WO2016104103A1 - コイル成形装置及びコイル成形方法 - Google Patents

コイル成形装置及びコイル成形方法 Download PDF

Info

Publication number
WO2016104103A1
WO2016104103A1 PCT/JP2015/084087 JP2015084087W WO2016104103A1 WO 2016104103 A1 WO2016104103 A1 WO 2016104103A1 JP 2015084087 W JP2015084087 W JP 2015084087W WO 2016104103 A1 WO2016104103 A1 WO 2016104103A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear conductor
peeling device
peeling
bending
coil forming
Prior art date
Application number
PCT/JP2015/084087
Other languages
English (en)
French (fr)
Inventor
孝 玄元
輝明 樋口
中山 健一
知紘 福田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016566082A priority Critical patent/JP6324541B2/ja
Publication of WO2016104103A1 publication Critical patent/WO2016104103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1285Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by friction, e.g. abrading, grinding, brushing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors

Definitions

  • the present invention relates to a rotating electrical machine such as an electric motor or a generator and a manufacturing method thereof, and more particularly to a coil (winding) used for the rotating electrical machine and a manufacturing method thereof.
  • Patent Document 1 JP-A-2003-143818
  • This publication describes a method for manufacturing a segmented conductor constituting a segment coil.
  • the segment coil is formed by joining divided conductors having a shape obtained by dividing the completed coil (see paragraph 0002).
  • This manufacturing method aims to reduce the coil end and prevent damage to the insulating coating.
  • the wound linear conductor material is fed out and straightened, the linear conductor material is bent by a bender machine into a two-dimensional shape, and 2 A conductive material formed into a three-dimensional shape is sandwiched between molds of a press molding machine, cut into a predetermined length, and a three-dimensional divided conductor is formed (see summary).
  • Patent Document 1 In the manufacturing method of Patent Document 1, it is possible to reduce the coil end and prevent the insulation film from being damaged. However, it is possible to further improve the reliability of the coil or to further increase the manufacturing speed. It is required to improve the sex.
  • An object of the present invention is to increase coil productivity.
  • a coil forming apparatus of the present invention includes a first peeling device for peeling a part of an insulating film from a linear conductor covered with an insulating film, and the linear conductor is arranged in the longitudinal direction.
  • the first peeling apparatus includes a first fixed mold and a first movable mold for performing a peeling process, and the first peeling apparatus is the first peeling mold.
  • the linear conductor is transported in the transport direction by sandwiching the stripped portion of the linear conductor between the fixed mold 1 and the first movable mold and moving in the transport direction of the linear conductor.
  • the coil forming method of the present invention is a method in which a linear conductor is longitudinally separated by a first peeling device for peeling a part of an insulating film from a linear conductor covered with an insulating film.
  • the first peeling device sandwiches the stripped portion of the linear conductor between the first fixed mold and the first movable mold.
  • the linear conductor is transported in the transport direction by moving in the transport direction.
  • the productivity of the coil can be increased.
  • FIG. 3 is a perspective view showing a configuration of a correction unit 130.
  • FIG. It is a perspective view which shows the whole structure of the peeling part (peeling apparatus) 140.
  • FIG. It is the front view which looked at the flatwise peeling apparatus 140a from the width direction of the peeling apparatus 140. It is the side view which looked at the flatwise peeling apparatus 140a from the length direction (right side of Drawing 5A) of peeling apparatus 140.
  • FIG. 6 is a plan view showing configurations of a bending unit (bending device) 150 and a transport unit (transport device) 160.
  • FIG. 6 is a diagram illustrating a transport operation by a transport unit (transport device) 160. It is a top view which expands and shows the bending molding part (bending apparatus) 150.
  • FIG. 2 is a plan view showing a configuration of a bending apparatus 200.
  • FIG. 14A is the lower side.
  • FIG. 5 is a perspective view showing the vicinity of a core metal 200B-1, a clamp 200B-2, and a backrest 200B-3. It is a perspective view which shows the state which carries out the bending process of about 180 degree
  • FIG. 2 is a perspective view of a motor stator 2000 configured using divided coils 1000 and 1100.
  • FIG. It is a top view which shows the shape of the split coil 1000.
  • FIG. It is the top view which looked at the split coil 1000 of FIG. 19A from the right side.
  • It is a block diagram of phase control. It is a figure which shows the linear conductor 1 from which the enamel coating was peeled off.
  • the conductors (conducting wires) constituting the segment coil and the divided conductor are described as rectangular wires having a rectangular cross section.
  • the conductors can be applied to a round wire having a circular cross section.
  • Examples of the square wire include a conductor having a square cross section and a conductor (flat wire) having a long side (long axis) and a short side (short axis), but each embodiment can be applied to any conductor. .
  • the directionality of the conductor cross section is taken into consideration, and the use of a square line provides a greater effect than the round line.
  • a rectangular wire having a long side and a short side in the cross section will be described.
  • the long side may be called flatwise and the short side may be called edgewise.
  • the conductor formed into the divided conductors will be described as a linear conductor.
  • the conveyance direction of the linear conductor 1 described later is the length direction of the coil forming apparatus.
  • the direction perpendicular to the conveying direction of the linear conductor 1 is defined as the width direction of the coil forming apparatus.
  • the height direction of the coil forming apparatus is a vertical direction.
  • the coil forming apparatus has a dimension in the length direction larger than a dimension in the width direction, and the length direction coincides with the longitudinal direction of the coil forming apparatus.
  • FIG. 17 is a perspective view of a motor stator 2000 configured using the split coils 1000 and 1100.
  • a slot 2002 is formed in the iron core 2001 of the motor stator 2000, and the split coils 1000 and 1100 are inserted into the slot to form a motor coil.
  • Example 1 The forming of the split coil 1000 will be described in Example 1, and the forming of the split coil 1100 will be described in Example 2.
  • FIG. 1 is a plan view showing the overall configuration of the U-shaped coil forming apparatus according to the present embodiment.
  • the U-shaped coil forming apparatus 100 includes an uncoiler 110, a buffer 120, a correction unit (correction device) 130, a peeling unit (peeling device) 140, a bending molding unit (bender) 150, and a transport unit (transport device). 160 and a press forming part (press device) 170 are arranged in a straight line in the order in which the linear conductors are processed. Further, a control device 180 of the U-shaped coil forming apparatus 100 is disposed on the right side of the press forming unit 170.
  • a storage part (magazine) for storing a U-shaped coil subjected to bending and pressing at the lower part of the bending part (bending device) 150, the transport part (transport device) 160 and the press molding part (press device) 170 ) 185 is arranged.
  • the uncoiler 110 measures the outer diameter of the bobbin 111 as a main component, the bobbin 111 around which the linear conductor is wound, the pinch roller device 112 provided on the downstream side of the bobbin 111 in the conveying direction of the linear conductor.
  • the laser displacement meter 113 is provided.
  • FIG. 2A is a plan view of the uncoiler 110 as viewed from the front.
  • FIG. 2B is a plan view of the uncoiler 110 as viewed from above. 2A and 2B, some components are not shown for easy understanding, and therefore components or drawings that are depicted in FIG. 2A but not in FIG. There are components that are depicted in 2B but not in FIG. 2A.
  • the bobbin 111 is provided with a servo motor 111-1, and the bobbin 111 is rotationally driven by the servo motor 111-1.
  • the rotation of the servo motor 111-1 is controlled so that the linear conductor is fed out from the bobbin 111 at a constant speed according to the outer diameter of the bobbin measured by the laser displacement meter 113.
  • the pinch roller device 112 includes a first roller 112a and a second roller 112b.
  • the first roller 112a is rotationally driven by a servo motor 112-1.
  • the rotation of the servo motor 112-1 is controlled by torque control so that the tension of the linear conductor 1 is maintained.
  • the second roller 112b is pressed against the first roller 112a with a constant load.
  • the linear conductor drawn out from the bobbin 111 is sandwiched between the first roller 112a and the second roller 112b and plays a role of flowing toward the downstream side.
  • the pinch roller device 112 is provided not for the purpose of conveying the linear conductor but for preventing the disturbance of the linear conductor in the bobbin 111. For this reason, it is desirable that the installation height of the pinch roller device 112 is set within a height range corresponding to the winding range of the linear conductor in the bobbin 111. For this reason, it is desirable that the installation height of the pinch roller device 112 is set to a range d111a between the highest position and the lowest position on the outer diameter (outer periphery) of the bobbin 111.
  • the installation height of the pinch roller device 112 is the highest position on the linear conductor winding surface of the bobbin 111 and the outside of the bobbin 111. It is desirable to set a range d111b between the highest position in the diameter (outer periphery).
  • the installation height of the pinch roller device 112 is the lowest position on the linear conductor winding surface of the bobbin 111 and the outer diameter of the bobbin 111. It is desirable to set a range d111c between the lowest position on the outer periphery.
  • the buffer 120 is disposed between the uncoiler 110 and the correction unit (correction device) 130. That is, it is located downstream of the uncoiler 110 and upstream of the correction unit 130 in the linear conductor conveyance direction (feed direction).
  • the linear conductor drawn out from the bobbin 111 is maintained in a relaxed state.
  • the amount of slack of the linear conductor in the buffer 120 is set to a predetermined range.
  • the buffer 120 is provided with an optical sensor 121.
  • the optical sensor 121 has a light emitting part and a light receiving part. This is a mechanism that turns on when the amount of light detected by the light receiving unit falls below a predetermined value (threshold) and turns off when it exceeds the predetermined value (threshold). The light from the light emitting unit is blocked by the linear conductor, and the amount of light detected by the light receiving unit decreases and falls below a predetermined value, whereby the optical sensor 121 is turned on, and the presence of the linear conductor can be detected.
  • the optical sensor 121 includes five sets of light emitting units and light receiving units, and five sets of light emitting units and light receiving units are arranged in the vertical direction (longitudinal direction).
  • the amount of slack of the linear conductor is appropriate.
  • the case where the set arranged at one lower side of the set arranged at the center outputs the ON signal is when the linear conductor is too slack.
  • the outer diameter of the bobbin measured by the laser displacement meter 113 is corrected to plus, and the feeding speed of the linear conductor from the bobbin 111 is slowed down.
  • the control device 180 determines that an abnormal state that cannot be controlled is present, and stops the U-shaped coil forming device 100.
  • the case where the set placed on the upper side of the set placed in the center outputs an ON signal is when the linear conductor is too stretched.
  • the outer diameter of the bobbin measured by the laser displacement meter 113 is corrected to minus, and the feeding speed of the linear conductor from the bobbin 111 is increased.
  • the control device 180 determines that an abnormal state that cannot be controlled is present, and stops the U-shaped coil forming device 100.
  • FIG. 3 is a perspective view illustrating a configuration of the correction unit 130.
  • the straightening device provided in the straightening unit 130 includes an edgewise straightening device 130a and a flatwise straightening device 130b.
  • the edgewise straightening device 130a includes a base 130a-1 and seven fixed rollers 130a-2 provided on the base 130a-1. Each roller 130a-2 is rotatably provided at a position fixed with respect to the base 130a-1.
  • the flatwise straightening device 130b has a base 130b-1, six fixed rollers 130b-2 and one movable roller 130b-3 provided on the base 130b-1.
  • the six fixed rollers 130b-2 are rotatably provided at positions fixed with respect to the base 130b-1.
  • the movable roller disposed on the upper side with respect to the linear conductor 1 and disposed on the most downstream side in the feeding direction of the linear conductor 1 is driven in the vertical direction (vertical direction) to bend on the flatwise side of the linear conductor 1. To correct.
  • the linear conductor 1 is wound with the flat width facing the linear conductor winding surface of the bobbin 111.
  • the movable roller 130b-3 is provided on the flatwise straightening device 130b side so as to effectively correct the flatwise side bending (curl).
  • the edgewise 130a straightening device 130a may be provided with a movable roller that is driven in a lateral direction (horizontal direction) orthogonal to the feeding direction of the linear conductor 1.
  • the linear conductor 1 is a rectangular wire (square conductor) in which a cross section perpendicular to the longitudinal axis of the conductor is a long square cross section having a long side (flat width) and a short side (edge width).
  • the periphery is insulated by enamel coating (insulating member).
  • the linear conductor 1 is transported such that the long side (flatwise) is in the horizontal direction and the short side (edgewise) is in the vertical direction.
  • FIG. 4 is a perspective view showing the entire configuration of the peeling portion (peeling device) 140.
  • the peeling device 140 includes a peeling device 140a for peeling the flat-wise enamel coating and a peeling device 140b for peeling the edge-wise enamel coating.
  • the peeling device 140 a is disposed upstream of the peeling device 140 b in the feeding direction of the linear conductor 1.
  • the peeling apparatus 140b may be arrange
  • the peeling device 140a will be described based on a configuration in which the peeling device 140a is arranged on the upstream side with respect to the peeling device 140b as shown in FIG.
  • the flatwise peeling device 140a is configured to be movable in the feed direction of the linear conductor 1 by a feed mechanism 140a-1 having a rod screw 140a-1a and a servo motor 140a-1b that rotationally drives the rod screw 140a-1a. ing.
  • the peeling device 140a is provided with a female screw (not shown) and is screwed with the rod screw 140a-1a. This female screw is also a component of the feed mechanism 140a-1, and moves in the axial direction of the rod screw 140a-1a by rotating the rod screw 140a-1a with a servo motor 140a-1b.
  • the peeling device 140a moves in the feeding direction of the linear conductor 1 by the operation of the rod screw 140a-1a and the female screw. Further, the peeling device 140a is provided with a pipe 140a-3 for conveying the waste containing the enamel coating peeled off from the linear conductor 1 to the dust collection box 140-2 (see FIG. 1).
  • the edgewise peeling device 140b is configured to be movable in the feed direction of the linear conductor 1 by a feed mechanism 140b-1 having a rod screw 140b-1a and a servo motor 140b-1b that rotationally drives the rod screw 140b-1a. ing.
  • the peeling device 140b is provided with a female screw (not shown) and is screwed with the rod screw 140b-1a. This female screw is also a component of the feed mechanism 140b-1, and moves in the axial direction of the rod screw 140b-1a by rotating the rod screw 140b-1a with the servo motor 140b-1b.
  • the peeling device 140b moves in the feeding direction of the linear conductor 1 by the operation of the rod screw 140b-1a and the female screw.
  • the peeling device 140b is provided with a pipe 140b-3 for conveying the waste containing the enamel coating peeled off from the linear conductor 1 to the dust collection box 140-2 (see FIG. 1).
  • the dust collection box 140b-2 is provided with a dust collector.
  • the peeling device 140 is provided with a guide rail 141 for guiding the movement between the peeling device 140a and the peeling device 140b.
  • the guide rail 141 includes two guide rails 141 a and 141 b that are arranged separately in the width direction of the coil forming apparatus 100.
  • the guide rail 141 is a component of the feeding mechanism 140a-1 of the peeling device 140a, and is also a component of the feeding mechanism 140b-1 of the peeling device 140b. That is, the guide rail 141 is shared by the feeding mechanism 140a-1 of the peeling device 140a and the feeding mechanism 140b-1 of the peeling device 140b.
  • the linear conductor 1 is conveyed using the peeling device 140a and the peeling device 140b. That is, the peeling device 140a and the peeling device 140b constitute a conveying device (feeding mechanism) for the linear conductor 1. For this reason, the peeling device 140a and the peeling device 140b are phase-controlled, which will be described in detail later.
  • FIG. 5A is a front view of the flatwise peeling device 140a viewed from the width direction of the peeling device 140
  • FIG. 5B is a side view of the flatwise peeling device 140a viewed from the length direction of the peeling device 140 (right side in FIG. 5A).
  • 6A is a front view of the edgewise peeling device 140b viewed from the width direction of the peeling device 140
  • FIG. 6B is a side view of the edgewise peeling device 140b viewed from the length direction of the peeling device 140 (left side in FIG. 6A). It is.
  • the peeling device 140a includes a mold 140a-7 for peeling the flat-wise enamel coating. Further, the peeling device 140b includes a mold 140b-7 for peeling off the edgewise enamel coating.
  • the peeling device 140a and the peeling device 140b have the same basic configuration and are different in arrangement. That is, in the peeling device 140a, the driving direction of the mold 140a-7 is horizontal, whereas in the peeling device 140b, the driving direction of the mold 140b-7 is vertical. Therefore, the peeling device 140a and the peeling device 140b will be described together.
  • the rotation of the servo motors 140a-4 and 140b-4 and the servo motors 140a-4 and 140b-4 is controlled by the rod screws 140a-6 and 140b.
  • Transmission mechanisms 140a-5 and 140b-5 for transmitting to ⁇ 6 are provided.
  • the rod screw 140a-6 is rotationally driven by the rotational force transmitted from the servo motors 140a-4 and 140b-4 by the transmission mechanism 140a-5.
  • the rod screws 140a-6 and 140b-6 are screwed with female screws (not shown) provided on the main body frames 140a-8 and 140b-8. For this reason, when the rod screws 140a-6 and 140b-6 are rotated, the movable molds of the molds 140a-7 and 140b-7 provided at the tip portions thereof are driven toward the fixed mold.
  • FIG. 7 is a perspective view showing a mold 142 for peeling the enamel coating.
  • FIG. 8 is a cross-sectional view for explaining the enamel coating isolation (removal) operation.
  • the mold 140a-7 of the peeling device 140a and the mold 140b-7 of the peeling device 140b have the same structure and operate in the same way. Therefore, in FIGS. 7 and 8, the mold 140a-7 and the mold 140b-7 will be described as the mold 142 together.
  • the fixed mold and the movable mold are separately arranged in the width direction of the coil forming apparatus 100.
  • the fixed mold and the movable mold are arranged in the mold 140b-7 of the edgewise peeling apparatus 140b.
  • the movable mold is arranged separately in the height direction (vertical direction) of the coil forming apparatus 100.
  • the enamel coating (insulating film) at the end of the split conductor constituting the segment coil and weld it to another split conductor to facilitate welding.
  • the enamel coating is removed in two directions, edgewise and flatwise.
  • the mold 142 is composed of a fixed mold 142-1 and a movable mold 142-2.
  • the fixed die 142-1 includes a pair of fixed workers 142-1A and 142-1B and a conductor guide / fixed blade 142-1C provided at the center thereof.
  • the movable die 142-2 includes a pair of movable blades 142-2A and 142-2B and a conductor presser 142-2C provided at the center thereof.
  • the conductor guide / fixed blade 142-1C has blade edges 142-1a and 142-1b, and the movable blades 142-2A and 142-2B have blade edges 142-2a and 142-2b.
  • the peeling device 140a moves the movable die 142-2 toward the fixed die 142-1, and the cutting edges 142-1a and 142-1b of the conductor guide / fixed blade 142-1C and the movable blades 142-2A and 142-2B are moved. With the cutting edges 142-2a and 142-2b, the long side (flatwise) enamel coating 1A is cut off.
  • the peeling portion from which the enamel coating 100A has been cut is sent to the position of the peeling device 140b, where the short side (edgewise) enamel coating 1A is cut. In this way, peeled portions in which the enamel coating 1A is cut off are formed on the long linear conductor 1 at regular intervals.
  • FIG. 21 shows the linear conductor 1 with the enamel coating peeled off.
  • the flatwise enamel coating is removed by the peeling device 1a to form peeling portions 1001a and 1002a.
