JP2020121687A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2020121687A
JP2020121687A JP2019015854A JP2019015854A JP2020121687A JP 2020121687 A JP2020121687 A JP 2020121687A JP 2019015854 A JP2019015854 A JP 2019015854A JP 2019015854 A JP2019015854 A JP 2019015854A JP 2020121687 A JP2020121687 A JP 2020121687A
Authority
JP
Japan
Prior art keywords
tire
bead
reinforcing member
core
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019015854A
Other languages
Japanese (ja)
Inventor
義隆 加藤
Yoshitaka Kato
義隆 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2019015854A priority Critical patent/JP2020121687A/en
Publication of JP2020121687A publication Critical patent/JP2020121687A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a pneumatic tire that can be improved in rim sliding resistance and bead durability while securing rim assemblability.SOLUTION: A bead part 20 is provided with a bead core 30 having a core outer part 31 formed by winding a bead wire 35 around the core outer part and a reinforcement member 40 which is arranged at inside in a tire radial direction of the core outer part 31, whose inner peripheral surface 45 is curved in a direction in which the surface protrudes to outside in the tire radial direction. In the bead core 30, a relation between a height H and a width W is in a range of 0.5≤(W/H)≤1.5, and a relation between the height H of the bead core 30 and a height hr of the reinforcement member 40 is in a range of 0.05≤(hr/H)≤0.5. A relation between a thickness t of the reinforcement member 40 and a width wr of the reinforcement member 40 is in a range of 3≤(wr/t)≤25, and a relation between a dent amount d of the reinforcement member 40 and the thickness t of the reinforcement member 40 is in a range of 0.2≤(d/t)≤1.2, and a relation of a width wb of the core outer part 31 and the width wr of the reinforcement member 40 is in a range of 0.9≤(wr/wb)≤1.1.SELECTED DRAWING: Figure 1

Description

本発明は、空気入りタイヤに関する。 The present invention relates to a pneumatic tire.

空気入りタイヤは、ビードワイヤをタイヤ周方向に巻き回して束ねてなる環状部材であるビードコアを有するビード部が、リムホイールのリムに嵌合することにより、リムホイールに装着される。また、近年では、ビードコアがビードワイヤ以外の部材を用いて構成されているものがある。例えば、特許文献1に記載された空気入りタイヤが有するビードコアは、帯状体を重ね巻きにすることにより形成され、ビードコアの半径方向内面の幅方向中央部には、半径方向内方に突出する膨出部が形成されている。また、特許文献2には、湾曲形状のリボンの堆積からなるビードワイヤが記載されている。また、特許文献3には、ワイヤを環状に複数回巻いて成形したワイヤ層と、タイヤ幅方向に延びる金属板を環状に少なくとも1層巻いて成形した金属板層との積層構造のビードコアが記載されている。 A pneumatic tire is mounted on a rim wheel by fitting a bead portion having a bead core, which is an annular member formed by winding a bead wire in the tire circumferential direction and bundling the bead wire, to the rim of the rim wheel. In addition, in recent years, there are some bead cores that are configured using members other than bead wires. For example, a bead core included in a pneumatic tire described in Patent Document 1 is formed by winding a belt-shaped body in an overlapping manner, and a bead core has a radially inwardly projecting radially inward protruding portion at a center portion in a width direction. A projecting portion is formed. Further, Patent Document 2 describes a bead wire formed by depositing a curved ribbon. Further, Patent Document 3 describes a bead core having a laminated structure of a wire layer formed by winding a wire in a plurality of turns in an annular shape and a metal plate layer formed by winding at least one metal plate extending in the tire width direction in an annular shape. Has been done.

特許第3005190号公報Japanese Patent No. 3005190 特許第2590189号公報Japanese Patent No. 2590189 特開平6−171323号公報JP-A-6-171323

ここで、ビードワイヤのタイヤ周方向に巻き回すことにより構成されるビードコアでは、タイヤ製造時に発生するカーカスの張力によってビードワイヤの配列が崩れることがある。例えば、ビードコアは、ビードワイヤの配列が崩れることにより、タイヤ子午断面におけるビードコアのタイヤ径方向内側の部分の形状が、タイヤ径内側に凸となる形状に崩れ易くなる。この場合、ビード部とリムとの接触圧が局所的となり、ビード部とリムとの間でリム滑りが発生してしまうことがある。ビード部とリムとの間でリム滑りが発生した場合、ビード部の内周面でありリムに接触する部分であるビードベース部のゴムが摩滅し易くなり、耐久性が低下し易くなる。 Here, in the bead core formed by winding the bead wire in the tire circumferential direction, the bead wire arrangement may be broken due to the tension of the carcass generated during tire manufacturing. For example, in the bead core, the shape of the portion of the bead core on the tire radial direction inner side in the meridional section of the tire is likely to collapse into a shape that is convex to the inner side of the tire diameter due to the collapse of the arrangement of the bead wires. In this case, the contact pressure between the bead portion and the rim becomes local, and rim slippage may occur between the bead portion and the rim. When rim slippage occurs between the bead portion and the rim, the rubber of the bead base portion, which is the inner peripheral surface of the bead portion and is in contact with the rim, is easily worn away, and the durability is easily deteriorated.

ビードコアの形状を崩れ難くするための手法としては、ビードコアに、形状の崩れが発生し難い、タイヤ子午断面における形状が六角形となるビードコアを採用する手法が考えられる。また、ビード部とリムとの接触圧を高めるための手法としては、ビードコアの内径を小さくする手法が考えられる。しかし、タイヤ子午断面における形状が六角形となるビードコアでは、ビードコアのタイヤ幅方向における幅が広くなるため、ビードコア周りでの歪みが大きくなり過ぎる虞がある。この場合、ビード部を構成する部材同士の間でセパレーションが発生し易くなり、耐久性が悪化し易くなる虞がある。また、ビードコアの内径を小さくした場合は、空気入りタイヤをリムホイールに装着する際におけるビードベース部とリムとの間に圧力が高くなるため、リム組性が悪化する虞がある。 As a method for making the shape of the bead core difficult to collapse, a method of adopting a bead core whose shape in the meridional section of the tire is hexagonal, which is less likely to cause shape collapse, is conceivable. Further, as a method for increasing the contact pressure between the bead portion and the rim, a method of reducing the inner diameter of the bead core can be considered. However, in the bead core having a hexagonal shape in the meridional section of the tire, the width of the bead core in the tire width direction becomes large, and thus the strain around the bead core may be too large. In this case, separation is likely to occur between members forming the bead portion, and durability may be deteriorated. Further, when the inner diameter of the bead core is made small, the pressure between the bead base portion and the rim when mounting the pneumatic tire on the rim wheel becomes high, which may deteriorate the rim assembly property.

本発明は、上記に鑑みてなされたものであって、リム組性を確保しつつ、耐リム滑り性及びビード耐久性を向上させることのできる空気入りタイヤを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a pneumatic tire capable of improving rim slip resistance and bead durability while ensuring rim assembly.

上述した課題を解決し、目的を達成するために、本発明に係る空気入りタイヤは、1本或いは複数本のビードワイヤを環状、且つ、多重に巻き回してなるコア外側部と、前記コア外側部のタイヤ径方向における内側に配置され、タイヤ径方向における内周面がタイヤ子午断面においてタイヤ径方向外側に向かって凸となる向きで湾曲する補強部材と、を有するビードコアをビード部に備え、前記ビードコアは、タイヤ径方向における高さHとタイヤ幅方向における幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内であり、前記補強部材は、前記ビードコアのタイヤ径方向における高さHと前記補強部材のタイヤ径方向における高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内であり、前記補強部材の厚みtと前記補強部材のタイヤ幅方向における幅wrとの関係が、3≦(wr/t)≦25の範囲内であり、前記補強部材の湾曲による凹み量dと前記補強部材の厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内であり、前記コア外側部のタイヤ幅方向における幅wbと前記補強部材のタイヤ幅方向における幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内であることを特徴とする。 In order to solve the problems described above and achieve the object, a pneumatic tire according to the present invention has a core outer part formed by winding one or a plurality of bead wires in an annular shape and multiple turns, and the core outer part. Is arranged on the inner side in the tire radial direction, the inner peripheral surface in the tire radial direction is provided with a bead core having a reinforcing member that is curved in a direction in which the tire meridional section is convex toward the outer side in the tire radial direction, The relationship between the height H in the tire radial direction and the width W in the tire width direction of the bead core is within a range of 0.5≦(W/H)≦1.5, and the reinforcing member is the tire of the bead core. The relationship between the height H in the radial direction and the height hr in the tire radial direction of the reinforcing member is within the range of 0.05≦(hr/H)≦0.5, and the thickness t of the reinforcing member and The relationship between the width wr of the reinforcing member in the tire width direction is within the range of 3≦(wr/t)≦25, and the relationship between the amount d of the recess due to the bending of the reinforcing member and the thickness t of the reinforcing member is It is within the range of 0.2≦(d/t)≦1.2, and the relationship between the width wb of the outer side portion of the core in the tire width direction and the width wr of the reinforcing member in the tire width direction is 0.9≦. It is characterized in that (wr/wb)≦1.1.

また、上記空気入りタイヤにおいて、前記ビードワイヤは被覆ゴムにより被覆され、前記補強部材は、剛性が前記ビードワイヤを被覆する前記被覆ゴムの剛性より高いことが好ましい。 In the pneumatic tire, it is preferable that the bead wire is covered with a covering rubber, and the reinforcing member has a rigidity higher than that of the covering rubber covering the bead wire.

また、上記空気入りタイヤにおいて、前記補強部材は、金属材料からなることが好ましい。 Further, in the pneumatic tire, the reinforcing member is preferably made of a metal material.

また、上記空気入りタイヤにおいて、前記ビードコアは、前記補強部材の前記内周面のタイヤ幅方向における内側端部Piとタイヤ幅方向における外側端部Poとを結んだ直線の、前記ビード部の内周面に位置するビードベース部に対する傾斜角度が、±5度以内であることが好ましい。 Further, in the pneumatic tire, the bead core is a straight line connecting the inner end portion Pi in the tire width direction of the inner peripheral surface of the reinforcing member and the outer end portion Po in the tire width direction of the bead portion. The inclination angle with respect to the bead base portion located on the peripheral surface is preferably within ±5 degrees.

また、上記空気入りタイヤにおいて、前記補強部材は、タイヤ幅方向の両端部におけるタイヤ径方向内側部分が面取りされることが好ましい。 Further, in the above pneumatic tire, it is preferable that the reinforcing member be chamfered at inner portions in the tire radial direction at both end portions in the tire width direction.

また、上記空気入りタイヤにおいて、前記ビード部は、タイヤ幅方向におけるタイヤ赤道面の両側に配置され、タイヤ幅方向における両側の前記ビード部間には、バイアス構造のカーカス層が架け渡されることが好ましい。 Further, in the pneumatic tire, the bead portion is arranged on both sides of the tire equatorial plane in the tire width direction, and between the bead portions on both sides in the tire width direction, a carcass layer having a bias structure may be bridged. preferable.

また、上記空気入りタイヤにおいて、前記補強部材は、層巻きしてタイヤ径方向に積層されることが好ましい。 In the pneumatic tire, it is preferable that the reinforcing member is wound in layers and laminated in the tire radial direction.

また、上記空気入りタイヤにおいて、前記補強部材は、前記コア外側部のタイヤ径方向における内周面に貼り付けられることが好ましい。 Further, in the pneumatic tire, it is preferable that the reinforcing member is attached to an inner peripheral surface of the outer side portion of the core in the tire radial direction.

本発明に係る空気入りタイヤは、リム組性を確保しつつ、耐リム滑り性及びビード耐久性を向上させることができる、という効果を奏する。 The pneumatic tire according to the present invention has an effect that rim slip resistance and bead durability can be improved while ensuring rim assembly property.

図1は、実施形態に係る空気入りタイヤが有するビード部のタイヤ子午断面図である。FIG. 1 is a tire meridian cross-sectional view of a bead portion included in a pneumatic tire according to an embodiment. 図2は、実施形態に係る空気入りタイヤの変形例であり、補強部材が1層の場合のビード部のタイヤ子午断面図である。FIG. 2 is a modified example of the pneumatic tire according to the embodiment, and is a tire meridian cross-sectional view of a bead portion when the reinforcing member has one layer. 図3は、実施形態に係る空気入りタイヤが有するビードコアにカバー材を巻き付けた状態を示す説明図である。FIG. 3 is an explanatory diagram showing a state in which the cover material is wound around the bead core of the pneumatic tire according to the embodiment. 図4Aは、空気入りタイヤの性能評価試験の結果を示す図表である。FIG. 4A is a chart showing the results of a performance evaluation test of a pneumatic tire. 図4Bは、空気入りタイヤの性能評価試験の結果を示す図表である。FIG. 4B is a chart showing the results of the performance evaluation test of the pneumatic tire. 図4Cは、空気入りタイヤの性能評価試験の結果を示す図表である。FIG. 4C is a chart showing the results of the performance evaluation test of the pneumatic tire.

以下に、本発明に係る空気入りタイヤの実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能、且つ、容易に想到できるもの、或いは実質的に同一のものが含まれる。 Hereinafter, an embodiment of a pneumatic tire according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. In addition, constituent elements in the following embodiments include elements that can be replaced by those skilled in the art and can be easily conceived, or elements that are substantially the same.

