WO2009119201A1 - Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation - Google Patents

Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation Download PDF

Info

Publication number
WO2009119201A1
WO2009119201A1 PCT/JP2009/052931 JP2009052931W WO2009119201A1 WO 2009119201 A1 WO2009119201 A1 WO 2009119201A1 JP 2009052931 W JP2009052931 W JP 2009052931W WO 2009119201 A1 WO2009119201 A1 WO 2009119201A1
Authority
WO
WIPO (PCT)
Prior art keywords
underlayer film
resist underlayer
resist
forming
composition
Prior art date
Application number
PCT/JP2009/052931
Other languages
French (fr)
Japanese (ja)
Inventor
洋助 今野
仲篤 能村
浩光 中島
信也 峯岸
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2009119201A1 publication Critical patent/WO2009119201A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers

Definitions

  • the present invention relates to a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method. More specifically, the present invention can be suitably used for microfabrication in a lithography process using various types of radiation (particularly, a multilayer resist process suitable for manufacturing a highly integrated circuit element), and has excellent etching resistance.
  • the present invention relates to a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method capable of transferring a resist pattern to a substrate to be processed faithfully with high reproducibility in an etching process.
  • the semiconductor device manufacturing process includes many steps of depositing a plurality of substances as a film to be processed on a silicon wafer and patterning the same into a desired pattern.
  • a photosensitive material generally called a resist is deposited on the film to be processed to form a resist film, and a predetermined region of the resist film is exposed.
  • the exposed portion or the unexposed portion of the resist film is removed by development processing to form a resist pattern, and the processed film is dry-etched using the resist pattern as an etching mask.
  • ultraviolet light such as an ArF excimer laser is used as an exposure light source for exposing the resist film.
  • LSIs large-scale integrated circuits
  • the required resolution may be less than the wavelength of exposure light.
  • the exposure process tolerance such as the exposure tolerance and the focus tolerance is insufficient.
  • it is effective to improve the resolution by reducing the thickness of the resist film.
  • the resist thickness required for etching the film to be processed It becomes difficult to ensure.
  • a resist underlayer film (hereinafter also simply referred to as “underlayer film”) is formed on the film to be processed, and the resist pattern is once transferred to the underlayer film to form the underlayer film pattern.
  • underlayer film a resist underlayer film
  • multilayer resist process a process of transferring an underlayer film pattern to a film to be processed using an etching mask.
  • the lower layer film is preferably made of a material having etching resistance.
  • Examples of the material for forming such a lower layer film include, for example, a resin containing a benzene ring that absorbs energy during etching and is known to have etching resistance, in particular, a composition containing a thermosetting phenol novolac, and acenaphthylene.
  • a composition containing a polymer having a skeleton has been proposed (see, for example, Patent Documents 1 and 2).
  • the etching pattern is further miniaturized, the aspect ratio of the lower layer film pattern (the ratio of the pattern width (line width) to the film thickness of the lower layer film pattern) is increased, and the lower layer film pattern is changed during etching of the substrate to be processed. There was also a problem of bending. For example, since the composition described in Patent Document 1 has low bending resistance as an underlayer film pattern, the underlayer film pattern is bent during etching of the substrate to be processed, and the resist pattern is faithfully transferred to the substrate to be processed. I could not.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and can be suitably used for microfabrication in a lithography process using various types of radiation, has excellent etching resistance, and particularly dry etching.
  • a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method capable of transferring a resist pattern to a substrate to be processed faithfully with high reproducibility.
  • the present inventors have found that when the hydrogen content in the resist underlayer film is within a specific range (particularly 30 atom% or less), the underlayer film pattern during etching of the substrate to be processed is the conventional resist underlayer. The present inventors have found that it is harder to bend than a film and have completed the present invention.
  • the present invention is as follows. [1] A resist underlayer film is formed on a substrate to be processed, a resist pattern is formed on the resist underlayer film, the resist pattern is temporarily transferred to the resist underlayer film, and then the underlayer film pattern is formed. Is a resist underlayer film used in a multilayer resist process for transferring to a substrate to be processed using an etching mask, A resist underlayer film, wherein the content of hydrogen atoms in the resist underlayer film is 20 to 30 atom%.
  • a resist underlayer film forming method for forming the resist underlayer film according to [1] A step of forming a resist underlayer film by heating a coating film obtained using a composition for forming a resist underlayer film containing a resin having a phenolic hydroxyl group and a solvent; A resist underlayer film forming method, characterized in that it is in air, a heating temperature is 300 to 550 ° C., and a heating time is 30 to 600 seconds.
  • the resist underlayer film forming method according to [2] wherein the heating temperature is 350 to 550 ° C., and the heating time is 120 to 600 seconds.
  • the resin having a phenolic hydroxyl group is an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups, and at least selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin, and naphthaldehyde.
  • a resist underlayer film forming composition for forming the resist underlayer film according to [1] contains a resin having a phenolic hydroxyl group and a solvent,
  • the resin having a phenolic hydroxyl group is obtained by a condensation reaction of dihydroxynaphthalene and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde.
  • a resist underlayer film forming composition is obtained by a condensation reaction of dihydroxynaphthalene and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde.
  • a resist underlayer film forming composition for forming the resist underlayer film according to [1] contains a resin having a phenolic hydroxyl group and a solvent,
  • the resin having a phenolic hydroxyl group is obtained by a condensation reaction between resorcinol and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde.
  • a composition for forming a resist underlayer film contains a resin having a phenolic hydroxyl group and a solvent,
  • the resin having a phenolic hydroxyl group is obtained by a condensation reaction between resorcinol and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde.
  • the resist underlayer film of the present invention is excellent in etching resistance, and the underlayer film pattern is not easily bent when the substrate to be processed is etched. Moreover, according to the composition for forming a resist underlayer film of the present invention, the resist underlayer film can be formed.
  • a resist underlayer film having excellent etching resistance has precise pattern transfer performance and good etching selectivity in a dry etching process, and there is little over-etching of the resist underlayer film, and a resist pattern is formed on a substrate to be processed. Transfers faithfully with good reproducibility.
  • the lower layer film pattern is not bent when the substrate to be processed is etched, an improvement in yield can be expected in microfabrication in the lithography process, particularly in the manufacture of highly integrated circuit elements.
  • the resist underlayer film forming composition is used to form an underlayer film pattern on the substrate to be processed, which has excellent etching resistance and is etched. It is possible to easily form a resist underlayer film that is not easily bent.
  • composition for forming a resist underlayer film of the present invention contains a resin having a phenolic hydroxyl group (hereinafter also referred to as “resin (A)”) and a solvent.
  • the resin (A) is obtained by a condensation reaction between an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups and an aldehyde derivative.
  • the resin (A) may be a novolak resin obtained by reacting with an acidic catalyst or a resol resin obtained by reacting with an alkaline catalyst.
  • aromatic hydrocarbon having 6 to 10 carbon atoms having two phenolic hydroxyl groups include, for example, phenols such as resorcinol and catechol; dihydroxynaphthalene (for example, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene). , 2,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene) and the like.
  • these aromatic hydrocarbons may be used individually by 1 type, and may be used in combination of 2 or more type.
  • aldehyde derivative at least one selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde is used.
  • phenolic compounds other than aromatic hydrocarbons having a phenolic hydroxyl group other aldehyde compounds other than the above-mentioned aldehyde derivatives, and the like may be used.
  • the other phenol compounds include phenols such as phenol, cresol and xylenol; naphthols such as 1-naphthol and 2-naphthol.
  • these other phenol compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • aldehyde compounds examples include aldehydes such as acetaldehyde and propionaldehyde.
  • these other aldehyde compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) of the resin (A) by gel permeation chromatography (GPC) is preferably 500 to 5000, more preferably 1000 to 3000. . If this Mw is less than 500, the in-plane uniformity of the film thickness may be impaired due to the effect of sublimation of low molecular components. On the other hand, when it exceeds 5000, when it is applied on a substrate having a pattern such as a via or a trench, the embedding property to the pattern may be impaired.
  • composition for forming a resist underlayer film in the present invention may contain only one kind of the resin (A), or may contain two or more kinds.
  • the composition for forming a resist underlayer film in the present invention contains a solvent for dissolving the resin (A) (hereinafter referred to as “solvent (B)”), and is usually a liquid composition.
  • solvent (B) is not particularly limited as long as it can dissolve the resin (A).
  • ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono Ethylene glycol monoalkyl ethers such as n-butyl ether; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether acetate Ether acetates; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether Diethylene glycol dialkyl ethers such as diethylene glycol di-n-butyl ether; triethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether and triethylene glycol diethyl ether; propylene glycol monomethyl ether, propylene glycol monoe
  • Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate, i-propyl lactate, n-butyl lactate, i-butyl lactate; methyl formate, ethyl formate, n-propyl formate, i-propyl formate, n-formate Butyl, i-butyl formate, n-amyl formate, i-amyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-amyl acetate, i-acetate -Amyl, n-hexyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, n-butyl propionate
  • solvents (B) propylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, ethyl lactate, n-butyl acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, ⁇ -butyrolactone is preferred.
  • these solvent (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the solvent (B) used is such that the solid content concentration of the resulting resist underlayer film forming composition is usually 5 to 80% by mass, preferably 5 to 40% by mass, more preferably 10 to 30% by mass. This is the range.
  • the composition for forming a resist underlayer film in the present invention includes, as necessary, an accelerator, an acid generator, a crosslinking agent, a binder resin, a radiation absorber, and a surfactant, as long as the initial effects are not impaired. These various additives can be blended.
  • the composition for forming a resist underlayer film of the present invention preferably contains an accelerator.
  • the accelerator promotes a dehydrogenation reaction and reduces the hydrogen content of the resist underlayer film when heating the coating film obtained from the resist underlayer film forming composition in order to form the resist underlayer film. It is an auxiliary that can be used.
  • Specific examples of the accelerator include a one-electron oxidant.
  • the one-electron oxidant means an oxidant that itself undergoes one electron transfer. For example, in the case of cerium (IV) ammonium nitrate, cerium ion (IV) obtains one electron and changes to cerium ion (III).
  • radical oxidizing agents such as halogen obtain one electron and convert it to an anion. In this way, the phenomenon of oxidizing the oxide by taking one electron from the oxide (substrate, catalyst, etc.) is called one-electron oxidation, and the component that receives one electron at this time is called one-electron oxidant.
  • Typical examples of the one-electron oxidizing agent include (a) metal compounds, (b) peroxides, (c) diazo compounds, (d) halogens or halogen acids.
  • Examples of the metal compound (a) include metal compounds containing cerium, lead, silver, manganese, osmium, ruthenium, vanadium, thallium, copper, iron, bismuth, and nickel.
  • cerium salts such as cerium (IV) ammonium nitrate (CAN; ammonium hexanitratocerium (IV)), cerium (IV) acetate, cerium (IV) nitrate, cerium (IV) sulfate (
  • tetravalent cerium salt etravalent cerium salt
  • lead tetraacetate lead oxide such as lead (IV) oxide (eg, tetravalent lead compound)
  • silver oxide oxide
  • silver (II) oxide silver
  • silver compounds such as silver nitrate
  • manganese compounds such as permanganate, activated manganese dioxide, manganese (III) salts,
  • osmium compounds such as osmium tetroxide
  • Ruthenium compounds such as ruthenium oxide
  • Vanadium compounds such as VOCl 3 , VOF 3 , V 2 O 5 , NH 4 VO
  • Examples of the (b) peroxide include peracids such as peracetic acid and m-chloroperbenzoic acid, hydroxyperoxides such as hydrogen peroxide and t-butyl hydroperoxide, diacyl peroxide, perester, Examples include acid ketals, peroxydicarbonates, dialkyl peroxides, and peracid ketones. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • Examples of the (c) diazo compound include 2,2'-azobisisobutyronitrile. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • halogen or halogen acid examples include perhalogen acids, halogen acids, halogen acids, and hypohalous acids selected from halogens such as chlorine, bromine, and iodine, and halogens such as chlorine, bromine, and iodine. And salts thereof.
  • halogen acid salts include sodium perchlorate and sodium bromate. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • (b) peroxides and (c) diazo compounds are preferable, and in particular, m-chloroperbenzoic acid, t-butyl hydroperoxide, 2,2′-azobisisobutyronitrile. Is preferred. When these are used, there is no possibility that metal residues or the like adhere to the substrate, which is preferable.
  • the resist underlayer film forming composition in the present invention may contain two or more of the accelerators.
  • two or more one-electron oxidizing agents selected from the above (a) metal compound and (b) peroxide can be contained.
  • the amount of the accelerator is usually 1,000 parts by mass or less, preferably 0.01 to 500 parts by mass, and more preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin (A). Part.
  • the acid generator is a component that generates an acid upon exposure or heating.
  • a crosslinking reaction can be effectively caused between the molecular chains of each polymer at a relatively low temperature including normal temperature.
  • the acid generator that generates an acid upon exposure include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, and diphenyliodonium n.
  • Halogen-containing compound-based photoacid generators such as phenylbis (trichloromethyl) -s-triazine, 4-methoxyphenylbis (trichloromethyl) -s-triazine, 1-naphthylbis (trichloromethyl) -s-triazine; 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, 1,3,4-naphthoquinonediazide-4-sulfonic acid ester of 2,3,4,4′-tetrahydroxybenzophenone or 1, Diazoketone compound photoacid generators such as 2-naphthoquinonediazide-5-sulfonic acid ester; sulfone compound photoacid generators such as 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis (phenylsulfony
  • diphenyliodonium trifluoromethanesulfonate diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, diphenyliodonium n-dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate
  • Bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium n-dodecylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium 10-camphorsulfon
  • thermal acid generator examples include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl, and the like. Tosylate, alkyl sulfonates and the like can be mentioned.
  • thermal acid generators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a photo-acid generator and a thermal acid generator can also be used together as an acid generator.
  • the amount of the acid generator is usually 5000 parts by mass or less, preferably 0.1 to 1000 parts by mass, more preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin (A). It is.
  • the crosslinking agent is a component having an action of preventing intermixing between the obtained resist underlayer film and the resist film formed thereon, and further preventing the occurrence of cracks in the resist underlayer film.
  • a crosslinking agent polynuclear phenols and various commercially available curing agents can be used.
  • polynuclear phenols examples include binuclear phenols such as 4,4′-biphenyldiol, 4,4′-methylene bisphenol, 4,4′-ethylidene bisphenol, and bisphenol A; 4,4 ′, 4 ′′ -Trinuclear phenols such as methylidenetrisphenol, 4,4 '-[1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethylidene] bisphenol; polyphenols such as novolak Is mentioned.
  • binuclear phenols such as 4,4′-biphenyldiol, 4,4′-methylene bisphenol, 4,4′-ethylidene bisphenol, and bisphenol A
  • 4,4 ′, 4 ′′ -Trinuclear phenols such as methylidenetrisphenol, 4,4 '-[1- [4- ⁇ 1- (4-hydroxyphenyl) -1
  • 4,4 ′-[1- [4- ⁇ 1- (4-hydroxyphenyl) -1-methylethyl ⁇ phenyl] ethylidene] bisphenol, novolak, and the like are preferable.
  • these polynuclear phenols may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Examples of the curing agent include 2,3-tolylene diisocyanate, 2,4-tolylene diisocyanate, 3,4-tolylene diisocyanate, 3,5-tolylene diisocyanate, 4,4 ′.
  • -Diisocyanates such as diphenylmethane diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, and the following trade names: Epicoat 812, 815, 826, 828, 834, 834 871, 1001, 1004, 1007, 1007, 1009, 1031 [above, manufactured by Yuka Shell Epoxy Co., Ltd.], Araldite 6600, 6700, 6800, 502, 6071, 6084, 6097, 6099 (above, manufactured by Ciba Geigy), DER331, 332, 333, 66 1, 644, 667 [above, manufactured by Dow Chemical Co., Ltd.]; Cymel 300, 301, 303, 350, 370
  • melamine curing agents glycoluril curing agents and the like are preferable.
  • curing agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • curing agent can also be used together as a crosslinking agent.
  • the blending amount of the crosslinking agent is usually 5000 parts by mass or less, preferably 1 to 1000 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin (A).
  • thermoplastic resin is a component having an action of imparting the fluidity and mechanical characteristics of the added thermoplastic resin to the lower layer film.
  • thermoplastic resin include polyethylene, polypropylene, poly-1-butene, poly-1-pentene, poly-1-hexene, poly-1-heptene, poly-1-octene, poly-1-decene, and poly-1-decene.
  • ⁇ -Olefin polymers such as 1-dodecene, poly-1-tetradecene, poly-1-hexadecene, poly-1-octadecene, and polyvinylcycloalkane; poly-1,4-pentadiene, poly-1,4- Non-conjugated diene polymers such as hexadiene and poly-1,5-hexadiene; ⁇ , ⁇ -unsaturated aldehyde polymers; poly (methyl vinyl ketone), poly (aromatic vinyl ketone), poly (cyclic vinyl ketone) ⁇ , ⁇ -unsaturated ketone polymers such as: (meth) acrylic acid, ⁇ -chloroacrylic acid, (meth) acrylic acid salt, (meth) acrylic acid Polymers of ⁇ , ⁇ -unsaturated carboxylic acids or derivatives thereof such as stealth and (meth) acrylic acid halides; ⁇ , ⁇ -unsaturated polymers of poly
  • thermosetting resin is a component having an action of preventing intermixing between the resist underlayer film obtained and the resist film formed thereon, which is cured by heating and becomes insoluble in a solvent.
  • thermosetting resin include thermosetting acrylic resins, phenol resins, urea resins, melamine resins, amino resins, aromatic hydrocarbon resins, epoxy resins, alkyd resins, and the like. Is mentioned. Of these, urea resins, melamine resins, aromatic hydrocarbon resins and the like are preferable.
  • binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the binder resin is usually 20 parts by mass or less, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin (A).
  • the radiation absorber examples include oil-soluble dyes, disperse dyes, basic dyes, methine dyes, pyrazole dyes, imidazole dyes, hydroxyazo dyes, and the like; bixin derivatives, norbixin, stilbene, 4, Optical brighteners such as 4′-diaminostilbene derivatives, coumarin derivatives, pyrazoline derivatives; UV absorbers such as hydroxyazo dyes, trade names “Tinuvin 234” and “Tinuvin 1130” (manufactured by Ciba Geigy); anthracene derivatives And aromatic compounds such as anthraquinone derivatives.
  • these radiation absorbers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compounding amount of the radiation absorber is usually 100 parts by mass or less, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin (A).
  • the surfactant is a component having an action of improving coatability, striation, wettability, developability and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-nonylphenyl ether, polyethylene glycol dilaurate , Nonionic surfactants such as polyethylene glycol distearate and the following trade names: KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the blending amount of the surfactant is usually 15 parts by mass or less, preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the resin (A).
  • additives such as a storage stabilizer, an antifoaming agent, and an adhesion aid can be blended in addition to the various additives described above.
  • the resist underlayer film forming method of the present invention includes a step of forming a resist underlayer film by heating a coating film obtained using the resist underlayer film forming composition.
  • the above description can be applied as it is to the resist underlayer film forming composition.
  • the coating film is usually formed by applying a resist underlayer film forming composition on a substrate to be processed.
  • a substrate to be processed for example, a silicon wafer; a wafer coated with aluminum, an oxide film, or a nitride film can be used.
  • coating method of the composition for resist underlayer film formation to a to-be-processed substrate is not specifically limited, For example, it can implement by appropriate methods, such as spin coating, cast coating, and roll coating.
  • the said coating film is heated in air
  • the heating temperature at this time is 300 to 800 ° C., preferably 300 to 700 ° C., more preferably 350 to 550 ° C.
  • a heating temperature of 300 to 550 ° C. is preferable because the dehydrogenation reaction proceeds sufficiently.
  • the heating time is 30 to 1200 seconds, preferably 60 to 800 seconds, and more preferably 120 to 600 seconds.
  • the coating film before it is heated at a temperature of 300 to 550 ° C., it may be preheated at a temperature of 100 to 250 ° C.
  • the heating time in the preheating is not particularly limited, but is preferably 10 to 300 seconds, and more preferably 30 to 120 seconds.
  • one-electron oxidation of the resin (A) in the resist underlayer film forming composition forming the coating film (for example, one electron of the phenolic hydroxyl group of the resin (A)) Oxidation) is considered to cause a dehydrogenation reaction and increase the molecular weight of the resin.
  • a resist underlayer film having a hydrogen content of 30 atom% or less, particularly 20 to 30 atom%, more preferably 20 to 28 atom% can be obtained.
  • the method for measuring the hydrogen content in the resist underlayer film is the same as in the examples described later.
  • the coating film is usually cured by heating the coating film to form a resist underlayer film.
  • a predetermined photocuring agent is added to the resist underlayer film forming composition.
  • crosslinking agent By containing (crosslinking agent), the exposure process with respect to the heated coating film can be provided, photocured, and a resist underlayer film can also be formed.
  • the radiation exposed at this time is visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, ⁇ -ray, molecular beam, It is appropriately selected from an ion beam or the like.
  • thermosetting agent and / or a photocuring agent crosslinking agent
  • a crosslinking step by exposure and / or heating may be provided to partially crosslink the resin (A) in the coating film.
  • the resist underlayer film of the present invention is formed by forming a resist underlayer film on a substrate to be processed, forming a resist pattern on the resist underlayer film, and then transferring the resist pattern once to the resist underlayer film. After the film pattern is formed, this lower layer film pattern is used as an etching mask and is used in a multilayer resist process that is transferred to a substrate to be processed.
  • the resist underlayer film can be formed of a resist underlayer film forming composition containing a resin having a phenolic hydroxyl group and a solvent, and has a hydrogen content of 20 to 30 atom%.
  • the resist underlayer film forming composition is not particularly limited, for example, the above-described resist underlayer film forming composition of the present invention can be used.
  • the resist underlayer film has a hydrogen content of 20 to 30 atom%, preferably 20 to 28 atom%.
  • the method for measuring the hydrogen content in the resist underlayer film is the same as in the examples described later.
  • the method for forming the resist underlayer film is not particularly limited, and can be obtained, for example, by the above-described resist underlayer film forming method of the present invention.
  • step (1) a resist underlayer film forming composition is applied on a substrate to be processed and the resist underlayer film is formed.
  • a step of forming a film (hereinafter referred to as “step (1)"), and (2) a step of applying a resist composition on the obtained resist underlayer film to form a resist film (hereinafter referred to as “step (“ 2) "), and (3) a step of exposing the resist film by selectively irradiating the resulting resist film with radiation through a photomask (hereinafter referred to as” step (3) ").
  • process (4) developing the exposed resist film to form a resist pattern
  • step (5) using the resist pattern as a mask (etching mask).
  • step (5) a step of forming a pattern by dry etching the bottom layer film and the substrate to be processed
  • a resist underlayer film is formed on the substrate to be processed by the resist underlayer film forming method described above.
  • the resist underlayer film forming method the above description can be applied as it is.
  • the thickness of the resist underlayer film formed in this step (1) is usually 0.1 to 5 ⁇ m.
  • middle layer on a resist lower layer film may be further provided as needed.
  • This intermediate layer is a layer provided with these functions in order to further supplement the functions of the resist underlayer film and / or the resist film in the formation of the resist pattern, or to obtain the functions that they do not have.
  • the antireflection film is formed as an intermediate layer, the antireflection function of the resist underlayer film can be further supplemented.
  • This intermediate layer can be formed of an organic compound or an inorganic oxide.
  • organic compounds include materials marketed under the trade names such as “DUV-42”, “DUV-44”, “ARC-28”, and “ARC-29” manufactured by Brewer Science, and Rohm and Haas.
  • Commercially available materials such as “AR-3” and “AR-19” manufactured by the company can be used.
  • inorganic oxides include materials marketed under the trade names such as “NFC SOG01” and “NFC SOG04” manufactured by JSR, polysiloxane formed by CVD, titanium oxide, alumina oxide, and oxide. Tungsten or the like can be used.
  • the method for forming the intermediate layer is not particularly limited, and for example, a coating method, a CVD method, or the like can be used. Among these, the coating method is preferable. When the coating method is used, the intermediate layer can be formed continuously after forming the resist underlayer film.
  • the film thickness of the intermediate layer is not particularly limited, and is appropriately selected according to the function required for the intermediate layer, but is preferably in the range of 10 to 3000 nm, more preferably 20 to 300 nm.
  • the film thickness of this intermediate layer is less than 10 nm, the intermediate layer may not be removed during the etching of the resist underlayer film.
  • the thickness exceeds 3000 nm, a difference in processing conversion occurs remarkably when the resist pattern is transferred to the intermediate layer.
  • a resist film is formed on the resist underlayer film and / or the intermediate layer using the resist composition solution.
  • the resist composition solution is applied so that the resulting resist film has a predetermined film thickness, and then pre-baked to volatilize the solvent in the film and form a resist film.
  • the resist composition solution include a positive or negative chemically amplified resist composition containing a photoacid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin.
  • a negative resist composition composed of a crosslinking agent and the like.
  • the solid content concentration of the resist composition solution when applied on the resist underlayer film or intermediate layer is usually about 5 to 50% by mass, and is generally filtered through a filter having a pore diameter of about 0.2 ⁇ m, for example. Used.
  • the said resist composition solution can also use a commercially available thing as it is.
  • the method for applying the resist composition solution is not particularly limited, and can be performed by, for example, a spin coating method.
  • the pre-baking temperature is appropriately adjusted according to the type of resist composition solution used and the like, but is usually about 30 to 200 ° C., preferably 50 to 150 ° C.
  • a predetermined region of the obtained resist film is irradiated with radiation through a photomask and selectively exposed.
  • the radiation used for the exposure depending on the type of acid generator used in the resist composition, Appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, ⁇ -ray, molecular beam, ion beam, etc., but is preferably far ultraviolet light, particularly KrF excimer laser (248 nm), ArF excimer laser.
  • a resist pattern is formed by developing the exposed resist film with a developer.
  • the developer is appropriately selected according to the type of resist composition used.
  • An alkaline aqueous solution such as nonene is used.
  • an appropriate amount of a water-soluble organic solvent for example, an alcohol such as methanol or ethanol, or a surfactant can be added to these
  • post-baking can be performed after the exposure before development in order to improve resolution, pattern profile, developability, and the like.
  • the post-baking temperature is appropriately adjusted according to the type of resist composition used, but is usually about 50 to 200 ° C., preferably 80 to 150 ° C.
  • the resist pattern is used as a mask, and the pattern is transferred to the intermediate layer and / or the resist underlayer film by performing dry etching of the resist underlayer film using, for example, gas plasma such as oxygen plasma.
  • gas plasma such as oxygen plasma.
  • the substrate to be processed is processed.
  • a predetermined pattern for substrate processing can be formed by appropriately performing the steps (1) to (5).
  • Mw weight average molecular weight
  • G2000HXL: 2, G3000HXL: 1 manufactured by Tosoh Corporation
  • flow rate 1.0 ml / min
  • elution solvent tetrahydrofuran
  • column temperature Measurement was performed by a gel permeation chromatograph (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of 40 ° C., and the results are also shown in Table 1.
  • CA-1 acenaphthylene / hydroxymethylacenaphthylene copolymer (molar ratio; 1: 1, Mw; 1600)
  • CA-2 acenaphthylene / hydroxystyrene copolymer (molar ratio; 1: 1, Mw; 2300)
  • CA-3 Phenol / formaldehyde condensate (Mw; 1800)
  • CA-4 1-naphthol / formaldehyde condensate (Mw; 1500)
  • CA-5 2,7-dihydroxynaphthalene / propionaldehyde condensate (Mw; 1600)
  • resist underlayer film (Example 1)
  • the resist underlayer film forming composition (U-1) is applied onto a substrate to be processed by spin coating, and baked (baked) in an air atmosphere at 350 ° C. for 120 seconds.
  • a film was formed to obtain a substrate with a resist underlayer film (Example 1) in which a resist underlayer film was formed on a substrate to be processed.
  • two types of processing substrates a silicon wafer and a TEOS substrate, are used as processing substrates, a resist underlayer film is formed on each processing substrate, and two types of resist underlayer films are attached.
  • a substrate was obtained. Further, a resist underlayer film having a thickness of 300 nm was formed on the silicon wafer, and a resist underlayer film having a thickness of 500 nm was formed on the TEOS substrate.
  • Examples 2 to 22 and Comparative Examples 1 to 8 In the same manner as in Example 1, a resist underlayer film was formed on each substrate to be processed using two types of substrates to be processed, that is, a silicon wafer and a TEOS substrate, and a substrate with a resist underlayer film (Examples 2 to 22, and Comparative Examples 1 to 8) were obtained.
  • ⁇ Element composition of resist underlayer film (measurement of hydrogen content)>
  • the content (mass%) of carbon, hydrogen, oxygen, and nitrogen of the resist underlayer film in each substrate with a resist underlayer film using a silicon wafer as the substrate to be processed is measured using an organic element analyzer (manufactured by J Science Co., Ltd. Measurement was performed using “CHN coder JM10”). Thereafter, the number of atoms of each element contained in the film is calculated by [weight-converted value of each element (mass%) / mass of each element (g)], and then [number of hydrogen atoms in film / in film] From the total number of atoms, the hydrogen content (atom%) after the dehydrogenation reaction was determined.
  • Each substrate with a resist underlayer film using a silicon wafer as a substrate to be processed is immersed in propyl glycol monomethyl ether acetate for 1 minute at room temperature, and the film thickness change rate of the resist underlayer film before and after the immersion is measured using a spectroscopic ellipsometer UV1280E (KLA-TENCOR The measurement was performed using The evaluation criteria were “ ⁇ ” when the film thickness change rate was 0%, and “X” when the film thickness change rate exceeded 0%.
  • etching resistance For each substrate with a resist underlayer film using a silicon wafer as the substrate to be processed, CF 4 / Ar / O 2 (CF 4 : 40 mL / min, using an etching apparatus (manufactured by Shinko Seiki Co., Ltd., model number “EXAM”), The resist underlayer film was etched at Ar: 20 mL / min, O 2 : 5 mL / min, pressure: 20 Pa, RF power: 200 W, processing time: 40 seconds, temperature: 15 ° C.) The film thickness was measured, the etching rate was calculated, and the etching resistance was evaluated.
  • the etching rate was calculated by forming a reference resist underlayer film using a resist underlayer film forming composition (trade name “NFC CT08”) manufactured by JSR.
  • the evaluation criteria were “ ⁇ ” when the etching rate was less than + 10% as compared with the reference resist underlayer film, and “X” when the etching rate was + 10% or more.
  • Each substrate with a resist underlayer film using a TEOS substrate as a substrate to be processed is used.
  • an intermediate layer composition solution for a three-layer resist process (manufactured by JSR, trade name “NFC SOG080”) ) was spin-coated and heated on a hot plate at 200 ° C. for 60 seconds and further at 300 ° C. for 60 seconds to form an intermediate layer having a thickness of 50 nm.
  • an ArF resist composition (trade name “AR1682J” manufactured by JSR Corporation) is spin-coated on this intermediate layer, and prebaked on a hot plate at 130 ° C.
  • Resist film 200 nm-thick photoresist film ( Resist film) was formed. Thereafter, exposure was performed for an optimal exposure time through a mask pattern using an ArF excimer laser exposure apparatus (lens numerical aperture 0.78, exposure wavelength 193 nm) manufactured by NIKON. Next, after post-baking on a hot plate at 130 ° C. for 90 seconds, using an aqueous solution of tetramethylammonium hydroxide having a concentration of 2.38%, developing at 25 ° C. for 1 minute, washing with water and drying, a positive type for ArF A resist pattern was formed. Next, the formed resist pattern is transferred to an intermediate layer using a dry etching method to form an intermediate layer pattern.
  • ArF excimer laser exposure apparatus las numerical aperture 0.78, exposure wavelength 193 nm
  • this intermediate layer pattern as a mask, the pattern is transferred to the resist underlayer using a dry etching method. Then, a resist underlayer film pattern was formed on the resist underlayer film. Further, using this resist underlayer film pattern as a mask, a pattern was formed on the TEOS substrate to a depth of 300 nm with CF 4 / Ar / O 2 . And in order to evaluate bending tolerance, the lower layer film pattern shape was observed with the scanning electron microscope, and bending tolerance was evaluated. The evaluation criteria were “ ⁇ ” when the lower layer film pattern was not bent and “X” when the lower layer film pattern was bent.
  • the resist underlayer formed by the resist underlayer film forming composition containing a resin obtained by a condensation reaction of an aromatic compound having 2 or more phenolic hydroxyl groups and having 6 to 10 carbon atoms and an aldehyde compound It was confirmed that the film had good film curability, etching resistance, and bending resistance.
  • the resist underlayer film forming composition of the present invention it is possible to form a resist underlayer film that has excellent etching resistance and does not bend the underlayer film pattern when the substrate to be processed is etched. Therefore, it can be used very suitably for fine processing in a lithography process.
  • a dry etching process it has precise pattern transfer performance and good etching selectivity, and there is little over-etching of the resist underlayer film, and the resist pattern can be faithfully transferred to the substrate to be processed with good reproducibility.
  • the lower layer film pattern is not bent when the substrate to be processed is etched, an improvement in yield can be expected in microfabrication in the lithography process, particularly in the manufacture of highly integrated circuit elements.
  • the resist underlayer film forming method of the present invention is extremely useful as a lithography process, particularly as a process for manufacturing highly integrated circuit elements.
  • a resist underlayer film forming composition comprising a resin having a phenolic hydroxyl group and a solvent,
  • the resin having a phenolic hydroxyl group is an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups and at least one selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde.
  • a composition for forming a resist underlayer film which is obtained by a condensation reaction with an aldehyde derivative.
  • the method includes a step of forming a resist underlayer film by heating a coating film obtained using the composition for forming a resist underlayer film according to [2], wherein the heating atmosphere is in the air, A resist underlayer film forming method, wherein the heating temperature is 300 to 550 ° C. and the heating time is 30 to 600 seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)

