WO2016101705A1 - 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法 - Google Patents

经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法 Download PDF

Info

Publication number
WO2016101705A1
WO2016101705A1 PCT/CN2015/093246 CN2015093246W WO2016101705A1 WO 2016101705 A1 WO2016101705 A1 WO 2016101705A1 CN 2015093246 W CN2015093246 W CN 2015093246W WO 2016101705 A1 WO2016101705 A1 WO 2016101705A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
metal substrate
water
soluble
range
Prior art date
Application number
PCT/CN2015/093246
Other languages
English (en)
French (fr)
Inventor
孙剑
吴彦琴
夏艳侠
陈梁
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2016101705A1 publication Critical patent/WO2016101705A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon

Definitions

  • the invention relates to a surface treated metal substrate, a preparation method and application thereof, and a metal-resin composite and a preparation method and application thereof, and the invention further relates to an electronic product outer casing and a preparation method thereof .
  • a commonly used method of combining aluminum or an aluminum alloy with a resin is a gluing technique.
  • the method combines aluminum or an aluminum alloy with a formed resin by a chemical adhesive to obtain a composite.
  • the bonding strength of aluminum or aluminum alloy to the resin is poor, and the adhesive bonding layer is not resistant to acid and alkali, which affects the use of the composite.
  • the adhesive bonding layer has a certain thickness, it affects the size of the final product.
  • One method is to surface-etch aluminum or aluminum alloy with an amine substance such as an aqueous solution of urethane, hydrazine monohydrate or ethylenediamine to form nano-scale micropores on the surface of aluminum or aluminum alloy, and The amine substance is retained in the formed micropores, and then the resin is injection molded on the treated surface, and the resin is combined with the aluminum or the aluminum alloy by a reaction between the amine substance and the resin, thereby obtaining a certain stretching.
  • Aluminium-plastic integrated product with shear strength is to surface-etch aluminum or aluminum alloy with an amine substance such as an aqueous solution of urethane, hydrazine monohydrate or ethylenediamine to form nano-scale micropores on the surface of aluminum or aluminum alloy.
  • the aluminum or aluminum alloy is etched by using the above amine substances, and the pores formed on the surface of the aluminum or aluminum alloy are too small, and the resin is difficult to be directly injected into the micropores of the nanometer order, so that it is difficult to significantly improve the bonding strength between the aluminum alloy and the resin. .
  • Another method is to directly corrode the surface of the aluminum alloy with an acidic etching solution containing an inorganic halogen compound, and then inject the resin to obtain an aluminum-plastic integrated product.
  • an acidic etching solution containing an inorganic halogen compound containing an inorganic halogen compound
  • inject the resin to obtain an aluminum-plastic integrated product.
  • the aluminum-plastic integrated product obtained by this method the bonding strength between the aluminum alloy and the resin still needs to be further improved.
  • an anodizing may be performed on the surface of the aluminum alloy to form a porous aluminum oxide film layer on the surface of the aluminum alloy, and then the resin is injection molded on the surface having the aluminum oxide film layer to obtain an aluminum-plastic integrated product.
  • the bonding strength between the aluminum alloy and the resin is not high.
  • An object of the present invention is to overcome the technical problem that the bonding strength between the metal substrate and the resin layer is not high in the conventional metal-resin composite.
  • a surface treated metal substrate the metal being aluminum or an aluminum alloy
  • the metal substrate comprising a metal substrate and being formed on at least a portion of a surface of the metal substrate
  • the micro-arc oxidation film layer has a first etching hole distributed on the surface of the micro-arc oxidation film layer.
  • a surface treatment method for a metal substrate comprising providing a metal substrate, the metal substrate comprising a metal substrate and forming a micro-arc oxidation film layer on at least a portion of the surface of the metal substrate; the metal substrate is subjected to a first etching to form a first etching hole in the micro-arc oxide film layer.
  • a surface treated metal substrate prepared by the method according to the second aspect of the invention.
  • a metal-resin composite the metal being aluminum or an aluminum alloy, the composite comprising a metal substrate and a resin layer, the metal substrate being provided for the present invention a surface-treated metal substrate, the resin layer being attached to at least a portion of a surface of the metal substrate, a portion of the resin layer extending downwardly and filling a first etching hole in the metal substrate or The first etching hole and the second etching hole.
  • a method of producing a metal-resin composite comprising a metal substrate and attached to the metal a resin layer of at least a portion of a surface of the substrate, the metal substrate being a surface treated metal substrate provided by the present invention, the method comprising injecting a resin-containing composition onto at least a portion of a surface of the metal substrate and causing a partial composition
  • the first etching hole or the first etching hole and the second etching hole are filled in the metal substrate, and a resin layer is formed after molding.
  • a metal-resin composite prepared by the method according to the fifth aspect of the invention.
  • the invention provides the use of a metal-resin composite according to the invention in the preparation of an outer casing of an electronic product.
  • an electronic product casing comprising a metal casing body and at least one resin member attached to at least a portion of an inner surface and/or at least a portion of an outer surface of the metal casing body
  • the metal shell body is a metal substrate according to the present invention.
  • the present invention provides a method of fabricating an outer casing of an electronic product, the method comprising forming at least one resin member on at least a portion of an inner surface and/or at least a portion of an outer surface of the metal shell body, wherein The resin member is formed according to the method for producing a metal-resin composite of the present invention.
  • the bonding strength between the resin and the metal substrate is high, and the resin layer is not easily peeled off from the surface of the metal substrate, so that the metal-resin composite provided by the present invention has high structural stability. It can meet the requirements of applications requiring high structural stability, for example, as an outer casing for various electronic products.
  • FIG. 1 is a cross-sectional view for schematically explaining a casing of a mobile phone according to the present invention, including a front view and a plan view;
  • Fig. 2 is a cross-sectional view for schematically explaining a smart watch case according to the present invention.
  • opening 4 smart watch metal shell body
  • the metal may be pure aluminum or aluminum alloy.
  • the aluminum alloy refers to an alloy formed by adding other elements to aluminum as a base element, and may be various common aluminum alloys.
  • the metal substrate is various molded bodies formed of aluminum or an aluminum alloy, and may have various shapes depending on specific use requirements.
  • a surface treated metal substrate the metal being aluminum or an aluminum alloy
  • the metal substrate comprising a metal substrate and at least a portion of a surface formed on the metal substrate
  • the surface of the micro-arc oxidation film layer is distributed with a first etching hole.
  • the first etching hole may be used to accommodate a resin to anchor the resin to the surface of the metal substrate.
  • the bonding strength between the resin and the metal substrate can be increased by selecting the size of the first etching hole.
  • the pore diameter of the first etching hole is preferably in the range of 10 to 200 nm.
  • the pore diameter of the first etching hole is within the above range, on the one hand, it does not adversely affect the strength of the micro-arc oxidation film layer itself, and on the other hand, when used for preparing the metal-resin composite body, The resin layer is firmly anchored in the metal substrate to have a high bonding strength between the resin layer and the metal substrate, thereby making the metal-resin composite have high structural stability.
  • the pore diameter of the first etching hole It is preferably in the range of 50 to 200 nm, more preferably in the range of 80 to 200 nm, still more preferably in the range of 100 to 200 nm.
  • the ratio of the depth of the first etching hole to the thickness of the micro-arc oxidation film layer is preferably in the range of 0.1 to 1:1, more preferably in the range of 0.2 to 1:1, still more preferably 0.5 to 1: Within the scope of 1. Further preferably, the ratio of the depth of at least a portion of the first etching holes to the thickness of the micro-arc oxide film layer is 1:1, such as preferably at least 50%, more preferably at least 60%, further preferably at least 70% of the first corrosion The ratio of the depth of the hole to the thickness of the micro-arc oxide film layer was 1:1.
  • the pore diameter of the etching hole refers to the maximum dimension of the upper port of the etching hole (that is, the port located at the surface) in the radial direction
  • the depth of the etching hole refers to the vertical distance between the both ends of a corrosion hole.
  • the pore size and depth of the corrosion hole can be determined by electron microscopy.
  • the surface of the metal substrate may be free from corrosion holes.
  • the metal substrate comprises a base layer and an etching layer, the base layer and the etching layer are integrated, and the etching layer is connected to the micro-arc oxide film layer and integrated a structure, a surface of the etching layer is distributed with a second etching hole, and a ratio of a depth of at least a portion of the first etching hole to a thickness of the micro-arc oxide film layer is 1:1.
  • the metal substrate includes the base layer and the etching layer, the metal substrate and the resin can be significantly integrated The bonding strength between the metal substrate and the resin layer in the metal-resin composite obtained by the molding.
  • first etching holes the etching holes distributed on the surface of the micro-arc oxide film layer
  • second etching holes the etching holes distributed on the surface of the metal substrate which is in contact with the micro-arc oxide film layer
  • the base layer is a dense layer. That is, there are no corrosion holes in the base layer.
  • the pore diameter of the second etching hole is preferably in the range of 200-2000 nm, more preferably in the range of 300-2000 nm, further preferably in the range of 800-1500 nm, such as 1000-1500 nm. In the range.
  • the depth of the second etching hole is in the range of 0.1 to 500 ⁇ m, preferably in the range of 10 to 400 ⁇ m, more preferably in the range of 50 to 200 ⁇ m.
  • the ratio of the depth of at least a portion of the first etching holes to the thickness of the micro-arc oxidation film layer is 1:1, preferably at least 50%, more preferably at least 60%, further preferably at least 70%.
  • the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer is 1:1.
  • the pore size of the first etching hole is as described above, and will not be described in detail herein.
  • the micro-arc oxidation film layer has a high hardness, and its microhardness is generally 400-2000 HV, and the metal substrate is used for bonding with a resin to prepare a metal-resin composite.
  • the resin can be more firmly fixed in the metal substrate than the surface of the metal substrate as the anodized film layer, thereby obtaining higher bonding strength.
  • the thickness of the micro-arc oxidation film layer of the present invention is not particularly limited.
  • the thickness of the micro-arc oxide film layer may be in the range of 0.1 to 500 ⁇ m, preferably in the range of 1 to 200 ⁇ m, more preferably in the range of 10 to 100 ⁇ m, still more preferably in the range of 15 to 50 ⁇ m.
  • the micro-arc oxide film layer is not sealed.
  • a surface treatment method for a metal substrate comprising providing a metal substrate, the metal substrate comprising a metal substrate and forming a micro-arc oxidation film layer on at least a portion of the surface of the metal substrate.
  • “at least a portion” means part or all.
  • the metal substrate can be subjected to micro-arc oxidation using various conventional methods to obtain a metal substrate having a micro-arc oxidation film layer on the surface.
  • the metal substrate may be placed in an electrolyte under micro-arc oxidation conditions, the metal substrate is used as an anode, and a conductive material that does not react with the electrolyte is used as a cathode, and the cathode and the anode are respectively connected to a power source.
  • the positive electrode and the negative electrode are electrically connected, and after energization, micro-arc oxidation is performed to form a micro-arc oxide film layer on the metal substrate.
  • the electrolyte in the electrolytic solution may be one or more selected from the group consisting of oxalic acid, phosphate, silicate, and aluminate.
  • the cations in the phosphate, silicate and aluminate may each be an alkali metal ion and/or an alkaline earth metal ion such as a sodium ion.
  • the conditions of the micro-arc oxidation may be selected according to the thickness of the intended micro-arc oxide film layer.
  • the micro-arc oxide film layer formed after the micro-arc oxidation is performed has a thickness of 0.1 to 500 ⁇ m, preferably 1 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, still more preferably 15 to 50 ⁇ m.
  • the voltage may be 10-800 V, preferably 100-500 V;
  • the temperature of the electrolyte may be 10-60 ° C, preferably 20-40 ° C.
  • the time of electrolysis can be selected according to specific electrolysis conditions, so that the thickness of the formed micro-arc oxide film layer can meet the requirements. Generally, the electrolysis time can be 1-60 minutes, preferably 30-40 minutes. .
  • the metal substrate is preferably pretreated by various methods commonly used in the art prior to micro-arc oxidation.
  • the pretreatment includes mechanical grinding or grinding to remove foreign matter on the surface of the metal substrate, and then the metal substrate is sequentially degreased and cleaned to remove grease from the surface of the metal substrate.