[実施形態]
以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸であるタイヤ回転軸(図示省略)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向においてタイヤ回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向においてタイヤ回転軸から離れる側をいう。また、タイヤ周方向とは、タイヤ回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、タイヤ回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)に向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面から離れる側をいう。タイヤ赤道面とは、タイヤ回転軸に直交すると共に、空気入りタイヤ1のタイヤ幅の中心を通る平面であり、タイヤ赤道面は、空気入りタイヤ1のタイヤ幅方向における中心位置であるタイヤ幅方向中心線と、タイヤ幅方向における位置が一致する。タイヤ幅は、タイヤ幅方向において最も外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面から最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。また、以下の説明では、タイヤ子午断面とは、タイヤ回転軸を含む平面でタイヤを切断したときの断面をいう。
[Embodiment]
In the following description, the tire radial direction means a direction orthogonal to the tire rotation axis (not shown) that is the rotation axis of the pneumatic tire 1, and the tire radial direction inner side is the side facing the tire rotation axis in the tire radial direction. The outer side in the tire radial direction refers to the side away from the tire rotation axis in the tire radial direction. Further, the tire circumferential direction means a circumferential direction with the tire rotation axis as the central axis. Further, the tire width direction means a direction parallel to the tire rotation axis, the tire width direction inner side is a side toward the tire equatorial plane (tire equatorial line) in the tire width direction, and the tire width direction outer side is in the tire width direction. The side away from the tire equatorial plane. The tire equatorial plane is a plane that is orthogonal to the tire rotation axis and passes through the center of the tire width of the pneumatic tire 1. The tire equatorial plane is the tire width direction that is the center position of the pneumatic tire 1 in the tire width direction. The center line and the position in the tire width direction match. The tire width is the width in the tire width direction between the outermost portions in the tire width direction, that is, the distance between the portions most distant from the tire equatorial plane in the tire width direction. The tire equator line refers to a line on the tire equatorial plane and extending in the tire circumferential direction of the pneumatic tire 1. In the following description, the tire meridional section means a section when the tire is cut along a plane including the tire rotation axis.

図1は、実施形態に係る空気入りタイヤ1が有するビード部20のタイヤ子午断面図である。実施形態に係る空気入りタイヤ1は、タイヤ幅方向におけるタイヤ赤道面の両側に、一対のビード部20が配置されている。一対のビード部20は、タイヤ幅方向におけるタイヤ赤道面の両側に一対が配置されるサイドウォール部(図示省略)のタイヤ径方向内側に、それぞれ配置されている。一対のビード部20のそれぞれには、ビードコア30とビードフィラー21とが配置されている。 FIG. 1 is a tire meridian sectional view of a bead portion 20 included in a pneumatic tire 1 according to an embodiment. The pneumatic tire 1 according to the embodiment has a pair of bead portions 20 arranged on both sides of the tire equatorial plane in the tire width direction. The pair of bead portions 20 are arranged inside the tire radial direction of a sidewall portion (not shown) where the pair of bead portions 20 are arranged on both sides of the tire equatorial plane in the tire width direction. A bead core 30 and a bead filler 21 are arranged in each of the pair of bead portions 20.

タイヤ幅方向におけるタイヤ赤道面の両側に配置されるビード部20間には、カーカス層10が架け渡されている。カーカス層10は、一対のビード部20間にトロイダル状に架け渡されて、空気入りタイヤ1の骨格を構成する。詳しくは、カーカス層10は、タイヤ幅方向における両側に位置する一対のビード部20のうち、一方のビード部20から他方のビード部20にかけて配設されており、カーカス層10の両端部付近は、ビードコア30及びビードフィラー21を包み込むようにビード部20でビードコア30のタイヤ径方向内側を通ってタイヤ幅方向に折り返されている。即ち、カーカス層10は、一対のビード部20間に架け渡されるカーカス本体部15と、カーカス本体部15から連続して形成されてタイヤ幅方向外側に折り返されるターンナップ部16とを有している。このうち、カーカス本体部15は、カーカス層10における、一対のビード部20がそれぞれ有するビードコア30のタイヤ幅方向内側同士の間に亘って形成される部分になっている。ターンナップ部16は、ビードコア30のタイヤ幅方向内側でカーカス本体部15から連続して形成され、ビードコア30のタイヤ径方向内側を通ってタイヤ幅方向外側に折り返される部分になっている。 The carcass layer 10 is bridged between the bead portions 20 arranged on both sides of the tire equatorial plane in the tire width direction. The carcass layer 10 is bridged in a toroidal shape between the pair of bead portions 20 to form a skeleton of the pneumatic tire 1. Specifically, the carcass layer 10 is arranged from one bead portion 20 to the other bead portion 20 of a pair of bead portions 20 located on both sides in the tire width direction, and the vicinity of both end portions of the carcass layer 10 is The bead portion 20 is folded back in the tire width direction through the inside of the bead core 30 in the tire radial direction so as to surround the bead core 30 and the bead filler 21. That is, the carcass layer 10 has a carcass main body portion 15 spanned between the pair of bead portions 20 and a turn-up portion 16 formed continuously from the carcass main body portion 15 and folded back outward in the tire width direction. There is. Of these, the carcass body portion 15 is a portion formed in the carcass layer 10 between the inner sides of the bead cores 30 of the pair of bead portions 20 in the tire width direction. The turn-up portion 16 is formed continuously from the carcass body portion 15 on the inner side in the tire width direction of the bead core 30, and passes through the inner side of the bead core 30 in the tire radial direction to be folded back to the outer side in the tire width direction.

また、カーカス層10は、複数のカーカスプライが重ねて配置されており、本実施形態では、カーカス層10は、2枚のカーカスプライ11、12が重ねられている。これらのカーカスプライ11、12は、カーカス層10がビード部20間に亘って架け渡される方向、及びタイヤ周方向に対して、いずれもカーカスコード(図示省略)が傾斜している。即ち、カーカス層10は、バイアス構造になっている。また、カーカスプライ11とカーカスプライ12とは、カーカスプライ11のカーカスコードとカーカスプライ12のカーカスコードとが互いに交差する向きとなって配置されている。 In addition, the carcass layer 10 is formed by stacking a plurality of carcass plies, and in the present embodiment, the carcass layer 10 is formed by stacking two carcass plies 11 and 12. In each of the carcass plies 11 and 12, a carcass cord (not shown) is inclined with respect to the direction in which the carcass layer 10 is spanned between the bead portions 20 and the tire circumferential direction. That is, the carcass layer 10 has a bias structure. Further, the carcass ply 11 and the carcass ply 12 are arranged so that the carcass cords of the carcass ply 11 and the carcass ply 12 intersect each other.

ビード部20に配置されるビードコア30は、タイヤ回転軸を中心とする円環状に形成されており、コア外側部31と補強部材40とを有している。コア外側部31は、1本或いは複数本のビードワイヤ35を、タイヤ回転軸を中心として環状、且つ、多重に巻き回して構成されている。このため、コア外側部31は、タイヤ子午断面において、ビードワイヤ35の複数の周回部分がタイヤ幅方向に複数並ぶ少なくとも1つの列と、タイヤ径方向に重なる複数の層とを形成している。 The bead core 30 arranged in the bead portion 20 is formed in an annular shape centered on the tire rotation axis and has a core outer portion 31 and a reinforcing member 40. The core outer portion 31 is configured by winding one or a plurality of bead wires 35 in an annular shape around the tire rotation axis and in multiple layers. Therefore, in the tire meridional section, the core outer portion 31 forms at least one row in which a plurality of winding portions of the bead wire 35 are arranged in the tire width direction and a plurality of layers that overlap in the tire radial direction.

例えば、コア外側部31が1本のビードワイヤ35により構成される場合は、1本のビードワイヤ35は、タイヤ回転軸を中心として螺旋状に巻き回されることにより、複数の周回部分がタイヤ幅方向に並ぶ列が形成され、螺旋がタイヤ径方向に重なるように巻き回されることにより、複数の層が形成される。また、コア外側部31が複数本のビードワイヤ35により構成される場合は、各ビードワイヤ35は、タイヤ幅方向における位置が同じ位置でタイヤ回転軸を中心として渦巻き状に巻き回されることにより、複数の周回部分がタイヤ径方向に重なる層が形成され、これらの渦巻き状の複数のビードワイヤ35がタイヤ幅方向に並ぶことにより、複数の周回部分がタイヤ幅方向に並ぶ列が形成される。 For example, when the core outer portion 31 is composed of one bead wire 35, one bead wire 35 is spirally wound around the tire rotation axis, so that a plurality of circumferential portions are formed in the tire width direction. Is formed, and a plurality of layers are formed by winding the spiral so as to overlap in the tire radial direction. Further, when the core outer portion 31 is composed of a plurality of bead wires 35, each bead wire 35 is wound in a spiral shape around the tire rotation axis at the same position in the tire width direction, so that a plurality of bead wires 35 are formed. Is formed in the tire radial direction, and a plurality of spiral bead wires 35 are arranged in the tire width direction, thereby forming a row in which the plurality of winding parts are arranged in the tire width direction.

これらのようにコア外側部31を構成するビードワイヤ35は、スチールワイヤ等の金属材料からなり、被覆ゴム36によって被覆されている。ビードワイヤ35を被覆する被覆ゴム36の100%伸長時のモジュラスは、7.0MPa以上12.0MPa以下の範囲内になっている。この場合における100%伸長時のモジュラスは、JIS K6251(3号ダンベル使用)に準拠した23℃での引張り試験により測定され、100%伸長時の引張り応力を示す。 The bead wire 35 that constitutes the core outer portion 31 as described above is made of a metal material such as steel wire, and is covered with the covering rubber 36. The modulus of the covering rubber 36 covering the bead wire 35 at 100% elongation is in the range of 7.0 MPa or more and 12.0 MPa or less. The modulus at 100% elongation in this case is measured by a tensile test at 23° C. according to JIS K6251 (using dumbbell No. 3), and shows the tensile stress at 100% elongation.

補強部材40は、コア外側部31のタイヤ径方向における内側に配置されており、コア外側部31の内周面32に対向する位置に配置されている。詳しくは、補強部材40は、タイヤ幅方向における幅がコア外側部31と同程度の幅で、タイヤ幅方向における位置がコア外側部31のタイヤ幅方向における位置とほぼ同じ位置で、コア外側部31のタイヤ径方向における内側に配置されている。補強部材40は、金属材料からなり、これにより補強部材40は、剛性が、コア外側部31を構成するビードワイヤ35を被覆する被覆ゴム36の剛性より高くなっている。 The reinforcing member 40 is arranged inside the core outer side portion 31 in the tire radial direction, and is arranged at a position facing the inner peripheral surface 32 of the core outer side portion 31. Specifically, the reinforcing member 40 has a width in the tire width direction that is approximately the same as the width of the core outer portion 31, a position in the tire width direction that is substantially the same as a position of the core outer portion 31 in the tire width direction, and a core outer portion. It is arranged inside 31 in the tire radial direction. The reinforcing member 40 is made of a metal material, and thus the rigidity of the reinforcing member 40 is higher than the rigidity of the covering rubber 36 that covers the bead wire 35 forming the core outer portion 31.

金属材料からなる補強部材40は、帯状の部材がタイヤ回転軸を中心として渦巻き状に巻き回されることにより、複数の周回部分がタイヤ径方向に重なる層が形成される、いわゆる層巻きによって形成される。つまり、補強部材40は、金属材料からなる帯状の部材を、帯の幅方向がタイヤ幅方向になり、帯の厚さ方向がタイヤ径方向になる向きで層巻きすることにより、周回部分がタイヤ径方向に積層される。本実施形態では、補強部材40は、タイヤ径方向内側からタイヤ径方向外側に向かって、補強部材第1層41と、補強部材第2層42と、補強部材第3層43との3層が積層されている。即ち、補強部材40は、補強部材第1層41が最もタイヤ径方向内側に位置し、補強部材第3層43は、最もタイヤ径方向外側に位置してコア外側部31の内周面32に対向している。 The reinforcing member 40 made of a metal material is formed by so-called layer winding, in which a belt-shaped member is spirally wound around a tire rotation axis to form a layer in which a plurality of circumferential portions overlap in the tire radial direction. To be done. That is, in the reinforcing member 40, the belt-shaped member made of a metal material is layer-wound in such a direction that the width direction of the band is the tire width direction and the thickness direction of the band is the tire radial direction, and the circumferential portion is the tire. It is laminated in the radial direction. In the present embodiment, the reinforcing member 40 has three layers of the reinforcing member first layer 41, the reinforcing member second layer 42, and the reinforcing member third layer 43 from the tire radial direction inner side toward the tire radial direction outer side. It is stacked. That is, in the reinforcing member 40, the reinforcing member first layer 41 is located on the innermost side in the tire radial direction, and the reinforcing member third layer 43 is located on the outermost side in the tire radial direction, and is disposed on the inner peripheral surface 32 of the core outer portion 31. Facing each other.

また、補強部材40は、タイヤ径方向における内周面45が、タイヤ子午断面においてタイヤ径方向外側に向かって凸となる向きで湾曲している。つまり、帯状の部材の幅方向がタイヤ幅方向になり、厚さ方向がタイヤ径方向になる向きで配置される補強部材40は、タイヤ子午断面において、補強部材40のタイヤ幅方向における中央付近が補強部材40のタイヤ幅方向における両端付近よりもタイヤ径方向外側に位置する形態で、タイヤ径方向外側に向かって凸となる向きで湾曲している。また、3層が積層される補強部材40は、補強部材第1層41と、補強部材第2層42と、補強部材第3層43との3層の全てが、タイヤ径方向外側に向かって凸となる向きで湾曲している。これにより、補強部材40は、補強部材40のタイヤ径方向における内周面45、つまり、3層のうち最もタイヤ径方向内側に位置する補強部材第1層41のタイヤ径方向における内周面45が、タイヤ径方向外側に向かって凸となる向きで湾曲している。 Further, the reinforcing member 40 is curved such that the inner circumferential surface 45 in the tire radial direction is convex outward in the tire radial direction in the tire meridional section. That is, the reinforcing member 40 arranged in a direction in which the width direction of the belt-shaped member is the tire width direction and the thickness direction is the tire radial direction, the tire meridional cross-section has the vicinity of the center in the tire width direction of the reinforcing member 40. The reinforcing member 40 is positioned on the outer side in the tire radial direction with respect to the vicinity of both ends in the tire width direction, and is curved in a direction convex toward the outer side in the tire radial direction. In the reinforcing member 40 in which three layers are laminated, all of the three layers of the reinforcing member first layer 41, the reinforcing member second layer 42, and the reinforcing member third layer 43 are directed outward in the tire radial direction. Curved in a convex direction. Thereby, the reinforcing member 40 has an inner peripheral surface 45 in the tire radial direction of the reinforcing member 40, that is, the inner peripheral surface 45 in the tire radial direction of the reinforcing member first layer 41 located on the innermost side in the tire radial direction of the three layers. Is curved in a direction in which it is convex outward in the tire radial direction.

