a benzyl group and a phenethyl group.
Figure JPOXMLDOC01-appb-C000082
 
Figure JPOXMLDOC01-appb-C000082
 
 前記式(P3)中、R107、R108、R109はそれぞれ独立して炭素数1~12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6~20のアリール基又はハロゲン化アリール基、又は炭素数7~12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1~6の直鎖状又は分岐状のアルキレン基を示す。 In the formula (P3), R 107 , R 108 and R 109 are each independently a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, or aryl having 6 to 20 carbon atoms. A group, a halogenated aryl group, or an aralkyl group having 7 to 12 carbon atoms; R 108 and R 109 may be bonded to each other to form a cyclic structure. When forming a cyclic structure, R 108 and R 109 each represent a linear or branched alkylene group having 1 to 6 carbon atoms. .
 R107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。 Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 . The alkylene group for R 108 and R 109 is not limited to the following, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
Figure JPOXMLDOC01-appb-C000083
 
(式(P4)中、R101a、R101bは上記と同様である。)
Figure JPOXMLDOC01-appb-C000083

(In formula (P4), R 101a and R 101b are the same as above.)
Figure JPOXMLDOC01-appb-C000084
 
Figure JPOXMLDOC01-appb-C000084
 
 前記式(P5)中、R110は炭素数6~10のアリーレン基、炭素数1~6のアルキレン基又は炭素数2~6のアルケニレン基を示し、これらの基の水素原子の一部又は全部はさらに炭素数1~4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1~8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部はさらに炭素数1~4のアルキル基又はアルコキシ基;炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3~5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。 In the formula (P5), R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms, and part or all of the hydrogen atoms of these groups May further be substituted with a linear or branched alkyl group or alkoxy group having 1 to 4 carbon atoms, a nitro group, an acetyl group, or a phenyl group. R 111 represents a linear, branched or substituted alkyl group, alkenyl group, alkoxyalkyl group, phenyl group, or naphthyl group having 1 to 8 carbon atoms, and some or all of the hydrogen atoms of these groups are further An alkyl group or alkoxy group having 1 to 4 carbon atoms; a phenyl group optionally substituted with an alkyl group, alkoxy group, nitro group or acetyl group having 1 to 4 carbon atoms; a heteroaromatic group having 3 to 5 carbon atoms; Alternatively, it may be substituted with a chlorine atom or a fluorine atom.
 ここで、R110のアリーレン基としては、以下に限定されないが、例えば、1,2-フェニレン基、1,8-ナフチレン基等が挙げられる。アルキレン基としては、以下に限定されないが、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン-2,3-ジイル基等が挙げられる。アルケニレン基としては、以下に限定されないが、例えば、1,2-ビニレン基、1-フェニル-1,2-ビニレン基、5-ノルボルネン-2,3-ジイル基等が挙げられる。R111のアルキル基としては、R101a~R101cと同様のものが挙げられる。アルケニル基としては、以下に限定されないが、例えば、ビニル基、1-プロペニル基、アリル基、1-ブテニル基、3-ブテニル基、イソプレニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、ジメチルアリル基、1-ヘキセニル基、3-ヘキセニル基、5-ヘキセニル基、1-ヘプテニル基、3-ヘプテニル基、6-ヘプテニル基、7-オクテニル基等が挙げられる。アルコキシアルキル基としては、以下に限定されないが、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。 Here, the arylene group of R 110 is not limited to the following, and examples thereof include a 1,2-phenylene group and a 1,8-naphthylene group. Examples of the alkylene group include, but are not limited to, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane-2,3-diyl group, and the like. Examples of the alkenylene group include, but are not limited to, 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group, and the like. Examples of the alkyl group for R 111 include the same groups as R 101a to R 101c . Examples of the alkenyl group include, but are not limited to, vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group. Group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl group and the like. Examples of the alkoxyalkyl group include, but are not limited to, for example, methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, pentyloxymethyl group, hexyloxymethyl group, heptyloxymethyl group, methoxyethyl group, Ethoxyethyl group, propoxyethyl group, butoxyethyl group, pentyloxyethyl group, hexyloxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group, butoxypropyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, A methoxypentyl group, an ethoxypentyl group, a methoxyhexyl group, a methoxyheptyl group, etc. are mentioned.
 なお、さらに置換されていてもよい炭素数1~4のアルキル基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等が挙げられる。炭素数1~4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、以下に限定されないが、例えば、フェニル基、トリル基、p-tert-ブトキシフェニル基、p-アセチルフェニル基、p-ニトロフェニル基等が挙げられる。炭素数3~5のヘテロ芳香族基としては、以下に限定されないが、例えば、ピリジル基、フリル基等が挙げられる。 Further, the optionally substituted alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert- A butyl group etc. are mentioned. Examples of the alkoxy group having 1 to 4 carbon atoms include, but are not limited to, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, and tert-butoxy group. Examples of the phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group, or an acetyl group include, but are not limited to, for example, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group , P-acetylphenyl group, p-nitrophenyl group and the like. Examples of the heteroaromatic group having 3 to 5 carbon atoms include, but are not limited to, a pyridyl group and a furyl group.
 酸発生剤の具体例として、以下に限定されないが、トリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn-ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p-トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、p-トルエンスルホン酸ジフェニルヨードニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸ビス(p-tert-ブトキシフェニル)フェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p-トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、p-トルエンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p-トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p-トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2-オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec-アミルスルホニル)ジアゾメタン、ビス(tert-アミルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン、1-シクロヘキシルスルホニル-1-(tert-アミルスルホニル)ジアゾメタン、1-tert-アミルスルホニル-1-(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(p-トルエスルホニル)-α-ジフェニルグリオキシム、ビス-(p-トルエンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(p-トルエンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(p-トルエンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジフェニルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジシクロヘキシルグリオキシム、ビス-(n-ブタンスルホニル)-2,3-ペンタンジオングリオキシム、ビス-(n-ブタンスルホニル)-2-メチル-3,4-ペンタンジオングリオキシム、ビス-(メタンスルホニル)-α-ジメチルグリオキシム、ビス-(トリフルオロメタンスルホニル)-α-ジメチルグリオキシム、ビス-(1,1,1-トリフルオロエタンスルホニル)-α-ジメチルグリオキシム、ビス-(tert-ブタンスルホニル)-α-ジメチルグリオキシム、ビス-(パーフルオロオクタンスルホニル)-α-ジメチルグリオキシム、ビス-(シクロヘキサンスルホニル)-α-ジメチルグリオキシム、ビス-(ベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-フルオロベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(p-tert-ブチルベンゼンスルホニル)-α-ジメチルグリオキシム、ビス-(キシレンスルホニル)-α-ジメチルグリオキシム、ビス-(カンファースルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス-p-トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体、2-シクロヘキシルカルボニル-2-(p-トルエンスルホニル)プロパン、2-イソプロピルカルボニル-2-(p-トルエンスルホニル)プロパン等のβ-ケトスルホン誘導体、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体、p-トルエンスルホン酸2,6-ジニトロベンジル、p-トルエンスルホン酸2,4-ジニトロベンジル等のニトロベンジルスルホネート誘導体、1,2,3-トリス(メタンスルホニルオキシ)ベンゼン、1,2,3-トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3-トリス(p-トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミドエタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-オクタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシスクシンイミドp-メトキシベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド2-クロロエタンスルホン酸エステル、N-ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド-2,4,6-トリメチルベンゼンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ナフタレンスルホン酸エステル、N-ヒドロキシスクシンイミド2-ナフタレンスルホン酸エステル、N-ヒドロキシ-2-フェニルスクシンイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドメタンスルホン酸エステル、N-ヒドロキシマレイミドエタンスルホン酸エステル、N-ヒドロキシ-2-フェニルマレイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドメタンスルホン酸エステル、N-ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドメタンスルホン酸エステル、N-ヒドロキシフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシフタルイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドp-トルエンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
 これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、p-トルエンスルホン酸トリフェニルスルホニウム、p-トルエンスルホン酸(p-tert-ブトキシフェニル)ジフェニルスルホニウム、p-トルエンスルホン酸トリス(p-tert-ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2-オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2-ノルボニル)メチル(2-オキソシクロヘキシル)スルホニウム、1,2’-ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec-ブチルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス-(p-トルエンスルホニル)-α-ジメチルグリオキシム、ビス-(n-ブタンスルホニル)-α-ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N-ヒドロキシスクシンイミドメタンスルホン酸エステル、N-ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N-ヒドロキシスクシンイミド1-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド2-プロパンスルホン酸エステル、N-ヒドロキシスクシンイミド1-ペンタンスルホン酸エステル、N-ヒドロキシスクシンイミドp-トルエンスルホン酸エステル、N-ヒドロキシナフタルイミドメタンスルホン酸エステル、N-ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN-ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
Specific examples of the acid generator include, but are not limited to, tetramethylammonium trifluoromethanesulfonate, tetramethylammonium nonafluorobutanesulfonate, triethylammonium nonafluorobutanesulfonate, pyridinium nonafluorobutanesulfonate, triethyl camphorsulfonate Ammonium, pyridinium camphorsulfonate, tetra-n-butylammonium nonafluorobutanesulfonate, tetraphenylammonium nonafluorobutanesulfonate, tetramethylammonium p-toluenesulfonate, diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p- tert-butoxyphenyl) phenyliodonium, p-toluenesulfonic acid diphenyliodonium P-toluenesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, trifluoromethanesulfonic acid triphenylsulfonium, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid bis (p-tert- Butoxyphenyl) phenylsulfonium, tris (p-tert-butoxyphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfone Bis (p-tert-butoxyphenyl) phenylsulfonium acid, Tris (p-tert-butoxyphenyl) p-toluenesulfonate Phonium, triphenylsulfonium nonafluorobutanesulfonate, triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, p-toluene Cyclohexylmethyl (2-oxocyclohexyl) sulfonium sulfonate, dimethylphenylsulfonium trifluoromethanesulfonate, dimethylphenylsulfonium p-toluenesulfonate, dicyclohexylphenylsulfonium trifluoromethanesulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, trifluoromethanesulfonic acid Trinaphthylsulfonium Cyclohexylmethyl trifluoromethanesulfonate (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonate (2-norbornyl) methyl (2-oxocyclohexyl) sulfonium, ethylenebis [methyl (2-oxocyclopentyl) sulfonium trifluoromethanesulfonate], Onium salts such as 1,2'-naphthylcarbonylmethyltetrahydrothiophenium triflate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (Cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, Bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) diazomethane, bis (isoamylsulfonyl) diazomethane, Bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-butylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-amylsulfonyl) diazomethane, 1- diazomethane derivatives such as tert-amylsulfonyl-1- (tert-butylsulfonyl) diazomethane, bis- (p-toluenesulfonyl) -α-dimethyl group Oxime, bis- (p-toluenesulfonyl) -α-diphenylglyoxime, bis- (p-toluenesulfonyl) -α-dicyclohexylglyoxime, bis- (p-toluenesulfonyl) -2,3-pentanedione glyoxime, Bis- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis- (n-butanesulfonyl) -α-dimethylglyoxime, bis- (n-butanesulfonyl) -α-diphenylglyoxime Oxime, bis- (n-butanesulfonyl) -α-dicyclohexylglyoxime, bis- (n-butanesulfonyl) -2,3-pentanedione glyoxime, bis- (n-butanesulfonyl) -2-methyl-3, 4-Pentanedione glyoxime, bis- (methanesulfonyl) -α-dimethylglyoxy Shim, bis- (trifluoromethanesulfonyl) -α-dimethylglyoxime, bis- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis- (tert-butanesulfonyl) -α-dimethylglyoxime Oxime, bis- (perfluorooctanesulfonyl) -α-dimethylglyoxime, bis- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis- (benzenesulfonyl) -α-dimethylglyoxime, bis- (p-fluorobenzene) Sulfonyl) -α-dimethylglyoxime, bis- (p-tert-butylbenzenesulfonyl) -α-dimethylglyoxime, bis- (xylenesulfonyl) -α-dimethylglyoxime, bis- (camphorsulfonyl) -α-dimethyl Glyoximes such as glyoximes Conductors, bissulfone derivatives such as bisnaphthylsulfonylmethane, bistrifluoromethylsulfonylmethane, bismethylsulfonylmethane, bisethylsulfonylmethane, bispropylsulfonylmethane, bisisopropylsulfonylmethane, bis-p-toluenesulfonylmethane, bisbenzenesulfonylmethane, Β-ketosulfone derivatives such as 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane, 2-isopropylcarbonyl-2- (p-toluenesulfonyl) propane, disulfone derivatives such as diphenyldisulfone derivatives, dicyclohexyldisulfone derivatives, p- Nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl toluenesulfonate, 2,4-dinitrobenzyl p-toluenesulfonate, Sulfonic acid ester derivatives such as 1,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy) benzene, N- Hydroxysuccinimide methanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide ethanesulfonate, N-hydroxysuccinimide 1-propanesulfonate, N-hydroxysuccinimide 2-propanesulfonate, N- Hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide 1-octanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfone Esters, N-hydroxysuccinimide p-methoxybenzenesulfonate, N-hydroxysuccinimide 2-chloroethanesulfonate, N-hydroxysuccinimidebenzenesulfonate, N-hydroxysuccinimide-2,4,6-trimethylbenzenesulfonate N-hydroxysuccinimide 1-naphthalenesulfonic acid ester, N-hydroxysuccinimide 2-naphthalenesulfonic acid ester, N-hydroxy-2-phenylsuccinimide methanesulfonic acid ester, N-hydroxymaleimide methanesulfonic acid ester, N-hydroxymaleimide ethane Sulfonic acid ester, N-hydroxy-2-phenylmaleimide methanesulfonic acid ester, N-hydroxyglutarimide meta Sulfonate, N-hydroxyglutarimide benzenesulfonate, N-hydroxyphthalimide methanesulfonate, N-hydroxyphthalimide benzenesulfonate, N-hydroxyphthalimide trifluoromethanesulfonate, N-hydroxyphthalimide p-toluenesulfone Acid ester, N-hydroxynaphthalimide methanesulfonate, N-hydroxynaphthalimide benzenesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide methanesulfonate, N-hydroxy-5-norbornene -2,3-dicarboximide trifluoromethanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide p-to Sulfonic acid ester derivatives of N- hydroxy imide compounds such as toluenesulfonic acid esters.
Among these, in particular, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, trifluoromethanesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, p-toluenesulfonic acid Triphenylsulfonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) sulfonium, trifluoromethanesulfonic acid (2-norbornyl) methyl (2-oxocyclohexyl) Sil) sulfonium, onium salts such as 1,2'-naphthylcarbonylmethyltetrahydrothiophenium triflate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (n- Diazomethane derivatives such as butylsulfonyl) diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, Glyoxime derivatives such as bis- (p-toluenesulfonyl) -α-dimethylglyoxime and bis- (n-butanesulfonyl) -α-dimethylglyoxime; Bissulfone derivatives such as naphthylsulfonylmethane, N-hydroxysuccinimide methanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide 1-propanesulfonate, N-hydroxysuccinimide 2-propanesulfonate, N-hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxynaphthalimide methanesulfonic acid ester, N-hydroxynaphthalimide benzenesulfonic acid ester, etc. Acid ester derivatives are preferably used.
 本実施形態のリソグラフィー用下層膜形成材料において、酸発生剤の含有量は、特に限定されないが、本実施形態の化合物及び/又は本実施形態の樹脂の含有量100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。上記の好ましい範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。 In the material for forming a lower layer film for lithography of the present embodiment, the content of the acid generator is not particularly limited, but the content of the compound of the present embodiment and / or the resin of the present embodiment is 0.1 parts by mass. The amount is preferably 1 to 50 parts by mass, and more preferably 0.5 to 40 parts by mass. By setting the amount within the above preferable range, the amount of acid generated tends to increase and the crosslinking reaction tends to be enhanced, and the occurrence of a mixing phenomenon with the resist layer tends to be suppressed.
 さらに、本実施形態のリソグラフィー用下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。 Furthermore, the material for forming a lower layer film for lithography according to the present embodiment may contain a basic compound from the viewpoint of improving storage stability.
 塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、例えば、第一級、第二級又は第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。 The basic compound serves as a quencher for the acid to prevent the acid generated in a trace amount from the acid generator from causing the crosslinking reaction to proceed. Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, A nitrogen-containing compound having a sulfonyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like are exemplified, but not limited thereto.
 第一級の脂肪族アミン類の具体例としては、以下に限定されないが、アンモニア、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、tert-アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が挙げられる。第二級の脂肪族アミン類の具体例としては、以下に限定されないが、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-sec-ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N-ジメチルメチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルテトラエチレンペンタミン等が挙げられる。第三級の脂肪族アミン類の具体例としては、以下に限定されないが、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-sec-ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’-テトラメチルメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルテトラエチレンペンタミン等が挙げられる。 Specific examples of primary aliphatic amines include, but are not limited to, ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, Examples include pentylamine, tert-amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like. Specific examples of secondary aliphatic amines include, but are not limited to, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, Dipentylamine, dicyclopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyl Examples include tetraethylenepentamine. Specific examples of tertiary aliphatic amines include, but are not limited to, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine , Tripentylamine, tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N ′ -Tetramethylmethylenediamine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyltetraethylenepentamine and the like.
 また、混成アミン類の具体例としては、以下に限定されないが、ジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が挙げられる。芳香族アミン類及び複素環アミン類の具体例としては、以下に限定されないが、アニリン誘導体(例えばアニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2-ニトロアニリン、3-ニトロアニリン、4-ニトロアニリン、2,4-ジニトロアニリン、2,6-ジニトロアニリン、3,5-ジニトロアニリン、N,N-ジメチルトルイジン等)、ジフェニル(p-トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H-ピロール、1-メチルピロール、2,4-ジメチルピロール、2,5-ジメチルピロール、N-メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2-メチル-1-ピロリン等)、ピロリジン誘導体(例えばピロリジン、N-メチルピロリジン、ピロリジノン、N-メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4-(1-ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3-メチル-2-フェニルピリジン、4-tert-ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1-メチル-2-ピリドン、4-ピロリジノピリジン、1-メチル-4-フェニルピリジン、2-(1-エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H-インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3-キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10-フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が挙げられる。 Specific examples of the hybrid amines include, but are not limited to, dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, benzyldimethylamine, and the like. Specific examples of aromatic amines and heterocyclic amines include, but are not limited to, aniline derivatives (for example, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2 -Methylaniline, 3-methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitro Aniline, 3,5-dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole) , 1-methyl Rolls, 2,4-dimethylpyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole) 4-methylimidazole, 4-methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, etc.) Pyrrolidinone, N-methylpyrrolidone, etc.), imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) ) Pyridine, dimethylpyridine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl- 2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, Pyrazolidine derivatives, piperidine derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinolin derivatives) , 3-quinolinecarbonitrile, etc.), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline Derivatives, adenine derivatives, adenosine derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
