WO2016103393A1 - 排気再循環装置及びその制御方法 - Google Patents

排気再循環装置及びその制御方法 Download PDF

Info

Publication number
WO2016103393A1
WO2016103393A1 PCT/JP2014/084294 JP2014084294W WO2016103393A1 WO 2016103393 A1 WO2016103393 A1 WO 2016103393A1 JP 2014084294 W JP2014084294 W JP 2014084294W WO 2016103393 A1 WO2016103393 A1 WO 2016103393A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
cooler
exhaust
exhaust gas
control unit
Prior art date
Application number
PCT/JP2014/084294
Other languages
English (en)
French (fr)
Inventor
利弘 谷内
和則 宮田
浩文 森田
Original Assignee
ボルボ トラック コーポレーション
利弘 谷内
和則 宮田
浩文 森田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ トラック コーポレーション, 利弘 谷内, 和則 宮田, 浩文 森田 filed Critical ボルボ トラック コーポレーション
Priority to PCT/JP2014/084294 priority Critical patent/WO2016103393A1/ja
Publication of WO2016103393A1 publication Critical patent/WO2016103393A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas recirculation (EGR) device provided in an engine and a control method thereof.
  • EGR exhaust gas recirculation
  • EGR gas exhaust gas that is recirculated to the intake pipe
  • a device provided with a cooler for cooling hereinafter referred to as “EGR cooler”.
  • soot contained in the EGR gas adheres to the heat exchange portion of the EGR cooler, and therefore the flow rate of the EGR gas that recirculates to the intake pipe as the amount of soot attached increases. Not only decreases the EGR efficiency but also raises the temperature of the EGR gas that is insufficiently cooled, which may cause a component failure downstream of the EGR cooler.
  • an object of the present invention to provide an exhaust gas recirculation device that can positively remove soot adhering to an EGR cooler and a control method therefor.
  • an exhaust gas recirculation apparatus includes a recirculation pipe that recirculates a part of exhaust gas from an exhaust pipe of an engine to an intake pipe, a control valve that controls a flow rate of a part of the exhaust gas, and the recirculation pipe.
  • An exhaust gas recirculation device that includes a cooler that is interposed and performs heat exchange between a part of the exhaust and the refrigerant, and a control unit that controls the control valve in accordance with an operating state of the engine. The control unit forcibly opens the control valve to open the control valve regardless of the operating state of the engine when condensed water of water contained in a part of the exhaust gas is generated in the cooler.
  • a cooler cleaning mode in which a part of the exhaust gas is allowed to flow to the cooler is implemented.
  • the control unit controls a flow rate of a part of the exhaust gas recirculated from the exhaust pipe of the engine to the intake pipe according to an operating state of the engine,
  • a part of the exhaust is forced to the cooler regardless of the operating state of the engine. It is characterized by flowing.
  • soot adhering to the EGR cooler can be positively removed. Therefore, the EGR gas is reduced in EGR efficiency due to a decrease in the EGR gas flow rate, or the EGR gas is insufficiently cooled. Therefore, it is possible to suppress a component failure downstream of the EGR cooler due to the high temperature.
  • FIG. 1 shows a diesel engine (internal combustion engine) for a vehicle to which an exhaust gas recirculation device is applied.
  • the diesel engine 10 sucks air through the intake pipe 12 and the intake manifold 14.
  • the intake pipe 12 includes, in order from the upstream side, an air cleaner 16 that filters dust and the like in the air, a compressor 18A of a turbocharger 18 that performs intake air supercharging, and an intercooler that cools the intake air that has become hot after passing through the compressor 18A. 20 is provided.
  • the diesel engine 10 emits exhaust through the exhaust manifold 22 and the exhaust pipe 24.
  • the exhaust pipe 24 includes, in order from the upstream side, an exhaust turbine 18B of the turbocharger 18, a continuous regeneration type DPF device 26, a reducing agent injection device 28 having an injection nozzle for injecting and supplying an aqueous urea solution as a reducing agent precursor, an aqueous urea solution.
  • an SCR catalyst 30 that selectively reduces and purifies NOx using ammonia (reducing agent) generated from the catalyst, and an ammonia oxidation catalyst 32 that oxidizes the ammonia that has passed through the SCR catalyst 30.
  • the continuous regeneration type DPF device 26 collects and removes DOC 26A that oxidizes NO (nitrogen monoxide) to NO 2 (nitrogen dioxide) and PM (particulate material) such as soot contained in the exhaust gas.
  • DPF 26B As the exhaust purification filter, a CSF (Catalyzed Soot Filter) in which a catalyst (active component and additive component) is supported on the filter surface can be used instead of the DPF 26B.
  • a CSF Catalyzed Soot Filter
  • the diesel engine 10 is provided with an EGR (Exhaust Gas Recirculation) mechanism 34 that lowers the combustion temperature by recirculating a part of the exhaust to the intake side and reduces the NOx concentration in the exhaust.
  • EGR exhaust Gas Recirculation
  • the EGR mechanism 34 includes an EGR pipe 34A as a reflux pipe that recirculates part of the exhaust gas flowing through the exhaust pipe 24 to the intake pipe 12 as EGR gas, an EGR cooler 34B that cools the EGR gas flowing through the EGR pipe 34A, and an intake pipe EGR control valve 34C, which is an electromagnetic valve that controls the flow rate of EGR gas to be recirculated to 12, and differential pressure sensor 34D that measures the flow rate of EGR gas by using the differential pressure before and after the throttle mechanism provided in EGR pipe 34A. And comprising.
  • EGR cooler 34B is interposed in the EGR pipe 34A, for example, together with the refrigerant circulation pipe 34B 1 that flows to the refrigerant of the cooling water or the like for cooling the engine 10 is illustrated by a dotted arrow in FIG. 2 are provided, EGR such gas is disposed one or more along the EGR gas flow pipe 34B 2 flowing as a counter-flow of the refrigerant inside the refrigerant tubes 34B 1, as shown by a white arrow in FIG. 2, the EGR gas It is configured as a cooler that performs heat exchange with the refrigerant to lower the temperature of the EGR gas.
  • the control unit 36 having a built-in computer includes an output signal of the differential pressure sensor 34D, a rotational speed sensor 38 that detects the rotational speed Ne of the diesel engine 10, a load sensor 40 that detects the load Q of the diesel engine 10, and the engine 10