  • the method according to the present invention further includes subjecting the metal substrate to a first etching to form a first etching hole in the micro-arc oxide film layer.
  • the pore diameter of the first etching hole formed after the first etching is preferably in the range of 10 to 200 nm, more preferably in the range of 50 to 200 nm, further preferably in the range of 80 to 200 nm, and most preferably 100.
  • a ratio of a depth of the first etching hole to a thickness of the micro-arc oxide film layer is preferably in the range of 0.1 to 1:1, more preferably in the range of 0.2 to 1:1, further Preferably, it is in the range of 0.5 to 1:1, and the ratio of the depth of at least a portion of the first etching hole to the thickness of the micro-arc oxide film layer is 1:1, and preferably 50% or more, more preferably 60% or more, further Preferably, the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of at least 70% or more is 1:1.
  • the metal substrate may be subjected to a first etching by various conventional methods to form a first etching hole in the micro-arc oxide film layer.
  • the first etching includes: immersing the metal substrate in an alkaline etching solution to form a first etching hole in the micro-arc oxidation film layer.
  • the alkaline etching solution may be a common etching liquid capable of etching a micro-arc oxidation film layer.
  • the etching solution is one or a combination of the following two etching liquids.
  • the metal substrate can be etched by using one or a combination of the following two etching liquids, and a better etching effect can be obtained.
  • the two etching solutions will be separately described below.
  • the alkaline etching solution is one containing an anthracene derivative selected from the group consisting of water-soluble hydroxides, water-soluble basic salts, ammonia, water-soluble amines, hydrazine, and one or more hydrogen atoms substituted by a hydrocarbon group.
  • the water-soluble hydroxide may be an alkali metal hydroxide, preferably sodium hydroxide and/or potassium hydroxide, more preferably sodium hydroxide.
  • the water-soluble basic salt refers to a water-soluble basic salt whose aqueous solution has a pH of more than 7.
  • the water-soluble basic salt may be a water-soluble carbonate, a water-soluble hydrogencarbonate, a water-soluble phosphate, a water-soluble monohydrogen phosphate, a water-soluble dihydrogen phosphate, and a water-soluble borate.
  • the water-soluble basic salt may be an alkali metal salt, preferably a sodium salt or a potassium salt, more preferably a sodium salt.
  • the water-soluble basic salt is one or more selected from the group consisting of Na 2 CO 3 , NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 and Na 2 B 4 O 7 .
  • the water-soluble amine may be a common variety of amines which are soluble in water.
  • the water-soluble amine is one or more of ethylenediamine, diethylamine, ethanolamine, trimethylamine, methylamine, and dimethylamine.
  • the anthracene derivative refers to a compound in which one or more hydrogen atoms in the molecular structure of hydrazine (ie, H 2 N—NH 2 ) are substituted with a hydrocarbon group, and the hydrocarbon group is preferably a C 1 -C 4 alkyl group, specifically It may be monomethyl hydrazine and/or 1,1-dimethyl hydrazine.
  • the alkaline etching solution is preferably an aqueous solution containing a water-soluble hydroxide and/or a water-soluble basic salt. More preferably, the alkaline etching solution is an aqueous solution containing a water-soluble basic salt, and the water-soluble basic salt is preferably Na 2 CO 3 and/or NaHCO 3 , more preferably Na 2 CO 3 or NaHCO 3 .
  • the pH of the alkaline etching solution is preferably in the range of 10-13, so that not only a suitable etching rate can be obtained, but also the etching process is gentle and easy to control.
  • the alkaline etching solution is an alkaline buffer solution, so that the finally formed corrosion holes are more evenly distributed and the pore size is more concentrated.
  • the alkaline etching solution may be an aqueous solution containing a water-soluble hydroxide and a water-soluble basic salt.
  • Water soluble hydrogen The cations of the oxide and the water-soluble basic salt may be the same or different, and are preferably the same.
  • the water-soluble hydroxide may be an alkali metal hydroxide, preferably sodium hydroxide and/or potassium hydroxide, more preferably sodium hydroxide.
  • the water-soluble basic salt may be one of a water-soluble carbonate, a water-soluble hydrogencarbonate, a water-soluble phosphate, a water-soluble monohydrogen phosphate, a water-soluble dihydrogen phosphate, and a water-soluble borate or Two or more.
  • the water-soluble basic salt may be an alkali metal salt, preferably a sodium salt or a potassium salt, more preferably a sodium salt.
  • the water-soluble basic salt is one or more selected from the group consisting of Na 2 CO 3 , NaHCO 3 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 and Na 2 B 4 O 7 .
  • the water-soluble basic salt is a water-soluble monohydrogen phosphate and/or a water-soluble dihydrogen phosphate. More preferably, the water-soluble basic salt is a water-soluble dihydrogen phosphate such as one or more of sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium dihydrogen phosphate, and aluminum dihydrogen phosphate.
  • the alkaline etching solution may also be an aqueous solution containing a water-soluble normal salt and a water-soluble acid salt.
  • the normal salt refers to a salt in which a cation contains only a metal ion and/or an ammonium ion
  • the acid salt refers to a salt containing a hydrogen ion in addition to a metal ion and/or an ammonium ion.
  • the water-soluble normal salt and the cation and acid ion of the water-soluble acid salt may each be the same or different, and are preferably the same.
  • the alkaline etching solution is preferably an aqueous solution containing a water-soluble carbonate and a water-soluble hydrogencarbonate, or an aqueous solution containing a water-soluble phosphate and a water-soluble monohydrogen phosphate.
  • the alkaline etching solution may be an aqueous solution containing Na 2 CO 3 and NaHCO 3 or an aqueous solution containing Na 3 PO 4 and Na 2 HPO 4 .
  • the alkaline etching solution may also be an aqueous solution containing ammonia and a water-soluble ammonium salt.
  • the water-soluble ammonium salt is preferably one or more of NH 4 Cl, (NH 4 ) 2 SO 4 , NH 4 HCO 3 and NH 4 NO 3 .
  • the alkaline etching solution may be an aqueous solution containing NH 3 and NH 4 Cl, an aqueous solution containing NH 3 and (NH 4 ) 2 SO 4 , an aqueous solution containing NH 3 and NH 4 HCO 3 or containing NH 3 and An aqueous solution of NH 4 NO 3 .
  • the alkaline etching solution is preferably an aqueous solution containing a water-soluble hydroxide and a water-soluble basic salt, or an aqueous solution containing a water-soluble normal salt and a water-soluble acid salt, more preferably a water-soluble normal salt and water-soluble.
  • An aqueous solution of an acid salt is preferably an aqueous solution containing a water-soluble hydroxide and a water-soluble basic salt, or an aqueous solution containing a water-soluble normal salt and a water-soluble acid salt, more preferably a water-soluble normal salt and water-soluble.
  • the alkaline etching solution is preferably an alkaline buffer solution having a pH of 10 to 13, so that a suitable etching rate can be obtained, and the etching process is gentle and easy to control.
  • the temperature of the alkaline etching solution may be 10-60 ° C, preferably 20-40 ° C; the first etching time may be 1-60 minutes, preferably 5-20 minutes.
  • the metal substrate in which the first etching hole is formed in the micro-arc oxidation film layer by the first etching can be directly formed as a surface-treated metal substrate and integrally molded with a resin to prepare a metal-resin composite.
  • the first etched metal substrate is subjected to a second etch to form a second etched hole on the surface of the metal substrate that is in contact with the micro-arc oxide film layer.
  • the first etching hole penetrates the second etching hole.
  • the pore diameter of the second etching hole formed after the second etching is preferably in the range of 200 to 2000 nm, more preferably in the range of 300 to 2000 nm, further preferably in the range of 800 to 1500 nm, such as in 1000- 1500nm fan Inside.
  • the second etching is performed from the viewpoint of the bonding strength between the metal substrate and the resin layer.
  • the depth of the second etching hole is in the range of 1 to 500 ⁇ m, preferably in the range of 10 to 400 ⁇ m, more preferably in the range of 50 to 200 ⁇ m.
  • the second etching comprises: immersing the first etched metal substrate in an acidic etchant.
  • the acidic etching solution is an aqueous solution containing an acid which is a hydrohalic acid and/or H 3 PO 4 , preferably HCl or H 3 PO 4 .
  • the acidic etching solution further contains one or two or more water-soluble salts, which can further improve the stability of etching.
  • the acid salt of the water-soluble salt is preferably the same as the acid group of the acid contained in the acidic etching solution.
  • the acidic etching solution preferably further contains one or more water-soluble hydrohalic acid salts; when the acidic etching liquid is an aqueous solution containing phosphoric acid,
  • the acidic etchant preferably also contains one or more water soluble phosphate salts.
  • the water-soluble salt is preferably one or more selected from the group consisting of NaCl, KCl, and AlCl 3 .
  • the acidic etching solution is phosphoric acid
  • the water-soluble salt is one or more of a water-soluble phosphate, a water-soluble monohydrogen phosphate and a water-soluble dihydrogen salt, such as NaH 2 PO 4 , Na 2 .
  • HPO 4 , Na 3 PO 4 , KH 2 PO 4 , K 2 HPO 4 and K 3 PO 4 is preferably one or more selected from the group consisting of NaCl, KCl, and AlCl 3 .
  • the content of the water-soluble salt in the acidic etching solution depends on the amount of acid in the acidic etching solution.
  • the molar ratio of the water soluble salt to the acid may range from 0.1 to 1:1, preferably from 0.2 to 0.8:1, more preferably from 0.4 to 0.6:1.
  • the pH of the acidic etching solution is preferably 1-3, so that the surface-treated metal substrate thus formed has a more uniform distribution of corrosion holes and a more concentrated pore size distribution, and the metal-resin prepared from the metal substrate.
  • the bonding strength of the resin to the metal substrate in the composite is higher.
  • the temperature of the acidic etching solution may be 20-30 ° C
  • the soaking time of the metal substrate in the acidic etching solution may be 1-60 minutes, preferably 10-30 minutes.
  • the metal substrate is immersed in an alkaline etchant in the first etch; and the first etched metal is etched in the second etch
  • the substrate is immersed in an acidic etchant. Etching is performed in this way, the etching exotherm is small during the etching process, the etching process is gentle and easy to control, the distribution of the first etching hole and the second etching hole is more uniform, and the hole size (including the aperture and the depth) is more concentrated.
  • the surface-treated metal substrate obtained by the method is used for bonding with a resin to prepare a metal-resin composite, a higher bonding strength between the resin layer and the metal substrate is exhibited.
  • the first etching and the second etching may each be performed only once or in stages, and the duration of each etching is not particularly limited as long as the total etching time satisfies the above requirements.
  • the washing was performed with water between the two etchings to remove the etching liquid remaining in the previous etching.
  • a surface treated metal substrate prepared by the method according to the second aspect of the invention.
  • a metal-resin composite the metal being aluminum or an aluminum alloy, the composite comprising a metal substrate and a resin layer, the metal substrate being provided for the present invention a surface-treated metal substrate, the resin layer is attached to at least a portion of a surface of the metal substrate, and a portion of the resin in the resin layer extends downward and is filled
  • the first etching hole in the metal substrate or the first etching hole and the second etching hole The surface treated metal substrate and its preparation method have been described in detail above and will not be described in detail herein.
  • the thickness of the resin layer can be selected depending on the specific use occasion.
  • the thickness of the resin layer may be in the range of 0.1 to 10 mm, preferably in the range of 0.5 to 5 mm.
  • the thickness of the resin layer means a vertical distance between the upper surface of the micro-arc oxidation film layer and the upper surface of the resin layer.
  • the host resin in the resin layer can be selected according to specific use requirements as long as the resin can be combined with aluminum or an aluminum alloy.
  • the host resin in the resin layer may be selected from a thermoplastic resin, and may be, for example, one or more of polyphenylene sulfide, polyester, polyamide, polycarbonate, and polyolefin.
  • the polyester may be a common polymer obtained by condensing a dicarboxylic acid and a diol, and specific examples thereof may include, but are not limited to, polybutylene terephthalate and/or polyethylene terephthalate. ester.
  • the polyamide may be a common polymer obtained by condensing a diamine and a dicarboxylic acid, and specific examples thereof may include, but are not limited to, polyhexamethylene adipamide, polysebacyldiamine, polysuccinic acid.
  • polystyrene polystyrene
  • polypropylene polymethyl methacrylate
  • poly(acrylonitrile-butadiene-styrene) polystyrene
  • the resin layer may contain at least one filler in addition to the host resin.
  • the type of the filler can be selected according to specific use requirements.
  • the filler may be a fibrous filler and/or a powder filler.
  • the fibrous filler may be one or more selected from the group consisting of glass fibers, carbon fibers, and aramid fibers.
  • the powder type filler may be one or more selected from the group consisting of calcium carbonate, magnesium carbonate, silica, heavy barium sulfate, talc, glass, and clay.
  • the content of the filler may be a conventional selection.
  • the filler is preferably contained in an amount of 20 to 150 parts by weight, preferably 25 to 100 parts by weight, more preferably 30 to 50 parts by weight, based on 100 parts by weight of the main body resin.
  • a method of producing a metal-resin composite comprising a metal substrate and attached to the metal a resin layer of at least a portion of a surface of the substrate, the metal substrate being a surface treated metal substrate provided by the present invention, the method comprising injecting a resin-containing composition onto at least a portion of a surface of the metal substrate and causing a partial composition