 さらに、カルボキシ基を有する含窒素化合物の具体例としては、以下に限定されないが、アミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3-アミノピラジン-2-カルボン酸、メトキシアラニン)等が挙げられる。スルホニル基を有する含窒素化合物の具体例としては、以下に限定されないが、3-ピリジンスルホン酸、p-トルエンスルホン酸ピリジニウム等が挙げられる。水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物の具体例としては、以下に限定されないが、2-ヒドロキシピリジン、アミノクレゾール、2,4-キノリンジオール、3-インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-エチルジエタノールアミン、N,N-ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’-イミノジエタノール、2-アミノエタノ-ル、3-アミノ-1-プロパノール、4-アミノ-1-ブタノール、4-(2-ヒドロキシエチル)モルホリン、2-(2-ヒドロキシエチル)ピリジン、1-(2-ヒドロキシエチル)ピペラジン、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1-(2-ヒドロキシエチル)ピロリジン、1-(2-ヒドロキシエチル)-2-ピロリジノン、3-ピペリジノ-1,2-プロパンジオール、3-ピロリジノ-1,2-プロパンジオール、8-ヒドロキシユロリジン、3-クイヌクリジノール、3-トロパノール、1-メチル-2-ピロリジンエタノール、1-アジリジンエタノール、N-(2-ヒドロキシエチル)フタルイミド、N-(2-ヒドロキシエチル)イソニコチンアミド等が挙げられる。アミド誘導体の具体例としては、以下に限定されないが、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が挙げられる。イミド誘導体の具体例としては、以下に限定されないが、フタルイミド、スクシンイミド、マレイミド等が挙げられる。 Further, specific examples of nitrogen-containing compounds having a carboxy group include, but are not limited to, aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine). Glycylleucine, leucine, methionine, phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like. Specific examples of the nitrogen-containing compound having a sulfonyl group include, but are not limited to, 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. Specific examples of the nitrogen-containing compound having a hydroxyl group, the nitrogen-containing compound having a hydroxyphenyl group, and the alcoholic nitrogen-containing compound include, but are not limited to, 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, 3- Indolemethanol hydrate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino- 1-propanol, 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2- Hydroxyethoxy) ethyl] Perazine, piperidine ethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propanediol, 8-hydroxyurolidine, 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) iso And nicotinamide. Specific examples of amide derivatives include, but are not limited to, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. . Specific examples of the imide derivative include, but are not limited to, phthalimide, succinimide, maleimide and the like.
 本実施形態のリソグラフィー用下層膜形成材料において、塩基性化合物の含有量は、特に限定されないが、本実施形態の化合物及び/又は本実施形態の樹脂100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1部である。上記の好ましい範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。 In the lower layer film forming material for lithography of the present embodiment, the content of the basic compound is not particularly limited, but is 0.001 to 2 with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment. It is preferably part by mass, more preferably 0.01 to 1 part. By making it into the above preferred range, the storage stability tends to be enhanced without excessively impairing the crosslinking reaction.
[有機溶媒]
 本実施形態のリソグラフィー用下層膜形成材料は、有機溶媒を含有していてもよい。有機溶媒としては本実施形態の化合物及び/又は本実施形態の樹脂が少なくとも溶解するものであれば、公知のものを適宜用いることができる。
 有機溶媒の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒、メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒、トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられるが、これらに特に限定されない。これらの有機溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
[Organic solvent]
The material for forming a lower layer film for lithography of the present embodiment may contain an organic solvent. Any known organic solvent can be used as long as it can dissolve at least the compound of this embodiment and / or the resin of this embodiment.
Specific examples of organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, cellosolve solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate, ethyl acetate and butyl acetate. Ester solvents such as isoamyl acetate, ethyl lactate, methyl methoxypropionate and methyl hydroxyisobutyrate, alcohol solvents such as methanol, ethanol, isopropanol and 1-ethoxy-2-propanol, aromatics such as toluene, xylene and anisole Examples thereof include, but are not limited to, hydrocarbons. These organic solvents can be used individually by 1 type or in combination of 2 or more types.
 上記有機溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。 Among the above organic solvents, cyclohexanone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, methyl hydroxyisobutyrate, and anisole are particularly preferable from the viewpoint of safety.
 有機溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態の化合物及び/又は本実施形態の樹脂100質量部に対して、100~10,000質量部であることが好ましく、より好ましくは200~5,000質量部である。 The content of the organic solvent is not particularly limited, but is 100 to 10,000 parts by mass with respect to 100 parts by mass of the compound of the present embodiment and / or the resin of the present embodiment from the viewpoint of solubility and film formation. The amount is preferably 200 to 5,000 parts by mass.
[その他の成分]
 また、本実施形態のリソグラフィー用下層膜形成材料は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成材料は、公知の添加剤、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等を含有していてもよい。
[Other ingredients]
Further, the material for forming a lower layer film for lithography of the present embodiment may contain other resins and / or compounds for the purpose of imparting thermosetting properties and controlling absorbance. Examples of such other resins and / or compounds include naphthol resins, xylene resins, naphthol-modified resins, phenol-modified resins of naphthalene resins, polyhydroxystyrene, dicyclopentadiene resins, (meth) acrylates, dimethacrylates, trimethacrylates, tetra Resins containing no heterocyclic ring or aromatic ring such as methacrylate, vinyl naphthalene, polyacenaphthylene and other naphthalene rings, phenanthrenequinone, biphenyl rings such as fluorene, hetero rings having hetero atoms such as thiophene and indene; rosin resins; Examples thereof include resins or compounds containing an alicyclic structure such as cyclodextrin, adamantane (poly) ol, tricyclodecane (poly) ol, and derivatives thereof, but are not particularly limited thereto. Furthermore, the lower layer film forming material for lithography of the present embodiment may contain a known additive, for example, an ultraviolet absorber, a surfactant, a colorant, a nonionic surfactant and the like.
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
 本実施形態のリソグラフィー用下層膜は、本実施形態のリソグラフィー用下層膜形成材料から形成される。
[Liquid lower layer film and multilayer resist pattern forming method]
The lower layer film for lithography of this embodiment is formed from the lower layer film forming material for lithography of this embodiment.
 また、本実施形態のレジストパターンの形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。 The resist pattern forming method of the present embodiment includes a step (A-1) of forming a lower layer film on a substrate using the lower layer film forming material for lithography of the present embodiment, and at least on the lower layer film. A step (A-2) of forming a single photoresist layer, and a step (A-3) of developing after irradiating a predetermined region of the photoresist layer with radiation after the step (A-2) And having.
 さらに、本実施形態の回路パターンの形成方法は、基板上に、本実施形態のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。 Furthermore, the circuit pattern forming method of this embodiment includes a step (B-1) of forming a lower layer film on a substrate using the lower layer film forming material for lithography of the present embodiment, and a silicon film on the lower layer film. An intermediate layer film forming step using a resist intermediate layer film material containing atoms (B-2), and a step of forming at least one photoresist layer on the intermediate layer film (B-3); After the step (B-3), a predetermined region of the photoresist layer is irradiated with radiation and developed to form a resist pattern (B-4), and after the step (B-4), The intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the substrate is etched using the obtained lower layer film pattern as an etching mask. Having a step (B-5) to form a pattern on a substrate with a.
 本実施形態のリソグラフィー用下層膜は、前述のリソグラフィー用下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、前述のリソグラフィー用下層膜形成材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmとすることが好ましい。下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製することが好ましい。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。 The formation method of the underlayer film for lithography of the present embodiment is not particularly limited as long as it is formed from the above-described material for forming an underlayer film for lithography, and a known method can be applied. For example, after applying the lower layer film forming material for lithography described above onto a substrate by a known coating method such as spin coating or screen printing or a printing method, the lower layer film is removed by evaporating an organic solvent or the like. Can be formed. At the time of forming the lower layer film, baking is preferably performed in order to suppress the occurrence of the mixing phenomenon with the upper layer resist and to promote the crosslinking reaction. In this case, the baking temperature is not particularly limited, but is preferably in the range of 80 to 450 ° C., more preferably 200 to 400 ° C. Also, the baking time is not particularly limited, but is preferably within the range of 10 to 300 seconds. The thickness of the lower layer film can be appropriately selected according to the required performance and is not particularly limited, but is usually preferably about 30 to 20,000 nm, more preferably 50 to 15,000 nm. It is preferable. After the formation of the lower layer film, in the case of a two-layer process, a silicon-containing resist layer thereon or a single-layer resist made of ordinary hydrocarbons, in the case of a three-layer process, a silicon-containing intermediate layer is further formed thereon It is preferable to produce a single-layer resist layer that does not contain silicon. In this case, a well-known thing can be used as a photoresist material for forming this resist layer.
 基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを、3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。 After forming the lower layer film on the substrate, in the case of a two-layer process, a silicon-containing resist layer or a single layer resist made of normal hydrocarbon is formed on the lower layer film, and in the case of a three-layer process, a silicon-containing layer is formed on the lower layer film. A single-layer resist layer not containing silicon can be formed on the intermediate layer and further on the silicon-containing intermediate layer. In these cases, the photoresist material for forming the resist layer can be appropriately selected from known materials and is not particularly limited.
 2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。 As a silicon-containing resist material for a two-layer process, from the point of resistance to oxygen gas etching, a silicon atom-containing polymer such as a polysilsesquioxane derivative or a vinylsilane derivative is used as a base polymer, and an organic solvent, an acid generator, If necessary, a positive photoresist material containing a basic compound or the like is preferably used. Here, as the silicon atom-containing polymer, a known polymer used in this type of resist material can be used.
 3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、効果的に反射を抑えられる傾向にある。例えば193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、193nm露光用としてはフェニル基又は珪素-珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。 As the silicon-containing intermediate layer for the three-layer process, a polysilsesquioxane-based intermediate layer is preferably used. By providing the intermediate layer with an effect as an antireflection film, reflection tends to be effectively suppressed. For example, in a 193 nm exposure process, if a material containing many aromatic groups and having high substrate etching resistance is used as the lower layer film, the k value increases and the substrate reflection tends to increase, but by suppressing the reflection in the intermediate layer, The substrate reflection can be reduced to 0.5% or less. As the intermediate layer having such an antireflection effect, polysilsesquioxane crosslinked with acid or heat into which a light absorbing group having a phenyl group or a silicon-silicon bond is introduced is preferably used for 193 nm exposure.
 また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。 Also, an intermediate layer formed by a Chemical-Vapor-deposition (CVD) method can be used. The intermediate layer having a high effect as an antireflection film produced by the CVD method is not limited to the following, but for example, a SiON film is known. In general, the formation of the intermediate layer by a wet process such as spin coating or screen printing has a simpler and more cost-effective advantage than the CVD method. The upper layer resist in the three-layer process may be either a positive type or a negative type, and the same one as a commonly used single layer resist can be used.
 さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。 Furthermore, the lower layer film of this embodiment can also be used as an antireflection film for a normal single layer resist or a base material for suppressing pattern collapse. Since the lower layer film of this embodiment is excellent in etching resistance for the base processing, it can be expected to function as a hard mask for the base processing.
 上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。 In the case of forming a resist layer from the photoresist material, a wet process such as spin coating or screen printing is preferably used as in the case of forming the lower layer film. Further, after the resist material is applied by spin coating or the like, prebaking is usually performed, but this prebaking is preferably performed at 80 to 180 ° C. for 10 to 300 seconds. Then, according to a conventional method, a resist pattern can be obtained by performing exposure, post-exposure baking (PEB), and development. The thickness of the resist film is not particularly limited, but is generally preferably 30 to 500 nm, more preferably 50 to 400 nm.
 また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。 Further, the exposure light may be appropriately selected and used according to the photoresist material to be used. In general, high energy rays having a wavelength of 300 nm or less, specifically, 248 nm, 193 nm, 157 nm excimer laser, 3 to 20 nm soft X-ray, electron beam, X-ray and the like can be mentioned.
 上記の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。 The resist pattern formed by the above method is one in which pattern collapse is suppressed by the lower layer film of this embodiment. Therefore, by using the lower layer film of this embodiment, a finer pattern can be obtained, and the exposure amount necessary for obtaining the resist pattern can be reduced.
 次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO2、NH3、SO2、N2、NO2、2ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO2、NH3、N2、NO2、2ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために用いられる。一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。 Next, etching is performed using the obtained resist pattern as a mask. Gas etching is preferably used as the etching of the lower layer film in the two-layer process. As gas etching, etching using oxygen gas is suitable. In addition to oxygen gas, an inert gas such as He or Ar, or CO, CO 2 , NH 3 , SO 2 , N 2 , NO 2 or H 2 gas can be added. Further, it is possible to perform gas etching using only CO, CO 2 , NH 3 , N 2 , NO 2, and H 2 gas without using oxygen gas. In particular, the latter gas is used for side wall protection for preventing undercut of the pattern side wall. On the other hand, gas etching is also preferably used in the etching of the intermediate layer in the three-layer process. As the gas etching, the same one as described in the above two-layer process can be applied. In particular, the processing of the intermediate layer in the three-layer process is preferably performed using a fluorocarbon gas and a resist pattern as a mask. Thereafter, as described above, the lower layer film can be processed by, for example, oxygen gas etching using the intermediate layer pattern as a mask.
 ここで中間層として、無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載された方法が挙げられる。
 このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
Here, when an inorganic hard mask intermediate layer film is formed as the intermediate layer, a silicon oxide film, a silicon nitride film, or a silicon oxynitride film (SiON film) is formed by a CVD method, an ALD method, or the like. The method for forming the nitride film is not limited to the following, and examples thereof include methods described in Japanese Patent Application Laid-Open No. 2002-334869 (Patent Document 6) and WO 2004/066377 (Patent Document 7).
A photoresist film can be formed directly on such an intermediate film, but an organic antireflection film (BARC) is formed on the intermediate film by spin coating, and a photoresist film is formed thereon. May be.
 中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、効果的に反射を抑えられる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号(特許文献8)、特開2007-226204号(特許文献9)に記載されたものが挙げられる。 As the intermediate layer, an intermediate layer based on polysilsesquioxane is also preferably used. By providing the resist intermediate layer film as an antireflection film, reflection tends to be effectively suppressed. Specific materials of the polysilsesquioxane-based intermediate layer are not limited to the following, but are described, for example, in JP-A-2007-226170 (Patent Document 8) and JP-A-2007-226204 (Patent Document 9). The thing which was done is mentioned.
 また、次の基板のエッチングも、常法によって行うことができ、例えば基板がSiO2、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。 Etching of the next substrate can also be performed by a conventional method. For example, if the substrate is SiO 2 or SiN, etching mainly using a chlorofluorocarbon gas, if p-Si, Al, or W is chlorine or bromine gas, Etching mainly composed of can be performed. When the substrate is etched with a chlorofluorocarbon gas, the silicon-containing resist of the two-layer resist process and the silicon-containing intermediate layer of the three-layer process are peeled off simultaneously with the substrate processing. On the other hand, when the substrate is etched with a chlorine-based or bromine-based gas, the silicon-containing resist layer or the silicon-containing intermediate layer is separately peeled, and generally, dry etching peeling with a chlorofluorocarbon-based gas is performed after the substrate is processed. .
 本実施形態の下層膜は、これら基板のエッチング耐性に優れる特徴がある。
 なお、基板は、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
The lower layer film of this embodiment is characterized by excellent etching resistance of these substrates.
A known substrate can be appropriately selected and used, and is not particularly limited. Examples thereof include Si, α-Si, p-Si, SiO 2 , SiN, SiON, W, TiN, and Al. . The substrate may be a laminate having a film to be processed (substrate to be processed) on a base material (support). Examples of such processed films include various low-k films such as Si, SiO 2 , SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, and Al-Si, and their stopper films. In general, a material different from the base material (support) is used. The thickness of the substrate to be processed or the film to be processed is not particularly limited, but is usually preferably about 50 to 10,000 nm, more preferably 75 to 5,000 nm.
[化合物又は樹脂の精製方法]
 本実施形態における化合物又は樹脂の精製方法は、水と任意に混和しない有機溶媒及び、本実施形態の化合物又は本実施形態の樹脂を含む溶液(A)と、酸性の水溶液と、を接触させて抽出する工程を含む。上記のように構成されているため、本実施形態の精製方法によれば、本実施形態の化合物又は本実施形態の樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
 より詳細には、本実施形態においては、前記化合物又は前記樹脂を水と任意に混和しない有機溶媒に溶解させ、さらにその溶液を酸性水溶液と接触させて抽出処理を行うものとすることができる。これにより、溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相を分離して金属含有量の低減された、本実施形態の化合物又は本実施形態の樹脂を得ることができる。
