WO2016098778A1 - 半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ - Google Patents

半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ Download PDF

Info

Publication number
WO2016098778A1
WO2016098778A1 PCT/JP2015/085102 JP2015085102W WO2016098778A1 WO 2016098778 A1 WO2016098778 A1 WO 2016098778A1 JP 2015085102 W JP2015085102 W JP 2015085102W WO 2016098778 A1 WO2016098778 A1 WO 2016098778A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
gaas
ingap
concentration
Prior art date
Application number
PCT/JP2015/085102
Other languages
English (en)
French (fr)
Inventor
藤生 真二郎
目黒 健
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2016098778A1 publication Critical patent/WO2016098778A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors

Definitions

  • the present invention relates to an epitaxial wafer for a semiconductor transistor and a semiconductor transistor in which a III-V compound semiconductor is used.
  • an InGaP / GaAs heterojunction bipolar transistor in which an emitter layer is formed of InGaP which is a wide gap semiconductor and other layers are formed of GaAs. Widely used.
  • Si which is an n-type impurity, is added to the subcollector layer in order to reduce the electrical resistance of the subcollector layer (see, for example, Patent Document 1).
  • the electrical resistance of the subcollector layer decreases as the Si addition amount increases. However, when the Si addition amount exceeds a predetermined threshold, Si enters the antisite. In order to compensate for electrons, the electric resistance of the subcollector layer is increased.
  • the more the amount of Si added the easier the subcollector layer to generate defects and the defects propagate to the base layer. Therefore, the InGaP / GaAs heterojunction bipolar transistor Current gain is reduced.
  • Si is not less than 4.0 ⁇ 10 18 cm ⁇ 3 in order to balance the electric resistance of the subcollector layer and the current gain of the InGaP / GaAs heterojunction bipolar transistor. It is added to the subcollector layer at a concentration of 8.0 ⁇ 10 18 cm ⁇ 3 or less.
  • an object of the present invention is to provide an epitaxial wafer for a semiconductor transistor and a semiconductor transistor capable of lowering the electrical resistance of a specific semiconductor layer than before and increasing the current gain of the semiconductor transistor as compared with the conventional one. is there.
  • the present invention provides a semiconductor layer in which Te, which is an n-type impurity, is added at a concentration of 9.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less. It is an epitaxial wafer for semiconductor transistors provided with.
  • the semiconductor layer is preferably a subcollector layer.
  • the present invention is a semiconductor transistor manufactured using the semiconductor transistor epitaxial wafer.
  • the present invention can be applied to various semiconductor transistors such as InGaP / GaAs heterojunction bipolar transistors (HBT) and InGaAs / AlGaAs / GaAs high electron mobility transistors (HEMT). Is possible.
  • an epitaxial wafer 100 for an InGaP / GaAs heterojunction bipolar transistor is provided on a substrate 101 made of semi-insulating GaAs, and on the substrate 101. And a sub-collector layer 102 formed of GaAs, a collector layer 103 provided on the sub-collector layer 102 and formed of GaAs, and provided on the collector layer 103 and formed of GaAs. A base layer 104 formed on the base layer 104 and formed of InGaP, and an emitter contact layer 106 formed on the emitter layer 105 and formed of GaAs.
  • a certain Te is in a concentration of 9.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less, preferably 2.3 ⁇ 10 19 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less.
  • a subcollector layer 102 is added.
  • a collector electrode 201 is provided on the subcollector layer 102, a base electrode 202 is provided on the base layer 104, and the second By providing the emitter electrode 203 on the non-alloy layer 108, the InGaP / GaAs heterojunction bipolar transistor 200 is obtained.
  • the electrical resistance of the subcollector layer 102 can be reduced as compared with the conventional case, and the current gain of the InGaP / GaAs heterojunction bipolar transistor 200 can be increased as compared with the conventional case.
  • Te which is an n-type impurity is 9.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less, preferably 2.3 ⁇ 10 19 cm ⁇ 3 or more and 9.0 ⁇ 10 19.
  • the reason for adding to the subcollector layer 102 at a concentration of cm ⁇ 3 or less will be described.
  • n is added when the semiconductor layer is n-type
  • p is added when the semiconductor layer is p-type
  • + is described when the relative concentration of impurities is high
  • when the relative concentration is low.