  • the edgewise enamel coating is cut by the peeling device 1b to form the peeling portions 1001b and 1002b.
  • the lengths of the peeling portions 1001a and 1002a are the same as the lengths of the peeling portions 1001b and 1002b. However, the lengths of both may usually be different.
  • the operation amount of the slave shaft is set according to the operation amount of the main shaft, and phase control (also referred to as synchronous control) for controlling the operation of each axis is performed.
  • the main axis is set as a virtual axis, and this virtual axis is set based on the amount of movement of the linear conductor.
  • the virtual axis is set on the assumption that the linear conductor 1 is always conveyed at a constant speed.
  • the position coordinates of the peeling apparatus 140a, the position coordinates of the peeling apparatus 140b, the position coordinates of the movable mold 142-2 of the peeling apparatus 140a, and the position coordinates of the movable mold 142-2 of the peeling apparatus 140b are set as slave axes.
  • the “synchronous mode” is a mode in which the peeling device 140a and the peeling device 140b move in synchronization with the virtual axis. That is, in the synchronous mode, the peeling device 140 a and the peeling device 140 b are moved in synchronization with the linear conductor 1.
  • the peeling device 140a starts to move in the conveying direction of the linear conductor 1 from its own initial position, and in the synchronous mode (at the same speed as the linear conductor 1), the movable die 142-2 is moved from the open position to the closed position.
  • the flat conductor enamel coating of the linear conductor 1 is cut off.
  • the movable die 142-2 bites into the peeled portion (step portion) of the linear conductor 1 formed by being cut by the movable die 142-2, and is in a state of being strongly connected to the linear conductor 1. .
  • the linear conductor 1 is sandwiched and restrained between the fixed mold 142-1 and the movable mold 142-2 of the peeling device 140a, and moves with the movement of the peeling device 140a.
  • the linear conductor 1 is conveyed by the peeling device 140a.
  • the linear conductor 1 is clamped (restrained) between the fixed mold 142-1 and the movable mold 142-2 of the peeling apparatus 140b until it is clamped between the fixed mold 142-1 and the movable mold 142-2 of the peeling apparatus 140a. ) And being transported.
  • the movable mold 142-2 of the peeling device 140b When the linear conductor 1 is sandwiched between the fixed mold 142-1 and the movable mold 142-2 of the peeling device 140a, the movable mold 142-2 of the peeling device 140b operates from the closed position to the open position, and the linear conductor 1 Is released from the sandwiched (restrained) state by the peeling device 140b.
  • the peeling device 140b While the peeling device 140a is transporting the linear conductor 1, the peeling device 140b moves to its initial position, and starts moving in the transport direction of the linear conductor 1 from the initial position.
  • the peeling device 140b closes the movable mold 142-2 after entering the “synchronous mode”.
  • the peeling device 140b cuts the edgewise enamel coating of the linear conductor 1 by closing the movable die 142-2.
  • the movable die 142-2 of the peeling device 140b bites into the peeling portion (step portion) of the linear conductor 1 formed by being cut by the movable die 142-2, and is in a state where it is strongly connected to the linear conductor 1. It is in.
  • the linear conductor 1 is sandwiched and restrained between the fixed die 142-1 and the movable die 142-2 of the peeling device 140b, and moves with the movement of the peeling device 140b.
  • the linear conductor 1 is also restrained by the peeling device 140a, and the peeling device 140a, the peeling device 140b, and the linear conductor 1 are moving at a constant speed.
  • the movable die 142-2 of the peeling device 140b operates from the open position to the closed position before the timing at which the movable die 142-2 of the peeling device 140a operates from the closed position to the open position.
  • the period from when the movable mold 142-2 of the peeling apparatus 140b starts to close until the movable mold 142-2 of the peeling apparatus 140a opens is a period in which both the peeling apparatus 140a and the peeling apparatus 140b are in a synchronous mode with the virtual axis. Therefore, the peeling device 140a, the peeling device 140b, and the linear conductor 1 are all moving at the same speed.
  • the movable die 142-2 of the peeling device 140a When the linear conductor 1 is sandwiched between the fixed die 142-1 and the movable die 142-2 of the peeling device 140b, the movable die 142-2 of the peeling device 140a operates from the closed position to the open position.
  • the movable die 142-2 of the peeling device 140a When the movable die 142-2 of the peeling device 140a is opened, the linear conductor 1 is released from the restraint by the fixed die 142-1 and the movable die 142-2 of the peeling device 140a.
  • the linear conductor 1 is already constrained by the fixed mold 142-1 and the movable mold 142-2 of the peeling device 140b at this point. Accordingly, the linear conductor 1 is conveyed at a constant speed by the peeling device 140b even after being released from the restraint by the peeling device 140a.
  • the peeling device 140a returns to its initial position when the movable mold 142-2 is opened.
  • the speed at which the peeling device 140a returns to the initial position is set to the maximum speed. Thereby, the production efficiency of a split coil can be improved.
  • the peeling device 140a When the peeling device 140a returns to the initial position, the movement of the linear conductor 1 in the transport direction is started again and accelerated to the synchronous mode.
  • the peeling device 140a and the peeling device 140b perform the above-described operations by changing their positions.
  • At least one of the peeling device 140a and the peeling device 140b always restrains the linear conductor 1 and transports it in the transport direction. Further, when the restriction of the linear conductor 1 by the peeling device 140a and the restriction of the linear conductor 1 by the peeling device 140b are switched, the restriction of the linear conductor 1 by the peeling device 140a and the restriction of the linear conductor 1 by the peeling device 140b are switched. A period in which the constraint overlaps is provided. Thereby, the linear conductor 1 can be reliably conveyed at a fixed speed.
  • the peeling device 140a and the peeling device 140b Since at least one of the peeling device 140a and the peeling device 140b must always apply the movable mold to the peeling portion of the linear conductor 1, the movable mold is applied to the same peeling portion in both of the peeling devices 140a and 140b. I can't. For this reason, it is necessary for the peeling device 140b to apply the movable die to the peeling portion at a position separated by at least one split coil with respect to the peeling portion to which the peeling device 140a applies the movable die.
  • the peeling unit to which the peeling device 140a applies the movable mold and the peeling unit to which the peeling device 140b applies the movable mold are too far apart, the linear conductor 1 vibrates between the peeling device 140a and the peeling device 140b, Transport may be difficult. Therefore, at the position where the peeling device 140a and the peeling device 140b are closest, the peeling portion to which the peeling device 140b applies the movable die is separated from the peeling portion to which the peeling device 140a applies the movable die by one split coil. It is desirable that the position is a peeling portion.
  • the peeling device 140a and the peeling device 140b touch the linear conductor 1 for conveyance.
  • the position where the peeling device 140a and the peeling device 140b touch the linear conductor 1 is a portion where the enamel coating (insulating film) is removed, and the peeling device 140a and the peeling device 140b are covered with the enamel coating (insulating film).
  • the first roller 112a and the second roller 112b of the pinch roller device 112 touch the portion of the linear conductor 1 covered with the enamel coating (insulating film). Since it is not a device that transports the linear conductor 1, it is not necessary to strongly press the first roller 112 a and the second roller 112 b against the linear conductor 1. Therefore, it is possible to reduce the possibility of damaging the enamel coating or attaching dust to the enamel coating.
  • FIG. 9A is a plan view showing the configuration of the bending unit (bending device) 150 and the transport unit (transport device) 160.
  • FIG. 9B is a diagram for explaining a transport operation by the transport unit (transport device) 160.
  • FIG. 9C is an enlarged plan view showing the bending portion (bending device) 150.
  • FIG. 10 is a plan view showing the configuration of the cutting device 165 for the linear conductor 1.
  • the bending part (bending device) 150 includes a base 151, a cored bar 152 and a bending pin 153 mounted on the base 151.
  • a thermomotor 158 is provided on the back side of the base 151, and the bending pin 153 is configured to rotate around the center O 152 of the core metal 152 by the thermomotor 158. That is, the bending process is performed on the linear conductor 1 by the bending pin 153 rotating around the cored bar 152.
  • the cored bar 152 is fixed to the base 151.
  • the bending apparatus 150 performs the bending process on the linear conductor 1 three times. Three bending portions 1K, 1L, and 1M are formed in the linear conductor 1 by three bending processes. At this stage, the linear conductor 1 is two-dimensionally bent.
  • the cored bar 152 has a cylindrical shape, and a linear groove 152a through which the linear conductor 1 is inserted is formed at the center. Round portions 152b are formed on the cored bar 152 at both ends of the linear groove 152a. This prevents damage to the enamel coating on the linear conductor 1 during bending.
  • the bending pin 153 has a shape having a partial cylindrical surface 153a and a straight portion (plane portion) 153b on the side contacting the linear conductor 1 with respect to the partial cylindrical surface 153a. With this shape, the bending pin 153 comes into contact with the linear conductor 1 from the straight portion (planar portion) 153 b when contacting the linear conductor 1. At the time of bending, the straight portion (planar portion) 153 b comes into contact with the linear conductor 1 and applies a bending force to the linear conductor 1. When a small-diameter cylindrical pin is brought into contact with the linear conductor 1 to apply a bending force, the linear conductor 1 is likely to be indented, and the enamel coating is likely to be damaged.
  • the linear portion (planar portion) 153b contacts the linear conductor 1, the linear conductor 1 is unlikely to be indented, and the enamel coating is not easily damaged. For this reason, a larger bending force can be applied to the linear conductor 1 at a high speed, and the processing time required for the bending process can be shortened.
  • the base 151 of the bending apparatus 150 is movable in both upstream and downstream directions along the conveying direction of the linear conductor 1 by a rod screw 154 and a servo motor 157 that rotationally drives the rod screw 154.
  • the transport unit (transport device) 160 includes a base 166, a transport actuator 161 mounted on the base 166, and a cutting device 165 for the linear conductor 1.
  • a thermomotor 164 is mounted on the back side of the base 166.
  • the transport actuator 161 is configured to rotate around a center O 161 by a thermomotor 164.
  • the transport actuator 161 is provided with two chucks 161 a and 161 b that are point-symmetric with respect to the center O 161 and at an angular interval of 180 degrees.
  • the split coil 1000 ′ is cut from the linear conductor 1 by the cutting device 165.
  • the cutting device 165 includes a cutting blade (cutter) 165 h that is driven by a crank mechanism (cutting crank) 165.
  • the crank mechanism 165 includes a disk 165b attached to the rotation shaft of the servo motor 165a, a first arm 165c having one end connected to a position eccentric from the rotation center of the disk 165b by a connection pin 165c1, and a first arm 165c.
  • a second arm 165i having one end connected to the other end of the arm 165c by a connecting pin 165c2, and a guide member 165d connected to the other end of the second arm 165i by a connecting pin 165d2.
  • the second arm 165i moves the guide member 165d in the vertical direction while swinging around the connecting pin 165d2.
  • a guide groove (inclined groove) 165d3 that is inclined with respect to the vertical direction is formed in the guide member 165d.
  • the third arm 165e shown in FIG. 10 has an engagement pin 165d1 that engages with the guide groove 165d3. Further, the third arm 165e can swing about the connecting pin 165e1. For this reason, when the guide member 165d moves up and down, the engagement pin 165d1 is guided by the guide groove 165d3 and moves in the left-right direction.
  • the third arm 165e swings around the connecting pin 165e1.
  • the third arm 165e moves the moving member 165f connected to the opposite side of the engagement pin 165d1 in the horizontal direction (width direction) via the connection pin 165e1.
  • the moving member 165f is guided in the horizontal direction (width direction) by the guide rail 165g.
  • the third arm 165e moves the cutting blade (cutter) 165h attached to the moving member 165f in the horizontal direction (width direction) by the swing motion thereof.
  • the third arm 165e, the moving member 165f, the guide rail 165g, and the cutting blade (cutter) 165h are configured symmetrically on the left side of the center line 165j.
  • the linear conducting wire 1 is cut by two cutting blades (cutters) 165h configured symmetrically across 165j.
  • the base 166 of the transport device 160 is movable in both the upstream and downstream directions along the transport direction of the linear conductor 1 by a rod screw 162 and a servo motor 163 that rotationally drives the rod screw 162.
  • the chucks 161 a and 161 b hold the split coil 1000 ′ before the split coil 1000 ′ is cut from the linear conductor 1 by the cutting device 165.
  • the transport actuator 161 rotates around the center O 161 as shown in FIG. 9B.
  • the base 166 is moved horizontally by the rod screw 162 and the servo motor 163 to the downstream side in the conveying direction of the linear conductor 1. Accordingly, the split coil 1000 ′ is conveyed to the coil insertion guide 172 of the press forming unit (press device) 170.
  • the coil insertion guide 172 is provided with a servo motor 177 so that the distance between both side plates constituting the guide is changed.
  • the interval between both side plates of the coil insertion guide 172 is expanded by the servo motor 177.
  • the transport actuator 161 can reliably feed the split coil 1000 ′ into the mold 171 of the press device 170 via the coil insertion guide 172.
  • phase control synchronous control
  • the following slave shafts are set.
  • the movement (positional coordinates) of the base 151 of the bending apparatus 150 is set as the first slave axis.
  • the servo motor 157 is controlled by this slave shaft.
  • the rotation (rotation coordinate) of the bending pin 153 is set as the second slave shaft.
  • the thermomotor 158 is controlled by this slave shaft.
  • As the third slave shaft the movement (positional coordinates) of the base 166 of the transport device 160 is set.
  • the servo motor 163 is controlled by this slave shaft.
  • the operation (rotational coordinate) of the cutting crank mechanism 165 is set as the fourth slave shaft.
  • the servo motor 165a is controlled by this slave shaft.
  • the rotation (rotation coordinates) of the transport actuator 161 is set.
  • the servo motor 164 is controlled by this slave shaft.
  • chuck opening / closing of the chucks 161a and 161b is set.
  • the slave shaft controls the valve 161v (see FIG. 20) of the chucks 161a and 161b.
  • the operation (positional coordinates) of the coil insertion guide 172 is set as the seventh slave shaft.
  • the servo motor 177 is controlled by this slave shaft.
  • Each of the slave axes described above has the above-described virtual axis as the main axis.
  • the bending device 150 sends the base 151 of the bending device 150 in synchronization with the feeding of the linear conductor 1.
  • the “bending bending” operation of the bending apparatus 150 includes three “bending synchronous modes”. In each “bending synchronous mode”, a “bending operation” and a “return operation” are executed. That is, while the base 151 of the bending apparatus 150 is sent in synchronization with the linear conductor 1, a “bending operation” (bending process) is executed, and the speed is decelerated for each “bending operation” and a “return operation” is executed. To do. The reason why the base 151 of the bending apparatus 150 is decelerated for each bending operation is to send the linear conductor 1 relatively to the front of the base 151 during this time. Therefore, in the “return operation”, the bending device 150 does not move in synchronization with the linear conductor 1.
  • the speed of the base 151 is slightly lower than the speed of the linear conductor 1 during the bending process.
  • the linear conductor 1 is fed slightly forward with respect to the cored bar 152. It is possible to prevent or suppress the linear conductor 1 from being stretched between the cored bar 152 and the rotating bending pin 153.
  • the bending device 150 returns to the initial position (synchronous acceleration start position) at the maximum speed when the bending process is completed three times. During this time, the bent portion 1M (see FIG. 9B) is fed forward with respect to the cored bar 152. However, this feed is based on the relative relationship between the cored bar 152 and the linear conductor 1, and the linear conductor 1 always moves at a constant speed.
  • the base 151 of the bending apparatus 150 returns to the initial position, the base 151 is accelerated and enters the synchronous mode, and moves at the same speed as the linear conductor 1.
  • the servo motor 165b of the cutting device 165 accelerates and cuts the linear conductor 1.
  • the transfer device 160 while the bending device 150 performs the bending process three times, the base 166 is moved to a position where the split coil 1000 'is inserted into the coil insertion guide 172 and stands by.
  • the base 151 of the bending apparatus 150 performs bending while moving to the conveying apparatus 160 side during three bending processes.
  • the transport apparatus 160 does not interfere with the movement of the bending apparatus 150.
  • the base 166 of the transport apparatus 160 is controlled to return to the initial position (synchronous acceleration start position) at the maximum speed.
  • the base 151 of the bending apparatus 150 is also returned to the initial position (synchronous acceleration start position) at the maximum speed, but the timing at which the base 166 of the transport apparatus 160 starts moving to the initial position is It is earlier than the timing at which the base 151 of the bending apparatus 150 starts moving to the initial position.
  • the base 166 of the transport device 160 moves a longer distance than the base 151 of the bending device 150, and the initial position of the base 166 of the transport device 160 is the same as the timing at which the base 151 of the bending device 150 reaches its initial position. To reach. After the base 166 of the transport device 160 and the base 151 of the bending device 150 reach their initial positions, they are accelerated in the same manner and both move to the synchronous mode. That is, the base 166 of the transport device 160 and the base 151 of the bending device 150 are moved close to each other at the same speed as the linear conductor 1. In this synchronous mode, the rotation coordinate of the cutting crank mechanism 165 is set so that the cutting crank mechanism 165 separates the split coil 1000 ′ from the linear conductor 1.
  • an operation for rotating the transport actuator 161 is set so that the air chucks 161 a and 161 b are positioned at positions where the split coil 1000 ′ cut from the linear conductor 1 is inserted into the coil insertion guide 172. Yes.
  • the rotation of the transport actuator 161 is executed in parallel with the movement to the press-in position (the position at which the split coil 1000 ′ is loaded into the coil insertion guide 172) by the base 166 of the conveyance device 160.
  • the air chucks 161 a and 161 b are positioned at positions where the split coil 1000 ′ is input to the coil input guide 172, the air chuck is switched from “closed” to “open”, and the split coil 1000 ′ is input to the coil input guide 172. .
  • the position (the cutting position) where the air chucks 161 a and 161 b can grasp the divided coil 1000 ′ cut from the linear coil 1. ) Is set. After the air chucks 161a and 161b arrive at the cutting position, the holding (opening to closing) of the split coil 1000 ′ by the air chucks 161a and 161b is completed before the split coil 1000 ′ is cut from the linear coil 1. Thus, the operation of the transport device 160 is set.
  • the coil insertion guide 172 Before the air chucks 161a and 161b holding the split coil 1000 ′ start to rotate toward the press insertion position by the transport actuator 161, the coil insertion guide 172 is opened (both side plates are opened). ) Is set, and when the air chucks 161a and 161b reach the press-in position, they are switched from “open” to “closed”. Further, in parallel with the operation in which the air chucks 161a and 161b are rotationally moved to the cutting position by the transport actuator 161, the coil insertion guide 172 is set to be switched from “closed” to “open”.
  • FIG. 11 is a conceptual diagram illustrating the operation of the press device 170 in order.
  • the press device 170 has a fixed mold 174 and a movable mold 173.
