WO2016103498A1 - ロケーション判定システムおよびロケーション判定プログラム - Google Patents

ロケーション判定システムおよびロケーション判定プログラム Download PDF

Info

Publication number
WO2016103498A1
WO2016103498A1 PCT/JP2014/084661 JP2014084661W WO2016103498A1 WO 2016103498 A1 WO2016103498 A1 WO 2016103498A1 JP 2014084661 W JP2014084661 W JP 2014084661W WO 2016103498 A1 WO2016103498 A1 WO 2016103498A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
location determination
terminal
information
determination system
Prior art date
Application number
PCT/JP2014/084661
Other languages
English (en)
French (fr)
Inventor
健太 本村
幸太郎 神谷
Original Assignee
株式会社野村総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社野村総合研究所 filed Critical 株式会社野村総合研究所
Priority to PCT/JP2014/084661 priority Critical patent/WO2016103498A1/ja
Priority to EP14909100.1A priority patent/EP3240355A4/en
Priority to JP2015501260A priority patent/JPWO2016103498A1/ja
Publication of WO2016103498A1 publication Critical patent/WO2016103498A1/ja
Priority to US15/633,223 priority patent/US20170293012A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0242Determining the position of transmitters to be subsequently used in positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present invention relates to a position estimation technique, and more particularly to a technique that is effective when applied to a location determination system and a location determination program using a Bluetooth (registered trademark, hereinafter the same) beacon.
  • a Bluetooth registered trademark, hereinafter the same
  • GPS Global Positioning System
  • base stations and access points wireless communication with base stations and access points is also possible as a method that can be used indoors. There are those that measure the position depending on the situation.
  • Patent Document 1 discloses, for example, triangulation based on signal strength information of a signal received from a base station by a wireless terminal and position information where the base station is installed. A technique for estimating the position of a wireless terminal based on the principle is described. JP 2012-521557 A (Patent Document 2) describes a position detection technique using a so-called fingerprinting method.
  • a method of detecting entry / exit of a terminal to / from a beacon area by receiving a beacon signal transmitted by a base station or an access point at a certain period may be used.
  • a beacon signal in recent years, a Bluetooth beacon according to the BLE (Bluetooth Low Energy) standard that can communicate with extremely low power consumption is becoming widespread.
  • BLE Bluetooth Low Energy
  • a Bluetooth beacon for example, there is iBeacon (registered trademark, the same applies hereinafter) of Apple (registered trademark) (Non-Patent Document 1), and a mobile terminal such as a smartphone in which this is standardly installed and various devices are also provided. ing.
  • the signal of the Bluetooth beacon basically has no directivity of radio wave intensity, and the influence of the environment such as a moving obstacle such as a person, reflection by a wall / ceiling, etc. Therefore, the signal strength measurement accuracy is not so high. Therefore, it is not very suitable to use a Bluetooth beacon for position estimation using triangulation that requires a relatively precise value because an error in the position estimation result becomes large.
  • an object of the present invention is to improve the accuracy by reducing the influence of noise caused by moving obstacles such as a person in the position estimation of a terminal using a beacon, and to easily and flexibly configure a beacon region.
  • a location determination system is a location determination system that estimates the position of a mobile terminal that can receive a beacon signal transmitted from the beacon terminal in an environment where a plurality of beacon terminals are installed. Therefore, it has the following characteristics.
  • the mobile terminal acquires beacon information including reception intensity for the beacon signal from one or more received beacon terminals, accumulates the history as beacon detection information, and performs the beacon at every predetermined interval.
  • a location determination unit for acquiring a plurality of the beacon information included in a predetermined period in the past, accumulated as detection information, scoring and tabulating, and determining the nearest beacon terminal based on the score Have.
  • the present invention can also be applied to a location determination program that causes a computer to perform processing so as to function as the above-described location determination system.
  • the influence of noise due to moving obstacles such as a person is reduced to improve accuracy, and easily and A beacon region can be configured flexibly.
  • FIG. 1 is a diagram showing an outline of a configuration example of a location determination system according to Embodiment 1 of the present invention.
  • the location determination system 1 according to the present embodiment includes a plurality of beacon terminals (beacon terminal A (20A) to beacon terminal C (20C) in the figure, which may be collectively referred to as beacon terminal 20 below).
  • the user terminal 31 may be collectively referred to as the beacon terminal 20 in which the target user terminal 31 is located in the location determination server 10 based on information such as the strength of the received beacon signal (ie, , Which is the nearest beacon terminal 20).
  • the beacon terminal 20 is a terminal or device that outputs Bluetooth beacon signals at regular intervals, such as an iBeacon device, and may be a dedicated terminal or a general-purpose terminal. Each beacon terminal 20 is defined with a corresponding beacon region (in the figure, beacon region A (21A) to beacon region C (21C), which may be collectively referred to as beacon region 21 below). A device located in the beacon area 21 can receive a beacon signal.
  • the user terminal 31 is an information processing terminal or device capable of detecting a Bluetooth beacon signal.
  • the user terminal 31 is a portable terminal such as a smartphone equipped with an iBeacon function.
  • the user terminal 31 is moved by a user (user A (30A) and user B (30B) in the figure, which may be collectively referred to as user 30 in the following) holding the user terminal 31 so that the position of the user terminal 31 is changed. It can change.
  • Each user terminal 31 can perform data communication with the location determination server 10 via a network such as the Internet (not shown) by a wireless communication function such as a wireless LAN or mobile communication.
  • the user terminal 31 can determine whether the user terminal 31 is within the corresponding beacon area 21 (entered or exited) based on whether or not the beacon signal can be received from the beacon terminal 20 (“monitoring” function in iBeacon). .
  • Information such as an assumed radio wave intensity at a certain point) can be acquired from the beacon terminal 20.
  • the user terminal 31 can calculate the approximate distance from the target beacon terminal 20 based on the ratio of the actually detected radio field intensity to the assumed radio field intensity and the radio wave characteristics (“ranging in iBeacon” "function). In the present embodiment, only the function corresponding to the “ranging” function is used.
  • the beacon information including the identification information of the beacon terminal 20 and the reception intensity of the beacon signal at the user terminal 31, the detection time of the beacon signal, and the user 30 (or the user terminal 31) are specified.
  • identification information such as a user ID
  • the position of the user terminal 31 is estimated by a method described later on the server side.
  • the location determination server 10 is a server system configured by an information processing device such as a PC (Personal Computer), a server device, or a virtual server built on a cloud computing service, and is transmitted from each user terminal 31. Based on information such as the strength of the beacon signal received at each user terminal 31, it has a function of estimating which beacon terminal 20 the target user terminal 31 is located in.
  • an information processing device such as a PC (Personal Computer), a server device, or a virtual server built on a cloud computing service
  • the location determination server 10 includes components such as a beacon information management unit 11 and a location determination unit 12 that are implemented as software running on middleware such as an OS (Operating System) or a DBMS (DataBase Management System) (not shown). .
  • Each data store includes beacon detection information 13 and terminal installation information 14 implemented by a database, a file table, or the like.
  • the beacon information management unit 11 has a function of acquiring beacon information and the like transmitted from each user terminal 31 and recording it as a history in the beacon detection information 13 for each user 30 (or user terminal 31). Since the amount of data can be enormous because it is retained as a history, the history information to be retained is, for example, a certain amount such as a certain period or a certain number for each user 30 (or user terminal 31). You may restrict to.
  • the location determination unit 12 determines the position in the vicinity (location) of the beacon terminal 20 where the target user 30 (or the user terminal 31) is located. It has a function of estimating and outputting a result. It is assumed that master information such as the installation location of each beacon terminal 20 is registered in the terminal installation information 14. The output destination of the estimation result may be the target user terminal 31 or another system or the like that wants to use the position information of each user terminal 31.
  • each user 30 (or user terminal 31) is estimated on the location determination server 10 side by collectively performing the position estimation of each user 30 (or user terminal 31) on the location determination server 10 side. It is possible to obtain the merit that the position 31) can be grasped and managed collectively in real time and used for other tasks.