  • the first etching hole or the first etching hole and the second etching hole are filled in the metal substrate, and a resin layer is formed after molding.
  • the resin in the resin-containing composition (hereinafter referred to as a host resin) is the same as the type of the host resin in the resin layer described above, and will not be described in detail herein.
  • the resin-containing composition may contain, in addition to the host resin, at least one filler and/or at least one fluidity improver.
  • the type of the filler is the same as that of the filler in the resin layer described above, and will not be described in detail herein.
  • the content of the filler may be a conventional selection.
  • the filler may be included in an amount of 20 to 150 parts by weight, preferably 25 to 100 parts by weight, more preferably 30 to 50 parts by weight based on 100 parts by weight of the main body resin.
  • the fluidity improver is used to improve the flowability of the host resin, further improve the bonding strength between the metal substrate and the resin, and the processability of the resin.
  • the fluidity improver may be any of various substances capable of achieving the above effects, and is preferably a cyclic polyester.
  • the amount of the fluidity improver is based on the ability to increase the flowability of the host resin.
  • the main body resin is contained in an amount of from 1 to 5 parts by weight.
  • the resin-containing composition may further contain various conventional auxiliaries such as a colorant and/or an antioxidant in accordance with specific use requirements to improve the properties of the resin layer in the finally formed metal-resin composite or to impart the The resin layer has new properties.
  • auxiliaries such as a colorant and/or an antioxidant in accordance with specific use requirements to improve the properties of the resin layer in the finally formed metal-resin composite or to impart the The resin layer has new properties.
  • the resin-containing composition can be obtained by uniformly mixing a host resin, an optional filler, an optional fluidity improver, and an optional auxiliary.
  • the host resin, the optional filler, the optional fluidity improver, and the optional auxiliary agent may be uniformly mixed and subjected to extrusion granulation.
  • the resin-containing composition can be injected into the etched surface of the metal substrate by various conventional methods.
  • the metal substrate is placed in a mold and the resin-containing composition is injected by injection molding.
  • the conditions of the injection molding may be selected depending on the kind of the host resin in the resin-containing composition.
  • the conditions of the injection molding include: a mold temperature of 50-300 ° C, a nozzle temperature of 200-450 ° C, a dwell time of 1-50 seconds, an injection pressure of 50-300 MPa, and an injection time of 1-30 seconds.
  • the delay time is 1-30 seconds.
  • the amount of the resin-containing composition to be injected can be selected in accordance with the intended thickness of the resin layer.
  • the resin-containing composition is injected in an amount such that the thickness of the formed resin layer may be from 0.1 to 10 mm, preferably from 0.5 to 5 mm.
  • the surface on which the resin layer is not formed can be treated to remove surface pores and surface color change due to etching, which can be injection molded. It is also carried out before the step, and it can also be carried out after the injection molding step, and is not particularly limited.
  • the invention also provides a metal-resin composite prepared by the method according to the fifth aspect of the invention.
  • the invention provides the use of a metal-resin composite according to the invention in the preparation of an outer casing of an electronic product.
  • an electronic product casing comprising a metal casing body and at least one resin member attached to at least a portion of an inner surface and/or at least a portion of an outer surface of the metal casing body
  • the metal shell body is a metal substrate according to the present invention.
  • the outer casing includes not only an outer casing which is a sheet-like structure but also various frame structures such as an outer frame.
  • At least one opening may be disposed on the metal casing body to cover the components of the metal casing body at a corresponding position of the opening.
  • the position of the at least part of the opening may correspond to the mounting position of the signal transmitting element and/or the signal receiving element, and the opening position is preferably provided with a resin member, and A part of the resin in the resin member is filled in the opening, and a signal emitting element and/or a signal receiving element may be mounted on the resin member.
  • the metal shell body may be an integral structure or a splicing structure.
  • the splicing structure means that the metal shell body includes at least two portions that are disconnected from each other, and the two portions are spliced together to form a metal shell body.
  • the adjacent two portions may be bonded together with an adhesive.
  • the splicing positions of two adjacent portions are provided with the resin member, and the resin members respectively overlap the adjacent two portions and cover the splicing position (ie, the resin member bridges the adjacent two Part)), which can increase the bonding strength of the splicing position;
  • the metal shell body can be divided into a plurality of portions according to the internal structure of the electronic product, and the resin member can serve as a mounting base for some electronic components while functioning to form the metal shell body as a whole.
  • At least a part of the outer surface of the metal shell body may be attached with a resin member, which may cover the entire outer surface, or may cover a part of the outer surface of the metal shell body to form a pattern, such as decoration. Sexual pattern.
  • the resin member when the inner surface of the metal shell body is attached with a resin member, the resin member can be disposed at one or more positions required.
  • the resin member is attached to the entire inner surface of the metal shell body, and the resin member is preferably a unitary structure. According to the preferred embodiment, it is particularly suitable for the case where the metal shell body is a spliced structure.
  • the electronic product casing according to the present invention may be any electronic product casing that requires a metal as a casing, such as a casing or a frame of a mobile terminal, a casing or a frame of the wearable electronic device.
  • the mobile terminal refers to a device that can be in a mobile state and has a wireless transmission function, such as a mobile phone, a portable computer (including a laptop and a tablet).
  • the wearable electronic device refers to an intelligent wearable device, such as a smart watch or a smart bracelet.
  • the electronic product may specifically be, but not limited to, one or more of a mobile phone, a portable computer (such as a notebook computer and a tablet), a smart watch, and a smart wristband.
  • Fig. 1 shows a front view and a top view of an embodiment of the electronic product casing when it is a casing of a mobile phone.
  • a plurality of openings 3 are formed in the metal shell body 1 of the mobile phone.
  • the position of the opening 3 may correspond to the position where the antenna is mounted and the position at which various buttons are mounted.
  • the resin layer 2 is attached to the entire inner surface of the metal shell body 1 of the mobile phone, the resin layer 2 is an integral structure, and a part of the resin in the resin layer 2 is filled in the opening 3.
  • Fig. 2 shows a front view of an embodiment of the outer casing of the electronic product being a smart watch.
  • the smart watch metal shell body 4 is provided with a signal element opening 6 corresponding to the mounting signal emitting element and/or the signal receiving element, and the inner surface of the smart watch metal shell body 4 is adhered with a resin inner liner 5, resin A part of the resin in the inner liner 5 is filled in the signal element opening 6, and the signal element can be mounted at a corresponding position on the resin inner liner 5.
  • the present invention provides a method of fabricating an outer casing of an electronic product, the method comprising forming at least one resin member on at least a portion of an inner surface and/or at least a portion of an outer surface of the metal shell body, wherein The resin member is formed according to the method for producing a metal-resin composite of the present invention.
  • the average shear strength between the metal substrate and the resin layer in the metal-resin composite was measured on an INSTRON 3369 universal testing machine in accordance with the method specified in ASTM D1002-10.
  • the thickness of the anodized film layer and the depth of the etching hole were measured using a metallographic microscope of the model Axio Imager Alm available from ZEISS (five different positions of the same sample were observed, and the field of view was measured. The depth of all the corrosion holes that appeared) was measured by a scanning electron microscope of JSM-7600F model number from JEOL Ltd. (The five different positions of the same sample were observed, and all the fields appearing in the field of view were measured. Corrosion hole aperture).
  • microhardness of the micro-arc oxidation film layer was measured using a model HX-1000TM/LCD microhardness tester available from Shanghai Optical Instruments No. 1 Plant.
  • a commercially available 5052 aluminum alloy plate having a thickness of 1 mm was cut into a rectangular piece of 15 mm ⁇ 80 mm.
  • the rectangular piece is placed in a polishing machine for polishing. Then, it was washed with absolute ethanol, and then immersed in a 2% by weight aqueous sodium hydroxide solution. After 2 minutes, it was taken out and rinsed with deionized water to obtain a pretreated aluminum alloy sheet.
  • the aluminum alloy sheet obtained in the step (1) is placed as an anode in a micro-arc oxidation tank having a concentration of 20% by weight of an aqueous solution of sodium silicate as an electrolyte, and a graphite carbon plate is used as a cathode at a voltage of 100 V. Electrolysis was carried out at 20 ° C for 30 minutes for micro-arc oxidation. The micro-arc oxidized aluminum alloy sheet was taken out and blown dry to obtain an aluminum alloy sheet having a micro-arc oxidation film layer on its surface. The cross section of the aluminum alloy sheet was observed with a microscope to determine that the micro-arc oxide film layer had an average thickness of 17 ⁇ m and a microhardness of 1000 HV.
  • the cross section of the aluminum alloy sheet obtained by the step (3) was observed by a microscope, and it was found that the micro-arc oxidation film layer was distributed with corrosion holes having a pore diameter in the range of 50-200 nm, the depth of the corrosion hole and the thickness of the micro-arc oxide film layer.
  • the ratio is in the range of 0.3-1:1, and the ratio of the depth of the etching hole of 50% or more to the thickness of the micro-arc oxide film layer is 1:1.
  • the injection molding conditions include: the mold temperature is 120 ° C, the nozzle temperature is 305 ° C, the dwell time is 5 seconds, the injection pressure is 120 MPa, the injection time is 5 seconds, and the delay time is 3 seconds.
  • the cooled product was placed in a constant temperature drying oven at 120 ° C for 1.5 h, and then naturally cooled to room temperature with the furnace to obtain a metal-resin composite (the thickness of the resin layer was 5 mm), and the average shear strength thereof is shown in Table 1. Listed in.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 1 to prepare a metal-resin composite, except that in the step (2), the electrolytic solution used was a sodium phosphate aqueous solution having a concentration of 20% by weight, and the voltage was 80V, the temperature of the electrolyte is 20 °C.
  • the electrolytic solution used was a sodium phosphate aqueous solution having a concentration of 20% by weight, and the voltage was 80V, the temperature of the electrolyte is 20 °C.
  • the cross section of the aluminum alloy sheet obtained in the step (2) was observed with a microscope to determine that the micro-arc oxide film layer had an average thickness of 15 ⁇ m.
  • the cross section of the aluminum alloy sheet obtained by the step (3) was observed by a microscope, and it was found that the micro-arc oxidation film layer was distributed with corrosion holes having a pore diameter in the range of 50-200 nm, the depth of the corrosion hole and the thickness of the micro-arc oxide film layer.
  • the ratio is in the range of 0.3-1:1, and the ratio of the depth of the etching hole of 50% or more to the thickness of the micro-arc oxide film layer is 1:1.
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 1 to prepare a metal-resin composite, which was different.
  • the cross section of the aluminum alloy sheet obtained by the step (3) was observed by a microscope, and it was found that the micro-arc oxidation film layer was distributed with etching holes having a pore diameter in the range of 10 to 200 nm, and the depth of the etching hole and the thickness of the micro-arc oxide film layer.
  • the ratio is in the range of 0.1 to 1:1, and the ratio of the depth of the etching hole of 50% or more to the thickness of the micro-arc oxide film layer is 1:1.
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • a pretreated aluminum alloy sheet was prepared in the same manner as in the step (1) of Example 1.
  • a pretreated aluminum alloy sheet was prepared in the same manner as in the step (1) of Example 1.
  • a pretreated aluminum alloy sheet was prepared in the same manner as in the step (1) of Example 1.
  • the aluminum alloy sheet obtained in the step (1) is placed as an anode in an anodizing bath having a concentration of 20% by weight of an aqueous solution of H 2 SO 4 as an electrolytic solution, and a graphite carbon plate is used as a cathode at a voltage of 15 V at 20 Electrolyze at °C for 10 minutes.
  • the anodized aluminum alloy sheet was taken out and blown dry to obtain an aluminum alloy sheet having an anodized film layer on its surface.
  • the cross section of the aluminum alloy sheet was observed with a microscope to determine that the anodized film layer had an average thickness of 18 ⁇ m and a microhardness of 200 HV.