  • FIG. 11 shows a state in which the fixed mold 174 and the movable mold 173 are looked up from below. From the fixed mold 174 side, three pins protrude toward the gap with the movable mold 173. One of the three pins is located above the other two pins, and is located between the other two pins when projected onto the horizontal plane.
  • One pin 175 positioned above is referred to as a first pin 175, and the other two pins 176a and 176b are referred to as second pins 176a and 176b or attitude pins 176a and 176b.
  • the first pin 175 protrudes from the molding surface (press surface) of the fixed mold 174.
  • the second pins (posture pins) 176 a and 176 b are provided below the molding surface of the fixed mold 174.
  • the press device 170 is provided with four slave shafts having the above-described virtual axis as a main axis.
  • the “coil insertion guide” shaft may be included in the press device 170.
  • the press device 170 includes five slave shafts.
  • the first slave shaft is a shaft that opens and closes the movable mold 173 of the press unit 170, and is controlled by a servo motor 173m (see FIG. 19).
  • the second and third slave shafts are arranged so that the two posture pins (the posture pin a and the posture pin b) of the press unit 170 are in the horizontal direction and the interval direction between the two posture pins (perpendicular to the moving direction of the movable die 173). Direction) and controlled by servo motors 176am and 176bm (see FIG. 19).
  • the fourth follower shaft is a movable die 173 from the molding surface to the horizontal position of the molding surface (press surface) of the fixed die 174 with respect to the first pin 175 and the second pins (posture pins) 176a and 176b of the press unit 170.
  • This is a shaft that protrudes or retracts to the side (hereinafter referred to as an ascending or descending shaft) and is controlled by a servo motor 175m (see FIG. 19).
  • the first pin 175 and the posture pins 176a and 176b are raised (or lowered) integrally by the servo motor 175m. That is, the ascending axis or the descending axis of the first pin 175 and the attitude pins 176a and 176b are composed of one axis.
  • FIG. 11 (a) the movable mold 173 is completely open with respect to the fixed mold 174. This is a state where the press retreat is completed.
  • This press retreat is an operation of moving the movable mold 173 to a fully opened state.
  • an operation for raising the pin is set immediately before the press retreat is completed.
  • 11 (e) the first pin 175 and the posture pins 176a and 176b are retracted from the molding surface of the fixed mold 174, and the fixed mold 174 is moved as shown in FIG. 11 (a). It is an operation of moving to a state of completely protruding from the molding surface.
  • the split coil 1000 ′ is moved from the air chucks 161a and 161b of the transport actuator 161 to the press unit 170 in a state where the movable die 173, the first pin 175, and the attitude pins 176a and 176b are set. It is thrown. This is executed by an operation in which the air chucks 161a and 161b are switched from “closed” to “open”.
  • the split coil 1000 ′ is inserted into the press unit 170, the two posture pins 176a and 176b are projected on the horizontal plane so that the split coil 1000 ′ and the posture pins 176a and 176b do not interfere with each other.
  • the distance between the two posture pins 176a and 176b is the narrowest.
  • the first pin 175 and the orientation pins 176a at this time, 176b is in the most protruding state from the molding surface of the fixed die 174, the height from the reference surface of the first pin 175 at this time is h 1.
  • FIG. 11B the interval between the two posture pins 176a and 176b is maximized, and the split coil 1000 ′ is supported in a stable state (posture) by the first pin 175 and the posture pins 176a and 176b.
  • the state shown in FIG. 11A is shifted to the state shown in FIG. This is due to the pin opening operation of the second pins (posture pins) 176a and 176b.
  • the height from the reference surface of the first pin 175 is h 1.
  • the movable mold 173 starts moving in the closing direction (on the fixed mold 174 side). This is an operation of advancing the press in press molding. That is, press work has begun at this stage.
  • the movable die 173 has just been in contact with the split coil 1000 ', and the split coil 1000' has not been deformed by pressing.
  • the first pin 175 and the posture pins 176a, 176b are required to avoid interference with the approaching movable mold 173. Is falling.
  • the height of the first pin 175 from the reference plane is h 2 , and there is a relationship of h 1 > h 2 between h 1 and h 2 .
  • the lowering control of the first pin 175 and the attitude pins 176a and 176b is executed by setting “pin operation in synchronization with press molding” on the “press pin vertical” axis in FIG. 9B.
  • FIG. 11 (d) shows a state where the movable mold 173 is completely closed and press working is completed. In this state, the three-dimensional bending process is performed on the split coil 1000 ′ that has been subjected to the two-dimensional bending process. In this state, the split coil 1000 is completed.
  • the movable mold 173 further approaches the first pin 175 and the posture pins 176a and 176b. For this reason, in order to avoid interference with the movable mold 173, the first pin 175 and the posture pins 176a and 176b are further controlled to be lowered.
  • the height of the first pin 175 from the reference plane at this time is h 3 , and there is a relationship of h 1 > h 2 > h 3 between h 1 , h 2, and h 3 .
  • 11 (b) to 11 (d) show a state where press molding is being performed, but the first pin 175 and the attitude pin 176a depend on the contact timing between the split coil 1000 ′ and the movable mold 173 and the three-dimensional bending shape.
  • 176b lowering control and the spacing control of the two posture pins 176a, 176b are different in timing and speed. Therefore, the interval control between the two posture pins 176a and 176b may be appropriately changed in timing and speed by three-dimensional bending. Further, the lowering control of the first pin 175 and the posture pins 176a and 176b may be appropriately changed according to the contact timing with the movable mold 173.
  • the movable mold 173 is opened, and the three-dimensionally bent split coil 1000 is discharged from the mold of the press unit 170.
  • the first pin 175 and the posture pins 176a and 176b are further controlled to be lowered from the state of FIG. 11D, and the first pin 175 and the posture pins 176a and 176b are fixed to the fixed mold 174 on the projection on the horizontal plane. Make it completely retracted from the molding surface.
  • This operation is executed by the lowering operation of the first pin 175 and the posture pins 176a and 176b. Further, the interval between the two posture pins 176a and 176b is returned to the state shown in FIG.
  • the movable die 173 is opened. As a result, the three-dimensionally bent split coil 1000 is discharged from the mold of the press unit 170. This operation is performed by press retreat.
  • each slave shaft is executed in synchronization with the feed speed (constant) of the linear conductor 1 on the virtual axis serving as the main axis.
  • the coil forming process can be executed at high speed because it is not the control for starting the next operation after confirming the positioning completion on each slave shaft.
  • the peeling type of the peeling device 140 restrains (holds) the enamel-coated peeling portion of the linear conductor 1 and conveys the linear conductor 1. For this reason, it is difficult for a slip and a position shift to occur between the peeling device 140 which is a feeding mechanism (conveying mechanism) of the linear conductor 1 and the linear conductor 1. Therefore, the linear conductor 1 can be accurately fed according to the virtual axis, and the above-described coil forming can be performed accurately and accurately by phase control (synchronous control).
  • phase control synchronous control
  • FIG. 18A is a plan view showing the shape of the split coil 1000.
  • 18B is a plan view of the split coil 1000 of FIG. 18A as viewed from the right side.
  • the split coil 1000 of this embodiment is U-shaped, and three bent portions 1003 to 1005 are formed between both leg portions 1006 and 1007.
  • the two two-dimensional bent portions 1003 to 1005 shown in FIG. 18A are processed by the bending apparatus 150.
  • the bending pin 153 having the cylindrical portion 153a and the flat surface portion 153b is used as the bending pin, indentation hardly occurs at the contact portion of the bending pin 153 in the linear conductor 1. Further, when bending is performed, the moving speed of the bending device 150 is slightly slower than the feeding speed of the linear conductor 1, so that the linear conductor 1 is interposed between the cored bar 152 and the rotating bending pin 153. The expansion can be prevented or suppressed. Therefore, according to the present embodiment, it is possible to provide the linear conductor 1 having no indentation or rubbing at the base portions of the both leg portions 1006 and 1007.
  • FIG. 19 is a block diagram of phase control.
  • a motion controller 182 is provided below the overall controller 181. Below the motion controller 182, a servo motor constituting the slave shaft and its servo driver are connected.
  • an uncoiler (bobbin) 111 as a slave shaft, an uncoiler (bobbin) 111, an edgewise peeling device (EW movement) 140b-1a, an edgewise peeling device (EW peeling) 140b-7, and a flatwise peeling device (FW movement) 140a-1a, flatwise peeling device (FW peeling) 140a-7, bending device (head) 151, bending device (bending) 153, cutting / conveying device (head) 166, cutting device (cutting crank) 165, a transport device (transport DD) 162, transport devices (chuck) 161a, 161b, a coil insertion guide (opening / closing) 172, a press unit (movable mold opening / closing) 173, and a press unit (moving posture pin a) 176a.
  • the uncoiler (bobbin) 111 has a servo driver 111-1D and a servo motor 111-1
  • the edgewise peeling device (EW movement) 140b-1a has a servo driver 140b-1bD and a servomotor 140b-1b, and an edgewise peeling device.
  • EW peeling) 140b-7 includes servo driver 140b-4D and servomotor 140b-4
  • flatwise peeling device (FW movement) 140a-1a includes servo driver 140a-1bD and servomotor 140a-1b, and flatwise.
  • the peeling device (FW peeling) 140a-7 has a servo driver 140a-4D and a servo motor 140a-4, the bending device (head) 151 has a servo driver 157D and a servo motor 157, and the bending device (bending) 153 has a servo.
  • servo driver 163D and servo motor 163 for cutting / conveying device (head) 166, servo driver 165aD and servo motor 165a for cutting device (cutting crank) 165, and conveying device (conveying DD) 162, a servo driver 164D and a servo motor 164; conveying devices (chuck) 161a and 161b; a servo driver 161vD and a servo motor 161v; a coil insertion guide (opening and closing) 172; a servo driver 177D and a servo motor 177;
  • the unit (movable open / close) 173 has a servo driver 173mD and a servo motor 173m
  • the press unit (movement pin a movement) 176a has a servo driver 176amD and a servo motor 176am, and a press unit (appearance)
  • a servo driver 176 for cutting / conveying device
  • FIG. 12 is a plan view showing the overall configuration of the deformed coil forming apparatus according to the present embodiment.
  • the deformed coil forming apparatus 500 includes an uncoiler 110, a buffer 120, a correction part (correction apparatus) 130, a second peeling part (peeling apparatus) 190, a first peeling part (peeling apparatus) 140, and a bending.
  • the forming parts (bending devices) 200 are arranged in a straight line in the order in which the linear conductors 1 are processed.
  • the second peeling portion (peeling device) 190 and the bending forming portion (bending device) 200 are different from those in the first embodiment, and other configurations are the same as those in the first embodiment. Therefore, the conveyance of the linear conductor 1 by the first peeling unit (peeling device) 140 is the same as that in the first embodiment. However, in Example 1, the conveyance of the linear conductor 1 by the first peeling unit (peeling device) 140 and the bending process of the bending device 150 are controlled by phase control, whereas in this example, the phase is controlled. Not controlled.
  • the linear conductor 1 is conveyed by the first peeling section (peeling apparatus) 140 and the bending apparatus 150 is used.
  • the bending process can be controlled by phase control.
  • a second peeling portion (peeling device) 190 is provided so that a peeling portion can be provided in the middle portion of the split coil.
  • the second peeling portion (peeling device) 190 is a peeling device 190a for peeling the flatwise enamel coating and a peeling device 190b for peeling the edgewise enamel coating.
  • the positions of the peeling device 190a and the peeling device 190b are fixed and cannot be moved in the conveying direction of the linear conductor 1 like the peeling device 140a and the peeling device 140b.
  • FIG. 13A is a plan view showing the configuration of the bending apparatus 200.
  • FIG. 13B is a plan view of the bending apparatus 200 shown in FIG. 13A as viewed from below.
  • one bending apparatus (first bending section) 200A that performs compression bending (compression bending) and one bending apparatus (second bending section) 200B that performs tensile bending (draw bending) are provided. It is integrated in the device.
  • compression bending and tension bending can be performed by one device.
  • the bending apparatus 200A is located upstream of the bending apparatus 200B in the conveying direction of the linear conductor 1. With such an arrangement, the linear conductor 1 is subjected to a compression bending process by the bending apparatus 200A and then subjected to a tensile bending process by the bending apparatus 200B.
  • the bending apparatus 200 is provided with seven motors.
  • Reference numeral 201 denotes a switching motor for switching between the bending apparatus 200A and the bending apparatus 200B.
  • the cores of the bending apparatuses 200A and 200B are removed in order to remove the core bars of the bending apparatuses 200A and 200B that have been bending the linear conductor 1 from the linear conductor 1. It is necessary to lower gold from the linear conductor 1.
  • Reference numerals 202 and 203 denote motors for that purpose, and reference numeral 202 denotes a motor for lowering the bending apparatus 200 ⁇ / b> A from the linear conductor 1.
  • a motor 203 lowers the bending apparatus 200B from the linear conductor 1.
  • the bending apparatus 200A and the bending apparatus 200B access the linear conductor 1 by moving forward along the rotation center axis O 200A and the center axis (rotation center axis) O 200B , and move backward. This retracts from the linear conductor 1.
  • the motor 204 provided on the bending apparatus 200A side is a motor that rotates a core bar used for compression bending.
  • the core metal has a groove width so that the flat wire having the long side and the short side can be bent from either the long side or the short side.
  • Two different types of grooves are formed in a cross shape.
  • the motor 204 rotates the mandrel so that one of the two types of grooves formed in a cross shape is along the conveying direction of the linear conductor 1.
  • a motor 205 provided on the bending apparatus 200A side is a motor that rotates a bending pin used for compression bending around the central axis of the core metal.
  • a motor 206 provided on the bending device 200B side is a motor that moves a clamp used for pulling and bending forward toward the metal core or retracts from the metal core side.
  • the motor 207 provided on the bending apparatus 200B side is a motor that sandwiches the linear conductor 1 between the clamp and the metal core and rotates the clamp and the metal core integrally when performing tension bending.
  • FIG. 14A is a plan view of the bending apparatus 200A as seen from the rotation axis direction of the bending pins 200A-2a and 200A2b.
  • FIG. 14B is a plan view of the bending apparatus 200A shown in FIG.
  • FIG. 14C is a plan view of the bending apparatus 200A shown in FIG. 14A as seen from the direction of the arrow C.
  • FIG. 15D is a plan view of the bending apparatus 200A shown in FIG. 14A as viewed from the direction of the arrow D. Part of FIG. 14D shows a cross section taken along the arrow D1-D1 in FIG. 14A.
  • the cored bar is composed of four pieces 200A-1a, 200A-1b, 200A-1c and 200A-1d, and two types of grooves having different groove widths are the rotation shafts of the bending pins 200A-2a and 200A-2b. It is comprised in the shape (cross-shaped) orthogonally crossed on the plane perpendicular
  • a bending pin 200A-2a and a bending pin 200A2b are disposed around the cored bar.
  • the bending pins 200A-2a and the bending pins 200A2b are integrally rotated by a motor 205.
  • FIG. 15 is a perspective view showing the configuration of the bending apparatus 200B.
  • the bending apparatus 200B includes a core metal 200B-1, a clamp 200B-2, and a back support 200B-3.
  • the linear conductor 1 is sandwiched between the core metal 200B-1 and the clamp 200B-2, and the wire conductor 1
  • the back support 200B-3 is applied to the side surface opposite to the side surface in contact with the core metal 200B-1, and the core metal 200B-1 and the clamp 200B-2 are integrally formed around the central axis O 200B of the core metal 200B-1.
  • the center axis (rotation center axis) O 200B and the rotation center axis O 200A are parallel and exist on the same plane.
  • the core metal 200B-1 includes a large-diameter cylindrical surface whose center coincides with the central axis O 200B of the core metal 200B-1, a small-diameter cylindrical surface having a center at a position eccentric from the center of the large-diameter cylindrical surface, It is constituted by two tangential planes in contact with a large diameter cylindrical surface and a small diameter cylindrical surface.
  • the linear conductor 1 is sandwiched between the tangential plane formed on the core metal 200B-1 and the tip plane of the clamp 200B-2, and the core metal 200B-1 is rotated by the core metal 200B-1 and the clamp 200B-2. It is bent while being wound around a large-diameter cylindrical surface.
  • the back support 200B-3 is not fixed and is provided to be slidable along the linear conductor 1.
  • the backrest 200B-3 slides together with the linear conductor 1 as the linear conductor 1 is pulled out. For this reason, the linear conductor 1 can prevent rubbing that occurs between the back support 200B-3.
  • FIG. 16A is a perspective view showing the shape of the split coil 1100 ′ before bending by tensile bending.
  • the split coil 1100 'shown in FIG. 16A is used as the split coil 1100 provided in the motor stator 2000 shown in FIG.
  • FIG. 16B is a perspective view showing the vicinity of the cored bar 200B-1, the clamp 200B-2, and the backrest 200B-3.
  • FIG. 16C is a perspective view showing a state where the split coil 1100 ′ is bent by about 180 degrees by tensile bending.
  • the split coil 1100 ′ shown in FIG. 16A becomes thicker on the inner periphery side of the bend than the outer periphery side by the compression bending performed before the bending process by the tensile bending to be performed, and the cross section becomes a trapezoidal shape. Yes.
  • this thick surface is applied to the core metal holder surface 200B-1a and the linear conductor 1 is sandwiched between the core metal 200B-1 and the clamp 200B-2, the gap between the thick and thin surfaces of the linear conductor 1 is obtained.
  • the connecting inclined surface comes into contact with the core metal 200B-1 and the clamp 200B-2. For this reason, when tension bending is performed after compression bending, the inclined surface is twisted along the tip surface of the clamp 200B-2, and the completed split coil 1100 is twisted.
  • a notched surface 200B-1b is provided in a cored bar holder that supports the cored bar 200B-1, and when the bending is performed, the split coil 1100 ′ to be twisted hits the notched surface 200B-1b. The twist is suppressed.
  • the notch surface 200B-1b serves as a contact surface that suppresses twisting.
  • the split coil 1100 that is bent in this embodiment includes a compression bending portion (first bending portion or first bending portion) that has been compression bent by the bending apparatus 200A and a tensile bending process that is performed by the bending apparatus 200B.
  • a bent portion (second bent portion or second bent portion).
  • a straight line 1130 is provided between the compression bending part 1110 and the tensile bending part 1110 (see FIG. 17), and the compression bending part 1110 and the tensile bending part 1120 are adjacent to each other via the straight part 1130.
  • an indentation is formed on the inner peripheral side of the tension bending part (second bending part or second bending part) that has been tension-bended by the bending apparatus 200B, where the cored bar 200B-1 as a forming tool is in contact. It is formed, and no indentation is formed on the outer peripheral side of the tensile bend. Further, no indentation is formed on the compression bending portion (first bending portion or first bending portion) that has been subjected to compression bending by the bending apparatus 200A. Therefore, in the split coil 1100 that is bent in the present embodiment, indentations are formed only on the inner peripheral side of the tensile bent portion.
  • the indentation may damage the insulating coating (insulating coating) of the linear conductor 1 or the split coil 1100.
  • the insulating coating insulating coating
  • the reliability of electrical insulation between the adjacent split coils 1100 is lowered.
  • the indentation is formed only on the inner peripheral side of the bent portion, the reliability of electrical insulation between the adjacent divided coils 1100 can be maintained high.
  • this invention is not limited to each above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • DESCRIPTION OF SYMBOLS 100 U-shaped coil shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 本発明の目的は、コイルの生産性を高めることにある。 周囲を絶縁被膜で覆われた線状導体1から絶縁被膜の一部を剥離する第1の剥離装置140aを備え、線状導体1を長手方向に搬送して絶縁被膜の剥離を行うコイル成形装置において、第1の剥離装置140aは剥離加工を行う第1の固定型と第1の可動型とを備え、第1の剥離装置140aは第1の固定型と第1の可動型とで線状導体1の剥離部を挟持して線状導体1の搬送方向に移動することにより、線状導体1を搬送方向に搬送する。