  • the inventor of the present invention uses a metal organic vapor phase epitaxy (MOVPE) method to form a subcollector layer made of n + -GaAs on a substrate made of semi-insulating GaAs, n A collector layer made of ⁇ ⁇ GaAs, a base layer made of p + —GaAs, an emitter layer made of n ⁇ —In 0.484 Ga 0.516 P, and an n + —GaAs An emitter contact layer, a first non-alloy layer formed of n + -In 0.5 ⁇ 0 Ga 0.5 ⁇ 1 As, a second non-alloy layer formed of n + -In 0.5 Ga 0.5 As, Were epitaxially grown in order to produce an epitaxial wafer for an InGaP / GaAs heterojunction bipolar transistor.
  • MOVPE metal organic vapor phase epitaxy
  • the thickness of the subcollector layer is set to 500 nm
  • the thickness of the collector layer is set to 500 nm
  • the impurity concentration is set to 4.0 ⁇ 10 16 cm ⁇ 3
  • the thickness of the base layer is set to 100 nm
  • the concentration is 4.0 ⁇ 10 19 cm ⁇ 3
  • the emitter layer thickness is 30 nm
  • the impurity concentration is 3.0 ⁇ 10 17 cm ⁇ 3
  • the emitter contact layer thickness is 100 nm
  • the impurity concentrations and 4.0 ⁇ 10 18 cm -3 the concentration of impurities with a thickness of the first non-alloy layer and 40nm and 2.0 ⁇ 10 19 cm -3
  • thickness of the second non-alloy layer The impurity concentration was set to 2.0 ⁇ 10 19 cm ⁇ 3 .
  • Si is added to the subcollector layer, and the Si concentration is 4.2 ⁇ 10 18 cm ⁇ 3 , 5.4 ⁇ 10 18 cm. -3, 8.2 ⁇ 10 18 cm -3 , 8.8 ⁇ 10 18 cm -3, respectively produced 1.05 ⁇ 10 19 cm -3 and the change is not the InGaP / a GaAs-based heterojunction bipolar transistor epitaxial wafer
  • the electrical resistance of the subcollector layer and the current gain of the InGaP / GaAs heterojunction bipolar transistor were measured for these InGaP / GaAs heterojunction bipolar transistor epitaxial wafers.
  • the electrical resistance of the subcollector layer decreases.
  • the electrical resistance of the subcollector layer is minimized, If the Si concentration is further increased, the electrical resistance of the subcollector layer increases. This is because Si enters the antisite and compensates for electrons.
  • the current gain of the InGaP / GaAs heterojunction bipolar transistor decreases. This is because a defect occurs in the subcollector layer and the defect propagates to the base layer.
  • Te is added to the subcollector layer, and the Te concentration is 1.8 ⁇ 10 18 cm ⁇ 3 , 4.0 ⁇ 10 18 cm ⁇ 3 , 9.0 ⁇ 10 18 cm ⁇ 3 , 2. 3 ⁇ 10 19 cm ⁇ 3 , 3.6 ⁇ 10 19 cm ⁇ 3 , 4.5 ⁇ 10 19 cm ⁇ 3 , 5.4 ⁇ 10 19 cm ⁇ 3 , 9.0 ⁇ 10 19 cm ⁇ 3
  • InGaP / GaAs heterojunction bipolar transistor epitaxial wafers were respectively fabricated, and for these InGaP / GaAs heterojunction bipolar transistor epitaxial wafers, the electrical resistance of the subcollector layer and the current gain of the InGaP / GaAs heterojunction bipolar transistor were measured. And measured.
  • the electrical resistance of the subcollector layer decreases, and when the Te concentration is 3.6 ⁇ 10 19 cm ⁇ 3 , the electrical resistance of the subcollector layer is minimized.
  • Increasing the Te concentration further increases the electrical resistance of the subcollector layer, but the electrical resistance of the subcollector layer can be reduced as compared with the case of adding Si to the subcollector layer. This is because Te is difficult to enter the antisite and it is difficult to compensate for electrons.
  • the current gain of the InGaP / GaAs heterojunction bipolar transistor increases.
  • Te concentration is 2.3 ⁇ 10 19 cm ⁇ 3 or more
  • InGaP / The current gain of the GaAs heterojunction bipolar transistor is significantly increased.
  • Te is added to the subcollector layer, defects are generated in the subcollector layer as the concentration of Te increases as in the case of adding Si to the subcollector layer, but Te is added. This is thought to be because GaAs, which has a lattice constant larger than that of GaAs to which Te is not added and receives compressive strain, suppresses the propagation of defects from the subcollector layer to the base layer.
  • Te which is an n-type impurity
  • Te is 9.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less, preferably 2.3 ⁇
  • the electrical resistance of the subcollector layer 102 is lowered as compared with the prior art and an InGaP / GaAs heterojunction bipolar transistor. It can be seen that the current gain increases.
  • Te which is an n-type impurity
  • Te is 9.0 ⁇ 10 18 cm ⁇ 3 or more and 9.0. It is added to the subcollector layer 102 at a concentration of ⁇ 10 19 cm ⁇ 3 or less, preferably 2.3 ⁇ 10 19 cm ⁇ 3 or more and 9.0 ⁇ 10 19 cm ⁇ 3 or less.
  • the present invention can be applied to various semiconductor transistors such as InGaAs / AlGaAs / GaAs high electron mobility transistors other than InGaP / GaAs heterojunction bipolar transistors.
  • As the specific semiconductor layer for adding Te an n-type GaAs layer or an n-type AlGaAs layer having a high impurity concentration can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 特定の半導体層の電気抵抗を従来よりも低下させると共に半導体トランジスタの電流利得を従来よりも上昇させることが可能な半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタを提供する。 n型不純物であるTeが9.0×1018cm-3以上9.0×1019cm-3以下の濃度で添加されている半導体層を備えている半導体トランジスタ用エピタキシャルウェハである。半導体層は、サブコレクタ層であることが好ましい。半導体トランジスタ用エピタキシャルウェハを使用して作製されている半導体トランジスタである。