  • An output signal of the refrigerant temperature sensor 42 for detecting the refrigerant temperature Tc is input.
  • the load sensor 40 is closely related to the torque of the diesel engine 10 such as the intake flow rate, the intake pressure, the supercharging pressure, the accelerator opening, and the intake throttle valve as a state quantity indicating the load Q of the diesel engine 10. Detect related state quantities.
  • the control unit 36 executes a control program stored in a non-volatile memory such as a built-in ROM (Read Only Memory), so that the control unit 36 outputs the reducing agent from the reducing agent injection device 28 based on the output signals of the rotation speed sensor 38 and the load sensor 40.
  • a control program stored in a non-volatile memory such as a built-in ROM (Read Only Memory), so that the control unit 36 outputs the reducing agent from the reducing agent injection device 28 based on the output signals of the rotation speed sensor 38 and the load sensor 40.
  • the injection supply amount of the urea aqueous solution by the injection nozzle is controlled.
  • control unit 36 executes the same control program, so that the control unit 36 can control the EGR gas according to the operation state of the diesel engine 10, specifically based on the output signals of the rotation speed sensor 38 and the load sensor 40.
  • EGR normal control mode in which the target flow rate is calculated, and the EGR control valve 34C is controlled to open and close so that the actual flow rate of EGR gas (hereinafter referred to as “actual flow rate”) calculated from the output signal of the differential pressure sensor 34D becomes the target flow rate.
  • actual flow rate the actual flow rate calculated from the output signal of the differential pressure sensor 34D becomes the target flow rate.
  • the combustion temperature is lowered to reduce the NOx concentration in the exhaust gas.
  • control unit 36 when a predetermined condition is satisfied, regardless of the operating state of the diesel engine 10, EGR cleaning for removing soot adhering to the EGR gas flow pipe 34B 2 of the EGR cooler 34B It is configured to force the mode.
  • the EGR mechanism 34 and the control unit 36 related to the control of the EGR mechanism 34 are combined to constitute an EGR device.
  • FIG. 3 is a flowchart showing the setting processing content of the cleaning flag of the EGR cooler 34B.
  • the cleaning flag setting process is repeatedly executed every predetermined time ⁇ t 1 triggered by turning on the ignition key (or starting the diesel engine 10).
  • Step 101 whether soot contained in the EGR gas is attached to the EGR gas flow pipe 34B 2 of the EGR cooler 34B to a predetermined level judge.
  • the actual flow rate of the EGR gas, soot adhered to the EGR gas flow pipe 34B 2 of the EGR cooler 34B is reduced by increasing the airflow resistance. Therefore, whether the soot contained in the EGR gas is attached to the EGR gas flow pipe 34B 2 of the EGR cooler 34B to a predetermined level, in a particular operating condition of the diesel engine 10, from the output signal of the differential pressure sensor 34D
  • the actual flow rate of the calculated EGR gas can be compared with a predetermined flow rate and estimated based on the comparison result.
  • the soot has not adhered to a predetermined level, and when the actual flow rate is greater than or equal to the predetermined flow rate, the soot has adhered until the predetermined level is reached.
  • the specific operation state of the diesel engine 10 includes a case where the engine speed Ne and the opening degree of the EGR control valve 34C are constant.
  • the predetermined flow rate is an upper limit value of the flow rate of the EGR gas measured when soot in the EGR gas adheres to the EGR cooler 34B in a specific operation state of the diesel engine 10. The reason why the predetermined flow rate is defined in this manner is that the EGR cleaning mode for removing the soot is performed relatively early before the soot is attached to such an extent that it is difficult to remove the soot from the EGR cooler 34B.
  • the set value of the cleaning flag Fc is stored in a built-in writable nonvolatile memory such as an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a flash memory.
  • FIG. 4 is a flowchart showing the contents of control processing of the EGR mechanism 34 including implementation of the EGR normal control mode and the EGR cleaning mode.
  • the control process of the EGR mechanism 34 is repeatedly executed every predetermined time ⁇ t 2 triggered by turning on the ignition key (or starting the diesel engine 10).
  • step 203 it is determined whether or not the refrigerant temperature Tc is equal to or lower than a predetermined temperature before the EGR cleaning mode is performed.
  • the predetermined temperature is an upper limit value of the refrigerant temperature Tc of the temperature of such EGR gas flow pipe 34B 2 for exchanging heat is below the dew point temperature between the refrigerant and the EGR gas in the EGR cooler 34B.
  • the dew point temperature can be calculated by any known method using atmospheric pressure, water vapor partial pressure in the exhaust gas, and the like. Therefore, the predetermined temperature may be set as a fluctuation value that varies depending on the calculated dew point temperature.
  • the refrigerant temperature Tc is determined by using condensed water generated by condensation of water contained in the EGR gas when the EGR gas passes through the EGR pipe 34A including the EGR cooler 34B in the EGR cleaning mode described later. Then, in order to remove the soot adhering to the EGR cooler 34B, it is necessary to estimate that this condensed water is generated before the execution of the EGR cleaning mode.
  • step 203 If it is determined in step 203 that the refrigerant temperature Tc is equal to or lower than the predetermined temperature, it is estimated that condensed water used to remove the soot adhering to the EGR cooler 34B is generated. Proceed to step 205 to execute the cleaning mode (Yes). On the other hand, when it is determined that the refrigerant temperature Tc is higher than the predetermined temperature, it is estimated that condensed water is not generated. Therefore, the EGR cleaning mode is deferred and the EGR normal control mode is performed. Therefore, it progresses to step 202 (No).