補強部材40は、このように内周面45が、タイヤ径方向外側に向かって凸となる向きで湾曲しているため、カーカス層10における、ビードコア30のタイヤ径方向内側を通る部分は、内周面45のタイヤ幅方向における両端同士の間に亘って配置されている。つまり、カーカス層10における、ビードコア30のタイヤ径方向内側を通る部分は、補強部材40の内周面45のタイヤ幅方向における両端付近に主に接触し、カーカス層10における、補強部材40の内周面45のタイヤ幅方向における両端の間に位置する部分は、大部分が内周面45から離間している。 Since the inner peripheral surface 45 of the reinforcing member 40 is curved in such a manner as to be convex outward in the tire radial direction, the portion of the carcass layer 10 that passes through the tire radial inner side of the bead core 30 is inward. The circumferential surface 45 is arranged between both ends in the tire width direction. That is, the portion of the carcass layer 10 that passes through the inside of the bead core 30 in the tire radial direction mainly contacts near both ends of the inner peripheral surface 45 of the reinforcing member 40 in the tire width direction, and Most of the portion of the peripheral surface 45 located between both ends in the tire width direction is separated from the inner peripheral surface 45.

また、補強部材40は、タイヤ子午断面において面取り加工が施されている。詳しくは、補強部材40は、タイヤ幅方向の両端部における、タイヤ径方向内側部分が面取りされている。即ち、補強部材40は、タイヤ幅方向の両端部における、内周面45側の部分に、面取り部46が形成されている。補強部材40の面取り部46は、例えば、補強部材40を構成する帯状の部材の幅方向の両端部における、一方の面側が面取りされた状態で、当該帯状の部材を層巻きすることにより形成される。 Further, the reinforcing member 40 is chamfered in the meridional section of the tire. Specifically, the reinforcing member 40 is chamfered at the tire radial direction inner side portions at both end portions in the tire width direction. That is, in the reinforcing member 40, the chamfered portions 46 are formed on the inner peripheral surface 45 side portions at both end portions in the tire width direction. The chamfered portion 46 of the reinforcing member 40 is formed, for example, by layer-rolling the strip-shaped member in a state in which one surface side is chamfered at both ends in the width direction of the strip-shaped member forming the reinforcing member 40. It

これらのように、コア外側部31と補強部材40とを有するビードコア30は、タイヤ径方向における高さHとタイヤ幅方向における幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内になっている。また、コア外側部31のタイヤ径方向における内側に配置される補強部材40は、ビードコア30のタイヤ径方向における高さHと、補強部材40のタイヤ径方向における高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内になっている。また、補強部材40は、コア外側部31のタイヤ幅方向における幅wbと、補強部材40のタイヤ幅方向における幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内になっている。 As described above, in the bead core 30 having the core outer portion 31 and the reinforcing member 40, the relationship between the height H in the tire radial direction and the width W in the tire width direction is 0.5≦(W/H)≦1. It is within the range of 0.5. The reinforcing member 40 arranged inside the core outer portion 31 in the tire radial direction has a relationship between the height H of the bead core 30 in the tire radial direction and the height hr of the reinforcing member 40 in the tire radial direction of 0. It is within the range of .05≦(hr/H)≦0.5. In the reinforcing member 40, the relationship between the width wb of the core outer side portion 31 in the tire width direction and the width wr of the reinforcing member 40 in the tire width direction is 0.9≦(wr/wb)≦1.1. It is inside.

なお、ビードコア30のタイヤ径方向における高さHと、補強部材40のタイヤ径方向における高さhrとの関係は、0.10≦(hr/H)≦0.25の範囲内であるのが好ましい。また、本実施形態では、コア外側部31のタイヤ幅方向における幅wbは、ビードコア30のタイヤ幅方向における幅Wと同じ大きさになっているが、コア外側部31のタイヤ幅方向における幅wbは、ビードコア30のタイヤ幅方向における幅Wより小さくてもよい。 The relationship between the height H of the bead core 30 in the tire radial direction and the height hr of the reinforcing member 40 in the tire radial direction is within the range of 0.10≦(hr/H)≦0.25. preferable. Further, in the present embodiment, the width wb of the core outer side portion 31 in the tire width direction is the same as the width W of the bead core 30 in the tire width direction, but the width wb of the core outer side portion 31 in the tire width direction. May be smaller than the width W of the bead core 30 in the tire width direction.

また、補強部材40は、補強部材40の厚みtと、補強部材40のタイヤ幅方向における幅wrとの関係が、3≦(wr/t)≦25の範囲内になっている。この場合における補強部材40の厚みtは、本実施形態に係る空気入りタイヤ1のように、補強部材40の周回部分がタイヤ径方向に積層される場合は、各層ごとの厚みtになっている。即ち、補強部材40の厚みtは、補強部材40を構成する帯状の部材の厚みになっている。 In the reinforcing member 40, the relationship between the thickness t of the reinforcing member 40 and the width wr of the reinforcing member 40 in the tire width direction is within the range of 3≦(wr/t)≦25. The thickness t of the reinforcing member 40 in this case is the thickness t of each layer when the circumferential portion of the reinforcing member 40 is laminated in the tire radial direction as in the pneumatic tire 1 according to the present embodiment. .. That is, the thickness t of the reinforcing member 40 is the thickness of the strip-shaped member forming the reinforcing member 40.

さらに、補強部材40は、補強部材40の湾曲による凹み量dと、補強部材40の厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内になっている。この場合における補強部材40の凹み量dは、タイヤ子午断面における、補強部材40の内周面45のタイヤ幅方向における両側の端部同士を繋いだ直線Lcを基準とした際の、補強部材40の内周面45と直線Lcとの最大距離になっている。即ち、補強部材40の凹み量dは、補強部材40の内周面45のタイヤ幅方向における内側端部Piとタイヤ幅方向における外側端部Poとを結んだ直線Lcと、補強部材40の内周面45との最大距離になっている。カーカス層10における、ビードコア30のタイヤ径方向内側を通る部分は、補強部材40の内周面45の内側端部Piと外側端部Poとの間に亘って配置される。なお、補強部材40の湾曲による凹み量dと、補強部材40の厚みtとの関係は、0.3≦(d/t)≦0.8の範囲内であるのが好ましい。 Further, in the reinforcing member 40, the relationship between the amount of depression d due to the bending of the reinforcing member 40 and the thickness t of the reinforcing member 40 is within the range of 0.2≦(d/t)≦1.2. The dent amount d of the reinforcing member 40 in this case is based on the straight line Lc connecting both ends of the inner circumferential surface 45 of the reinforcing member 40 in the tire width direction in the tire meridional section. Is the maximum distance between the inner peripheral surface 45 and the straight line Lc. That is, the recess amount d of the reinforcing member 40 is determined by the straight line Lc connecting the inner end portion Pi of the inner peripheral surface 45 of the reinforcing member 40 in the tire width direction and the outer end portion Po of the tire width direction and the inner diameter of the reinforcing member 40. It is the maximum distance from the peripheral surface 45. The portion of the carcass layer 10 that passes through the inner side of the bead core 30 in the tire radial direction is arranged between the inner end portion Pi and the outer end portion Po of the inner peripheral surface 45 of the reinforcing member 40. The relationship between the amount d of the recess of the reinforcing member 40 due to the curve and the thickness t of the reinforcing member 40 is preferably within the range of 0.3≦(d/t)≦0.8.

また、ビード部20のタイヤ径方向外側に位置するサイドウォール部は、ビード部20とトレッド部(図示省略)との間で、タイヤ幅方向外側に凸となる方向に湾曲しているため、ビード部20からタイヤ径方向外側に延びるカーカス層10は、サイドウォール部に沿うことができるように、タイヤ径方向外側に延びつつタイヤ幅方向外側に向かっている。このため、ビードワイヤ35を巻き回してなるコア外側部31は、タイヤ径方向外側に延びつつタイヤ幅方向外側に向かうカーカス層10に沿って、ビードワイヤ35の配置が、タイヤ径方向における内側から外側に向かうに従って、タイヤ幅方向外側に向かう方向に僅かにずれている。つまり、ビードワイヤ35は、タイヤ径方向に複数の層が積層されているが、タイヤ径方向内側寄りに位置する層よりも、タイヤ径方向外側寄りに位置する層の方が、タイヤ幅方向外側に位置する方向に配置位置が僅かにずれている。これにより、コア外側部31を構成するビードワイヤ35は、周回部分の配列が、カーカス層10に沿った配列になっている。 In addition, the sidewall portion located on the tire radial direction outer side of the bead portion 20 is curved between the bead portion 20 and the tread portion (not shown) in a direction convex toward the tire width direction outer side. The carcass layer 10 extending from the portion 20 to the outside in the tire radial direction extends toward the outside in the tire radial direction and extends toward the outside in the tire width direction so as to be along the sidewall portion. Therefore, the core outer portion 31 formed by winding the bead wire 35 is arranged such that the bead wires 35 are arranged from the inner side to the outer side in the tire radial direction along the carcass layer 10 that extends outward in the tire radial direction and extends outward in the tire width direction. As it goes, it deviates slightly in the direction toward the outside in the tire width direction. That is, in the bead wire 35, a plurality of layers are laminated in the tire radial direction, but a layer located closer to the tire radial direction outer side is located closer to the tire width direction outer side than a layer located closer to the tire radial direction inner side. The arrangement position is slightly displaced in the direction in which it is located. As a result, the bead wires 35 forming the core outer portion 31 are arranged such that the winding portions are arranged along the carcass layer 10.

さらに、ビード部20におけるビードコア30のタイヤ径方向内側には、リムクッションゴム23が配設されている。詳しくは、リムクッションゴム23は、ビード部20においてビードコア30に沿って折り返されるカーカス層10の外側に配設されており、ビードコア30のタイヤ幅方向内側からタイヤ径方向内側、タイヤ幅方向外側に亘って配設され、タイヤ周方向に連続的に設けられている。 Further, a rim cushion rubber 23 is arranged inside the bead core 30 in the tire radial direction in the bead portion 20. Specifically, the rim cushion rubber 23 is disposed outside the carcass layer 10 that is folded back along the bead core 30 in the bead portion 20, and extends from the tire width direction inner side of the bead core 30 to the tire radial direction inner side and the tire width direction outer side. It is arranged over the entire length of the tire and is continuously provided in the tire circumferential direction.

ビード部20の内周面には、空気入りタイヤ1のリム組み時にリムホイールに接触するビードベース部25が位置している。ビードベース部25は、タイヤ幅方向内側からタイヤ幅方向外側に向かうに従ってタイヤ径方向における径が大きくなる方向に、タイヤ幅方向に対して、或いはタイヤ回転軸に対して、傾斜している。この場合におけるビードベース部25は、ビード部20の内周面のうち、補強部材40の内周面45の内側端部Piと外側端部Poとの間の範囲のタイヤ径方向内側に位置する部分を、少なくとも含む範囲になっている。即ち、ビードベース部25は、ビード部20の内周面のうち、タイヤ幅方向における位置が、補強部材40の内周面45の内側端部Piと外側端部Poとの間の範囲のタイヤ幅方向における位置と同じ位置となる部分を、少なくとも含む範囲になっている。 A bead base portion 25, which comes into contact with the rim wheel when the pneumatic tire 1 is assembled to the rim, is located on the inner peripheral surface of the bead portion 20. The bead base portion 25 is inclined with respect to the tire width direction or the tire rotation axis in a direction in which the diameter in the tire radial direction increases from the tire width direction inner side toward the tire width direction outer side. In this case, the bead base portion 25 is located inside the inner peripheral surface of the bead portion 20 in the tire radial direction inside a range between the inner end portion Pi and the outer end portion Po of the inner peripheral surface 45 of the reinforcing member 40. The range includes at least the part. That is, the bead base portion 25 is a tire whose position in the tire width direction on the inner peripheral surface of the bead portion 20 is in a range between the inner end portion Pi and the outer end portion Po of the inner peripheral surface 45 of the reinforcing member 40. It is a range that includes at least a portion at the same position as the position in the width direction.

ビードコア30は、補強部材40の内周面45のタイヤ幅方向における内側端部Piとタイヤ幅方向における外側端部Poとを結んだ直線Lcの、ビードベース部25に対する傾斜角度θが、±5度以内になっている。即ち、ビードコア30は、直線Lcのタイヤ幅方向に対する傾斜角度が、タイヤ幅方向に対するビードベース部25の傾斜角度と同程度になっている。この場合における、ビードベース部25に対する直線Lcの傾斜角度θは、例えば、タイヤ幅方向に対する傾斜角度が、ビードベース部25よりも直線Lcの方が大きい状態を+とし、ビードベース部25よりも直線Lcの方が小さい状態を−として示される。 In the bead core 30, the inclination angle θ of the straight line Lc connecting the inner end portion Pi of the inner peripheral surface 45 of the reinforcing member 40 in the tire width direction and the outer end portion Po in the tire width direction with respect to the bead base portion 25 is ±5. It is within the degree. That is, in the bead core 30, the inclination angle of the straight line Lc with respect to the tire width direction is substantially the same as the inclination angle of the bead base portion 25 with respect to the tire width direction. In this case, the inclination angle θ of the straight line Lc with respect to the bead base portion 25 is, for example, + when the inclination angle of the straight line Lc with respect to the tire width direction is larger than that of the bead base portion 25, and is larger than that of the bead base portion 25. The state where the straight line Lc is smaller is shown as −.