Abstract

Disclosed is a resist underlayer film, which has excellent etching resistance and, particularly in a dry etching process, is less likely to cause bending of an underlayer film pattern, and can realize the transfer of a resist pattern onto a substrate to be processed faithfully with good reproducibility. Also disclosed are a composition for resist underlayer film formation and a method for resist underlayer film formation. The resist underlayer film is used in a multilayer resist process comprising forming a resist underlayer film on a substrate to be processed, forming a resist pattern on the resist underlayer film, then once transferring the resist pattern onto the resist underlayer film to form an underlayer film pattern, and then performing transfer onto the substrate to be processed, using the underlayer film pattern as an etching mask. The content of a hydrogen atom in the resist underlayer film is 20 to 30 atomic%.

Description

レジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法Resist underlayer film, resist underlayer film forming composition, and resist underlayer film forming method
 本発明は、レジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法に関する。更に詳しくは、本発明は、各種の放射線を用いるリソグラフィープロセスにおける微細加工(特に、高集積回路素子の製造に好適な多層レジストプロセス)に好適に用いることができ、エッチング耐性に優れ、特に、ドライエッチングプロセスにおいて、下層膜パターンが折れ曲がり難く、レジストパターンを忠実に再現性よく被加工基板に転写することが可能なレジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法に関する。 The present invention relates to a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method. More specifically, the present invention can be suitably used for microfabrication in a lithography process using various types of radiation (particularly, a multilayer resist process suitable for manufacturing a highly integrated circuit element), and has excellent etching resistance. The present invention relates to a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method capable of transferring a resist pattern to a substrate to be processed faithfully with high reproducibility in an etching process.
 半導体装置の製造プロセスにおいては、シリコンウェハ上に被加工膜として複数の物質を堆積し、これを所望のパターンにパターニングする工程を多く含んでいる。被加工膜のパターニングにおいては、まず、一般にレジストと呼ばれる感光性物質を被加工膜上に堆積してレジスト膜を形成し、このレジスト膜の所定の領域に露光を施す。次いで、レジスト膜の露光部又は未露光部を現像処理により除去してレジストパターンを形成し、更にこのレジストパターンをエッチングマスクとして被加工膜をドライエッチングする。 The semiconductor device manufacturing process includes many steps of depositing a plurality of substances as a film to be processed on a silicon wafer and patterning the same into a desired pattern. In patterning a film to be processed, first, a photosensitive material generally called a resist is deposited on the film to be processed to form a resist film, and a predetermined region of the resist film is exposed. Next, the exposed portion or the unexposed portion of the resist film is removed by development processing to form a resist pattern, and the processed film is dry-etched using the resist pattern as an etching mask.
 このようなプロセスにおいては、レジスト膜に露光を施すための露光光源としてArFエキシマレーザー等の紫外光が用いられている。現在、大規模集積回路(LSI)の微細化に対する要求が益々高まっており、必要とする解像度が露光光の波長以下になることがある。このように解像度が露光光の波長以下になると、露光量裕度、フォーカス裕度等の露光プロセス裕度が不足することとなる。このような露光プロセス裕度の不足を補うためには、レジスト膜の膜厚を薄くして解像性を向上させることが有効であるが、一方で被加工膜のエッチングに必要なレジスト膜厚を確保することが困難になってしまう。
 このようなことから、被加工膜上にレジスト下層膜(以下、単に「下層膜」ともいう。)を形成し、レジストパターンを一旦、下層膜に転写して下層膜パターンを形成した後、この下層膜パターンをエッチングマスクとして用いて被加工膜に転写するプロセスの検討が行われている(以下、単に「多層レジストプロセス」ともいう。)。このような多層レジストプロセスにおいて、下層膜としてはエッチング耐性を有する材料からなるものが好ましい。このような下層膜を形成する材料としては、例えば、エッチング中のエネルギーを吸収し、エッチング耐性があることで知られるベンゼン環を含む樹脂、特に、熱硬化フェノールノボラックを含有する組成物や、アセナフチレン骨格を有する重合体を含有する組成物等が提案されている(例えば、特許文献1及び2参照)。
In such a process, ultraviolet light such as an ArF excimer laser is used as an exposure light source for exposing the resist film. Currently, there is an increasing demand for miniaturization of large-scale integrated circuits (LSIs), and the required resolution may be less than the wavelength of exposure light. As described above, when the resolution is less than the wavelength of the exposure light, the exposure process tolerance such as the exposure tolerance and the focus tolerance is insufficient. In order to make up for such a shortage of exposure process tolerance, it is effective to improve the resolution by reducing the thickness of the resist film. On the other hand, the resist thickness required for etching the film to be processed It becomes difficult to ensure.
For this reason, a resist underlayer film (hereinafter also simply referred to as “underlayer film”) is formed on the film to be processed, and the resist pattern is once transferred to the underlayer film to form the underlayer film pattern. Studies have been conducted on a process of transferring an underlayer film pattern to a film to be processed using an etching mask (hereinafter, also simply referred to as “multilayer resist process”). In such a multilayer resist process, the lower layer film is preferably made of a material having etching resistance. Examples of the material for forming such a lower layer film include, for example, a resin containing a benzene ring that absorbs energy during etching and is known to have etching resistance, in particular, a composition containing a thermosetting phenol novolac, and acenaphthylene. A composition containing a polymer having a skeleton has been proposed (see, for example, Patent Documents 1 and 2).
特開2001-40293号公報JP 2001-40293 A 特開2000-143937号公報JP 2000-143937 A
 しかしながら、エッチングパターンの更なる微細化に伴い、レジスト下層膜のオーバーエッチングが大きな問題となり、エッチング耐性の更なる向上が求められている。
 また、このエッチングパターンの更なる微細化に伴い、下層膜パターンのアスペクト比(下層膜パターンの膜厚に対するパターン幅(線幅)の比)が高くなり、被加工基板のエッチング時に下層膜パターンが折れ曲がるという問題も生じていた。例えば、特許文献1に記載された組成物は、下層膜パターンとしては曲がり耐性が弱いため、被加工基板のエッチング時に下層膜パターンが折れ曲がってしまい、レジストパターンを忠実に被加工基板に転写することができなかった。
However, with further miniaturization of the etching pattern, over-etching of the resist underlayer film becomes a big problem, and further improvement in etching resistance is required.
As the etching pattern is further miniaturized, the aspect ratio of the lower layer film pattern (the ratio of the pattern width (line width) to the film thickness of the lower layer film pattern) is increased, and the lower layer film pattern is changed during etching of the substrate to be processed. There was also a problem of bending. For example, since the composition described in Patent Document 1 has low bending resistance as an underlayer film pattern, the underlayer film pattern is bent during etching of the substrate to be processed, and the resist pattern is faithfully transferred to the substrate to be processed. I could not.
 本発明は、上述のような従来技術の問題点に鑑みてなされたものであって、各種の放射線を用いるリソグラフィープロセスにおける微細加工に好適に用いることができ、エッチング耐性に優れ、特に、ドライエッチングプロセスにおいて、下層膜パターンが折れ曲がり難く、レジストパターンを忠実に再現性よく被加工基板に転写することが可能なレジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法を提供する。 The present invention has been made in view of the above-mentioned problems of the prior art, and can be suitably used for microfabrication in a lithography process using various types of radiation, has excellent etching resistance, and particularly dry etching. Provided are a resist underlayer film, a resist underlayer film forming composition, and a resist underlayer film forming method capable of transferring a resist pattern to a substrate to be processed faithfully with high reproducibility.
 本発明者らは、鋭意検討を重ねた結果、レジスト下層膜における水素含有量を特定の範囲(特に30atom%以下)とした場合に、被加工基板エッチング時における下層膜パターンが、従来のレジスト下層膜よりも折れ曲がり難いことを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found that when the hydrogen content in the resist underlayer film is within a specific range (particularly 30 atom% or less), the underlayer film pattern during etching of the substrate to be processed is the conventional resist underlayer. The present inventors have found that it is harder to bend than a film and have completed the present invention.
 本発明は以下の通りである。
 [1]被加工基板上にレジスト下層膜を形成し、レジスト下層膜上にレジストパターンを形成後、レジストパターンを一旦、レジスト下層膜に転写して下層膜パターンを形成した後、この下層膜パターンをエッチングマスクとして用いて被加工基板に転写する多層レジストプロセスに用いられるレジスト下層膜であって、
 該レジスト下層膜の水素原子の含有量が20~30atom%であることを特徴とするレジスト下層膜。
 [2]前記[1]に記載のレジスト下層膜を形成するためのレジスト下層膜形成方法であって、
 フェノール性水酸基を有する樹脂と、溶剤と、を含有するレジスト下層膜形成用組成物を用いて得られる塗膜を、加熱することにより、レジスト下層膜を形成する工程を備えており、加熱雰囲気が大気下であり、加熱温度が300~550℃であり、且つ加熱時間が30~600秒間であることを特徴とするレジスト下層膜形成方法。
 [3]前記加熱温度が350~550℃であり、前記加熱時間が120~600秒間である前記[2]に記載のレジスト下層膜形成方法。
 [4]前記塗膜を300~550℃の温度で加熱する前に、100~250℃の温度で予備加熱する前記[2]又は[3]に記載のレジスト下層膜形成方法。
 [5]前記フェノール性水酸基を有する樹脂が、2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物と、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られる樹脂である前記[2]乃至[4]のいずれかに記載のレジスト下層膜形成方法。
 [6]前記2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物として、ジヒドロキシナフタレンを用いる前記[5]に記載のレジスト下層膜形成方法。
 [7]前記2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物として、レゾルシノールを用いる前記[5]に記載のレジスト下層膜形成方法
 [8]前記レジスト下層膜形成用組成物が、更に、促進剤を含有する前記[2]乃至[7]のいずれかに記載のレジスト下層膜形成方法。
 [9]前記[1]に記載のレジスト下層膜を形成するためのレジスト下層膜形成用組成物であって、
 該レジスト下層膜形成用組成物は、フェノール性水酸基を有する樹脂と、溶剤と、を含有しており、
 前記フェノール性水酸基を有する樹脂が、ジヒドロキシナフタレンと、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られるものであることを特徴とするレジスト下層膜形成用組成物。
 [10]前記[1]に記載のレジスト下層膜を形成するためのレジスト下層膜形成用組成物であって、
 該レジスト下層膜形成用組成物は、フェノール性水酸基を有する樹脂と、溶剤と、を含有しており、
 前記フェノール性水酸基を有する樹脂が、レゾルシノールと、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られるものであることを特徴とするレジスト下層膜形成用組成物。
The present invention is as follows.
[1] A resist underlayer film is formed on a substrate to be processed, a resist pattern is formed on the resist underlayer film, the resist pattern is temporarily transferred to the resist underlayer film, and then the underlayer film pattern is formed. Is a resist underlayer film used in a multilayer resist process for transferring to a substrate to be processed using an etching mask,
A resist underlayer film, wherein the content of hydrogen atoms in the resist underlayer film is 20 to 30 atom%.
[2] A resist underlayer film forming method for forming the resist underlayer film according to [1],
A step of forming a resist underlayer film by heating a coating film obtained using a composition for forming a resist underlayer film containing a resin having a phenolic hydroxyl group and a solvent; A resist underlayer film forming method, characterized in that it is in air, a heating temperature is 300 to 550 ° C., and a heating time is 30 to 600 seconds.
[3] The resist underlayer film forming method according to [2], wherein the heating temperature is 350 to 550 ° C., and the heating time is 120 to 600 seconds.
[4] The resist underlayer film forming method according to [2] or [3], wherein the coating film is preheated at a temperature of 100 to 250 ° C. before the coating film is heated at a temperature of 300 to 550 ° C.
[5] The resin having a phenolic hydroxyl group is an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups, and at least selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin, and naphthaldehyde. The resist underlayer film forming method according to any one of the above [2] to [4], which is a resin obtained by a condensation reaction with one kind of aldehyde derivative.
[6] The resist underlayer film forming method according to [5], wherein dihydroxynaphthalene is used as the aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups.
[7] The resist underlayer film forming method according to the above [5], wherein resorcinol is used as the aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups. [8] The resist underlayer film forming composition is Furthermore, the resist underlayer film forming method according to any one of [2] to [7], further comprising an accelerator.
[9] A resist underlayer film forming composition for forming the resist underlayer film according to [1],
The resist underlayer film forming composition contains a resin having a phenolic hydroxyl group and a solvent,
The resin having a phenolic hydroxyl group is obtained by a condensation reaction of dihydroxynaphthalene and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. A resist underlayer film forming composition.
[10] A resist underlayer film forming composition for forming the resist underlayer film according to [1],
The resist underlayer film forming composition contains a resin having a phenolic hydroxyl group and a solvent,
The resin having a phenolic hydroxyl group is obtained by a condensation reaction between resorcinol and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. A composition for forming a resist underlayer film.
 本発明のレジスト下層膜は、エッチング耐性に優れ、且つ被加工基板をエッチングする際に下層膜パターンが折れ曲がり難い。また、本発明のレジスト下層膜形成用組成物によれば、前記レジスト下層膜を形成することができる。特に、エッチング耐性に優れたレジスト下層膜は、ドライエッチングプロセスにおいて、精密なパターン転写性能及び良好なエッチング選択性を有することになり、レジスト下層膜のオーバーエッチングが少なく、被加工基板にレジストパターンを再現性よく忠実に転写することができる。更に、被加工基板をエッチングする際に、下層膜パターンが折れ曲がらないため、リソグラフィープロセスにおける微細加工、特に高集積回路素子の製造において歩留りの向上が期待できる。また、本発明のレジスト下層膜形成方法によれば、前記レジスト下層膜形成用組成物を用いて、被加工基板上に、エッチング耐性に優れ、且つ被加工基板をエッチングする際に下層膜パターンが折れ曲がり難いレジスト下層膜を容易に形成することができる。 The resist underlayer film of the present invention is excellent in etching resistance, and the underlayer film pattern is not easily bent when the substrate to be processed is etched. Moreover, according to the composition for forming a resist underlayer film of the present invention, the resist underlayer film can be formed. In particular, a resist underlayer film having excellent etching resistance has precise pattern transfer performance and good etching selectivity in a dry etching process, and there is little over-etching of the resist underlayer film, and a resist pattern is formed on a substrate to be processed. Transfers faithfully with good reproducibility. Furthermore, since the lower layer film pattern is not bent when the substrate to be processed is etched, an improvement in yield can be expected in microfabrication in the lithography process, particularly in the manufacture of highly integrated circuit elements. In addition, according to the resist underlayer film forming method of the present invention, the resist underlayer film forming composition is used to form an underlayer film pattern on the substrate to be processed, which has excellent etching resistance and is etched. It is possible to easily form a resist underlayer film that is not easily bent.
 以下、本発明の実施の形態について詳細に説明する。
[1]レジスト下層膜形成用組成物
 本発明のレジスト下層膜形成用組成物は、フェノール性水酸基を有する樹脂(以下、「樹脂(A)」ともいう)と、溶剤と、を含有する。
Hereinafter, embodiments of the present invention will be described in detail.
[1] Composition for forming resist underlayer film The composition for forming a resist underlayer film of the present invention contains a resin having a phenolic hydroxyl group (hereinafter also referred to as “resin (A)”) and a solvent.
 <フェノール性水酸基を有する樹脂>
 前記樹脂(A)は、2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物と、アルデヒド誘導体と、の縮合反応により得られるものである。尚、この樹脂(A)は、酸性触媒を用いて反応させて得られるノボラック樹脂であってもよいし、アルカリ性触媒を用いて反応させて得られるレゾール樹脂であってもよい。
<Resin having a phenolic hydroxyl group>
The resin (A) is obtained by a condensation reaction between an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups and an aldehyde derivative. The resin (A) may be a novolak resin obtained by reacting with an acidic catalyst or a resol resin obtained by reacting with an alkaline catalyst.
 前記2個のフェノール性水酸基を有する炭素数6~10の芳香族炭化水素としては、例えば、レゾルシノール、カテコール等のフェノール類;ジヒドロキシナフタレン(例えば、1,5-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン)等のナフトール類等を挙げることができる。尚、これらの芳香族炭化水素は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the aromatic hydrocarbon having 6 to 10 carbon atoms having two phenolic hydroxyl groups include, for example, phenols such as resorcinol and catechol; dihydroxynaphthalene (for example, 1,5-dihydroxynaphthalene, 2,7-dihydroxynaphthalene). , 2,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene) and the like. In addition, these aromatic hydrocarbons may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記アルデヒド誘導体としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種が用いられる。 As the aldehyde derivative, at least one selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde is used.
 また、本発明のレジスト下層膜形成用組成物においては、得られるレジスト下層膜の水素含有量が20~30atom%の範囲となる限り、前記樹脂(A)を調製する際に、上述の2個のフェノール性水酸基を有する芳香族炭化水素以外の他のフェノール性化合物や、上述のアルデヒド誘導体以外の他のアルデヒド化合物等を用いてもよい。
 前記他のフェノール化合物としては、例えば、フェノール、クレゾール、キシレノール等のフェノール類;1-ナフトール、2-ナフトール等のナフトール類等を挙げることができる。尚、これらの他のフェノール化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記他のアルデヒド化合物としては、例えば、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類等を挙げることができる。尚、これらの他のアルデヒド化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the composition for forming a resist underlayer film of the present invention, as long as the hydrogen content of the resulting resist underlayer film is in the range of 20 to 30 atom%, when preparing the resin (A), Other phenolic compounds other than aromatic hydrocarbons having a phenolic hydroxyl group, other aldehyde compounds other than the above-mentioned aldehyde derivatives, and the like may be used.