  • the EGR cleaning mode is performed until a predetermined time T1 (first predetermined time) elapses from the start. Specifically, for a predetermined time T1, the EGR control valve 34C is opened so that the EGR gas flows through the EGR pipe 34A, thereby generating soot in the EGR cooler 34B in the EGR cooler 34B. It blows off with EGR gas with condensed water.
  • the opening degree of the EGR control valve 34C is preferably set to the fully open position in order to increase the flow rate of the EGR gas and increase the flow rate in the EGR cooler 34B.
  • the predetermined time T1 is, for example, a time from when the EGR cleaning mode is started until it is estimated that the condensed water generated in the EGR cooler 34B due to the circulation of the EGR gas evaporates.
  • the flow rate of EGR gas may be increased by temporarily increasing the engine rotation speed to increase the exhaust gas flow rate.
  • EGR cooler 34B in order to effectively remove soot by increasing the flow velocity of EGR gas, reducing the total cross-sectional area of the EGR gas flow pipe 34B 2 within a range that does not affect the cooling performance of the EGR cooler 34B can do.
  • it may be configured EGR cooler 34B so as to be smaller than the cross-sectional area of the total EGR pipe 34A of the cross-sectional area of the EGR gas flow pipe 34B 2.
  • FIG. 5 is a flowchart showing the processing contents of the EGR normal control mode.
  • step 301 specifically, the target flow rate of EGR gas is calculated based on the rotational speed Ne of the diesel engine 10 and the load Q according to the operating state of the diesel engine 10.
  • the EGR normal control mode feedback control is performed with the flow rate of EGR gas as the control amount, and the target flow rate of EGR gas is set as the target control amount.
  • step 302 the operation amount of the EGR control valve 34C corresponding to the calculated target flow rate of the EGR gas is calculated.
  • the value of the current supplied to the drive actuator of the EGR control valve 34C (supply current value) is an operation amount
  • a map in which the flow rate of the EGR gas and the supply current value are associated in advance is read from the ROM and referred to The supply current value corresponding to the target flow rate is calculated.
  • step 303 the actual flow rate of the EGR gas is calculated from the output signal of the differential pressure sensor 34D, and the feedback amount is calculated from the deviation between the target flow rate (target control amount) and the actual flow rate (control amount).
  • step 304 the operation amount calculated in step 302 is corrected based on the calculated feedback amount.
  • step 305 the operation amount is output to the EGR control valve 34C.
  • the control unit 36 is configured to continuously output the operation amount corrected in step 304 until the next execution of step 305.
  • the EGR normal control mode is performed. not in force by opening the EGR control valve 34C by circulating the EGR gas into the EGR cooler 34B, the EGR cleaning mode that soot adhering to the EGR gas flow pipe 34B 2 actively removed condensate in the EGR cooler 34B Have been implemented. Therefore, the soot adhering to the EGR cooler 34B can be suppressed to a certain level. Therefore, the EGR gas flow rate decreases, the EGR efficiency decreases, or the EGR gas is not sufficiently cooled. It is possible to suppress a phenomenon that occurs due to an increase in the amount of soot attached to the EGR cooler 34B, such as a component failure.
  • FIG. 6 is a flowchart showing the control processing contents of the EGR mechanism 34 according to the second embodiment, which is executed by the control unit 36 from when the ignition key is turned on to when it is turned off (or from the start to the stop of the diesel engine 10). It is. Since steps 201 to 205 in the control processing of the EGR mechanism 34 according to the second embodiment indicate the same processing contents as steps 201 to 205 in the control processing of the EGR mechanism 34 according to the first embodiment. The description of the contents of each step is omitted.
  • the control process of the EGR mechanism 34 determines whether or not a predetermined condition for first performing the EGR cleaning mode by turning on the ignition key is satisfied (step). After step 201 and step 203), or depending on the determination result, after further carrying out the EGR cleaning mode or the like (step 204 and step 205), the EGR normal control mode is repeated, and then the ignition key is turned on. , Step 201 and Steps 203 to 205 are not executed.
  • step 101 in the first embodiment and the second embodiment described above in a specific operation state of the diesel engine 10, the flow rate of the EGR gas calculated from the output signal of the differential pressure sensor 34D is compared with a predetermined flow rate, based on this first comparison result, the soot contained in the EGR gas had to estimate whether or not attached to the EGR gas flow pipe 34B 2 of the EGR cooler 34B.
  • the EGR mechanism 34 includes an EGR gas temperature sensor that detects the temperature of the EGR gas, the temperature of the EGR gas calculated from the output signal of the EGR gas temperature sensor in a specific operation state of the diesel engine 10 And a predetermined gas temperature, and the adhesion of soot can be estimated based on the second comparison result. In this case, based on at least one of the first comparison result and second comparison result, it may estimate the deposition of soot against EGR gas flow pipe 34B second EGR cooler 34B.
  • step 203 in the first and second embodiments described above the generation of condensed water in the EGR cooler 34B is estimated by determining whether or not the refrigerant temperature Tc is equal to or lower than a predetermined temperature. Instead, it is possible to estimate the generation of condensed water by determining whether or not it is during cold start. For example, whether or not a predetermined time T2 (second predetermined time) has elapsed from the previous ignition key OFF (or the diesel engine 10 stopped) until the current ignition is turned ON (or the diesel engine 10 started). May be determined.
  • T2 second predetermined time
  • the EGR cleaning mode is automatically set regardless of whether or not soot is attached. You may implement. In this case, the setting process of the cleaning flag Fc of the EGR cooler 34B and step 201 and step 205 are not necessary. As a result, the cleaning frequency of the EGR cooler 34B increases, and the level of soot adhesion to the EGR cooler 34B can be further suppressed.