Description

半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ
 本発明は、III-V族化合物半導体が使用されている半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタに関する。
 III-V族化合物半導体が使用されている半導体トランジスタとしては、エミッタ層がワイドギャップ半導体であるInGaPで形成されていると共にその他の層がGaAsで形成されているInGaP/GaAs系ヘテロ接合バイポーラトランジスタが広く利用されている。
 InGaP/GaAs系ヘテロ接合バイポーラトランジスタにおいては、サブコレクタ層の電気抵抗を低下させるため、n型不純物であるSiをサブコレクタ層に添加している(例えば、特許文献1を参照)。
 Siをサブコレクタ層に添加する場合、Siの添加量が増加する程、サブコレクタ層の電気抵抗が低下するが、Siの添加量が所定の閾値を超えた時点でSiがアンチサイトに入り込んで電子を補償するため、逆にサブコレクタ層の電気抵抗が増加することになる。
 更に、Siをサブコレクタ層に添加する場合、Siの添加量が増加する程、サブコレクタ層で欠陥が発生し易くなり、その欠陥がベース層に伝播するため、InGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が低下することになる。
 そのため、InGaP/GaAs系ヘテロ接合バイポーラトランジスタにおいては、サブコレクタ層の電気抵抗とInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得との均衡を図るため、Siを4.0×1018cm-3以上8.0×1018cm-3以下の濃度でサブコレクタ層に添加している。
特開2002-134524号公報
 しかしながら、近年における電子機器の更なる高性能化に伴い、サブコレクタ層の電気抵抗を従来よりも低下させると共にInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得を従来よりも上昇させることが望まれている。
 更に、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ以外の半導体トランジスタでも特定の半導体層との関係で同様の課題が発生している。
 そこで、本発明の目的は、特定の半導体層の電気抵抗を従来よりも低下させると共に半導体トランジスタの電流利得を従来よりも上昇させることが可能な半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタを提供することにある。
 この目的を達成するために創案された本発明は、n型不純物であるTeが9.0×1018cm-3以上9.0×1019cm-3以下の濃度で添加されている半導体層を備えている半導体トランジスタ用エピタキシャルウェハである。
 前記半導体層は、サブコレクタ層であることが好ましい。
 また、本発明は、前記半導体トランジスタ用エピタキシャルウェハを使用して作製されている半導体トランジスタである。
本発明の実施の形態に係るInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハの構造を示す模式図である。 本発明の実施の形態に係るInGaP/GaAs系ヘテロ接合バイポーラトランジスタの構造を示す模式図である。 サブコレクタ層におけるSiの濃度を変化させたときのサブコレクタ層の電気抵抗を示す図である。 サブコレクタ層におけるSiの濃度を変化させたときのInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得を示す図である。 サブコレクタ層におけるTeの濃度を変化させたときのサブコレクタ層の電気抵抗を示す図である。 サブコレクタ層におけるTeの濃度を変化させたときのInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得を示す図である。 図3の結果と図5の結果を併せて示す図である。 図4の結果と図6の結果を併せて示す図である。
 以下、本発明の好適な実施の形態を添付図面に順って説明する。
 本発明は、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ(Heterojunction Bipolar Transistor;HBT)やInGaAs/AlGaAs/GaAs系高電子移動度トランジスタ(High Electron Mobility Transistor;HEMT)等の種々の半導体トランジスタに適用することが可能である。
 本明細書においては、本発明の好適な実施の形態として、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハとInGaP/GaAs系ヘテロ接合バイポーラトランジスタとを説明する。