Examples of the other phenol compounds include phenols such as phenol, cresol and xylenol; naphthols such as 1-naphthol and 2-naphthol. In addition, these other phenol compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
Examples of the other aldehyde compounds include aldehydes such as acetaldehyde and propionaldehyde. In addition, these other aldehyde compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明における樹脂(A)のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(以下、「Mw」という。)は、500~5000であることが好ましく、より好ましくは1000~3000である。このMwが500未満の場合、低分子成分の昇華の影響で膜厚の面内均一性が損なわれるおそれがある。一方、5000を超える場合、ビアやトレンチ等のパターンを有する基板上に塗布する際、該パターンに対する埋め込み性が損なわれるおそれがある。 In the present invention, the polystyrene-equivalent weight average molecular weight (hereinafter referred to as “Mw”) of the resin (A) by gel permeation chromatography (GPC) is preferably 500 to 5000, more preferably 1000 to 3000. . If this Mw is less than 500, the in-plane uniformity of the film thickness may be impaired due to the effect of sublimation of low molecular components. On the other hand, when it exceeds 5000, when it is applied on a substrate having a pattern such as a via or a trench, the embedding property to the pattern may be impaired.
 また、本発明におけるレジスト下層膜形成用組成物には、前記樹脂(A)が1種のみ含有されていてもよいし、2種以上含有されていてもよい。 Also, the composition for forming a resist underlayer film in the present invention may contain only one kind of the resin (A), or may contain two or more kinds.
 <溶剤>
 本発明におけるレジスト下層膜形成用組成物は、前記樹脂(A)を溶解する溶剤(以下、「溶剤(B)」という。)を含有するものであり、通常、液状の組成物である。
 前記溶剤(B)は、前記樹脂(A)を溶解し得るものであれば特に限定されず、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル等のエチレングリコールモノアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル等のジエチレングリコールジアルキルエーテル類;トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のトリエチレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル等のプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエテルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;
<Solvent>
The composition for forming a resist underlayer film in the present invention contains a solvent for dissolving the resin (A) (hereinafter referred to as “solvent (B)”), and is usually a liquid composition.
The solvent (B) is not particularly limited as long as it can dissolve the resin (A). For example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono Ethylene glycol monoalkyl ethers such as n-butyl ether; ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether acetate Ether acetates; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether Diethylene glycol dialkyl ethers such as diethylene glycol di-n-butyl ether; triethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether and triethylene glycol diethyl ether; propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n -Propylene glycol monoalkyl ethers such as propyl ether and propylene glycol mono-n-butyl ether; propylene glycol dialkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether and propylene glycol di-n-butyl ether Ethers; propylene glycol Monomethyl ether acetate, propylene glycol monomethyl Ether ether acetate, propylene glycol mono -n- propyl ether acetate, propylene glycol monoalkyl ether acetates such as propylene glycol monobutyl -n- butyl ether acetate;
 乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸i-プロピル、乳酸n-ブチル、乳酸i-ブチル等の乳酸エステル類;ギ酸メチル、ギ酸エチル、ギ酸n-プロピル、ギ酸i-プロピル、ギ酸n-ブチル、ギ酸i-ブチル、ギ酸n-アミル、ギ酸i-アミル、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸i-プロピル、プロピオン酸n-ブチル、プロピオン酸i-ブチル、酪酸メチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、酪酸i-ブチル等の脂肪族カルボン酸エステル類;ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ブチロラクトン等のラクトン類等が挙げられる。 Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate, i-propyl lactate, n-butyl lactate, i-butyl lactate; methyl formate, ethyl formate, n-propyl formate, i-propyl formate, n-formate Butyl, i-butyl formate, n-amyl formate, i-amyl formate, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-amyl acetate, i-acetate -Amyl, n-hexyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, i-propyl propionate, n-butyl propionate, i-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate Aliphatic carboxylic acid esters such as i-propyl butyrate, n-butyl butyrate and i-butyl butyrate; ethyl hydroxyacetate, 2- Ethyl droxy-2-methylpropionate, methyl 3-methoxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, 3-ethoxypropionic acid Ethyl, ethyl 3-methoxypropionate, 3-methoxypropyl acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutylpropionate, 3-methyl-3-methoxy Other esters such as butyl butyrate, methyl acetoacetate, methyl pyruvate, ethyl pyruvate; aromatic hydrocarbons such as toluene, xylene; methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, 2- Heptanone, 3-heptano Ketones such as 4-heptanone and cyclohexanone; amides such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide and N-methylpyrrolidone; lactones such as γ-butyrolactone And the like.
 これらの溶剤(B)のなかでも、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルアセテート、乳酸エチル、酢酸n-ブチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、γ-ブチロラクトン等が好ましい。
 尚、これらの溶剤(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Among these solvents (B), propylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, ethyl lactate, n-butyl acetate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, 2-heptanone, cyclohexanone, γ-butyrolactone is preferred.
In addition, these solvent (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、溶剤(B)の使用量は、得られるレジスト下層膜形成用組成物の固形分濃度が、通常、5~80質量%、好ましくは5~40質量%、更に好ましくは10~30質量%となる範囲である。 The amount of the solvent (B) used is such that the solid content concentration of the resulting resist underlayer film forming composition is usually 5 to 80% by mass, preferably 5 to 40% by mass, more preferably 10 to 30% by mass. This is the range.
 また、本発明におけるレジスト下層膜形成用組成物には、初期の効果を損なわない限り、必要に応じて、促進剤、酸発生剤、架橋剤、バインダー樹脂、放射線吸収剤、及び界面活性剤等の各種の添加剤を配合することができる。特に、本発明のレジスト下層膜形成用組成物は、促進剤が配合されていることが好ましい。 In addition, the composition for forming a resist underlayer film in the present invention includes, as necessary, an accelerator, an acid generator, a crosslinking agent, a binder resin, a radiation absorber, and a surfactant, as long as the initial effects are not impaired. These various additives can be blended. In particular, the composition for forming a resist underlayer film of the present invention preferably contains an accelerator.
 <促進剤>
 前記促進剤は、レジスト下層膜を形成するために、レジスト下層膜形成用組成物により得られる塗膜を加熱する際において、脱水素反応を促進させ、レジスト下層膜の水素含有量を低減させることができる助剤である。具体的な促進剤としては、一電子酸化剤等を挙げることができる。
 前記一電子酸化剤とは、それ自身が1電子移動を受ける酸化剤を意味する。例えば、硝酸セリウム(IV)アンモニウムの場合では、セリウムイオン(IV)が一電子を得てセリウムイオン(III)へと変化する。また、ハロゲン等のラジカル性の酸化剤は、一電子を得てアニオンへと転化する。このように、一電子を被酸化物(基質や触媒等)から奪うことにより、被酸化物を酸化する現象を一電子酸化と称し、このとき一電子を受け取る成分を一電子酸化剤という。
<Accelerator>
The accelerator promotes a dehydrogenation reaction and reduces the hydrogen content of the resist underlayer film when heating the coating film obtained from the resist underlayer film forming composition in order to form the resist underlayer film. It is an auxiliary that can be used. Specific examples of the accelerator include a one-electron oxidant.
The one-electron oxidant means an oxidant that itself undergoes one electron transfer. For example, in the case of cerium (IV) ammonium nitrate, cerium ion (IV) obtains one electron and changes to cerium ion (III). In addition, radical oxidizing agents such as halogen obtain one electron and convert it to an anion. In this way, the phenomenon of oxidizing the oxide by taking one electron from the oxide (substrate, catalyst, etc.) is called one-electron oxidation, and the component that receives one electron at this time is called one-electron oxidant.
 前記一電子酸化剤の代表的な例としては、(a)金属化合物、(b)過酸化物、(c)ジアゾ化合物、(d)ハロゲン又はハロゲン酸等が挙げられる。
 前記(a)金属化合物としては、例えば、セリウム、鉛、銀、マンガン、オスミウム、ルテニウム、バナジウム、タリウム、銅、鉄、ビスマス、ニッケルを含む金属化合物が挙げられる。具体的には、(a1)硝酸セリウム(IV)アンモニウム(CAN;ヘキサニトラトセリウム(IV)酸アンモニウム)、酢酸セリウム(IV)、硝酸セリウム(IV)、硫酸セリウム(IV)等のセリウム塩(例えば、四価のセリウム塩)、(a2)四酢酸鉛、酸化鉛(IV)等の鉛化合物(例えば、四価の鉛化合物)、(a3)酸化銀(I)、酸化銀(II)、炭酸銀(Fetizon試薬)、硝酸銀等の銀化合物、(a4)過マンガン酸塩、活性二酸化マンガン、マンガン(III)塩等のマンガン化合物、(a5)四酸化オスミウム等のオスミウム化合物、(a6)四酸化ルテニウム等のルテニウム化合物、(a7)VOCl、VOF、V、NHVO、NaVO等のバナジウム化合物、(a8)酢酸タリウム(III)、トリフルオロ酢酸タリウム(III)、硝酸タリウム(III)等のタリウム化合物、(a9)酢酸銅(II)、銅(II)トリフルオロメタンスルホネート、銅(II)トリフルオロボレート、塩化銅(II)、酢酸銅(I)等の銅化合物、(a10)塩化鉄(III)、ヘキサシアノ鉄(III)酸カリウム等の鉄化合物、(a11)ビスマス酸ナトリウム等のビスマス化合物、(a12)過酸化ニッケル等のニッケル化合物等が挙げられる。尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Typical examples of the one-electron oxidizing agent include (a) metal compounds, (b) peroxides, (c) diazo compounds, (d) halogens or halogen acids.
Examples of the metal compound (a) include metal compounds containing cerium, lead, silver, manganese, osmium, ruthenium, vanadium, thallium, copper, iron, bismuth, and nickel. Specifically, (a1) cerium salts (such as cerium (IV) ammonium nitrate (CAN; ammonium hexanitratocerium (IV)), cerium (IV) acetate, cerium (IV) nitrate, cerium (IV) sulfate ( For example, tetravalent cerium salt), (a2) lead tetraacetate, lead oxide such as lead (IV) oxide (eg, tetravalent lead compound), (a3) silver (I) oxide, silver (II) oxide, Silver carbonate (Fetizon reagent), silver compounds such as silver nitrate, (a4) manganese compounds such as permanganate, activated manganese dioxide, manganese (III) salts, (a5) osmium compounds such as osmium tetroxide, (a6) Ruthenium compounds such as ruthenium oxide, (a7) Vanadium compounds such as VOCl 3 , VOF 3 , V 2 O 5 , NH 4 VO 3 , NaVO 3 , (a8) Tariu acetate (III), thallium compounds such as thallium (III) trifluoroacetate, thallium (III) nitrate, (a9) copper (II) acetate, copper (II) trifluoromethanesulfonate, copper (II) trifluoroborate, copper chloride (II), copper compounds such as copper (I) acetate, (a10) iron compounds such as iron (III) chloride and potassium hexacyanoferrate (III), (a11) bismuth compounds such as sodium bismuth, (a12) Examples thereof include nickel compounds such as nickel oxide. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 前記(b)過酸化物としては、例えば、過酢酸、m-クロロ過安息香酸等の過酸、過酸化水素、t-ブチルヒドロペルオキシド等のヒドロキシペルオキシド類、過酸化ジアシル、過酸エステル、過酸ケタール、ペルオキシ二炭酸塩、過酸化ジアルキル、過酸ケトン等が挙げられる。尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the (b) peroxide include peracids such as peracetic acid and m-chloroperbenzoic acid, hydroxyperoxides such as hydrogen peroxide and t-butyl hydroperoxide, diacyl peroxide, perester, Examples include acid ketals, peroxydicarbonates, dialkyl peroxides, and peracid ketones. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 前記(c)ジアゾ化合物としては、例えば、2,2’-アゾビスイソブチロニトリル等が挙げられる。尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the (c) diazo compound include 2,2'-azobisisobutyronitrile. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 前記(d)ハロゲン又はハロゲン酸としては、例えば、塩素、臭素、ヨウ素等のハロゲンや、塩素、臭素、ヨウ素等のハロゲンから選ばれる、過ハロゲン酸、ハロゲン酸、亜ハロゲン酸、次亜ハロゲン酸、及びこれらの塩等が挙げられる。具体的なハロゲン酸の塩としては、過塩素酸ナトリウム、臭素酸ナトリム等が挙げられる。尚、これらは、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the (d) halogen or halogen acid include perhalogen acids, halogen acids, halogen acids, and hypohalous acids selected from halogens such as chlorine, bromine, and iodine, and halogens such as chlorine, bromine, and iodine. And salts thereof. Specific examples of halogen acid salts include sodium perchlorate and sodium bromate. In addition, these may be used individually by 1 type and may be used in combination of 2 or more type.
 前記一電子酸化剤のなかでも、(b)過酸化物や(c)ジアゾ化合物が好ましく、特に、m-クロロ過安息香酸、t-ブチルヒドロペルオキシド、2,2’-アゾビスイソブチロニトリルが好ましい。これらを用いた場合には、基板上に金属残留物等が付着するおそれがないので好ましい。 Among the one-electron oxidants, (b) peroxides and (c) diazo compounds are preferable, and in particular, m-chloroperbenzoic acid, t-butyl hydroperoxide, 2,2′-azobisisobutyronitrile. Is preferred. When these are used, there is no possibility that metal residues or the like adhere to the substrate, which is preferable.
 また、本発明におけるレジスト下層膜形成用組成物は、前記促進剤を2種以上含有するものとすることができる。特に、前記(a)金属化合物及び(b)過酸化物のうちから選ばれる一電子酸化剤を2種以上含有するものとすることができる。 Moreover, the resist underlayer film forming composition in the present invention may contain two or more of the accelerators. In particular, two or more one-electron oxidizing agents selected from the above (a) metal compound and (b) peroxide can be contained.
 前記促進剤の配合量は、前記樹脂(A)100質量部に対して、通常、1,000質量部以下であり、好ましくは0.01~500質量部、更に好ましくは0.1~100質量部である。 The amount of the accelerator is usually 1,000 parts by mass or less, preferably 0.01 to 500 parts by mass, and more preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin (A). Part.
 <酸発生剤>
 前記酸発生剤は、露光或いは加熱により酸を発生する成分である。本発明においては、酸発生剤を含有させることで、常温を含む比較的低温で各重合体の分子鎖間に有効に架橋反応を生起させることができる。
 露光により酸を発生する酸発生剤(以下、「光酸発生剤」という。)としては、例えば、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムn-ドデシルベンゼンスルホネート、ジフェニルヨードニウム10-カンファースルホネート、ジフェニルヨードニウムナフタレンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムn-ドデシルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムナフタレンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムn-ドデシルベンゼンスルホネート、トリフェニルスルホニウムナフタレンスルホネート、トリフェニルスルホニウム10-カンファースルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニル・フェニル・メチルスルホニウムp-トルエンスルホネート、4-ヒドロキシフェニル・ベンジル・メチルスルホニウムp-トルエンスルホネート、
<Acid generator>
The acid generator is a component that generates an acid upon exposure or heating. In the present invention, by containing an acid generator, a crosslinking reaction can be effectively caused between the molecular chains of each polymer at a relatively low temperature including normal temperature.
Examples of the acid generator that generates an acid upon exposure (hereinafter referred to as “photoacid generator”) include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, and diphenyliodonium n. -Dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate, diphenyliodonium hexafluoroantimonate, bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro N-butanesulfonate, bis (4-t-butylphenyl) iodonium n-dodecylbenzenesulfonate Bis (4-tert-butylphenyl) iodonium 10-camphorsulfonate, bis (4-tert-butylphenyl) iodonium naphthalenesulfonate, bis (4-tert-butylphenyl) iodonium hexafluoroantimonate, triphenylsulfonium trifluoromethane Sulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium n-dodecylbenzenesulfonate, triphenylsulfonium naphthalenesulfonate, triphenylsulfonium 10-camphorsulfonate, triphenylsulfonium hexafluoroantimonate, 4-hydroxyphenyl phenyl・ Methylsulfonium p-toluenesulfonate, 4-hydroxyphenyl benzyl methyl Sulfonium p- toluenesulfonate,
 シクロヘキシル・メチル・2-オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2-オキソシクロヘキシルジシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2-オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-シアノ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、 Cyclohexyl methyl 2-oxocyclohexylsulfonium trifluoromethanesulfonate, 2-oxocyclohexyldicyclohexylsulfonium trifluoromethanesulfonate, 2-oxocyclohexyldimethylsulfonium trifluoromethanesulfonate, 1-naphthyldimethylsulfonium trifluoromethanesulfonate, 1-naphthyldiethylsulfonium trifluoromethanesulfonate 4-cyano-1-naphthyldimethylsulfonium trifluoromethanesulfonate, 4-cyano-1-naphthyldiethylsulfonium trifluoromethanesulfonate, 4-nitro-1-naphthyldimethylsulfonium trifluoromethanesulfonate, 4-nitro-1-naphthyldiethylsulfonium trisulfonate Fluoro Tansulfonate, 4-methyl-1-naphthyldimethylsulfonium trifluoromethanesulfonate, 4-methyl-1-naphthyldiethylsulfonium trifluoromethanesulfonate, 4-hydroxy-1-naphthyldimethylsulfonium trifluoromethanesulfonate, 4-hydroxy-1-naphthyldiethyl Sulfonium trifluoromethanesulfonate,
 1-(4-ヒドロキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-メトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-エトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-メトキシメトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-エトキシメトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-〔4-(1-メトキシエトキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-〔4-(2-メトキシエトキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-メトキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-エトキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-プロポキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、 1- (4-hydroxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-methoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-ethoxynaphthalene-1- Yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-methoxymethoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-ethoxymethoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethane Sulfonate, 1- [4- (1-methoxyethoxy) naphthalen-1-yl] tetrahydrothiophenium trifluoromethanesulfonate, 1- [4- (2-methoxyethoxy) naphthalene -1-yl] tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-methoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-ethoxycarbonyloxynaphthalen-1-yl) tetrahydro Thiophenium trifluoromethanesulfonate, 1- (4-n-propoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate,