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

ディーゼルエンジン(10)の排気管(24)から吸気管(12)に排気の一部をEGRガスとして還流させるEGR管(34A)と、EGRガスの流量を制御するEGR制御弁(34C)と、EGR管(34A)に介挿され、EGRガスと冷媒との間で熱交換を行うEGRクーラ(34B)と、ディーゼルエンジン(10)の運転状態に応じてEGR制御弁(34C)を制御するコントロールユニット(36)と、を含むEGR装置であって、コントロールユニット(36)は、EGRクーラ(34B)においてEGRガスに含まれる水分の凝縮水が生じている場合に、ディーゼルエンジン(10)の運転状態にかかわらず、EGR制御弁(34C)を強制的に開弁してEGRガスをEGRクーラ(34B)に流すEGR清掃モードを実施するように構成されている。

Description

排気再循環装置及びその制御方法
 本発明は、エンジンに設けられる排気再循環(Exhaust Gas Recirculation:EGR)装置及びその制御方法に関する。
 従来、エンジンの排気管から吸気管に排気の一部を再循環させる排気再循環装置には、EGR効率を向上させるために、吸気管に再循環する排気(以下、「EGRガス」という)を冷却する冷却器(以下、「EGRクーラ」という)を設けたものが知られている(例えば、特許文献1参照)。
特開2014-206121号公報
 しかしながら、EGRガスがEGRクーラを通過する際に、EGRガス中に含まれる煤がEGRクーラの熱交換部に付着するため、煤の付着量が増加するに従い、吸気管へ還流するEGRガスの流量が減少してEGR効率が低下するだけでなく、冷却が不十分なEGRガスの高温化によりEGRクーラの下流における部品故障を招くおそれがある。
 そこで、本発明は以上のような従来の問題点に鑑み、EGRクーラに付着した煤を積極的に除去できる排気再循環装置及びその制御方法を提供することを目的とする。
 このため、本発明に係る排気再循環装置は、エンジンの排気管から吸気管に排気の一部を還流させる還流管と、前記排気の一部の流量を制御する制御弁と、前記還流管に介挿され、前記排気の一部と冷媒との間で熱交換を行う冷却器と、前記エンジンの運転状態に応じて前記制御弁を制御するコントロールユニットと、を含む排気再循環装置であって、前記コントロールユニットは、前記冷却器において前記排気の一部に含まれる水分の凝縮水が生じている場合に、前記エンジンの運転状態にかかわらず、前記制御弁を強制的に開弁して前記排気の一部を前記冷却器に流す冷却器清掃モードを実施するように構成されている。
 また、本発明に係る排気再循環装置の制御方法は、コントロールユニットが、エンジンの運転状態に応じて、前記エンジンの排気管から吸気管に還流させる排気の一部の流量を制御し、前記排気の一部を冷却する冷却器に前記排気の一部に含まれる水分の凝縮水が生じている場合に、前記エンジンの運転状態にかかわらず、前記排気の一部を前記冷却器に強制的に流すことを特徴としている。
 本発明に係る排気再循環装置によれば、EGRクーラに付着した煤を積極的に除去することが可能であるので、EGRガス流量の減少によるEGR効率の低下や、冷却が不十分なEGRガスの高温化によるEGRクーラ下流の部品故障を抑制できる。
EGR装置を適用した車両用ディーゼルエンジンの概略図である。 EGRクーラのEGRガス流通方向における断面図である。 EGRクーラ清掃フラグの設定処理を示すフローチャートである。 第1実施形態に係るEGR機構制御処理内容を示すフローチャートである。 EGR通常制御モードの処理内容を示すフローチャートである。 第2実施形態に係るEGR機構制御処理内容を示すフローチャートである。
 以下、添付された図面を参照して本発明を実施するための第1実施形態について詳述する。
 図1は、排気再循環装置を適用する、車両用のディーゼルエンジン(内燃機関)を示す。
 ディーゼルエンジン10は、吸気管12及び吸気マニホールド14を介して空気を吸引する。吸気管12には、上流側から順に、空気中の塵埃などをろ過するエアクリーナ16、吸気過給を行うターボチャージャ18のコンプレッサ18A、コンプレッサ18Aを通過して高温になった吸気を冷却するインタークーラ20を設けてある。
 一方、ディーゼルエンジン10は、排気マニホールド22及び排気管24を介して排気を放出する。排気管24には、上流側から順に、ターボチャージャ18の排気タービン18B、連続再生式DPF装置26、還元剤前駆体としての尿素水溶液を噴射供給する噴射ノズルを有する還元剤噴射装置28、尿素水溶液から生成されるアンモニア(還元剤)を用いてNOxを選択還元浄化するSCR触媒30、SCR触媒30を通過したアンモニアを酸化させるアンモニア酸化触媒32を設けてある。
 連続再生式DPF装置26は、NO(一酸化窒素)をNO2(二酸化窒素)へと酸化させるDOC26Aと、排気中に含まれる煤(soot)等のPM(Particulate Material)を捕集・除去するDPF26Bと、を備える。
 なお、排気浄化フィルタとして、前記DPF26Bに代えて、フィルタ表面に触媒(活性成分及び添加成分)を担持させたCSF(Catalyzed Soot Filter)を使用できる。
 また、ディーゼルエンジン10は、排気の一部を吸気側に還流させることで燃焼温度を低下させ、排気中のNOx濃度を低減するEGR(Exhaust Gas Recirculation)機構34を備えている。
 EGR機構34は、排気管24を流れる排気の一部をEGRガスとして吸気管12に還流させる還流管としてのEGR管34Aと、EGR管34Aを流れるEGRガスを冷却するEGRクーラ34Bと、吸気管12に還流させるEGRガスの流量を制御する電磁弁であるEGR制御弁34Cと、EGR管34Aに設けられた絞り機構の前後の差圧を利用してEGRガスの流量を測定する差圧センサ34Dと、を備える。
 EGRクーラ34Bは、EGR管34Aに介挿され、例えば、エンジン10を冷却する冷却水等の冷媒が図2の破線矢印で図示されるように流通する冷媒流通管34Bが設けられるとともに、EGRガスが図2の白抜き矢印で図示されるように冷媒の対向流として流通するEGRガス流通管34Bが冷媒流通管34Bの内部に沿って1つ以上配設される等、EGRガスと冷媒との間で熱交換を行ってEGRガスの温度を低下させる冷却器として構成されている。
 コンピュータを内蔵したコントロールユニット36は、差圧センサ34Dの出力信号や、ディーゼルエンジン10の回転速度Neを検出する回転速度センサ38、ディーゼルエンジン10の負荷Qを検出する負荷センサ40、及び、エンジン10の冷媒温度Tcを検出する冷媒温度センサ42の出力信号などを入力する。
 ここで、負荷センサ40は、ディーゼルエンジン10の負荷Qを示す状態量として、吸気流量、吸気圧力、過給圧力、アクセル開度、吸気絞り弁の開度など、ディーゼルエンジン10のトルクと密接に関連する状態量を検出する。
 コントロールユニット36は、内蔵するROM(Read Only Memory)などの不揮発性メモリに記憶した制御プログラムを実行することで、回転速度センサ38及び負荷センサ40の出力信号に基づいて、還元剤噴射装置28から噴射ノズルによる尿素水溶液の噴射供給量を制御する。