コア外側部31のタイヤ径方向内側に補強部材40を配置するための手法について説明すると、補強部材40は、ビードコア30をグリーンタイヤに組み込む前に、コア外側部31のタイヤ径方向における内周面32に貼り付ける。つまり、補強部材40は、コア外側部31の内周面32、または、補強部材40の外周面、或いは、その両方に接着剤を塗布した状態で、コア外側部31の内周面32に接触させることにより、グリーンタイヤに組み込む前にコア外側部31の内周面32に貼り付ける。これにより、ビードコア30は、補強部材40の内周面45がタイヤ径方向外側に向かって凸となる向きで湾曲する状態で、コア外側部31のタイヤ径方向における内側に補強部材40が配置された状態でグリーンタイヤに組み込まれる。その後、グリーンタイヤの加硫成形が行われることにより、ビードコア30は、コア外側部31のタイヤ径方向内側に補強部材40が配置された形態になる。 A method for arranging the reinforcing member 40 on the tire radial direction inner side of the core outer side portion 31 will be described. The reinforcing member 40 includes the inner peripheral surface of the core outer side portion 31 in the tire radial direction before incorporating the bead core 30 into the green tire. Paste it on 32. That is, the reinforcing member 40 contacts the inner peripheral surface 32 of the core outer portion 31 in a state where the adhesive is applied to the inner peripheral surface 32 of the core outer portion 31, the outer peripheral surface of the reinforcing member 40, or both. By doing so, it is attached to the inner peripheral surface 32 of the core outer portion 31 before being incorporated into the green tire. Thereby, in the bead core 30, the reinforcing member 40 is arranged inside the core outer portion 31 in the tire radial direction in a state where the inner peripheral surface 45 of the reinforcing member 40 is curved in a direction in which the inner peripheral surface 45 is convex outward in the tire radial direction. It will be installed in the green tire in the closed state. After that, the vulcanization molding of the green tire is performed, so that the bead core 30 has a configuration in which the reinforcing member 40 is arranged inside the core outer portion 31 in the tire radial direction.

本実施形態に係る空気入りタイヤ1を車両に装着する際には、ビード部20にリムホイールを嵌合することによってリムホイールに空気入りタイヤ1をリム組みし、内部に空気を充填してインフレートした状態で車両に装着する。空気入りタイヤ1を装着した車両が走行すると、トレッド部(図示省略)が路面に接触しながら当該空気入りタイヤ1は回転する。車両は、トレッド部と路面との間の摩擦力により、駆動力や制動力を路面に伝達したり、旋回力を発生させたりすることにより走行する。例えば、駆動力を路面に伝達する際には、車両が有するエンジン等の原動機で発生した動力がリムホイールに伝達され、リムホイールからビード部20に伝達されることにより、空気入りタイヤ1に伝達される。 When the pneumatic tire 1 according to the present embodiment is mounted on a vehicle, the rim wheel is fitted to the bead portion 20 to assemble the pneumatic tire 1 to the rim wheel, and the inside is filled with air. Attach it to the vehicle in the state of fretting. When a vehicle equipped with the pneumatic tire 1 travels, the pneumatic tire 1 rotates while a tread portion (not shown) contacts the road surface. The vehicle travels by transmitting a driving force or a braking force to the road surface or generating a turning force by a frictional force between the tread portion and the road surface. For example, when transmitting the driving force to the road surface, the power generated by a prime mover such as an engine of the vehicle is transmitted to the rim wheel, and is transmitted from the rim wheel to the bead portion 20 to be transmitted to the pneumatic tire 1. To be done.

空気入りタイヤ1に伝達された力のうちの一部は、空気入りタイヤ1の骨格を構成するカーカス層10によって受ける。カーカス層10は、タイヤ幅方向における両側に位置するビード部20間に亘って配置されており、ビード部20とリムホイールとの間で伝達される力の多くを、カーカス層10によって受けることが可能になっている。 Part of the force transmitted to the pneumatic tire 1 is received by the carcass layer 10 forming the skeleton of the pneumatic tire 1. The carcass layer 10 is arranged between the bead portions 20 located on both sides in the tire width direction, and most of the force transmitted between the bead portion 20 and the rim wheel is received by the carcass layer 10. It is possible.

ここで、空気入りタイヤ1の製造時におけるグリーンタイヤ(図示省略)の加硫工程では、グリーンタイヤを加硫成形用の金型に入れると共に、グリーンタイヤの内側にブラダー(図示省略)を入り込ませ、ブラダーを膨張させることにより、グリーンタイヤを膨張させて金型に押し付ける。これにより、グリーンタイヤを構成するゴム部材の加硫を行いつつ、トレッド部に形成する溝の形成等の成形を行うが、加硫工程では、ブラダーによってグリーンタイヤを膨張させるため、ビード部20間に亘って配置されるカーカス層10には、張力が作用する。 Here, in the vulcanization process of the green tire (not shown) at the time of manufacturing the pneumatic tire 1, the green tire is put into a mold for vulcanization molding, and a bladder (not shown) is put inside the green tire. , The green tire is inflated by inflating the bladder and pressed against the mold. Thereby, while vulcanizing the rubber member constituting the green tire, molding such as formation of grooves formed in the tread portion is performed. In the vulcanizing step, the green tire is inflated by the bladder. Tension acts on the carcass layer 10 arranged over the entire length.

カーカス層10は、タイヤ幅方向における両側のビード部20間でビードコア30に沿って折り返されているため、加硫成形時にカーカス層10に張力が作用すると、ビードコア30には、カーカス層10の張力による力が伝達される。カーカス層10は、ビードコア30のタイヤ幅方向内側からタイヤ幅方向外側にビードコア30に沿って折り返されているため、カーカス層10からビードコア30に伝達される張力は、ビードコア30の内周面におけるタイヤ幅方向外側の端部付近をタイヤ幅方向内側に向かわせ、ビードコア30の内周面におけるタイヤ幅方向内側の端部付近をタイヤ径方向外側に向かわせる方向に、ビードコア30を回転させようとする力として作用する。このため、ビードコア30は、列と層とを形成してビードコア30を構成するビードワイヤ35の配置が崩れ易くなる。ビードワイヤ35の配置が、例えば、タイヤ子午断面においてビードコア30の内周面がタイヤ径方向内側に凸となる形状に崩れた場合、リム組みした際にビード部20とリムホイールとの接触圧が大きくなる部分が局所的となり易くなる。ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となると、接触圧が小さくなる部分も発生し易くなるため、ビード部20とリムホイールとの間でリム滑りが発生してしまうことがある。 Since the carcass layer 10 is folded back along the bead core 30 between the bead portions 20 on both sides in the tire width direction, when a tension acts on the carcass layer 10 during vulcanization molding, the bead core 30 has a tension of the carcass layer 10. Force is transmitted. Since the carcass layer 10 is folded back along the bead core 30 from the tire width direction inner side of the bead core 30 to the tire width direction outer side, the tension transmitted from the carcass layer 10 to the bead core 30 is the tire on the inner peripheral surface of the bead core 30. An attempt is made to rotate the bead core 30 in a direction in which the vicinity of the end portion on the outer side in the width direction is directed to the inner side in the tire width direction and the end portion on the inner peripheral surface of the bead core 30 on the inner side in the tire width direction is directed to the outer side in the tire radial direction. Acts as a force. Therefore, in the bead core 30, the arrangement of the bead wires 35 that form the rows and layers to form the bead core 30 is likely to collapse. When the bead wire 35 is dislocated into a shape in which the inner peripheral surface of the bead core 30 is convex inward in the tire radial direction in the meridional section of the tire, the contact pressure between the bead portion 20 and the rim wheel is large when the rim is assembled. It becomes easy for the part to become local. When the portion where the contact pressure between the bead portion 20 and the rim wheel is large becomes local, the portion where the contact pressure becomes small is also likely to occur, so that rim slippage occurs between the bead portion 20 and the rim wheel. Sometimes.

これに対し、本実施形態では、ビードワイヤ35を巻き回してなるコア外側部31のタイヤ径方向における内側に、補強部材40が配置されている。このため、加硫成形時に、ビードコア30の内周面におけるタイヤ幅方向両側にカーカス層10からの張力が作用した場合でも、カーカス層10からの張力は補強部材40によって受けることができる。これにより、加硫成形時にカーカス層10からビードコア30に作用する張力によって、ビードコア30の内周面がタイヤ径方向内側に凸となる形状に崩れたりする等のビードワイヤ35の配置の崩れを抑制することができ、ビードコア30の内周面の形状を所望の形状に維持することができる。従って、リム組みした際に、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制することができ、接触圧の均一化を図ることができるため、ビード部20とリムホイールとの間でのリム滑りの発生を抑制することができる。 On the other hand, in the present embodiment, the reinforcing member 40 is arranged inside the core outer portion 31 formed by winding the bead wire 35 in the tire radial direction. For this reason, even when tension from the carcass layer 10 acts on both sides in the tire width direction on the inner peripheral surface of the bead core 30 during vulcanization molding, the tension from the carcass layer 10 can be received by the reinforcing member 40. Thus, the tension applied to the bead core 30 from the carcass layer 10 at the time of vulcanization suppresses the disposition of the bead wire 35 such that the inner peripheral surface of the bead core 30 collapses into a shape protruding inward in the tire radial direction. Therefore, the shape of the inner peripheral surface of the bead core 30 can be maintained in a desired shape. Therefore, when the rim is assembled, it is possible to prevent the portion where the contact pressure between the bead portion 20 and the rim wheel is large from becoming local, and it is possible to make the contact pressure uniform, so that the bead portion 20. The occurrence of rim slip between the wheel and the rim wheel can be suppressed.

また、補強部材40は、タイヤ径方向における内周面45がタイヤ径方向外側に向かって凸となる向きで湾曲しているため、ビードコア30の内周面の形状を、タイヤ径方向内側に凸となる形状にさせることなく、補強部材40のタイヤ幅方向及びタイヤ径方向における剛性を確保することができる。これにより、加硫成形時にカーカス層10からの張力がビードコア30に作用した場合でも、ビードコア30の内周面がタイヤ径方向内側に凸となる形状になることを、より確実に抑制することができる。従って、リム組みした際に、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることをより確実に抑制することができるため、ビード部20とリムホイールとの間でのリム滑りの発生を、より確実に抑制することができる。 Further, since the reinforcing member 40 is curved such that the inner peripheral surface 45 in the tire radial direction is convex outward in the tire radial direction, the shape of the inner peripheral surface of the bead core 30 is convex inward in the tire radial direction. It is possible to secure the rigidity of the reinforcing member 40 in the tire width direction and the tire radial direction without making the shape of Thereby, even when the tension from the carcass layer 10 acts on the bead core 30 during vulcanization molding, it is possible to more reliably prevent the inner peripheral surface of the bead core 30 from being convex inward in the tire radial direction. it can. Therefore, when the rim is assembled, it is possible to more reliably prevent the portion where the contact pressure between the bead portion 20 and the rim wheel is large from becoming localized, so that between the bead portion 20 and the rim wheel. It is possible to more reliably suppress the occurrence of rim slip.

また、ビードコア30は、タイヤ径方向における高さHとタイヤ幅方向における幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内であるため、ビードコア30の周囲の部材のセパレーションを抑制しつつ、ビード部20とリムホイールとの間のリム滑りを、より確実に抑制することができる。つまり、ビードコア30の高さHと幅Wとの関係が、(W/H)<0.5である場合は、ビードコア30の幅Wが小さ過ぎるため、空気入りタイヤ1をリムホイールに対してリム組みした際に、ビードベース部25における、ビードコア30のタイヤ径方向内側に位置する部分のリムホイールに対する接触圧が、局所的に大きくなる虞がある。この場合、ビード部20とリムホイールとの接触圧が小さい部分も発生し易くなるため、ビード部20とリムホイールとの間のリム滑りを抑制し難くなる虞がある。また、ビードコア30の高さHと幅Wとの関係が、(W/H)>1.5である場合は、ビードコア30の幅Wが大き過ぎるため、ビード部20に大きな負荷が作用した際にビードコア30の周囲に発生する歪みが、大きくなり過ぎる虞がある。この場合、大きな歪みに起因して、ビードコア30と、その周囲のゴム部材との間でセパレーションが発生したり、ビードコア30の周囲に位置するカーカス層10等の部材とその周囲のゴム部材との間でセパレーションが発生したりすることにより、ビード部20の耐久性であるビード耐久性が悪化し易くなる虞がある。 Further, since the relationship between the height H in the tire radial direction and the width W in the tire width direction of the bead core 30 is within the range of 0.5≦(W/H)≦1.5, It is possible to more reliably suppress the rim slip between the bead portion 20 and the rim wheel while suppressing the separation of the members. That is, when the relationship between the height H and the width W of the bead core 30 is (W/H)<0.5, the width W of the bead core 30 is too small, so that the pneumatic tire 1 is not attached to the rim wheel. When the rim is assembled, the contact pressure of the portion of the bead base portion 25 located inside the bead core 30 in the tire radial direction with respect to the rim wheel may locally increase. In this case, since a portion where the contact pressure between the bead portion 20 and the rim wheel is small is likely to occur, it may be difficult to suppress rim slip between the bead portion 20 and the rim wheel. When the relationship between the height H and the width W of the bead core 30 is (W/H)>1.5, the width W of the bead core 30 is too large, so that a large load is applied to the bead portion 20. Further, the strain generated around the bead core 30 may be too large. In this case, due to the large strain, separation occurs between the bead core 30 and the rubber member around the bead core 30, or a member such as the carcass layer 10 located around the bead core 30 and the rubber member around the bead core 30 are separated from each other. If separation occurs between them, the bead durability, which is the durability of the bead portion 20, may be easily deteriorated.