  • the cross section of the aluminum alloy sheet obtained in the step (3) was observed by a microscope, and it was found that the anodized film layer was distributed with corrosion holes having a pore diameter in the range of 50 to 200 nm, and the ratio of the depth of the etching hole to the thickness of the anodized film layer. In the range of 0.3 to 1:1, the ratio of the depth of the etching hole of 50% or more to the thickness of the anodized film layer is 1:1.
  • a metal-resin composite was prepared in the same manner as in the step (4) of Example 1, and the average shear strength thereof is shown in Table 1.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 1 to prepare a metal-resin composite, except that the step (3) was divided into the step (3-1) and the step (3-2), in the step ( In 3-1), the micro-arc oxidized aluminum alloy sheet is etched in the same manner as in the step (3) of the first embodiment, and the step (3-1) is obtained by using an acidic etching solution in the step (3-2).
  • the alkali-etched aluminum alloy sheet is etched, and the step (3-2) is as follows:
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 50-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.3-1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 50% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 4 to prepare a metal-resin composite, except that the step (2) was carried out by forming an anode on the surface of the aluminum alloy sheet in the same manner as in the step (2) of Comparative Example 3.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 50-200 nm was distributed in the anodized film layer, and the depth of the first etching hole was anodized.
  • the ratio of the thickness of the layer is in the range of 0.3-1:1, and the ratio of the depth of the first etching hole to the thickness of the anodized film layer is more than 1:1;
  • the aluminum alloy substrate is divided into a dense base layer and has A corrosion layer of the second etching hole, the etching layer is in contact with the anodized film layer, the second etching hole has a pore diameter in the range of 200-2000 nm, and the second etching hole has a depth in the range of 0.1-400 ⁇ m.
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 1 to prepare a metal-resin composite, except that the step (3) was divided into the step (3-1) and the step (3-2), in the step ( The microarc oxidized aluminum alloy sheet is etched in the same manner as the step (3-2) in the embodiment 4 in 3-1), and the step (3) in the step (3-2) is used in the step (3).
  • the same method etches the acid etched aluminum alloy sheet.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 50-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.3-1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 50% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the aluminum alloy sheet was subjected to surface treatment in the same manner as in Example 1 to prepare a metal-resin composite, except that the micro-arc was used in the same manner as in the step (3-2) of the fourth step in the step (3).
  • the oxidized aluminum alloy sheet is etched.
  • the cross section of the aluminum alloy sheet obtained by the step (3) was observed by a microscope, and it was found that there was substantially no corrosion hole in the micro-arc oxidation film layer; the aluminum alloy substrate was divided into a dense base layer and a corrosion layer having a second corrosion hole, and corrosion The layer is in contact with the micro-arc oxide film layer, the second etching hole has a pore diameter in the range of 500-4500 nm, and the second etching hole has a depth in the range of 0.01-500 ⁇ m.
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 50-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.3-1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 50% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 100-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.7-1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of more than 70% is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix a layer and an etching layer having a second etching hole, the etching layer is in contact with the micro-arc oxide film layer, the second etching hole has a pore diameter in the range of 1000-1500 nm, and the second etching hole has a depth in the range of 10-300:1 .
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • a commercially available 5052 aluminum alloy plate having a thickness of 1 mm was cut into a rectangular piece of 15 mm ⁇ 80 mm.
  • the rectangular piece is placed in a polishing machine for polishing. Then, it was washed with absolute ethanol, and then immersed in a 2% by weight aqueous sodium hydroxide solution. After 2 minutes, it was taken out and rinsed with deionized water to obtain a pretreated aluminum alloy sheet.
  • the aluminum alloy sheet obtained in the step (1) is placed as an anode in a micro-arc oxidation tank having a concentration of 15% by weight of sodium silicate as an electrolyte, and a graphite carbon plate is used as a cathode at a voltage of 300 V. Electrolysis was carried out at 20 ° C for 40 minutes for micro-arc oxidation. The micro-arc oxidized aluminum alloy sheet was taken out and blown dry to obtain an aluminum alloy sheet having a micro-arc oxidation film layer on its surface. The cross section of the aluminum alloy sheet was observed with a microscope to determine that the micro-arc oxide film layer had an average thickness of 30 ⁇ m and a microhardness of 1200 HV.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 100-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.5 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 60% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the aluminum alloy sheet obtained in the step (3-2) is placed in an injection molding mold, and a resin composition containing glass fiber and nylon-66 (i.e., PA-66) is injection molded on one surface of the aluminum alloy sheet (relative The content of the glass fiber was 45 parts by weight based on 100 parts by weight of PA-66, and it was released and cooled.
  • the injection molding conditions include: the mold temperature is 100 ° C, the nozzle temperature is 300 ° C, the dwell time is 8 seconds, the injection pressure is 100 MPa, the injection time is 4 seconds, and the delay time is 2 seconds.
  • the cooled product was placed in a constant temperature drying oven at 100 ° C for 2 h, and then naturally cooled to room temperature with the furnace to obtain a metal-resin composite (the thickness of the resin layer was 5 mm), and the average shear strength was as shown in Table 1. Listed.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 10-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.1 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 50% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 10-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.1 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 50% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • a commercially available aluminum plate having a thickness of 1 mm was cut into a rectangular piece of 15 mm ⁇ 80 mm.
  • the rectangular piece is placed in a polishing machine for polishing. Then, it was washed with absolute ethanol, and then immersed in a 2% by weight aqueous sodium hydroxide solution. After 2 minutes, it was taken out and rinsed with deionized water to obtain a pretreated aluminum sheet;
  • the aluminum piece obtained in the step (1) is placed as an anode in a micro-arc oxidation tank having a concentration of 15% by weight of sodium phosphate as an electrolyte, and a graphite carbon plate is used as a cathode at a voltage of 300 V at 20 Electrolyzed at °C for 40 minutes for micro-arc oxidation.
  • the micro-arc oxidized aluminum piece was taken out and blown dry to obtain an aluminum piece having a micro-arc oxidation film on its surface.
  • the cross section of the aluminum piece was observed with a microscope to confirm that the micro-arc oxide film layer had an average thickness of 35 ⁇ m and a microhardness of 1450 HV.
  • the first etching hole having a pore diameter in the range of 10-200 nm was distributed in the micro-arc oxidation film layer, and the depth of the first etching hole was micro-arc oxidation.
  • the ratio of the thickness of the film layer is in the range of 0.1 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of more than 60% is 1:1;
  • the aluminum substrate is divided into a dense base layer and An etching layer having a second etching hole, the etching layer is in contact with the micro-arc oxide film layer, the second etching hole has a pore diameter in the range of 200-2000 nm, and the second etching hole has a depth in the range of 0.1-400 ⁇ m.
  • the injection molding conditions include: the mold temperature is 105 ° C, the nozzle temperature is 300 ° C, the dwell time is 6 seconds, the injection pressure is 110 MPa, the injection time is 4 seconds, and the delay time is 2 seconds.
  • the cooled product was placed in a constant temperature drying oven at 120 ° C for 2.5 h, and then naturally cooled to room temperature with the furnace to obtain a metal-resin composite (the thickness of the resin layer was 5 mm), and the average shear strength was as shown in Table 1. Listed in.
  • the aluminum sheet was subjected to surface treatment in the same manner as in Example 10 to prepare a metal-resin composite, except that in the step (3-1), the etching liquid (the pH was the same as in Example 10) was NaOH and Na. 2 aqueous solution of CO 3 .
  • the first etching hole having a pore diameter in the range of 80-200 nm was distributed in the micro-arc oxidation film layer, and the depth of the first etching hole was micro-arc oxidation.
  • the ratio of the thickness of the film layer is in the range of 0.5-1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of more than 60% is 1:1;
  • the aluminum matrix is divided into a dense base layer and
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • the aluminum sheet was subjected to surface treatment in the same manner as in Example 10 to prepare a metal-resin composite, except that in the step (3-2), the etching liquid (having the same pH as in Example 10) contained Na 2 HPO. 4 and an aqueous solution of H 3 PO 4 .
  • the first etching hole having a pore diameter in the range of 10-200 nm was distributed in the micro-arc oxidation film layer, and the depth of the first etching hole was micro-arc oxidation.
  • the ratio of the thickness of the film layer is in the range of 0.1 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 60% or more is 1:1;
  • the aluminum substrate is divided into a dense base layer and An etching layer having a second etching hole, the etching layer is in contact with the micro-arc oxide film layer, the second etching hole has a pore diameter in the range of 400-2000 nm, and the second etching hole has a depth in the range of 50-200 ⁇ m.
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • a commercially available 5052 aluminum alloy plate having a thickness of 1 mm was cut into a rectangular piece of 15 mm ⁇ 80 mm.
  • the rectangular piece is placed in a polishing machine for polishing. Then, it was washed with absolute ethanol, and then immersed in a 2% by weight aqueous sodium hydroxide solution. After 2 minutes, it was taken out and rinsed with deionized water to obtain a pretreated aluminum alloy sheet.
  • the aluminum alloy sheet obtained in the step (1) is placed as an anode in a micro-arc oxidation tank having a concentration of 20% by weight of sodium oxalate as an electrolytic solution, and a graphite carbon plate is used as a cathode at a voltage of 300 V. Electrolysis was carried out at 20 ° C for 40 minutes for micro-arc oxidation. The micro-arc oxidized aluminum alloy sheet was taken out and blown dry to obtain an aluminum alloy sheet having a micro-arc oxidation film layer on its surface. The cross section of the aluminum alloy sheet was observed with a microscope to confirm that the micro-arc oxide film layer had a thickness of 28 ⁇ m and a microhardness of 1300 HV.
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 10-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.1 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer is more than 1:1; the aluminum alloy substrate is divided into a dense base layer.
  • a corrosion layer having a second etching hole the etching layer is in contact with the micro-arc oxide film layer, the second etching hole has a pore diameter in the range of 200-2000 nm, and the ratio of the second etching hole depth to the thickness of the aluminum alloy substrate is 0.1 -400 ⁇ m range.
  • the aluminum alloy sheet obtained in the step (3-2) is placed in an injection molding mold, and a resin composition containing glass fiber and polyphenylene sulfide is injected on one surface of the aluminum alloy sheet (relative to 100 parts by weight of PPS, glass) The content of the fiber was 40 parts by weight), demolded and cooled.
  • the injection molding conditions include: the mold temperature is 125 ° C, the nozzle temperature is 310 ° C, the dwell time is 6 seconds, the injection pressure is 125 MPa, the injection time is 3 seconds, and the delay time is 2 seconds.
  • the cooled product was placed in a constant temperature drying oven at 125 ° C for 3 h, and then naturally cooled to room temperature with the furnace to obtain a metal-resin composite (the thickness of the resin layer was 5 mm), and the average shear strength was as shown in Table 1. Listed.
  • the aluminum alloy was surface-treated in the same manner as in Example 13 to prepare a metal-resin composite, except that in the step (3-1), the etching liquid (the pH was the same as in Example 13) was NH 4 Cl. And an aqueous solution of NH 3 .
  • the cross section of the aluminum alloy sheet obtained by the step (3-2) was observed by a microscope, and it was found that the first etching hole having a pore diameter in the range of 80-200 nm was distributed in the micro-arc oxidation film layer, and the depth and micro-arc of the first etching hole were distributed.
  • the ratio of the thickness of the oxide film layer is in the range of 0.5 to 1:1, and the ratio of the depth of the first etching hole to the thickness of the micro-arc oxide film layer of 60% or more is 1:1;
  • the aluminum alloy substrate is divided into a dense matrix
  • the average shear strength of the prepared metal-resin composites is listed in Table 1.
  • Example 1 Numbering Average shear strength (MPa) Example 1 17 Example 2 18 Example 3 16 Comparative example 1 0.2 Comparative example 2 4 Comparative example 3 10 Example 4 twenty two Comparative example 4 14 Comparative example 5 6.8 Comparative example 6 5.1 Example 5 23.5
  • Example 6 24.4 Example 7 18 Example 8 15 Example 9 14 Example 10 18 Example 11 twenty four Example 12 19.9 Example 13 twenty two Example 14 27.2
  • Example 1 Comparing Example 1 with Comparative Examples 1-3, it can be seen that in the metal-resin composite prepared by integrally molding the surface-treated metal substrate according to the present invention with a resin, the resin layer and the metal substrate There is a higher average shear strength (i.e., a higher bond strength), and thus the composite has higher structural stability.