[Method for purifying compound or resin]
In the purification method of the compound or resin in the present embodiment, an organic solvent that is not arbitrarily miscible with water and a solution (A) containing the compound of the present embodiment or the resin of the present embodiment are contacted with an acidic aqueous solution. An extracting step. Since it is comprised as mentioned above, according to the purification method of this embodiment, content of the various metals which can be contained as an impurity in the compound of this embodiment or the resin of this embodiment can be reduced.
More specifically, in this embodiment, the compound or the resin can be dissolved in an organic solvent that is not arbitrarily miscible with water, and the solution is further brought into contact with an acidic aqueous solution to perform the extraction treatment. Thus, after the metal component contained in the solution (A) is transferred to the aqueous phase, the organic phase and the aqueous phase are separated to reduce the metal content, thereby reducing the compound of the present embodiment or the resin of the present embodiment. Obtainable.
 本実施形態の化合物又は本実施形態の樹脂は単独で上記の精製に供してもよいが、2種以上混合して上記の精製に供することもできる。また、本実施形態の化合物又は本実施形態の樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有したものであってもよい。 The compound of the present embodiment or the resin of the present embodiment may be used for the above purification alone, but two or more kinds may be mixed and used for the above purification. Moreover, the compound of this embodiment or the resin of this embodiment may contain various surfactants, various crosslinking agents, various acid generators, various stabilizers, and the like.
 本実施形態で使用される水と任意に混和しない有機溶媒としては、特に限定されないが、室温下における水への溶解度が30%未満である有機溶媒であり、より好ましくは20%未満であり、特に好ましくは10%未満である半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、使用する前記式(1)で表される化合物又は前記式(1)で表される化合物と架橋反応性のある化合物との反応によって得られる樹脂に対して、通常1~100質量倍程度使用される。  The organic solvent that is not arbitrarily miscible with water used in the present embodiment is not particularly limited, but is an organic solvent having a solubility in water of less than 30% at room temperature, more preferably less than 20%, Particularly preferred is an organic solvent that can be safely applied to a semiconductor manufacturing process of less than 10%. The amount of the organic solvent to be used is usually relative to the resin obtained by the reaction of the compound represented by the formula (1) or the compound represented by the formula (1) with a compound having a crosslinking reaction. About 1 to 100 times the mass is used.
 使用される溶媒の具体例としては、以下に限定されないが、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n‐ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2‐ヘプタノン、2-ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n‐ヘキサン、n‐ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は本実施形態の化合物又は本実施形態の樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。
 これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
Specific examples of the solvent used include, but are not limited to, ethers such as diethyl ether and diisopropyl ether, esters such as ethyl acetate, n-butyl acetate and isoamyl acetate, methyl ethyl ketone, methyl isobutyl ketone and ethyl isobutyl ketone. , Ketones such as cyclohexanone, cyclopentanone, 2-heptanone, 2-pentanone, glycols such as ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate Ether acetates, aliphatic hydrocarbons such as n-hexane and n-heptane, aromatic hydrocarbons such as toluene and xylene, methylene chloride, chlorine Halogenated hydrocarbons such as Holm and the like. Among these, toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, methyl isobutyl ketone, ethyl acetate, cyclohexanone, propylene glycol monomethyl ether acetate are more preferable, More preferred are methyl isobutyl ketone and ethyl acetate. Methyl isobutyl ketone, ethyl acetate, and the like have a relatively high saturation solubility and a relatively low boiling point of the compound of the present embodiment or the resin of the present embodiment. It becomes possible to reduce the load in the.
These solvents can be used alone or in combination of two or more.
 本実施形態で使用される酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。以下に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた水溶液が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液である、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等を用いることが好ましい。 The acidic aqueous solution used in the present embodiment is appropriately selected from aqueous solutions in which generally known organic and inorganic compounds are dissolved in water. Although not limited to the following, for example, an aqueous solution in which a mineral acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is dissolved in water, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid An aqueous solution in which an organic acid such as citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid or trifluoroacetic acid is dissolved in water. These acidic aqueous solutions can be used alone or in combination of two or more. Among these acidic aqueous solutions, one or more mineral acid aqueous solutions selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, or acetic acid, propionic acid, succinic acid, malonic acid, succinic acid, fumaric acid, maleic acid It is preferably an aqueous solution of one or more organic acids selected from the group consisting of acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid, and trifluoroacetic acid, sulfuric acid, nitric acid, and acetic acid, Aqueous solutions of carboxylic acids such as succinic acid, tartaric acid, and citric acid are more preferred, aqueous solutions of sulfuric acid, succinic acid, tartaric acid, and citric acid are more preferred, and aqueous solutions of succinic acid are even more preferred. Since polyvalent carboxylic acids such as succinic acid, tartaric acid, and citric acid are coordinated to metal ions to produce a chelate effect, it is considered that the metal tends to be removed more effectively. Moreover, it is preferable to use the water with low metal content, for example, ion-exchange water etc. according to the objective of this embodiment, as the water used here.
 本実施形態で使用する酸性の水溶液のpHは特に限定されないが、本実施形態の化合物又は本実施形態の樹脂への影響を考慮し、水溶液の酸性度を調整することが好ましい。 通常、pH範囲は0~5程度であり、好ましくはpH0~3程度である。 The pH of the acidic aqueous solution used in this embodiment is not particularly limited, but it is preferable to adjust the acidity of the aqueous solution in consideration of the influence on the compound of this embodiment or the resin of this embodiment. Normally, the pH range is about 0 to 5, preferably about 0 to 3.
 本実施形態で使用する酸性の水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点及び全体の液量を考慮して操作性を確保する観点から、当該使用量を調整することが好ましい。 上記観点から、水溶液の使用量は、通常、有機溶媒に溶解した本実施形態の化合物又は本実施形態の樹脂の溶液に対して10~200質量%であり、好ましくは20~100質量%である。 The amount of acidic aqueous solution used in the present embodiment is not particularly limited, but from the viewpoint of reducing the number of extractions for metal removal and from the viewpoint of ensuring operability in consideration of the total amount of liquid, the amount used is It is preferable to adjust. From the above viewpoint, the amount of the aqueous solution used is usually 10 to 200% by mass, preferably 20 to 100% by mass with respect to the solution of the compound of the present embodiment or the resin of the present embodiment dissolved in an organic solvent. .
 本実施形態においては、上記のような酸性の水溶液と、本実施形態の化合物又は本実施形態の樹脂及び水と任意に混和しない有機溶媒を含む溶液とを接触させることにより、金属分を抽出することができる。 In the present embodiment, the metal component is extracted by bringing the acidic aqueous solution as described above into contact with the compound of the present embodiment or the resin of the present embodiment and a solution containing an organic solvent that is arbitrarily immiscible with water. be able to.
 本実施形態においては、溶液(A)が、さらに水と任意に混和する有機溶媒を含むことが好ましい。水と任意に混和する有機溶媒を含む場合、本実施形態の化合物又は本実施形態の樹脂の仕込み量を増加させることができ、また分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性の水溶液に加える方法、有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、予め有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。 In this embodiment, it is preferable that the solution (A) further contains an organic solvent that is arbitrarily mixed with water. When an organic solvent arbitrarily mixed with water is included, the amount of the compound of the present embodiment or the resin of the present embodiment can be increased, the liquid separation property is improved, and purification can be performed with high pot efficiency. It tends to be possible. The method for adding an organic solvent arbitrarily mixed with water is not particularly limited. For example, any of a method of adding to a solution containing an organic solvent in advance, a method of adding to water or an acidic aqueous solution in advance, and a method of adding after bringing a solution containing an organic solvent into contact with water or an acidic aqueous solution may be used. Among these, the method of adding to the solution containing an organic solvent in advance is preferable from the viewpoint of the workability of the operation and the ease of management of the charged amount.
 本実施形態で使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する水と任意に混和する有機溶媒の量は、溶液相と水相とが分離する範囲であれば特に限定されないが、本実施形態の化合物又は本実施形態の樹脂に対して、通常0.1~100質量倍程度使用される。  The organic solvent arbitrarily mixed with water used in the present embodiment is not particularly limited, but an organic solvent that can be safely applied to a semiconductor manufacturing process is preferable. The amount of the organic solvent arbitrarily mixed with the water to be used is not particularly limited as long as the solution phase and the aqueous phase are separated from each other. About 1 to 100 times the mass is used.
 本実施形態において使用される水と任意に混和する溶媒の具体例としては、以下に限定されないが、テトラヒドロフラン、1,3-ジオキソラン等のエーテル類、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、N-メチルピロリドン等のケトン類、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。 Specific examples of the solvent arbitrarily mixed with water used in the present embodiment include, but are not limited to, ethers such as tetrahydrofuran and 1,3-dioxolane, alcohols such as methanol, ethanol and isopropanol, acetone, Examples thereof include ketones such as N-methylpyrrolidone, and aliphatic hydrocarbons such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), and glycol ethers such as propylene glycol monoethyl ether. Among these, N-methylpyrrolidone, propylene glycol monomethyl ether and the like are preferable, and N-methylpyrrolidone and propylene glycol monomethyl ether are more preferable. These solvents can be used alone or in combination of two or more.
 本実施形態において、溶液(A)と酸性の水溶液の接触の際、すなわち、抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、本実施形態の化合物又は本実施形態の樹脂と、有機溶媒とを含む溶液に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、本実施形態の化合物又は本実施形態の樹脂の変質を抑制することができる。 In the present embodiment, the temperature at the time of contacting the solution (A) with the acidic aqueous solution, that is, the extraction treatment is usually 20 to 90 ° C., and preferably 30 to 80 ° C. Although extraction operation is not specifically limited, For example, after mixing well by stirring etc., it is performed by leaving still. Thereby, the metal content contained in the solution containing the compound of the present embodiment or the resin of the present embodiment and the organic solvent is transferred to the aqueous phase. Moreover, the acidity of a solution falls by this operation, and the quality change of the compound of this embodiment or the resin of this embodiment can be suppressed.
 混合溶液は静置により、本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液相と、水相とに分離するので、デカンテーション等により本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液を回収する。静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。 Since the mixed solution is allowed to stand to separate into the compound of the present embodiment or the solution phase containing the resin of the present embodiment and an organic solvent and the aqueous phase, the compound of the present embodiment or the resin of the present embodiment is decanted or the like. And a solution containing the organic solvent is recovered. The standing time is not particularly limited, but it is preferable to adjust the standing time from the viewpoint of improving the separation between the solution phase containing the organic solvent and the aqueous phase. Usually, the time for standing is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer. The extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times.
 本実施形態において、溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含むものとすることが好ましい。すなわち、酸性の水溶液を用いて上記抽出処理を行った後に、該水溶液から抽出され、回収された本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液を、さらに水による抽出処理に供することが好ましい。上記の水による抽出処理は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行うことができる。当該静置後に得られる溶液は、本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液相を回収することができる。
 また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
In the present embodiment, it is preferable to include a step of performing an extraction process with water after performing an extraction process by bringing the solution (A) into contact with an acidic aqueous solution. That is, after performing the above extraction process using an acidic aqueous solution, the solution containing the compound of this embodiment or the resin of this embodiment and the organic solvent extracted and recovered from the aqueous solution is further subjected to an extraction process with water. It is preferable to provide. The extraction treatment with water is not particularly limited. For example, the extraction treatment with water can be performed by mixing well by stirring and then allowing to stand. The solution obtained after the standing is separated into a solution phase and an aqueous phase containing the compound of the present embodiment or the resin of the present embodiment and an organic solvent, and an aqueous phase, and therefore the compound of the present embodiment or the resin of the present embodiment by decantation or the like. A solution phase containing an organic solvent can be recovered.
Moreover, it is preferable that the water used here is a thing with little metal content, for example, ion-exchange water etc. according to the objective of this embodiment. The extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing, and separation a plurality of times. Further, the use ratio of both in the extraction process, conditions such as temperature and time are not particularly limited, but they may be the same as those in the contact process with the acidic aqueous solution.
 こうして得られた本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、本実施形態の化合物又は本実施形態の樹脂の濃度を任意の濃度に調整することができる。 The water that can be mixed into the compound of the present embodiment thus obtained or the solution containing the resin of the present embodiment and an organic solvent can be easily removed by performing an operation such as vacuum distillation. Moreover, an organic solvent can be added as needed, and the density | concentration of the compound of this embodiment or the resin of this embodiment can be adjusted to arbitrary density | concentrations.
 得られた本実施形態の化合物又は本実施形態の樹脂と有機溶媒を含む溶液から、本実施形態の化合物又は本実施形態の樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。 The method of isolating the compound of the present embodiment or the resin of the present embodiment from the obtained compound of the present embodiment or the solution containing the resin of the present embodiment and an organic solvent is not particularly limited, and is removed under reduced pressure and reprecipitated. Can be carried out by a known method such as separation by, and combinations thereof. If necessary, known processes such as a concentration operation, a filtration operation, a centrifugal separation operation, and a drying operation can be performed.
 以下、本実施形態を合成例及び実施例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to synthesis examples and examples, but the present embodiment is not limited to these examples.
(炭素濃度及び酸素濃度)
 有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
 装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
(分子量)
 GC-MS分析により、Agilent社製Agilent5975/6890Nを用いて測定した。あるいは、LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
(分子量測定)
 電界脱離質量分析法(FD-MS)分析により、分子量を求めた。
(ポリスチレン換算分子量)
 ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
(熱分解温度(Tg))
 エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
 評価A:熱分解温度が≧150℃
 評価C:熱分解温度が<150℃
(溶解度)
 23℃にて、化合物をシクロヘキサノン(CHN)に対して5質量%溶液になるよう溶解させ、その後、5℃にて30日間静置し、結果を以下の基準で評価した。
 評価A:目視にて析出物なしを確認
 評価C:目視にて析出物ありを確認
(Carbon concentration and oxygen concentration)
Carbon concentration and oxygen concentration (mass%) were measured by organic elemental analysis.
Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
(Molecular weight)
By GC-MS analysis, measurement was performed using Agilent 5975 / 6890N manufactured by Agilent. Alternatively, measurement was performed by LC-MS analysis using Water UP Acquity UPLC / MALDI-Synapt HDMS.
(Molecular weight measurement)
The molecular weight was determined by field desorption mass spectrometry (FD-MS) analysis.
(Molecular weight in terms of polystyrene)
The weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene were determined by gel permeation chromatography (GPC) analysis, and the degree of dispersion (Mw / Mn) was determined.
Apparatus: Shodex GPC-101 (manufactured by Showa Denko KK)
Column: KF-80M x 3
Eluent: THF 1mL / min
Temperature: 40 ° C
(Thermal decomposition temperature (Tg))
Using an EXSTAR6000DSC apparatus manufactured by SII Nanotechnology, about 5 mg of a sample was placed in an aluminum non-sealed container, and the temperature was increased to 500 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen gas (30 mL / min) air stream. At that time, the temperature at which the reduced portion appeared in the baseline was defined as the thermal decomposition temperature (Tg), and the heat resistance was evaluated according to the following criteria.
Evaluation A: Thermal decomposition temperature is ≧ 150 ° C.
Evaluation C: Thermal decomposition temperature <150 ° C
(solubility)
At 23 ° C., the compound was dissolved in cyclohexanone (CHN) so as to be a 5 mass% solution, and then allowed to stand at 5 ° C. for 30 days. The results were evaluated according to the following criteria.
Evaluation A: Visually confirmed no deposit Evaluation C: Visually confirmed presence of deposit
(合成例1)BisN-1の合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、2,6-ナフタレンジオール(シグマ-アルドリッチ社製試薬)16.0g(100mmol)と、4-ビフェニルアルデヒド(三菱瓦斯化学社製)18.2g(100mmol)と、メチルイソブチルケトン300mLとを仕込み、95%の硫酸50mLを加えて、反応液を100℃で6時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1)30.5gを得た。
 なお、400MHz-1H-NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。また、2,6-ジヒドロキシナフトールの置換位置が1位であることは、3位と4位のプロトンのシグナルがダブレットであることから確認した。
 1H-NMR:(d-DMSO、内部標準TMS)
 δ(ppm)9.7(2H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)
(Synthesis Example 1) Synthesis of BisN-1 In a 1000 mL internal vessel equipped with a stirrer, a condenser tube and a burette, 16.0 g (100 mmol) of 2,6-naphthalenediol (Sigma-Aldrich reagent) and 4- Biphenyl aldehyde (Mitsubishi Gas Chemical Co., Ltd.) 18.2g (100mmol) and methyl isobutyl ketone 300mL were prepared, 95% sulfuric acid 50mL was added, and reaction was performed by stirring the reaction liquid at 100 degreeC for 6 hours. Next, the reaction solution was concentrated, 500 g of pure water was added to precipitate the reaction product, cooled to room temperature, and then filtered to separate. The solid obtained by filtration was dried and then separated and purified by column chromatography to obtain 30.5 g of the target compound (BisN-1) represented by the following formula.
The following peaks were found by 400 MHz-1H-NMR, and confirmed to have a chemical structure of the following formula. In addition, the substitution position of 2,6-dihydroxynaphthol was confirmed to be the 1st position because the signals of protons at the 3rd and 4th positions were doublets.
1H-NMR: (d-DMSO, internal standard TMS)
δ (ppm) 9.7 (2H, OH), 7.2 to 8.5 (19H, Ph—H), 6.6 (1H, C—H)
Figure JPOXMLDOC01-appb-C000085
 