これに対し、ビードコア30の高さHと幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内である場合は、リムホイールに対するビードベース部25の接触圧が局所的に大きくなることを抑制することができ、また、ビードコア30の周囲に発生する歪みが大きくなり過ぎることを抑制することができる程度の広い範囲に亘って、ビード部20とリムホイールとの間で適切な大きさの接触圧を発生させることができる。これにより、ビードコア30の周囲の部材のセパレーションを抑制してビード耐久性を確保すると共に、ビード部20とリムホイールとの間のリム滑りを、より確実に抑制することができる。 On the other hand, when the relationship between the height H and the width W of the bead core 30 is within the range of 0.5≦(W/H)≦1.5, the contact pressure of the bead base portion 25 with respect to the rim wheel is The bead portion 20 and the rim wheel are spread over a wide range in which it is possible to suppress the local increase and to prevent the strain generated around the bead core 30 from becoming too large. An appropriate amount of contact pressure can be generated between them. As a result, the separation of the members around the bead core 30 can be suppressed to ensure the bead durability, and the rim slip between the bead portion 20 and the rim wheel can be suppressed more reliably.

また、補強部材40は、ビードコア30のタイヤ径方向における高さHと補強部材40のタイヤ径方向における高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内であるため、ビード部20とリムホイールとの接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制しつつ、カーカス層10の損傷を抑制してビード耐久性をより確実に確保することができる。つまり、ビードコア30の高さHと補強部材40の高さhrとの関係が、(hr/H)<0.05である場合は、ビードコア30の高さHに対する補強部材40の高さhrが低過ぎるため、補強部材40の剛性を確保し難くなる虞がある。この場合、加硫成形時にカーカス層10からの張力がビードコア30に作用した際に、カーカス層10からの力によって補強部材40の変形を抑制し難くなる虞があり、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなる虞がある。また、ビードコア30の高さHと補強部材40の高さhrとの関係が、(hr/H)>0.5である場合は、ビードコア30の高さHに対する補強部材40の高さhrが高過ぎるため、これに伴いコア外側部31のタイヤ径方向における高さが低くなり過ぎる虞がある。この場合、カーカス層10とコア外側部31との接触面積が小さくなるため、加硫成形時にカーカス層10からの張力がビードコア30に作用した際に、カーカス層10から作用する力によってビードワイヤ35の配置がずれることが起き難くなる。このため、カーカス層10には、ビードコア30におけるタイヤ径方向の外側端部寄りの位置に接触する位置付近に応力集中が発生し易くなり、カーカス層10は損傷し易くなるため、ビード耐久性が悪化し易くなる虞がある。また、ビードコア30の高さHと補強部材40の高さhrとの関係が、(hr/H)>0.5である場合は、ビードコア30の高さHに対する補強部材40の高さhrが高過ぎるため、補強部材40の剛性が大きくなり過ぎる虞がある。この場合、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなるため、ビード部20とリムホイールとの接触圧が大きくなり過ぎる部分が発生する虞があり、空気入りタイヤ1をリムホイールにリム組みする際におけるリム組性が悪化する虞がある。 In the reinforcing member 40, the relationship between the height H of the bead core 30 in the tire radial direction and the height hr of the reinforcing member 40 in the tire radial direction is within a range of 0.05≦(hr/H)≦0.5. Therefore, the occurrence of rim slip caused by the local contact pressure between the bead portion 20 and the rim wheel is more reliably suppressed, while the carcass layer 10 is prevented from being damaged and the bead durability is more reliably ensured. Can be secured. That is, when the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is (hr/H)<0.05, the height hr of the reinforcing member 40 with respect to the height H of the bead core 30 is Since it is too low, it may be difficult to ensure the rigidity of the reinforcing member 40. In this case, when the tension from the carcass layer 10 acts on the bead core 30 during vulcanization molding, it may be difficult to suppress the deformation of the reinforcing member 40 by the force from the carcass layer 10, and the bead portion 20 and the rim wheel There is a possibility that it may be difficult to suppress the local increase of the contact pressure. Further, when the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is (hr/H)>0.5, the height hr of the reinforcing member 40 with respect to the height H of the bead core 30 is Since the height is too high, the height of the core outer portion 31 in the tire radial direction may be too low. In this case, since the contact area between the carcass layer 10 and the core outer portion 31 becomes small, when the tension from the carcass layer 10 acts on the bead core 30 during vulcanization molding, the force acting from the carcass layer 10 causes the bead wire 35 to move. Displacement is less likely to occur. Therefore, stress concentration is likely to occur in the carcass layer 10 near a position in contact with a position closer to the outer end of the bead core 30 in the tire radial direction, and the carcass layer 10 is easily damaged, so that the bead durability is improved. There is a risk that it will become worse. Further, when the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is (hr/H)>0.5, the height hr of the reinforcing member 40 with respect to the height H of the bead core 30 is Since it is too high, the rigidity of the reinforcing member 40 may be too high. In this case, it is difficult to suppress the local increase in the contact pressure between the bead portion 20 and the rim wheel, so that there is a possibility that the contact pressure between the bead portion 20 and the rim wheel becomes too large. Therefore, there is a possibility that the rim-assembling property may deteriorate when the pneumatic tire 1 is assembled on the rim wheel.

これに対し、ビードコア30の高さHと補強部材40の高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内である場合は、カーカス層10とコア外側部31との接触面積が小さくなり過ぎることを抑えつつ、補強部材40の高さhrを確保することによって補強部材40の剛性を確保することができる。これにより、ビードコア30のタイヤ径方向における内側端部寄りの位置では、加硫成形時にカーカス層10からの力によって補強部材40が変形することを抑制することができ、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制することができる。また、ビードコア30のタイヤ径方向における外側端部寄りの位置では、カーカス層10とコア外側部31との接触面積を確保することができるため、カーカス層10からコア外側部31に作用する力によってビードワイヤ35の配置がずれることにより、カーカス層10に応力集中が発生することを抑制することができる。従って、接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制しつつ、カーカス層10の損傷を抑制してビード耐久性をより確実に確保することができる。さらに、ビードコア30の高さHと補強部材40の高さhrとの関係を、(hr/H)≦0.5にすることにより、補強部材40の剛性が大きくなり過ぎてビード部20とリムホイールとの接触圧が大きくなり過ぎることを抑制することができ、空気入りタイヤ1をリムホイールにリム組みする際におけるリム組性が悪化することを抑制することができる。 On the other hand, when the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is within the range of 0.05≦(hr/H)≦0.5, the carcass layer 10 and the core outside The rigidity of the reinforcing member 40 can be ensured by ensuring the height hr of the reinforcing member 40 while suppressing the contact area with the portion 31 from becoming too small. As a result, at the position closer to the inner end of the bead core 30 in the tire radial direction, the reinforcing member 40 can be prevented from being deformed by the force from the carcass layer 10 during vulcanization molding, and the bead portion 20 and the rim wheel are It is possible to suppress the local increase in the contact pressure. Further, at a position near the outer end of the bead core 30 in the tire radial direction, the contact area between the carcass layer 10 and the core outer part 31 can be ensured, so that the force acting from the carcass layer 10 to the core outer part 31 can be used. It is possible to prevent the stress concentration from occurring in the carcass layer 10 due to the displacement of the bead wire 35. Therefore, it is possible to more reliably suppress the occurrence of rim slip due to the local contact pressure, suppress damage to the carcass layer 10, and more reliably ensure the bead durability. Further, by setting the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 to be (hr/H)≦0.5, the rigidity of the reinforcing member 40 becomes too large, and the bead portion 20 and the rim are rimmed. It is possible to prevent the contact pressure with the wheel from becoming too large, and it is possible to prevent deterioration of the rim assembly property when the pneumatic tire 1 is assembled to the rim wheel.

また、補強部材40は、厚みtとタイヤ幅方向における幅wrとの関係が、3≦(wr/t)≦25の範囲内であるため、接触圧が大きくなり過ぎてリム組性が悪化することを抑制しつつ、ビード部20とリムホイールとの接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制することができる。つまり、補強部材40の厚みtと幅wrとの関係が、(wr/t)<3である場合は、補強部材40の厚みtが薄過ぎるため、補強部材40の剛性を確保し難くなる虞がある。この場合、加硫成形時にカーカス層10からの張力がビードコア30に作用した際に、カーカス層10からの力によって補強部材40の変形を抑制し難くなる虞があり、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなる虞がある。また、補強部材40の厚みtと幅wrとの関係が、(wr/t)>25である場合は、補強部材40の厚みtが厚過ぎるため、補強部材40の剛性が大きくなり過ぎる虞がある。この場合、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなるため、ビード部20とリムホイールとの接触圧が大きくなり過ぎる部分が発生する虞があり、空気入りタイヤ1をリムホイールにリム組みする際におけるリム組性が悪化する虞がある。 Further, in the reinforcing member 40, since the relationship between the thickness t and the width wr in the tire width direction is within the range of 3≦(wr/t)≦25, the contact pressure becomes too large and the rim assembly property deteriorates. While suppressing this, it is possible to more reliably suppress the occurrence of rim slip caused by the local contact pressure between the bead portion 20 and the rim wheel. That is, when the relationship between the thickness t and the width wr of the reinforcing member 40 is (wr/t)<3, the thickness t of the reinforcing member 40 is too thin, and it may be difficult to secure the rigidity of the reinforcing member 40. There is. In this case, when the tension from the carcass layer 10 acts on the bead core 30 during vulcanization molding, it may be difficult to suppress the deformation of the reinforcing member 40 by the force from the carcass layer 10, and the bead portion 20 and the rim wheel There is a possibility that it may be difficult to suppress the local increase of the contact pressure. Further, when the relationship between the thickness t and the width wr of the reinforcing member 40 is (wr/t)>25, the thickness t of the reinforcing member 40 is too thick, and therefore the rigidity of the reinforcing member 40 may be too high. is there. In this case, it is difficult to suppress the local increase in the contact pressure between the bead portion 20 and the rim wheel, so that there is a possibility that the contact pressure between the bead portion 20 and the rim wheel becomes too large. Therefore, there is a possibility that the rim-assembling property may deteriorate when the pneumatic tire 1 is assembled on the rim wheel.

これに対し、補強部材40の厚みtと幅wrとの関係が、3≦(wr/t)≦25の範囲内である場合は、補強部材40の剛性が大きくなり過ぎることによってビード部20とリムホイールとの接触圧が大きくなり過ぎる部分が発生することを抑制しつつ、補強部材40の剛性を確保することができる。これにより、接触圧が大きくなり過ぎてリム組性が悪化することを抑制しつつ、加硫成形時にカーカス層10からの力によって補強部材40が変形することを抑制することができ、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制することができる。従って、リム組性が悪化することを抑制しつつ、接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制することができる。 On the other hand, when the relationship between the thickness t and the width wr of the reinforcing member 40 is within the range of 3≦(wr/t)≦25, the rigidity of the reinforcing member 40 becomes too large and the bead portion 20 and The rigidity of the reinforcing member 40 can be ensured while suppressing the occurrence of a portion where the contact pressure with the rim wheel becomes too large. As a result, it is possible to prevent the reinforcing member 40 from being deformed by the force from the carcass layer 10 during vulcanization molding while suppressing the contact pressure from becoming too large and deteriorating the rim assembly property. It is possible to suppress the local increase in the contact pressure between the wheel and the rim wheel. Therefore, it is possible to more reliably suppress the occurrence of rim slip due to the local contact pressure while suppressing deterioration of the rim assembly property.

また、補強部材40は、補強部材40の湾曲による凹み量dと補強部材40の厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内であるため、ビード部20とリムホイールとの接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制しつつ、カーカス層10の損傷を抑制してビード耐久性をより確実に確保することができる。つまり、補強部材40の凹み量dと厚みtとの関係が、(d/t)<0.2である場合は、凹み量dが小さ過ぎるため、補強部材40を湾曲させても補強部材40の剛性を効果的に向上させ難くなる虞がある。この場合、補強部材40を湾曲させても、加硫成形時にカーカス層10からビードコア30に作用する力によって補強部材40が変形することを抑制し難くなる虞があり、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなる虞がある。また、補強部材40の凹み量dと厚みtとの関係が、(d/t)>1.2である場合は、凹み量dが大き過ぎるため、補強部材40を湾曲させることによって補強部材40の剛性が大きくなり過ぎてしまう虞がある。この場合、加硫成形時に、カーカス層10における補強部材40のタイヤ幅方向の端部に接触する部分付近に応力集中が発生し易くなり、カーカス層10は損傷し易くなるため、ビード耐久性が悪化し易くなる虞がある。 Further, in the reinforcing member 40, the relationship between the amount of depression d due to the bending of the reinforcing member 40 and the thickness t of the reinforcing member 40 is within the range of 0.2≦(d/t)≦1.2, so that the bead portion It is possible to more reliably suppress the occurrence of rim slippage due to the local contact pressure between the rim wheel 20 and the rim wheel, while suppressing damage to the carcass layer 10 and more reliably ensuring bead durability. .. That is, when the relationship between the recess amount d and the thickness t of the reinforcing member 40 is (d/t)<0.2, the recess amount d is too small, and therefore the reinforcing member 40 is curved even if the reinforcing member 40 is curved. It may be difficult to effectively improve the rigidity of the. In this case, even if the reinforcing member 40 is curved, it may be difficult to suppress the deformation of the reinforcing member 40 due to the force acting on the bead core 30 from the carcass layer 10 during vulcanization molding. There is a possibility that it may be difficult to suppress the local increase of the contact pressure. Further, when the relationship between the amount d of the recess of the reinforcing member 40 and the thickness t is (d/t)>1.2, the amount d of the recess is too large, and therefore the reinforcing member 40 is curved by bending. There is a risk that the rigidity of the will become too large. In this case, at the time of vulcanization molding, stress concentration is likely to occur near the portion of the carcass layer 10 that contacts the end portion of the reinforcing member 40 in the tire width direction, and the carcass layer 10 is easily damaged, so that the bead durability is improved. There is a risk that it will become worse.