 図1に示すように、本発明の好適な実施の形態に係るInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ100は、半絶縁性GaAsで形成されている基板101と、基板101上に設けられていると共にGaAsで形成されているサブコレクタ層102と、サブコレクタ層102上に設けられていると共にGaAsで形成されているコレクタ層103と、コレクタ層103上に設けられていると共にGaAsで形成されているベース層104と、ベース層104上に設けられていると共にInGaPで形成されているエミッタ層105と、エミッタ層105上に設けられていると共にGaAsで形成されているエミッタコンタクト層106と、エミッタコンタクト層106上に設けられていると共にInGaAsで形成されている第1のノンアロイ層107と、第1のノンアロイ層107上に設けられていると共にInGaAsで形成されている第2のノンアロイ層108と、を備えており、n型不純物であるTeが9.0×1018cm-3以上9.0×1019cm-3以下、好ましくは、2.3×1019cm-3以上9.0×1019cm-3以下の濃度で添加されているサブコレクタ層102を備えていることを特徴とする。
 図2に示すように、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ100を使用して、サブコレクタ層102上にコレクタ電極201を設け、ベース層104上にベース電極202を設け、第2のノンアロイ層108上にエミッタ電極203を設けることにより、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ200が得られる。
 以上の構成により、サブコレクタ層102の電気抵抗を従来よりも低下させると共にInGaP/GaAs系ヘテロ接合バイポーラトランジスタ200の電流利得を従来よりも上昇させることが可能となる。
 ここで、n型不純物であるTeを9.0×1018cm-3以上9.0×1019cm-3以下、好ましくは、2.3×1019cm-3以上9.0×1019cm-3以下の濃度でサブコレクタ層102に添加する理由を説明する。
 本明細書においては、半導体層がn型である場合は「n」を付記すると共にp型である場合は「p」を付記する。更に、不純物の相対濃度が高い場合は「+」と記載すると共に低い場合は「-」と記載する。
 本発明者は、有機金属気相成長(Metal Organic Vapor Phase Epitaxy;MOVPE)法により、半絶縁性GaAsで形成されている基板上に、n+-GaAsで形成されているサブコレクタ層と、n--GaAsで形成されているコレクタ層と、p+-GaAsで形成されているベース層と、n--In0.484Ga0.516Pで形成されているエミッタ層と、n+-GaAsで形成されているエミッタコンタクト層と、n+-In0.5→0Ga0.5→1Asで形成されている第1のノンアロイ層と、n+-In0.5Ga0.5Asで形成されている第2のノンアロイ層と、を順にエピタキシャル成長させてInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハを作製した。
 このとき、サブコレクタ層の膜厚を500nmとし、コレクタ層の膜厚を500nmとすると共に不純物の濃度を4.0×1016cm-3とし、ベース層の膜厚を100nmとすると共に不純物の濃度を4.0×1019cm-3とし、エミッタ層の膜厚を30nmとすると共に不純物の濃度を3.0×1017cm-3とし、エミッタコンタクト層の膜厚を100nmとすると共に不純物の濃度を4.0×1018cm-3とし、第1のノンアロイ層の膜厚を40nmとすると共に不純物の濃度を2.0×1019cm-3とし、第2のノンアロイ層の膜厚を40nmとすると共に不純物の濃度を2.0×1019cm-3とした。
 ここでは、従来技術に係るInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハとして、Siをサブコレクタ層に添加すると共にSiの濃度を4.2×1018cm-3,5.4×1018cm-3,8.2×1018cm-3,8.8×1018cm-3,1.05×1019cm-3と変化させたInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハをそれぞれ作製し、これらのInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハについて、サブコレクタ層の電気抵抗とInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得とを測定した。