Description

コイル成形装置及びコイル成形方法
 本発明は、電動機や発電機等の回転電機及びその製造方法に係り、特に回転電機に用いられるコイル(巻線)及びその製造方法に関する。
 本技術分野の背景技術として、特開2003-143818号公報(特許文献1)がある。この公報には、セグメントコイルを構成する分割導体を製造する方法が記載されている。セグメントコイルは、完成時のコイルを分割した形状の分割導体を接合して形成される(段落0002参照)。この製造方法は、コイルエンドを小さくすると共に絶縁被膜の損傷を防止することを目的としている。そして、この製造方法では、巻回された線状の導体材料を繰り出して直線状に矯正する工程と、直線状となった導体材料をベンダー機により曲げて2次元形状に成形する工程と、2次元形状に成形された導体材料をプレス成形機の型で挟持して成形し、所定長さに切断して3次元形状の分割導体を成型する工程とを有する(要約参照)。
特開2003-143818号公報
 特許文献1の製造方法では、コイルエンドを小さくすると共に絶縁被膜の損傷を防止することができるが、コイルの信頼性を更に向上し、或いは製造スピードの更なる高速化を図るなど、コイルの生産性を高めることが要求されている。
 本発明の目的は、コイルの生産性を高めることにある。
 上記目的を達成するために、本発明のコイル成形装置は、周囲を絶縁被膜で覆われた線状導体から絶縁被膜の一部を剥離する第1の剥離装置を備え、線状導体を長手方向に搬送して絶縁被膜の剥離を行うコイル成形装置において、前記第1の剥離装置は剥離加工を行う第1の固定型と第1の可動型とを備え、前記第1の剥離装置は前記第1の固定型と前記第1の可動型とで線状導体の剥離部を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送する。
 また上記目的を達成するために、本発明のコイル成形方法は、周囲を絶縁被膜で覆われた線状導体から絶縁被膜の一部を剥離する第1の剥離装置により、線状導体を長手方向に搬送して絶縁被膜の剥離工程を実行するコイル成形方法において、前記第1の剥離装置は第1の固定型と第1の可動型とで線状導体の剥離部を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送する。
 本発明によれば、コイルの生産性を高めることができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例に係るU字コイル成形装置の全体構成を示す平面図である。 アンコイラ110を正面から見た平面図である。 アンコイラ110を上から見た平面図である。 矯正部130の構成を示す斜視図である。 剥離部(剥離装置)140の全体構成を示す斜視図である。 フラットワイズ剥離装置140aを剥離装置140の幅方向から見た正面図である。 フラットワイズ剥離装置140aを剥離装置140の長さ方向(図5Aの右側)から見た側面図である。 エッジワイズ剥離装置140bを剥離装置140の幅方向から見た正面図である。 エッジワイズ剥離装置140bを剥離装置140の長さ方向(図6Aの左側)から見た側面図である。 エナメル被覆を剥離する金型142を示す斜視図である。 エナメル被覆の隔離(除去)作業を説明する断面図である。 曲げ成形部(ベンディング装置)150及び搬送部(搬送装置)160の構成を示す平面図である。 搬送部(搬送装置)160による搬送動作を説明する図である。 曲げ成形部(ベンディング装置)150を拡大して示す平面図である。 線状導体1の切断装置165の構成を示す平面図である。 プレス装置170の動作を、順を追って示した動作の概念図である。 本発明の実施例に係る異形コイル成形装置の全体構成を示す平面図である。 ベンディング装置200の構成を示す平面図である。 図14Aに示すベンディング装置200を下側から見た平面図である。 ベンディング装置200Aを曲げピン200A-2a,200A2bの回動軸方向から見た平面図である。 図15Aに示すベンディング装置200AをB矢視方向から見た平面図である。 図15Aに示すベンディング装置200AをC矢視方向から見た平面図である。 図15Aに示すベンディング装置200AをD矢視方向から見た平面図である。 ベンディング装置200Bの構成を示す斜視図である。 引張り曲げによる曲げ加工を行う前の分割コイル1100’の形状を示す斜視図である。 芯金200B-1とクランプ200B-2と背当て200B-3との近傍を示す斜視図である。 分割コイル1100’に引張り曲げにより約180度の曲げ加工を施す状態を示す斜視図である。 分割コイル1000,1100を利用して構成されたモータステータ2000の斜視図である。 分割コイル1000の形状を示す平面図である。 図19Aの分割コイル1000を右側から見た平面図である。 位相制御のブロック図である。 エナメル被覆が剥離された線状導体1を示す図である。
 以下、本発明に係る実施例を説明する。本発明に係る以下の実施例では、セグメントコイルを構成する分割導体とその製造方法について説明する。各実施例では、セグメントコイル及び分割導体を構成する導体(導線)は、断面が矩形を成す角線について説明しているが、断面が円形の丸線に適用することもできる。角線としては断面が正方形の導体や長辺(長軸)と短辺(短軸)とを有する導体(平角線)があるがいずれの導体に対しても各実施例を適用することができる。ただし、曲げ加工やプレス加工においては導体断面の方向性を考慮しており、角線を用いることにより、丸線よりもより大きな効果が得られる。以下の各実施例では、断面が長辺と短辺とを有する平角線について説明する。なお、以下の説明では、長辺側をフラットワイズ、短辺側をエッジワイズと呼ぶ場合もある。また、分割導体に成形される導体を線状導体と呼んで説明する。
 以下の説明では、後述する線状導体1の搬送方向をコイル成形装置の長さ方向とする。また、水平方向において、線状導体1の搬送方向に垂直な方向をコイル成形装置の幅方向とする。また、コイル成形装置の高さ方向は鉛直方向である。コイル成形装置は長さ方向における寸法が幅方向における寸法よりも大きく、長さ方向はコイル成形装置の長手方向と一致する。
 図17に、分割コイル1000,1100を利用して構成されたモータステータ2000の斜視図を示す。モータステータ2000の鉄心2001にはスロット2002が形成してあり、このスロットに分割コイル1000,1100が挿入されて、モータコイルが形成される。
 分割コイル1000の成形について実施例1で、分割コイル1100の成形について実施例2で、それぞれ説明する。
 図1を用いて、本発明に係るU字コイル成形装置の全体構成を説明する。図1は、本実施例に係るU字コイル成形装置の全体構成を示す平面図である。
 U字コイル成形装置100は、図1の左側から、アンコイラ110、バッファ120、矯正部(矯正装置)130、剥離部(剥離装置)140、曲げ成形部(ベンダー)150、搬送部(搬送装置)160及びプレス成形部(プレス装置)170が、線状導体に対して加工を行う順番に一直線に並んで配置されている。さらに、プレス成形部170の右側には、U字コイル成形装置100の制御装置180が配置されている。曲げ成形部(ベンディング装置)150、搬送部(搬送装置)160及びプレス成形部(プレス装置)170の下部には、曲げ加工とプレス加工を施したU字状のコイルを収容する収容部(マガジン)185が配置されている。
 アンコイラ110は、主要構成要素として、線状導体が巻き付けられたボビン111と、ボビン111に対して線状導体の搬送方向下流側に設けられたピンチローラ装置112と、ボビン111の外径を計測するレーザ変位計113とを備えている。
 図2A及び図2Bを用いて、アンコイラ110について詳細に説明する。図2Aは、アンコイラ110を正面から見た平面図である。図2Bは、アンコイラ110を上から見た平面図である。なお、図2A及び図2Bでは、説明を分かり易くするために、一部の構成部品を省略して示しているため、図2Aに描かれていて図2Bに描かれていない構成部品、或いは図2Bに描かれていて図2Aに描かれていない構成部品がある。
 ボビン111にはサーボモータ111-1が設けられ、ボビン111はサーボモータ111-1によって回転駆動されている。サーボモータ111-1は、レーザ変位計113によって計測されるボビンの外径に応じて、線状導体が一定速度でボビン111から繰り出されるように、回転が制御される。これにより、後述する剥離装置140による線状導体の搬送において、剥離装置140にかかる負荷を軽減し、剥離装置140による剥離動作への影響を抑制或いは防いでいる。
 ピンチローラ装置112は第1のローラ112aと第2のローラ112bとを備えている。第1のローラ112aはサーボモータ112-1によって回転駆動されている。サーボモータ112-1は、線状導体1のテンションを保つように、トルク制御で回転が制御されている。第2のローラ112bは一定の荷重で第1のローラ112aに押し付けられている。これにより、ボビン111から繰り出される線状導体を第1のローラ112aと第2のローラ112bとで挟み込み、下流側に向けて流す役割を果たす。これは、ボビン111から繰り出される線状導体がボビン111の下側に溜まり、ボビン111の近傍で乱れるのを防ぐ。すなわち、ボビン111から繰り出される線状導体が速やかにボビン111から離れた位置(バッファ120側)にフィードされるようにする。
 従ってピンチローラ装置112は、線状導体の搬送が目的ではなく、ボビン111における線状導体の乱れを防ぐために設けられている。このため、ピンチローラ装置112の設置高さは、ボビン111における線状導体の巻回範囲に対応する高さ範囲内に設定されることが望ましい。このために、ピンチローラ装置112の設置高さは、ボビン111の外径(外周)において最も高くなる位置と最も低くなる位置との間の範囲d111aに設定されることが望ましい。より好ましくは、ボビン111の回転中心よりも上側から線状導体を引き出す場合は、ピンチローラ装置112の設置高さは、ボビン111の線状導体巻付け面において最も高くなる位置とボビン111の外径(外周)において最も高くなる位置との間の範囲d111bに設定されることが望ましい。或いは、ボビン111の回転中心よりも下側から線状導体を引き出す場合は、ピンチローラ装置112の設置高さは、ボビン111の線状導体巻付け面において最も低くなる位置とボビン111の外径(外周)において最も低くなる位置との間の範囲d111cに設定されることが望ましい。なお、線状導体の線材が細いときはボビン111の回転中心よりも上側から線状導体を引き出し、線状導体の線材が太いときはボビン111の回転中心よりも下側から線状導体を引き出すとよい。
 次に、バッファ120について説明する。バッファ120は、アンコイラ110と矯正部(矯正装置)130との間に配置されている。すなわち、線状導体の搬送方向(フィード方向)において、アンコイラ110の下流側かつ矯正部130の上流側に位置する。バッファ120では、ボビン111から繰り出された線状導体を弛んだ状態に維持する。バッファ120における線状導体の弛み量は所定範囲に設定される。このために、バッファ120には光学センサ121が設けられている。
 光学センサ121は発光部と受光部とを有している。受光部で検出される光量が所定値(閾値)を下回るとONし、所定値(閾値)を上回るとOFFする仕組みである。線状導体により発光部からの光が遮られ、受光部で検出される光量が低下して所定値を下回ることにより光学センサ121がONとなり、線状導体の存在を検出することができる。光学センサ121は発光部と受光部とのセットを5組備えており、5組の発光部と受光部とが鉛直方向(縦方向)に配置されている。
 5セットのうち中央に配置されたセットがON信号を出力している場合は、線状導体の弛み量が適正な場合である。中央に配置されたセットの一つ下側に配置されたセットがON信号を出力する場合は、線状導体が弛み過ぎている場合である。この場合は、レーザ変位計113によって計測されるボビンの外径をプラスに補正して、線状導体のボビン111からの繰出し速度を遅くする。一番下側のセットがONする場合は、制御装置180は制御不能な異常事態になっているものと判断し、U字コイル成形装置100を停止する。中央に配置されたセットの一つ上側に配置されたセットがON信号を出力する場合は、線状導体が張り過ぎている場合である。この場合は、レーザ変位計113によって計測されるボビンの外径をマイナスに補正して、線状導体のボビン111からの繰出し速度を速くする。一番上側のセットがONする場合は、制御装置180は制御不能な異常事態になっているものと判断し、U字コイル成形装置100を停止する。
 次に、図3を用いて、矯正部(矯正装置)130について説明する。図3は、矯正部130の構成を示す斜視図である。矯正部130に設けられる矯正装置はエッジワイズ用矯正装置130aとフラットワイズ用矯正装置130bとからなる。
 エッジワイズ用矯正装置130aは、ベース130a-1とベース130a-1上に設けられた7個の固定ローラ130a-2とを有する。各ローラ130a-2は、ベース130a-1に対して固定された位置で、回転可能に設けられている。
 フラットワイズ用矯正装置130bは、ベース130b-1とベース130b-1上に設けられた6個の固定ローラ130b-2と1個の可動ローラ130b-3とを有する。6個の固定ローラ130b-2は、ベース130b-1に対して固定された位置で、回転可能に設けられている。線状導体1に対して上側に配置され、線状導体1の送り方向において最下流側に配置された可動ローラは上下方向(鉛直方向)に駆動され、線状導体1のフラットワイズ側における曲がりを矯正する。
 線状導体1はフラットワイズをボビン111の線状導体巻付け面に対向させて巻付けている。このため、フラットワイズ側の曲がり(巻癖)を効果的に矯正できるように、フラットワイズ用矯正装置130b側に可動ローラ130b-3を設けている。必要に応じてエッジワイズ用130a矯正装置130aに線状導体1の送り方向に対して直交する横方向(水平方向)に駆動される可動ローラを設けてもよい。
 次に、図4~図8を用いて、剥離部(剥離装置)140について説明する。なお、線状導体1は導体の長手方向軸線に対して直角な断面が長辺(フラットワイズ)と短辺(エッジワイズ)とからなる長四角の断面で構成される平角線(角型導体)で、その周囲がエナメル被覆(絶縁部材)で絶縁されている。また、本実施例では、線状導体1は、長辺(フラットワイズ)が水平方向に、また短辺(エッジワイズ)が鉛直方向になるようにして、搬送される。
 図4は剥離部(剥離装置)140の全体構成を示す斜視図である。剥離装置140は、フラットワイズのエナメル被覆を剥離する剥離装置140aと、エッジワイズのエナメル被覆を剥離する剥離装置140bとを備えている。図4では、線状導体1の送り方向において、剥離装置140aは剥離装置140bに対して上流側に配置されている。剥離装置140aと剥離装置140bとの配置は、図1に示すように、剥離装置140bが剥離装置140aに対して上流側に配置されてもよい。以下の説明では、図4に示すように剥離装置140aが剥離装置140bに対して上流側に配置された構成に基づいて説明する。
 フラットワイズ剥離装置140aは、ロッドねじ140a-1aとロッドねじ140a-1aを回転駆動するサーボモータ140a-1bとを有する送り機構140a-1によって、線状導体1の送り方向に移動可能に構成されている。剥離装置140aには、図示しない雌ねじが設けられており、ロッドねじ140a-1aと螺合している。この雌ねじは、送り機構140a-1の構成要素でもあり、ロッドねじ140a-1aをサーボモータ140a-1bで回転駆動することにより、ロッドねじ140a-1aの軸方向に移動する。このロッドねじ140a-1aと雌ねじとの動作により、剥離装置140aが線状導体1の送り方向に移動する。また、剥離装置140aには、線状導体1から剥離したエナメル被覆を含む屑を集塵ボックス140-2(図1参照)に搬送する配管140a-3が設けられている。