 また、コントロールユニット36は、同様の制御プログラムを実行することで、ディーゼルエンジン10の運転状態に応じて、具体的には、回転速度センサ38及び負荷センサ40の出力信号に基づいて、EGRガスの目標流量を演算し、差圧センサ34Dの出力信号から演算したEGRガスの実際の流量(以下、「実流量」という)が目標流量となるようにEGR制御弁34Cを開閉制御するEGR通常制御モードを実施し、これにより、燃焼温度を低下させて排気中のNOx濃度を低減するようにしている。
 そして、コントロールユニット36は、後述するように、所定の条件を満たす場合には、ディーゼルエンジン10の運転状態にかかわらず、EGRクーラ34BのEGRガス流通管34Bに付着した煤を除去するEGR清掃モードを強制的に実施するように構成されている。
 なお、EGR機構34と、コントロールユニット36のうちEGR機構34の制御に関する部分と、を併せてEGR装置が構成される。
 図3は、EGRクーラ34Bの清掃フラグの設定処理内容を示すフローチャートである。かかる清掃フラグの設定処理は、イグニッションキーのON(またはディーゼルエンジン10の始動)を契機として、所定時間Δt毎に繰り返し実行される。
 ステップ101(図中では、「S101」と略記。以下、同様である)では、EGRガスに含まれる煤がEGRクーラ34BのEGRガス流通管34Bに所定のレベルまで付着しているか否かを判定する。
 ディーゼルエンジン10の運転状態等が一定であれば、EGRガスの実流量は、EGRクーラ34BのEGRガス流通管34Bに付着した煤が通気抵抗を増大させることにより減少する。したがって、EGRガスに含まれる煤がEGRクーラ34BのEGRガス流通管34Bに所定のレベルまで付着しているか否かは、ディーゼルエンジン10の特定の運転状態において、差圧センサ34Dの出力信号から演算されるEGRガスの実流量と所定流量とを比較して、この比較結果に基づいて推定することができる。例えば、実流量が所定流量未満である場合には、煤が所定のレベルまで付着していないと判断し、実流量が所定流量以上である場合には、煤が所定のレベルとなるまで付着していると判断する。
 ここで、ディーゼルエンジン10の特定の運転状態には、エンジン回転速度Ne及びEGR制御弁34Cの開度が一定の場合等が含まれる。
 また、所定流量は、ディーゼルエンジン10の特定の運転状態において、EGRガス中の煤がEGRクーラ34Bに固着しない程度に付着したときに測定されるEGRガスの流量の上限値である。このように所定流量を規定するのは、EGRクーラ34Bからの煤の除去が困難になる程度に煤が付着する前に、煤を除去するEGR清掃モードを比較的早期に実施するためである。
 EGRクーラ34Bに煤が所定のレベルまで付着していると判定された場合には、ステップ102へ進み、EGRクーラ34Bの清掃の要否を示す清掃フラグFcを、清掃が必要であることを意味するON(例えば、Fc=1)に設定する(Yes)。
 一方、EGRクーラ34Bに煤が所定のレベルまで付着していないと判定された場合には、ステップ103へ進み、清掃フラグFcを、清掃の必要がないことを示すOFF(例えば、Fc=0)に設定する(No)。
 設定した清掃フラグFcの値は、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)やフラッシュメモリ等、内蔵する書き込み可能な不揮発性メモリに記憶される。
 図4は、EGR通常制御モード及びEGR清掃モードの実施を含むEGR機構34の制御処理内容を示すフローチャートである。かかるEGR機構34の制御処理は、イグニッションキーのON(またはディーゼルエンジン10の始動)を契機として所定時間Δt毎に繰り返し実行される。
 ステップ201では、まず、EGRクーラ34Bの清掃フラグFcがOFF(Fc=0)であるか否か、すなわち、EGRクーラ34Bの清掃が不要であるか否かを判定する。
 Fc=0であると判定された場合にはEGRクーラ34Bに対する清掃の必要がないので、EGR清掃モードを実施せずにEGR通常制御モードを実施すべくステップ202へ進む(Yes)。ステップ202のEGR通常制御モードの具体的な内容については後述する。
 一方、Fc=0でない、すなわち、Fc=1であると判定された場合には、EGRクーラ34Bに対する清掃が必要であるので、EGR清掃モードを実施すべく、ステップ203へ進む(No)。
 ステップ203では、EGR清掃モードを実施する前に、冷媒温度Tcが所定温度以下であるか否かを判定する。
 ここで、所定温度は、EGRクーラ34Bにおいて冷媒とEGRガスとの間で熱交換を行うEGRガス流通管34B等の温度が露点温度以下となるときの冷媒温度Tcの上限値である。露点温度は、大気圧、排気中の水蒸気分圧等を用いた公知のあらゆる手法で演算することができる。したがって、上記所定温度は、演算される露点温度に応じて変動する変動値として設定してもよい。
 ステップ203で冷媒温度Tcについて判定するのは、後述のEGR清掃モードにおいて、EGRガスがEGRクーラ34Bを含むEGR管34Aを通過する際にEGRガスに含まれる水分が凝縮して生じる凝縮水を利用して、EGRクーラ34Bに付着した煤を除去するため、この凝縮水がEGR清掃モードの実施前に発生していると推定されることが必要になるからである。
 ステップ203において、冷媒温度Tcが所定温度以下であると判定された場合には、EGRクーラ34Bに付着した煤を除去するために利用される凝縮水が発生していると推定されるので、EGR清掃モードを実施すべくステップ205へ進む(Yes)。一方、冷媒温度Tcが所定温度よりも高いと判定された場合には、凝縮水が発生していないと推定されるので、EGR清掃モードを実施するタイミングを繰り延べて、EGR通常制御モードを実施すべく、ステップ202へ進む(No)。
 ステップ204では、EGR清掃モードを開始から所定時間T1(第1の所定時間)が経過するまで実施する。
 具体的には、所定時間T1の間、EGR制御弁34Cを開弁してEGR管34AにEGRガスが流通するようにし、これにより、EGRクーラ34B内に付着した煤をEGRクーラ34Bに生じた凝縮水とともにEGRガスで吹き飛ばすようにしている。EGR制御弁34Cの開度は、EGRガスの流量を増やしてEGRクーラ34Bにおける流速を高めるために、最も大きくなる全開に設定することが好ましい。
 ここで所定時間T1は、例えば、EGR清掃モードを開始してから、EGRガスの流通によりEGRクーラ34B内に生じた凝縮水が蒸発すると推定されるまでの時間である。
 このように凝縮水を利用してEGR清掃モードを実施することにより、凝縮水がいわば洗浄液となって、EGRガスのみをEGRクーラ34B内に流通させるよりも煤の除去効果が向上する。
 EGR清掃モードにおいて、EGRクーラ34Bを通過するEGRガスの流速を高めて煤の除去効果を向上させるために、ディーゼルエンジン10がアイドリング状態にあるとき等、車両の走行安全性に影響を与えない場合に、エンジン回転速度を一時的に上昇させて排気流量を増大させることで、EGRガスの流量を増大させてもよい。