 1-(4-i-プロポキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-t-ブトキシカルボニルオキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-〔4-(2-テトラヒドロフラニルオキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-〔4-(2-テトラヒドロピラニルオキシ)ナフタレン-1-イル〕テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-ベンジルオキシ)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート等のオニウム塩系光酸発生剤類; 1- (4-i-propoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, -(4-t-butoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- [4- (2-tetrahydrofuranyloxy) naphthalen-1-yl] tetrahydrothiophenium trifluoromethanesulfonate, -[4- (2-tetrahydropyranyloxy) naphthalen-1-yl] tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-benzyloxy) tetrahydrothiophenium trifluoro Methanesulfonate, 1- (naphthyl acetamide methyl) onium salt photoacid generators such as tetrahydrothiophenium trifluoromethanesulfonate;
 フェニルビス(トリクロロメチル)-s-トリアジン、4-メトキシフェニルビス(トリクロロメチル)-s-トリアジン、1-ナフチルビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系光酸発生剤類;1,2-ナフトキノンジアジド-4-スルホニルクロリド、1,2-ナフトキノンジアジド-5-スルホニルクロリド、2,3,4,4’-テトラヒドロキシベンゾフェノンの1,2-ナフトキノンジアジド-4-スルホン酸エステル又は1,2-ナフトキノンジアジド-5-スルホン酸エステル等のジアゾケトン化合物系光酸発生剤類;4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェニルスルホニル)メタン等のスルホン化合物系光酸発生剤類;ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジル-9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2,2,1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等のスルホン酸化合物系光酸発生剤類等が挙げられる。 Halogen-containing compound-based photoacid generators such as phenylbis (trichloromethyl) -s-triazine, 4-methoxyphenylbis (trichloromethyl) -s-triazine, 1-naphthylbis (trichloromethyl) -s-triazine; 1,2-naphthoquinonediazide-4-sulfonyl chloride, 1,2-naphthoquinonediazide-5-sulfonyl chloride, 1,3,4-naphthoquinonediazide-4-sulfonic acid ester of 2,3,4,4′-tetrahydroxybenzophenone or 1, Diazoketone compound photoacid generators such as 2-naphthoquinonediazide-5-sulfonic acid ester; sulfone compound photoacid generators such as 4-trisphenacylsulfone, mesitylphenacylsulfone, and bis (phenylsulfonyl) methane Benzoin tosylate, pyrogallol Tris (trifluoromethanesulfonate), nitrobenzyl-9,10-diethoxyanthracene-2-sulfonate, trifluoromethanesulfonylbicyclo [2,2,1] hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide Examples thereof include sulfonic acid compound photoacid generators such as trifluoromethanesulfonate and 1,8-naphthalenedicarboxylic acid imide trifluoromethanesulfonate.
 これらの光酸発生剤のなかでも、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムn-ドデシルベンゼンスルホネート、ジフェニルヨードニウム10-カンファースルホネート、ジフェニルヨードニウムナフタレンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムn-ドデシルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ビス(4-t-ブチルフェニル)ヨードニウムナフタレンスルホネート等が好ましい。尚、これらの光酸発生剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Among these photoacid generators, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium pyrenesulfonate, diphenyliodonium n-dodecylbenzenesulfonate, diphenyliodonium 10-camphorsulfonate, diphenyliodonium naphthalenesulfonate Bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium n-dodecylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium 10-camphorsulfonate, bis (4-tert-butylphenyl) Yl) and the like iodonium naphthalene sulfonate is preferred. In addition, these photo-acid generators may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、加熱により酸を発生する酸発生剤(以下、「熱酸発生剤」という。)としては、例えば、2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2-ニトロベンジルトシレート、アルキルスルホネート類等が挙げられる。尚、これらの熱酸発生剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、酸発生剤として、光酸発生剤と熱酸発生剤とを併用することもできる。 Examples of the acid generator that generates an acid upon heating (hereinafter referred to as “thermal acid generator”) include 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl, and the like. Tosylate, alkyl sulfonates and the like can be mentioned. In addition, these thermal acid generators may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, a photo-acid generator and a thermal acid generator can also be used together as an acid generator.
 前記酸発生剤の配合量は、前記樹脂(A)100質量部に対して、通常、5000質量部以下であり、好ましくは0.1~1000質量部、更に好ましくは0.1~100質量部である。 The amount of the acid generator is usually 5000 parts by mass or less, preferably 0.1 to 1000 parts by mass, more preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin (A). It is.
 <架橋剤>
 前記架橋剤は、得られるレジスト下層膜と、その上に形成されるレジスト被膜との間のインターミキシングを防止し、更にはレジスト下層膜におけるクラックの発生を防止する作用を有する成分である。
 このような架橋剤としては、多核フェノール類や、種々の市販の硬化剤を使用することができる。
 前記多核フェノール類としては、例えば、4,4’-ビフェニルジオール、4,4’-メチレンビスフェノール、4,4’-エチリデンビスフェノール、ビスフェノールA等の2核フェノール類;4,4’,4’’-メチリデントリスフェノール、4,4’-[1-〔4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル〕エチリデン]ビスフェノール等の3核フェノール類;ノボラック等のポリフェノール類等が挙げられる。これらのなかでも、4,4’-[1-〔4-{1-(4-ヒドロキシフェニル)-1-メチルエチル}フェニル〕エチリデン]ビスフェノール、ノボラック等が好ましい。尚、これらの多核フェノール類は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Crosslinking agent>
The crosslinking agent is a component having an action of preventing intermixing between the obtained resist underlayer film and the resist film formed thereon, and further preventing the occurrence of cracks in the resist underlayer film.
As such a crosslinking agent, polynuclear phenols and various commercially available curing agents can be used.
Examples of the polynuclear phenols include binuclear phenols such as 4,4′-biphenyldiol, 4,4′-methylene bisphenol, 4,4′-ethylidene bisphenol, and bisphenol A; 4,4 ′, 4 ″ -Trinuclear phenols such as methylidenetrisphenol, 4,4 '-[1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethylidene] bisphenol; polyphenols such as novolak Is mentioned. Among these, 4,4 ′-[1- [4- {1- (4-hydroxyphenyl) -1-methylethyl} phenyl] ethylidene] bisphenol, novolak, and the like are preferable. In addition, these polynuclear phenols may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、前記硬化剤としては、例えば、2,3-トリレンジイソシアナート、2,4-トリレンジイソシアナート、3,4-トリレンジイソシアナート、3,5-トリレンジイソシアナート、4,4’-ジフェニルメタンジイソシアナート、ヘキサメチレンジイソシアナート、1,4-シクロヘキサンジイソシアナート等のジイソシアナート類や、以下商品名で、エピコート812、同815、同826、同828、同834、同836、同871、同1001、同1004、同1007、同1009、同1031〔以上、油化シェルエポキシ(株)製〕、アラルダイト6600、同6700、同6800、同502、同6071、同6084、同6097、同6099〔以上、チバガイギー社製〕、DER331、同332、同333、同661、同644、同667〔以上、ダウケミカル社製〕等のエポキシ化合物;サイメル300、同301、同303、同350、同370、同771、同325、同327、同703、同712、同701、同272、同202、マイコート506、同508〔以上、三井サイアナミッド(株)製〕等のメラミン系硬化剤;サイメル1123、同1123-10、同1128、マイコート102、同105、同106、同130〔以上、三井サイアナミッド(株)製〕等のベンゾグアナミン系硬化剤;サイメル1170、同1172〔以上、三井サイアナミッド(株)製〕、ニカラックN-2702〔三和ケミカル(株)製〕等のグリコールウリル系硬化剤等が挙げられる。これらのなかでも、メラミン系硬化剤、グリコールウリル系硬化剤等が好ましい。
 尚、これらの硬化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、架橋剤として、多核フェノール類と硬化剤とを併用することもできる。
Examples of the curing agent include 2,3-tolylene diisocyanate, 2,4-tolylene diisocyanate, 3,4-tolylene diisocyanate, 3,5-tolylene diisocyanate, 4,4 ′. -Diisocyanates such as diphenylmethane diisocyanate, hexamethylene diisocyanate, 1,4-cyclohexane diisocyanate, and the following trade names: Epicoat 812, 815, 826, 828, 834, 834 871, 1001, 1004, 1007, 1007, 1009, 1031 [above, manufactured by Yuka Shell Epoxy Co., Ltd.], Araldite 6600, 6700, 6800, 502, 6071, 6084, 6097, 6099 (above, manufactured by Ciba Geigy), DER331, 332, 333, 66 1, 644, 667 [above, manufactured by Dow Chemical Co., Ltd.]; Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, Melamine-based curing agents such as 701, 272, 202, Mycoat 506, 508 [Mitsui Cyanamid Co., Ltd.]; Cymel 1123, 1123-10, 1128, Mycoat 102, 105, Benzoguanamine-based curing agents such as 106 and 130 [above, manufactured by Mitsui Cyanamid Co., Ltd.]; Cymel 1170, 1172 [above, manufactured by Mitsui Cyanamid Co., Ltd.], Nicarak N-2702 [manufactured by Sanwa Chemical Co., Ltd.] And the like, and the like. Of these, melamine curing agents, glycoluril curing agents and the like are preferable.
In addition, these hardening | curing agents may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, polynuclear phenols and a hardening | curing agent can also be used together as a crosslinking agent.
 前記架橋剤の配合量は、前記樹脂(A)100質量部に対して、通常、5000質量部以下であり、好ましくは1~1000質量部、更に好ましくは1~20質量部である。 The blending amount of the crosslinking agent is usually 5000 parts by mass or less, preferably 1 to 1000 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin (A).
 <バインダー樹脂>
 前記バインダー樹脂としては、種々の熱可塑性樹脂や熱硬化性樹脂を使用することができる。前記熱可塑性樹脂は、添加した熱可塑性樹脂の流動性や機械的特性などを下層膜に付与する作用を有する成分である。
 この熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリ-1-ブテン、ポリ-1-ペンテン、ポリ-1-ヘキセン、ポリ-1-ヘプテン、ポリ-1-オクテン、ポリ-1-デセン、ポリ-1-ドデセン、ポリ-1-テトラデセン、ポリ-1-ヘキサデセン、ポリ-1-オクダデセン、ポリビニルシクロアルカン等のα-オレフイン系重合体類;ポリ-1,4-ペンタジエン、ポリ-1,4-ヘキサジエン、ポリ-1,5-ヘキサジエン等の非共役ジエン系重合体類;α,β-不飽和アルデヒド系重合体類;ポリ(メチルビニルケトン)、ポリ(芳香族ビニルケトン)、ポリ(環状ビニルケトン)等のα,β-不飽和ケトン系重合体類;(メタ)アクリル酸、α-クロルアクリル酸、(メタ)アクリル酸塩、(メタ)アクリル酸エステル、(メタ)アクリル酸ハロゲン化物等のα,β-不飽和カルボン酸又はその誘導体の重合体類;ポリ(メタ)アクリル酸無水物、無水マレイン酸の共重合体等のα,β-不飽和カルボン酸無水物の重合体類;メチレンマロン酸ジエステル、イタコン酸ジエステル等の不飽和多塩基性カルボン酸エステルの重合体類;ソルビン酸エステル、ムコン酸エステル等のジオレフィンカルボン酸エステルの重合体類;(メタ)アクリル酸チオエステル、α-クロルアクリル酸チオエステル等のα,β-不飽和カルボン酸チオエステルの重合体類;(メタ)アクリロニトリル、α-クロロアクリロニトリル等の(メタ)アクリロニトリル又はその誘導体の重合体類;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド又はその誘導体の重合体類;スチリル金属化合物の重合体類;ビニルオキシ金属化合物の重合体類;ポリイミン類;ポリフェニレンオキシド、ポリ-1,3-ジオキソラン、ポリオキシラン、ポリテトラヒドロフラン、ポリテトラヒドロピラン等のポリエーテル類;ポリスルフィド類;ポリスルホンアミド類;ポリペプチド類;ナイロン66、ナイロン1~ナイロン12等のポリアミド類;脂肪族ポリエステル、芳香族ポリエステル、脂環族ポリエステル、ポリ炭酸エステル等のポリエステル類;ポリ尿素類;ポリスルホン類;ポリアジン類;ポリアミン類;ポリ芳香族ケトン類;ポリイミド類;ポリベンゾイミダゾール類;ポリベンゾオキサゾール類;ポリベンゾチアゾール類;ポリアミノトリアゾール類;ポリオキサジアゾール類;ポリピラゾール類;ポリテトラゾール類;ポリキノキサリン類;ポリトリアジン類;ポリベンゾオキサジノン類;ポリキノリン類;ポリアントラゾリン類等が挙げられる。
<Binder resin>
As the binder resin, various thermoplastic resins and thermosetting resins can be used. The thermoplastic resin is a component having an action of imparting the fluidity and mechanical characteristics of the added thermoplastic resin to the lower layer film.
Examples of the thermoplastic resin include polyethylene, polypropylene, poly-1-butene, poly-1-pentene, poly-1-hexene, poly-1-heptene, poly-1-octene, poly-1-decene, and poly-1-decene. Α-Olefin polymers such as 1-dodecene, poly-1-tetradecene, poly-1-hexadecene, poly-1-octadecene, and polyvinylcycloalkane; poly-1,4-pentadiene, poly-1,4- Non-conjugated diene polymers such as hexadiene and poly-1,5-hexadiene; α, β-unsaturated aldehyde polymers; poly (methyl vinyl ketone), poly (aromatic vinyl ketone), poly (cyclic vinyl ketone) Α, β-unsaturated ketone polymers such as: (meth) acrylic acid, α-chloroacrylic acid, (meth) acrylic acid salt, (meth) acrylic acid Polymers of α, β-unsaturated carboxylic acids or derivatives thereof such as stealth and (meth) acrylic acid halides; α, β-unsaturated polymers of poly (meth) acrylic anhydride and maleic anhydride Polymers of saturated carboxylic acid anhydrides; Polymers of unsaturated polybasic carboxylic acid esters such as methylenemalonic acid diester and itaconic acid diester; Polymers of diolefin carboxylic acid esters such as sorbic acid ester and muconic acid ester Polymers of α, β-unsaturated carboxylic acid thioesters such as (meth) acrylic acid thioester and α-chloroacrylic acid thioester; (meth) acrylonitrile such as (meth) acrylonitrile and α-chloroacrylonitrile or derivatives thereof Polymers; (meth) acrylamides such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide Polymers of ruamide or derivatives thereof; polymers of styryl metal compounds; polymers of vinyloxy metal compounds; polyimines; polyphenylene oxide, poly-1,3-dioxolane, polyoxirane, polytetrahydrofuran, polytetrahydropyran, etc. Polysulfides; Polysulfonamides; Polypeptides; Polyamides such as nylon 66 and nylon 1 to nylon 12; Polyesters such as aliphatic polyester, aromatic polyester, alicyclic polyester, and polycarbonate; Polysulfones; Polyazines; Polyamines; Polyaromatic ketones; Polyimides; Polybenzimidazoles; Polybenzoxazoles; Polybenzothiazoles; Polyaminotriazoles; S; Poripirazoru like; poly-tetrazole compounds; polyquinoxaline like; poly triazine; polybenzoxazinone like; polyquinoline compounds, poly anthrahydroquinone gelsolin such like.
 また、前記熱硬化性樹脂は、加熱により硬化して溶剤に不溶となり、得られるレジスト下層膜と、その上に形成されるレジスト被膜との間のインターミキシングを防止する作用を有する成分である。
 この熱硬化性樹脂としては、例えば、熱硬化性アクリル系樹脂類、フェノール樹脂類、尿素樹脂類、メラミン樹脂類、アミノ系樹脂類、芳香族炭化水素樹脂類、エポキシ樹脂類、アルキド樹脂類等が挙げられる。これらのなかでも、尿素樹脂類、メラミン樹脂類、芳香族炭化水素樹脂類等が好ましい。
The thermosetting resin is a component having an action of preventing intermixing between the resist underlayer film obtained and the resist film formed thereon, which is cured by heating and becomes insoluble in a solvent.
Examples of the thermosetting resin include thermosetting acrylic resins, phenol resins, urea resins, melamine resins, amino resins, aromatic hydrocarbon resins, epoxy resins, alkyd resins, and the like. Is mentioned. Of these, urea resins, melamine resins, aromatic hydrocarbon resins and the like are preferable.
 尚、これらのバインダー樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記バインダー樹脂の配合量は、前記樹脂(A)100質量部に対して、通常、20質量部以下であり、好ましくは1~10質量部である。
In addition, these binder resins may be used individually by 1 type, and may be used in combination of 2 or more type.
The amount of the binder resin is usually 20 parts by mass or less, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the resin (A).
 <放射線吸収剤>
 前記放射線吸収剤としては、例えば、油溶性染料、分散染料、塩基性染料、メチン系染料、ピラゾール系染料、イミダゾール系染料、ヒドロキシアゾ系染料等の染料類;ビクシン誘導体、ノルビクシン、スチルベン、4,4’-ジアミノスチルベン誘導体、クマリン誘導体、ピラゾリン誘導体等の蛍光増白剤類;ヒドロキシアゾ系染料、商品名「チヌビン234」、「チヌビン1130」(チバガイギー社製)等の紫外線吸収剤類;アントラセン誘導体、アントラキノン誘導体等の芳香族化合物等が挙げられる。尚、これらの放射線吸収剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Radiation absorber>
Examples of the radiation absorber include oil-soluble dyes, disperse dyes, basic dyes, methine dyes, pyrazole dyes, imidazole dyes, hydroxyazo dyes, and the like; bixin derivatives, norbixin, stilbene, 4, Optical brighteners such as 4′-diaminostilbene derivatives, coumarin derivatives, pyrazoline derivatives; UV absorbers such as hydroxyazo dyes, trade names “Tinuvin 234” and “Tinuvin 1130” (manufactured by Ciba Geigy); anthracene derivatives And aromatic compounds such as anthraquinone derivatives. In addition, these radiation absorbers may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記放射線吸収剤の配合量は、前記樹脂(A)100質量部に対して、通常、100質量部以下であり、好ましくは1~50質量部である。 The compounding amount of the radiation absorber is usually 100 parts by mass or less, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin (A).
 <界面活性剤>
 前記界面活性剤は、塗布性、ストリエーション、ぬれ性、現像性等を改良する作用を有する成分である。
 この界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン-n-オクチルフェニルエーテル、ポリオキシエチレン-n-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤や、以下商品名で、KP341〔信越化学工業(株)製〕、ポリフローNo.75、同No.95〔以上、共栄社油脂化学工業(株)製〕、エフトップEF101、同EF204、同EF303、同EF352〔以上、トーケムプロダクツ社製〕、メガファックF171、同F172、同F173〔以上、大日本インキ化学工業(株)製〕、フロラードFC430、同FC431、同FC135、同FC93〔以上、住友スリーエム(株)製〕、アサヒガードAG710、サーフロンS382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106〔以上、旭硝子(株)製〕等が挙げられる。尚、これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<Surfactant>
The surfactant is a component having an action of improving coatability, striation, wettability, developability and the like.
Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-nonylphenyl ether, polyethylene glycol dilaurate , Nonionic surfactants such as polyethylene glycol distearate and the following trade names: KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no. 95 [above, manufactured by Kyoeisha Yushi Chemical Co., Ltd.], F-top EF101, EF204, EF303, EF352 [above, manufactured by Tochem Products Co., Ltd.], MegaFuck F171, F172, F173 [above, Dainippon Manufactured by Ink Chemical Industry Co., Ltd.], FLORARD FC430, FC431, FC135, FC135 [above, manufactured by Sumitomo 3M], Asahi Guard AG710, Surflon S382, SC101, SC102, SC103, SC104, SC105, SC106 [above, manufactured by Asahi Glass Co., Ltd.]. In addition, these surfactants may be used individually by 1 type, and may be used in combination of 2 or more type.
 前記界面活性剤の配合量は、前記樹脂(A)100質量部に対して、通常、15質量部以下であり、好ましくは0.001~10質量部である。 The blending amount of the surfactant is usually 15 parts by mass or less, preferably 0.001 to 10 parts by mass with respect to 100 parts by mass of the resin (A).
 また、本発明におけるレジスト下層膜形成用組成物には、前述の各種添加剤以外にも、例えば、保存安定剤、消泡剤、接着助剤等の他の添加剤を配合することができる。 In addition, in the resist underlayer film forming composition of the present invention, other additives such as a storage stabilizer, an antifoaming agent, and an adhesion aid can be blended in addition to the various additives described above.
[2]レジスト下層膜形成方法
 本発明のレジスト下層膜形成方法は、レジスト下層膜形成用組成物を用いて得られる塗膜を加熱することにより、レジスト下層膜を形成する工程を備えている。尚、前記レジスト下層膜形成用組成物については、前述の説明をそのまま適用することができる。
[2] Resist Underlayer Film Forming Method The resist underlayer film forming method of the present invention includes a step of forming a resist underlayer film by heating a coating film obtained using the resist underlayer film forming composition. The above description can be applied as it is to the resist underlayer film forming composition.