これに対し、補強部材40の凹み量dと厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内である場合は、補強部材40の剛性が大きくなり過ぎることによってカーカス層10の応力集中が大きくなり過ぎることを抑制しつつ、補強部材40の剛性を確保することができる。これにより、カーカス層10の応力集中が大きくなり過ぎてカーカス層10が損傷し易くなることを抑制しつつ、加硫成形時に補強部材40が変形することを抑制することができ、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制することができる。従って、接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制しつつ、カーカス層10の損傷を抑制してビード耐久性をより確実に確保することができる。 On the other hand, when the relationship between the recess amount d and the thickness t of the reinforcing member 40 is within the range of 0.2≦(d/t)≦1.2, the rigidity of the reinforcing member 40 becomes too large. As a result, the rigidity of the reinforcing member 40 can be secured while suppressing the stress concentration of the carcass layer 10 from becoming too large. As a result, it is possible to prevent the reinforcing member 40 from being deformed during vulcanization molding while suppressing the stress concentration of the carcass layer 10 from becoming too large and the carcass layer 10 being easily damaged. It is possible to suppress the local increase in the contact pressure with the rim wheel. Therefore, it is possible to more reliably suppress the occurrence of rim slip due to the local contact pressure, suppress damage to the carcass layer 10, and more reliably ensure the bead durability.

また、ビードコア30は、コア外側部31のタイヤ幅方向における幅wbと補強部材40のタイヤ幅方向における幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内であるため、接触圧が大きくなる部分が局所的となることを抑制しつつ、ビード部20でのセパレーションの発生を抑制することができる。つまり、コア外側部31のタイヤ幅方向における幅wbと補強部材40のタイヤ幅方向における幅wrとの関係が、(wr/wb)<0.9である場合は、補強部材40の幅wrが小さ過ぎるため、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることを抑制し難くなる虞がある。また、コア外側部31のタイヤ幅方向における幅wbと補強部材40のタイヤ幅方向における幅wrとの関係が、(wr/wb)>1.1である場合は、補強部材40の幅wrが大き過ぎるため、ビード部20に大きな負荷が作用した際にビードコア30の周囲に発生する歪みが、大きくなり過ぎる虞がある。この場合、大きな歪みに起因してビード部20でセパレーションが発生し易くなり、ビード耐久性が悪化し易くなる虞がある。これに対し、コア外側部31の幅wbと補強部材40の幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内である場合は、補強部材40の幅wrを確保することによって接触圧が大きくなる部分が局所的となることを抑制しつつ、ビード部20でのセパレーションの発生を抑制することができる。これらの結果、リム組性を確保しつつ、耐リム滑り性及びビード耐久性を向上させることができる。 In the bead core 30, the relationship between the width wb of the core outer portion 31 in the tire width direction and the width wr of the reinforcing member 40 in the tire width direction is within the range of 0.9≦(wr/wb)≦1.1. Therefore, it is possible to suppress the occurrence of separation in the bead portion 20 while suppressing localization of the portion where the contact pressure increases. That is, when the relationship between the width wb of the core outer portion 31 in the tire width direction and the width wr of the reinforcing member 40 in the tire width direction is (wr/wb)<0.9, the width wr of the reinforcing member 40 is Since it is too small, it may be difficult to suppress localization of a portion where the contact pressure between the bead portion 20 and the rim wheel is large. Further, when the relationship between the width wb of the core outer portion 31 in the tire width direction and the width wr of the reinforcing member 40 in the tire width direction is (wr/wb)>1.1, the width wr of the reinforcing member 40 is Since it is too large, the strain generated around the bead core 30 when a large load acts on the bead portion 20 may be too large. In this case, due to the large strain, separation is likely to occur in the bead portion 20, and the bead durability may be deteriorated. On the other hand, when the relationship between the width wb of the core outer side portion 31 and the width wr of the reinforcing member 40 is within the range of 0.9≦(wr/wb)≦1.1, the width wr of the reinforcing member 40. It is possible to suppress the occurrence of the separation in the bead portion 20 while suppressing the local increase of the contact pressure by ensuring the above. As a result, rim slip resistance and bead durability can be improved while ensuring the rim assembly property.

また、補強部材40は、剛性がビードワイヤ35を被覆する被覆ゴム36の剛性より高いため、ビードコア30のタイヤ径方向における内側寄りの位置の剛性、即ち、ビードコア30の内周面側の剛性を、補強部材40によってより確実に高めることができる。これにより、加硫成形時におけるビードコア30の内周面側の変形を抑制してリム滑りの発生をより確実に抑制することができる。この結果、より確実に耐リム滑り性を向上させることができる。 Further, since the rigidity of the reinforcing member 40 is higher than the rigidity of the covering rubber 36 that covers the bead wire 35, the rigidity of the position of the bead core 30 on the inner side in the tire radial direction, that is, the rigidity of the inner peripheral surface side of the bead core 30, The reinforcing member 40 can more reliably increase the height. As a result, the deformation of the bead core 30 on the inner peripheral surface side during vulcanization molding can be suppressed, and the occurrence of rim slip can be more reliably suppressed. As a result, the rim slip resistance can be improved more reliably.

また、補強部材40は、金属材料からなるため、補強部材40の剛性をより確実に確保することができる。つまり、補強部材40は、金属材料からなることにより、コア外側部31のビードワイヤ35を被覆する被覆ゴム36よりも、剛性をより確実に高めることができる。これにより、補強部材40全体の剛性を、ビードワイヤ35が巻き回されるコア外側部31の剛性と比較して、より確実に高めることができる。従って、カーカス層10からの張力がビードコア30に作用した場合でも、ビードコア30の内周面の形状をより確実に所望の形状に維持することができ、リム組みした際におけるビード部20とリムホイールとの接触圧の均一化を図ることができる。この結果、より確実に耐リム滑り性を向上させることができる。 Moreover, since the reinforcing member 40 is made of a metal material, the rigidity of the reinforcing member 40 can be ensured more reliably. That is, since the reinforcing member 40 is made of a metal material, it is possible to more reliably increase the rigidity of the reinforcing member 40 compared with the covering rubber 36 that covers the bead wire 35 of the core outer portion 31. As a result, the rigidity of the entire reinforcing member 40 can be increased more reliably than the rigidity of the core outer portion 31 around which the bead wire 35 is wound. Therefore, even when the tension from the carcass layer 10 acts on the bead core 30, the shape of the inner peripheral surface of the bead core 30 can be more surely maintained in a desired shape, and the bead portion 20 and the rim wheel when assembled to the rim can be improved. The contact pressure with can be made uniform. As a result, the rim slip resistance can be improved more reliably.

また、ビードコア30は、補強部材40の内周面45の内側端部Piと外側端部Poとを結んだ直線Lcの、ビードベース部25に対する傾斜角度θが、±5度以内であるため、より確実に接触圧の均一化を図ることができる。つまり、ビードコア30は、直線Lcがビードベース部25に対してほぼ平行になるため、ビード部20をリムホイールにリム組みした際にビードコア30によって発生させることのできる、リムホイールに対するビード部20の接触圧の均一化を図ることができる。これにより、ビード部20とリムホイールとの接触圧が大きくなり過ぎる部分が発生し難くなるため、リム組性を向上させることが出来ると共に、接触圧が局所的となることに起因するリム滑りの発生をより確実に抑制することができる。この結果、より確実にリム組性を確保しつつ、耐リム滑り性を向上させることができる。 In the bead core 30, the inclination angle θ of the straight line Lc connecting the inner end Pi and the outer end Po of the inner peripheral surface 45 of the reinforcing member 40 with respect to the bead base 25 is within ±5 degrees. It is possible to more surely make the contact pressure uniform. In other words, since the straight line Lc of the bead core 30 is substantially parallel to the bead base portion 25, the bead portion 20 with respect to the rim wheel that can be generated by the bead core 30 when the bead portion 20 is rim-assembled to the rim wheel. The contact pressure can be made uniform. As a result, a portion where the contact pressure between the bead portion 20 and the rim wheel becomes too large hardly occurs, so that the rim assembly property can be improved and the rim slip caused by the local contact pressure can be prevented. The occurrence can be suppressed more reliably. As a result, the rim slip resistance can be improved while ensuring the rim assembly property more reliably.

また、補強部材40は、タイヤ幅方向の両端部におけるタイヤ径方向内側部分が面取りされているため、補強部材40のタイヤ幅方向における端部と、カーカス層10との接触面積が小さくなり過ぎることを抑制することができる。これにより、補強部材40のタイヤ幅方向における端部と、カーカス層10とが接触する部分付近で、カーカス層10に応力集中が発生することを抑制することができ、カーカス層10の損傷をより確実に抑制することができる。この結果、より確実にビード耐久性を向上させることができる。 Further, since the reinforcing member 40 is chamfered on the tire radial direction inner side portions at both end portions in the tire width direction, the contact area between the end portion of the reinforcing member 40 in the tire width direction and the carcass layer 10 becomes too small. Can be suppressed. As a result, it is possible to prevent stress concentration from occurring in the carcass layer 10 in the vicinity of a portion where the end portion of the reinforcing member 40 in the tire width direction and the carcass layer 10 contact each other, and to prevent damage to the carcass layer 10 more. It can be surely suppressed. As a result, the bead durability can be more reliably improved.

また、カーカス層10は、バイアス構造であり、ビードコア30には、タイヤ子午断面においてビードワイヤ35が格子状に配列される、いわゆる層巻きとなるビードコア30が用いられるため、このようなビードコア30に、補強部材40を用いることにより、より確実に耐リム滑り性を向上させることができる。つまり、カーカス層10がバイアス構造となる空気入りタイヤ1では、ビードコア30は、タイヤ子午断面においてビードワイヤ35の複数の列がタイヤ径方向に積層される際における、各列のビードワイヤ35の周回部分のタイヤ幅方向における位置が、異なる列同士の間でほぼ同じ位置となる、いわゆる層巻きと呼ばれるビードコア30が採用されることが多くなっている。このような、層巻きのビードコア30では、空気入りタイヤ1の製造時における加硫工程で、カーカス層10の張力によってビードワイヤ35の配置が崩れ易くなり、ビード部20からリムホイールへの接触圧に対して影響が大きい、ビードコア30の内周面寄りの位置のビードワイヤ35の配置も崩れ易くなっている。 Further, the carcass layer 10 has a bias structure, and the bead core 30 is a so-called layer winding bead core 30 in which the bead wires 35 are arranged in a lattice in a meridional section of the tire. By using the reinforcing member 40, the rim slip resistance can be more reliably improved. In other words, in the pneumatic tire 1 in which the carcass layer 10 has the bias structure, the bead core 30 has a circumferential portion of the bead wire 35 in each row when a plurality of rows of the bead wire 35 are stacked in the tire radial direction in the tire meridional section. In many cases, a so-called layer winding bead core 30 is used in which the positions in the tire width direction are almost the same between different rows. In such a layer-wound bead core 30, the arrangement of the bead wire 35 is easily collapsed due to the tension of the carcass layer 10 in the vulcanization step during the production of the pneumatic tire 1, and the contact pressure from the bead portion 20 to the rim wheel is increased. The arrangement of the bead wire 35 near the inner peripheral surface of the bead core 30, which has a great influence on the position, is also likely to collapse.

これに対し、本実施形態では、ビードワイヤ35を巻き回してなるコア外側部31のタイヤ径方向における内側に、補強部材40が配置されている。このため、層巻きのビードコア30においても、ビードコア30の内周面寄りの位置では、加硫成形時のカーカス層10の張力に対する剛性を確保することができる。従って、カーカス層10の張力がビードコア30に作用してビードコア30の内周面寄りの位置でビードワイヤ35の配置が崩れることに起因する、リムホイールへの接触圧が局所的となることを抑制することができ、ビード部20をリムホイールにリム組みした際における、リムホイールに対するビード部20の接触圧の均一化を図ることができる。この結果、より確実に耐リム滑り性を向上させることができる。 On the other hand, in the present embodiment, the reinforcing member 40 is arranged inside the core outer portion 31 formed by winding the bead wire 35 in the tire radial direction. Therefore, even in the layer-wound bead core 30, the rigidity with respect to the tension of the carcass layer 10 at the time of vulcanization molding can be secured at a position closer to the inner peripheral surface of the bead core 30. Therefore, it is possible to prevent the contact pressure on the rim wheel from being locally caused by the tension of the carcass layer 10 acting on the bead core 30 and the arrangement of the bead wire 35 collapses at a position closer to the inner peripheral surface of the bead core 30. Therefore, it is possible to make the contact pressure of the bead portion 20 to the rim wheel uniform when the bead portion 20 is assembled to the rim wheel. As a result, the rim slip resistance can be improved more reliably.

また、補強部材40は、金属材料からなる帯状の部材を層巻きしてタイヤ径方向に積層することより形成されるため、複数の層からなる補強部材40を、容易に形成することができる。これにより、コア外側部31のタイヤ径方向における内側に配置される補強部材40の剛性を、容易に、且つ、確実に確保することができる。この結果、耐リム滑り性をより容易に、且つ、確実に向上させることができる。 Further, since the reinforcing member 40 is formed by layer-rolling band-shaped members made of a metal material and stacking the members in the tire radial direction, the reinforcing member 40 having a plurality of layers can be easily formed. Accordingly, the rigidity of the reinforcing member 40 arranged inside the core outer portion 31 in the tire radial direction can be easily and reliably ensured. As a result, the rim slip resistance can be improved more easily and surely.

また、補強部材40は、コア外側部31のタイヤ径方向における内周面32に貼り付けられるため、コア外側部31とは異なる部材である補強部材40を、コア外側部31のタイヤ径方向における内側に容易に配置することができる。つまり、ビードコア30は、補強部材40がコア外側部31の内周面32に貼り付けられた状態でグリーンタイヤに組み込まれ、その後、グリーンタイヤの加硫成形が行われるため、容易に、コア外側部31のタイヤ径方向内側に補強部材40が配置される形態にすることができる。これにより、ビードコア30の内周面寄りの位置の剛性を、容易に確保することができる。この結果、耐リム滑り性をより容易に向上させることができる。 Further, since the reinforcing member 40 is attached to the inner peripheral surface 32 of the core outer side portion 31 in the tire radial direction, the reinforcing member 40 that is a member different from the core outer side portion 31 in the tire radial direction of the core outer side portion 31 is used. It can be easily placed inside. That is, the bead core 30 is incorporated into the green tire in a state where the reinforcing member 40 is attached to the inner peripheral surface 32 of the core outer portion 31, and thereafter, the vulcanization molding of the green tire is performed. The reinforcing member 40 may be arranged inside the portion 31 in the radial direction of the tire. This makes it possible to easily secure the rigidity of the bead core 30 at a position closer to the inner peripheral surface. As a result, the rim slip resistance can be improved more easily.