Figure JPOXMLDOC01-appb-C000085
 
(合成実施例1)BisN-1-CH1及びBisN-1-CH2の合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、前記で得られたBisN-1 11.7g(25mmol)、炭酸カリウム108g(810mmol)と、ジメチルホルムアミド200mLとを仕込み、ブロモシクロヘキサン250g(1.53mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1-CH1)2.4g及び(BisN-1-CH2)9.6gを得た。
 得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
(Synthesis Example 1) Synthesis of BisN-1-CH1 and BisN-1-CH2 Into a 1000 mL container equipped with a stirrer, a condenser tube and a burette, 11.7 g (25 mmol) of BisN-1 obtained above was added. 108 g (810 mmol) of potassium carbonate and 200 mL of dimethylformamide were added, 250 g (1.53 mol) of bromocyclohexane was added, and the reaction was stirred at 110 ° C. for 24 hours to carry out the reaction. Next, the reaction solution was concentrated, 500 g of pure water was added to precipitate the reaction product, cooled to room temperature, and then filtered to separate. The obtained solid was filtered and dried, followed by separation and purification by column chromatography, whereby 2.4 g of the target compound (BisN-1-CH1) represented by the following formula and (BisN-1-CH2) 9.6 g was obtained.
About the obtained compound, when the NMR measurement was performed on the said measurement conditions, the following peaks were found and it confirmed that it had a chemical structure of a following formula.
 BisN-1-CH1: δ(ppm)9.7(1H,O-H)、7.2~8.5(19H,Ph-H)、6.6(1H,C-H)、1.4~4.5(11H,Cy-H)
 ここで、Cy-Hとは、シクロヘキシル基のプロトンのシグナルである。
BisN-1-CH1: δ (ppm) 9.7 (1H, OH), 7.2 to 8.5 (19H, Ph—H), 6.6 (1H, C—H), 1.4 ~ 4.5 (11H, Cy-H)
Here, Cy-H is a signal of the proton of the cyclohexyl group.
 BisN-1-CH2: δ(ppm)7.2~8.5(19H,Ph-H)、6.6(1H,C-H)、1.4~4.5(22H,Cy-H)
 ここで、Cy-Hとは、シクロヘキシル基のプロトンのシグナルである。
BisN-1-CH2: δ (ppm) 7.2 to 8.5 (19H, Ph—H), 6.6 (1H, C—H), 1.4 to 4.5 (22H, Cy—H)
Here, Cy-H is a signal of the proton of the cyclohexyl group.
 得られたBisN-1-CH1の分子量は、548であった。また、炭素濃度は85.3質量%、酸素濃度は8.8質量%であった。
 得られたBisN-1-CH2の分子量は、630であった。また、炭素濃度は85.7質量%、酸素濃度は7.6質量%であった。
The molecular weight of the obtained BisN-1-CH1 was 548. The carbon concentration was 85.3% by mass, and the oxygen concentration was 8.8% by mass.
The obtained BisN-1-CH2 had a molecular weight of 630. Moreover, carbon concentration was 85.7 mass% and oxygen concentration was 7.6 mass%.
Figure JPOXMLDOC01-appb-C000086
 
Figure JPOXMLDOC01-appb-C000086
 
Figure JPOXMLDOC01-appb-C000087
 
Figure JPOXMLDOC01-appb-C000087
 
(合成実施例2)BisN-1-PH1の合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、前記で得られたBisN-1 9.3g(20mmol)、炭酸セシウム26g(80mmol)、ヨウ化銅0.8g(4mmol)、ジメチルグリシン塩酸塩1.7g(12mmol)と、ジオキサン80mLとを仕込み、ヨウ化ベンゼン8.2g(40mmol)を加えて、反応液を90℃で6時間撹拌して反応を行った。次に、酢酸エチル500mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1-PH1)7.2gを得た。
 得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
(Synthesis Example 2) Synthesis of BisN-1-PH1 In a container having a volume of 1000 mL equipped with a stirrer, a condenser tube and a burette, 9.3 g (20 mmol) of BisN-1 obtained above and 26 g (80 mmol) of cesium carbonate were obtained. , 0.8 g (4 mmol) of copper iodide, 1.7 g (12 mmol) of dimethylglycine hydrochloride and 80 mL of dioxane, 8.2 g (40 mmol) of benzene iodide were added, and the reaction solution was stirred at 90 ° C. for 6 hours. The reaction was carried out with stirring. Next, 500 mL of ethyl acetate was added to precipitate the reaction product, which was cooled to room temperature and then separated by filtration. The obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 7.2 g of the target compound (BisN-1-PH1) represented by the following formula.
About the obtained compound, when the NMR measurement was performed on the said measurement conditions, the following peaks were found and it confirmed that it had a chemical structure of a following formula.
 BisN-1-PH1: δ(ppm)9.2(1H,O-H)、6.7~7.8(24H,Ph-H)、5.3(1H,C-H) BisN-1-PH1: δ (ppm) 9.2 (1H, OH), 6.7 to 7.8 (24H, Ph-H), 5.3 (1H, C—H)
Figure JPOXMLDOC01-appb-C000088
 