Abstract

一种经表面处理的金属基材及其制备方法,所述金属为铝或铝合金,该金属基材包括金属基体以及附着在金属基体的至少部分表面上的微弧氧化膜层,微弧氧化膜层的表面分布有第一腐蚀孔。一种金属-树脂复合体,所述金属为铝或铝合金,该复合体包括金属基材和树脂层(2),所述金属基材为经表面处理的金属基材,所述树脂层(2)附着在所述金属基材的至少部分表面上,所述树脂层中的部分树脂向下延伸并填充于金属基材的腐蚀孔中。金属-树脂复合体能满足对稳定性要求较高的使用场合的要求。

Description

经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法
相关申请的交叉引用
本申请基于申请号为201410820937.3、申请日为2014/12/25的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种经表面处理的金属基材及其制备方法和应用,本发明还涉及一种金属-树脂复合体及其制备方法和应用,本发明进一步涉及一种电子产品外壳及其制备方法。
背景技术
在汽车、家用电器制品、工业机器等的零件制造领域中,需要铝或铝合金与树脂一体化成型技术。
目前常用的将铝或铝合金和树脂相结合的方法是胶合技术。该方法通过化学胶粘剂将铝或铝合金与已成型树脂结合在一起得到复合体。但是,由该方法得到的复合体中,铝或铝合金与树脂的结合力较差,且胶粘剂结合层不耐酸碱,影响复合体的使用场合。另外,由于胶粘剂结合层具有一定的厚度,因而会影响最终产品的尺寸。
针对胶粘剂法存在的上述不足,研究人员开发了其它用于将铝或铝合金与树脂结合的方法。
一种方法是采用胺类物质,例如:氨基甲酸酯、一水合肼、乙二胺等的水溶液对铝或铝合金进行表面腐蚀,以在铝或铝合金表面形成纳米级的微孔,并把胺类物质保留在形成的微孔中,然后将树脂注塑在经处理的表面,通过胺类物质与树脂之间的反应,将树脂与铝或铝合金结合到一起,从而得到具有一定拉伸剪切强度的铝塑一体化产品。但是,采用上述胺类物质对铝或铝合金进行蚀刻,在铝或铝合金表面形成的孔洞太小,树脂难以直接注塑进入纳米级的微孔中,以致难以明显提高铝合金和树脂的结合强度。
另一种方法是采用含无机卤素化合物的酸性蚀刻液直接对铝合金表面进行腐蚀,然后注塑树脂得到铝塑一体化产品。但是,采用这种方法得到的铝塑一体化产品,铝合金与树脂之间的结合强度仍有待于进一步提高。
此外,还可以在铝合金表面进行阳极氧化从而在铝合金表面形成多孔性氧化铝膜层,然后将树脂注塑在具有氧化铝膜层的表面得到铝塑一体化产品。但是,采用该方法得到的铝塑一体化产品中,铝合金和树脂的结合强度也不高。
发明内容
本发明的目的在于克服现有的金属-树脂复合体中,金属基材与树脂层之间的结合强度不高的技术问题。
根据本发明的第一方面,本发明提供了一种经表面处理的金属基材,所述金属为铝或铝合金,该金属基材包括金属基体以及形成于所述金属基体的至少部分表面上的微弧氧化膜层,所述微弧氧化膜层的表面分布有第一腐蚀孔。
根据本发明的第二个方面,本发明提供了一种金属基材的表面处理方法,所述金属为铝或铝合金,该方法包括提供金属基材,所述金属基材包括金属基体以及形成于所述金属基体的至少部分表面的微弧氧化膜层;将所述金属基材进行第一蚀刻,以在所述微弧氧化膜层中形成第一腐蚀孔。
根据本发明的第三个方面,本发明提供了一种由根据本发明的第二个方面的方法制备的经表面处理的金属基材。
根据本发明的第四个方面,本发明提供了一种金属-树脂复合体,所述金属为铝或铝合金,该复合体包括金属基材和树脂层,所述金属基材为本发明提供的经表面处理的金属基材,所述树脂层附着在所述金属基材的至少部分表面上,所述树脂层中的部分树脂向下延伸并填充于金属基材中的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中。
根据本发明的第五个方面,本发明提供了一种金属-树脂复合体的制备方法,所述金属为铝或铝合金,所述金属-树脂复合体包括金属基材以及附着在所述金属基材的至少部分表面的树脂层,所述金属基材为本发明提供的经表面处理的金属基材,该方法包括向金属基材的至少部分表面注入含有树脂的组合物并使部分组合物填充于金属基材的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中,成型后形成树脂层。
根据本发明的第六个方面,本发明提供了一种由根据本发明的第五个方面的方法制备的金属-树脂复合体。
根据本发明的第七个方面,本发明提供了根据本发明的金属-树脂复合体在制备电子产品外壳中的应用。
根据本发明的第八个方面,本发明提供了一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,其中,所述金属壳本体为根据本发明的金属基材。
根据本发明的第九个方面,本发明提供了一种电子产品外壳的制备方法,该方法包括在金属壳本体的至少部分内表面和/或至少部分外表面形成至少一个树脂件,其中,采用根据本发明的金属-树脂复合体的制备方法来形成所述树脂件。
根据本发明的金属-树脂复合体,树脂与金属基材之间的结合强度高,树脂层不易从金属基材表面脱落,因而本发明提供的金属-树脂复合体具有较高的结构稳定性,能够满足对结构稳定性要求较高的使用场合的要求,例如可以作为各种电子产品的外壳。
附图说明
图1为用于示意性地说明根据本发明的手机外壳的剖视图,包括主视图和俯视图;
图2为用于示意性地说明根据本发明的智能表外壳的剖视图。
<附图标记说明>
1:手机金属壳本体 2:树脂层
3:开口           4:智能表金属壳本体
5:树脂内衬层     6:信号元件开口
具体实施方式
本文中,金属可以为纯铝,也可以为铝合金。所述铝合金是指以铝作为基础元素加入其它元素形成的合金,可以为常见的各种铝合金。金属基材是用铝或铝合金形成的各种成型体,根据具体使用要求可以具有各种形状。
根据本发明的第一个方面,本发明提供了一种经表面处理的金属基材,所述金属为铝或铝合金,该金属基材包括金属基体以及形成于所述金属基体的至少部分表面上的微弧氧化膜层,所述微弧氧化膜层的表面分布有第一腐蚀孔。
在经表面处理的金属基材用于与树脂结合以制备金属-树脂复合体时,所述第一腐蚀孔可以用于容纳树脂,从而将树脂锚定在金属基材表面。通过选择第一腐蚀孔的尺寸可以提高树脂与金属基材之间的结合强度。
所述第一腐蚀孔的孔径优选在10-200nm的范围内。在所述第一腐蚀孔的孔径处于上述范围之内时,一方面不会对微弧氧化膜层本身的强度产生不利影响,另一方面在用于制备金属-树脂复合体时,还能将树脂层稳固地锚定在金属基材中,使树脂层与金属基材之间具有较高的结合强度,从而使得金属-树脂复合体具有较高的结构稳定性。从进一步提高由该经表面处理的金属基材与树脂一体化成型而制备的金属-树脂复合体中,金属基材与树脂层之间的结合强度的角度出发,所述第一腐蚀孔的孔径优选在50-200nm的范围内,更优选在80-200nm的范围内,进一步优选在100-200nm的范围内。
本文中,用于说明数值范围的术语“在……的范围内”均包括两个端值。
所述第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值优选在0.1-1:1的范围内,更优选在0.2-1:1的范围内,进一步优选在0.5-1:1的范围内。进一步优选地,至少部分第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1,如优选至少50%、更优选至少60%、进一步优选至少70%的第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。
本文中,腐蚀孔的孔径是指腐蚀孔的上端口(即,位于表面的端口)在径向的最大尺寸,腐蚀孔的深度是指一腐蚀孔的两端之间的垂直距离。腐蚀孔的孔径和深度可以采用电镜法测定。
根据本发明的经表面处理的金属基材,所述金属基体的表面可以不存在腐蚀孔。
在一种优选的实施方式中,所述金属基体包括基体层和腐蚀层,所述基体层与所述腐蚀层为一体结构,所述腐蚀层与所述微弧氧化膜层相接并为一体结构,所述腐蚀层的表面分布有第二腐蚀孔,且至少部分第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。在所述金属基体包括所述基体层和所述腐蚀层时,可以明显提高由该金属基材与树脂一体化成 型而得到的金属-树脂复合体中,金属基材与树脂层之间的结合强度。
本文中,出于清楚的目的,将分布在微弧氧化膜层表面的腐蚀孔称为“第一腐蚀孔”,将分布在与微弧氧化膜层相接的金属基体表面的腐蚀孔称为“第二腐蚀孔”。
在该优选的实施方式中,所述基体层为致密层。即,所述基体层中没有腐蚀孔。
在该优选的实施方式中,所述第二腐蚀孔的孔径优选在200-2000nm的范围内,更优选在300-2000nm的范围内,进一步优选在800-1500nm的范围内,如在1000-1500nm的范围内。所述第二腐蚀孔的深度在0.1-500μm的范围内,优选在10-400μm的范围内,更优选在50-200μm的范围内。
在该优选的实施方式中,至少部分第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1,优选至少50%、更优选至少60%、进一步优选至少70%的第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。在该优选的实施方式中,所述第一腐蚀孔的孔径如前文所述,此处不再详述。
根据本发明的经表面处理的金属基材,所述微弧氧化膜层具有较高的硬度,其显微硬度一般为400-2000HV,在该金属基材用于与树脂结合制备金属-树脂复合体时,与金属基材表面为阳极氧化膜层相比,能够更为牢固地将树脂固定在金属基材中,从而获得更高的结合强度。本发明对于所述微弧氧化膜层的厚度没有特别限定。一般地,所述微弧氧化膜层的厚度可以在0.1-500μm的范围内,优选在1-200μm的范围内,更优选在10-100μm的范围内,进一步优选在15-50μm的范围内。所述微弧氧化膜层未经封孔处理。
根据本发明的第二个方面,本发明提供了一种金属基材的表面处理方法,所述金属为铝或铝合金,该方法包括提供金属基材,所述金属基材包括金属基体以及形成于所述金属基体的至少部分表面的微弧氧化膜层。本文中,“至少部分”表示部分或全部。
可以采用常用的各种方法对金属基材进行微弧氧化从而得到表面具有微弧氧化膜层的金属基材。具体地,可以在微弧氧化条件下,将金属基材置于电解液中,以所述金属基材为阳极,以不与电解液反应的导电材料为阴极,使阴极和阳极分别与电源的正极和负极电连接,通电后,进行微弧氧化,从而在所述金属基材上形成微弧氧化膜层。所述电解液中的电解质可以为选自草酸、磷酸盐、硅酸盐和铝酸盐中的一种或两种以上。所述磷酸盐、硅酸盐和铝酸盐中的阳离子各自可以碱金属离子和/或碱土金属离子,如钠离子。
所述微弧氧化的条件可以根据预期的微弧氧化膜层的厚度进行选择。优选地,进行所述微弧氧化后形成的微弧氧化膜层的厚度为0.1-500μm,优选为1-200μm,更优选为10-100μm,进一步优选为15-50μm。具体地,电压可以为10-800V,优选为100-500V;电解液的温度可以为10-60℃,优选为20-40℃。电解的时间可以根据具体的电解条件进行选择,以使形成的微弧氧化膜层的厚度能够满足要求为准,一般地,所述电解的时间可以为1-60分钟,优选为30-40分钟。
所述金属基材在进行微弧氧化之前优选采用本领域常用的各种方法进行前处理。一般地,所述前处理包括机械打磨或研磨,以去除金属基材表面明显的异物,然后对金属基材依次进行脱脂和清洗,以清除金属基材表面的油脂。
根据本发明的方法,还包括将所述金属基材进行第一蚀刻,以在所述微弧氧化膜层中形成第一腐蚀孔。
进行所述第一蚀刻后形成的所述第一腐蚀孔的孔径优选在10-200nm的范围内,更优选在50-200nm的范围内,进一步优选在80-200nm的范围内,最优选在100-200nm的范围内;所述第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值优选在0.1-1:1的范围内,更优选在0.2-1:1的范围内,进一步优选在0.5-1:1的范围内,并且至少部分第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1,如优选50%以上、更优选60%以上、进一步优选至少70%以上第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。
可以采用常规的各种方法将金属基材进行第一蚀刻,从而在微弧氧化膜层中形成第一腐蚀孔。
在一种实施方式中,所述第一蚀刻包括:将所述金属基材浸泡于碱性蚀刻液中,从而在微弧氧化膜层中形成第一腐蚀孔。
所述碱性蚀刻液可以为常见的能够腐蚀微弧氧化膜层的蚀刻液。优选地,所述蚀刻液为以下两种蚀刻液之一或两种的组合。采用以下两种蚀刻液之一或两种的组合对金属基材进行蚀刻,能够获得较好的蚀刻效果。以下对这两种蚀刻液分别进行说明。
1、所述碱性蚀刻液为含有选自水溶性氢氧化物、水溶性碱性盐、氨、水溶性胺、肼以及一个或多个氢原子被烃基取代的肼衍生物中的一种或两种以上物质的水溶液。
所述水溶性氢氧化物可以为碱金属氢氧化物,优选为氢氧化钠和/或氢氧化钾,更优选为氢氧化钠。
所述水溶性碱性盐是指其水溶液的pH值为大于7的水溶性碱性盐。具体地,所述水溶性碱性盐可以为水溶性碳酸盐、水溶性碳酸氢盐、水溶性磷酸盐、水溶性磷酸一氢盐、水溶性磷酸二氢盐和水溶性硼酸盐中的一种或两种以上。所述水溶性碱性盐可以为碱金属盐,优选为钠盐或钾盐,更优选为钠盐。优选地,所述水溶性碱性盐为Na2CO3、NaHCO3、NaH2PO4、Na2HPO4、Na3PO4和Na2B4O7中的一种或两种以上。
所述水溶性胺可以为常见的各种能够溶解于水的胺。优选地,所述水溶性胺为乙二胺、二乙基胺、乙醇胺、三甲基胺、甲基胺和二甲基胺中的一种或两种以上。
所述肼衍生物是指肼(即,H2N-NH2)分子结构中的一个或多个氢原子被烃基取代形成的化合物,所述烃基优选为C1-C4的烷基,具体可以为一甲基肼和/或1,1-二甲基肼。
所述碱性蚀刻液优选为含有水溶性氢氧化物和/或水溶性碱性盐的水溶液。更优选地,所述碱性蚀刻液为含有水溶性碱性盐的水溶液,水溶性碱性盐优选为Na2CO3和/或NaHCO3,更优选为Na2CO3或NaHCO3
所述碱性蚀刻液的pH值优选在10-13的范围内,这样不仅能获得适宜的蚀刻速度,而且蚀刻过程温和易控。
2、所述碱性蚀刻液为碱性缓冲溶液,这样最终形成的腐蚀孔的分布更为均匀且孔径大小更为集中。
所述碱性蚀刻液可以为含有水溶性氢氧化物以及水溶性碱性盐的水溶液。所述水溶性氢 氧化物和所述水溶性碱性盐的阳离子可以为相同,也可以为不同,优选为相同。
所述水溶性氢氧化物可以为碱金属氢氧化物,优选为氢氧化钠和/或氢氧化钾,更优选为氢氧化钠。
所述水溶性碱性盐可以为水溶性碳酸盐、水溶性碳酸氢盐、水溶性磷酸盐、水溶性磷酸一氢盐、水溶性磷酸二氢盐和水溶性硼酸盐中的一种或两种以上。所述水溶性碱性盐可以为碱金属盐,优选为钠盐或钾盐,更优选为钠盐。优选地,所述水溶性碱性盐为Na2CO3、NaHCO3、NaH2PO4、Na2HPO4、Na3PO4和Na2B4O7中的一种或两种以上。优选地,所述水溶性碱性盐为水溶性磷酸一氢盐和/或水溶性磷酸二氢盐。更优选地,所述水溶性碱性盐为水溶性磷酸二氢盐,如磷酸二氢钠、磷酸二氢钾、磷酸二氢铵和磷酸二氢铝中的一种或两种以上。
所述碱性蚀刻液也可以为含有水溶性正盐以及水溶性酸式盐的水溶液。所述正盐是指阳离子只含有金属离子和/或铵根离子的盐,所述酸式盐是指阳离子除含有金属离子和/或铵根离子外,还含有氢离子的盐。所述水溶性正盐与所述水溶性酸式盐的阳离子和酸根离子各自可以为相同,也可以为不同,优选为相同。
所述碱性蚀刻液优选为含有水溶性碳酸盐和水溶性碳酸氢盐的水溶液,或者为含有水溶性磷酸盐和水溶性磷酸一氢盐的水溶液。具体地,所述碱性蚀刻液可以为含有Na2CO3和NaHCO3的水溶液,或者含有Na3PO4和Na2HPO4的水溶液。
所述碱性蚀刻液还可以为含有氨以及水溶性铵盐的水溶液。所述水溶性铵盐优选为NH4Cl、(NH4)2SO4、NH4HCO3和NH4NO3中的一种或两种以上。具体地,所述碱性蚀刻液可以为含有NH3和NH4Cl的水溶液、含有NH3和(NH4)2SO4的水溶液、含有NH3和NH4HCO3的水溶液或者含有NH3和NH4NO3的水溶液。
所述碱性蚀刻液优选为含有水溶性氢氧化物以及水溶性碱性盐的水溶液,或者为含有水溶性正盐以及水溶性酸式盐的水溶液,更优选为含有水溶性正盐以及水溶性酸式盐的水溶液。
所述碱性蚀刻液优选为pH值为10-13的碱性缓冲溶液,这样能够获得适宜的蚀刻速度,而且蚀刻过程温和易控。
所述第一蚀刻中,碱性蚀刻液的温度可以为10-60℃,优选为20-40℃;第一蚀刻的时间可以为1-60分钟,优选为5-20分钟。
经第一蚀刻在微弧氧化膜层中形成了第一腐蚀孔的金属基材可以直接作为经表面处理的金属基材,与树脂一体化成型,以制备金属-树脂复合体。