  • ⁇ Position estimation method> In a Bluetooth beacon, when there is only one beacon terminal 20, it is possible to detect whether or not there is a user terminal 31 in the beacon area 21 of the beacon terminal 20 ("monitoring" function in iBeacon). It can be easily determined that the user terminal 31 is located at a location near the terminal 20. In addition, the user terminal 31 can also calculate an approximate distance from the target beacon terminal 20 based on the detected information such as radio wave intensity (“ranging” function in iBeacon). However, since the signal of the Bluetooth beacon is not directional, even if the approximate distance between the beacon terminal 20 and the user terminal 31 can be estimated, the direction in which the beacon is located cannot be grasped. In order to grasp the direction and the positional relationship, it is necessary to install a plurality of beacon terminals 20 and measure the distance between them.
  • the beacon terminal 20 may be installed so that a plurality of beacon regions 21 overlap so that an undetectable region does not occur.
  • a plurality of beacon regions 21 are located in an overlapping region, such as user terminal A (31A), and beacon signals from a plurality of beacon terminals 20 can be received.
  • each beacon area 21 it may not be possible to determine where the user terminal 31 is actually located only by detecting whether or not each beacon area 21 exists. For example, even if it is in a state where signals from a plurality of beacon terminals 20 can be received, it is actually located very close to any one beacon terminal 20 and is receiving from the beacon terminal 20 with a strong signal strength. On the other hand, it may be said that it is away from other beacon terminals 20 and is receiving from these beacon terminals 20 with weak signal strength.
  • each beacon terminal 20 that can receive a beacon signal is used instead of whether or not it is in each beacon region 21. Needs to be measured (the “ranging” function in iBeacon).
  • the Bluetooth beacon signal is easily affected by obstacles such as people and the environment of walls, ceilings, pillars, etc., and the signal intensity will fluctuate greatly only by people moving in the vicinity. In some cases, sufficient accuracy may not be obtained for the measured distance. Therefore, in a state where beacon signals from a plurality of beacon terminals 20 can be received, there may be a case where it is not possible to appropriately grasp which beacon terminal 20 is located in the vicinity.
  • beacons such as the beacon signal reception intensity.
  • Information is accumulated as a history, and values are leveled / smoothed in time series by tabulating based on a plurality of beacon information included in a predetermined past time width at regular intervals.
  • FIG. 2 is a diagram showing an outline of an example in which beacon information detected in the user terminal 31 is accumulated as a history.
  • the user terminal A (31 ⁇ / b> A) in the example of FIG. 1 sequentially transmits the beacon information 32 detected at regular intervals to the location determination server 10 and accumulates it in the beacon detection information 13 as a history. Indicates the situation.
  • the beacon information 32 includes reception information including identification information for identifying the beacon terminal 20 (information “proximity UUID”, “major”, and “minor” in iBeacon) as information obtained by the Bluetooth beacon function) and received radio wave intensity.
  • Each parameter of “proximity”, “RSSI”, “accuracy” in iBeacon) is included, and this includes identification information of the user A (30A) such as a user ID and time by the user terminal A (31A) A stamp is added.
  • each beacon information 32 sequentially transmitted from the user terminal A (31A) at a constant interval (p-second interval in the figure) includes each of the user terminal A (31A).
  • Beacon B and beacon terminal C (20C are each displayed as “beacon C"), the reception intensity of each beacon signal (iBeacon is a parameter of "RSSI", and the unit is displayed as dBm in the figure),
  • iBeacon is a parameter of "RSSI”
  • the unit is displayed as dBm in the figure
  • the contents of the beacon information 32 transmitted from the user terminal 31 at regular intervals are accumulated as a history for each user 30 (or user terminal 31).
  • the value of the reception intensity of the beacon signal varies with the passage of time as shown in the example of FIG. Therefore, if the distance between the beacon terminal 20 and the user terminal 31 is calculated based only on the reception intensity at each timing, the calculation result is greatly affected by fluctuations in the reception intensity.
  • FIG. 3 is a diagram showing an outline of an example in which the location of the user terminal 31 is estimated based on the history information of the reception intensity of the beacon signal.
  • the value of the reception intensity of the beacon signal accumulated in the beacon detection information 13 shown in the upper part of the figure not only the value at each timing is used, but at regular intervals (FIG. 3).
  • new data of beacon information 32 is added to the beacon detection information 13 at the end in time series every p seconds.
  • the location determination unit 12 of the location determination server 10 calculates a score from the received intensity value for each beacon terminal 20 based on the data for the past r seconds every q seconds.
  • scoring is performed by sequentially extracting the data of the beacon information 32 for r seconds in order from the data accumulated in the past every q seconds. Therefore, the data structure of the beacon detection information 13 can be easily handled and the processing efficiency can be improved by using a list that is easy to handle FIFO (First In, or First First Out) processing or a queue with priority.
  • FIFO First In, or First First Out
  • the data extracted for r seconds first (transmission order is “# 1” to “# 4”) and the second data extracted for r seconds (transmission order is “# 3”).
  • transmission order is “# 6”.
  • the data of “# 3” and “# 4” are duplicated. That is, among the first r seconds of data extracted, the data of “# 1” and “# 2” are no longer used, but the data of “# 3” and “# 4” are the following (in the example of FIG. 3). It will be reused in the scoring of (next). It should be noted that past data that is no longer used can be discarded or deleted during maintenance.
  • the values of all target beacon information 32 are converted into scores based on a predetermined standard (S01).
  • the conversion criterion is not particularly limited, and for example, a criterion that becomes a larger value as the distance between the beacon terminal 20 and the user terminal 31 is shorter can be appropriately set.
  • a predetermined weighting is performed on each score obtained in step S01 so that the new data has a higher weight (S02).
  • the data “# 6” is the newest data.
  • the scores obtained in step S02 are totalized by adding up and averaging each beacon terminal 20 (S03). It is determined that the user 30 (or the user terminal 31) is located in the vicinity of the beacon terminal 20 having the largest total score. In the example of FIG. 3, since the score of the beacon terminal A (20A) (“beacon A”) is 70 at the maximum, the beacon terminal A (20A) even in the installation state of the beacon terminal 20 as in the example of FIG. ) In the vicinity of the user 30 (or the user terminal 31) (that is, the nearest beacon terminal 20 is the beacon terminal A (20A)).
  • beacon terminal A (20A) Even in the vicinity of the beacon terminal A (20A), whether it is located closer to the beacon terminal B (20B) or closer to the beacon terminal C (20C), etc. There are times when you want to figure out where you are located.
  • the user terminal A (31A) is located in the vicinity of the beacon terminal A (20A) having the maximum score, but the score of the beacon terminal B (20B) is further determined. Since the score of the beacon terminal B (20B) is larger in the score of the beacon terminal C (20C), the one near the beacon terminal A (20A) and closer to the beacon terminal B (20B) It can be determined that the user is located at the position. Specifically, for example, according to the score ratio of each beacon terminal 20, the beacon terminal 20 may be handled as being located near the internal dividing point of the installation position of each beacon terminal 20.
  • the beacon signal reception strength (“RSSI” parameter for iBeacon) is used as the beacon information 32 to be scored.
  • RSSI beacon signal reception strength
  • the present invention is not limited to this.
  • information such as a proximity between the beacon terminal 20 and the user terminal 31 (a parameter of “proximity” in iBeacon) may be used.
  • beacon information such as the reception intensity of the beacon signal received by the user terminal 31 is accumulated as a history in the location determination server 10.
  • the values are leveled / smoothed in time series by scoring and counting based on a plurality of beacon information included in a past predetermined time width at regular intervals.
  • the user terminal 31 transmits the beacon information and the like obtained from the beacon signal received from the fixed beacon terminal 20 to the location determination server 10, thereby determining the position of the user terminal 31 on the server side.
  • the structure to estimate it is not restricted to such a structure.
  • beacon information is sequentially transmitted to the location determination server 10 for all of the beacon signals that the user terminal 31 can receive. It is desirable to make an estimate.
  • the user terminal 31 transmits beacon information to the location determination server 10.
  • the frequency of the operation becomes high, such as several tens of times / second. As a result, the power consumption of the user terminal 31 may increase and the battery may be consumed in a short time.
  • FIG. 4 is a diagram showing an outline of another configuration example of the location determination system according to the first embodiment of the present invention.
  • the user terminal 31 has substantially the same function and configuration as the location determination server 10 in the example of FIG. 1 (the user terminal A (31A) is illustrated in FIG. 4).