 また、EGR清掃モードにおいて、EGRガスの流速を高めて煤の除去効果を向上させるために、EGRクーラ34Bの冷却性能に影響を与えない範囲でEGRガス流通管34Bの横断面積の合計を小さくすることができる。例えば、EGRガス流通管34Bの横断面積の合計がEGR管34Aの横断面積よりも小さくなるようにEGRクーラ34Bを構成してもよい。
 ステップ205では、前ステップのEGR清掃モードの実施によりEGRクーラ34Bに対する清掃の必要がないので、清掃フラグFcを清掃の必要がないことを示すOFF(例えば、Fc=0)に設定して、書き込み可能な不揮発性メモリに記憶する。
 図5は、EGR通常制御モードの処理内容を示すフローチャートである。
 ステップ301では、ディーゼルエンジン10の運転状態に応じて、具体的には、ディーゼルエンジン10の回転速度Ne及び負荷Qに基づいて、EGRガスの目標流量を演算する。EGR通常制御モードでは、EGRガスの流量を制御量としたフィードバック制御を行い、EGRガスの目標流量を目標制御量としている。
 ステップ302では、演算されたEGRガスの目標流量に応じたEGR制御弁34Cの操作量を演算する。
 例えば、EGR制御弁34Cの駆動アクチュエータに供給する電流の値(供給電流値)を操作量とした場合、EGRガスの流量と供給電流値とを予め関連付けたマップをROMから読み出して参照することにより、目標流量に応じた供給電流値を演算する。
 ステップ303では、差圧センサ34Dの出力信号からEGRガスの実流量を演算し、目標流量(目標制御量)と実流量(制御量)との偏差からフィードバック量を演算する。
 ステップ304では、演算されたフィードバック量に基づいて、ステップ302で演算された操作量を補正する。
 ステップ305では、操作量をEGR制御弁34Cに出力する。なお、コントロールユニット36は、次にステップ305を実施するまで、ステップ304で補正された操作量が継続的に出力されるように構成されている。
 このようなEGR装置によれば、EGRクーラ34Bに煤が付着していると判定された後、EGRクーラ34Bに凝縮水が生じていると推定される場合には、EGR通常制御モードを実施せずに、EGR制御弁34Cを開弁してEGRクーラ34BにEGRガスを流通させ、EGRクーラ34BのEGRガス流通管34Bに付着した煤を凝縮水で積極的に除去するEGR清掃モードを強制的に実施している。
 したがって、EGRクーラ34Bに付着する煤は一定レベルに抑えられるので、EGRガス流量の減少によるEGR効率の低下や、冷却が不十分なEGRガスの高温化による差圧センサ34DやEGR制御弁34Cの部品故障など、EGRクーラ34Bにおける煤の付着量の増加に起因して起こる現象を抑制することが可能である。
 図6は、イグニッションキーをONにしてからOFFにするまで(またはディーゼルエンジン10の始動から停止まで)コントロールユニット36により実行される、第2実施形態に係るEGR機構34の制御処理内容を示すフローチャートである。
 第2実施形態に係るEGR機構34の制御処理におけるステップ201~ステップ205は、第1実施形態に係るEGR機構34の制御処理におけるステップ201~ステップ205と同じ処理内容であることを示しているので、各ステップの内容については説明を省略する。
 第2実施形態に係るEGR機構34の制御処理は、第1実施形態と比較すると、イグニッションキーをONにして最初にEGR清掃モードを実施するための所定条件を満たすか否かを判定した(ステップ201及びステップ203)後は、あるいは、判定結果によっては、さらにEGR清掃モード等を実施した(ステップ204及びステップ205)後は、EGR通常制御モードを繰り返し行い、次にイグニッションキーをONにするまで、ステップ201、及び、ステップ203~ステップ205を実行しない点で異なる。
 これは、イグニッションキーをONにして最初にEGR清掃モードを実施するための所定条件を満たすか否かを判定したときに冷媒温度Tcが所定温度以下でないと判定された場合には、その後のディーゼルエンジン10の運転継続により冷媒温度Tcが所定温度以下となって凝縮水が発生する可能性が殆どないとみなして、EGR清掃モードの実施を想定していないからである。
 このような第2実施形態に係るEGR機構34の制御処理によれば、第1実施形態と比較すると、イグニッションキーをONにして最初にEGR清掃モードを実施するための所定条件を満たすか否かを判定した後は、以後の判定を省略することができるので、コントロールユニット36の処理負担を軽減することができる。
 前述の第1実施形態及び第2実施形態におけるステップ101では、ディーゼルエンジン10の特定の運転状態において、差圧センサ34Dの出力信号から演算されるEGRガスの流量と所定流量とを比較して、この第1の比較結果に基づいて、EGRガスに含まれる煤がEGRクーラ34BのEGRガス流通管34Bに付着しているか否かを推定していた。しかし、EGR機構34がEGRガスの温度を検出するEGRガス温度センサを備えている場合には、ディーゼルエンジン10の特定の運転状態において、EGRガス温度センサの出力信号から演算されるEGRガスの温度と所定ガス温度とを比較し、この第2の比較結果に基づいて煤の付着を推定することもできる。この場合には、第1の比較結果及び第2の比較結果の少なくとも一方に基づいて、EGRクーラ34BのEGRガス流通管34Bに対する煤の付着を推定してもよい。
 前述の第1実施形態及び第2実施形態におけるステップ203では、冷媒温度Tcが所定温度以下であるか否かを判定することにより、EGRクーラ34Bにおける凝縮水の発生を推定していたが、これに替えて、冷間始動時であるか否かを判定することで凝縮水の発生を推定することができる。例えば、前回のイグニッションキーのOFF(またはディーゼルエンジン10の停止)から、今回イグニッションをON(またはディーゼルエンジン10を始動)するまでに所定時間T2(第2の所定時間)が経過しているか否かを判定してもよい。
 前述の第1実施形態及び第2実施形態において、EGRクーラ34Bにおいて凝縮水が生じていると判定された場合には、煤が付着しているか否かにかかわらず、自動的にEGR清掃モードを実施してもよい。この場合、EGRクーラ34Bの清掃フラグFcの設定処理、並びに、ステップ201及びステップ205は不要となる。これによりEGRクーラ34Bの清掃頻度が高くなり、EGRクーラ34Bに対する煤の付着レベルをさらに抑制することができる。
 なお、選択した実施形態は、本発明を図示・説明するために選択されたものにすぎないことに加え、添付の特許請求の範囲に定義されたように本発明の範囲から離れることなく、様々な変更及び修正が可能であることは、当業者にとれば、本開示から明白である。
 また、本発明による実施形態の前述の説明は例示のためにのみ提供され、本発明(添付した特許請求の範囲で請求されるような発明やそれらと均等な発明)を限定するためのものではない。
 10  ディーゼルエンジン
 12  吸気管
 24  排気管
 34  EGR機構
 34A EGR管
 34B EGRクーラ
 34C EGR制御弁
 34D 差圧センサ
 36  コントロールユニット
 38  回転速度センサ
 40  負荷センサ
 42  冷媒温度センサ