 前記塗膜は、通常、被加工基板上にレジスト下層膜形成用組成物が塗布されることで形成される。
 前記被加工基板としては、例えば、シリコンウェハ;アルミニウム、酸化膜又は窒化膜で被覆したウェハ等を使用することができる。
 また、被加工基板へのレジスト下層膜形成用組成物の塗布方法は特に限定されず、例えば、回転塗布、流延塗布、ロール塗布等の適宜の方法で実施することができる。
The coating film is usually formed by applying a resist underlayer film forming composition on a substrate to be processed.
As the substrate to be processed, for example, a silicon wafer; a wafer coated with aluminum, an oxide film, or a nitride film can be used.
Moreover, the application | coating method of the composition for resist underlayer film formation to a to-be-processed substrate is not specifically limited, For example, it can implement by appropriate methods, such as spin coating, cast coating, and roll coating.
 また、前記塗膜の加熱は、大気下で行われる。
 更に、この際の加熱温度は300~800℃であり、好ましくは300~700℃、更に好ましくは350~550℃である。この加熱温度が300~550℃である場合、脱水素反応が十分に進行するため好ましい。
また、この際の加熱時間は30~1200秒間であり、好ましくは60~800秒間、更に好ましくは120~600秒間である。
Moreover, the said coating film is heated in air | atmosphere.
Further, the heating temperature at this time is 300 to 800 ° C., preferably 300 to 700 ° C., more preferably 350 to 550 ° C. A heating temperature of 300 to 550 ° C. is preferable because the dehydrogenation reaction proceeds sufficiently.
In this case, the heating time is 30 to 1200 seconds, preferably 60 to 800 seconds, and more preferably 120 to 600 seconds.
 また、塗膜を300~550℃の温度で加熱する前に、100~250℃の温度で予備加熱しておいてもよい。
 予備加熱における加熱時間は特に限定されないが、10~300秒であることが好ましく、より好ましくは30~120秒である。
 この予備加熱を行うことにより、溶剤を予め気化させて、膜を緻密にしておくことで、脱水素反応を効率良く進めることができる。
Further, before the coating film is heated at a temperature of 300 to 550 ° C., it may be preheated at a temperature of 100 to 250 ° C.
The heating time in the preheating is not particularly limited, but is preferably 10 to 300 seconds, and more preferably 30 to 120 seconds.
By performing this preheating, the dehydrogenation reaction can be efficiently advanced by vaporizing the solvent in advance and keeping the film dense.
 本発明では、この塗膜の加熱により、塗膜を形成しているレジスト下層膜形成用組成物中の樹脂(A)の一電子酸化(例えば、樹脂(A)が有するフェノール性水酸基の一電子酸化)により脱水素反応が起こり、樹脂の分子量が増大すると考えられる。 In the present invention, by heating the coating film, one-electron oxidation of the resin (A) in the resist underlayer film forming composition forming the coating film (for example, one electron of the phenolic hydroxyl group of the resin (A)) Oxidation) is considered to cause a dehydrogenation reaction and increase the molecular weight of the resin.
 このようなレジスト下層膜の形成方法により、水素含有量が30atom%以下、特に20~30atom%、更には20~28atom%のレジスト下層膜を得ることができる。
 尚、レジスト下層膜における水素含有量の測定方法は、後述する実施例と同様である。
By such a method for forming a resist underlayer film, a resist underlayer film having a hydrogen content of 30 atom% or less, particularly 20 to 30 atom%, more preferably 20 to 28 atom% can be obtained.
The method for measuring the hydrogen content in the resist underlayer film is the same as in the examples described later.
 また、本発明のレジスト下層膜形成方法においては、通常、前記塗膜の加熱により塗膜が硬化され、レジスト下層膜が形成されるが、前記レジスト下層膜形成用組成物に所定の光硬化剤(架橋剤)を含有させることにより、加熱された塗膜に対する露光工程を設けて、光硬化させ、レジスト下層膜を形成することもできる。この際に露光される放射線は、レジスト下層膜形成用組成物に配合されている酸発生剤の種類に応じて、可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択される。 In the resist underlayer film forming method of the present invention, the coating film is usually cured by heating the coating film to form a resist underlayer film. A predetermined photocuring agent is added to the resist underlayer film forming composition. By containing (crosslinking agent), the exposure process with respect to the heated coating film can be provided, photocured, and a resist underlayer film can also be formed. Depending on the type of acid generator blended in the resist underlayer film forming composition, the radiation exposed at this time is visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, γ-ray, molecular beam, It is appropriately selected from an ion beam or the like.
 また、本発明のレジスト下層膜形成方法においては、前記レジスト下層膜形成用組成物に所定の熱硬化剤及び/又は光硬化剤(架橋剤)を含有させることにより、前記塗膜の加熱前に、露光及び/又は加熱による架橋工程を設けて、塗膜中の樹脂(A)の一部を架橋させておいてもよい。 In the resist underlayer film forming method of the present invention, by adding a predetermined thermosetting agent and / or a photocuring agent (crosslinking agent) to the resist underlayer film forming composition, before heating the coating film, A crosslinking step by exposure and / or heating may be provided to partially crosslink the resin (A) in the coating film.
[3]レジスト下層膜
 本発明のレジスト下層膜は、被加工基板上にレジスト下層膜を形成し、レジスト下層膜上にレジストパターンを形成後、レジストパターンを一旦、レジスト下層膜に転写して下層膜パターンを形成した後、この下層膜パターンをエッチングマスクとして用いて被加工基板に転写する多層レジストプロセスに用いられるものである。
 前記レジスト下層膜は、フェノール性水酸基を有する樹脂と、溶剤と、を含有するレジスト下層膜形成用組成物により形成することができ、水素含有量が20~30atom%である。
 前記レジスト下層膜形成用組成物は特に限定されないが、例えば、前述の本発明のレジスト下層膜形成用組成物等を用いることができる。
 前記レジスト下層膜の水素含有量は20~30atom%であり、20~28atom%であることが好ましい。尚、レジスト下層膜における水素含有量の測定方法は、後述する実施例と同様である。
 また、前記レジスト下層膜を形成する方法は特に限定されないが、例えば、前述の本発明のレジスト下層膜形成方法等により得ることができる。
[3] Resist Underlayer Film The resist underlayer film of the present invention is formed by forming a resist underlayer film on a substrate to be processed, forming a resist pattern on the resist underlayer film, and then transferring the resist pattern once to the resist underlayer film. After the film pattern is formed, this lower layer film pattern is used as an etching mask and is used in a multilayer resist process that is transferred to a substrate to be processed.
The resist underlayer film can be formed of a resist underlayer film forming composition containing a resin having a phenolic hydroxyl group and a solvent, and has a hydrogen content of 20 to 30 atom%.
Although the resist underlayer film forming composition is not particularly limited, for example, the above-described resist underlayer film forming composition of the present invention can be used.
The resist underlayer film has a hydrogen content of 20 to 30 atom%, preferably 20 to 28 atom%. The method for measuring the hydrogen content in the resist underlayer film is the same as in the examples described later.
The method for forming the resist underlayer film is not particularly limited, and can be obtained, for example, by the above-described resist underlayer film forming method of the present invention.
[4]パターン形成方法
 本発明のレジスト下層膜形成用組成物を用いたレジストパターンの形成方法としては、例えば、(1)レジスト下層膜形成用組成物を被加工基板上に塗布してレジスト下層膜を形成する工程(以下、「工程(1)」という。)と、(2)得られたレジスト下層膜上に、レジスト組成物を塗布してレジスト被膜を形成する工程(以下、「工程(2)」という。)と、(3)得られたレジスト被膜に、フォトマスクを透過させることにより選択的に放射線を照射してレジスト被膜を露光する工程(以下、「工程(3)」という。)と、(4)露光したレジスト被膜を現像して、レジストパターンを形成する工程(以下、「工程(4)」という。)と、(5)レジストパターンをマスク(エッチングマスク)として、レジスト下層膜及び被加工基板をドライエッチングしてパターンを形成する工程(以下、「工程(5)」という。)と、を備えるパターン形成方法を挙げることができる。
 このパターン形成方法によれば、ドライエッチングプロセスにおいて、被加工基板にレジストパターンを再現性よく忠実に転写することができる。
[4] Pattern Forming Method As a method for forming a resist pattern using the resist underlayer film forming composition of the present invention, for example, (1) a resist underlayer film forming composition is applied on a substrate to be processed and the resist underlayer film is formed. A step of forming a film (hereinafter referred to as "step (1)"), and (2) a step of applying a resist composition on the obtained resist underlayer film to form a resist film (hereinafter referred to as "step (" 2) "), and (3) a step of exposing the resist film by selectively irradiating the resulting resist film with radiation through a photomask (hereinafter referred to as" step (3) "). ), (4) developing the exposed resist film to form a resist pattern (hereinafter referred to as “process (4)”), and (5) using the resist pattern as a mask (etching mask). And a step of forming a pattern by dry etching the bottom layer film and the substrate to be processed (hereinafter referred to as “step (5)”).
According to this pattern forming method, the resist pattern can be faithfully transferred to the substrate to be processed with high reproducibility in the dry etching process.
 前記工程(1)では、前述のレジスト下層膜形成方法により、被加工基板上にレジスト下層膜が形成される。尚、レジスト下層膜形成方法については、前述の説明をそのまま適用することができる。
 この工程(1)で形成されるレジスト下層膜の膜厚は、通常、0.1~5μmである。
In the step (1), a resist underlayer film is formed on the substrate to be processed by the resist underlayer film forming method described above. For the resist underlayer film forming method, the above description can be applied as it is.
The thickness of the resist underlayer film formed in this step (1) is usually 0.1 to 5 μm.
 また、このパターン形成方法においては、前記工程(1)の後に、必要に応じて、レジスト下層膜上に中間層を形成する工程(1’)を更に備えていてもよい。
 この中間層は、レジストパターン形成において、レジスト下層膜及び/又はレジスト被膜が有する機能を更に補ったり、これらが有していない機能を得るために、これらの機能が付与された層のことである。例えば、反射防止膜を中間層として形成した場合、レジスト下層膜の反射防止機能を更に補うことができる。
Moreover, in this pattern formation method, after the said process (1), the process (1 ') which forms an intermediate | middle layer on a resist lower layer film may be further provided as needed.
This intermediate layer is a layer provided with these functions in order to further supplement the functions of the resist underlayer film and / or the resist film in the formation of the resist pattern, or to obtain the functions that they do not have. . For example, when the antireflection film is formed as an intermediate layer, the antireflection function of the resist underlayer film can be further supplemented.
 この中間層は、有機化合物や無機酸化物により形成することができる。有機化合物としては、例えば、Brewer Science社製の「DUV-42」、「DUV-44」、「ARC-28」、「ARC-29」等の商品名で市販されている材料や、ローム アンド ハース社製の「AR-3」、「AR―19」等の商品名で市販されている材料等を用いることができる。また、無機酸化物としては、例えば、JSR社製の「NFC SOG01」、「NFC SOG04」等の商品名で市販されている材料やCVD法により形成されるポリシロキサン、酸化チタン、酸化アルミナ、酸化タングステン等を用いることができる。 This intermediate layer can be formed of an organic compound or an inorganic oxide. Examples of organic compounds include materials marketed under the trade names such as “DUV-42”, “DUV-44”, “ARC-28”, and “ARC-29” manufactured by Brewer Science, and Rohm and Haas. Commercially available materials such as “AR-3” and “AR-19” manufactured by the company can be used. Examples of inorganic oxides include materials marketed under the trade names such as “NFC SOG01” and “NFC SOG04” manufactured by JSR, polysiloxane formed by CVD, titanium oxide, alumina oxide, and oxide. Tungsten or the like can be used.
 中間層を形成するための方法は特に限定されないが、例えば、塗布法やCVD法等を用いることができる。これらのなかでも、塗布法が好ましい。塗布法を用いた場合、レジスト下層膜を形成後、中間層を連続して形成することができる。 The method for forming the intermediate layer is not particularly limited, and for example, a coating method, a CVD method, or the like can be used. Among these, the coating method is preferable. When the coating method is used, the intermediate layer can be formed continuously after forming the resist underlayer film.
 また、中間層の膜厚は特に限定されず、中間層に求められる機能に応じて適宜選択されるが、10~3000nmの範囲が好ましく、更に好ましくは20~300nmである。この中間層の膜厚が10nm未満の場合、レジスト下層膜のエッチング途中で中間層が削れてなくなってしまうことがある。一方、3000nmを超える場合、レジストパターンを中間層に転写する際に、加工変換差が顕著に発生してしまうためである。 The film thickness of the intermediate layer is not particularly limited, and is appropriately selected according to the function required for the intermediate layer, but is preferably in the range of 10 to 3000 nm, more preferably 20 to 300 nm. When the film thickness of this intermediate layer is less than 10 nm, the intermediate layer may not be removed during the etching of the resist underlayer film. On the other hand, when the thickness exceeds 3000 nm, a difference in processing conversion occurs remarkably when the resist pattern is transferred to the intermediate layer.
 前記工程(2)では、レジスト組成物溶液を用いて、レジスト下層膜及び/又は中間層上にレジスト被膜が形成される。
 具体的には、得られるレジスト被膜が所定の膜厚となるようにレジスト組成物溶液を塗布したのち、プレベークすることによって、塗膜中の溶剤を揮発させ、レジスト被膜が形成される。
 前記レジスト組成物溶液としては、例えば、光酸発生剤を含有するポジ型又はネガ型の化学増幅型レジスト組成物、アルカリ可溶性樹脂とキノンジアジド系感光剤とからなるポジ型レジスト組成物、アルカリ可溶性樹脂と架橋剤とからなるネガ型レジスト組成物等が挙げられる。また、レジスト下層膜や中間層上に塗布する際のレジスト組成物溶液の固形分濃度は、通常、5~50質量%程度であり一般に、例えば、孔径0.2μm程度のフィルターでろ過したものが用いられる。尚、前記レジスト組成物溶液は、市販のものをそのまま使用することもできる。
In the step (2), a resist film is formed on the resist underlayer film and / or the intermediate layer using the resist composition solution.
Specifically, the resist composition solution is applied so that the resulting resist film has a predetermined film thickness, and then pre-baked to volatilize the solvent in the film and form a resist film.
Examples of the resist composition solution include a positive or negative chemically amplified resist composition containing a photoacid generator, a positive resist composition comprising an alkali-soluble resin and a quinonediazide-based photosensitizer, and an alkali-soluble resin. And a negative resist composition composed of a crosslinking agent and the like. Further, the solid content concentration of the resist composition solution when applied on the resist underlayer film or intermediate layer is usually about 5 to 50% by mass, and is generally filtered through a filter having a pore diameter of about 0.2 μm, for example. Used. In addition, the said resist composition solution can also use a commercially available thing as it is.
 レジスト組成物溶液の塗布方法は特に限定されず、例えば、スピンコート法等により実施することができる。
 また、プレベークの温度は、使用されるレジスト組成物溶液の種類等に応じて適宜調整されるが、通常、30~200℃程度、好ましくは50~150℃である。
The method for applying the resist composition solution is not particularly limited, and can be performed by, for example, a spin coating method.
The pre-baking temperature is appropriately adjusted according to the type of resist composition solution used and the like, but is usually about 30 to 200 ° C., preferably 50 to 150 ° C.
 前記工程(3)では、得られたレジスト被膜の所定領域にフォトマスクを介して放射線が照射され、選択的に露光が行われる。
 前記露光に用いられる放射線としては、レジスト組成物に使用されている酸発生剤の種類に応じて、
可視光線、紫外線、遠紫外線、X線、電子線、γ線、分子線、イオンビーム等から適切に選択されるが、遠紫外線であることが好ましく、特にKrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(波長157nm)、Krエキシマレーザー(波長147nm)、ArKrエキシマレーザー(波長134nm)、極紫外線(波長13nm等)等が好ましい。
In the step (3), a predetermined region of the obtained resist film is irradiated with radiation through a photomask and selectively exposed.
As the radiation used for the exposure, depending on the type of acid generator used in the resist composition,
Appropriately selected from visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, γ-ray, molecular beam, ion beam, etc., but is preferably far ultraviolet light, particularly KrF excimer laser (248 nm), ArF excimer laser. (193 nm), F 2 excimer laser (wavelength 157 nm), Kr 2 excimer laser (wavelength 147 nm), ArKr excimer laser (wavelength 134 nm), extreme ultraviolet light (wavelength 13 nm, etc.) are preferred.
 前記工程(4)では、露光後のレジスト被膜を現像液で現像することで、レジストパターンが形成される。
 前記現像液は、使用されるレジスト組成物の種類に応じて適宜選択される。例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等のアルカリ性水溶液が用いられる。また、これらのアルカリ性水溶液には、水溶性有機溶剤、例えば、メタノール、エタノール等のアルコール類や、界面活性剤を適量添加することもできる。
In the step (4), a resist pattern is formed by developing the exposed resist film with a developer.
The developer is appropriately selected according to the type of resist composition used. For example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine , Tetramethylammonium hydroxide, tetraethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5 An alkaline aqueous solution such as nonene is used. In addition, an appropriate amount of a water-soluble organic solvent, for example, an alcohol such as methanol or ethanol, or a surfactant can be added to these alkaline aqueous solutions.
 また、前記現像液での現像後、洗浄し、乾燥することによって、所定のレジストパターンが形成される。
 尚、この工程では、解像度、パターンプロファイル、現像性等を向上させるため、現像前の前記露光後に、ポストベークを行うことができる。このポストベークの温度は、使用されるレジスト組成物の種類等に応じて適宜調整されるが、通常、50~200℃程度、好ましくは80~150℃である。
Further, after development with the developer, washing and drying are performed to form a predetermined resist pattern.
In this step, post-baking can be performed after the exposure before development in order to improve resolution, pattern profile, developability, and the like. The post-baking temperature is appropriately adjusted according to the type of resist composition used, but is usually about 50 to 200 ° C., preferably 80 to 150 ° C.
 前記工程(5)では、前記レジストパターンをマスクとし、例えば、酸素プラズマ等のガスプラズマを用いて、レジスト下層膜のドライエッチングを行うことにより、中間層及び/又はレジスト下層膜にパターンが転写され、被加工基板等が加工される。
 本発明のパターン形成方法では、前記工程(1)~(5)等を適宜行うことにより、所定の基板加工用のパターンを形成することができる。
In the step (5), the resist pattern is used as a mask, and the pattern is transferred to the intermediate layer and / or the resist underlayer film by performing dry etching of the resist underlayer film using, for example, gas plasma such as oxygen plasma. The substrate to be processed is processed.
In the pattern forming method of the present invention, a predetermined pattern for substrate processing can be formed by appropriately performing the steps (1) to (5).
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.
[1]樹脂(A)の調製(樹脂(A-1)~(A-18)の合成)
 温度計を備えたセパラブルフラスコに、表1に示すフェノール化合物10部、アルデヒド化合物10部、p-トルエンスルホン酸10部、メチルイソブチルケトン40部を仕込み、攪拌しつつ50℃で12時間反応させた。反応終了後、反応溶液に純水を加え、水層が中性になるまで洗浄を繰り返した。その後、有機層を多量のn-ヘプタンに投入した。次いで、析出した固体をデカンテーション法により分離し、多量のn-ヘプタンにて洗浄した。続いて、得られた樹脂を、50℃にて17時間乾燥し、樹脂(A-1)~(A-18)を得た。