 図3に示すように、Siの濃度が増加するに連れてサブコレクタ層の電気抵抗が低下し、Siの濃度が8.2×1018cm-3でサブコレクタ層の電気抵抗は最小となり、それ以上にSiの濃度を増加させると、逆にサブコレクタ層の電気抵抗は上昇する。これは、Siがアンチサイトに入り込んで電子を補償するからである。
 更に、図4に示すように、Siの濃度が増加するに連れてInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が低下する。これは、サブコレクタ層で欠陥が発生し、その欠陥がベース層に伝播するからである。
 これに加えて、Teをサブコレクタ層に添加すると共にTeの濃度を1.8×1018cm-3,4.0×1018cm-3,9.0×1018cm-3,2.3×1019cm-3,3.6×1019cm-3,4.5×1019cm-3,5.4×1019cm-3,9.0×1019cm-3と変化させたInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハをそれぞれ作製し、これらのInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハについて、サブコレクタ層の電気抵抗とInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得とを測定した。
 図5に示すように、Teの濃度が増加するに連れてサブコレクタ層の電気抵抗が低下し、Teの濃度が3.6×1019cm-3でサブコレクタ層の電気抵抗は最小となり、それ以上にTeの濃度を増加させると、逆にサブコレクタ層の電気抵抗は上昇するものの、Siをサブコレクタ層に添加する場合よりも、サブコレクタ層の電気抵抗を低下させることができる。これは、Teはアンチサイトに入り込み難く、電子を補償し難いからである。
 更に、図6に示すように、Teの濃度が増加するに連れてInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が上昇し、Teの濃度が2.3×1019cm-3以上でInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が大幅に上昇する。これは、Teをサブコレクタ層に添加する場合であってもSiをサブコレクタ層に添加する場合と同様にTeの濃度が増加するに連れてサブコレクタ層で欠陥が発生するものの、Teが添加されているGaAsはTeが添加されていないGaAsよりも格子定数が大きくなって圧縮歪を受けるため、サブコレクタ層からベース層に対する欠陥の伝播が抑制されるからであると考えられる。
 図3の結果と図5の結果を併せて図7に示すと共に図4の結果と図6の結果を併せて図8に示すと、Siに代えてTeをSiと同じ濃度(4.0×1018cm-3以上8.0×1018cm-3以下の濃度)でサブコレクタ層に添加する場合、InGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得がSiをサブコレクタ層に添加する場合よりも大幅に低下するものの、Teの濃度が9.0×1018cm-3以上になると、Teをサブコレクタ層に添加する場合の方がSiをサブコレクタ層に添加する場合よりもInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が大きくなることが分かる。
 即ち、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハにおいて、n型不純物であるTeを9.0×1018cm-3以上9.0×1019cm-3以下、好ましくは、2.3×1019cm-3以上9.0×1019cm-3以下の濃度でサブコレクタ層に添加することにより、サブコレクタ層102の電気抵抗が従来よりも低下すると共にInGaP/GaAs系ヘテロ接合バイポーラトランジスタの電流利得が従来よりも上昇することが分かる。
 以上の結果から、本発明の好適な実施の形態に係るInGaP/GaAs系ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ100においては、n型不純物であるTeを9.0×1018cm-3以上9.0×1019cm-3以下、好ましくは、2.3×1019cm-3以上9.0×1019cm-3以下の濃度でサブコレクタ層102に添加している。
 なお、本発明者による検討では、Teの濃度を9.0×1019cm-3までしか増加させることができなかったため、これを最大値としている。
 また、冒頭に記載の通り、本発明は、InGaP/GaAs系ヘテロ接合バイポーラトランジスタ以外のInGaAs/AlGaAs/GaAs系高電子移動度トランジスタ等の種々の半導体トランジスタに適用することが可能であり、この場合、Teを添加するための特定の半導体層として、不純物の濃度が高いn型GaAs層やn型AlGaAs層等を採用することができる。