Claims (13)

  1.  エンジンの排気管から吸気管に排気の一部を還流させる還流管と、
     前記排気の一部の流量を制御する制御弁と、
     前記還流管に介挿され、前記排気の一部と冷媒との間で熱交換を行う冷却器と、
     前記エンジンの運転状態に応じて前記制御弁を制御するコントロールユニットと、
    を含む排気再循環装置であって、
     前記コントロールユニットは、前記冷却器において前記排気の一部に含まれる水分の凝縮水が生じている場合に、前記エンジンの運転状態にかかわらず、前記制御弁を強制的に開弁して前記排気の一部を前記冷却器に流す冷却器清掃モードを実施するように構成されている、排気再循環装置。
  2.  前記コントロールユニットは、前記凝縮水が蒸発する第1の所定時間まで、前記冷却器清掃モードを実施するように構成されている、請求項1に記載の排気再循環装置。
  3.  前記冷却器に供給される冷媒の冷媒温度を検出する冷媒温度センサを更に含み、
     前記コントロールユニットは、前記冷媒温度センサにより検出された冷媒温度に基づいて、前記排気の一部に含まれる水分の凝縮水が前記冷却器に生じているか否かを判定するように構成されている、請求項1に記載の排気再循環装置。
  4.  前記コントロールユニットは、前記エンジンの冷間始動時に、前記冷却器清掃モードを実施するように構成されている、請求項1に記載の排気再循環装置。
  5.  前記コントロールユニットは、前記エンジンを停止してから再始動するまでに第2の所定時間が経過している場合に、前記冷却器清掃モードを実施するように構成されている、請求項1に記載の排気再循環装置。
  6.  前記コントロールユニットは、前記冷却器清掃モードを実施するとき、前記エンジンの回転速度を一時的に上昇させるように構成されている、請求項1に記載の排気再循環装置。
  7.  前記コントロールユニットは、前記冷却器清掃モードを実施するとき、前記制御弁の開度を全開にするように構成されている、請求項1に記載の排気再循環装置。
  8.  前記冷却器は、前記排気の一部が流通する流通管を1つ以上含み、前記流通管の横断面積の合計が前記還流管の横面積より小さくなるように構成されている、請求項1に記載の排気再循環装置。
  9.  前記コントロールユニットは、前記冷却器において前記排気の一部に含まれる水分の凝縮水が生じている場合に加えて、さらに、前記冷却器に対して前記排気の一部に含まれる煤が付着している場合に、前記冷却器清掃モードを実施するように構成されている、請求項1に記載の排気再循環装置。
  10.  前記コントロールユニットは、前記排気の一部の流量に基づいて、前記冷却器に前記排気の一部に含まれる煤が付着しているか否かを判定するように構成されている、請求項9に記載の排気再循環装置。
  11.  前記コントロールユニットは、前記排気の一部の温度に基づいて、前記冷却器に前記排気の一部に含まれる煤が付着しているか否かを判定するように構成されている、請求項9に記載の排気再循環装置。
  12.  前記コントロールユニットは、前記冷却器清掃モードを実施した後、前記エンジンを停止して次回始動するまでは、再度、前記冷却器清掃モードを実施しないように構成されている、請求項1に記載の排気再循環装置。
  13.  コントロールユニットが、
     エンジンの運転状態に応じて、前記エンジンの排気管から吸気管に還流させる排気の一部の流量を制御し、
     前記排気の一部を冷却する冷却器に前記排気の一部に含まれる水分の凝縮水が生じている場合に、前記エンジンの運転状態にかかわらず、前記排気の一部を前記冷却器に強制的に流すように制御する、
    排気再循環装置の制御方法。
PCT/JP2014/084294 2014-12-25 2014-12-25 排気再循環装置及びその制御方法 WO2016103393A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084294 WO2016103393A1 (ja) 2014-12-25 2014-12-25 排気再循環装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084294 WO2016103393A1 (ja) 2014-12-25 2014-12-25 排気再循環装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2016103393A1 true WO2016103393A1 (ja) 2016-06-30