 尚、各樹脂の重量平均分子量(Mw)を、東ソー社製「GPCカラム」(G2000HXL:2本、G3000HXL:1本)を用い、流量:1.0ml/分、溶出溶剤:テトラヒドロフラン、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフ(検出器:示差屈折計)により測定し、その結果を表1に併記した。
[1] Preparation of resin (A) (synthesis of resins (A-1) to (A-18))
A separable flask equipped with a thermometer was charged with 10 parts of a phenol compound shown in Table 1, 10 parts of an aldehyde compound, 10 parts of p-toluenesulfonic acid, and 40 parts of methyl isobutyl ketone, and allowed to react at 50 ° C. for 12 hours with stirring. It was. After completion of the reaction, pure water was added to the reaction solution, and washing was repeated until the aqueous layer became neutral. Thereafter, the organic layer was put into a large amount of n-heptane. Next, the precipitated solid was separated by a decantation method and washed with a large amount of n-heptane. Subsequently, the obtained resin was dried at 50 ° C. for 17 hours to obtain resins (A-1) to (A-18).
In addition, the weight average molecular weight (Mw) of each resin was measured using a “GPC column” (G2000HXL: 2, G3000HXL: 1) manufactured by Tosoh Corporation, flow rate: 1.0 ml / min, elution solvent: tetrahydrofuran, column temperature: Measurement was performed by a gel permeation chromatograph (detector: differential refractometer) using monodisperse polystyrene as a standard under analysis conditions of 40 ° C., and the results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[2]レジスト下層膜形成用組成物(実施例用)の調整
 表2に示す各樹脂(A)、及び酸化促進剤(t-ブチルヒドロペルオキシド)を、溶剤(プロピレングリコールモノメチルエーテルアセテート)中に、表2に示す割合で溶解させた。その後、この混合溶液を孔径0.1μmのメンブランフィルターでろ過することにより、レジスト下層膜用組成物(U-1)~(U-22)を得た。
[2] Preparation of resist underlayer film forming composition (for Examples) Each resin (A) and oxidation accelerator (t-butyl hydroperoxide) shown in Table 2 were mixed in a solvent (propylene glycol monomethyl ether acetate). And dissolved in the proportions shown in Table 2. Thereafter, the mixed solution was filtered through a membrane filter having a pore size of 0.1 μm to obtain resist underlayer film compositions (U-1) to (U-22).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[3]レジスト下層膜形成用組成物(比較例用)の調整
 表3に示す各樹脂(CA)、及び酸化促進剤(t-ブチルヒドロペルオキシド)を、溶剤(プロピレングリコールモノメチルエーテルアセテート)中に、表3に示す割合で溶解させた。その後、この混合溶液を孔径0.1μmのメンブランフィルターでろ過することにより、レジスト下層膜用組成物(UC-1)~(UC-8)を得た。
[3] Preparation of resist underlayer film forming composition (for comparative example) Each resin (CA) and oxidation accelerator (t-butyl hydroperoxide) shown in Table 3 were mixed in a solvent (propylene glycol monomethyl ether acetate). , And dissolved at the ratio shown in Table 3. Thereafter, this mixed solution was filtered through a membrane filter having a pore size of 0.1 μm to obtain resist underlayer film compositions (UC-1) to (UC-8).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 尚、表3における樹脂(CA)の詳細は以下の通りである。
 CA-1:アセナフチレン/ヒドロキシメチルアセナフチレン共重合体(モル比;1:1、Mw;1600)
 CA-2:アセナフチレン/ヒドロキシスチレン共重合体(モル比;1:1、Mw;2300)
 CA-3:フェノール/ホルムアルデヒド縮合物(Mw;1800)
 CA-4:1-ナフトール/ホルムアルデヒド縮合物(Mw;1500)
 CA-5:2,7-ジヒドロキシナフタレン/プロピオンアルデヒド縮合物(Mw;1600)
The details of the resin (CA) in Table 3 are as follows.
CA-1: acenaphthylene / hydroxymethylacenaphthylene copolymer (molar ratio; 1: 1, Mw; 1600)
CA-2: acenaphthylene / hydroxystyrene copolymer (molar ratio; 1: 1, Mw; 2300)
CA-3: Phenol / formaldehyde condensate (Mw; 1800)
CA-4: 1-naphthol / formaldehyde condensate (Mw; 1500)
CA-5: 2,7-dihydroxynaphthalene / propionaldehyde condensate (Mw; 1600)
[4]レジスト下層膜の形成
(実施例1)
 被加工基板上に、前記レジスト下層膜形成用組成物(U-1)をスピンコート法により塗布し、大気雰囲気にて、350℃、120秒の条件で焼成(ベーク)することにより、レジスト下層膜を形成し、被加工基板上にレジスト下層膜が形成されたレジスト下層膜付き基板(実施例1)を得た。
 尚、本実施例においては、被加工基板として、シリコンウェハとTEOS基板の2種類の被加工基板を用い、それぞれの被加工基板上にレジスト下層膜を形成して、2種類のレジスト下層膜付き基板を得た。また、シリコンウェハには厚さ300nmのレジスト下層膜を形成し、TEOS基板には厚さ500nmのレジスト下層膜を形成した。
[4] Formation of resist underlayer film (Example 1)
The resist underlayer film forming composition (U-1) is applied onto a substrate to be processed by spin coating, and baked (baked) in an air atmosphere at 350 ° C. for 120 seconds. A film was formed to obtain a substrate with a resist underlayer film (Example 1) in which a resist underlayer film was formed on a substrate to be processed.
In this embodiment, two types of processing substrates, a silicon wafer and a TEOS substrate, are used as processing substrates, a resist underlayer film is formed on each processing substrate, and two types of resist underlayer films are attached. A substrate was obtained. Further, a resist underlayer film having a thickness of 300 nm was formed on the silicon wafer, and a resist underlayer film having a thickness of 500 nm was formed on the TEOS substrate.
(実施例2~22、及び比較例1~8)
 実施例1と同様にして、シリコンウェハとTEOS基板の2種類の被加工基板を用いて、各被加工基板上にレジスト下層膜を形成し、レジスト下層膜付き基板(実施例2~22、及び比較例1~8)を得た。
(Examples 2 to 22 and Comparative Examples 1 to 8)
In the same manner as in Example 1, a resist underlayer film was formed on each substrate to be processed using two types of substrates to be processed, that is, a silicon wafer and a TEOS substrate, and a substrate with a resist underlayer film (Examples 2 to 22, and Comparative Examples 1 to 8) were obtained.
[5]レジスト下層膜の性能評価
 実施例1~22及び比較例1~8の各レジスト下層膜付き基板を用いて、レジスト下層膜の元素組成(水素含有量)の測定、膜硬化性の測定、エッチング耐性及び曲がり耐性の評価を行った。結果を表4及び表5に示す。
[5] Performance evaluation of resist underlayer film Using the substrates with resist underlayer films of Examples 1 to 22 and Comparative Examples 1 to 8, measurement of the elemental composition (hydrogen content) of the resist underlayer film and measurement of film curability Etching resistance and bending resistance were evaluated. The results are shown in Tables 4 and 5.
 <レジスト下層膜の元素組成(水素含有量の測定)>
 被加工基板としてシリコンウェハを用いた各レジスト下層膜付き基板におけるレジスト下層膜の、炭素、水素、酸素、及び窒素の含有量(質量%)を、有機元素分析装置(ジェイ・サイエンス社製、型番「CHNコーダー JM10」)を用いた測定した。
 その後、膜中に含まれる各元素の原子数を、[各元素の重量換算値(質量%)/各元素の質量(g)]により算出し、次いで、[膜中の水素原子数/膜中の全原子数]により、脱水素反応後の水素含有量(atom%)を求めた。
<Element composition of resist underlayer film (measurement of hydrogen content)>
The content (mass%) of carbon, hydrogen, oxygen, and nitrogen of the resist underlayer film in each substrate with a resist underlayer film using a silicon wafer as the substrate to be processed is measured using an organic element analyzer (manufactured by J Science Co., Ltd. Measurement was performed using “CHN coder JM10”).
Thereafter, the number of atoms of each element contained in the film is calculated by [weight-converted value of each element (mass%) / mass of each element (g)], and then [number of hydrogen atoms in film / in film] From the total number of atoms, the hydrogen content (atom%) after the dehydrogenation reaction was determined.
 <膜硬化性>
 被加工基板としてシリコンウェハを用いた各レジスト下層膜付き基板をプロピルグリコールモノメチルエーテルアセテートに室温で1分間浸漬し、浸漬前後のレジスト下層膜の膜厚変化率を、分光エリプソメーターUV1280E(KLA-TENCOR社製)を用いて測定した。評価基準は、膜厚変化率が0%の場合を「〇」、膜厚変化率が0%を超える場合を「×」とした。
<Film curability>
Each substrate with a resist underlayer film using a silicon wafer as a substrate to be processed is immersed in propyl glycol monomethyl ether acetate for 1 minute at room temperature, and the film thickness change rate of the resist underlayer film before and after the immersion is measured using a spectroscopic ellipsometer UV1280E (KLA-TENCOR The measurement was performed using The evaluation criteria were “◯” when the film thickness change rate was 0%, and “X” when the film thickness change rate exceeded 0%.
 <エッチング耐性>
 被加工基板としてシリコンウェハを用いた各レジスト下層膜付き基板について、エッチング装置(神鋼精機社製、型番「EXAM」)を使用して、CF/Ar/O(CF:40mL/min、Ar:20mL/min、O:5mL/min、圧力:20Pa、RFパワー:200W、処理時間:40秒、温度:15℃)でレジスト下層膜をエッチング処理し、エッチング処理前後のレジスト下層膜の膜厚を測定して、エッチングレートを算出し、エッチング耐性を評価した。
 尚、このエッチングレートの算出に際しては、JSR社製のレジスト下層膜形成用組成物(商品名「NFC CT08」)により、基準レジスト下層膜を形成して行った。評価基準は、前記基準レジスト下層膜に比べてエッチングレートが、+10%未満の場合を「○」、+10%以上の場合を「×」とした。
<Etching resistance>
For each substrate with a resist underlayer film using a silicon wafer as the substrate to be processed, CF 4 / Ar / O 2 (CF 4 : 40 mL / min, using an etching apparatus (manufactured by Shinko Seiki Co., Ltd., model number “EXAM”), The resist underlayer film was etched at Ar: 20 mL / min, O 2 : 5 mL / min, pressure: 20 Pa, RF power: 200 W, processing time: 40 seconds, temperature: 15 ° C.) The film thickness was measured, the etching rate was calculated, and the etching resistance was evaluated.
The etching rate was calculated by forming a reference resist underlayer film using a resist underlayer film forming composition (trade name “NFC CT08”) manufactured by JSR. The evaluation criteria were “◯” when the etching rate was less than + 10% as compared with the reference resist underlayer film, and “X” when the etching rate was + 10% or more.
 <曲がり耐性>
 被加工基板としてTEOS基板を用いた各レジスト下層膜付き基板を用い、このレジスト下層膜(膜厚600nm)上に3層レジストプロセス用中間層組成物溶液(JSR社製、商品名「NFC SOG080」)をスピンコートし、200℃で60秒間、更に300℃で60秒間ホットプレート上にて加熱して、膜厚50nmの中間層を形成した。次いで、この中間層上に、ArF用レジスト組成物(JSR社製、商品名「AR1682J」)をスピンコートし、130℃のホットプレート上で90秒間プレベークして、膜厚200nmのフォトレジスト膜(レジスト被膜)を形成した。
 その後、ニコン(NIKON)社製のArFエキシマレーザー露光装置(レンズ開口数0.78、露光波長193nm)を用い、マスクパターンを介して、最適露光時間だけ露光した。次いで、130℃のホットプレート上で90秒間ポストベークした後、濃度2.38%のテトラメチルアンモニウムヒドロキシド水溶液を用い、25℃で1分間現像し、水洗し、乾燥して、ArF用ポジ型レジストパターンを形成した。
 次いで、形成したレジストパターンを、ドライエッチング法を用いて、中間層にパターン転写して中間層パターンを形成し、この中間層パターンをマスクとして、ドライエッチング法を用いて、レジスト下層膜にパターン転写してレジスト下層膜にレジスト下層膜パターンを形成した。更に、このレジスト下層膜パターンをマスクとして、CF/Ar/Oで300nmの深さまでTEOS基板にパターンを形成した。
 そして、曲がり耐性を評価するために、下層膜パターン形状を走査型電子顕微鏡にて観察し、曲がり耐性を評価した。評価基準は、下層膜パターン形状に曲がりが無い場合を「○」、下層膜パターン形状に曲がりが有る場合を「×」とした。
<Bending resistance>
Each substrate with a resist underlayer film using a TEOS substrate as a substrate to be processed is used. On this resist underlayer film (film thickness 600 nm), an intermediate layer composition solution for a three-layer resist process (manufactured by JSR, trade name “NFC SOG080”) ) Was spin-coated and heated on a hot plate at 200 ° C. for 60 seconds and further at 300 ° C. for 60 seconds to form an intermediate layer having a thickness of 50 nm. Next, an ArF resist composition (trade name “AR1682J” manufactured by JSR Corporation) is spin-coated on this intermediate layer, and prebaked on a hot plate at 130 ° C. for 90 seconds to form a 200 nm-thick photoresist film ( Resist film) was formed.
Thereafter, exposure was performed for an optimal exposure time through a mask pattern using an ArF excimer laser exposure apparatus (lens numerical aperture 0.78, exposure wavelength 193 nm) manufactured by NIKON. Next, after post-baking on a hot plate at 130 ° C. for 90 seconds, using an aqueous solution of tetramethylammonium hydroxide having a concentration of 2.38%, developing at 25 ° C. for 1 minute, washing with water and drying, a positive type for ArF A resist pattern was formed.
Next, the formed resist pattern is transferred to an intermediate layer using a dry etching method to form an intermediate layer pattern. Using this intermediate layer pattern as a mask, the pattern is transferred to the resist underlayer using a dry etching method. Then, a resist underlayer film pattern was formed on the resist underlayer film. Further, using this resist underlayer film pattern as a mask, a pattern was formed on the TEOS substrate to a depth of 300 nm with CF 4 / Ar / O 2 .
And in order to evaluate bending tolerance, the lower layer film pattern shape was observed with the scanning electron microscope, and bending tolerance was evaluated. The evaluation criteria were “◯” when the lower layer film pattern was not bent and “X” when the lower layer film pattern was bent.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[6]実施例の効果
 表4に示すように、実施例1~22においては、膜硬化性、曲がり耐性、及びエッチング耐性が全て「○」であった。一方、表5に示すように、比較例1~8においては、曲がり耐性が「○」となることはなかった。
 このような結果が得られた原因としては、以下の理由が考えられる。
 実施例のレジスト下層膜は、水素含有量が30atom%以下であるため、実施例のレジスト下層膜は曲がり耐性を有していたものと考えられる。
 また、比較例1~7ではフェノール性水酸基を1つしか有していないため、レジスト下層膜中の水素含有量が多くなり、結果的に曲がり耐性が「×」となったものと推定される。また、比較例8ではフェノール性水酸基を2個有しているにも関わらず、アルデヒド化合物の水素含有量が多いため、レジスト下層膜中の水素含量が30atom%を超え、結果的に曲がり耐性が「×」となったものと推定される。
[6] Effects of Examples As shown in Table 4, in Examples 1 to 22, film curability, bending resistance, and etching resistance were all “◯”. On the other hand, as shown in Table 5, in Comparative Examples 1 to 8, the bending resistance was not “◯”.
The following reasons can be considered as a cause of obtaining such a result.
Since the resist underlayer film of the example has a hydrogen content of 30 atom% or less, it is considered that the resist underlayer film of the example had bending resistance.
Further, since Comparative Examples 1 to 7 have only one phenolic hydroxyl group, the hydrogen content in the resist underlayer film is increased, and as a result, the bending resistance is estimated to be “x”. . In Comparative Example 8, the hydrogen content of the aldehyde compound is large despite having two phenolic hydroxyl groups, so the hydrogen content in the resist underlayer film exceeds 30 atom%, resulting in bending resistance. It is presumed that it became “x”.
 以上のことから、フェノール性水酸基を2個以上有する炭素数6~10の芳香族化合物とアルデヒド化合物との縮合反応により得られた樹脂を含有するレジスト下層膜形成用組成物により形成されたレジスト下層膜は、良好な膜硬化性、エッチング耐性、曲がり耐性を有していることが確認できた。 From the above, the resist underlayer formed by the resist underlayer film forming composition containing a resin obtained by a condensation reaction of an aromatic compound having 2 or more phenolic hydroxyl groups and having 6 to 10 carbon atoms and an aldehyde compound It was confirmed that the film had good film curability, etching resistance, and bending resistance.
 本発明のレジスト下層膜形成用組成物によれば、エッチング耐性に優れ、被加工基板をエッチングする際に下層膜パターンが折れ曲がらないレジスト下層膜を形成することができる。そのため、リソグラフィープロセスにおける微細加工に極めて好適に使用することができる。特に、ドライエッチングプロセスにおいて、精密なパターン転写性能及び良好なエッチング選択性を有することになり、レジスト下層膜のオーバーエッチングが少なく、被加工基板にレジストパターンを再現性よく忠実に転写することができる。また、被加工基板をエッチングする際に下層膜パターンが折れ曲がらないため、リソグラフィープロセスにおける微細加工、特に高集積回路素子の製造において歩留りの向上が期待できる。
 また、本発明のレジスト下層膜形成方法は、リソグラフィープロセス、特に、高集積回路素子の製造用プロセスとして極めて有用である。
According to the resist underlayer film forming composition of the present invention, it is possible to form a resist underlayer film that has excellent etching resistance and does not bend the underlayer film pattern when the substrate to be processed is etched. Therefore, it can be used very suitably for fine processing in a lithography process. In particular, in a dry etching process, it has precise pattern transfer performance and good etching selectivity, and there is little over-etching of the resist underlayer film, and the resist pattern can be faithfully transferred to the substrate to be processed with good reproducibility. . In addition, since the lower layer film pattern is not bent when the substrate to be processed is etched, an improvement in yield can be expected in microfabrication in the lithography process, particularly in the manufacture of highly integrated circuit elements.
The resist underlayer film forming method of the present invention is extremely useful as a lithography process, particularly as a process for manufacturing highly integrated circuit elements.
 尚、本発明においては、前述の具体的な実施例に示すものに限られず、目的、用途に応じて本発明の範囲内で種々変更した形態とすることができる。
 また、本発明では、参考発明として以下のレジスト下層膜及びレジスト下層膜形成用組成物並びにレジスト下層膜形成方法を挙げることができる。
 [1]フェノール性水酸基を有する樹脂と、溶剤と、を含有するレジスト下層膜形成用組成物から形成され、水素含有量が20~30atom%であることを特徴とするレジスト下層膜。
 [2]フェノール性水酸基を有する樹脂と、溶剤と、を含有するレジスト下層膜形成用組成物であって、
 前記フェノール性水酸基を有する樹脂が、2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物と、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られるものであることを特徴とするレジスト下層膜形成用組成物。
 [3]前記[2]に記載のレジスト下層膜形成用組成物を用いて得られる塗膜を加熱することにより、レジスト下層膜を形成する工程を備えており、加熱雰囲気が大気下であり、加熱温度が300~550℃であり、且つ加熱時間が30~600秒間であることを特徴とするレジスト下層膜形成方法。
The present invention is not limited to the specific examples described above, and various modifications can be made within the scope of the present invention depending on the purpose and application.
Moreover, in this invention, the following resist underlayer film, the composition for resist underlayer film formation, and the resist underlayer film forming method can be mentioned as reference invention.
[1] A resist underlayer film formed from a composition for forming a resist underlayer film containing a resin having a phenolic hydroxyl group and a solvent, and having a hydrogen content of 20 to 30 atom%.
[2] A resist underlayer film forming composition comprising a resin having a phenolic hydroxyl group and a solvent,
The resin having a phenolic hydroxyl group is an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups and at least one selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. A composition for forming a resist underlayer film, which is obtained by a condensation reaction with an aldehyde derivative.
[3] The method includes a step of forming a resist underlayer film by heating a coating film obtained using the composition for forming a resist underlayer film according to [2], wherein the heating atmosphere is in the air, A resist underlayer film forming method, wherein the heating temperature is 300 to 550 ° C. and the heating time is 30 to 600 seconds.