  • the user terminal 31 has a beacon receiving unit 15 including a function of receiving a Bluetooth beacon, acquires beacon information obtained from the received beacon signal, and records it in the beacon detection information 13 as a history. Then, the location determination unit 12 estimates and outputs to which beacon terminal 20 the user terminal 31 is located based on the beacon information stored in the beacon detection information 13 and the like as described above. To do.
  • master information such as the installation location of each beacon terminal 20 is registered in the terminal installation information 14.
  • the master information such as the installation location registered as the terminal installation information 14 may be recorded in the user terminal 31 in advance, or the information downloaded from a server (not shown) that manages the master information at the time of startup or the like is cached. It may be a form that is held and used. In any case, the latest master information may be downloaded from the server and updated periodically or as needed.
  • the position information individually estimated at each user terminal 31 is periodically transmitted to a location management server (not shown) at predetermined intervals (for example, every 5 seconds).
  • the location management server can grasp and manage the position of each user 30 (or user terminal 31) collectively, as in the example of FIG.
  • the user 30 in contrast to the example of FIG. 1, as a configuration in which the mobile terminal is fixed and arranged at a predetermined position and the user 30 holds the beacon terminal 20, the user 30 (or the beacon terminal 20) It is also possible to estimate the position of. In this case as well, as in the case of the example of FIG. 1, in order to appropriately grasp the position of the user 30 (or the beacon terminal 20) with respect to the fixedly arranged portable terminal, a plurality of portable terminals are arranged. Thus, it is necessary to acquire a plurality of information on the distance between the beacon terminal 20 and the portable terminal (information on the radio wave intensity of the beacon signal).
  • FIG. 5 is a diagram showing an outline of another configuration example of the location determination system according to the first embodiment of the present invention.
  • a plurality of mobile terminals 33 in the figure, mobile terminal A (33A) to mobile terminal C (fixed) are arranged in the beacon area 21 of the beacon terminal 20 held by the moving user 30. 33C)) is present.
  • each mobile terminal 33 can receive the beacon signal from the beacon terminal 20 to obtain the beacon information, and estimate the distance between the mobile terminal 33 and the beacon terminal 20 from the information on the reception intensity of the beacon signal. Can do. However, in order to estimate the position of the beacon terminal 20 (or the user 30) from these pieces of information, it is necessary to perform calculation processing by collecting the beacon information acquired by each portable terminal 33 and the like. Therefore, in the example of FIG. 5, similarly to the example of FIG. 1, the configuration having the location determination server 10 is taken, and the position information is estimated on the server side by the method described above.
  • the beacon terminal 20 using iBeacon with extremely low power consumption is provided while the mobile terminal 33 is fixedly disposed in a place where a power source or the like is available and can be charged.
  • the fixed arrangement is not limited to the portable terminal 33, and any device that can receive a beacon signal can be used as appropriate.
  • FIG. 6 is a diagram showing an outline of an example of the relationship between the beacon area 21 and the accuracy range required as the beacon area.
  • an effective range that can satisfy the accuracy required for the beacon region 21 that is, an effective region 22 that can obtain a sufficient beacon signal intensity regardless of the influence of the environment or the like, as shown in FIG.
  • the beacon area 21 where the signal can reach may be considerably wider than the effective area 22 depending on the environment. Outside the effective area 22, although the beacon signal can reach, the intensity is weak, and this portion needs to be excluded as noise.
  • the case where the user terminal 31 located outside the effective area 22 accidentally receives a weak beacon signal from the beacon terminal 20 is excluded as noise (assuming that the user terminal 31 is located in the beacon area 21 with the required accuracy)
  • the beacon signal is not received (You may make it handle as what is not located in the beacon area
  • the substantial beacon region 21 is set depending on the reception intensity of the beacon signal, and therefore the actual range of the beacon region 21 may be greatly fluctuated due to environmental influences.
  • the location determination system with respect to the beacon region 21 set by the target beacon terminal 20, the vicinity of the end and the peripheral portion of the effective region 22 that is the range of the required accuracy.
  • One or more terminal beacon terminals 20 are arranged along the beacon, and the end of the effective area 22 in the target beacon area 21 is forcibly set by the beacon area set by them.
  • the range of the accuracy required in the target beacon region 21 is explicitly set, and the determination accuracy in the position estimation of the user terminal 31 is improved.
  • FIG. 7 is a diagram showing an outline of an example in which a beacon region that forcibly sets the end of the effective region 22 for the target beacon region 21 is provided.
  • the beacon region 21 set by the target beacon terminal 20, that is, the effective region 22 in the target beacon region 21 for performing position estimation as to whether or not the user terminal 31 is located in the vicinity of the beacon terminal 20 is a concept.
  • a plurality of terminal beacon terminals 20T are arranged so as to surround the vicinity of the end of the effective area 22, and the non-detection area 24 is set as a beacon area where position estimation processing is not performed by each terminal beacon terminal 20T. Has been.
  • the terminal beacon terminal 20T is arranged so that the entire end portion of the effective area 22 is covered by each non-detection area 24 (overlaps with the non-detection area 24). A region surrounded by the non-detection region 24 (a dark shaded portion in the figure) is set as the detection region 23.
  • the user terminal 31 When a beacon signal having a predetermined strength or higher can be received from the target beacon terminal 20 and the user terminal 31 is located outside the non-detection area 24, the user terminal 31 is located in the detection area 23. For example, the position estimation process of the user terminal 31 as shown in the first embodiment is performed. In other words, if it is determined that the user terminal 31 is located in any non-detection area 24, it is assumed that the user terminal 31 is not located inside the detection area 23 (the beacon signal from the target beacon terminal 20 has not been received). handle.
  • the detection area 23 it is possible to explicitly avoid being determined to be located in the vicinity of the target beacon terminal 20 (that is, the detection area 23) if it is determined to be located in the non-detection area 24.
  • the detection area 23 and the non-detection area 24 can be easily designed and configured.
  • region 22 it can set suitably based on the calculation distance assumed that the beacon signal transmitted from the beacon terminal 20 has predetermined
  • FIG. 8 is a diagram showing an outline of another example constituting the detection area 23.
  • the non-detection region 24 is provided so as to surround the effective region 22 and the detection region 23 is configured as a closed region.
  • the configuration method of the detection region 23 is not limited thereto, A wide variety of shapes are possible.
  • the detection region 23 in a row can be configured by covering both sides of a beacon region (effective region 22) configured in a row at the center with a non-detection region 24.
  • the detection region 23 having such a shape can be applied, for example, indoors having a linear spatial characteristic such as a long passage.
  • the non-detection region 24 configured in the center plays a role of a wall that separates the detection regions 23 on both sides, and for example, separates the beacon regions 21 respectively constructed by adjacent stores in a shopping mall or the like. It can be applied to such cases.
  • the role and attribute of each beacon region 21 are set separately as the detection region 23 and the non-detection region 24, but the role and attribute are not limited thereto.
  • the security level may be different depending on the beacon area 21.
  • the position estimation method of the user terminal 31 in the present embodiment may be the position estimation method described in the first embodiment, or the position determination function normally provided by the Bluetooth beacon function (in the case of iBeacon, “monitoring”). Etc.) can be used as appropriate.
  • the present embodiment has an effect of realizing a method for improving the accuracy in hardware as compared with these software-like position estimation methods.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .
  • the present invention can be used for a location determination system using a Bluetooth beacon.
  • ... Location determination system DESCRIPTION OF SYMBOLS 10 ... Location determination server, 11 ... Beacon information management part, 12 ... Location determination part, 13 ... Beacon detection information, 14 ... Terminal installation information, 15 ... Beacon reception part, 20 ... Beacon terminal, 20A-20C ... Beacon terminals A-C, 20T ... Termination beacon terminal, 21 ... Beacon region, 21A-21C ... Beacon region A-C, 22 ... Effective region, 23 ... Detection region, 24 ... Non Detection area, 30 ... User, 30A, B ... User A, B, 31 ... User terminal, 31A, B ... User terminal A, B, 32 ... Beacon information, 33 ... Mobile terminal, 33A-33C ... Mobile terminal A-C