 エッジワイズ剥離装置140bは、ロッドねじ140b-1aとロッドねじ140b-1aを回転駆動するサーボモータ140b-1bとを有する送り機構140b-1によって、線状導体1の送り方向に移動可能に構成されている。剥離装置140bには、図示しない雌ねじが設けられており、ロッドねじ140b-1aと螺合している。この雌ねじは、送り機構140b-1の構成要素でもあり、ロッドねじ140b-1aをサーボモータ140b-1bで回転駆動することにより、ロッドねじ140b-1aの軸方向に移動する。このロッドねじ140b-1aと雌ねじとの動作により、剥離装置140bが線状導体1の送り方向に移動する。また、剥離装置140bには、線状導体1から剥離したエナメル被覆を含む屑を集塵ボックス140-2(図1参照)に搬送する配管140b-3が設けられている。なお、集塵ボックス140b-2には集塵機が設けられている。
 剥離装置140には、剥離装置140aと剥離装置140bとの移動を案内するガイドレール141が設けられている。ガイドレール141はコイル成形装置100の幅方向に分かれて配置された2本のガイドレール141aと141bとを備えている。ガイドレール141は、剥離装置140aの送り機構140a-1の構成要素であり、剥離装置140bの送り機構140b-1の構成要素でもある。すなわち、ガイドレール141は、剥離装置140aの送り機構140a-1と剥離装置140bの送り機構140b-1とで共用される。
 本実施例では、剥離装置140aと剥離装置140bとを用いて線状導体1を搬送する。すなわち、剥離装置140aと剥離装置140bとが線状導体1の搬送装置(送り機構)を構成している。このために、剥離装置140aと剥離装置140bとは位相制御されるが、これについては後で詳細に説明する。
 図5Aはフラットワイズ剥離装置140aを剥離装置140の幅方向から見た正面図であり、図5Bはフラットワイズ剥離装置140aを剥離装置140の長さ方向(図5Aの右側)から見た側面図である。図6Aはエッジワイズ剥離装置140bを剥離装置140の幅方向から見た正面図であり、図6Bはエッジワイズ剥離装置140bを剥離装置140の長さ方向(図6Aの左側)から見た側面図である。
 剥離装置140aはフラットワイズのエナメル被覆を剥離する金型140a-7を備えている。また、剥離装置140bはエッジワイズのエナメル被覆を剥離する金型140b-7を備えている。剥離装置140aと剥離装置140bとは基本的な構成は同じであり、配置が異なっている。すなわち、剥離装置140aは金型140a-7の駆動方向が水平方向であるのに対して、剥離装置140bでは金型140b-7の駆動方向が鉛直方向である。そのため、剥離装置140aと剥離装置140bとについて、まとめて説明する。
 金型140a-7,140b-7の可動型(後述)を駆動するために、サーボモータ140a-4,140b-4とサーボモータ140a-4,140b-4の回転をロッドねじ140a-6,140b-6に伝達する伝達機構140a-5,140b-5とが設けられている。ロッドねじ140a-6は伝達機構140a-5によってサーボモータ140a-4,140b-4から伝達された回転力により回転駆動される。ロッドねじ140a-6,140b-6は本体フレーム140a-8,140b-8に設けられた図示しない雌ねじと螺合している。このため、ロッドねじ140a-6,140b-6が回転することにより、その先端部に設けられた金型140a-7,140b-7の可動型を固定型に向けて駆動する。
 図7は、エナメル被覆を剥離する金型142を示す斜視図である。図8は、エナメル被覆の隔離(除去)作業を説明する断面図である。剥離装置140aの金型140a-7と剥離装置140bの金型140b-7とは同じ構造であり、同じように動作する。このため、図7及び図8では、金型140a-7と金型140b-7とを一緒にして、金型142として説明する。なお、フラットワイズ剥離装置140aの金型140a-7では固定型と可動型とがコイル成形装置100の幅方向に分かれて配置され、エッジワイズ剥離装置140bの金型140b-7では、固定型と可動型とがコイル成形装置100の高さ方向(鉛直方向)に分かれて配置される。
 セグメントコイルを構成する分割導体の端部は、別の分割導体と溶接接合するために、エナメル被覆(絶縁皮膜)を除去して、溶接接合をし易くする必要がある。このために、本実施例では、エッジワイズとフラットワイズの2方向について、エナメル被覆を除去する。
 金型142は固定型142-1と可動型142-2とから構成されている。固定型142-1は一対の固定雇い142-1A,142-1Bとその中央に設けられた導体ガイド兼固定刃142-1Cとから構成されている。可動型142-2は一対の可動刃142-2A,142-2Bとその中央に設けられた導体押え142-2Cとから構成されている。導体ガイド兼固定刃142-1Cは刃先142-1a,142-1bを有し、可動刃142-2A,142-2Bは刃先142-2a,142-2bを有する。
 剥離装置140aは、可動型142-2を固定型142-1に向けて移動し、導体ガイド兼固定刃142-1Cの刃先142-1a,142-1bと可動刃142-2A,142-2Bの刃先142-2a,142-2bとで、長辺(フラットワイズ)のエナメル被覆1Aを切除する。エナメル被覆100Aが切除された当該剥離部は剥離装置140bの位置まで送られ、そこで短辺(エッジワイズ)のエナメル被覆1Aが切除される。このようにして連続的に長い線状導体1に一定の間隔で、エナメル被覆1Aが切除された剥離部が形成される。
 図21にエナメル被覆が剥離された線状導体1を示す。まず剥離装置1aによりフラットワイズのエナメル被覆が切除され剥離部1001a,1002aが形成される。剥離部1001a,1002aが形成されたのち、剥離装置1bによりエッジワイズのエナメル被覆が切除され、剥離部1001b,1002bが形成される。図21では剥離部1001a,1002aの長さと剥離部1001b,1002bの長さとが同じであるが、通常、両者の長さが異なるようにしてもよい。
 ここで、剥離装置140aと剥離装置140bとによる剥離工程について説明する。
 本実施例では、主軸の動作量に応じて従軸の動作量を設定し、各軸の動作を制御する位相制御(同期制御とも言う)を行っている。なお、主軸は仮想軸として設定されており、この仮想軸は線状導体の移動量に基づいて設定されている。本実施例では、線状導体1は常に一定速度で搬送されるものとして、仮想軸を設定する。
 ここでは、従軸として、剥離装置140aの位置座標、剥離装置140bの位置座標、剥離装置140aの可動型142-2の位置座標及び剥離装置140bの可動型142-2の位置座標が設定される。以下の説明において、「同期モード」は、剥離装置140a及び剥離装置140bが仮想軸と同期して移動しているモードである。すなわち、同期モードでは、剥離装置140a及び剥離装置140bが線状導体1と同期して移動している。
 剥離装置140aは、自身の初期位置から線状導体1の搬送方向への移動を開始し、同期モード(線状導体1と等速の状態)において、可動型142-2を開位置から閉じ位置に動作させ、線状導体1のフラットワイズのエナメル被覆の切除を行う。このとき、可動型142-2は、可動型142-2によって切除されて形成された線状導体1の剥離部(段差部)に食い込んでおり、線状導体1と強く連結された状態にある。このため、線状導体1は剥離装置140aの固定型142-1と可動型142-2とに挟まれて拘束された状態であり、剥離装置140aの移動に伴って移動することになる。すなわち、線状導体1は剥離装置140aによって搬送される。なお、剥離装置140aの固定型142-1と可動型142-2とに挟持されるまでは、線状導体1は剥離装置140bの固定型142-1と可動型142-2とに挟持(拘束)されて搬送されている。
 線状導体1が剥離装置140aの固定型142-1と可動型142-2とに挟持されると、剥離装置140bの可動型142-2が閉じ位置から開位置に動作し、線状導体1は剥離装置140bによる挟持(拘束)状態から解放される。
 剥離装置140aが線状導体1を搬送している間に剥離装置140bは自身の初期位置に移動し、初期位置から線状導体1の搬送方向への移動を開始する。剥離装置140bは、「同期モード」に入ってから、可動型142-2を閉じる。剥離装置140bは、可動型142-2を閉じることにより、線状導体1のエッジワイズのエナメル被覆の切除を行う。このとき、剥離装置140bの可動型142-2は、可動型142-2によって切除されて形成された線状導体1の剥離部(段差部)に食い込み、線状導体1と強く連結された状態にある。このため、線状導体1は剥離装置140bの固定型142-1と可動型142-2とに挟まれて拘束された状態であり、剥離装置140bの移動に伴って移動する。なお、この段階では、線状導体1は剥離装置140aによっても拘束されており、剥離装置140aと剥離装置140bと線状導体1が等速で移動している。
 すなわち、剥離装置140bの可動型142-2が開位置から閉じ位置に動作するのは、剥離装置140aの可動型142-2が閉じ位置から開位置に動作するタイミングよりも前である。剥離装置140bの可動型142-2が閉じ始めてから剥離装置140aの可動型142-2が開くまでの期間は、剥離装置140aと剥離装置140bとが共に仮想軸と同期モードにある期間である。従って、剥離装置140aと剥離装置140bと線状導体1とは共に同じ速度で移動している。
 線状導体1が剥離装置140bの固定型142-1と可動型142-2とに挟持されると、剥離装置140aの可動型142-2が閉じ位置から開位置に動作する。剥離装置140aの可動型142-2が開くと、線状導体1は剥離装置140aの固定型142-1と可動型142-2とによる拘束から解放される。しかし、線状導体1は、この時点ですでに剥離装置140bの固定型142-1と可動型142-2とにより拘束されている。従って、線状導体1は、剥離装置140aによる拘束から解放された後も、剥離装置140bによって一定速度で搬送される。
 剥離装置140aは、可動型142-2を開くと、自身の初期位置に戻る。剥離装置140aが初期位置に戻るときの速度は最高速度に設定される。これにより、分割コイルの生産効率を高めることができる。
 剥離装置140aが初期位置に戻ると、再び、線状導体1の搬送方向への移動を開始し、同期モードまで加速する。以下、剥離装置140aと剥離装置140bとが立場を変えて上述した動作を実行する。
 剥離装置140aと剥離装置140bとは、少なくともいずれか一方が、常時、線状導体1を拘束して搬送方向に搬送する。また、剥離装置140aによる線状導体1の拘束と剥離装置140bによる線状導体1の拘束とが切り替わる際には、剥離装置140aによる線状導体1の拘束と剥離装置140bによる線状導体1の拘束とが重複する期間が設けられている。これにより、線状導体1を一定速度で確実に搬送することができる。
 常時、少なくとも剥離装置140aと剥離装置140bとうちいずれか一方が線状導体1の剥離部に可動型を当てていなければならないため、両方の剥離装置140a,140bで同じ剥離部に可動型を当てることができない。このため、剥離装置140bは、剥離装置140aが可動型を当てている剥離部に対して、少なくとも分割コイル1本分だけ離れた位置の剥離部に可動型を当てる必要がある。しかし、剥離装置140aが可動型を当てる剥離部と剥離装置140bが可動型を当てている剥離部とが離れすぎると、剥離装置140aと剥離装置140bとの間で線状導体1が振動し、搬送が困難になる場合がある。そのため、剥離装置140aと剥離装置140bとが最接近した位置において、剥離装置140bが可動型を当てる剥離部は、剥離装置140aが可動型を当てている剥離部から分割コイル1本分だけ離れた位置の剥離部であることが望ましい。
 本実施例では、剥離装置140aと剥離装置140bとが搬送のために線状導体1に触れる。しかし、剥離装置140aと剥離装置140bとが線状導体1に触れる位置はエナメル被覆(絶縁皮膜)が切除された部分であり、剥離装置140aと剥離装置140bとはエナメル被覆(絶縁皮膜)で被覆された部分には触れない。アンコイラ110においてピンチローラ装置112の第1のローラ112aと第2のローラ112bとが線状導体1のエナメル被覆(絶縁皮膜)で被覆された部分に触れるが、ピンチローラ装置112は積極的に線状導体1の搬送を行う装置ではないので、第1のローラ112aと第2のローラ112bとを線状導体1に対して強く押し付ける必要がない。従って、エナメル被覆に損傷を与えたり、エナメル被覆に塵埃を付着させる可能性を低減することができる。
 次に、図9A、図9B、図9C及び図10を用いて、曲げ成形部(ベンディング装置)150及び搬送部(搬送装置)160について説明する。図9Aは、曲げ成形部(ベンディング装置)150及び搬送部(搬送装置)160の構成を示す平面図である。図9Bは、搬送部(搬送装置)160による搬送動作を説明する図である。図9Cは、曲げ成形部(ベンディング装置)150を拡大して示す平面図である。図10は、線状導体1の切断装置165の構成を示す平面図である。
 曲げ成形部(ベンディング装置)150は、ベース151と、ベース151に搭載された芯金152及び曲げピン153とを備えている。また、ベース151の裏側にはサーモモータ158が設けられており、曲げピン153はサーモモータ158により芯金152の中心O152を中心にして回動するように構成されている。すなわち、曲げピン153が芯金152の周囲を回動することにより、線状導体1に対して曲げ加工を実施する。なお、芯金152はベース151に対して固定されている。
 本実施例では、ベンディング装置150は線状導体1に対して3回の曲げ加工を実施する。3回の曲げ加工により、線状導体1には3ヶ所の曲げ部1K,1L,1Mが形成される。この段階では、線状導体1は2次元的に曲げられた状態である。
 ここで、図9Cを参照して、芯金152と曲げピン153とについて、詳細に説明する。本実施例では、芯金152の円筒形状であり、中央部に線状導体1が挿通する直線溝152aが形成されている。直線溝152aの両端部では芯金152に丸味部152bが形成されている。これにより、曲げ加工時に線状導体1のエナメル被覆の損傷を防いでいる。
 また、曲げピン153は、部分円筒面153aと、この部分円筒面153aに対して線状導体1と当接する側に直線部(平面部)153bとを有する形状である。この形状により、曲げピン153は線状導体1と当接する際に直線部(平面部)153bから線状導体1に当接する。そして曲げ加工時にあっては、直線部(平面部)153bが線状導体1に当接して線状導体1に曲げ力を加える。小径の円筒ピンを線状導体1に当接させて曲げ力を加えると、線状導体1に圧痕が付き易く、エナメル被覆の損傷を生じ易い。本実施例では、直線部(平面部)153bが線状導体1に当接するため、線状導体1に圧痕が付き難く、エナメル被覆の損傷を生じ難い。このため、より大きな曲げ力を高速で線状導体1に加えることが可能になり、曲げ加工に要する加工時間を短縮することができる。
 ベンディング装置150のベース151はロッドねじ154とロッドねじ154を回転駆動するサーボモータ157とで線状導体1の搬送方向に沿って上流側及び下流側の両方向に移動可能である。
 搬送部(搬送装置)160は、ベース166と、ベース166に搭載された搬送アクチュエータ161及び線状導体1の切断装置165とを備えている。また、ベース166の裏側にはサーモモータ164が搭載されている。搬送アクチュエータ161はサーモモータ164により中心O161を中心にして回転するように構成されている。搬送アクチュエータ161には中心O161に対して点対称にかつ180度の角度間隔で2つのチャック161a,161bが設けられている。
 二次元の曲げ加工が終わると、分割コイル1000’は切断装置165によって線状導体1から切断される。切断装置165は、図9Aに示すように、クランク機構(切断クランク)165によって駆動される切断刃(カッター)165hを備えている。
 クランク機構165はサーボモータ165aの回転軸に取り付けられた円板165bと、連結ピン165c1によって円板165bの回転中心から偏心した位置に一端部が連結された第1のアーム165cと、第1のアーム165cの他端部に連結ピン165c2によって一端部が連結された第2のアーム165iと、第2のアーム165iの他端部に連結ピン165d2によって連結された案内部材165dとを備えている。