Figure JPOXMLDOC01-appb-C000088
 
(合成実施例3)BisN-1-PH2の合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、前記で得られたBisN-1 9.3g(20mmol)、炭酸セシウム26g(80mmol)、ヨウ化銅0.8g(4mmol)、ジメチルグリシン塩酸塩1.7g(12mmol)と、ジオキサン80mLとを仕込み、ヨウ化ベンゼン8.2g(40mmol)を加えて、反応液を90℃で67時間撹拌して反応を行った。次に、酢酸エチル500mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisN-1-PH2)6.8gを得た。
(Synthesis Example 3) Synthesis of BisN-1-PH2 In a container having a volume of 1000 mL equipped with a stirrer, a condenser tube and a burette, 9.3 g (20 mmol) of BisN-1 obtained above and 26 g (80 mmol) of cesium carbonate were obtained. Then, 0.8 g (4 mmol) of copper iodide, 1.7 g (12 mmol) of dimethylglycine hydrochloride and 80 mL of dioxane were added, 8.2 g (40 mmol) of benzene iodide was added, and the reaction solution was stirred at 90 ° C. for 67 hours. The reaction was carried out with stirring. Next, 500 mL of ethyl acetate was added to precipitate the reaction product, which was cooled to room temperature and then separated by filtration. The obtained solid was filtered and dried, followed by separation and purification by column chromatography to obtain 6.8 g of the target compound (BisN-1-PH2) represented by the following formula.
 BisN-1-PH2: δ(ppm)6.8~8.0(29H,Ph-H)、5.3(1H,C-H) BisN-1-PH2: δ (ppm) 6.8 to 8.0 (29H, Ph-H), 5.3 (1H, C—H)
Figure JPOXMLDOC01-appb-C000089
 
Figure JPOXMLDOC01-appb-C000089
 
 なお、得られたBisN-1-PH1の分子量は、542であった。また、炭素濃度は86.3質量%、酸素濃度は8.9質量%であった。
 得られたBisN-1-PH2の分子量は、618であった。また、炭素濃度は87.4質量%、酸素濃度は7.8質量%であった。
The obtained BisN-1-PH1 had a molecular weight of 542. The carbon concentration was 86.3% by mass, and the oxygen concentration was 8.9% by mass.
The obtained BisN-1-PH2 had a molecular weight of 618. The carbon concentration was 87.4% by mass, and the oxygen concentration was 7.8% by mass.
(製造例1)
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
 得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。また、炭素濃度は84.2質量%、酸素濃度は8.3質量%であった。
(Production Example 1)
A 4-liter flask with an internal volume of 10 L, equipped with a Dimroth condenser, thermometer, and stirring blade and capable of bottoming out, was charged with 1.09 kg of 1,5-dimethylnaphthalene (7 mol, Mitsubishi Gas Chemical Co., Ltd.) in a nitrogen stream. ), 2.1 kg of 40% by weight formalin aqueous solution (28 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 0.97 ml of 98% by weight sulfuric acid (manufactured by Kanto Chemical Co., Ltd.), and refluxed at 100 ° C. under normal pressure. And allowed to react for 7 hours. Thereafter, 1.8 kg of ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) as a diluent solvent was added to the reaction solution, and after standing, the lower aqueous phase was removed. Further, neutralization and washing with water were carried out, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
The molecular weight of the obtained dimethylnaphthalene formaldehyde was Mn: 562, Mw: 1168, Mw / Mn: 2.08. Moreover, carbon concentration was 84.2 mass% and oxygen concentration was 8.3 mass%.
 その後、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得たジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
 得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
Thereafter, 100 g (0.51 mol) of dimethylnaphthalene formaldehyde resin obtained in Production Example 1 and paratoluene were added to a 0.5 L four-necked flask equipped with a Dimroth condenser, a thermometer and a stirring blade under a nitrogen stream. The sulfonic acid 0.05g was prepared, and it heated up to 190 degreeC, heated for 2 hours, and then stirred. Thereafter, 52.0 g (0.36 mol) of 1-naphthol was further added, and the temperature was further raised to 220 ° C. to react for 2 hours. After the solvent was diluted, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 126.1 g of a dark brown solid modified resin (CR-1).
The obtained resin (CR-1) was Mn: 885, Mw: 2220, and Mw / Mn: 4.17. The carbon concentration was 89.1% by mass, and the oxygen concentration was 4.5% by mass.
(実施例1~4、比較例1)
 上記BisN-1-CH1、BisN-1-CH2、BisN-1-PH1、BisN-1-PH2及びBisN-1につき、耐熱性試験及び溶解度試験を行った。結果を表1に示す。
 また、表1に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらの下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については次のものを用いた。
 酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(表中、「DTDPI」と表記する。)
 架橋剤:三和ケミカル社製 ニカラックMX270(表中、「ニカラック」と表記する。)
 有機溶媒:シクロヘキサノン(表中、「CHN」と表記する。)
(Examples 1 to 4, Comparative Example 1)
The BisN-1-CH1, BisN-1-CH2, BisN-1-PH1, BisN-1-PH2, and BisN-1 were subjected to a heat resistance test and a solubility test. The results are shown in Table 1.
In addition, materials for forming a lower layer film for lithography having the composition shown in Table 1 were prepared. Next, these lower layer film-forming materials were spin-coated on a silicon substrate, and then baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to prepare lower layer films each having a thickness of 200 nm. The following were used about the acid generator, the crosslinking agent, and the organic solvent.
Acid generator: Ditertiary butyl diphenyliodonium nonafluoromethanesulfonate manufactured by Midori Kagaku Co. (denoted as “DTDPI” in the table)
Cross-linking agent: Nikalac MX270 manufactured by Sanwa Chemical Co., Ltd. (indicated in the table as “Nikalac”)
Organic solvent: cyclohexanone (indicated in the table as “CHN”)
[エッチング試験]
 さらに、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表1に示す。
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性の評価]
 エッチング耐性の評価は、以下の手順で行った。
 まず、実施例1において用いる化合物(BisN-1-CH1)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜の上記のエッチング試験を行い、そのときのエッチングレートを測定した。
 次に、実施例1及び比較例1の下層膜のエッチング試験を同様に行い、そのときのエッチングレートを測定した。
 そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。結果を表1に示す。
 <評価基準>
 A;ノボラックの下層膜に比べてエッチングレートが、-10%未満
 B;ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
 C;ノボラックの下層膜に比べてエッチングレートが、+5%超
[Etching test]
Furthermore, an etching test was performed under the conditions shown below to evaluate etching resistance. The evaluation results are shown in Table 1.
Etching device: RIE-10NR manufactured by Samco International
Output: 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
[Evaluation of etching resistance]
Etching resistance was evaluated according to the following procedure.
First, a novolac underlayer film was prepared under the same conditions as in Example 1 except that novolak (PSM4357 manufactured by Gunei Chemical Co., Ltd.) was used instead of the compound (BisN-1-CH1) used in Example 1. Then, the above-described etching test of the novolak underlayer film was performed, and the etching rate at that time was measured.
Next, the etching test of the lower layer film of Example 1 and Comparative Example 1 was similarly performed, and the etching rate at that time was measured.
Then, the etching resistance was evaluated according to the following evaluation criteria based on the etching rate of the novolak underlayer film. The results are shown in Table 1.
<Evaluation criteria>
A: Etching rate is less than -10% compared to the novolac lower layer film B: Etching rate is -10% to + 5% compared to the novolac lower layer film
C: Etching rate is more than + 5% compared to the novolak underlayer
 次に、BisN-1-CH1、BisN-1-CH2、BisN-1-PH1、BisN-1-PH2、BisN-1をそれぞれ含む実施例1~4、比較例1のリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を各々形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
 下記式(11)の化合物は、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させ、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下して、生成樹脂を凝固精製させ、生成した白色粉末をろ過、減圧下40℃で一晩乾燥させて得た。
Next, the materials for forming a lower layer film for lithography of Examples 1 to 4 and Comparative Example 1 containing BisN-1-CH1, BisN-1-CH2, BisN-1-PH1, BisN-1-PH2, and BisN-1 respectively Each solution was applied on a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds to form an underlayer film having a thickness of 80 nm. On this lower layer film, an ArF resist solution was applied and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the ArF resist solution, a compound of the following formula (11): 5 parts by mass, triphenylsulfonium nonafluoromethanesulfonate: 1 part by mass, tributylamine: 2 parts by mass, and PGMEA: 92 parts by mass are blended. The prepared one was used.
The compound of the following formula (11) is 4.15 g of 2-methyl-2-methacryloyloxyadamantane, 3.00 g of methacryloyloxy-γ-butyrolactone, 2.08 g of 3-hydroxy-1-adamantyl methacrylate, azobisisobutyro 0.38 g of nitrile was dissolved in 80 mL of tetrahydrofuran, polymerized for 22 hours under a nitrogen atmosphere while maintaining the reaction temperature at 63 ° C., and then the reaction solution was dropped into 400 mL of n-hexane to give a product resin. Coagulated and purified, and the resulting white powder was filtered and dried overnight at 40 ° C. under reduced pressure.
Figure JPOXMLDOC01-appb-C000090
 
(式(11)中、40、40、20とあるのは各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。)
Figure JPOXMLDOC01-appb-C000090

(In the formula (11), 40, 40 and 20 indicate the ratio of each structural unit, and do not indicate a block copolymer.)
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。 Next, the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide. A positive resist pattern was obtained by developing with an aqueous solution of (TMAH) for 60 seconds.
 得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状および欠陥を観察した結果を、表1に示す。 Table 1 shows the results of observing the shapes and defects of the obtained 55 nm L / S (1: 1) and 80 nm L / S (1: 1) resist patterns.
(比較例2)
 CR-1を用いること以外は、実施例1~4、比較例1と同様に行い、下層膜形成材料を調製してシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を作製した。その後、エッチング耐性を評価した。結果を表1に示す。
(Comparative Example 2)
Except for using CR-1, it was carried out in the same manner as in Examples 1 to 4 and Comparative Example 1, and an underlayer film forming material was prepared and spin-coated on a silicon substrate, and then at 240 ° C. for 60 seconds and further at 400 ° C. Was baked for 120 seconds to prepare a lower layer film having a thickness of 200 nm. Thereafter, etching resistance was evaluated. The results are shown in Table 1.
(比較例3)
 下層膜の形成を行わないこと以外は、実施例1~4、比較例1と同様に行い、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。評価結果を表1に示す。
(Comparative Example 3)
Except not forming the lower layer film, it was carried out in the same manner as in Examples 1 to 4 and Comparative Example 1, and a photoresist layer was directly formed on the SiO 2 substrate to obtain a positive resist pattern. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000091
 
Figure JPOXMLDOC01-appb-T000091
 
 表1から明らかなように、本実施形態の構成を満たす化合物であるBisN-1-CH1を用いた実施例1、BisN-1-CH2を用いた実施例2、BisN-1-PH1を用いた実施例3及びBisN-1-PH2を用いた実施例4では、耐熱性、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、ポリフェノール化合物BisN-1を用いた比較例1では、耐熱性及びエッチング耐性は良かったものの、溶解度が不良であった。また、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂(CR-1)を用いた比較例2では、エッチング耐性が不良であった。
 また、実施例1~4では、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。一方、比較例1は、現像後のレジストパターン形状が不良であり、欠陥も多いことが確認された。これは、比較例1で用いたBisN-1が塗布溶媒に対して低溶解性である為と推察される。
 さらに、実施例1~4は、下層膜の形成を省略した比較例3に比して、解像性および感度ともに有意に優れていることが確認された。
 現像後のレジストパターン形状の相違から、実施例1~4のリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことが示された。
As is apparent from Table 1, Example 1 using BisN-1-CH1, which is a compound satisfying the configuration of the present embodiment, Example 2 using BisN-1-CH2, and BisN-1-PH1 were used. In Example 3 and Example 4 using BisN-1-PH2, it was confirmed that the heat resistance, solubility, and etching resistance were all good. On the other hand, in Comparative Example 1 using the polyphenol compound BisN-1, the heat resistance and etching resistance were good, but the solubility was poor. In Comparative Example 2 using CR-1 (phenol-modified dimethylnaphthalene formaldehyde resin (CR-1)), the etching resistance was poor.
In Examples 1 to 4, it was confirmed that the resist pattern shape after development was good and no defects were observed. On the other hand, in Comparative Example 1, it was confirmed that the resist pattern shape after development was poor and there were many defects. This is presumably because BisN-1 used in Comparative Example 1 has low solubility in the coating solvent.
Further, it was confirmed that Examples 1 to 4 were significantly superior in both resolution and sensitivity as compared with Comparative Example 3 in which the formation of the lower layer film was omitted.
From the difference in the resist pattern shape after development, it was shown that the lower layer film forming materials for lithography in Examples 1 to 4 had good adhesion to the resist material.
(実施例5)
 実施例1において用いたリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
 次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
 その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
(Example 5)
The lower layer film forming material for lithography used in Example 1 was applied onto a 300 nm thick SiO 2 substrate and baked at 240 ° C. for 60 seconds and further at 400 ° C. for 120 seconds, thereby forming a lower layer having a thickness of 80 nm. A film was formed. On this lower layer film, a silicon-containing intermediate layer material was applied and baked at 200 ° C. for 60 seconds to form an intermediate layer film having a thickness of 35 nm. Further, the ArF resist solution was applied on this intermediate layer film and baked at 130 ° C. for 60 seconds to form a 150 nm-thick photoresist layer. As the silicon-containing intermediate layer material, a silicon atom-containing polymer described in JP-A-2007-226170 <Synthesis Example 1> was used.
Next, the photoresist layer was subjected to mask exposure using an electron beam lithography apparatus (ELIONX, ELS-7500, 50 keV), baked at 115 ° C. for 90 seconds (PEB), and 2.38 mass% tetramethylammonium hydroxide. By developing with (TMAH) aqueous solution for 60 seconds, a positive resist pattern of 55 nm L / S (1: 1) was obtained.
Thereafter, using RIE-10NR manufactured by Samco International, the silicon-containing intermediate layer film (SOG) was dry-etched using the obtained resist pattern as a mask, and then the obtained silicon-containing intermediate layer film pattern was A dry etching process for the lower layer film using the mask and a dry etching process for the SiO 2 film using the obtained lower layer film pattern as a mask were sequentially performed.
 各々のエッチング条件は、下記に示すとおりである。
 レジストパターンのレジスト中間層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:1min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
 レジスト中間膜パターンのレジスト下層膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 レジスト下層膜パターンのSiO 膜へのエッチング条件
   出力:50W
   圧力:20Pa
   時間:2min
   エッチングガス
   Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
          =50:4:3:1(sccm)
Each etching condition is as shown below.
Etching condition output to resist intermediate layer film of resist pattern : 50W
Pressure: 20Pa
Time: 1 min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 8: 2 (sccm)
Output of etching condition to resist underlayer film of resist intermediate film pattern : 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate = 50: 5: 5 (sccm)
Etching condition output to SiO 2 film of resist underlayer film pattern : 50W
Pressure: 20Pa
Time: 2min
Etching gas Ar gas flow rate: C 5 F 12 gas flow rate: C 2 F 6 gas flow rate: O 2 gas flow rate = 50: 4: 3: 1 (sccm)
 上記のようにして得られた実施例5のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。その結果、本実施形態のの構成を満たす下層膜を用いた実施例5は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。 The pattern cross section (shape of the SiO 2 film after etching) of Example 5 obtained as described above was observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd. As a result, it was confirmed that in Example 5 using the lower layer film satisfying the configuration of the present embodiment, the shape of the SiO 2 film after etching in the multi-layer resist processing is rectangular, and no defects are observed, which is good. It was.
 上述したとおり、本発明は上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。 As described above, the present invention is not limited to the above-described embodiments and examples, and appropriate modifications can be made without departing from the scope of the invention.
 本出願は、2014年12月25日出願の日本特許出願(特願2014-262564号)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on December 25, 2014 (Japanese Patent Application No. 2014-262564), the contents of which are incorporated herein by reference.
 本発明の化合物及び樹脂は、炭素濃度が比較的に高く、酸素濃度が比較的に低く、耐熱性が比較的に高く、溶媒溶解性が高く、湿式プロセスが適用可能であるので、これらの性能が要求される各種用途において、広く且つ有効に利用可能である。そのため、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂等において、広く且つ有効に利用可能である。特に、本発明は、リソグラフィー用下層膜及び多層レジスト用下層膜の分野において、特に有効に利用可能である。 Since the compounds and resins of the present invention have a relatively high carbon concentration, a relatively low oxygen concentration, a relatively high heat resistance, a high solvent solubility, and a wet process is applicable, these performances Can be used widely and effectively in various applications that require the Therefore, the present invention provides, for example, an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for printed wiring boards, an electrical laminate mounted on electrical equipment / electronic equipment / industrial equipment, etc.・ Matrix resin for prepregs, built-up laminate materials, resin for fiber reinforced plastics, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, and coatings for semiconductors installed in electronic equipment and industrial equipment It can be used widely and effectively in an agent, a resist resin for a semiconductor, a resin for forming a lower layer film and the like. In particular, the present invention can be used particularly effectively in the field of lithography lower layer films and multilayer resist lower layer films.