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ビーコンを用いた端末の位置推定において、人などの移動する障害物等によるノイズの影響を低減して精度を向上させ、容易かつ柔軟にビーコン領域を構成可能とする。代表的な実施の形態によれば、携帯端末は、受信した1つ以上のビーコン端末からのビーコン信号についての受信強度を含むビーコン情報を取得して履歴をビーコン検出情報として蓄積し、所定の間隔毎に、ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数のビーコン情報を取得してスコアリングして集計し、スコアに基づいて最も近くに所在するビーコン端末を判定するロケーション判定部を有する。

Description

ロケーション判定システムおよびロケーション判定プログラム
 本発明は、位置推定の技術に関し、特に、Bluetooth(登録商標、以下同様)ビーコンを用いたロケーション判定システムおよびロケーション判定プログラムに適用して有効な技術に関するものである。
 移動可能な端末の位置を検出・測定する技術として、GPS(Global Positioning System)センサを用いた測位によるものの他に、屋内での測位も可能な手法として、基地局やアクセスポイント等との無線通信の状況によって位置を測定するものがある。
 例えば、特開2008-104029号公報(特許文献1)には、無線端末が基地局から受信した信号の信号強度情報と、基地局が設置されている位置情報とに基づいて、例えば三角測量の原理により無線端末の位置を推定する技術が記載されている。また、特表2012-521557号公報(特許文献2)には、いわゆるフィンガープリンティング法を用いた位置検出の技術が記載されている。
 これらの無線通信には、基地局やアクセスポイントが一定周期で発信するビーコン信号を受信することにより、ビーコン領域への端末の出入りを検知するという手法がとられる場合がある。また、ビーコン信号として、近年では、極めて少ない消費電力で通信可能なBLE(Bluetooth Low Energy)規格によるBluetoothビーコンが普及しつつある。Bluetoothビーコンとしては、例えば、Apple(登録商標)社のiBeacon(登録商標、以下同様)(非特許文献1)などがあり、これが標準搭載されているスマートフォンなどの携帯端末や、各種デバイスも提供されている。
特開2008-104029号公報 特表2012-521557号公報
"iBeacon for Developers"、[online]、Apple Inc.、[平成26年11月4日検索]、インターネット<URL:https://developer.apple.com/ibeacon/>
 従来技術のような端末の位置推定に際してBluetoothビーコンを用いる場合、Bluetoothビーコンの信号は基本的に電波強度の指向性がなく、人などの移動する障害物や、壁・天井による反射など環境の影響を受けやすいため、信号強度の測定精度はあまり高くない。そのため、比較的精緻な値を必要とする三角測量を用いた位置推定にBluetoothビーコンを用いることは、位置推測結果の誤差が大きくなってしまうことからあまり適さない。
 また、いわゆるフィンガープリンティング法を用いる場合、初期作業として、予め基地局やアクセスポイントの位置と予測信号強度の情報を関連付けたマップを作成しておく必要があり、また、基地局やアクセスポイントの設置場所を変更する度にマップの更新も必要となるなど、運用負荷が高いという課題がある。
 そこで本発明の目的は、ビーコンを用いた端末の位置推定において、人などの移動する障害物等によるノイズの影響を低減して精度を向上させ、また、容易かつ柔軟にビーコン領域を構成可能とするロケーション判定システムおよびロケーション判定プログラムを提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。
 本発明の代表的な実施の形態によるロケーション判定システムは、複数のビーコン端末が設置された環境において、前記ビーコン端末から発信されるビーコン信号を受信可能な携帯端末の位置を推定するロケーション判定システムであって、以下の特徴を有するものである。
 すなわち、前記携帯端末は、受信した1つ以上の前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得して履歴をビーコン検出情報として蓄積し、所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得してスコアリングして集計し、スコアに基づいて最も近くに所在する前記ビーコン端末を判定するロケーション判定部を有する。
 また、本発明は、上記のようなロケーション判定システムとして機能するよう、コンピュータに処理をさせるロケーション判定プログラムにも適用することができる。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 すなわち、本発明の代表的な実施の形態によれば、ビーコンを用いた端末の位置推定において、人などの移動する障害物等によるノイズの影響を低減して精度を向上させ、また、容易かつ柔軟にビーコン領域を構成することが可能となる。
本発明の実施の形態1であるロケーション判定システムの構成例について概要を示した図である。 本発明の実施の形態1におけるユーザ端末において検出されたビーコン情報を履歴として蓄積する例について概要を示した図である。 本発明の実施の形態1におけるビーコン信号の受信強度の履歴情報に基づいてユーザ端末の所在位置を推定する例について概要を示した図である。 本発明の実施の形態1であるロケーション判定システムの他の構成例について概要を示した図である。 本発明の実施の形態1であるロケーション判定システムの他の構成例について概要を示した図である。 ビーコン領域とビーコン領域として求められる精度の範囲との関係の例について概要を示した図である。 本発明の実施の形態2における対象のビーコン領域に対して有効領域の終端を強制的に設定した場合の例について概要を示した図である。 本発明の実施の形態2における検知領域を構成する他の例について概要を示した図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 <システム構成>
 図1は、本発明の実施の形態1であるロケーション判定システムの構成例について概要を示した図である。本実施の形態のロケーション判定システム1は、複数のビーコン端末(図中ではビーコン端末A(20A)~ビーコン端末C(20C)であり、以下ではこれらをビーコン端末20と総称する場合がある)が設置された環境において、そのうちの1つ以上のビーコン端末20からビーコン信号を受信する携帯型のユーザ端末(図中ではユーザ端末A(31A)およびユーザ端末B(31B)であり、以下ではこれらをユーザ端末31と総称する場合がある)が、受信したビーコン信号の強度等の情報に基づいて、ロケーション判定サーバ10において、対象のユーザ端末31がどのビーコン端末20の近傍に所在しているか(すなわち、一番近いビーコン端末20はどれか)を推定するシステムである。
 ビーコン端末20は、例えば、iBeaconデバイスなどの、Bluetoothビーコンの信号を一定間隔で出力する端末や装置であり、専用端末であっても汎用端末であってもよい。ビーコン端末20には、それぞれ対応するビーコン領域(図中ではビーコン領域A(21A)~ビーコン領域C(21C)であり、以下ではこれらをビーコン領域21と総称する場合がある)が定義されており、ビーコン領域21内に所在するデバイスはビーコン信号を受信することができる。
 ユーザ端末31は、Bluetoothビーコンの信号を検知することができる情報処理端末や装置であり、本実施の形態では、例えば、iBeacon機能を搭載したスマートフォンなどの携帯端末とする。ユーザ端末31は、これを保持するユーザ(図中ではユーザA(30A)およびユーザB(30B)であり、以下ではこれらをユーザ30と総称する場合がある)が移動することで、その位置が変わり得る。また、ユーザ端末31は、それぞれ、無線LANや移動体通信などの無線通信機能により、図示しないインターネット等のネットワークを介してロケーション判定サーバ10との間でデータ通信を行うことが可能である。
 ユーザ端末31は、ビーコン端末20からのビーコン信号を受信できるか否かにより、対応するビーコン領域21内にいるか否か(入ったか出たか)を判定することができる(iBeaconにおける「モニタリング」機能)。また、ビーコン端末20との間で通信が可能である(ビーコン領域21内にいる)場合に、各ビーコン端末20を一意に識別するための識別番号や、想定電波強度(ビーコン端末20から1m離れた地点での想定の電波強度)などの情報をビーコン端末20から取得することができる。ユーザ端末31では、実際に検知できた電波強度と想定電波強度との比、および電波特性に基づいて、対象のビーコン端末20との間のおおよその距離を算出することができる(iBeaconにおける「レンジング」機能)。なお、本実施の形態では、「レンジング」機能に相当する機能のみを用いるものとする。
 また、本実施の形態では、ビーコン端末20の識別情報、およびユーザ端末31でのビーコン信号の受信強度などを含むビーコン情報と、ビーコン信号の検出時刻、およびユーザ30(もしくはユーザ端末31)を特定するユーザIDなどの識別情報を、ロケーション判定サーバ10に送信することで、サーバサイドで後述する手法によりユーザ端末31の位置を推定するものとする。
 ロケーション判定サーバ10は、例えば、PC(Personal Computer)やサーバ機器、クラウドコンピューティングサービス上に構築された仮想サーバなどの情報処理装置により構成されるサーバシステムであり、各ユーザ端末31から送信された、各ユーザ端末31において受信したビーコン信号の強度等の情報に基づいて、対象のユーザ端末31がどのビーコン端末20の近傍に所在しているかを推定する機能を有する。
 ロケーション判定サーバ10は、例えば、図示しないOS(Operating System)やDBMS(DataBase Management System)などのミドルウェア上で稼働するソフトウェアとして実装されるビーコン情報管理部11、およびロケーション判定部12などの各部を有する。また、データベースやファイルテーブルなどにより実装されるビーコン検出情報13、および端末設置情報14などの各データストアを有する。
 ビーコン情報管理部11は、各ユーザ端末31から送信されたビーコン情報等を取得して、ユーザ30(もしくはユーザ端末31)単位でビーコン検出情報13に履歴として記録する機能を有する。なお、履歴として保持することから、データ量が膨大となり得るため、保持する履歴情報は、例えば、一定期間に限ったり、ユーザ30(もしくはユーザ端末31)毎に一定個数に限ったりなど、一定量に制限してもよい。
 ロケーション判定部12は、ビーコン検出情報13に蓄積されたビーコン情報等に基づいて、対象のユーザ30(もしくはユーザ端末31)がどのビーコン端末20の近傍(ロケーション)に所在するかという形で位置を推定し、結果を出力する機能を有する。なお、各ビーコン端末20の設置場所等のマスタ情報は、端末設置情報14に登録されているものとする。推定結果の出力先は、対象のユーザ端末31であってもよいし、各ユーザ端末31の位置情報を利用したい他のシステム等であってもよい。