在一种更为优选的实施方式中,将经第一蚀刻的金属基材进行第二蚀刻,以在与所述微弧氧化膜层相接的金属基体表面形成第二腐蚀孔。所述第一腐蚀孔与所述第二腐蚀孔贯通。将经第二蚀刻得到的经表面处理的金属基材用于与树脂结合制备金属-树脂复合体时,树脂层与金属基材之间显示出更高的结合强度。
进行所述第二蚀刻后形成的所述第二腐蚀孔的孔径优选在200-2000nm的范围内,更优选在300-2000nm的范围内,进一步优选在800-1500nm的范围内,如在1000-1500nm的范 围内。从进一步提高由该经表面处理的金属基材与树脂一体化成型后形成的金属-树脂复合体中,金属基材与树脂层之间的结合强度的角度出发,进行所述第二蚀刻后形成的所述第二腐蚀孔的深度在1-500μm的范围内,优选在10-400μm的范围内,更优选在50-200μm的范围内。
可以采用各种方法来形成所述第二腐蚀孔。在一种优选的实施方式中,所述第二蚀刻包括:将经第一蚀刻的金属基材浸泡于酸性蚀刻液中。
所述酸性蚀刻液为含有酸的水溶液,所述酸为氢卤酸和/或H3PO4,优选为HCl或H3PO4
优选地,所述酸性蚀刻液还含有一种或两种以上水溶性盐,这样能够进一步提高蚀刻的稳定性。所述水溶性盐的酸根优选为与酸性蚀刻液中含有的酸的酸根相同。例如,在所述酸性蚀刻液为含有氢卤酸的水溶液时,所述酸性蚀刻液优选还含有一种或多种水溶性氢卤酸盐;在所述酸性蚀刻液为含有磷酸的水溶液时,所述酸性蚀刻液优选还含有一种或多种水溶性磷酸盐。具体地,所述酸性蚀刻液为盐酸时,所述水溶性盐优选为NaCl、KCl和AlCl3中的一种或两种以上。所述酸性蚀刻液为磷酸时,所述水溶性盐为水溶性磷酸盐、水溶性磷酸一氢盐和水溶性磷酸二氢盐中的一种或两种以上,如NaH2PO4、Na2HPO4、Na3PO4、KH2PO4、K2HPO4和K3PO4中的一种或两种以上。
所述水溶性盐在所述酸性蚀刻液中的含量随酸性蚀刻液中酸的量而定。一般地,所述水溶性盐与所述酸的摩尔比可以为0.1-1:1,优选为0.2-0.8:1,更优选为0.4-0.6:1。
所述酸性蚀刻液的pH值优选为1-3,这样形成的经表面处理的金属基材中腐蚀孔的分布更为均匀,孔径分布也更为集中,由该金属基材制备的金属-树脂复合体中树脂与金属基材的结合强度更高。
具体地,所述酸性蚀刻液的温度可以为20-30℃,金属基材在所述酸性蚀刻液中的浸泡时间可以为1-60分钟,优选为10-30分钟。
根据本发明的方法,在一个优选的实例中,在所述第一蚀刻中,将所述金属基材浸泡于碱性蚀刻液中;在所述第二蚀刻中,将经第一蚀刻的金属基材浸泡于酸性蚀刻液中。采用这种方式进行蚀刻,在蚀刻过程中蚀刻放热小,蚀刻过程温和易控,形成的第一腐蚀孔和第二腐蚀孔的分布更为均匀,孔尺寸(包括孔径和深度)更为集中;并且,在将由该方法得到的经表面处理的金属基材用于与树脂结合制备金属-树脂复合体时,树脂层与金属基材之间显示出更高的结合强度。
根据本发明的方法,所述第一蚀刻和所述第二蚀刻各自可以只进行一次,也可以分次,每次蚀刻的持续时间没有特别限定,只要总的蚀刻时间满足上述要求即可。在两次蚀刻之间用水进行洗涤,以除去前一次蚀刻残留的蚀刻液。
根据本发明的第三个方面,本发明提供了一种由根据本发明的第二个方面的方法制备的经表面处理的金属基材。
根据本发明的第四个方面,本发明提供了一种金属-树脂复合体,所述金属为铝或铝合金,该复合体包括金属基材和树脂层,所述金属基材为本发明提供的经表面处理的金属基材,所述树脂层附着在所述金属基材的至少部分表面上,树脂层中的部分树脂向下延伸并填充于 金属基材中的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中。所述经表面处理的金属基材及其制备方法在前文已经进行了详细的描述,此处不再详述。
根据本发明的复合体,所述树脂层的厚度可以根据具体的使用场合进行选择。一般地,所述树脂层的厚度可以在0.1-10mm的范围内,优选在0.5-5mm的范围内。本文中,树脂层的厚度是指微弧氧化膜层的上表面至树脂层的上表面之间的垂直距离。
所述树脂层中的主体树脂可以根据具体的使用要求进行选择,只要该树脂能与铝或铝合金结合即可。一般地,所述树脂层中的主体树脂可以选自热塑性树脂,例如可以为聚苯硫醚、聚酯、聚酰胺、聚碳酸酯和聚烯烃中的一种或两种以上。所述聚酯可以为常见的由二羧酸与二醇缩合而成的聚合物,其具体实例可以包括但不限于聚对苯二甲酸丁二醇酯和/或聚对苯二甲酸乙二醇酯。所述聚酰胺可以为常见的由二胺与二羧酸缩合而成的聚合物,其具体实例可以包括但不限于聚己二酰己二胺、聚壬二酰己二胺、聚丁二酰己二胺、聚十二烷二酰己二胺、聚癸二酰己二胺、聚癸二酰癸二胺、聚十一酰胺、聚十二酰胺、聚辛酰胺、聚9-氨基壬酸、聚己内酰胺、聚对苯二甲酰苯二胺、聚间苯二甲酰己二胺、聚对苯二甲酰己二胺和聚对苯二甲酰壬二胺。所述聚烯烃的具体实例可以包括但不限于聚苯乙烯、聚丙烯、聚甲基丙烯酸甲酯和聚(丙烯腈-丁二烯-苯乙烯)。
所述树脂层除含有主体树脂外,还可以含有至少一种填料。所述填料的种类可以根据具体的使用要求进行选择。所述填料可以为纤维型填料和/或粉末型填料。所述纤维型填料可以为选自玻璃纤维、碳纤维和芳族聚酰胺纤维中的一种或两种以上。所述粉末型填料可以为选自碳酸钙、碳酸镁、二氧化硅、重质硫酸钡、滑石粉、玻璃和粘土中的一种或两种以上。所述填料的含量可以为常规选择。一般地,优选地,以100重量份主体树脂为基准,所述填料的含量可以为20-150重量份,优选为25-100重量份,更优选为30-50重量份。
根据本发明的第五个方面,本发明提供了一种金属-树脂复合体的制备方法,所述金属为铝或铝合金,所述金属-树脂复合体包括金属基材以及附着在所述金属基材的至少部分表面的树脂层,所述金属基材为本发明提供的经表面处理的金属基材,该方法包括向金属基材的至少部分表面注入含有树脂的组合物并使部分组合物填充于金属基材的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中,成型后形成树脂层。
所述含树脂的组合物中的树脂(以下称为主体树脂)与前文所述树脂层中的主体树脂的种类相同,此处不再详述。所述含树脂的组合物除含有主体树脂外,还可以含有至少一种填料和/或至少一种流动性改进剂。所述填料的种类与前文所述树脂层中的填料的种类相同,此处不再详述。
所述填料的含量可以为常规选择。一般地,以100重量份主体树脂为基准,所述填料的含量可以为20-150重量份,优选为25-100重量份,更优选为30-50重量份。
所述流动性改进剂用于提高主体树脂的流动能力,进一步提高金属基材与树脂之间的结合强度以及树脂的加工性能。所述流动性改进剂可以为各种能够实现上述效果的物质,优选为环状聚酯。
所述流动性改进剂的用量以能够提高主体树脂的流动能力为准。优选地,相对于100重 量份主体树脂,所述流动性改进剂的含量为1-5重量份。
所述含树脂的组合物根据具体使用要求还可以含有常见的各种助剂,如着色剂和/或抗氧剂,以改善最终形成的金属-树脂复合体中树脂层的性能或者赋予所述树脂层以新的性能。
含树脂的组合物可以通过将主体树脂、任选的填料、任选的流动性改进剂以及任选的助剂混合均匀而获得。一般地,可以将主体树脂、任选的填料、任选的流动性改进剂以及任选的助剂混合均匀,并进行挤出造粒而得到。
可以采用常用的各种方法向金属基材的蚀刻表面注入所述含树脂的组合物。在本发明的一种优选的实施方式中,将所述金属基材置于模具中,通过注塑的方法注入所述含树脂的组合物。
所述注塑的条件可以根据含树脂的组合物中主体树脂的种类进行选择。优选地,所述注塑的条件包括:模具温度为50-300℃,喷嘴温度为200-450℃,保压时间为1-50秒,射出压力为50-300MPa,射出时间为1-30秒,延迟时间为1-30秒。
所述含树脂的组合物的注入量可以根据预期的树脂层厚度进行选择。一般地,所述含树脂的组合物的注入量使得形成的树脂层的厚度可以为0.1-10mm,优选为0.5-5mm。
根据本发明的方法,仅在金属基材的部分表面形成树脂层时,可以对无需形成树脂层的表面进行处理,以除去表面孔洞以及由于蚀刻而引起的表面颜色变化,该处理可以在注塑成型步骤之前进行,也可以在注塑成型步骤之后进行,没有特别限定。
根据本发明的第六个方面,本发明还提供了一种由根据本发明的第五个方面的方法制备的金属-树脂复合体。
根据本发明的第七个方面,本发明提供了根据本发明的金属-树脂复合体在制备电子产品外壳中的应用。
根据本发明的第八个方面,本发明提供了一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,其中,所述金属壳本体为根据本发明的金属基材。本发明中,所述外壳不仅包括为片状结构的外壳,也包括各种框架结构,如外框。
根据本发明的电子产品外壳,根据具体需要,所述金属壳本体上可以设置有至少一个开口,以在该开口的对应位置安装电子产品的需要避开金属壳本体的元件。在一种实施方式中,由于金属对电磁信号具有屏蔽作用,因此至少部分开口的位置可以对应于信号发射元件和/或信号接受元件的安装位置,此时所述开口位置优选设置树脂件,并使所述树脂件中的部分树脂填充于所述开口中,信号发射元件和/或信号接受元件可以安装在所述树脂件上。
根据本发明的电子产品外壳,所述金属壳本体可以为一体结构,也可以为拼接结构。所述拼接结构是指所述金属壳本体包括相互断开的至少两个部分,两个部分相互拼接在一起形成金属壳本体。
在所述金属壳本体为拼接结构时,相邻两个部分可以用胶粘剂粘结在一起。在一种优选的实施方式中,相邻两部分的拼接位置设置有所述树脂件,该树脂件分别与相邻两部分搭接并覆盖所述拼接位置(即该树脂件桥接该相邻两部分),这样能够提高拼接位置的结合强度; 并且,可以根据电子产品的内部结构,将金属壳本体分成多个部分,所述树脂件在起到使金属壳本体形成为一个整体的作用的同时,还能用作一些电子元件的安装基体。
根据本发明的电子产品外壳,所述金属壳本体的至少部分外表面可以附着有树脂件,所述树脂件可以覆盖整个外表面,也可以覆盖金属壳本体的部分外表面以形成图案,例如装饰性图案。
根据本发明的电子产品外壳,所述金属壳本体的内表面附着有树脂件时,所述树脂件可以设置在需要的一个或多个位置。在一种优选的实施方式中,所述树脂件附着于所述金属壳本体的整个内表面,此时所述树脂件优选为一体结构。根据该优选的实施方式,特别适用于金属壳本体为拼接结构的场合。
根据本发明的电子产品外壳,可以为各种需要以金属作为外壳的电子产品外壳,例如:移动终端的外壳或者外框,可穿戴电子设备的外壳或者外框。所述移动终端是指可以处于移动状态且具有无线传输功能的设备,例如:移动电话、便携式电脑(包括笔记本电脑和平板电脑)。所述可穿戴电子设备是指智能化的穿戴设备,例如:智能表、智能手环。所述电子产品具体可以为但不限于移动电话、便携式电脑(如笔记本电脑和平板电脑)、智能表和智能手环中的一种或两种以上。
图1示出了所述电子产品外壳为手机外壳时的一种实施方式的主视图和俯视图。如图1所示,在手机金属壳本体1上开设有多个开口3,开口3的位置可以对应于安装天线的位置以及安装各种按键的位置。树脂层2附着在手机金属壳本体1的整个内表面,树脂层2为一体结构并且树脂层2中的部分树脂填充于开口3中。
图2示出了所述电子产品外壳为智能表的外壳的一种实施方式的主视图。如2所示,智能表金属壳本体4上设置有对应于安装信号发射元件和/或信号接收元件的信号元件开口6,智能表金属壳本体4的内表面附着有树脂内衬层5,树脂内衬层5中的部分树脂填充在信号元件开口6中,信号元件可以安装在树脂内衬层5上的相应位置。
根据本发明的第九个方面,本发明提供了一种电子产品外壳的制备方法,该方法包括在金属壳本体的至少部分内表面和/或至少部分外表面形成至少一个树脂件,其中,采用根据本发明的金属-树脂复合体的制备方法来形成所述树脂件。
以下结合实施例详细说明本发明,但并不因此限定本发明的范围。
以下实施例和对比例中,参照ASTM D1002-10规定的方法,在INSTRON 3369型万能试验机上测定金属-树脂复合体中金属基体与树脂层之间的平均剪切强度。
以下实施例和对比例中,采用购自ZEISS的型号为Axio Imager Alm的金相显微镜测定阳极氧化膜层的厚度以及腐蚀孔的深度(对同一样品的五个不同位置进行观察,测定视野范围内出现的全部腐蚀孔的深度),采用购自日本电子株式会社的型号为JSM-7600F的扫描电子显微镜测定腐蚀孔的孔径(对同一样品的五个不同位置进行观察,测定视野范围内出现的全部腐蚀孔的孔径)。
以下实施例和对比例中,采用购自上海光学仪器一厂的型号为HX-1000TM/LCD显微硬度计测定微弧氧化膜层的显微硬度。
实施例1-14用于说明本发明。
实施例1
(1)将市售厚度为1mm的5052铝合金板切成15mm×80mm的长方形片。将长方形片放入抛光机内进行抛光。接着用无水乙醇洗净,然后浸泡于浓度为2重量%的氢氧化钠水溶液中,2min后取出用去离子水冲洗干净,得到经过前处理的铝合金片。
(2)将步骤(1)得到的铝合金片作为阳极放入以浓度为20重量%的硅酸钠水溶液作为电解液的微弧氧化槽中,以石墨碳板作为阴极,在100V的电压下,在20℃电解30分钟,以进行微弧氧化。将经微弧氧化的铝合金片取出并吹干,得到表面具有微弧氧化膜层的铝合金片。用显微镜对该铝合金片的横截面进行观察,确定微弧氧化膜层的平均厚度17μm,显微硬度为1000HV。
(3)将步骤(2)得到的表面具有微弧氧化膜层的铝合金片浸泡于温度为25℃的作为蚀刻液的含有NaHCO3的水溶液(pH=12)中。15分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝合金片。
采用显微镜观察步骤(3)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在50-200nm范围内的腐蚀孔,该腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1。
(4)将步骤(3)得到的铝合金片置于注射成型模具中,在铝合金片的一个表面注塑含有玻璃纤维和聚苯硫醚(PPS)的树脂组合物(相对于100重量份PPS,玻璃纤维的含量为30重量份),脱模并冷却。其中,注塑条件包括:模具温度为120℃,喷嘴温度为305℃,保压时间为5秒,射出压力为120MPa,射出时间为5秒,延迟时间为3秒。
将冷却后的产品放入120℃的恒温干燥箱中保温1.5h,然后随炉自然冷却至室温,制得金属-树脂复合体(树脂层的厚度为5mm),其平均剪切强度在表1中列出。
实施例2
采用与实施例1相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(2)中,使用的电解液为浓度为20重量%的磷酸钠水溶液,电压为80V,电解液的温度为20℃。
用显微镜对步骤(2)得到的铝合金片的横截面进行观察,确定微弧氧化膜层的平均厚度为15μm。采用显微镜观察步骤(3)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在50-200nm范围内的腐蚀孔,该腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例3
采用与实施例1相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的 是,步骤(3)中,蚀刻液为NaOH的水溶液(pH=13)。
采用显微镜观察步骤(3)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的腐蚀孔,该腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,50%以上的腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
对比例1
(1)采用与实施例1步骤(1)相同的方法制备经过前处理的铝合金片。
(2)采用与实施例1步骤(4)相同的方法将树脂组合物注塑在对比例1步骤(1)得到的铝合金片的表面,形成树脂层,从而得到金属-树脂复合体,其平均剪切强度在表1中列出。
对比例2
(1)采用与实施例1步骤(1)相同的方法制备经过前处理的铝合金片。
(2)采用与实施例1步骤(2)相同的方法将对比例2步骤(1)得到的铝合金片进行微弧氧化。
(3)采用与实施例1步骤(4)相同的方法将树脂组合物注塑在对比例2步骤(2)得到的铝合金片的表面,形成树脂层,从而得到金属-树脂复合体,其平均剪切强度在表1中列出。
对比例3
(1)采用与实施例1步骤(1)相同的方法制备经过前处理的铝合金片。
(2)将步骤(1)得到的铝合金片采用以下方法进行阳极氧化,得到经阳极氧化的铝合金片:
将步骤(1)得到的铝合金片作为阳极放入以浓度为20重量%的H2SO4水溶液作为电解液的阳极氧化槽中,以石墨碳板作为阴极,在15V的电压下,在20℃电解10分钟。将经阳极氧化的铝合金片取出并吹干,得到表面具有阳极氧化膜层的铝合金片。用显微镜对该铝合金片的横截面进行观察,确定阳极氧化膜层的平均厚度为18μm,显微硬度为200HV。