Claims (19)

  1.  下記式(1)で表される、化合物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、mは各々独立して、1~6の整数であり、pは各々独立して、0又は1であり、nは1~4の整数である。)
    The compound represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), each X independently represents an oxygen atom or a sulfur atom, or non-bridged, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms, Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom, or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms, A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group, And at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, m is each independently an integer of 1 to 6, and p is each independently 0 or 1 and n is an integer of 1 to 4.)
  2.  前記式(1)で表される化合物が下記式(1A-2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
     
    (式(1A-2)中、R及びpは前記と同様であり、Rは、前記式(1)で説明したRと同義であり、mは、各々独立して1~3の整数である。)
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1A-2).
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (1A-2), R 1 and p are the same as described above, R 6 has the same meaning as R 2 described in the formula (1), and each m 6 independently represents 1 to 3 Is an integer.)
  3.  前記式(1)で表される化合物が下記式(1B-2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
     
    (式(1B-2)中、R及びpは前記と同様であり、Rは、前記式(1)で説明したRと同義であり、mは、各々独立して1~3の整数である。)
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1B-2).
    Figure JPOXMLDOC01-appb-C000003

    (In formula (1B-2), R 1 and p are as defined above, R 6 has the same meaning as R 2 described in formula (1), and m 6 is independently 1 to 3 Is an integer.)
  4.  前記式(1A-2)で表される化合物が下記式(BisN-1-CH1)又は下記式(BisN-1-CH2)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
     
    Figure JPOXMLDOC01-appb-C000005
     
    The compound according to claim 2, wherein the compound represented by the formula (1A-2) is a compound represented by the following formula (BisN-1-CH1) or the following formula (BisN-1-CH2).
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
  5.  前記式(1A-2)で表される化合物が下記式(BisN-1-PH1)又は下記式(BisN-1-PH2)で表される化合物である、請求項2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
     
    Figure JPOXMLDOC01-appb-C000007
     
    The compound according to claim 2, wherein the compound represented by the formula (1A-2) is a compound represented by the following formula (BisN-1-PH1) or the following formula (BisN-1-PH2).
    Figure JPOXMLDOC01-appb-C000006

    Figure JPOXMLDOC01-appb-C000007
  6.  請求項1~5のいずれか1項に記載の化合物をモノマーとして得られる、樹脂。 A resin obtained by using the compound according to any one of claims 1 to 5 as a monomer.
  7.  請求項1~5のいずれか1項に記載の化合物と架橋反応性のある化合物との反応によって得られる、請求項6に記載の樹脂。 The resin according to claim 6, which is obtained by a reaction between the compound according to any one of claims 1 to 5 and a compound having a crosslinking reactivity.
  8.  前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる少なくとも1つである、請求項7に記載の樹脂。 The crosslinking reactive compound is at least one selected from the group consisting of aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates and unsaturated hydrocarbon group-containing compounds. The resin according to claim 7.
  9.  下記式(2)で表される構造を含む、請求項6に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000008
     
    (式(2)中、Xは各々独立して、酸素原子若しくは硫黄原子、又は無架橋であることを表し、Rは単結合又は炭素数1~30の2n価の基であり、該基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~30のアリール基を有していてもよく、Rは、各々独立して、炭素数1~10の直鎖状、分岐状若しくは環状のアルキル基、炭素数6~10のアリール基、炭素数2~10のアルケニル基、炭素数1~30のアルコキシ基、炭素数6~30のアリールオキシ基又は水酸基であり、ここで、Rの少なくとも1つは炭素数1~30のアルコキシ基又は炭素数6~30のアリールオキシ基であり、Rは各々独立して、単結合又は炭素数1~20の直鎖状若しくは分岐状のアルキレン基であり、mは各々独立して、1~5の整数であり、pは各々独立して0又は1であり、nは1~4の整数である。)
    The resin according to claim 6, comprising a structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000008

    (In the formula (2), each X independently represents an oxygen atom, a sulfur atom, or a non-bridged group, and R 1 is a single bond or a 2n-valent group having 1 to 30 carbon atoms. Each may have an alicyclic hydrocarbon group, a double bond, a hetero atom or an aryl group having 6 to 30 carbon atoms, and each R 2 is independently a straight chain having 1 to 10 carbon atoms. A branched or cyclic alkyl group, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, or a hydroxyl group, Here, at least one of R 2 is an alkoxy group having 1 to 30 carbon atoms or an aryloxy group having 6 to 30 carbon atoms, and each R 3 is independently a single bond or a straight chain having 1 to 20 carbon atoms. a Jo or branched alkylene group, m 2 are each independently 1 to Of integers, p is independently 0 or 1, n is an integer of 1-4.)
  10.  前記式(2)で表される構造を有する樹脂が、下記式(2A)で表される構造を有する樹脂である、請求項9に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000009
     
    (式(2A)中、R、R、R、m、p及びnは、前記と同様である。)
    The resin according to claim 9, wherein the resin having a structure represented by the formula (2) is a resin having a structure represented by the following formula (2A).
    Figure JPOXMLDOC01-appb-C000009

    (In formula (2A), R 1 , R 2 , R 3 , m 2 , p and n are the same as described above.)
  11.  前記式(2)で表される構造を有する樹脂が、下記式(2B)で表される構造を有する樹脂である、請求項9に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000010
     
    (式(2B)中、R、R、R、m、p及びnは、前記と同様である。)
    The resin according to claim 9, wherein the resin having a structure represented by the formula (2) is a resin having a structure represented by the following formula (2B).
    Figure JPOXMLDOC01-appb-C000010

    (In formula (2B), R 1 , R 2 , R 3 , m 2 , p and n are the same as described above.)
  12.  請求項1~5のいずれか1項に記載の化合物及び/又は請求項6~11のいずれか1項に記載の樹脂を含有する、リソグラフィー用下層膜形成材料。 A material for forming an underlayer film for lithography, comprising the compound according to any one of claims 1 to 5 and / or the resin according to any one of claims 6 to 11.
  13.  有機溶媒をさらに含有する、請求項12に記載のリソグラフィー用下層膜形成材料。 The material for forming a lower layer film for lithography according to claim 12, further comprising an organic solvent.
  14.  酸発生剤をさらに含有する、請求項12又は13に記載のリソグラフィー用下層膜形成材料。 The material for forming a lower layer film for lithography according to claim 12 or 13, further comprising an acid generator.
  15.  架橋剤をさらに含有する、請求項12~14のいずれか1項に記載のリソグラフィー用下層膜形成材料。 The material for forming an underlayer film for lithography according to any one of claims 12 to 14, further comprising a crosslinking agent.
  16.  請求項12~15のいずれか1項に記載のリソグラフィー用下層膜形成材料から形成される、リソグラフィー用下層膜。 A lithographic lower layer film formed from the lithographic lower layer film forming material according to any one of claims 12 to 15.
  17.  基板上に、請求項12~15のいずれか1項に記載のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(A-1)と、
     前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、
     前記工程(A-2)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、
     を有するレジストパターン形成方法。
    A step (A-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography according to any one of claims 12 to 15;
    Forming at least one photoresist layer on the lower layer film (A-2);
    After the step (A-2), a step of irradiating a predetermined region of the photoresist layer with radiation and developing (A-3);
    A resist pattern forming method comprising:
  18.  基板上に、請求項12~15のいずれか1項に記載のリソグラフィー用下層膜形成材料を用いて下層膜を形成する工程(B-1)と、
     前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成工程(B-2)と、
     前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、
     前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、
     前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、
     を有する、回路パターン形成方法。
    A step (B-1) of forming a lower layer film on the substrate using the lower layer film forming material for lithography according to any one of claims 12 to 15;
    Forming an intermediate layer film on the lower layer film using a resist intermediate layer film material containing silicon atoms (B-2);
    Forming at least one photoresist layer on the intermediate film (B-3);
    After the step (B-3), a step (B-4) of irradiating a predetermined region of the photoresist layer with radiation and developing to form a resist pattern;
    After the step (B-4), the intermediate layer film is etched using the resist pattern as a mask, the lower layer film is etched using the obtained intermediate layer film pattern as an etching mask, and the obtained lower layer film pattern is etched. Forming a pattern on the substrate by etching the substrate as a mask (B-5);
    A circuit pattern forming method.
  19.  水と任意に混和しない有機溶媒、及び請求項1~5のいずれか1項に記載の化合物又は請求項6~11のいずれか1項に記載の樹脂を含有する溶液(A)と、酸性の水溶液と、を接触させて抽出する工程を含む、精製方法。 An organic solvent which is not optionally miscible with water, and a solution (A) containing the compound according to any one of claims 1 to 5 or the resin according to any one of claims 6 to 11; A purification method comprising the step of extracting by contacting with an aqueous solution.
PCT/JP2015/084907 2014-12-25 2015-12-14 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method WO2016104214A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177017342A KR20170099908A (en) 2014-12-25 2015-12-14 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method
JP2016566122A JP7026439B2 (en) 2014-12-25 2015-12-14 Compounds, resins, lithographic underlayer film forming materials, lithographic underlayer film, pattern forming method and purification method
CN201580070416.3A CN107108549A (en) 2014-12-25 2015-12-14 Compound, resin, photoetching substrate film formation material, photoetching basilar memebrane, pattern formation method and purification process
EP15872783.4A EP3239141A4 (en) 2014-12-25 2015-12-14 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method
SG11201705038XA SG11201705038XA (en) 2014-12-25 2015-12-14 Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US15/539,560 US10745372B2 (en) 2014-12-25 2015-12-14 Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
IL253109A IL253109A0 (en) 2014-12-25 2017-06-22 Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262564 2014-12-25
JP2014262564 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016104214A1 true WO2016104214A1 (en) 2016-06-30

Family

ID=56150243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084907 WO2016104214A1 (en) 2014-12-25 2015-12-14 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method

Country Status (9)