[変形例]
なお、上述した実施形態では、補強部材40は、金属材料からなる帯状の部材を層巻きすることによりタイヤ径方向に積層しているが、層巻き以外によってタイヤ径方向に積層してもよい。補強部材40は、例えば、複数の部材をタイヤ径方向に重ねることによって、複数の層を積層してもよい。
[Modification]
In addition, in the above-described embodiment, the reinforcing member 40 is laminated in the tire radial direction by winding the belt-shaped member made of a metal material in layers, but may be laminated in the tire radial direction by other than layer winding. The reinforcing member 40 may have a plurality of layers stacked by stacking a plurality of members in the tire radial direction, for example.

また、上述した実施形態では、補強部材40は、帯状の部材が積層されているが、補強部材40は、積層されていなくてもよい。図2は、実施形態に係る空気入りタイヤ1の変形例であり、補強部材40が1層の場合のビード部20のタイヤ子午断面図である。補強部材40は、例えば、図2に示すように、1層で形成されていてもよい。即ち、補強部材40は、帯状の部材が1層で、タイヤ回転軸を中心とする円環状に形成されていてもよい。補強部材40は、タイヤ径方向に積層される層の数に関わらず、コア外側部31のタイヤ径方向における内側に配置され、補強部材40のタイヤ径方向における内周面45がタイヤ子午断面においてタイヤ径方向外側に向かって凸となる向きで湾曲する形状で形成されていればよい。補強部材40は、タイヤ径方向における積層数に関わらず、内周面45がタイヤ径方向外側に向かって凸となる向きで湾曲することにより、ビードコア30の内周面の形状をタイヤ径方向内側に凸となる形状にさせることなく、補強部材40の剛性を確保することができる。これにより、加硫成形時にビードコア30の内周面がタイヤ径方向内側に凸となる形状になることを、より確実に抑制することができ、リム組みした際に、ビード部20とリムホイールとの接触圧が大きくなる部分が局所的となることをより確実に抑制することができるため、リム滑りの発生をより確実に抑制することができる。 Further, in the above-described embodiment, the reinforcing member 40 is formed by stacking strip-shaped members, but the reinforcing member 40 may not be stacked. FIG. 2 is a modified example of the pneumatic tire 1 according to the embodiment, and is a tire meridian cross-sectional view of the bead portion 20 when the reinforcing member 40 has one layer. The reinforcing member 40 may be formed as a single layer, for example, as shown in FIG. That is, the reinforcing member 40 may have a single layer of a belt-shaped member and may be formed in an annular shape around the tire rotation axis. The reinforcing member 40 is arranged on the inner side in the tire radial direction of the core outer portion 31 regardless of the number of layers laminated in the tire radial direction, and the inner peripheral surface 45 of the reinforcing member 40 in the tire radial direction in the tire meridional section. It may be formed in a shape that curves in a direction that is convex outward in the tire radial direction. Regardless of the number of laminated layers in the tire radial direction, the reinforcing member 40 is curved in a direction in which the inner peripheral surface 45 is convex outward in the tire radial direction, so that the shape of the inner peripheral surface of the bead core 30 is formed in the tire radial direction inside. The rigidity of the reinforcing member 40 can be ensured without forming a convex shape. This makes it possible to more reliably prevent the inner peripheral surface of the bead core 30 from being convex inward in the tire radial direction during vulcanization molding, and when the rim is assembled, the bead portion 20 and the rim wheel are Since it is possible to more reliably suppress the local increase in the contact pressure, it is possible to more reliably suppress the occurrence of rim slip.

また、上述した実施形態では、補強部材40は、コア外側部31のタイヤ径方向における内周面32に貼り付けられているが、補強部材40は、貼り付ける以外の手法により、コア外側部31のタイヤ径方向における内側に配置してもよい。図3は、実施形態に係る空気入りタイヤ1が有するビードコア30にカバー材50を巻き付けた状態を示す説明図である。ビードコア30は、グリーンタイヤに組み込む前に、例えば、図3に示すように、コア外側部31と補強部材40とを、カバー材50で結束固定してもよい。この場合におけるカバー材50は、例えば、ゴム材料からなる帯状のシートや、ナイロン等の樹脂材料からなる帯状のシートが用いられ、帯状のカバー材50は、コア外側部31と補強部材40とを一体にした状態で、円環状に形成されるビードコア30の外周面に沿ってスパイラル状に巻き付けられる。これにより、カバー材50は、コア外側部31と補強部材40とを結束し、一体に固定する。ビードコア30は、このようにカバー材50でコア外側部31と補強部材40とを結束固定することにより、製造時における容易性を高めることができると共に、コア外側部31と補強部材40との相対的な位置関係を、所望の位置関係にしてビードコア30をビード部20に配置することができる。これにより、より容易に、耐リム滑り性及びビード耐久性を向上させることができる。 Further, in the above-described embodiment, the reinforcing member 40 is attached to the inner peripheral surface 32 of the core outer portion 31 in the tire radial direction, but the reinforcing member 40 is attached to the core outer portion 31 by a method other than attaching. It may be arranged on the inner side in the tire radial direction. FIG. 3 is an explanatory diagram showing a state in which the cover material 50 is wound around the bead core 30 of the pneumatic tire 1 according to the embodiment. Before incorporating the bead core 30 into the green tire, for example, as shown in FIG. 3, the core outer portion 31 and the reinforcing member 40 may be bound and fixed with a cover material 50. In this case, the cover material 50 is, for example, a belt-shaped sheet made of a rubber material or a belt-shaped sheet made of a resin material such as nylon, and the belt-shaped cover material 50 includes the core outer portion 31 and the reinforcing member 40. In the integrated state, it is spirally wound around the outer peripheral surface of the bead core 30 formed in an annular shape. As a result, the cover member 50 binds the core outer portion 31 and the reinforcing member 40 together and fixes them together. In the bead core 30, by binding and fixing the core outer side portion 31 and the reinforcing member 40 with the cover material 50 as described above, the ease at the time of manufacturing can be improved, and the core outer side portion 31 and the reinforcing member 40 can be relatively opposed to each other. The bead core 30 can be arranged in the bead portion 20 with a desired positional relationship. Thereby, the rim slip resistance and the bead durability can be improved more easily.

また、上述した実施形態では、補強部材40は金属材料で形成されているのみであるが、金属材料からなる補強部材40は、被覆ゴムによって被覆されていてもよい。金属材料からなる補強部材40を被覆ゴムによって被覆することにより、被覆ゴムが緩衝材の役割を果たすため、カーカス層10における補強部材40に接触する部分に、応力集中が発生することを抑制することができる。これにより、カーカス層10の損傷をより確実に抑制することができ、ビード耐久性をより確実に向上させることができる。 Further, in the above-described embodiment, the reinforcing member 40 is only formed of the metal material, but the reinforcing member 40 formed of the metal material may be covered with the covering rubber. By covering the reinforcing member 40 made of a metal material with the covering rubber, the covering rubber plays a role of a cushioning material, so that stress concentration is suppressed from occurring in a portion of the carcass layer 10 that is in contact with the reinforcing member 40. You can As a result, damage to the carcass layer 10 can be more reliably suppressed, and bead durability can be more reliably improved.

また、上述した実施形態では、補強部材40は金属材料によって形成されているが、補強部材40は、これ以外によって形成されていてもよい。補強部材40は、例えば、FRP(Fiber Reinforced Plastics)等の、比較的剛性の高い部材によって形成されていてもよい。即ち、補強部材40は、剛性がビードワイヤ35を被覆する被覆ゴム36の剛性より高い部材によって形成されていればよい。ここでいう剛性は、例えば、曲げ剛性や硬さ、引張強さ等が挙げられる。つまり、補強部材40は、ビードワイヤ35を被覆する被覆ゴム36よりも、曲げ剛性や硬さ、引張強さが大きければよい。補強部材40は、剛性の高い部材によって形成されることにより、ビードコア30の内周面の形状が、タイヤ径方向内側に向かって凸となる形状になることを抑制できるため、リムホイールに対するビード部20の接触圧の均一化を図ることができ、耐リム滑り性を向上させることができる。 Further, in the above-described embodiment, the reinforcing member 40 is made of a metal material, but the reinforcing member 40 may be made of other material. The reinforcing member 40 may be formed of a relatively rigid member such as FRP (Fiber Reinforced Plastics). That is, the reinforcing member 40 may be formed of a member whose rigidity is higher than that of the covering rubber 36 that covers the bead wire 35. The rigidity mentioned here includes, for example, bending rigidity, hardness, tensile strength and the like. That is, the reinforcing member 40 may have a bending rigidity, a hardness, and a tensile strength higher than those of the covering rubber 36 that covers the bead wire 35. Since the reinforcing member 40 is formed of a member having high rigidity, it is possible to prevent the shape of the inner peripheral surface of the bead core 30 from being convex toward the inner side in the tire radial direction. The contact pressure of 20 can be made uniform, and the rim slip resistance can be improved.

また、上述した実施形態や変形例は、適宜組み合わせてもよい。ビード部20に配置されるビードコア30が、ビードワイヤ35を巻き回してなるコア外側部31と、コア外側部31のタイヤ径方向内側に配置される補強部材40とを有し、ビードコア30の高さHと幅Wや、補強部材40の高さhr、補強部材40の幅wr、補強部材40の厚みt、補強部材40の凹み量d、コア外側部31の幅wbが、所定の関係を有して形成されることにより、リム組性を確保しつつ、耐リム滑り性及びビード耐久性を向上させることができる。 Further, the above-described embodiments and modified examples may be combined as appropriate. The bead core 30 arranged in the bead portion 20 has a core outer side portion 31 formed by winding a bead wire 35 and a reinforcing member 40 arranged inside the core outer side portion 31 in the tire radial direction. H and the width W, the height hr of the reinforcing member 40, the width wr of the reinforcing member 40, the thickness t of the reinforcing member 40, the recess amount d of the reinforcing member 40, and the width wb of the core outer portion 31 have a predetermined relationship. By being formed as described above, the rim slip resistance and the bead durability can be improved while ensuring the rim assembly property.

[実施例]
図4A〜図4Cは、空気入りタイヤの性能評価試験の結果を示す図表である。以下、上記の空気入りタイヤ1について、従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1と、本発明に係る空気入りタイヤ1と比較する比較例の空気入りタイヤとについて行なった性能の評価試験について説明する。性能評価試験は、リム滑りに対する性能である耐リム滑り性と、ビード部20に配置される部材同士のセパレーションに対する性能である耐ビードセパ性と、リム組みのし易さであるリム組性とについての試験を行った。
[Example]
4A to 4C are charts showing the results of the performance evaluation test of the pneumatic tire. Hereinafter, with respect to the above pneumatic tire 1, performances performed on a conventional pneumatic tire, a pneumatic tire 1 according to the present invention, and a pneumatic tire of a comparative example to be compared with the pneumatic tire 1 according to the present invention. The evaluation test will be described. The performance evaluation test is performed on rim slip resistance which is performance against rim slip, bead separation resistance which is performance against separation between members arranged in the bead portion 20, and rim assembly property which is ease of rim assembly. Was tested.

性能評価試験は、JATMAで規定されるタイヤの呼びがID 6.50−10の試験タイヤをJATMA標準のリムホイールにリム組みし、空気圧をJATMAで規定される空気圧に調整し、試験車両として用いられるフォークリフトに装着してJATMAで規定される荷重を付与してテスト走行することにより行った。 In the performance evaluation test, a test tire with a nominal tire ID specified by JATMA of ID 6.50-10 was assembled on a JATMA standard rim wheel, and the air pressure was adjusted to the air pressure specified by JATMA. The test was carried out by mounting it on a known forklift and applying a load specified by JATMA.

各試験項目の評価方法は、耐リム滑り性については、試験車両で走行する前に、試験タイヤとリムホイールとに目印を付け、2000時間走行後の試験タイヤとリムホイールとのタイヤ周方向のズレ量を計測することにより評価した。耐リム滑り性は、後述する従来例を100とする指数で表し、数値が大きいほど試験タイヤとリムホイールとがタイヤ周方向にずれ難く、耐リム滑り性が優れていることを示している。 Regarding the rim slip resistance, the evaluation method of each test item is to mark the test tire and the rim wheel before running on the test vehicle, and measure the tire circumferential direction of the test tire and the rim wheel after running for 2000 hours. It was evaluated by measuring the amount of deviation. The rim slip resistance is represented by an index with a conventional example described below being 100, and the larger the value, the less likely the test tire and the rim wheel are displaced in the tire circumferential direction, indicating that the rim slip resistance is excellent.

また、耐ビードセパ性は、試験車両で4000時間走行した後に試験タイヤをリムホイールから取り外し、ビード部20でのセパレーションの発生の有無を確認することにより評価した。耐ビードセパ性は、後述する従来例を100とする指数で表し、数値が大きいほどビード部20でのセパレーションが発生しておらず、耐ビードセパ性が優れていることを示している。 The bead separation resistance was evaluated by running the test vehicle for 4000 hours and then removing the test tire from the rim wheel and confirming the occurrence of separation at the bead portion 20. The bead separation resistance is represented by an index with a conventional example described later being 100, and the larger the value, the less the separation occurs in the bead portion 20, indicating that the bead separation resistance is excellent.