(3)将步骤(2)得到的表面具有阳极氧化膜层的铝合金片浸泡于温度为25℃的含有NaHCO3的水溶液(pH=12)中。10分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝合金片。
采用显微镜观察步骤(3)得到的铝合金片的横截面,发现:阳极氧化膜层中分布有孔径在50-200nm范围内的腐蚀孔,该腐蚀孔的深度与阳极氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的腐蚀孔的深度与阳极氧化膜层的厚度的比值为1:1。
(4)采用与实施例1步骤(4)相同的方法制备金属-树脂复合体,其平均剪切强度在表1中列出。
实施例4
采用与实施例1相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3)分为步骤(3-1)和步骤(3-2),在步骤(3-1)中采用与实施例1步骤(3)相同的方法对经微弧氧化的铝合金片进行蚀刻,在步骤(3-2)中采用酸性蚀刻液对步骤(3-1)得到的经碱蚀刻的铝合金片进行蚀刻,步骤(3-2)具体如下:
将步骤(3-1)得到的经碱蚀刻的铝合金片浸泡于温度为20℃的作为蚀刻液的盐酸(pH=1)中。15分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经酸蚀刻的铝合金片。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在50-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
对比例4
采用与实施例4相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(2)采用与对比例3步骤(2)相同的方法在铝合金片表面形成阳极氧化膜层;
步骤(3-1)中,将步骤(2)得到的表面具有阳极氧化膜层的铝合金片浸泡于温度为25℃的含有NaHCO3的水溶液(pH=12)中。10分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝合金片;
步骤(3-2)中,将步骤(3-1)得到的经碱蚀刻的铝合金片浸泡于温度为20℃的盐酸(pH=1)中。15分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经酸蚀刻的铝合金片。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:阳极氧化膜层中分布有孔径在50-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与阳极氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的第一腐蚀孔的深度与阳极氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与阳极氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
对比例5
采用与实施例1相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3)分为步骤(3-1)和步骤(3-2),在步骤(3-1)中采用与实施例4中的步骤(3-2)相同的方法对经微弧氧化的铝合金片进行蚀刻,在步骤(3-2)中采用与实施例1步骤(3) 相同的方法对经酸蚀刻的铝合金片进行蚀刻。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在50-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在500-4500nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
对比例6
采用与实施例1相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3)中采用与实施例4步骤(3-2)相同的方法对经微弧氧化的铝合金片进行蚀刻。
采用显微镜观察步骤(3)得到的铝合金片的横截面,发现:微弧氧化膜层中基本不存在腐蚀孔;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在500-4500nm范围内,第二腐蚀孔的深度在0.01-500μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例5
采用与实施例4相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3-2)中,蚀刻液为含有NaCl的盐酸(pH=1),NaCl与HCl的摩尔比为0.5:1。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在50-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.3-1:1的范围内,50%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在400-2000nm范围内,第二腐蚀孔的深度在50-200μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例6
采用与实施例4相同的方法对铝合金片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3-1)中,蚀刻液为含有Na2CO3和NaHCO3的水溶液(pH=12)。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在100-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.7-1:1的范围内,70%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在1000-1500nm范围内,第二腐蚀孔的深度在10-300:1的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例7
(1)将市售厚度为1mm的5052铝合金板切成15mm×80mm的长方形片。将长方形片放入抛光机内进行抛光。接着用无水乙醇洗净,然后浸泡于浓度为2重量%的氢氧化钠水溶液中,2min后取出用去离子水冲洗干净,得到经过前处理的铝合金片。
(2)将步骤(1)得到的铝合金片作为阳极放入以浓度为15重量%的硅酸钠作为电解液的微弧氧化槽中,以石墨碳板作为阴极,在300V的电压下,在20℃电解40分钟,进行微弧氧化。将经微弧氧化的铝合金片取出并吹干,得到表面具有微弧氧化膜层的铝合金片。用显微镜对该铝合金片的横截面进行观察确定微弧氧化膜层的平均厚度为30μm,显微硬度为1200HV。
(3-1)将步骤(2)得到的表面具有微弧氧化膜层的铝合金片浸泡于温度为25℃的作为蚀刻液的Na3PO4和NaH2PO4的水溶液(pH=12)中。15分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝合金片。
(3-2)将步骤(3-1)得到的经碱蚀刻的铝合金片浸泡于温度为30℃的盐酸(pH=2)中。20分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经酸蚀刻的铝合金片。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在100-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.5-1:1的范围内,60%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在1000-1500nm范围内,第二腐蚀孔的深度在10-300μm的范围内。
(4)将步骤(3-2)得到的铝合金片置于注射成型模具中,在铝合金片的一个表面注塑含有玻璃纤维和尼龙-66(即,PA-66)的树脂组合物(相对于100重量份PA-66,玻璃纤维的含量为45重量份),脱模并冷却。其中,注塑条件包括:模具温度为100℃,喷嘴温度为300℃,保压时间为8秒,射出压力为100MPa,射出时间为4秒,延迟时间为2秒。
将冷却后的产品放入100℃的恒温干燥箱中保温2h,然后随炉自然冷却至室温,制得金属-树脂复合体(树脂层的厚度为5mm),其平均剪切强度在表1中列出。
实施例8
采用与实施例7相同的方法对铝合金进行表面处理并制备铝合金-树脂复合体,不同的是,步骤(3-1)中,蚀刻液为乙二胺的水溶液(pH=12)。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,50%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例9
采用与实施例7相同的方法对铝合金进行表面处理并制备铝合金-树脂复合体,不同的是,步骤(3-1)中,蚀刻液为肼的水溶液(pH=12)中。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,50%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例10
(1)将市售厚度为1mm的铝板切成15mm×80mm的长方形片。将长方形片放入抛光机内进行抛光。接着用无水乙醇洗净,然后浸泡于浓度为2重量%的氢氧化钠水溶液中,2min后取出用去离子水冲洗干净,得到经过前处理的铝片;
(2)将步骤(1)得到的铝片作为阳极放入以浓度为15重量%的磷酸钠作为电解液的微弧氧化槽中,以石墨碳板作为阴极,在300V的电压下,在20℃电解40分钟,以进行微弧氧化。将经微弧氧化的铝片取出并吹干,得到表面具有微弧氧化膜的铝片。用显微镜对该铝片的横截面进行观察确定微弧氧化膜层的平均厚度为35μm,显微硬度为1450HV。
(3-1)将步骤(2)得到的表面具有微弧氧化膜层的铝片浸泡于温度为25℃的作为蚀刻液的NaOH水溶液(pH=13)中。5分钟后将铝片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝片。
(3-2)将步骤(3-1)得到的经碱蚀刻的铝片浸泡于温度为30℃的磷酸(pH=2)中。30分钟后将铝片取出,在水中浸泡1分钟,然后取出吹干,得到经酸蚀刻的铝片。
采用显微镜观察步骤(3-2)得到的铝片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,60%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度在0.1-400μm的范围内。
(4)将步骤(3-2)得到的铝片置于注射成型模具中,在铝片的一个表面注塑含有玻璃纤维和聚对苯二甲酸乙二醇酯(PET)的树脂组合物(相对于100重量份PET,玻璃纤维的含量为50重量份),脱模并冷却。其中,注塑条件包括:模具温度为105℃,喷嘴温度为300℃,保压时间为6秒,射出压力为110MPa,射出时间为4秒,延迟时间为2秒。
将冷却后的产品放入120℃的恒温干燥箱中保温2.5h,然后随炉自然冷却至室温,制得金属-树脂复合体(树脂层的厚度为5mm),其平均剪切强度在表1中列出。
实施例11
采用与实施例10相同的方法对铝片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3-1)中,蚀刻液(pH值与实施例10相同)为含有NaOH和Na2CO3的水溶液。
采用显微镜观察步骤(3-2)得到的铝片的横截面,发现:微弧氧化膜层中分布有孔径在80-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.5-1:1的范围内,60%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在1000-1500nm范围内,第二腐蚀孔的深度在10-300μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例12
采用与实施例10相同的方法对铝片进行表面处理并制备金属-树脂复合体,不同的是,步骤(3-2)中,蚀刻液(pH值与实施例10相同)为含有Na2HPO4和H3PO4的水溶液。
采用显微镜观察步骤(3-2)得到的铝片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,60%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比为1:1;铝基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在400-2000nm范围内,第二腐蚀孔的深度在50-200μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
实施例13
(1)将市售厚度为1mm的5052铝合金板切成15mm×80mm的长方形片。将长方形片放入抛光机内进行抛光。接着用无水乙醇洗净,然后浸泡于浓度为2重量%的氢氧化钠水溶液中,2min后取出用去离子水冲洗干净,得到经过前处理的铝合金片。
(2)将步骤(1)得到的铝合金片作为阳极放入以浓度为20重量%的草酸钠作为电解液的微弧氧化槽中,以石墨碳板作为阴极,在300V的电压下,在20℃电解40分钟,以进行微弧氧化。将经微弧氧化的铝合金片取出并吹干,得到表面具有微弧氧化膜层的铝合金片。用显微镜对该铝合金片的横截面进行观察确定微弧氧化膜层的厚度为28μm,显微硬度为1300HV。
(3-1)将步骤(2)得到的表面具有微弧氧化膜层的铝合金片浸泡于温度为25℃的作为蚀刻液的氨水(pH=12)中。20分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经碱蚀刻的铝合金片。
(3-2)将步骤(3-1)得到的经碱蚀刻的铝合金片浸泡于温度为25℃的盐酸(pH=2)中。10分钟后将铝合金片取出,在水中浸泡1分钟,然后取出吹干,得到经酸蚀刻的铝合金片。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在10-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.1-1:1的范围内,50%以上第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在200-2000nm范围内,第二腐蚀孔的深度与铝合金基体的厚度的比值在0.1-400μm的范围内。
(4)步骤(3-2)得到的铝合金片置于注射成型模具中,在铝合金片的一个表面注塑含有玻璃纤维和聚苯硫醚的树脂组合物(相对于100重量份PPS,玻璃纤维的含量为40重量份),脱模并冷却。其中,注塑条件包括:模具温度为125℃,喷嘴温度为310℃,保压时间为6秒,射出压力为125MPa,射出时间为3秒,延迟时间为2秒。
将冷却后的产品放入125℃的恒温干燥箱中保温3h,然后随炉自然冷却至室温,制得金属-树脂复合体(树脂层的厚度为5mm),其平均剪切强度在表1中列出。
实施例14
采用与实施例13相同的方法对铝合金进行表面处理并制备金属-树脂复合体,不同的是,步骤(3-1)中,蚀刻液(pH值与实施例13相同)为含有NH4Cl和NH3的水溶液。
采用显微镜观察步骤(3-2)得到的铝合金片的横截面,发现:微弧氧化膜层中分布有孔径在80-200nm范围内的第一腐蚀孔,第一腐蚀孔的深度与微弧氧化膜层的厚度的比值在0.5-1:1的范围内,60%以上的第一腐蚀孔的深度与微弧氧化膜层的厚度的比值为1:1;铝合金基体分为致密的基体层和具有第二腐蚀孔的腐蚀层,腐蚀层与微弧氧化膜层相接,第二腐蚀孔的孔径在1000-1500nm范围内,第二腐蚀孔的深度在20-300μm的范围内。
制备的金属-树脂复合体的平均剪切强度在表1中列出。
表1
编号 平均剪切强度(MPa)
实施例1 17
实施例2 18
实施例3 16
对比例1 0.2
对比例2 4
对比例3 10
实施例4 22
对比例4 14
对比例5 6.8
对比例6 5.1
实施例5 23.5
实施例6 24.4
实施例7 18
实施例8 15
实施例9 14
实施例10 18
实施例11 24
实施例12 19.9
实施例13 22
实施例14 27.2
将实施例1与对比例1-3进行比较可以看出,将根据本发明的经表面处理的金属基材与树脂一体化成型而制备的金属-树脂复合体中,树脂层与金属基材之间具有更高的平均剪切强度(即,具有更高的结合强度),因而复合体具有更高的结构稳定性。