 サーボモータ165aの回転軸が回転すると、第2のアーム165iが連結ピン165d2を中心に遥動しながら案内部材165dを上下方向に移動させる。案内部材165dには、図10に示すように、鉛直方向に対して傾斜した案内溝(傾斜溝)165d3が形成されている。図10に示す第3のアーム165eは案内溝165d3に係合する係合ピン165d1を有する。また、第3のアーム165eは連結ピン165e1を中心にして遥動することができる。このため、案内部材165dが上下動することにより、係合ピン165d1が案内溝165d3に案内されて左右方向に移動する。これにより、第3のアーム165eは連結ピン165e1を中心にして遥動する。この遥動運動により、第3のアーム165eは、連結ピン165e1を介して係合ピン165d1の反対側に連結された移動部材165fを水平方向(幅方向)に移動させる。
 移動部材165fは案内レール165gによって水平方向(幅方向)に案内されている。第3のアーム165eは、その遥動運動により、移動部材165fに取り付けられた切断刃(カッター)165hを水平方向(幅方向)に移動させる。図10では片側のみを図示しているが、中心線165jの左側には、第3のアーム165e、移動部材165f、案内レール165g及び切断刃(カッター)165hが対称に構成されており、中心線165jを挟んで対称に構成された2つの切断刃(カッター)165hによって線状導線1が切断される。
 搬送装置160のベース166はロッドねじ162とロッドねじ162を回転駆動するサーボモータ163とで線状導体1の搬送方向に沿って上流側及び下流側の両方向に移動可能である。
 チャック161a,161bは、分割コイル1000’が切断装置165によって線状導体1から切断される前に、分割コイル1000’を保持する。チャック161aが分割コイル1000’を保持すると、図9Bに示すように、搬送アクチュエータ161が中心O161を中心に回転する。またベース166は、ロッドねじ162とサーボモータ163とにより、線状導体1の搬送方向下流側に水平移動する。これにより、分割コイル1000’はプレス成形部(プレス装置)170のコイル投入ガイド172まで搬送される。
 コイル投入ガイド172にはサーボモータ177が設けられており、ガイドを構成する両側板の間隔が変化するように構成されている。搬送アクチュエータ161の回転及びベース166の移動によって分割コイル1000’が搬送されてくると、コイル投入ガイド172の両側板はその間隔がサーボモータ177によって拡げられる。これにより、搬送アクチュエータ161は分割コイル1000’を、コイル投入ガイド172を介して、プレス装置170の金型171の中に確実に投入することができる。
 ここで、ベンディング装置150、切断装置165及び搬送装置160の位相制御(同期制御)について、説明する。
 ベンディング装置150、切断装置165及び搬送装置160の位相制御では、以下の従軸を設定する。一つ目の従軸として、ベンディング装置150のベース151の移動(位置座標)を設定する。この従軸により、サーボモータ157を制御する。二つ目の従軸として、曲げピン153の回転(回転座標)を設定する。この従軸により、サーモモータ158を制御する。三つ目の従軸として、搬送装置160のベース166の移動(位置座標)を設定する。この従軸により、サーボモータ163を制御する。四つ目の従軸として、切断クランク機構165の動作(回転座標)を設定する。この従軸により、サーボモータ165aを制御する。五つ目の従軸として、搬送アクチュエータ161の回転(回転座標)を設定する。この従軸により、サーボモータ164を制御する。六つ目の従軸として、チャック161a,161bのチャック開閉を設定する。この従軸により、チャック161a,161bの弁161v(図20参照)を制御する。七つ目の従軸として、コイル投入ガイド172の動作(位置座標)を設定する。この従軸により、サーボモータ177を制御する。上述した各従軸は前述した仮想軸を主軸としている。
 ベンディング装置150では、線状導体1の送りに同期させてベンディング装置150のベース151を送る。ベンディング装置150の「ベンディング曲げ」動作には3回の「曲げ同期モード」がある。各「曲げ同期モード」では、「曲げ動作」と「戻り動作」とを実行する。すなわち、ベンディング装置150のベース151を線状導体1と同期して送りながら、「曲げ動作」(曲げ加工)を実行し、1回の「曲げ動作」毎に減速して「戻り動作」を実行する。1回の曲げ動作毎にベンディング装置150のベース151を減速するのは、この間に線状導体1をベース151の前方へ相対的に送るためである。従って、「戻り動作」では、ベンディング装置150は線状導体1と同期して移動していない。
 実際には、「曲げ動作」の期間内でも、曲げ加工を行っている最中はベース151の速度を線状導体1の速度よりもわずかに遅くする。これにより、線状導体1が芯金152に対してわずかに前方にフィードされる。線状導体1が芯金152と回転する曲げピン153との間で伸張されるのを防止或いは抑制することができる。
 ベンディング装置150は3回の曲げ加工が終了すると最高速度で初期位置(同期加速開始位置)まで戻る。この間に曲げ部1M(図9B参照)は芯金152に対して前方にフィードされる。ただし、このフィードは芯金152と線状導体1との相対的な関係によるものであり、線状導体1は常に一定速度で移動している。ベンディング装置150のベース151は、初期位置に戻ると加速して同期モードとなり、線状導体1と同じ速度で移動する。ここで、切断装置165のサーボモータ165bは加速して線状導体1の切断を行う。
 一方、搬送装置160では、ベンディング装置150が3回の曲げ加工を実施する間、ベース166を分割コイル1000’のコイル投入ガイド172への投入位置に移動して待機する。ベンディング装置150のベース151は3回の曲げ加工時に搬送装置160側に移動しながら曲げ加工を行う。搬送装置160のベース166を分割コイル1000’のコイル投入ガイド172への投入位置で待機させることにより、搬送装置160はベンディング装置150の移動の邪魔になることはない。
 ベンディング装置150による3回の曲げ加工が終わると、搬送装置160のベース166は最高速度で初期位置(同期加速開始位置)まで戻るように制御される。3回の曲げ加工が終わると、ベンディング装置150のベース151も最高速度で初期位置(同期加速開始位置)まで戻されるが、搬送装置160のベース166が初期位置への移動を開始するタイミングは、ベンディング装置150のベース151が初期位置への移動を開始するタイミングよりも早い。
 搬送装置160のベース166はベンディング装置150のベース151よりも長い距離を移動して、ベンディング装置150のベース151がその初期位置に到達するタイミングと同じタイミングで、搬送装置160のベース166の初期位置に到達する。搬送装置160のベース166とベンディング装置150のベース151とはそれぞれの初期位置に到達した後、同じように加速して、共に同期モードに移る。すなわち、搬送装置160のベース166とベンディング装置150のベース151とが近接した状態で、線状導体1と同じ速度で移動する。この同期モードにおいて、切断クランク機構165が分割コイル1000’を線状導体1から切り離すように、切断クランク機構165の回転座標が設定されている。
 搬送装置160では、線状導体1から切断された分割コイル1000’をコイル投入ガイド172へ投入する位置に、エアチャック161a,161bが位置づけられるように、搬送アクチュエータ161を回転させる動作が設定されている。この搬送アクチュエータ161の回転は、搬送装置160のベース166によるプレス投入位置(分割コイル1000’をコイル投入ガイド172へ投入する位置)への移動と並行して実行される。エアチャック161a,161bが分割コイル1000’をコイル投入ガイド172へ投入する位置に位置づけられると、エアチャックが「閉」から「開」に切り替わり、分割コイル1000’がコイル投入ガイド172へ投入される。
 また、搬送装置160では、ベース166を初期位置(同期加速開始位置)まで戻す動作と並行して、エアチャック161a,161bを線状コイル1から切断された分割コイル1000’を掴める位置(切断位置)に位置付ける動作が設定されている。エアチャック161a,161bが切断位置に到着した後、分割コイル1000’が線状コイル1から切断されるまでの間にエアチャック161a,161bによる分割コイル1000’の保持(開→閉)が完了するように、搬送装置160の動作が設定される。
 コイル投入ガイド172では、分割コイル1000’を保持したエアチャック161a,161bがプレス投入位置に向けて搬送アクチュエータ161により回転移動を始める前に、コイル投入ガイド172の開状態(両側板が開いた状態)が設定されており、エアチャック161a,161bがプレス投入位置に到達すると「開」から「閉」に切り替わる。また、エアチャック161a,161bが搬送アクチュエータ161により切断位置まで回転移動する動作と並行して、コイル投入ガイド172が「閉」から「開」に切り替わるように設定されている。
 次に、図11を用いて、プレス成形部(プレス装置)170について説明する。図11は、プレス装置170の動作を、順を追って示した動作の概念図である。
 プレス装置170は固定型174と可動型173とを有している。図11は、固定型174と可動型173とを下側から見上げた状態を示している。固定型174側からは、3本のピンが可動型173との隙間に向けて突出している。3本のピンのうち1本は他の2本のピンに対して上方に位置し、かつ水平面に投影した場合に他の2本のピンの間に位置している。上方に位置する1本のピン175を第1ピン175と呼び、他の2本のピン176a,176bを第2ピン176a,176b或いは姿勢ピン176a,176bと呼ぶ。
 第1ピン175は固定型174の成型面(プレス面)から突出している。一方、第2ピン(姿勢ピン)176a,176bは固定型174の成型面の下方に設けられている。
 以下、図11を参照して、プレス装置170の動作を説明する。プレス装置170には、前述した仮想軸を主軸とする4つの従軸が設けられている。なお、「コイル投入ガイド」軸はプレス装置170に含めてもよく、その場合は、プレス装置170は5つの従軸で構成される。
 一つ目の従軸はプレスユニット170の可動型173を開閉させる軸であり、サーボモータ173m(図19参照)によって制御される。二つ目及び三つ目の従軸は、プレスユニット170の2つの姿勢ピン(姿勢ピンaと姿勢ピンb)を水平方向かつ2つの姿勢ピンの間隔方向(可動型173の移動方向に垂直な方向)に移動させる軸であり、サーボモータ176am,176bm(図19参照)によって制御される。四つ目の従軸はプレスユニット170の第1ピン175及び第2ピン(姿勢ピン)176a,176bを固定型174の成型面(プレス面)の水平方向位置に対して成型面から可動型173側に突出させたり引っ込めたりする軸(以下、上昇軸或いは下降軸という)であり、サーボモータ175m(図19参照)によって制御される。なお、第1ピン175及び姿勢ピン176a,176bは、サーボモータ175mにより一体で上昇(或いは下降)する。すなわち、第1ピン175及び姿勢ピン176a,176bの上昇軸或いは下降軸は1軸で構成されている。
 図11(a)では、固定型174に対して可動型173が完全に開いた状態にある。これは、プレス後退が完了した状態である。このプレス後退は可動型173を完全に開いた状態に移動させる動作である。また、プレス後退が完了する直前に、ピン上昇の動作が設定される。このピン上昇は、図11(e)に示すように第1ピン175及び姿勢ピン176a,176bが固定型174の成型面から引っ込んだ状態から、図11(a)に示すように固定型174の成型面から完全に突出した状態に移動する動作である。
 図11(a)のように、可動型173と第1ピン175及び姿勢ピン176a,176bとが設定された状態で、搬送アクチュエータ161のエアチャック161a,161bからプレスユニット170に分割コイル1000’が投入される。これは、エアチャック161a,161bが「閉」から「開」に切り替わる動作によって実行される。プレスユニット170への分割コイル1000’の投入時には、分割コイル1000’と姿勢ピン176a,176bとが干渉しないように、2本の姿勢ピン176a,176bは水平面への投影図上で第1ピン175に最も近接した状態となり、2本の姿勢ピン176a,176bの間隔は最も狭くなっている。なお、このときの第1ピン175及び姿勢ピン176a,176bは固定型174の成型面から最も突出した状態にあり、このときの第1ピン175の基準面からの高さはhである。
 図11(b)では、2本の姿勢ピン176a,176bの間隔が最も拡大され、分割コイル1000’が第1ピン175及び姿勢ピン176a,176bにより安定した状態(姿勢)に支持される。分割コイル1000’がプレスユニット170に投入された後、図11(a)の状態から図11(b)の状態に移行する。これは、第2ピン(姿勢ピン)176a,176bのピン開き動作による。なお、図11(b)の状態では、第1ピン175の基準面からの高さはhである。
 図11(c)では、可動型173が閉方向(固定型174側)に移動を開始している。これは、プレス成形においてプレスを前進させる動作である。すなわち、この段階ではプレス加工が始まっている。ただし、図11(c)では、可動型173は分割コイル1000’に当接したばかりで、分割コイル1000’にプレス加工による変形は生じていない。
 図11(b)の状態から図11(c)の状態に移行する過程で注意を要するのは、接近してくる可動型173との干渉を避けるため、第1ピン175及び姿勢ピン176a,176bが下降していることである。このときの第1ピン175の基準面からの高さはhであり、hとhとの間にはh>hの関係がある。第1ピン175及び姿勢ピン176a,176bの下降制御は、図9Bの「プレスピン上下」軸の「プレス成形に同期してピン動作」の設定によって実行される。
 図11(d)では、可動型173が完全に閉じてプレス加工が終了した状態を示している。この状態では、二次元的な曲げ加工が施された分割コイル1000’に三次元的な曲げ加工が施されている。この状態で、分割コイル1000が完成している。
 図11(c)の状態から図11(d)の状態に移行する過程で注意を要するのは、分割コイル1000’に三次元的な曲げ加工が施されることにより、U字状の分割コイル1000の両脚部1000a,1000bの間隔が狭くなっていることである。このため、図11 (c)の状態に対して図11(d)の状態では、2本の姿勢ピン176a,176bの間隔が狭くなっている。この2本の姿勢ピン176a,176bの間隔制御は、プレス成形に同期して姿勢ピンを制御することによって実行される。
 図11(c)の状態から図11(d)の状態に移行する過程でも可動型173はさらに第1ピン175及び姿勢ピン176a,176bに接近してくる。このため、可動型173との干渉を避けるため、第1ピン175及び姿勢ピン176a,176bはさらに下降制御される。このときの第1ピン175の基準面からの高さはhであり、hとhとhとの間にはh>h>hの関係がある。
 図11(b)~(d)ではプレス成形が実行されている状態であるが、分割コイル1000’と可動型173との接触タイミングや、三次元曲げ形状によって、第1ピン175及び姿勢ピン176a,176bの下降制御や、2本の姿勢ピン176a,176bの間隔制御は、そのタイミングや速度が異なる。従って、2本の姿勢ピン176a,176bの間隔制御は三次元曲げ加工によってそのタイミングや速度を適宜変更すればよい。また、第1ピン175及び姿勢ピン176a,176bの下降制御は可動型173との接触タイミングによって適宜変更すればよい。
 図11(e)では、可動型173を開き、三次元曲げ加工された分割コイル1000をプレスユニット170の金型から排出する。このために、第1ピン175及び姿勢ピン176a,176bを図11(d)の状態から更に下降制御し、水平面への投影図上で第1ピン175及び姿勢ピン176a,176bが固定型174の成型面から完全に引っ込んだ状態にする。この動作は第1ピン175及び姿勢ピン176a,176bの下降動作によって実行される。また、2本の姿勢ピン176a,176bの間隔は、図11(a)の状態に戻される。