 本実施の形態のように、各ユーザ30(もしくはユーザ端末31)の位置推定をロケーション判定サーバ10側で一括して行う構成とすることで、ロケーション判定サーバ10側で各ユーザ30(もしくはユーザ端末31)の位置をリアルタイムで一括して把握・管理し、他の業務等に活用することが可能になるというメリットを得ることができる。
 <位置推定手法>
 Bluetoothビーコンにおいて、ビーコン端末20が1つのみの場合は、当該ビーコン端末20のビーコン領域21内にユーザ端末31がいるか否かを検出することができるため(iBeaconにおける「モニタリング」機能)、当該ビーコン端末20の近傍のロケーションにユーザ端末31が所在することを容易に判定することができる。また、ユーザ端末31では、検知した電波強度等の情報に基づいて、対象のビーコン端末20との間のおおよその距離も算出することができる(iBeaconにおける「レンジング」機能)。しかしながら、Bluetoothビーコンの信号は指向性がないことから、ビーコン端末20とユーザ端末31との間のおおよその距離は推測できても、どの方向に所在しているかまでは把握することができない。方向や位置関係まで把握するためには、複数のビーコン端末20を設置して、それぞれとの間の距離等を測定する必要がある。
 また、ビーコン領域21の大きさには限界があるため、広い領域でBluetoothビーコンを用いた位置推定を行う場合にも複数のビーコン端末20を設置する必要が生じる。このとき、検知不能領域が生じないよう、例えば図1の例に示すように、複数のビーコン領域21が重なり合うようにビーコン端末20が設置される場合がある。この場合、例えば、ユーザ端末A(31A)などのように、複数のビーコン領域21が重なり合う領域に所在して、複数のビーコン端末20からのビーコン信号を受信できる状態となる場合がある。
 この場合、各ビーコン領域21内にいるか否かを検出するだけでは、実際にどのような位置にユーザ端末31が所在するのか判定できない場合が生じる。例えば、複数のビーコン端末20からの信号を受信できる状態といっても、実際は、いずれか1つのビーコン端末20の極めて近くに所在し、当該ビーコン端末20からは強い信号強度で受信しているのに対し、他のビーコン端末20からは離れており、これらのビーコン端末20からは微弱な信号強度で受信している、という場合もある。
 したがって、このような状況でもいずれのビーコン端末20の近傍に所在するかを適切に判定するためには、各ビーコン領域21内にいるか否かではなく、ビーコン信号を受信可能な各ビーコン端末20との間の距離を測定する(iBeaconにおける「レンジング」機能)必要が生じる。しかしながら、Bluetoothビーコンの信号は、人などの移動する障害物や、壁・天井・柱等の環境の影響を受け易く、近辺を人が移動するだけで信号強度は大きく変動してしまうことから、測定された距離について十分な精度が得られない場合がある。したがって、複数のビーコン端末20からのビーコン信号を受信できる状態の場合に、どのビーコン端末20の近傍に所在しているかを適切に把握することができない場合が生じ得る。
 そこで、本実施の形態では、ユーザ端末31におけるビーコン信号の受信強度が、人などの移動する障害物によって変動してしまうことによる影響を回避・低減するために、ビーコン信号の受信強度等のビーコン情報を履歴として蓄積し、一定期間毎に、過去の所定の時間幅に含まれる複数のビーコン情報に基づいて集計することで、時系列で値を平準化・平滑化する。
 図2は、ユーザ端末31において検出されたビーコン情報を履歴として蓄積する例について概要を示した図である。図2の例では、図1の例におけるユーザ端末A(31A)が、一定間隔で検知したビーコン情報32を一定間隔でロケーション判定サーバ10に順次送信して、ビーコン検出情報13に履歴として蓄積する状況を示している。ビーコン情報32には、Bluetoothビーコン機能により得られる情報として、ビーコン端末20を特定する識別情報(iBeaconでは「proximity UUID」、「major」、「minor」の各パラメータ)と、受信電波強度を含む受信状況に関する情報(iBeaconでは「proximity」、「RSSI」、「accuracy」の各パラメータ)が含まれ、これに、ユーザ端末A(31A)によってユーザID等のユーザA(30A)の識別情報と、タイムスタンプが付加される。
 なお、図2の例では、説明の便宜上、一定間隔(図中ではp秒間隔)でユーザ端末A(31A)から順次送信される各ビーコン情報32には、それぞれ、ユーザ端末A(31A)の保有者であるユーザA(30A)の識別情報(「ユーザA」)と、ビーコン信号を受信できた各ビーコン端末20(ビーコン端末A(20A)は「ビーコンA」、ビーコン端末B(20B)は「ビーコンB」、ビーコン端末C(20C)は「ビーコンC」としてそれぞれ表示)について、それぞれのビーコン信号の受信強度(iBeaconでは「RSSI」のパラメータであり、図中では単位をdBmとして表示)、およびタイムスタンプ(図中では便宜上、「#1」~「#3」の送信順序として表示)のみを記載している。
 ビーコン検出情報13には、ユーザ30(もしくはユーザ端末31)毎に、一定間隔でユーザ端末31から送信されたビーコン情報32の内容が履歴として蓄積される。ビーコン信号の受信強度の値は、図2の例に示すように、時間の経過によって変動する。したがって、各タイミングでの受信強度のみに基づいてビーコン端末20とユーザ端末31との間の距離を算出すると、算出結果は、受信強度の変動の影響を大きく受けてしまう。
 図3は、ビーコン信号の受信強度の履歴情報に基づいてユーザ端末31の所在位置を推定する例について概要を示した図である。本実施の形態では、図の上段に示したビーコン検出情報13に蓄積されたビーコン信号の受信強度の値を取り扱う際に、各タイミングでの値のみを用いるのではなく、一定間隔毎(図3の例ではq秒毎)に、少なくとも複数のタイミングでの受信強度の情報が含まれる所定の期間(図3の例ではr秒間。r>q>p)のデータに基づいてビーコン端末20毎にスコアリングを行い、スコアが最も高いビーコン端末20の近傍にユーザ端末31が所在するものと取り扱う。
 図示するように、ビーコン検出情報13には、p秒毎に新たなビーコン情報32のデータが時系列上で末尾に追加される。この状況で、ロケーション判定サーバ10のロケーション判定部12では、q秒毎に、過去のr秒間のデータに基づいて、ビーコン端末20毎に受信強度の値からスコアを計算する。この場合、上段および中段の図に示すように、q秒毎に、過去に蓄積されたデータから順にr秒間のビーコン情報32のデータを順次取り出してスコアリングを行うことになる。したがって、ビーコン検出情報13のデータ構造は、FIFO(First In, First Out)の処理を扱いやすいリスト、もしくは優先順位付きキューなどを用いることで取り扱いが容易となり処理効率を向上させることができる。
 また、図3の例では、最初に取り出したr秒間のデータ(送信順序が「#1」~「#4」)と、2つ目に取り出したr秒間のデータ(送信順序が「#3」~「#6」)において、「#3」と「#4」のデータが重複している。すなわち、最初に取り出したr秒間のデータのうち、「#1」と「#2」のデータはもはや利用されないが、「#3」と「#4」のデータは、以降(図3の例では次)のスコアリングの際に再利用されることを示している。なお、もはや利用されない過去のデータは、メンテナンスの際の廃棄・削除対象とすることができる。
 また、図3の例では、中段以降に、2つ目に取り出したr秒間のデータ(送信順序が「#3」~「#6」)に基づいてスコアリングを行う際の処理の流れの例を示している。まず、対象の全てのビーコン情報32の値(図3ではビーコン信号の受信強度の値)を所定の基準に基づいてスコアに変換する(S01)。変換基準については特に限定されず、例えば、ビーコン端末20とユーザ端末31との距離が近いほど大きい値となるような基準を適宜設定することができる。
 次に、ステップS01で得た各スコアに対して、新しいデータほど高い重み付けとなるよう所定の重み付けを行う(S02)。例として参照している「#3」~「#6」の4つのデータでは、「#6」のデータが最も新しいデータである。重み付けの手法は特に限定されないが、例えば、f(t)=1/tのような関数を乗算することによりs秒前(過去)のスコアを1/sに減少させるようなものであってもよい。f(t)=a^(-t)のような指数関数を用いて過去のスコアを減少させてもよい。
 その後、ステップS02で得た各スコアをビーコン端末20毎に合算・平均する等により集計する(S03)。集計されたスコアが最大のビーコン端末20の近傍にユーザ30(もしくはユーザ端末31)が所在するものと判定する。図3の例では、ビーコン端末A(20A)(「ビーコンA」)のスコアが最大の70であることから、図1の例のようなビーコン端末20の設置状況においても、ビーコン端末A(20A)の近傍にユーザ30(もしくはユーザ端末31)が所在する(すなわち、最も近いビーコン端末20はビーコン端末A(20A)である)と判定する。
 なお、ビーコン端末A(20A)の近傍といっても、さらに、ビーコン端末B(20B)に近い方に所在するのか、ビーコン端末C(20C)に近い方に所在するのかなど、ビーコン領域21の中でどのあたりに所在するかの目安を把握したい場合がある。
 図3の例におけるスコアリングの結果では、ユーザ端末A(31A)は、スコアが最大であるビーコン端末A(20A)の近傍に所在すると判定されるが、さらに、ビーコン端末B(20B)のスコアと、ビーコン端末C(20C)のスコアとでは、ビーコン端末B(20B)のスコアの方が大きいことから、ビーコン端末A(20A)の近傍で、かつ、ビーコン端末B(20B)に近い方の位置に所在していると判定することができる。具体的には、例えば、各ビーコン端末20のスコアの比により、各ビーコン端末20の設置位置の内分点付近に所在するものと取り扱ってもよい。
 なお、本実施の形態では、スコアリングの対象とするビーコン情報32として、ビーコン信号の受信強度(iBeaconでは「RSSI」のパラメータ)を用いているが、これに限らず、例えば、受信強度に代えて、もしくはこれに加えて、ビーコン端末20とユーザ端末31との間の近接度(iBeaconでは「proximity」のパラメータ)などの情報を用いてもよい。
 以上に説明したように、本発明の実施の形態1であるロケーション判定システム1によれば、ユーザ端末31が受信したビーコン信号の受信強度等のビーコン情報を、ロケーション判定サーバ10において履歴として蓄積し、一定期間毎に、過去の所定の時間幅に含まれる複数のビーコン情報に基づいてスコアリング・集計することで、時系列で値を平準化・平滑化する。これにより、ユーザ端末31におけるビーコン信号の受信強度が、人などの移動する障害物等によって変動してしまうことによる影響を回避・低減させることができ、ユーザ端末31がどのビーコン端末20の近傍に所在するか(すなわち、ユーザ端末31の最も近くに所在するビーコン端末20はどれか)を適切に把握することができる。また、ビーコン情報に基づくスコアリングの際に、新しいデータに対してより高い重み付けをすることにより、判定の精度をより向上させることができる。
 また、フィンガープリンティング法などにおいて必要となる事前のマップ作成等の作業が不要であり、ビーコン端末20の設置位置を容易かつ柔軟に変更することが可能であることから、ビーコン端末20およびビーコン領域21の配置に係る設計を容易にするとともに、設計の柔軟性を向上させることができる。