Country Link
US (1) US10745372B2 (en)
EP (1) EP3239141A4 (en)
JP (1) JP7026439B2 (en)
KR (1) KR20170099908A (en)
CN (1) CN107108549A (en)
IL (1) IL253109A0 (en)
SG (1) SG11201705038XA (en)
TW (1) TW201629031A (en)
WO (1) WO2016104214A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014191A1 (en) * 2015-07-22 2017-01-26 三菱瓦斯化学株式会社 Compound, resin, underlayer film forming material for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
WO2018101463A1 (en) * 2016-12-02 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, pattern formation method, and purification method
WO2018099848A1 (en) * 2016-11-30 2018-06-07 Az Electronic Materials (Luxembourg) S.A.R.L. Planarising coating-forming composition and methods for manufacturing planarizing coating and device using the same
WO2018101376A1 (en) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
WO2018101377A1 (en) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, and circuit pattern forming method
JPWO2018016648A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin, composition and pattern forming method
JPWO2018016614A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin, composition and pattern forming method
JPWO2018016634A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin and composition, and resist pattern forming method and circuit pattern forming method
KR20190078305A (en) * 2017-12-26 2019-07-04 삼성에스디아이 주식회사 Resist underlayer composition, and method of forming patterns using the composition
US20210003921A1 (en) * 2018-02-28 2021-01-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, composition, and film forming material for lithography using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102159234B1 (en) 2013-02-08 2020-09-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol derivative used in same
JP6573217B2 (en) 2014-03-13 2019-09-11 三菱瓦斯化学株式会社 Compound, resin, lower layer film forming material for lithography, lower layer film for lithography, pattern forming method, and method for purifying compound or resin
KR102326848B1 (en) 2014-03-13 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition and method for forming resist pattern
KR20170099908A (en) 2014-12-25 2017-09-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method
US10747112B2 (en) * 2015-03-30 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, and purification method thereof, material for forming underlayer film for lithography, composition for forming underlayer film, and underlayer film, as well as resist pattern forming method and circuit pattern forming method
WO2016158458A1 (en) 2015-03-30 2016-10-06 三菱瓦斯化学株式会社 Resist base material, resist composition, and method for forming resist pattern
KR102548109B1 (en) * 2015-03-31 2023-06-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Compound, resist composition and resist pattern formation method using the same
KR102562846B1 (en) * 2015-03-31 2023-08-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol compound used therein
US11143962B2 (en) * 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
JP7020912B2 (en) * 2015-08-31 2022-02-16 三菱瓦斯化学株式会社 Underlayer film forming material for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and its manufacturing method, and resist pattern forming method.
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259482A (en) * 2005-03-18 2006-09-28 Shin Etsu Chem Co Ltd Material for forming lower layer film of photoresist and pattern forming method
JP2008201954A (en) * 2007-02-21 2008-09-04 Jsr Corp Naphthol novolak and method for producing its derivative
JP2010160189A (en) * 2009-01-06 2010-07-22 Shin-Etsu Chemical Co Ltd Method for forming resist underlayer film and patterning process using the same
JP2013083833A (en) * 2011-10-11 2013-05-09 Shin Etsu Chem Co Ltd Material for forming resist underlay film and method for forming pattern
JP2013087173A (en) * 2011-10-17 2013-05-13 Mitsubishi Gas Chemical Co Inc Novel epoxy compound and method for producing the same
JP2013137524A (en) * 2011-11-30 2013-07-11 Fujifilm Corp Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition, resist film, method for manufacturing electronic device, and electronic device
JP2013253161A (en) * 2012-06-06 2013-12-19 Denki Kagaku Kogyo Kk Adhesive composition for optical component
JP2014196288A (en) * 2013-03-04 2014-10-16 国立大学法人東京工業大学 Dinaphthothiophene compound, and polymer comprising dinaphthothiophene skeleton and production method thereof
US20140363957A1 (en) * 2013-06-11 2014-12-11 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
US20140363958A1 (en) * 2013-06-11 2014-12-11 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
WO2014199660A1 (en) * 2013-06-14 2014-12-18 Dic株式会社 Epoxy compound, epoxy resin, curable compound, cured product thereof, semiconductor sealing material, and printed circuit board

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2100798A (en) 1933-05-02 1937-11-30 Ig Farbenindustrie Ag Condensation products of carbenium compounds and process of preparing the same
US2587437A (en) 1947-03-19 1952-02-26 Goodrich Co B F Di (alkenyl carbonate) esters of alkylidene bis-phenols
US2546872A (en) 1947-10-10 1951-03-27 Ciba Ltd Hydroxy-compounds of the benzoxanthene series and process of making same
JPS5017887B2 (en) 1971-10-20 1975-06-25
US3947468A (en) 1971-05-26 1976-03-30 General Electric Company Production of dibenzopyrans, their isomeric fluorenols and dibenzothiopyrans
CA1119873A (en) 1976-10-22 1982-03-16 Scott Paper Company Diazo composition containing an azo coupling component precursor, a light sensitive acid progenitor and a carboxylic anhydride
US4252884A (en) 1979-08-14 1981-02-24 James River Graphics, Inc. Negative-working diazotype photoreproduction
US4482489A (en) 1980-11-18 1984-11-13 James River Graphics, Inc. Light-sensitive diazonium trifluoromethane sulfonates
US4579758A (en) 1981-01-16 1986-04-01 The B. F. Goodrich Company Internally coated reaction vessel for use in olefinic polymerization
JPS6294841A (en) * 1985-10-21 1987-05-01 Hodogaya Chem Co Ltd Image forming composition
JPS62191850A (en) 1986-02-17 1987-08-22 Nec Corp Positive resist material
JPH01283280A (en) 1988-05-06 1989-11-14 Asahi Denka Kogyo Kk Novel epoxy compound and production thereof
JP3137202B2 (en) 1990-10-30 2001-02-19 大日本インキ化学工業株式会社 Epoxy resin, method for producing the same, and epoxy resin composition
JP2919142B2 (en) 1990-12-27 1999-07-12 株式会社東芝 Photosensitive composition and pattern forming method using the same
JPH0534913A (en) 1991-08-01 1993-02-12 Fuji Photo Film Co Ltd Positive type photoresist composition
JPH05163290A (en) 1991-12-17 1993-06-29 Kikkoman Corp N-acetyl-beta-d-glucosamine derivative, reagent for determining n-acetyl-beta-d-glucosaminidase activity with the same as active ingredient and determination of the activity using the reagent
JP2838335B2 (en) * 1992-02-03 1998-12-16 富士写真フイルム株式会社 Photosensitive composition
JPH0649402A (en) 1992-08-04 1994-02-22 Nippon Kayaku Co Ltd Solder resist ink composition and its cured product
JPH06242607A (en) 1993-02-18 1994-09-02 Mitsubishi Electric Corp Positive type resist composition and pattern forming method using the same
JP3498857B2 (en) 1994-01-28 2004-02-23 株式会社ノエビア External preparation for skin
US6020481A (en) 1996-04-01 2000-02-01 The Perkin-Elmer Corporation Asymmetric benzoxanthene dyes
IT1298693B1 (en) 1996-04-24 2000-01-12 Hoffmann La Roche 4'-METHYL SUBSTITUTED FLUORESCEIN DERIVATIVES
JP3582936B2 (en) 1996-07-10 2004-10-27 株式会社ノエビア External preparation for skin
JPH1172925A (en) 1997-07-03 1999-03-16 Toshiba Corp Undercoat layer composition and pattern forming method using the same
JP3746067B2 (en) 1997-12-24 2006-02-15 三菱電機株式会社 Speech decoding method and speech decoding apparatus
JP2001042525A (en) 1999-07-30 2001-02-16 Dainippon Ink & Chem Inc Alkali developable photosensitive resin composition
WO2002014438A1 (en) 2000-08-14 2002-02-21 Silverbrook Research Pty Ltd Infrared chromophores
JP2002214769A (en) 2001-01-18 2002-07-31 Fuji Photo Film Co Ltd Radiation sensitive positive type resist composition
US6844273B2 (en) 2001-02-07 2005-01-18 Tokyo Electron Limited Precleaning method of precleaning a silicon nitride film forming system
JP3774668B2 (en) 2001-02-07 2006-05-17 東京エレクトロン株式会社 Cleaning pretreatment method for silicon nitride film forming apparatus
JP2002334896A (en) 2001-05-07 2002-11-22 Nagase & Co Ltd Method for forming bump electrode
JP2002341542A (en) 2001-05-18 2002-11-27 Hitachi Chem Co Ltd Positive photosensitive resin composition, method for manufacturing pattern and electronic parts
JP4247658B2 (en) 2001-07-12 2009-04-02 Dic株式会社 Novel epoxy resin, epoxy resin composition and cured product thereof
US6784228B2 (en) 2001-07-12 2004-08-31 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
WO2003017002A1 (en) 2001-08-20 2003-02-27 Nissan Chemical Industries, Ltd. Composition for forming antireflective film for use in lithography
EP1300403A1 (en) 2001-10-02 2003-04-09 Aventis Pharma S.A. Process for the manufacture of hypoxyxylerone derivatives
CN1309783C (en) 2001-10-24 2007-04-11 大日本油墨化学工业株式会社 Epoxy resin compositing, its solidification product, new-type epoxy resin, phenol compound, and its preparation method
US6794408B2 (en) * 2002-01-29 2004-09-21 Aventis Pharma Deutschland Gmbh Drechsleranol derivatives, processes for their preparation and their use
US7238462B2 (en) 2002-11-27 2007-07-03 Tokyo Ohka Kogyo Co., Ltd. Undercoating material for wiring, embedded material, and wiring formation method
JP3914493B2 (en) 2002-11-27 2007-05-16 東京応化工業株式会社 Underlayer film forming material for multilayer resist process and wiring forming method using the same
JP4382750B2 (en) 2003-01-24 2009-12-16 東京エレクトロン株式会社 CVD method for forming a silicon nitride film on a substrate to be processed
JP3981030B2 (en) 2003-03-07 2007-09-26 信越化学工業株式会社 Resist underlayer film material and pattern forming method
KR20060071423A (en) * 2003-09-18 2006-06-26 미츠비시 가스 가가쿠 가부시키가이샤 Compound for resist and radiation-sensitive composition
JP4614056B2 (en) 2003-09-18 2011-01-19 三菱瓦斯化学株式会社 Resist compound and radiation-sensitive composition
CN1853141A (en) * 2003-09-18 2006-10-25 三菱瓦斯化学株式会社 Compound for resist and radiation-sensitive composition
JP4388429B2 (en) 2004-02-04 2009-12-24 信越化学工業株式会社 Resist underlayer film material and pattern forming method
JP4249096B2 (en) 2004-02-20 2009-04-02 東京応化工業株式会社 Substrate for pattern forming material, positive resist composition, and resist pattern forming method
KR101145088B1 (en) 2004-04-15 2012-05-11 미츠비시 가스 가가쿠 가부시키가이샤 Resist composition
KR101168249B1 (en) 2004-05-14 2012-07-30 닛산 가가쿠 고교 가부시키 가이샤 Antireflective film-forming composition containing vinyl ether compound
JP4966484B2 (en) 2004-07-22 2012-07-04 大阪瓦斯株式会社 Fluorene compound and method for producing the same
JP2006098869A (en) 2004-09-30 2006-04-13 Sumitomo Bakelite Co Ltd Photoresist composition
JP2006113136A (en) 2004-10-12 2006-04-27 Sumitomo Bakelite Co Ltd Novolac type phenolic resin composition for photoresist
JP2006160663A (en) 2004-12-07 2006-06-22 Honshu Chem Ind Co Ltd Method for producing 1,1'-bis(2-hydroxynaphthyl)
TWI494697B (en) 2004-12-24 2015-08-01 Mitsubishi Gas Chemical Co Resist compound
JP4678195B2 (en) 2005-02-03 2011-04-27 三菱瓦斯化学株式会社 Phenanthrenequinone derivative and method for producing the same
WO2006132139A1 (en) * 2005-06-06 2006-12-14 Mitsubishi Gas Chemical Company, Inc. Compound for resist and resist composition
JP2007019294A (en) 2005-07-08 2007-01-25 Konica Minolta Holdings Inc Organic semiconductor material, organic semiconductor film, organic semiconductor element, and organic thin film transistor
JP4659678B2 (en) * 2005-12-27 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
US7585613B2 (en) 2006-01-25 2009-09-08 Shin-Etsu Chemical Co., Ltd. Antireflection film composition, substrate, and patterning process
JP4781280B2 (en) 2006-01-25 2011-09-28 信越化学工業株式会社 Antireflection film material, substrate, and pattern forming method
WO2007086415A1 (en) 2006-01-25 2007-08-02 Hitachi Chemical Co., Ltd. Phenol resin and resin compositions
JP4638380B2 (en) 2006-01-27 2011-02-23 信越化学工業株式会社 Antireflection film material, substrate having antireflection film, and pattern forming method
JP2009098155A (en) 2006-02-08 2009-05-07 Mitsubishi Gas Chem Co Inc Radiation-sensitive composition
TW200741353A (en) * 2006-02-27 2007-11-01 Mitsubishi Gas Chemical Co Compound for forming antireflective film and antireflective film
JP2007262398A (en) 2006-03-01 2007-10-11 Hitachi Chem Co Ltd Epoxy resin composition and electronic part device
JP2007326847A (en) 2006-03-31 2007-12-20 Honshu Chem Ind Co Ltd New polynuclear polyphenol compound
JP4662063B2 (en) * 2006-05-25 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
EP2067782B2 (en) 2006-08-28 2018-06-27 Tosoh Corporation Heteroacene derivative, tetrahaloterphenyl derivative, and their production methods
JP4910168B2 (en) 2006-09-07 2012-04-04 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
WO2008053974A1 (en) 2006-11-02 2008-05-08 Mitsubishi Gas Chemical Company, Inc. Radiation-sensitive composition
JP4858136B2 (en) 2006-12-06 2012-01-18 三菱瓦斯化学株式会社 Radiation-sensitive resist composition
JP5092492B2 (en) 2007-03-28 2012-12-05 Dic株式会社 Thermosetting polyimide resin composition
JP5446118B2 (en) 2007-04-23 2014-03-19 三菱瓦斯化学株式会社 Radiation sensitive composition
PA8779101A1 (en) 2007-05-04 2008-12-18 Wyeth Corp "TRICYCLIC COMPOUNDS AS INHIBITORS OF MARRIAGE METALOPROTEINASES"
US20100190107A1 (en) 2007-06-15 2010-07-29 Idemitsu Kosan Co. Ltd Cyclic compound, photoresist base material and photoresist composition
JP2009073738A (en) 2007-09-18 2009-04-09 Idemitsu Kosan Co Ltd Polycarboxylate compound, photoresist substrate and photoresist composition
WO2009048164A1 (en) 2007-10-10 2009-04-16 Sumitomo Chemical Company, Limited Polymer compound and polymer light-emitting device using the same
KR20090049862A (en) 2007-11-14 2009-05-19 주식회사 동진쎄미켐 Photosensitive compound and photoresist composition including the same
EP2219076B1 (en) 2007-12-07 2013-11-20 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern
JP5249578B2 (en) 2007-12-26 2013-07-31 大阪瓦斯株式会社 Epoxy compound having fluorene skeleton
WO2009119201A1 (en) 2008-03-28 2009-10-01 Jsr株式会社 Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation
CN102046726B (en) 2008-05-27 2013-12-25 松下电器产业株式会社 Epoxy resin composition for printed wiring board, solder resist composition, resin film, resin sheet, prepreg, metal foil with resin, cover lay, and flexible printed wiring board
JP4990844B2 (en) 2008-06-17 2012-08-01 信越化学工業株式会社 Pattern forming method and resist material used therefor
US20110274713A1 (en) 2008-08-05 2011-11-10 The University Of Queensland Antigen-presenting scaffolds
JP5336306B2 (en) 2008-10-20 2013-11-06 信越化学工業株式会社 Resist underlayer film forming method, pattern forming method using the same, and resist underlayer film material
TWI400575B (en) 2008-10-28 2013-07-01 Shinetsu Chemical Co Photoresist undercoat-forming material and patterning process
US20100136477A1 (en) 2008-12-01 2010-06-03 Ng Edward W Photosensitive Composition
JP5118073B2 (en) 2009-01-26 2013-01-16 信越化学工業株式会社 Resist underlayer film forming method and pattern forming method using the same
JP2010219295A (en) 2009-03-17 2010-09-30 Mitsui Chemicals Inc Organic transistor
JP5262915B2 (en) 2009-03-30 2013-08-14 Dic株式会社 Curable resin composition, cured product thereof, printed wiring board, ester compound, ester resin, and production method thereof
JP5038354B2 (en) 2009-05-11 2012-10-03 信越化学工業株式会社 Silicon-containing antireflection film-forming composition, silicon-containing antireflection film-forming substrate, and pattern formation method
KR101741285B1 (en) 2009-09-15 2017-06-15 미츠비시 가스 가가쿠 가부시키가이샤 Aromatic hydrocarbon resin and composition for forming underlayer film for lithography
JP5513825B2 (en) 2009-09-28 2014-06-04 大阪ガスケミカル株式会社 Method for producing alcohol having fluorene skeleton
JP5466927B2 (en) 2009-11-19 2014-04-09 大阪瓦斯株式会社 Fluorene polyester oligomer and method for producing the same
JP5068828B2 (en) 2010-01-19 2012-11-07 信越化学工業株式会社 Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
EP2578562A4 (en) 2010-05-26 2015-12-02 Mitsubishi Gas Chemical Co Cyclic compound purification method
JP5229278B2 (en) 2010-06-21 2013-07-03 信越化学工業株式会社 Naphthalene derivative, resist underlayer film material, resist underlayer film forming method and pattern forming method
JP5556773B2 (en) 2010-09-10 2014-07-23 信越化学工業株式会社 Naphthalene derivative and method for producing the same, resist underlayer film material, resist underlayer film forming method and pattern forming method
JP2012083731A (en) 2010-09-13 2012-04-26 Idemitsu Kosan Co Ltd Radiation-sensitive composition and photoresist composition
JP5485188B2 (en) 2011-01-14 2014-05-07 信越化学工業株式会社 Resist underlayer film material and pattern forming method using the same
CN102070595A (en) 2011-01-20 2011-05-25 中国人民解放军第二军医大学 Substituted benzoxanthone type compound and application thereof
JP5776580B2 (en) 2011-02-25 2015-09-09 信越化学工業株式会社 Positive resist material and pattern forming method using the same
US8742403B2 (en) 2011-03-08 2014-06-03 Samsung Electronics Co., Ltd. Xanthene based semiconductor compositions
KR101869929B1 (en) 2011-06-03 2018-06-21 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Phenolic resin and material for forming underlayer film for lithography
EP2755939A4 (en) 2011-07-14 2015-04-15 Keith R Latham Halogenated phenols for diagnostics, antioxidant protection and drug delivery
CN103733136B (en) 2011-08-12 2017-06-23 三菱瓦斯化学株式会社 Lower layer film for lithography forms material, lower layer film for lithography and pattern formation method
KR101986542B1 (en) 2011-08-12 2019-06-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Cyclic compound, method for producing same, composition, and method for forming resist pattern
EP3051350B1 (en) 2011-08-12 2018-10-24 Mitsubishi Gas Chemical Company, Inc. Alcoholic compound and method for producing alcoholic compound
JP5698184B2 (en) 2011-09-02 2015-04-08 信越化学工業株式会社 Positive resist material and pattern forming method
KR101873018B1 (en) 2011-11-02 2018-07-03 주식회사 동진쎄미켐 Phenolic monomer, polymer for preparing resist under-layer comprising the same, and resist under-layer composition including the same
WO2013134997A1 (en) 2012-03-16 2013-09-19 中国科学院化学研究所 Molecular glass photoresist with bisphenol a skeleton structure and preparation method and application thereof
CA2875964C (en) 2012-06-07 2018-01-02 Georgia State University Research Foundation, Inc. Seca inhibitors and methods of making and using thereof
JP5940496B2 (en) * 2012-09-26 2016-06-29 富士フイルム株式会社 Semi-cured product, cured product and production method thereof, optical component, cured resin composition and compound
CN103804196B (en) 2012-11-06 2016-08-31 中国科学院理化技术研究所 Star adamantane derivative molecular glass and preparation method thereof, application
JP6388126B2 (en) 2013-02-08 2018-09-12 三菱瓦斯化学株式会社 COMPOUND, LITHOGRAPHIC LOWER FILM FORMING MATERIAL, LITHOGRAPHY LOWER FILM AND PATTERN FORMING METHOD
EP2955175B1 (en) 2013-02-08 2018-04-04 Mitsubishi Gas Chemical Company, Inc. Use of 9-[1,1'-biphenyl]-4-yl-9h-xanthene-2,7-diol and similar compounds for forming resins for use in underlayer films for lithography and in pattern forming methods
KR102159234B1 (en) 2013-02-08 2020-09-23 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol derivative used in same
JP6183790B2 (en) 2013-02-08 2017-08-23 三菱瓦斯化学株式会社 Novel allyl compound and production method thereof
JP2014205746A (en) 2013-04-11 2014-10-30 Jsr株式会社 Colored composition, colored cured film and display element
JP6119667B2 (en) 2013-06-11 2017-04-26 信越化学工業株式会社 Underlayer film material and pattern forming method
CN104557552B (en) 2013-10-22 2016-08-31 中国科学院理化技术研究所 A kind of star tetraphenylethylene derivative molecular glass, positive photoresist, positive-tone photo gel coating and application thereof
JP2015087115A (en) 2013-10-28 2015-05-07 日立Geニュークリア・エナジー株式会社 Neutron count analyzer and radiation measuring device
KR102326848B1 (en) 2014-03-13 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition and method for forming resist pattern
US20150309403A1 (en) * 2014-04-29 2015-10-29 Az Electronic Materials (Luxembourg) S.A.R.L. Antireflective coating compositions and processes thereof
US9274426B2 (en) * 2014-04-29 2016-03-01 Az Electronic Materials (Luxembourg) S.A.R.L. Antireflective coating compositions and processes thereof
KR20170099908A (en) 2014-12-25 2017-09-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Compound, resin, underlayer film forming material for lithography, underlayer film for lithography, pattern forming method and purification method
KR102548109B1 (en) 2015-03-31 2023-06-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Compound, resist composition and resist pattern formation method using the same
KR102562846B1 (en) 2015-03-31 2023-08-02 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Resist composition, resist pattern formation method, and polyphenol compound used therein
EP3327005A4 (en) * 2015-07-22 2019-09-25 Mitsubishi Gas Chemical Company, Inc. Compound, resin, underlayer film forming material for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
JP7020912B2 (en) * 2015-08-31 2022-02-16 三菱瓦斯化学株式会社 Underlayer film forming material for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and its manufacturing method, and resist pattern forming method.
JP2020121687A (en) 2019-01-31 2020-08-13 横浜ゴム株式会社 Pneumatic tire