Claims (3)

  1.  n型不純物であるTeが9.0×1018cm-3以上9.0×1019cm-3以下の濃度で添加されている半導体層を備えていることを特徴とする半導体トランジスタ用エピタキシャルウェハ。
  2.  前記半導体層は、サブコレクタ層である請求項1に記載の半導体トランジスタ用エピタキシャルウェハ。
  3.  請求項1又は2に記載の半導体トランジスタ用エピタキシャルウェハを使用して作製されていることを特徴とする半導体トランジスタ。
PCT/JP2015/085102 2014-12-19 2015-12-15 半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ WO2016098778A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-257392 2014-12-19
JP2014257392A JP2016119364A (ja) 2014-12-19 2014-12-19 半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ

Publications (1)

Publication Number Publication Date
WO2016098778A1 true WO2016098778A1 (ja) 2016-06-23

Family

ID=56126667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085102 WO2016098778A1 (ja) 2014-12-19 2015-12-15 半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ

Country Status (3)

Country Link
JP (1) JP2016119364A (ja)
TW (1) TW201635380A (ja)
WO (1) WO2016098778A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160562B2 (ja) * 2018-05-17 2022-10-25 株式会社サイオクス ヘテロ接合バイポーラトランジスタ用ウエハおよびヘテロ接合バイポーラトランジスタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256533A (ja) * 1997-03-17 1998-09-25 Toshiba Corp 化合物半導体装置およびその製造方法
JP2001102389A (ja) * 1999-09-28 2001-04-13 Toshiba Corp ヘテロ接合バイポーラトランジスタ及びその製造方法
JP2004273891A (ja) * 2003-03-11 2004-09-30 Hitachi Cable Ltd ヘテロ接合バイポーラトランジスタ
US20140054647A1 (en) * 2012-08-24 2014-02-27 Visual Photonics Epitaxy Co., Ltd. High electron mobility bipolar transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256533A (ja) * 1997-03-17 1998-09-25 Toshiba Corp 化合物半導体装置およびその製造方法
JP2001102389A (ja) * 1999-09-28 2001-04-13 Toshiba Corp ヘテロ接合バイポーラトランジスタ及びその製造方法
JP2004273891A (ja) * 2003-03-11 2004-09-30 Hitachi Cable Ltd ヘテロ接合バイポーラトランジスタ
US20140054647A1 (en) * 2012-08-24 2014-02-27 Visual Photonics Epitaxy Co., Ltd. High electron mobility bipolar transistor

Also Published As

Publication number Publication date
TW201635380A (zh) 2016-10-01
JP2016119364A (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
US6756615B2 (en) Heterojunction bipolar transistor and its manufacturing method
JP2007103784A (ja) ヘテロ接合バイポーラトランジスタ
CN113764519B (zh) 异质结双极晶体管
US9397204B2 (en) Heterojunction bipolar transistor with two base layers
JP6242678B2 (ja) 窒化物半導体素子及びその製造方法
JP6254046B2 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ
WO2016098778A1 (ja) 半導体トランジスタ用エピタキシャルウェハ及び半導体トランジスタ
JP6200375B2 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ
JP2013021024A (ja) トランジスタ素子
JPWO2004061971A1 (ja) p型窒化物半導体構造及びバイポーラトランジスタ
JP2019201132A (ja) ヘテロ接合バイポーラトランジスタ用ウエハおよびヘテロ接合バイポーラトランジスタ
JP2007258258A (ja) 窒化物半導体素子ならびにその構造および作製方法
JP2015095552A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ素子
CN117012814B (zh) InP基异质结双极性晶体管的外延结构及其制备方法
JP2009094148A (ja) ヘテロ接合バイポーラトランジスタ
TWI495099B (zh) 具高電流增益之異質接面雙極電晶體結構及其製程方法
JP2007103925A (ja) 半導体装置及びその製造方法
JP2012234893A (ja) Iii−v族化合物半導体エピタキシャルウエハ
WO2016152195A1 (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ
JP2007194363A (ja) GaAs基板を用いたInP系半導体装置
JP2009231594A (ja) ヘテロ接合バイポーラトランジスタ
JP2014027027A (ja) ヘテロ接合バイポーラトランジスタ及び、ヘテロ接合バイポーラトランジスタの製造方法
JP2008098414A (ja) ヘテロ接合バイポーラトランジスタ
JP2015023207A (ja) 化合物半導体エピタキシャルウエハ及び半導体トランジスタ素子
JP2000049166A (ja) ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869983

Country of ref document: EP

Kind code of ref document: A1