また、リム組性は、作業者が試験タイヤをJATMA標準のリムホイールに対して偏心嵌合なく装着して、内圧を充填するまでの所要時間を計測し、計測した時間の逆数を、後述する従来例を100とした指数で表した。指数値が大きいほど所要時間が短く、リム組性が優れていることを示している。なお、リム組性は、指数が97以上であれば、従来例と同程度のリム組性を確保出来ているものとする。 In addition, as for the rim assembly property, an operator installs a test tire on a JATMA standard rim wheel without eccentric fitting, measures the time required until the internal pressure is filled, and the reciprocal of the measured time will be described later. The index is represented by an index with the conventional example being 100. The larger the index value, the shorter the required time and the better the rim assembly. As for the rim assembly property, if the index is 97 or more, it is assumed that the same rim assembly property as that of the conventional example can be secured.

性能評価試験は、従来の空気入りタイヤの一例である従来例の空気入りタイヤと、本発明に係る空気入りタイヤ1である実施例1〜11と、本発明に係る空気入りタイヤ1と比較する空気入りタイヤである比較例1〜11との23種類の空気入りタイヤについて行った。このうち、従来例と比較例1の空気入りタイヤは、ビードコア30が補強部材40を有していない。また、比較例2〜11の空気入りタイヤは、ビードコア30が補強部材40を有しているものの、ビードコア30の高さHと幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内になっていない、または、ビードコア30の高さHと補強部材40の高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内になっていない、または、補強部材40の厚みtと補強部材40の幅wrとの関係が、3≦(wr/t)≦25の範囲内になっていない、または、補強部材40の凹み量dと補強部材40の厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内になっていない、または、コア外側部31の幅wbと補強部材40の幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内になっていない。 The performance evaluation test compares a conventional pneumatic tire that is an example of a conventional pneumatic tire, Examples 1 to 11 that are the pneumatic tire 1 according to the present invention, and the pneumatic tire 1 according to the present invention. It carried out about 23 types of pneumatic tires with Comparative Examples 1-11 which are pneumatic tires. Among these, in the pneumatic tires of Conventional Example and Comparative Example 1, the bead core 30 does not have the reinforcing member 40. In the pneumatic tires of Comparative Examples 2 to 11, although the bead core 30 has the reinforcing member 40, the relationship between the height H and the width W of the bead core 30 is 0.5≦(W/H)≦. It is not within the range of 1.5, or the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is within the range of 0.05≦(hr/H)≦0.5. Or the relationship between the thickness t of the reinforcing member 40 and the width wr of the reinforcing member 40 is not within the range of 3≦(wr/t)≦25, or the recess amount d of the reinforcing member 40 and The relationship with the thickness t of the reinforcing member 40 is not within the range of 0.2≦(d/t)≦1.2, or the width wb of the core outer portion 31 and the width wr of the reinforcing member 40. The relationship is not within the range of 0.9≦(wr/wb)≦1.1.

これに対し、本発明に係る空気入りタイヤ1の一例である実施例1〜11は、全てビードコア30が補強部材40を有しており、ビードコア30の高さHと幅Wとの関係が0.5≦(W/H)≦1.5の範囲内、ビードコア30の高さHと補強部材40の高さhrとの関係が0.05≦(hr/H)≦0.5の範囲内、補強部材40の厚みtと補強部材40の幅wrとの関係が3≦(wr/t)≦25の範囲内、補強部材40の凹み量dと補強部材40の厚みtとの関係が0.2≦(d/t)≦1.2の範囲内、コア外側部31の幅wbと補強部材40の幅wrとの関係が0.9≦(wr/wb)≦1.1の範囲内になっている。さらに、実施例1〜11に係る空気入りタイヤ1は、補強部材40の内周面45の内側端部Piと外側端部Poとを結んだ直線Lcの、ビードベース部25に対する傾斜角度θが、それぞれ異なっている。 On the other hand, in Examples 1 to 11, which are examples of the pneumatic tire 1 according to the present invention, the bead core 30 has the reinforcing member 40, and the relationship between the height H and the width W of the bead core 30 is 0. Within the range of 5≦(W/H)≦1.5, the relationship between the height H of the bead core 30 and the height hr of the reinforcing member 40 is within the range of 0.05≦(hr/H)≦0.5. , And the relationship between the thickness t of the reinforcing member 40 and the width wr of the reinforcing member 40 is within the range of 3≦(wr/t)≦25, the relationship between the depth d of the reinforcing member 40 and the thickness t of the reinforcing member 40 is 0. Within the range of 2≦(d/t)≦1.2, the relationship between the width wb of the core outer portion 31 and the width wr of the reinforcing member 40 is within the range of 0.9≦(wr/wb)≦1.1. It has become. Further, in the pneumatic tires 1 according to Examples 1 to 11, the inclination angle θ of the straight line Lc connecting the inner end Pi and the outer end Po of the inner peripheral surface 45 of the reinforcing member 40 with respect to the bead base 25 is large. , Each is different.

これらの空気入りタイヤ1を用いて性能評価試験を行った結果、図4A〜図4Cに示すように、実施例1〜11に係る空気入りタイヤ1は、従来例と同程度のリム組性を確保しつつ、従来例に対して耐リム滑り性とビード耐久性とのいずれの性能も向上させることができることが分かった。つまり、実施例1〜11に係る空気入りタイヤ1は、リム組性を確保しつつ、耐リム滑り性及びビード耐久性を向上させることができる。 As a result of performing a performance evaluation test using these pneumatic tires 1, as shown in FIGS. 4A to 4C, the pneumatic tires 1 according to Examples 1 to 11 have the same rim assembly property as that of the conventional example. It was found that both the rim slip resistance and the bead durability can be improved as compared with the conventional example while ensuring the above. That is, the pneumatic tires 1 according to Examples 1 to 11 can improve the rim slip resistance and the bead durability while ensuring the rim assembly property.

1 空気入りタイヤ
10 カーカス層
11、12 カーカスプライ
15 カーカス本体部
16 ターンナップ部
20 ビード部
21 ビードフィラー
23 リムクッションゴム
25 ビードベース部
30 ビードコア
31 コア外側部
32 内周面
35 ビードワイヤ
36 被覆ゴム
40 補強部材
41 補強部材第1層
42 補強部材第2層
43 補強部材第3層
45 内周面
46 面取り部
50 カバー材
DESCRIPTION OF SYMBOLS 1 Pneumatic tire 10 Carcass layer 11, 12 Carcass ply 15 Carcass body part 16 Turn-up part 20 Bead part 21 Bead filler 23 Rim cushion rubber 25 Bead base part 30 Bead core 31 Core outside part 32 Inner peripheral surface 35 Bead wire 36 Covering rubber 40 Reinforcing member 41 Reinforcing member first layer 42 Reinforcing member second layer 43 Reinforcing member third layer 45 Inner peripheral surface 46 Chamfered portion 50 Cover material

Claims (8)

1本或いは複数本のビードワイヤを環状、且つ、多重に巻き回してなるコア外側部と、
前記コア外側部のタイヤ径方向における内側に配置され、タイヤ径方向における内周面がタイヤ子午断面においてタイヤ径方向外側に向かって凸となる向きで湾曲する補強部材と、
を有するビードコアをビード部に備え、
前記ビードコアは、タイヤ径方向における高さHとタイヤ幅方向における幅Wとの関係が、0.5≦(W/H)≦1.5の範囲内であり、
前記補強部材は、
前記ビードコアのタイヤ径方向における高さHと前記補強部材のタイヤ径方向における高さhrとの関係が、0.05≦(hr/H)≦0.5の範囲内であり、
前記補強部材の厚みtと前記補強部材のタイヤ幅方向における幅wrとの関係が、3≦(wr/t)≦25の範囲内であり、
前記補強部材の湾曲による凹み量dと前記補強部材の厚みtとの関係が、0.2≦(d/t)≦1.2の範囲内であり、
前記コア外側部のタイヤ幅方向における幅wbと前記補強部材のタイヤ幅方向における幅wrとの関係が、0.9≦(wr/wb)≦1.1の範囲内であることを特徴とする空気入りタイヤ。
A core outer part formed by winding one or a plurality of bead wires in an annular shape and in multiple turns,
A reinforcing member that is arranged on the inner side in the tire radial direction of the core outer portion, and the inner peripheral surface in the tire radial direction is curved in a direction that is convex toward the tire radial direction outer side in the tire meridional section,
A bead core having a bead core,
In the bead core, the relationship between the height H in the tire radial direction and the width W in the tire width direction is within a range of 0.5≦(W/H)≦1.5,
The reinforcing member is
The relationship between the height H of the bead core in the tire radial direction and the height hr of the reinforcing member in the tire radial direction is within a range of 0.05≦(hr/H)≦0.5,
The relationship between the thickness t of the reinforcing member and the width wr of the reinforcing member in the tire width direction is within the range of 3≦(wr/t)≦25,
The relationship between the amount of depression d due to the bending of the reinforcing member and the thickness t of the reinforcing member is within the range of 0.2≦(d/t)≦1.2,
The relationship between the width wb of the outer side portion of the core in the tire width direction and the width wr of the reinforcing member in the tire width direction is within a range of 0.9≦(wr/wb)≦1.1. Pneumatic tires.
前記ビードワイヤは被覆ゴムにより被覆され、
前記補強部材は、剛性が前記ビードワイヤを被覆する前記被覆ゴムの剛性より高い請求項1に記載の空気入りタイヤ。
The bead wire is covered with a covering rubber,
The pneumatic tire according to claim 1, wherein the reinforcing member has a rigidity higher than that of the coating rubber that covers the bead wire.
前記補強部材は、金属材料からなる請求項1または2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the reinforcing member is made of a metal material. 前記ビードコアは、前記補強部材の前記内周面のタイヤ幅方向における内側端部Piとタイヤ幅方向における外側端部Poとを結んだ直線の、前記ビード部の内周面に位置するビードベース部に対する傾斜角度が、±5度以内である請求項1〜3のいずれか1項に記載の空気入りタイヤ。 The bead core is a bead base portion located on the inner peripheral surface of the bead portion, which is a straight line connecting an inner end portion Pi in the tire width direction and an outer end portion Po in the tire width direction of the inner peripheral surface of the reinforcing member. The pneumatic tire according to any one of claims 1 to 3, wherein an inclination angle with respect to is within ±5 degrees. 前記補強部材は、タイヤ幅方向の両端部におけるタイヤ径方向内側部分が面取りされる請求項1〜4のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 4, wherein the reinforcing member has chamfered inner portions in the tire radial direction at both end portions in the tire width direction. 前記ビード部は、タイヤ幅方向におけるタイヤ赤道面の両側に配置され、
タイヤ幅方向における両側の前記ビード部間には、バイアス構造のカーカス層が架け渡される請求項1〜5のいずれか1項に記載の空気入りタイヤ。
The bead portion is arranged on both sides of the tire equatorial plane in the tire width direction,
The pneumatic tire according to any one of claims 1 to 5, wherein a carcass layer having a bias structure is bridged between the bead portions on both sides in the tire width direction.
前記補強部材は、層巻きしてタイヤ径方向に積層される請求項1〜6のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the reinforcing member is wound in layers and laminated in a tire radial direction. 前記補強部材は、前記コア外側部のタイヤ径方向における内周面に貼り付けられる請求項1〜7のいずれか1項に記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 7, wherein the reinforcing member is attached to an inner peripheral surface of the outer side portion of the core in the tire radial direction.
JP2019015854A 2019-01-31 2019-01-31 Pneumatic tire Pending JP2020121687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015854A JP2020121687A (en) 2019-01-31 2019-01-31 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015854A JP2020121687A (en) 2019-01-31 2019-01-31 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2020121687A true JP2020121687A (en) 2020-08-13

Family

ID=71992010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015854A Pending JP2020121687A (en) 2019-01-31 2019-01-31 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2020121687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10745372B2 (en) 2014-12-25 2020-08-18 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
US11256170B2 (en) 2015-03-31 2022-02-22 Mitsubishi Gas Chemical Company, Inc. Compound, resist composition, and method for forming resist pattern using it
US11480877B2 (en) 2015-03-31 2022-10-25 Mitsubishi Gas Chemical Company, Inc. Resist composition, method for forming resist pattern, and polyphenol compound used therein
US11137686B2 (en) 2015-08-31 2021-10-05 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, and resist pattern forming method
US11143962B2 (en) 2015-08-31 2021-10-12 Mitsubishi Gas Chemical Company, Inc. Material for forming underlayer film for lithography, composition for forming underlayer film for lithography, underlayer film for lithography and production method thereof, pattern forming method, resin, and purification method
US11243467B2 (en) 2015-09-10 2022-02-08 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method
US11572430B2 (en) 2015-09-10 2023-02-07 Mitsubishi Gas Chemical Company, Inc. Compound, resin, resist composition or radiation-sensitive composition, resist pattern formation method, method for producing amorphous film, underlayer film forming material for lithography, composition for underlayer film formation for lithography, method for forming circuit pattern, and purification method

Similar Documents

Publication Publication Date Title
JP2020121687A (en) Pneumatic tire
US10040322B2 (en) Pneumatic tire
JP2002301911A (en) Run flat tire
EP2853419B1 (en) Pneumatic tire
JP6880768B2 (en) Pneumatic tires
EP3805016A1 (en) Pneumatic tire
EP3725547B1 (en) Tire
JP2010006322A (en) Pneumatic tire
JP4130530B2 (en) Lock bead structure
JP5886057B2 (en) Pneumatic tire
EP3643486A1 (en) Production method for pneumatic tire, and pneumatic tire
US20190344620A1 (en) Pneumatic tire for motorcycles
JP5115019B2 (en) Pneumatic tire and method for manufacturing pneumatic tire
JP5438427B2 (en) Racing cart tires
CN110770011A (en) Method for manufacturing pneumatic tire
WO2019239898A1 (en) Pneumatic tire
US11548327B2 (en) Bias tire
JP5321104B2 (en) Pneumatic tire
JP2020121706A (en) Pneumatic tire
JP5054955B2 (en) Aircraft radial tire
CN110239287B (en) Runflat tire
JP2009241720A (en) Pneumatic tire
WO2019239895A1 (en) Pneumatic tire
JP7034835B2 (en) Run flat tire
EP3812166A1 (en) Pneumatic tire and production method for resin-coated belt