 第1ピン175及び姿勢ピン176a,176bの下降制御と2本の姿勢ピン176a,176bの間隔制御が終了すると、可動型173を開く。これにより、三次元曲げ加工された分割コイル1000がプレスユニット170の金型から排出される。この動作は、プレス後退によって実行される。
 以上説明したように、本実施例では、主軸となる仮想軸における線状導体1の送り速度(一定)に同期して、各従軸の動作が実行される。各従軸における位置決め完了確認後に次動作を開始する制御ではない分、コイルの成形工程を高速に実行できる。
 また、本実施例では、剥離装置140の剥離型が線状導体1のエナメル被覆の剥離部を拘束(保持)して線状導体1を搬送する。このため、線状導体1の送り機構(搬送機構)である剥離装置140と線状導体1との間にすべりや位置ずれが生じ難い。従って、線状導体1を仮想軸に従って正確に送ることができ、位相制御(同期制御)で上述のようなコイル成形を精度よくかつ正確に実施することができる。
 ここで、図18A及び図18Bを用いて、上述したコイル成形装置によって三次元曲げ加工された分割コイルの例を説明する。図18Aは、分割コイル1000の形状を示す平面図である。図18Bは、図18Aの分割コイル1000を右側から見た平面図である。
 本実施例の分割コイル1000は、U字形状をしており、両脚部1006,1007の間に3ヶ所の曲げ部1003~1005が形成されている。図18Aに示す3ヶ所の二次元的な曲げ部1003~1005は、ベンディング装置150により加工される。
 ベンディング装置150では、曲げピンとして、円筒部153aと平面部153bとを有する曲げピン153を用いるので、線状導体1における曲げピン153の当接部に圧痕が生じ難い。また、曲げ加工を行う際には、ベンディング装置150の移動速度を線状導体1の送り速度に対して少し遅くするため、線状導体1が芯金152と回転する曲げピン153との間で伸張されるのを防止或いは抑制することができる。従って、本実施例によれば、両脚部1006,1007の付け根部に圧痕や擦れのない線状導体1を提供することができる。
 図19を用いて、位相制御を実施するサーボモータの構成について説明する。図19は位相制御のブロック図である。
 全体コントローラ181の下位にはモーションコントローラ182が設けられている。モーションコントローラ182の下位には従軸を構成するサーボモータとそのサーボドライバとが接続される。本実施例では、従軸として、アンコイラ(ボビン)111と、エッジワイズ剥離装置(EW移動)140b-1aと、エッジワイズ剥離装置(EW剥離)140b-7と、フラットワイズ剥離装置(FW移動)140a-1aと、フラットワイズ剥離装置(FW剥離)140a-7と、ベンディング装置(ヘッド)151と、ベンディング装置(曲げ)153と、切断・搬送装置(ヘッド)166と、切断装置(切断クランク)165と、搬送装置(搬送DD)162と、搬送装置(チャック)161a,161bと、コイル投入ガイド(開閉)172と、プレスユニット(可動型開閉)173と、プレスユニット(姿勢ピンa移動)176aと、プレスユニット(姿勢ピンb移動)176bと、プレスユニット(ピン上下)175,176a,176bの計16軸が設けられている。
 アンコイラ(ボビン)111にはサーボドライバ111-1D及びサーボモータ111-1と、エッジワイズ剥離装置(EW移動)140b-1aにはサーボドライバ140b-1bD及びサーボモータ140b-1bと、エッジワイズ剥離装置(EW剥離)140b-7にはサーボドライバ140b-4D及びサーボモータ140b-4と、フラットワイズ剥離装置(FW移動)140a-1aにはサーボドライバ140a-1bD及びサーボモータ140a-1bと、フラットワイズ剥離装置(FW剥離)140a-7にはサーボドライバ140a-4D及びサーボモータ140a-4と、ベンディング装置(ヘッド)151にはサーボドライバ157D及びサーボモータ157と、ベンディング装置(曲げ)153にはサーボドライバ158D及びサーボモータ158と、切断・搬送装置(ヘッド)166にはサーボドライバ163D及びサーボモータ163と、切断装置(切断クランク)165にはサーボドライバ165aD及びサーボモータ165aと、搬送装置(搬送DD)162にはサーボドライバ164D及びサーボモータ164と、搬送装置(チャック)161a,161bにはサーボドライバ161vD及びサーボモータ161vと、コイル投入ガイド(開閉)172にはサーボドライバ177D及びサーボモータ177と、プレスユニット(可動型開閉)173にはサーボドライバ173mD及びサーボモータ173mと、プレスユニット(姿勢ピンa移動)176aにはサーボドライバ176amD及びサーボモータ176amと、プレスユニット(姿勢ピンb移動)176bにはサーボドライバ176bmD及びサーボモータ176bmと、プレスユニット(ピン上下)175,176a,176bにはサーボドライバ175mD及びサーボモータ175mが設けられている。
 図12を用いて、本発明に係る異形コイル成形装置の全体構成を説明する。図12は、本実施例に係る異形コイル成形装置の全体構成を示す平面図である。
 異形コイル成形装置500は、図12の左側から、アンコイラ110、バッファ120、矯正部(矯正装置)130、第2の剥離部(剥離装置)190、第1の剥離部(剥離装置)140及び曲げ成形部(ベンディング装置)200が、線状導体1に対して加工を行う順番に一直線に並んで配置されている。
 本実施例では、第2の剥離部(剥離装置)190と、曲げ成形部(ベンディング装置)200とが、実施例1と相違しており、その他の構成は実施例1と同様である。従って、第1の剥離部(剥離装置)140による線状導体1の搬送も実施例1と同様である。ただし、実施例1では、第1の剥離部(剥離装置)140による線状導体1の搬送とベンディング装置150の曲げ加工とが位相制御により制御されていたのに対して、本実施例では位相制御されていない。本実施例においても、実施例1のベンディング装置150と同様に、ベンディング装置200に送り機構を設けることにより、第1の剥離部(剥離装置)140による線状導体1の搬送とベンディング装置150による曲げ加工とを位相制御により制御することができる。
 本実施例では、分割コイルの中間部に剥離部を設けられるように、第2の剥離部(剥離装置)190を設けている。第2の剥離部(剥離装置)190は、第1の剥離部(剥離装置)140と同様に、フラットワイズのエナメル被覆を剥離する剥離装置190aと、エッジワイズのエナメル被覆を剥離する剥離装置190bとを備えている。ただし、剥離装置190aと剥離装置190bとは位置が固定されており、剥離装置140aや剥離装置140bのように線状導体1の搬送方向に移動することができない構成である。
 次に、図13A及び図13Bを用いて、本実施例のベンディング装置200について説明する。図13Aはベンディング装置200の構成を示す平面図である。図13Bは図13Aに示すベンディング装置200を下側から見た平面図である。
 本実施例のベンディング装置200では、圧縮曲げ(コンプレッションベンド)を行うベンディング装置(第1のベンディング部)200Aと、引張り曲げ(ドローベンド)を行うベンディング装置(第2のベンディング部)200Bとが1台の装置に一体化されている。線状導体1に対してベンディング装置200Aとベンディング装置200Bとが切り替わってアクセスすることにより、1台の装置で圧縮曲げと引張り曲げとを行うことができる。なお、ベンディング装置200Aは、ベンディング装置200Bに対して、線状導体1の搬送方向において、上流側に位置している。このような配置により、線状導体1はベンディング装置200Aによって圧縮曲げ加工された後に、ベンディング装置200Bによって引張り曲げ加工される。
 ベンディング装置200には、7個のモータが設けられている。201はベンディング装置200Aとベンディング装置200Bとを切り替えるための切替用モータである。ベンディング装置200Aとベンディング装置200Bとを切り替えるためには、線状導体1に曲げ加工を行っていたベンディング装置200A,200Bの芯金を線状導体1から外すために、ベンディング装置200A,200Bの芯金を線状導体1から下げる必要がある。202,203はそのためのモータであり、202はベンディング装置200Aを線状導体1から下げるモータである。また、203はベンディング装置200Bを線状導体1から下げるモータである。
 上述したように、ベンディング装置200Aとベンディング装置200Bとは、回動中心軸O200A及び中心軸(回動中心軸)O200Bに沿う方向に前進することにより線状導体1にアクセスし、後退することにより線状導体1から退避する。
 ベンディング装置200A側に設けられたモータ204は圧縮曲げに使用する芯金を回転させるモータである。本実施例の圧縮曲げでは、長辺と短辺とを有する平角線に対して、長辺側と短辺側とのいずれの側からでも曲げ加工を行えるように、芯金には溝幅の異なる2種類の溝が十文字に形成されている。十文字に形成された2種類の溝のうちいずれか一方の溝を線状導体1の搬送方向に沿わせるように、モータ204が芯金を回転させる。ベンディング装置200A側に設けられたモータ205は圧縮曲げに使用する曲げピンを芯金の中心軸周りに回動させるモータである。
 ベンディング装置200B側に設けられたモータ206は引張り曲げに使用するクランプを芯金に向かって前進、或いは芯金側から後退させるモータである。また、ベンディング装置200B側に設けられたモータ207は引張り曲げを行う際に、クランプと芯金とに間に線状導体1を挟み込み、クランプと芯金とを一体で回転させるモータである。
 図14A~図14Dを用いて、圧縮曲げを行うベンディング装置200Aを説明する。図14Aはベンディング装置200Aを曲げピン200A-2a,200A2bの回動軸方向から見た平面図である。図14Bは図15Aに示すベンディング装置200AをB矢視方向から見た平面図である。図14Cは図14Aに示すベンディング装置200AをC矢視方向から見た平面図である。図15Dは図14Aに示すベンディング装置200AをD矢視方向から見た平面図である。図14Dの一部は図14AのD1-D1矢視断面を示している。
 芯金は200A-1a、200A-1b、200A-1c及び200A-1dの4つのピースで構成されており、溝幅の異なる2種類の溝が曲げピン200A-2a,200A-2bの回動軸O200Aに垂直な平面上において直交する形(十文字)に構成されている。芯金の周囲には、曲げピン200A-2aと曲げピン200A2bとが配置されている。曲げピン200A-2aと曲げピン200A2bとはモータ205により一体で回転駆動される。2種類の溝と2つの曲げピン200A-2a,200A-2bとを使い分けることにより、平角線の長辺側と短辺側のいずれの側からでも、色々な曲げ加工を施すことができる。
 図15を用いて、引張り曲げを行うベンディング装置200Bを説明する。図15はベンディング装置200Bの構成を示す斜視図である。
 ベンディング装置200Bは、芯金200B-1とクランプ200B-2と背当て200B-3とを有し、芯金200B-1とクランプ200B-2とで線状導体1を挟み込み、線状導体1の芯金200B-1と当接する側面とは反対側の側面に背当て200B-3を当て、芯金200B-1とクランプ200B-2とを一体で芯金200B-1の中心軸O200B周りに回転(回動)させて線状導体1に曲げ加工を行う装置である。なお、中心軸(回動中心軸)O200Bと回動中心軸O200Aとは、平行であり、同一平面上に存在する。
 芯金200B-1は、芯金200B-1の中心軸O200Bと中心が一致する大径の円筒面と、大径の円筒面の中心から偏心した位置に中心を有する小径の円筒面と、大径の円筒面と小径の円筒面とに接する2つの接平面とで構成されている。線状導体1は、芯金200B-1に構成された接平面とクランプ200B-2の先端平面とで挟まれ、芯金200B-1とクランプ200B-2との回転動作により芯金200B-1の大径の円筒面に巻き付けられながら、曲げられていく。
 この過程で、線状導体1は曲げ角度に応じて引き出されていくため、背当て200B-3は固定されておらず、線状導体1に沿ってスライド可能に設けられている。これにより、線状導体1が引き出されるのに応じて背当て200B-3は線状導体1と共にスライドする。このため、線状導体1は背当て200B-3との間で生じる擦れを防ぐことができる。
 図16A、図16B及び図16Cを用いて、引張り曲げによる曲げ加工について説明する。図16Aは引張り曲げによる曲げ加工を行う前の分割コイル1100’の形状を示す斜視図である。図16Aに示す分割コイル1100’は図17に示すモータステータ2000に設けられた分割コイル1100として利用される。図16Bは芯金200B-1とクランプ200B-2と背当て200B-3との近傍を示す斜視図である。図16Cは分割コイル1100’に引張り曲げにより約180度の曲げ加工を施す状態を示す斜視図である。
 図16Aに示す分割コイル1100’はこれから行う引張り曲げによる曲げ加工の前に行った圧縮曲げにより、曲げの内周側が外周側に比べて太った状態になり、断面が台形のような形状になっている。この太った面を芯金ホルダの面200B-1aに当て、線状導体1を芯金200B-1とクランプ200B-2とで挟み込むと、線状導体1の太った面と細った面との間をつなぐ傾斜面が芯金200B-1とクランプ200B-2とに当接する。このため、圧縮曲げの後に引張り曲げを行うと、傾斜面がクランプ200B-2の先端面に沿うように捩れ、完成した分割コイル1100に捩れが生じる。
 本実施例では、芯金200B-1を支持する芯金ホルダに切欠き面200B-1bを設け、引張り曲げを行う際に、捩れようとする分割コイル1100’が切欠き面200B-1bに当たり、捩れが抑制されるようにしている。このように、切欠き面200B-1bは捩れを抑制する当て面の役割を果たす。
 本実施例によれば、圧縮曲げの後に引張り曲げを行って形成される分割コイル(セグメント導体)1100に対して、引張り曲げによって生じる捩れを抑制し、捩れを抑制した所望の形状の分割コイル1100に加工することができる。
 また本実施例で曲げ加工された分割コイル1100は、ベンディング装置200Aにより圧縮曲げ加工された圧縮曲げ部(第1の屈曲部又は第1の曲げ部)とベンディング装置200Bにより引張り曲げ加工された引張り曲げ部(第2の屈曲部又は第2の曲げ部)とを有する。圧縮曲げ部1110と引張り曲げ部1110との間には直線1130が設けられており(図17参照)、圧縮曲げ部1110と引張り曲げ部1120とは直線部1130を介して隣接している。そして、ベンディング装置200Bにより引張り曲げ加工された引張り曲げ部(第2の屈曲部又は第2の曲げ部)の内周側の、成形器具である芯金200B-1が当接した部分に圧痕が形成され、引張り曲げ部の外周側には圧痕は形成されない。また、ベンディング装置200Aにより圧縮曲げ加工された圧縮曲げ部(第1の屈曲部又は第1の曲げ部)にも圧痕は形成されない。従って、本実施例で曲げ加工された分割コイル1100は、引張り曲げ部の内周側にのみ、圧痕が形成される。
 圧痕は、線状導体1或いは分割コイル1100の絶縁被覆(絶縁被膜)にダメージを与える可能性がある。例えば、分割コイル1100の曲げ部の外周側と内周側とに圧痕が形成されると、隣接する分割コイル1100間における電気的絶縁の信頼性が低くなる。しかし、本実施例では、曲げ部の内周側にのみ圧痕が形成されるので、隣接する分割コイル1100間における電気的絶縁の信頼性を高く維持することができる。
 なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 100…U字コイル成形装置、110…アンコイラ、120…バッファ、130…矯正部(矯正装置)、140…剥離部(剥離装置)、150…曲げ成形部(ベンディング装置)、160…搬送部(搬送装置)、170…プレス成形部(プレス装置)、180…制御装置、185…収容部(マガジン)、500…異形コイル成形装置、190…第2の剥離部(剥離装置)、200…曲げ成形部(ベンディング装置)200。