Claims (10)

  1.  被加工基板上にレジスト下層膜を形成し、レジスト下層膜上にレジストパターンを形成後、レジストパターンを一旦、レジスト下層膜に転写して下層膜パターンを形成した後、この下層膜パターンをエッチングマスクとして用いて被加工基板に転写する多層レジストプロセスに用いられるレジスト下層膜であって、
     該レジスト下層膜の水素原子の含有量が20~30atom%であることを特徴とするレジスト下層膜。
    A resist underlayer film is formed on a substrate to be processed, a resist pattern is formed on the resist underlayer film, the resist pattern is once transferred to the resist underlayer film, and then the underlayer film pattern is formed. It is a resist underlayer film used in a multilayer resist process that is used as a transfer to a substrate to be processed,
    A resist underlayer film, wherein the content of hydrogen atoms in the resist underlayer film is 20 to 30 atom%.
  2.  請求項1に記載のレジスト下層膜を形成するためのレジスト下層膜形成方法であって、
     フェノール性水酸基を有する樹脂と、溶剤と、を含有するレジスト下層膜形成用組成物を用いて得られる塗膜を、加熱することにより、レジスト下層膜を形成する工程を備えており、加熱雰囲気が大気下であり、加熱温度が300~550℃であり、且つ加熱時間が30~600秒間であることを特徴とするレジスト下層膜形成方法。
    A resist underlayer film forming method for forming the resist underlayer film according to claim 1,
    A step of forming a resist underlayer film by heating a coating film obtained using a composition for forming a resist underlayer film containing a resin having a phenolic hydroxyl group and a solvent; A resist underlayer film forming method, characterized in that it is in air, a heating temperature is 300 to 550 ° C., and a heating time is 30 to 600 seconds.
  3.  前記加熱温度が350~550℃であり、前記加熱時間が120~600秒間である請求項2に記載のレジスト下層膜形成方法。 3. The resist underlayer film forming method according to claim 2, wherein the heating temperature is 350 to 550 ° C. and the heating time is 120 to 600 seconds.
  4.  前記塗膜を300~550℃の温度で加熱する前に、100~250℃の温度で予備加熱する請求項2又は3に記載のレジスト下層膜形成方法。 4. The resist underlayer film forming method according to claim 2, wherein the coating film is preheated at a temperature of 100 to 250 ° C. before the coating film is heated at a temperature of 300 to 550 ° C.
  5.  前記フェノール性水酸基を有する樹脂が、2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物と、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られる樹脂である請求項2乃至4のいずれか1項に記載のレジスト下層膜形成方法。 The resin having a phenolic hydroxyl group is an aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups, and at least one selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. The method for forming a resist underlayer film according to any one of claims 2 to 4, which is a resin obtained by a condensation reaction with an aldehyde derivative.
  6.  前記2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物として、ジヒドロキシナフタレンを用いる請求項5に記載のレジスト下層膜形成方法。 6. The resist underlayer film forming method according to claim 5, wherein dihydroxynaphthalene is used as the aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups.
  7.  前記2個のフェノール性水酸基を有する炭素数6~10の芳香族化合物として、レゾルシノールを用いる請求項5に記載のレジスト下層膜形成方法 6. The resist underlayer film forming method according to claim 5, wherein resorcinol is used as the aromatic compound having 6 to 10 carbon atoms having two phenolic hydroxyl groups.
  8.  前記レジスト下層膜形成用組成物が、更に、促進剤を含有する請求項2乃至7のいずれか1項に記載のレジスト下層膜形成方法。 The method for forming a resist underlayer film according to any one of claims 2 to 7, wherein the composition for forming a resist underlayer film further contains an accelerator.
  9.  請求項1に記載のレジスト下層膜を形成するためのレジスト下層膜形成用組成物であって、
     該レジスト下層膜形成用組成物は、フェノール性水酸基を有する樹脂と、溶剤と、を含有しており、
     前記フェノール性水酸基を有する樹脂が、ジヒドロキシナフタレンと、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られるものであることを特徴とするレジスト下層膜形成用組成物。
    A resist underlayer film forming composition for forming the resist underlayer film according to claim 1,
    The resist underlayer film forming composition contains a resin having a phenolic hydroxyl group and a solvent,
    The resin having a phenolic hydroxyl group is obtained by a condensation reaction of dihydroxynaphthalene and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. A resist underlayer film forming composition.
  10.  請求項1に記載のレジスト下層膜を形成するためのレジスト下層膜形成用組成物であって、
     該レジスト下層膜形成用組成物は、フェノール性水酸基を有する樹脂と、溶剤と、を含有しており、
     前記フェノール性水酸基を有する樹脂が、レゾルシノールと、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、フルフラール、ベンズアルデヒド、バニリン及びナフトアルデヒドから選ばれる少なくとも1種のアルデヒド誘導体と、の縮合反応により得られるものであることを特徴とするレジスト下層膜形成用組成物。
    A resist underlayer film forming composition for forming the resist underlayer film according to claim 1,
    The resist underlayer film forming composition contains a resin having a phenolic hydroxyl group and a solvent,
    The resin having a phenolic hydroxyl group is obtained by a condensation reaction between resorcinol and at least one aldehyde derivative selected from formaldehyde, paraformaldehyde, trioxane, furfural, benzaldehyde, vanillin and naphthaldehyde. A composition for forming a resist underlayer film.
PCT/JP2009/052931 2008-03-28 2009-02-19 Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation WO2009119201A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-088277 2008-03-28
JP2008088277 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119201A1 true WO2009119201A1 (en) 2009-10-01