Family

ID=56149488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084294 WO2016103393A1 (ja) 2014-12-25 2014-12-25 排気再循環装置及びその制御方法

Country Status (1)

Country Link
WO (1) WO2016103393A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079065A1 (ja) * 2016-10-27 2018-05-03 川崎重工業株式会社 船舶用egr装置
WO2018173576A1 (ja) * 2017-03-21 2018-09-27 三菱重工エンジン&ターボチャージャ株式会社 ディーゼルエンジン
CN111622869A (zh) * 2020-06-22 2020-09-04 潍柴动力股份有限公司 一种发动机废气再循环系统的防结冰装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904898B1 (en) * 2003-09-09 2005-06-14 Volvo Lastyagnar Ab Method and arrangement for reducing particulate load in an EGR cooler
JP2011132852A (ja) * 2009-12-24 2011-07-07 Hino Motors Ltd エンジンの排ガス浄化装置
JP2014222034A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Egrガス冷却システムの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904898B1 (en) * 2003-09-09 2005-06-14 Volvo Lastyagnar Ab Method and arrangement for reducing particulate load in an EGR cooler
JP2011132852A (ja) * 2009-12-24 2011-07-07 Hino Motors Ltd エンジンの排ガス浄化装置
JP2014222034A (ja) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Egrガス冷却システムの制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079065A1 (ja) * 2016-10-27 2018-05-03 川崎重工業株式会社 船舶用egr装置
JP2018071401A (ja) * 2016-10-27 2018-05-10 川崎重工業株式会社 船舶用egr装置
CN109844295A (zh) * 2016-10-27 2019-06-04 川崎重工业株式会社 船舶用egr装置
CN109844295B (zh) * 2016-10-27 2021-09-28 川崎重工业株式会社 船舶用egr装置
WO2018173576A1 (ja) * 2017-03-21 2018-09-27 三菱重工エンジン&ターボチャージャ株式会社 ディーゼルエンジン
US11255300B2 (en) 2017-03-21 2022-02-22 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Diesel engine
CN111622869A (zh) * 2020-06-22 2020-09-04 潍柴动力股份有限公司 一种发动机废气再循环系统的防结冰装置及方法
CN111622869B (zh) * 2020-06-22 2021-05-18 潍柴动力股份有限公司 一种发动机废气再循环系统的防结冰装置及方法

Similar Documents

Publication Publication Date Title
JP6206448B2 (ja) 還元剤供給装置
JP5076822B2 (ja) 内燃機関の制御装置
JP5716519B2 (ja) 内燃機関の排気再循環システム
EP3090155B1 (en) Exhaust gas control device for internal combustion engine mounted on vehicle
JP7099400B2 (ja) 内燃機関の排気浄化装置
US9512785B2 (en) Exhaust gas purification system for internal combustion engine
WO2020045091A1 (ja) Dpf再生制御装置及びdpf再生制御方法
WO2016103393A1 (ja) 排気再循環装置及びその制御方法
JP5126103B2 (ja) ヒータ制御装置
JP6323406B2 (ja) 内燃機関の制御装置
JP6399023B2 (ja) 内燃機関の制御装置
JP5609924B2 (ja) 内燃機関の排気浄化装置
JP2011144747A (ja) ディーゼルエンジンの排気浄化装置
JP5118460B2 (ja) 排気浄化装置
WO2012077438A1 (ja) 内燃機関用エアフィルタの目詰まり判定装置及び判定方法
JP5549709B2 (ja) 内燃機関の排気浄化装置
JP5570188B2 (ja) エンジンの排気浄化装置
JP2013142309A (ja) 内燃機関の排気浄化装置
JP5699922B2 (ja) 内燃機関の排気浄化装置
WO2014041657A1 (ja) 添加剤供給装置
JP2014114786A (ja) エンジンの排気管噴射装置
JP6097603B2 (ja) エアクリーナの雪詰まり進行防止システム
JP5249400B2 (ja) 排気浄化装置
JP2011099372A (ja) 内燃機関の制御装置
WO2013080735A1 (ja) エンジンの触媒劣化検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909000

Country of ref document: EP

Kind code of ref document: A1