 なお、本実施の形態では、ユーザ端末31が、固定されたビーコン端末20から受信したビーコン信号から得られるビーコン情報等をロケーション判定サーバ10に送信することで、サーバサイドでユーザ端末31の位置を推定する構成としているが、このような構成に限られない。
 例えば、図1の例のような構成において、位置推定の精度を高めるには、ユーザ端末31が受信することができたビーコン信号の全てについて、ビーコン情報をロケーション判定サーバ10に逐次送信して位置推定を行うのが望ましい。しかしながら、この場合、例えば、狭い領域にビーコン端末20が複数設置されており、複数のビーコン端末20からのビーコン信号を受信できるような環境では、ユーザ端末31がロケーション判定サーバ10にビーコン情報を送信する頻度が数十回/秒など高くなってしまう場合が生じ得る。その結果、ユーザ端末31の消費電力が大きくなって電池が短時間で消耗してしまうなどの事態も生じ得る。
 そこで、他の構成例として、ロケーション判定サーバ10における位置推定機能をユーザ端末31側に実装し、ユーザ端末31側で直接位置推定を行う構成とすることも可能である。図4は、本発明の実施の形態1であるロケーション判定システムの他の構成例について概要を示した図である。ここでは、図1の例におけるロケーション判定サーバ10と概ね同様の機能および構成をユーザ端末31側に有している(図4ではユーザ端末A(31A)について例示している)。
 ユーザ端末31は、Bluetoothビーコンを受信する機能を含むビーコン受信部15を有し、受信したビーコン信号から得られるビーコン情報等を取得して、ビーコン検出情報13に履歴として記録する。そして、ロケーション判定部12は、ビーコン検出情報13に蓄積されたビーコン情報等に基づいて、上記のような手法により、当該ユーザ端末31がどのビーコン端末20の近傍に所在するかを推定して出力する。
 なお、図1の例と同様に、各ビーコン端末20の設置場所等のマスタ情報は、端末設置情報14に登録されているものとする。端末設置情報14として登録された設置場所等のマスタ情報は、予めユーザ端末31に記録されていてもよいし、起動時等のタイミングで、マスタ情報を管理する図示しないサーバからダウンロードした情報をキャッシュ的に保持して利用する形態であってもよい。いずれの場合でも、定期的に、もしくは必要に応じて適時に、サーバから最新のマスタ情報をダウンロードして更新するようにしてもよい。
 なお、図4の例においても、各ユーザ端末31において個別に推定した自身の位置情報を、それぞれ、図示しないロケーション管理サーバ等に所定の間隔(例えば、5秒毎など)で定期的に送信して蓄積することで、図1の例と同様に、ロケーション管理サーバ側で各ユーザ30(もしくはユーザ端末31)の位置を一括して把握・管理することが可能である。
 さらに、他の構成例として、図1の例とは逆に、携帯端末を所定の位置に固定して配置し、ユーザ30がビーコン端末20を保有する構成として、ユーザ30(もしくはビーコン端末20)の位置を推定することも可能である。この場合も、図1の例などの場合と同様に、固定して配置された携帯端末に対するユーザ30(もしくはビーコン端末20)の位置を適切に把握するためには、携帯端末を複数台配置して、ビーコン端末20と携帯端末との間の距離の情報(ビーコン信号の電波強度の情報)を複数取得する必要がある。
 図5は、本発明の実施の形態1であるロケーション判定システムの他の構成例について概要を示した図である。図5の例では、移動するユーザ30が保有するビーコン端末20のビーコン領域21内に、固定して配置された複数の携帯端末33(図中では、携帯端末A(33A)~携帯端末C(33C))が存在する状態を示している。
 ここで、各携帯端末33は、それぞれがビーコン端末20からのビーコン信号を受信してビーコン情報を得ることができ、ビーコン信号の受信強度の情報からビーコン端末20との間の距離を推測することができる。しかしながら、これらの情報からビーコン端末20(もしくはユーザ30)の位置を推定するためには、各携帯端末33で取得したビーコン情報等を集約して計算処理を行う必要がある。したがって、図5の例では、図1の例と同様に、ロケーション判定サーバ10を有する構成をとり、上述したような手法によりサーバサイドで位置情報を推定する。
 図5の例のような構成により、例えば、携帯端末33を、電源等があり充電が可能な場所に固定的に配置しておく一方で、極めて消費電力が少ないiBeaconを用いたビーコン端末20をユーザ30が持ち歩くことで、携帯端末33の電池切れや充電に係る負担などの課題を回避することができる。なお、この場合、固定的に配置するのは携帯端末33に限られず、ビーコン信号を受信することができる装置であれば適宜利用することができる。
 (実施の形態2)
 Bluetoothビーコンの信号は、環境による影響を受け易いが、一方で、例えば、障害物等がない直線的な空間特性がある屋内などでは、最大で100m程度まで電波が到達する場合もある。図6は、ビーコン領域21とビーコン領域として求められる精度の範囲との関係の例について概要を示した図である。ビーコン領域21として求められる精度を満たすことができる有効範囲、すなわち、環境などの影響に関わらず、十分なビーコン信号の強度を得ることができる有効領域22を考慮した場合、図示するように、ビーコン信号が到達し得るビーコン領域21は、環境によって有効領域22よりも相当広くなる場合がある。有効領域22の外側では、ビーコン信号が到達し得るとはいえ強度は微弱であり、この部分はノイズとして除外する必要がある。
 有効領域22の外側に所在するユーザ端末31がビーコン端末20からの微弱なビーコン信号を偶発的に受信してしまった場合をノイズとして除外し(求められる精度のビーコン領域21内に所在するものとして扱わない)、位置推定において一定の精度を維持するため、例えば、ユーザ端末31が受信したビーコン信号の受信強度が所定の閾値以下の微弱なものである場合は、ビーコン信号を受信していない(ビーコン領域21内に所在していない)ものとして取り扱うようにしてもよい。しかしながら、このような手法だけでは、ビーコン信号の受信強度によって実質的なビーコン領域21を設定することになるため、ビーコン領域21の実際の範囲は環境の影響を受けて変動が大きいものとなり得る。
 そこで、本発明の実施の形態2であるロケーション判定システムでは、対象のビーコン端末20によって設定されるビーコン領域21に対して、その求められる精度の範囲である有効領域22の端部・周縁部付近に沿って終端用のビーコン端末20を1つ以上配置して、これらによって設定されるビーコン領域によって、対象のビーコン領域21における有効領域22の終端を強制的に設定する。これにより、対象のビーコン領域21において求められる精度の範囲を明示的に設定し、ユーザ端末31の位置推定における判定精度を向上させる。
 図7は、対象のビーコン領域21に対して有効領域22の終端を強制的に設定するようなビーコン領域を設けた場合の例について概要を示した図である。ここでは、対象のビーコン端末20によって設定されるビーコン領域21、すなわち、当該ビーコン端末20の近傍にユーザ端末31が所在するか否かの位置推定を行う対象のビーコン領域21における有効領域22が概念として示されている。また、有効領域22の端部付近の周囲を囲むように複数の終端用ビーコン端末20Tが配置され、それぞれの終端用ビーコン端末20Tにより、位置推定処理を行わないビーコン領域として非検知領域24が設定されている。ここでは、有効領域22の端部の全部が、それぞれの非検知領域24によって覆われる(非検知領域24と重なる)ように、終端用ビーコン端末20Tが配置されている。この非検知領域24に囲われた領域(図中の濃い網掛け部分)が検知領域23として設定される。
 そして、対象のビーコン端末20から所定の強度以上のビーコン信号を受信可能であり、かつ、非検知領域24の外部にユーザ端末31が所在する場合に、検知領域23内にユーザ端末31が所在するものとして、例えば、実施の形態1に示したようなユーザ端末31の位置推定処理を行う。言い換えれば、ユーザ端末31がいずれかの非検知領域24に所在すると判定された場合は、検知領域23の内部には所在しない(対象のビーコン端末20からのビーコン信号を受信していない)ものとして取り扱う。
 これにより、例えば、非検知領域24および有効領域22の外部で、遠方のビーコン端末20からの微弱なビーコン信号を仮に受信した場合は、これをノイズとして除外する一方、ビーコン端末20からのビーコン信号の強度に関わらず、非検知領域24に所在すると判定された場合は、対象のビーコン端末20の近傍(すなわち、検知領域23)に所在すると判定されるのを明示的に回避することができるため、検知領域23および非検知領域24の設計・構成を容易に行うことができる。なお、有効領域22については、例えば、ビーコン端末20から発信されるビーコン信号が所定の有効強度を有すると想定される計算上の距離に基づいて適宜設定することができる。
 図8は、検知領域23を構成する他の例について概要を示した図である。上述の図7の例では、有効領域22の周囲を取り囲むように非検知領域24を設けて、検知領域23を閉領域として構成していたが、検知領域23の構成方法はこれに限らず、多種多様な形状とすることが可能である。図8の例では、中央に列状に構成されたビーコン領域(有効領域22)の両側を非検知領域24で覆うことで、列状の検知領域23を構成することができる。このような形状の検知領域23は、例えば、長い通路などの直線的な空間特性を有する屋内などに適用することができる。
 また、図8の例において、検知領域23と非検知領域24の役割を入れ替えて、中央のビーコン領域の列を非検知領域24とする構成も可能である。この場合、中央に構成される非検知領域24は、両側の検知領域23を分離する壁の役割を担うことになり、例えば、ショッピングモールなどにおいて隣接する店舗がそれぞれ構築したビーコン領域21を分離するような場合に適用することができる。なお、本実施の形態では、検知領域23および非検知領域24として、各ビーコン領域21の役割や属性を区分して設定しているが、役割や属性はこれに限られない。例えば、ビーコン領域21によってセキュリティのレベルが異なるなどの構成をとることができる。
 また、本実施の形態におけるユーザ端末31の位置推定の手法は、実施の形態1に示した位置推定手法であってもよいし、Bluetoothビーコン機能が通常有する位置判定機能(iBeaconの場合は「モニタリング」など)を適宜用いることができる。本実施の形態は、これらのソフトウェア的な位置推定手法に対して、ハードウェア的な精度向上を図る手法の実現という効果を有する。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本発明は、Bluetoothビーコンを用いたロケーション判定システムに利用可能である。
1…ロケーション判定システム、
10…ロケーション判定サーバ、11…ビーコン情報管理部、12…ロケーション判定部、13…ビーコン検出情報、14…端末設置情報、15…ビーコン受信部、
20…ビーコン端末、20A~20C…ビーコン端末A~C、20T…終端用ビーコン端末、21…ビーコン領域、21A~21C…ビーコン領域A~C、22…有効領域、23…検知領域、24…非検知領域、
30…ユーザ、30A、B…ユーザA、B、31…ユーザ端末、31A、B…ユーザ端末A、B、32…ビーコン情報、33…携帯端末、33A~33C…携帯端末A~C
 