Claims (39)

  1. 一种经表面处理的金属基材,所述金属为铝或铝合金,该金属基材包括金属基体以及形成于所述金属基体的至少部分表面上的微弧氧化膜层,所述微弧氧化膜层的表面分布有第一腐蚀孔。
  2. 根据权利要求1所述的经表面处理的金属基材,其中,所述第一腐蚀孔的孔径在10-200nm的范围内,优选在50-200nm的范围内,更优选在80-200nm的范围内,进一步优选在100-200nm的范围内;所述第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值在0.1-1:1的范围内,优选在0.2-1:1的范围内,更优选在0.5-1:1的范围内。
  3. 根据权利要求1或2所述的经表面处理的金属基材,其中,至少部分第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1,优选50%以上的第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。
  4. 根据权利要求1-3中任意一项所述的经表面处理的金属基材,其中,所述金属基体包括基体层和腐蚀层,所述基体层与所述腐蚀层为一体结构,所述腐蚀层与所述微弧氧化膜层相接并为一体结构,所述腐蚀层的表面分布有第二腐蚀孔。
  5. 根据权利要求4所述的经表面处理的金属基材,其中,所述第二腐蚀孔的孔径在200-2000nm的范围内,优选在300-2000nm的范围内,更优选在800-1500nm的范围内。
  6. 根据权利要求4或5所述的经表面处理的金属基材,其中,所述第二腐蚀孔的深度在0.1-500μm的范围内,优选在10-400μm的范围内,更优选在50-200μm的范围内。
  7. 根据权利要求4-6中任意一项所述的经表面处理的金属基材,其中,所述基体层为致密层。
  8. 根据权利要求1-7中任意一项所述的经表面处理的金属基材,其中,所述微弧氧化膜层的厚度在0.1-500μm的范围内。
  9. 一种金属基材的表面处理方法,所述金属为铝或铝合金,该方法包括提供金属基材,所述金属基材包括金属基体以及形成于所述金属基体的至少部分表面的微弧氧化膜层;将所述金属基材进行第一蚀刻,以在所述微弧氧化膜层中形成第一腐蚀孔。
  10. 根据权利要求9所述的方法,其中,进行所述第一蚀刻后形成的所述第一腐蚀孔的孔径在10-200nm的范围内,优选在50-200nm的范围内,更优选在80-200nm的范围内,进一步优选在100-200nm的范围内;所述第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值在0.1-1:1的范围内,优选在0.2-1:1的范围内,更优选在0.5-1:1的范围内。
  11. 根据权利要求9或10所述的方法,其中,进行所述第一蚀刻后形成的至少部分第 一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1,优选50%以上的第一腐蚀孔的深度与所述微弧氧化膜层的厚度的比值为1:1。
  12. 根据权利要求9-11中任意一项所述的方法,其中,所述第一蚀刻包括:将所述金属基材浸泡于碱性蚀刻液中。
  13. 根据权利要求12所述的方法,其中,所述碱性蚀刻液为含有选自水溶性氢氧化物、水溶性碱性盐、氨、水溶性胺、肼以及一个或多个氢原子被烃基取代的肼衍生物中的一种或两种以上物质的水溶液。
  14. 根据权利要求13所述的方法,其中,所述水溶性氢氧化物选自碱金属氢氧化物,优选为氢氧化钠和/或氢氧化钾;和/或
    所述水溶性碱性盐选自水溶性碳酸盐、水溶性碳酸氢盐、水溶性磷酸盐、水溶性磷酸一氢盐、水溶性磷酸二氢盐和水溶性硼酸盐,优选选自Na2CO3、NaHCO3、NaH2PO4、Na2HPO4、Na3PO4和Na2B4O7;和/或
    所述水溶性胺选自乙二胺、二乙基胺、乙醇胺、三甲基胺、甲基胺和二甲基胺;和/或
    所述肼衍生物选自一甲基肼和1,1-二甲基肼。
  15. 根据权利要求12所述的方法,其中,所述碱性蚀刻液为碱性缓冲溶液。
  16. 根据权利要求12所述的方法,其中,所述碱性蚀刻液为含有水溶性氢氧化物以及水溶性碱性盐的水溶液,或者所述碱性蚀刻液为含有水溶性正盐以及水溶性酸式盐的水溶液,或者所述碱性蚀刻液为含有氨以及水溶性铵盐的水溶液。
  17. 根据权利要求16所述的方法,其中,所述水溶性氢氧化物为氢氧化钠和/或氢氧化钾;所述水溶性碱性盐为水溶性碳酸盐、水溶性碳酸氢盐、水溶性磷酸盐、水溶性磷酸一氢盐、水溶性磷酸二氢盐和水溶性硼酸盐中的一种或两种以上,优选为水溶性磷酸二氢盐,更优选为磷酸二氢钠、磷酸二氢钾、磷酸二氢铵和磷酸二氢铝中的一种或两种以上。
  18. 根据权利要求16所述的方法,其中,所述碱性蚀刻液为含有水溶性碳酸盐和水溶性碳酸氢盐的水溶液,或者为含有水溶性磷酸盐和水溶性磷酸一氢盐的水溶液。
  19. 根据权利要求16所述的方法,其中,所述水溶性铵盐选自NH4Cl、(NH4)2SO4、NH4HCO3和NH4NO3
  20. 根据权利要求12-19中任意一项所述的方法,其中,所述碱性蚀刻液的pH值为10-13。
  21. 根据权利要求12-20中任意一项所述的方法,其中,所述碱性蚀刻液的温度为10-60℃,优选为20-40℃;所述第一蚀刻的时间为1-60分钟,优选为5-20分钟。
  22. 根据权利要求9-21中任意一项所述的方法,其中,该方法还包括将经第一蚀刻的 金属基材进行第二蚀刻,以在与所述微弧氧化膜层相接的金属基体表面形成第二腐蚀孔。
  23. 根据权利要求22所述的方法,其中,进行所述第二蚀刻后形成的所述第二腐蚀孔的孔径在200-2000nm的范围内,优选在300-2000nm的范围内,更优选在800-1500nm的范围内。
  24. 根据权利要求22或23所述的方法,其中,进行所述第二蚀刻后形成的所述第二腐蚀孔的深度在0.1-500μm的范围内,优选在10-400μm的范围内,更优选在50-200μm的范围内。
  25. 根据权利要求22-24中任意一项所述的方法,其中,所述第二蚀刻包括:将经第一蚀刻的金属基材浸泡于酸性蚀刻液中。
  26. 根据权利要求25所述的方法,其中,所述酸性蚀刻液为含有酸的水溶液,所述酸为氢卤酸和/或H3PO4,优选为HCl或H3PO4
  27. 根据权利要求25或26所述的方法,其中,所述酸性蚀刻液还含有一种或两种以上水溶性盐,所述水溶性盐为水溶性氢卤酸盐和/或水溶性磷酸盐。
  28. 根据权利要求27所述的方法,其中,所述水溶性盐与所述酸的摩尔比为0.1-1:1,优选为0.2-0.8:1,更优选为0.4-0.6:1。
  29. 根据权利要求25-28中任意一项所述的方法,其中,所述酸性蚀刻液的pH值为1-3。
  30. 根据权利要求25-29中任意一项所述的方法,其中,所述酸性蚀刻液的温度为20-30℃,所述第二蚀刻的时间为1-60分钟,优选为10-30分钟。
  31. 根据权利要求9-30中任意一项所述的方法,其中,提供金属基材的方法包括:将金属基材置于电解液中进行微弧氧化,所述电解液中的电解质为选自草酸、磷酸盐、硅酸盐和铝酸盐中的一种或两种以上,所述微弧氧化的条件包括:电压为10-800V,优选为100-500V;时间为1-60分钟,优选为30-40分钟;电解液的温度为10-60℃,优选为20-40℃。
  32. 根据权利要求9-31中任意一项所述的方法,其中,所述微弧氧化膜层的厚度在0.1-500μm的范围内。
  33. 权利要求9-32中任意一项所述的方法制备的经表面处理的金属基材。
  34. 一种金属-树脂复合体,所述金属为铝或铝合金,该复合体包括金属基材和树脂层,所述金属基材为权利要求1-8和33中任意一项所述的经表面处理的金属基材,所述树脂层附着在所述金属基材的至少部分表面上,所述树脂层中的部分树脂向下延伸并填充于金属基材中的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中。
  35. 一种金属-树脂复合体的制备方法,所述金属为铝或铝合金,所述金属-树脂复合体包括金属基材以及附着在所述金属基材的至少部分表面的树脂层,所述金属基材为权利要求 1-8和33中任意一项所述的经表面处理的金属基材,该方法包括向金属基材的至少部分表面注入含有树脂的组合物并使部分组合物填充于金属基材的第一腐蚀孔或者第一腐蚀孔和第二腐蚀孔中,成型后形成树脂层。
  36. 权利要求35所述的方法制备的金属-树脂复合体。
  37. 权利要求34或者权利要求36所述的金属-树脂复合体在制备电子产品壳体中的应用。
  38. 一种电子产品外壳,该外壳包括金属壳本体以及附着于所述金属壳本体的至少部分内表面和/或至少部分外表面的至少一个树脂件,其特征在于,所述金属壳本体为权利要求1-8中任意一项所述的金属基材。
  39. 一种电子产品外壳的制备方法,该方法包括在金属壳本体的至少部分内表面和/或至少部分外表面形成至少一个树脂件,其特征在于,采用权利要求35所述的方法形成所述树脂件。
PCT/CN2015/093246 2014-12-25 2015-10-29 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法 WO2016101705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410820937.3A CN105522781A (zh) 2014-12-25 2014-12-25 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法
CN201410820937.3 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016101705A1 true WO2016101705A1 (zh) 2016-06-30

Family

ID=55765462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093246 WO2016101705A1 (zh) 2014-12-25 2015-10-29 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法

Country Status (2)

Country Link
CN (1) CN105522781A (zh)
WO (1) WO2016101705A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055346A1 (en) * 2018-04-20 2022-02-24 Taisei Plas Co., Ltd. Method for manufacturing a composite of aluminum alloy
CN115558886A (zh) * 2022-09-13 2023-01-03 首钢集团有限公司 一种耐腐蚀的高碳钢防护膜层及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108262915A (zh) * 2016-12-30 2018-07-10 广州光宝移动电子部件有限公司 具有不锈钢材料与塑料材料的复合结构及其制造方法
WO2018129996A1 (zh) * 2017-01-10 2018-07-19 广东长盈精密技术有限公司 材料的表面处理方法、材料制品及复合体材料
CN107187143B (zh) * 2017-05-11 2019-12-17 歌尔股份有限公司 一种金属和塑料的复合体及其制备方法
CN107443657A (zh) * 2017-06-26 2017-12-08 安徽雷萨重工机械有限公司 一种铝合金工件耐热防晒表面处理方法
CN108313087A (zh) * 2017-12-13 2018-07-24 浙江大学 一种涡流轨道制动系统用磨耗板及其制造方法
CN108624992B (zh) * 2018-06-08 2020-10-09 四川理工学院 一种螺旋纳米碳纤维及其制备方法
CN108754359B (zh) * 2018-06-20 2020-05-12 东阳市华科机电有限公司 一种电动汽车电机壳体的制造方法
CN108754360B (zh) * 2018-06-20 2020-06-26 湖北精洲铝业有限公司 一种颗粒增强铝合金新能源汽车电机壳体
CN110438546B (zh) * 2019-08-21 2021-02-19 大连理工大学 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286909A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103290450A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及铝合金树脂复合体
CN103448201A (zh) * 2012-05-28 2013-12-18 比亚迪股份有限公司 一种金属树脂复合体的制备方法及其制备的金属树脂复合体
CN103448202A (zh) * 2012-05-28 2013-12-18 比亚迪股份有限公司 一种金属树脂复合体的制备方法及其制备的金属树脂复合体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286909A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种金属树脂一体化成型方法和一种金属树脂复合体
CN103290450A (zh) * 2012-02-24 2013-09-11 比亚迪股份有限公司 一种铝合金树脂复合体的制备方法及铝合金树脂复合体
CN103448201A (zh) * 2012-05-28 2013-12-18 比亚迪股份有限公司 一种金属树脂复合体的制备方法及其制备的金属树脂复合体
CN103448202A (zh) * 2012-05-28 2013-12-18 比亚迪股份有限公司 一种金属树脂复合体的制备方法及其制备的金属树脂复合体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220055346A1 (en) * 2018-04-20 2022-02-24 Taisei Plas Co., Ltd. Method for manufacturing a composite of aluminum alloy
US11931988B2 (en) * 2018-04-20 2024-03-19 Taisei Plas Co., Ltd. Method for manufacturing a composite of aluminum alloy
CN115558886A (zh) * 2022-09-13 2023-01-03 首钢集团有限公司 一种耐腐蚀的高碳钢防护膜层及其制备方法

Also Published As

Publication number Publication date
CN105522781A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
WO2016101705A1 (zh) 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法
WO2016101694A1 (zh) 经表面处理的金属基材和金属-树脂复合体及制备方法和应用以及电子产品外壳及制备方法
WO2016101703A1 (zh) 经表面处理的金属基材和金属-树脂复合体及其制备方法和应用以及电子产品外壳及其制备方法
WO2016101706A1 (zh) 一种金属-树脂复合体及其制备方法和一种电子产品外壳
JP6063961B2 (ja) アルミニウム合金、アルミニウム合金樹脂複合材、およびそれらの調製方法
JP5869153B2 (ja) アルミニウム合金樹脂複合材を調製する方法及びそれによって得られるアルミニウム合金樹脂複合材
JP5969053B2 (ja) アルミニウム合金樹脂複合材及びその調製方法
KR101621224B1 (ko) 쉘, 그 제조 방법 및 전자 제품에서의 응용 방법
JP4600701B2 (ja) 樹脂金属接合体及びその製造方法
KR20140125422A (ko) 알루미늄 합금 수지 복합체 및 그것을 제조하는 방법
CN106042264A (zh) 一种不锈钢树脂复合体的制备方法及其制备的不锈钢树脂复合体
KR20190022792A (ko) 하우징, 이의 제조 방법 및 이의 용도
CN105196652B (zh) 一种金属‑树脂复合体及其制备方法
CN105522683B (zh) 经表面处理的镍钛合金基材和镍钛合金‑树脂复合体及其制备方法和电子产品外壳
TWI475132B (zh) 表面處理的金屬、金屬樹脂複合體及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15871778

Country of ref document: EP

Kind code of ref document: A1