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259482A (en) * 2005-03-18 2006-09-28 Shin Etsu Chem Co Ltd Material for forming lower layer film of photoresist and pattern forming method
JP2008201954A (en) * 2007-02-21 2008-09-04 Jsr Corp Naphthol novolak and method for producing its derivative
JP2010160189A (en) * 2009-01-06 2010-07-22 Shin-Etsu Chemical Co Ltd Method for forming resist underlayer film and patterning process using the same
JP2013083833A (en) * 2011-10-11 2013-05-09 Shin Etsu Chem Co Ltd Material for forming resist underlay film and method for forming pattern
JP2013087173A (en) * 2011-10-17 2013-05-13 Mitsubishi Gas Chemical Co Inc Novel epoxy compound and method for producing the same
JP2013137524A (en) * 2011-11-30 2013-07-11 Fujifilm Corp Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition, resist film, method for manufacturing electronic device, and electronic device
JP2013253161A (en) * 2012-06-06 2013-12-19 Denki Kagaku Kogyo Kk Adhesive composition for optical component
JP2014196288A (en) * 2013-03-04 2014-10-16 国立大学法人東京工業大学 Dinaphthothiophene compound, and polymer comprising dinaphthothiophene skeleton and production method thereof
US20140363957A1 (en) * 2013-06-11 2014-12-11 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
US20140363958A1 (en) * 2013-06-11 2014-12-11 Shin-Etsu Chemical Co., Ltd. Underlayer film-forming composition and pattern forming process
WO2014199660A1 (en) * 2013-06-14 2014-12-18 Dic株式会社 Epoxy compound, epoxy resin, curable compound, cured product thereof, semiconductor sealing material, and printed circuit board

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BENTLEY, K.W. ET AL.: "A Synthesis of alpha- Anhydrotrimethylbrazilone", TETRAHEDRON LETTERS, vol. 1, no. Issue 2, 1959, pages 11 - 14, XP055459128 *
CHATTERJEA, J. N.: "Experiments on the syntheses of furano compounds. part XII. further transformations of isocoumaranone", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 34, no. Issue 4, 1957, pages 299 - 305, XP009504132 *
DANN, VON OTTO ET AL.: "Synthesis von (±) - Brasilin", JUSTUS LIEBIGS ANNALEN DER CHEMIE, vol. 667, no. Issue 1, 1963, pages 116 - 125, XP055459130 *
See also references of EP3239141A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364314B2 (en) 2015-07-22 2019-07-30 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
WO2017014191A1 (en) * 2015-07-22 2017-01-26 三菱瓦斯化学株式会社 Compound, resin, underlayer film forming material for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
JP7069530B2 (en) 2016-07-21 2022-05-18 三菱瓦斯化学株式会社 Compounds, resins, compositions and pattern forming methods
JP7194356B2 (en) 2016-07-21 2022-12-22 三菱瓦斯化学株式会社 Compound, resin and composition, resist pattern forming method and circuit pattern forming method
JPWO2018016648A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin, composition and pattern forming method
JPWO2018016614A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin, composition and pattern forming method
JPWO2018016634A1 (en) * 2016-07-21 2019-05-09 三菱瓦斯化学株式会社 Compound, resin and composition, and resist pattern forming method and circuit pattern forming method
JP7194355B2 (en) 2016-07-21 2022-12-22 三菱瓦斯化学株式会社 Compound, resin, composition and pattern forming method
WO2018101377A1 (en) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, and circuit pattern forming method
JP7205716B2 (en) 2016-11-30 2023-01-17 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method and circuit pattern forming method
WO2018099848A1 (en) * 2016-11-30 2018-06-07 Az Electronic Materials (Luxembourg) S.A.R.L. Planarising coating-forming composition and methods for manufacturing planarizing coating and device using the same
JPWO2018101376A1 (en) * 2016-11-30 2019-10-24 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, and circuit pattern forming method
WO2018101376A1 (en) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern formation method, and circuit pattern formation method
JPWO2018101377A1 (en) * 2016-11-30 2019-10-24 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method, and circuit pattern forming method
JP7205715B2 (en) 2016-11-30 2023-01-17 三菱瓦斯化学株式会社 Compound, resin, composition, resist pattern forming method and circuit pattern forming method
JPWO2018101463A1 (en) * 2016-12-02 2019-10-24 三菱瓦斯化学株式会社 Compound, resin, composition, pattern formation method and purification method
JP7090843B2 (en) 2016-12-02 2022-06-27 三菱瓦斯化学株式会社 Compounds, resins, compositions, pattern forming methods and purification methods
WO2018101463A1 (en) * 2016-12-02 2018-06-07 三菱瓦斯化学株式会社 Compound, resin, composition, pattern formation method, and purification method
KR102215332B1 (en) 2017-12-26 2021-02-10 삼성에스디아이 주식회사 Resist underlayer composition, and method of forming patterns using the composition
KR20190078305A (en) * 2017-12-26 2019-07-04 삼성에스디아이 주식회사 Resist underlayer composition, and method of forming patterns using the composition
US20210003921A1 (en) * 2018-02-28 2021-01-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, composition, and film forming material for lithography using the same

Also Published As

Publication number Publication date
JP7026439B2 (en) 2022-02-28
EP3239141A1 (en) 2017-11-01
SG11201705038XA (en) 2017-07-28
US10745372B2 (en) 2020-08-18
IL253109A0 (en) 2017-08-31
CN107108549A (en) 2017-08-29
JPWO2016104214A1 (en) 2017-10-05
EP3239141A4 (en) 2018-08-15
TW201629031A (en) 2016-08-16
US20170349564A1 (en) 2017-12-07
KR20170099908A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
JP6573217B2 (en) Compound, resin, lower layer film forming material for lithography, lower layer film for lithography, pattern forming method, and method for purifying compound or resin
JP5979384B2 (en) Lower layer film forming material for lithography, lower layer film for lithography and pattern forming method
JP7026439B2 (en) Compounds, resins, lithographic underlayer film forming materials, lithographic underlayer film, pattern forming method and purification method
JP6064904B2 (en) Phenol-based resin and lower film forming material for lithography
JP6670453B2 (en) Compound, resin, material for forming lower layer film for lithography, composition for forming lower layer film for lithography, lower layer film for lithography, method for forming resist pattern, method for forming circuit pattern, and method for purifying compound or resin
JP6447884B2 (en) Lithographic film forming material, Lithographic film forming composition, Lithographic film, pattern forming method and purification method
JP6390911B2 (en) COMPOUND, LITHOGRAPHIC LOWER FILM FORMING MATERIAL, LITHOGRAPHY LOWER FILM AND PATTERN FORMING METHOD
US10364314B2 (en) Compound, resin, material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography, resist pattern forming method, circuit pattern forming method, and purification method
KR102552910B1 (en) Compound, resin, material for forming lower layer film for lithography, lower layer film for lithography, pattern formation method, and purification method of compound or resin
JP6388126B2 (en) COMPOUND, LITHOGRAPHIC LOWER FILM FORMING MATERIAL, LITHOGRAPHY LOWER FILM AND PATTERN FORMING METHOD
JPWO2016158457A1 (en) Compound, resin, and purification method thereof, lower layer film forming material for lithography, lower layer film forming composition, lower layer film, resist pattern forming method, and circuit pattern forming method
JP2016184152A (en) Underlayer film forming material for lithography, composition comprising material and pattern formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566122

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201705038X

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 253109

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20177017342

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539560

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872783

Country of ref document: EP