Family

ID=41113409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052931 WO2009119201A1 (en) 2008-03-28 2009-02-19 Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation

Country Status (1)

Country Link
WO (1) WO2009119201A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176767A1 (en) * 2011-06-24 2012-12-27 日産化学工業株式会社 Resist underlayer film forming composition containing polyhydroxybenzene novolac resin
EP2650729A1 (en) * 2010-12-09 2013-10-16 Nissan Chemical Industries, Ltd. Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
WO2014178348A1 (en) * 2013-04-30 2014-11-06 明和化成株式会社 Phenolic resin, epoxy resin composition and cured product using same, copper-clad laminate, and semiconductor sealing material
US20150376202A1 (en) * 2013-02-08 2015-12-31 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
JP2017107185A (en) * 2015-11-30 2017-06-15 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Coating composition for use with overcoated photoresist
JP2017125182A (en) * 2016-01-08 2017-07-20 Jsr株式会社 Polymer for forming resist underlay film and production method thereof, composition for forming resist underlay film, resist underlay film, and method for manufacturing patterned substrate
US9828355B2 (en) 2013-02-08 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
JPWO2017069063A1 (en) * 2015-10-19 2018-08-09 日産化学工業株式会社 Resist underlayer film forming composition containing novolak containing long chain alkyl group
US10179828B2 (en) * 2015-01-16 2019-01-15 Dic Corporation Curable composition for permanent resist films, and permanent resist film
EP3508919A1 (en) * 2017-12-26 2019-07-10 Shin-Etsu Chemical Co., Ltd. Method for producing dihydroxynaphthalene condensate and dihydroxynaphthalene condensate
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
WO2023132263A1 (en) * 2022-01-07 2023-07-13 東京応化工業株式会社 Resist underlayer film formation composition, resist pattern formation method, formation method for resist underlayer film pattern, and pattern formation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792684A (en) * 1993-09-08 1995-04-07 Samsung Electron Co Ltd Antireflection film and manufacture of semiconductor device using antireflection film
JP2005156816A (en) * 2003-11-25 2005-06-16 Tokyo Ohka Kogyo Co Ltd Base material and multilayer resist pattern forming method
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
JP2008039815A (en) * 2006-08-01 2008-02-21 Shin Etsu Chem Co Ltd Resist undercoat film material, and resist undercoat film substrate and pattern forming method using the same
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792684A (en) * 1993-09-08 1995-04-07 Samsung Electron Co Ltd Antireflection film and manufacture of semiconductor device using antireflection film
JP2005156816A (en) * 2003-11-25 2005-06-16 Tokyo Ohka Kogyo Co Ltd Base material and multilayer resist pattern forming method
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
JP2008039815A (en) * 2006-08-01 2008-02-21 Shin Etsu Chem Co Ltd Resist undercoat film material, and resist undercoat film substrate and pattern forming method using the same
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263285B2 (en) 2010-12-09 2016-02-16 Nissan Chemical Industries, Ltd. Composition for forming a resist underlayer film including hydroxyl group-containing carbazole novolac resin
EP2650729A1 (en) * 2010-12-09 2013-10-16 Nissan Chemical Industries, Ltd. Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
EP2650729A4 (en) * 2010-12-09 2014-07-16 Nissan Chemical Ind Ltd Composition for forming resist underlayer film containing hydroxyl group-containing carbazole novolac resin
WO2012176767A1 (en) * 2011-06-24 2012-12-27 日産化学工業株式会社 Resist underlayer film forming composition containing polyhydroxybenzene novolac resin
US9809601B2 (en) * 2013-02-08 2017-11-07 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US20150376202A1 (en) * 2013-02-08 2015-12-31 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US9828355B2 (en) 2013-02-08 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Compound, material for forming underlayer film for lithography, underlayer film for lithography and pattern forming method
US10377734B2 (en) 2013-02-08 2019-08-13 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, polyphenol derivative for use in the composition
WO2014178348A1 (en) * 2013-04-30 2014-11-06 明和化成株式会社 Phenolic resin, epoxy resin composition and cured product using same, copper-clad laminate, and semiconductor sealing material
US20170349564A1 (en) 2014-12-25 2017-12-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US10179828B2 (en) * 2015-01-16 2019-01-15 Dic Corporation Curable composition for permanent resist films, and permanent resist film
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11572430B2 (en) 2015-09-10 2023-02-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
JPWO2017069063A1 (en) * 2015-10-19 2018-08-09 日産化学工業株式会社 Resist underlayer film forming composition containing novolak containing long chain alkyl group
JP7176844B2 (en) 2015-10-19 2022-11-22 日産化学株式会社 Composition for forming resist underlayer film containing long-chain alkyl group-containing novolak
JP2017107185A (en) * 2015-11-30 2017-06-15 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Coating composition for use with overcoated photoresist
JP2017125182A (en) * 2016-01-08 2017-07-20 Jsr株式会社 Polymer for forming resist underlay film and production method thereof, composition for forming resist underlay film, resist underlay film, and method for manufacturing patterned substrate
EP3508919A1 (en) * 2017-12-26 2019-07-10 Shin-Etsu Chemical Co., Ltd. Method for producing dihydroxynaphthalene condensate and dihydroxynaphthalene condensate
US11267937B2 (en) 2017-12-26 2022-03-08 Shin-Etsu Chemical Co., Ltd. Method for producing dihydroxynaphthalene condensate and dihydroxynaphthalene condensate
WO2023132263A1 (en) * 2022-01-07 2023-07-13 東京応化工業株式会社 Resist underlayer film formation composition, resist pattern formation method, formation method for resist underlayer film pattern, and pattern formation method

Similar Documents

Publication Publication Date Title
WO2009119201A1 (en) Resist underlayer film, composition for resist underlayer film formation, and method for resist underlayer film formation
JP5051133B2 (en) Resist underlayer film forming method, resist underlayer film composition used therefor, and pattern forming method
JP5136407B2 (en) Resist underlayer film forming composition and pattern forming method
JP5257009B2 (en) Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5195478B2 (en) Resist underlayer film forming composition, resist underlayer film, resist underlayer film forming method, and pattern forming method
KR101398795B1 (en) Composition for resist under layer film formation and method for pattern formation
JP4288776B2 (en) Anti-reflective film forming composition
JP4748055B2 (en) Resist underlayer film forming composition and pattern forming method
JP5229044B2 (en) Resist underlayer film forming composition, resist underlayer film, resist underlayer film forming method, and pattern forming method
JP4134760B2 (en) Antireflection film forming composition and antireflection film
JP5157560B2 (en) Resist underlayer film forming composition and pattern forming method using the same
JP4639915B2 (en) Composition for resist underlayer film
JP5251433B2 (en) Resist underlayer film forming composition and pattern forming method
JP2005015532A (en) Polymer and antireflection film forming composition
JP4729803B2 (en) Underlayer film forming composition for multilayer resist process
JP5125825B2 (en) Underlayer film forming composition for multilayer resist process
KR101808893B1 (en) Composition for forming resist underlayer film and pattern formation method
US9447303B2 (en) Composition for forming resist underlayer film
JP5573230B2 (en) Resist underlayer film forming composition and pattern forming method
JP4134759B2 (en) Antireflection film forming composition and antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09725712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09725712

Country of ref document: EP

Kind code of ref document: A1