Claims (12)

  1.  周囲を絶縁被膜で覆われた線状導体から絶縁被膜の一部を剥離する第1の剥離装置を備え、線状導体を長手方向に搬送して絶縁被膜の剥離を行うコイル成形装置において、
     前記第1の剥離装置は剥離加工を行う第1の固定型と第1の可動型とを備え、
     前記第1の剥離装置は前記第1の固定型と前記第1の可動型とで線状導体の剥離部を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送することを特徴とするコイル成形装置。
  2.  請求項1に記載のコイル成形装置において、
     第2の固定型と第2の可動型とを有する第2の剥離装置を備え、
     前記第2の剥離装置は前記第2の固定型と前記第2の可動型とで線状導体の剥離部を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送し、
     前記第1の剥離装置と前記第2の剥離装置とが交互に搬送方向への移動を繰り返すことで、線状導体を搬送方向に搬送することを特徴とするコイル成形装置。
  3.  請求項2に記載のコイル成形装置において、
     線状導体に曲げ加工を行うベンディング装置を備え、
     前記第1の剥離装置と前記第2の剥離装置とにより線状導体を長手方向に搬送して曲げ加工を行うことを特徴とするコイル成形装置。
  4.  請求項3に記載のコイル成形装置において、
     線状導体は断面が矩形であり、
     前記第1の剥離装置は線状導体の向かい合う二辺の絶縁被覆を剥離し、前記第2の剥離装置は向かい合う残る二辺の絶縁被覆を剥離することを特徴とするコイル成形装置。
  5.  請求項4に記載のコイル成形装置において、
     前記第1の剥離装置と前記第2の剥離装置とは線状導体の搬送方向に同じ速度で移動する期間を有し、この期間中に一方の剥離装置が自身の可動型を駆動して線状導体に対して剥離作業を実施すると共に自身の固定型と可動型とで線状導体を挟持し、前記一方の剥離装置が前記剥離作業を実施している間、他方の剥離装置が自身の固定型と可動型とで線状導体を挟持して搬送し、前記一方の剥離装置が線状導体を挟持すると前記他方の剥離装置は自身の可動型を駆動して線状導体の挟持を解除すると共に線状導体の搬送方向とは逆方向に移動すること特徴とするコイル成形装置。
  6.  請求項5に記載のコイル成形装置において、
     前記第1の剥離装置と前記第2の剥離装置とは線状導体の搬送方向への移動と前記搬送方向とは逆方向への移動とを交互に繰り返し、線状導体を一定速度で搬送することを特徴とするコイル成形装置。
  7.  周囲を絶縁被膜で覆われた線状導体から絶縁被膜の一部を剥離する第1の剥離装置により、線状導体を長手方向に搬送して絶縁被膜の剥離工程を実行するコイル成形方法において、
     前記第1の剥離装置は第1の固定型と第1の可動型とで線状導体の剥離部を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送することを特徴とするコイル成形方法。
  8.  請求項7に記載のコイル成形方法において、
     さらに第2の固定型と第2の可動型とを有する第2の剥離装置により、前記第2の固定型と前記第2の可動型とで線状導体を挟持して線状導体の搬送方向に移動することにより、線状導体を搬送方向に搬送し、
     前記第1の剥離装置と前記第2の剥離装置とが交互に搬送方向への移動を繰り返すことで、線状導体を搬送方向に搬送することを特徴とするコイル成形方法。
  9.  請求項8に記載のコイル成形装置において、
     前記第1の剥離装置と前記第2の剥離装置とにより線状導体を長手方向に搬送しながら、ベンディング装置により線状導体に曲げ加工を行うことを特徴とするコイル成形方法。
  10.  請求項9に記載のコイル成形方法において、
     前記第1の剥離装置は線状導体の向かい合う二辺の絶縁被覆を剥離し、前記第2の剥離装置は向かい合う残る二辺の絶縁被覆を剥離することを特徴とするコイル成形方法。
  11.  請求項10に記載のコイル成形方法において、
     前記第1の剥離装置と前記第2の剥離装置とは線状導体の搬送方向に同じ速度で移動する期間を有し、この期間中に一方の剥離装置が自身の可動型を駆動して線状導体に対して剥離作業を実施すると共に自身の固定型と可動型とで線状導体を挟持し、前記一方の剥離装置が前記剥離作業を実施している間、他方の剥離装置が自身の固定型と可動型とで線状導体を挟持して搬送し、前記一方の剥離装置が線状導体を挟持すると前記他方の剥離装置は自身の可動型を駆動して線状導体の挟持を解除すると共に線状導体の搬送方向とは逆方向に移動すること特徴とするコイル成形方法。
  12.  請求項11に記載のコイル成形方法において、
     前記第1の剥離装置と前記第2の剥離装置とは線状導体の搬送方向への移動と前記搬送方向とは逆方向への移動とを交互に繰り返し、線状導体を一定速度で搬送することを特徴とするコイル成形方法。
PCT/JP2015/084087 2014-12-26 2015-12-04 コイル成形装置及びコイル成形方法 WO2016104103A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566082A JP6324541B2 (ja) 2014-12-26 2015-12-04 コイル成形装置及びコイル成形方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-263720 2014-12-26
JP2014263720 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104103A1 true WO2016104103A1 (ja) 2016-06-30

Family

ID=56150133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084087 WO2016104103A1 (ja) 2014-12-26 2015-12-04 コイル成形装置及びコイル成形方法

Country Status (2)

Country Link
JP (1) JP6324541B2 (ja)
WO (1) WO2016104103A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026377A1 (ja) * 2017-08-04 2019-02-07 株式会社小田原エンジニアリング コイル組立装置、コイル組立方法及び回転電機の製造装置
JP2019075853A (ja) * 2017-10-12 2019-05-16 トヨタ自動車株式会社 巻線形成装置
CN110034644A (zh) * 2018-01-11 2019-07-19 奥曼埃斯珀尔坎普有限公司 波绕设备和用于制造波形绕组的方法
CN110048561A (zh) * 2019-05-24 2019-07-23 义乌月落自动化设备有限公司 一种电机绕组加工方法
JP2019126180A (ja) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 導線成形装置
CN111357177A (zh) * 2017-08-23 2020-06-30 米巴自动化系统有限公司 用于制造电机的绕组线棒的制造设备以及用于制造绕组线棒的方法
CN111564941A (zh) * 2020-06-15 2020-08-21 中车株洲电机有限公司 一种直线电机长定子电缆绕组端部弯形装置及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236409A (ja) * 1991-01-18 1992-08-25 Sony Corp 巻線機
JPH0650328U (ja) * 1992-12-09 1994-07-08 株式会社多賀製作所 コイルの加熱のための通電装置
JPH07336834A (ja) * 1994-06-08 1995-12-22 Kijima Musen Kk 複層絶縁電線の絶縁剥離装置
JPH1014182A (ja) * 1996-06-26 1998-01-16 Toshiba Corp 固定子コイル製造装置
JP2000295822A (ja) * 1999-04-02 2000-10-20 Denso Corp 回転電機のコイル導体及びその製造方法
JP2004158548A (ja) * 2002-11-05 2004-06-03 Hitachi Media Electoronics Co Ltd コイル製造装置およびコイル製造方法
JP2011182597A (ja) * 2010-03-03 2011-09-15 Denso Corp 皮膜層付き角線の皮膜剥離装置及び方法
JP2011234447A (ja) * 2010-04-26 2011-11-17 Nittoku Eng Co Ltd 線材の皮膜剥離装置及びその皮膜剥離方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236409A (ja) * 1991-01-18 1992-08-25 Sony Corp 巻線機
JPH0650328U (ja) * 1992-12-09 1994-07-08 株式会社多賀製作所 コイルの加熱のための通電装置
JPH07336834A (ja) * 1994-06-08 1995-12-22 Kijima Musen Kk 複層絶縁電線の絶縁剥離装置
JPH1014182A (ja) * 1996-06-26 1998-01-16 Toshiba Corp 固定子コイル製造装置
JP2000295822A (ja) * 1999-04-02 2000-10-20 Denso Corp 回転電機のコイル導体及びその製造方法
JP2004158548A (ja) * 2002-11-05 2004-06-03 Hitachi Media Electoronics Co Ltd コイル製造装置およびコイル製造方法
JP2011182597A (ja) * 2010-03-03 2011-09-15 Denso Corp 皮膜層付き角線の皮膜剥離装置及び方法
JP2011234447A (ja) * 2010-04-26 2011-11-17 Nittoku Eng Co Ltd 線材の皮膜剥離装置及びその皮膜剥離方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026377A1 (ja) * 2017-08-04 2019-02-07 株式会社小田原エンジニアリング コイル組立装置、コイル組立方法及び回転電機の製造装置
JP2019033558A (ja) * 2017-08-04 2019-02-28 株式会社小田原エンジニアリング コイル組立装置、コイル組立方法及び回転電機の製造装置
CN110337776A (zh) * 2017-08-04 2019-10-15 小田原机械工程株式会社 线圈组装装置、线圈组装方法以及旋转电机的制造装置
US11165299B2 (en) 2017-08-04 2021-11-02 Odawara Engineering Co., Ltd. Coil assembling apparatus, coil assembling method and manufacturing apparatus of electrical rotating machine
CN110337776B (zh) * 2017-08-04 2021-11-12 小田原机械工程株式会社 线圈组装装置、线圈组装方法以及旋转电机的制造装置
CN111357177A (zh) * 2017-08-23 2020-06-30 米巴自动化系统有限公司 用于制造电机的绕组线棒的制造设备以及用于制造绕组线棒的方法
JP2019075853A (ja) * 2017-10-12 2019-05-16 トヨタ自動車株式会社 巻線形成装置
CN110034644A (zh) * 2018-01-11 2019-07-19 奥曼埃斯珀尔坎普有限公司 波绕设备和用于制造波形绕组的方法
JP2019126180A (ja) * 2018-01-17 2019-07-25 トヨタ自動車株式会社 導線成形装置
CN110048561A (zh) * 2019-05-24 2019-07-23 义乌月落自动化设备有限公司 一种电机绕组加工方法
CN111564941A (zh) * 2020-06-15 2020-08-21 中车株洲电机有限公司 一种直线电机长定子电缆绕组端部弯形装置及其方法
CN111564941B (zh) * 2020-06-15 2021-07-20 中车株洲电机有限公司 一种直线电机长定子电缆绕组端部弯形装置及其方法

Also Published As

Publication number Publication date
JPWO2016104103A1 (ja) 2017-07-06
JP6324541B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6342518B2 (ja) コイル成形装置及び回転電機のコイル
JP6324541B2 (ja) コイル成形装置及びコイル成形方法
EP2599566B1 (en) Apparatus for manufacturing coil spring
JP2008535226A (ja) 矩形状にワイヤを巻く装置
CA2793689C (en) Apparatus and method for pre-forming electrical bar conductors, in particular for bar windings of electrical machines
JP2009231157A (ja) ツイスト線及びツイスト線製造方法
US7610787B2 (en) Spring manufacturing apparatus and control method thereof
JP6315808B2 (ja) コイル製造装置
US10262794B2 (en) Winding method
JP2020039248A (ja) 平角線モータのステータスロットの絶縁スリーブの挿入方法及び挿入装置
JP5785117B2 (ja) 巻線装置および巻線方法
CN114945435A (zh) 用于制造成型的成形件的方法和线材加工机
CN112703665A (zh) 用于为电机的绕组提供发卡型元件的方法
JP5389522B2 (ja) コイル成形方法及びコイル成形装置
JP5680912B2 (ja) トロイダルコイルの製造装置
JP2019195845A (ja) コイル成形装置およびコイル成形方法
JPWO2013105262A1 (ja) 電線端末処理装置の電線反転機構
JP4611684B2 (ja) コイル巻線方法及びコイル巻線装置
KR20230130696A (ko) 브래킷 형상으로 절곡된 적어도 하나의 와이어 블랭크를생산하는 방법 및 장치
KR101592119B1 (ko) 코일용 권선장치 및 방법
JP2007006548A (ja) 回転電機の転位コイルの製造装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872672

Country of ref document: EP

Kind code of ref document: A1