 
 

Claims (13)

  1.  複数のビーコン端末が設置された環境において、前記ビーコン端末から発信されるビーコン信号を受信可能な携帯端末の位置を推定するロケーション判定システムであって、
     前記携帯端末は、受信した1つ以上の前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得して履歴をビーコン検出情報として蓄積し、所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得してスコアリングして集計し、スコアに基づいて最も近くに所在する前記ビーコン端末を判定するロケーション判定部を有する、ロケーション判定システム。
  2.  複数のビーコン端末が設置された環境において、前記ビーコン端末から発信されるビーコン信号を受信可能な携帯端末の位置を推定するロケーション判定システムであって、
     前記携帯端末から送信された、前記携帯端末が受信した1つ以上の前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得し、前記ビーコン情報に基づいて、前記携帯端末の最も近くに所在する前記ビーコン端末を判定するロケーション判定サーバを有し、
     前記ロケーション判定サーバは、
     前記携帯端末から一定間隔で送信された前記ビーコン情報の履歴をビーコン検出情報として蓄積するビーコン情報管理部と、
     所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得して、前記ビーコン端末毎にスコアリングして集計し、スコアに基づいて最も近くに所在する前記ビーコン端末を判定するロケーション判定部と、
     を有する、ロケーション判定システム。
  3.  ビーコン端末から発信されるビーコン信号を受信可能な複数の装置が設置された環境において、前記ビーコン端末の位置を推定するロケーション判定システムであって、
     1つ以上の前記装置から送信された、前記装置が受信した前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得し、前記ビーコン情報に基づいて、前記ビーコン端末の最も近くに所在する前記装置を判定するロケーション判定サーバを有し、
     前記ロケーション判定サーバは、
     前記装置から一定間隔で送信された前記ビーコン情報の履歴をビーコン検出情報として蓄積するビーコン情報管理部と、
     所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得して、前記装置毎にスコアリングして集計し、スコアに基づいて最も近くに所在する前記装置を判定するロケーション判定部と、
     を有する、ロケーション判定システム。
  4.  請求項1~3のいずれか1項に記載のロケーション判定システムにおいて、
     前記ロケーション判定部は、前記ビーコン情報をスコアリングする際に、新しい前記ビーコン情報に対してより高い重み付けを行う、ロケーション判定システム。
  5.  請求項1~3のいずれか1項に記載のロケーション判定システムにおいて、
     前記ロケーション判定部が取得した、前記過去の所定の期間に含まれる複数の第1のビーコン情報と、前記所定の間隔後に取得した、前記過去の所定の期間に含まれる複数の第2のビーコン情報と、の一部は重複している、ロケーション判定システム。
  6.  請求項1または2に記載のロケーション判定システムにおいて、
     前記ロケーション判定部は、複数の前記ビーコン端末毎の前記スコアの比に基づいて、前記携帯端末と、前記各ビーコン端末との位置関係を判定する、ロケーション判定システム。
  7.  請求項3に記載のロケーション判定システムにおいて、
     前記ロケーション判定部は、複数の前記装置毎の前記スコアの比に基づいて、前記各装置と、前記ビーコン端末との位置関係を判定する、ロケーション判定システム。
  8.  複数のビーコン端末が設置された環境において、前記ビーコン端末から発信されるビーコン信号を受信可能な携帯端末の位置を推定するロケーション判定システムとして機能するよう、コンピュータに処理を実行させるロケーション判定プログラムであって、
     前記携帯端末が受信した1つ以上の前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得して履歴をビーコン検出情報として蓄積し、所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得してスコアリングして集計し、スコアに基づいて最も近くに所在する前記ビーコン端末を判定するロケーション判定処理を、前記コンピュータに実行させる、ロケーション判定プログラム。
  9.  ビーコン端末から発信されるビーコン信号を受信可能な複数の装置が設置された環境において、前記ビーコン端末の位置を推定するロケーション判定システムとして機能するよう、コンピュータに処理を実行させるロケーション判定プログラムであって、
     1つ以上の前記装置から送信された、前記装置が受信した前記ビーコン端末からの前記ビーコン信号についての受信強度を含むビーコン情報を取得して履歴をビーコン検出情報として蓄積し、所定の間隔毎に、前記ビーコン検出情報として蓄積された、過去の所定の期間に含まれる複数の前記ビーコン情報を取得してスコアリングして集計し、スコアに基づいて最も近くに所在する前記装置を判定するロケーション判定処理を、前記コンピュータに実行させる、ロケーション判定プログラム。
  10. [規則91に基づく訂正 13.01.2015] 
     請求項8または9に記載のロケーション判定プログラムにおいて、
     前記ロケーション判定処理は、前記ビーコン情報をスコアリングする際に、新しい前記ビーコン情報に対してより高い重み付けを行う、ロケーション判定プログラム。
  11. [規則91に基づく訂正 13.01.2015] 
     請求項8または9に記載のロケーション判定プログラムにおいて、
     前記ロケーション判定処理において取得した、前記過去の所定の期間に含まれる複数の第1のビーコン情報と、前記所定の間隔後に取得した、前記過去の所定の期間に含まれる複数の第2のビーコン情報と、の一部は重複している、ロケーション判定プログラム。
  12. [規則91に基づく訂正 13.01.2015] 
     請求項8に記載のロケーション判定プログラムにおいて、
     前記ロケーション判定処理は、複数の前記ビーコン端末毎の前記スコアの比に基づいて、前記携帯端末と、前記各ビーコン端末との位置関係を判定する、ロケーション判定プログラム。
  13. [規則91に基づく訂正 13.01.2015] 
     請求項9に記載のロケーション判定プログラムにおいて、
     前記ロケーション判定処理は、複数の前記装置毎の前記スコアの比に基づいて、前記各装置と、前記ビーコン端末との位置関係を判定する、ロケーション判定プログラム。
     
     
     
     
PCT/JP2014/084661 2014-12-26 2014-12-26 ロケーション判定システムおよびロケーション判定プログラム WO2016103498A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/084661 WO2016103498A1 (ja) 2014-12-26 2014-12-26 ロケーション判定システムおよびロケーション判定プログラム
EP14909100.1A EP3240355A4 (en) 2014-12-26 2014-12-26 Location determination system and location determination program
JP2015501260A JPWO2016103498A1 (ja) 2014-12-26 2014-12-26 ロケーション判定システムおよびロケーション判定プログラム
US15/633,223 US20170293012A1 (en) 2014-12-26 2017-06-26 Location determination system and location determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084661 WO2016103498A1 (ja) 2014-12-26 2014-12-26 ロケーション判定システムおよびロケーション判定プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/633,223 Continuation US20170293012A1 (en) 2014-12-26 2017-06-26 Location determination system and location determination program

Publications (1)

Publication Number Publication Date
WO2016103498A1 true WO2016103498A1 (ja) 2016-06-30

Family

ID=56149581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084661 WO2016103498A1 (ja) 2014-12-26 2014-12-26 ロケーション判定システムおよびロケーション判定プログラム

Country Status (4)

Country Link
US (1) US20170293012A1 (ja)
EP (1) EP3240355A4 (ja)
JP (1) JPWO2016103498A1 (ja)
WO (1) WO2016103498A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303049B1 (ja) * 2017-06-12 2018-03-28 アイ・ピー・アイ株式会社 コンテンツ配信方法及びコンテンツ配信システム
JP2020057070A (ja) * 2018-09-28 2020-04-09 Kddi株式会社 端末の装着位置によって人物を同定するシステム及び方法
JP2020177299A (ja) * 2019-04-15 2020-10-29 株式会社L is B 位置管理システム、位置管理装置、位置管理方法および位置管理プログラム
JP2021532651A (ja) * 2018-07-24 2021-11-25 シグフォックス 標的送信デバイスの範囲内にある端末の位置情報を取得するための方法及びシステム
JP2022106513A (ja) * 2021-01-07 2022-07-20 株式会社ビーキャップ 携帯端末のリージョン監視制御方法、並びに滞在状況監視方法及び滞在状況監視システム
US11968592B2 (en) 2018-10-15 2024-04-23 Paylessgate Corporation Position determination system, position determination apparatus, position determination method, position determination program, and computer-readable storage medium and storage device
US12041509B2 (en) 2018-10-15 2024-07-16 Sinumy Corporation Authentication-gaining apparatus, authentication apparatus, authentication request transmitting method, authentication method, and program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10219166B2 (en) 2015-04-30 2019-02-26 Mist Systems, Inc. Methods and apparatus for generating, transmitting and/or using beacons
US9363784B1 (en) * 2015-04-30 2016-06-07 Mist Systems Inc. Methods and apparatus relating to the use of real and/or virtual beacons
CN111289970B (zh) * 2020-02-05 2022-05-06 山东兰动智能科技有限公司 无线电子加密信标布雷与电子坐标探雷测定系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098749A (ja) * 2000-09-27 2002-04-05 Toshiba Corp 位置検出システム及び位置検出方法
JP2003244070A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP2009302888A (ja) * 2008-06-13 2009-12-24 Wireless Design:Kk 検知システムおよび方法
JP2011017684A (ja) * 2009-07-10 2011-01-27 Kenwood Corp 測位システム及び制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063212B2 (en) * 2013-02-11 2015-06-23 Trimble Navigation Limited Indoor navigation with low energy location beacons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098749A (ja) * 2000-09-27 2002-04-05 Toshiba Corp 位置検出システム及び位置検出方法
JP2003244070A (ja) * 2002-02-19 2003-08-29 Sanyo Electric Co Ltd 無線基地装置、送信電力制御方法、および送信電力制御プログラム
JP2009302888A (ja) * 2008-06-13 2009-12-24 Wireless Design:Kk 検知システムおよび方法
JP2011017684A (ja) * 2009-07-10 2011-01-27 Kenwood Corp 測位システム及び制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240355A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303049B1 (ja) * 2017-06-12 2018-03-28 アイ・ピー・アイ株式会社 コンテンツ配信方法及びコンテンツ配信システム
JP2019003239A (ja) * 2017-06-12 2019-01-10 アイ・ピー・アイ株式会社 コンテンツ配信方法及びコンテンツ配信システム
JP2021532651A (ja) * 2018-07-24 2021-11-25 シグフォックス 標的送信デバイスの範囲内にある端末の位置情報を取得するための方法及びシステム
JP7529653B2 (ja) 2018-07-24 2024-08-06 ウナビズ 標的送信デバイスの範囲内にある端末の位置情報を取得するための方法及びシステム
JP2020057070A (ja) * 2018-09-28 2020-04-09 Kddi株式会社 端末の装着位置によって人物を同定するシステム及び方法
US11968592B2 (en) 2018-10-15 2024-04-23 Paylessgate Corporation Position determination system, position determination apparatus, position determination method, position determination program, and computer-readable storage medium and storage device
US12041509B2 (en) 2018-10-15 2024-07-16 Sinumy Corporation Authentication-gaining apparatus, authentication apparatus, authentication request transmitting method, authentication method, and program
JP2020177299A (ja) * 2019-04-15 2020-10-29 株式会社L is B 位置管理システム、位置管理装置、位置管理方法および位置管理プログラム
JP2022106513A (ja) * 2021-01-07 2022-07-20 株式会社ビーキャップ 携帯端末のリージョン監視制御方法、並びに滞在状況監視方法及び滞在状況監視システム
JP7127162B2 (ja) 2021-01-07 2022-08-29 株式会社ビーキャップ 携帯端末のリージョン監視制御方法、並びに滞在状況監視方法及び滞在状況監視システム

Also Published As

Publication number Publication date
EP3240355A4 (en) 2018-07-11
US20170293012A1 (en) 2017-10-12
EP3240355A1 (en) 2017-11-01
JPWO2016103498A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5792412B1 (ja) ロケーション判定システム
WO2016103498A1 (ja) ロケーション判定システムおよびロケーション判定プログラム
JP6470647B2 (ja) ロケーション判定方法
US20180091939A1 (en) Geofenced access point measurement data collection
US9113291B2 (en) Location detection within identifiable pre-defined geographic areas
US10659921B2 (en) Measurement batching
US9863773B2 (en) Indoor global positioning system
US9832615B2 (en) Mobile device sensor and radio frequency reporting techniques
CN103068039B (zh) 一种基于WiFi信号的RSSI值的定位方法
US10527430B2 (en) Method and apparatus for beacon data collection
KR20150018827A (ko) 액세스 포인트들의 위치들을 결정하기 위한 방법 및 장치
EP3045001B1 (en) Methods, wireless device and network node for managing positioning method based on prediction
KR101415191B1 (ko) 보행자 경로안내 장치
JP6736160B2 (ja) 移動端末装置、センサデータ送信方法、及びプログラム
US20170265042A1 (en) Methods and apparatuses for indoor positioning
JP6034843B2 (ja) プログラム、無線端末、情報収集装置及び情報収集システム
Wang et al. Active sensing data collection with autonomous mobile robots
KR102448930B1 (ko) 파티클 필터를 기반으로 가중치 학습을 통한 실내측위 시스템 및 방법
JP2016183921A (ja) サーバコンピュータ、測位システム、測位方法およびプログラム
US20220196406A1 (en) Method and apparatus for defining a navigable area of an indoor space using location trace snippets
KR102297436B1 (ko) 비컨을 이용한 위치 검출 서버 및 방법
KR20120122027A (ko) 무선 센서네트워크에서의 거리 추정 시스템, 거리 추정장치 및 방법
JP6603122B2 (ja) 情報処理装置、記録方法、及びプログラム
KR101480836B1 (ko) 복수의 로봇을 이용한 가시선 정보 기반의 표적 위치 결정 방법 및 이를 위한 복수의 로봇 배치 방법
US9374676B1 (en) Mobile communication station having selectable position latency for position estimation in a wireless network

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015501260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909100

Country of ref document: EP