WO2016098616A1 - 電子写真用トナー - Google Patents

電子写真用トナー Download PDF

Info

Publication number
WO2016098616A1
WO2016098616A1 PCT/JP2015/084171 JP2015084171W WO2016098616A1 WO 2016098616 A1 WO2016098616 A1 WO 2016098616A1 JP 2015084171 W JP2015084171 W JP 2015084171W WO 2016098616 A1 WO2016098616 A1 WO 2016098616A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
resin
less
mass
component
Prior art date
Application number
PCT/JP2015/084171
Other languages
English (en)
French (fr)
Inventor
秀昭 近藤
片山 浩平
浩太 伊知地
宏樹 垣内
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US15/528,585 priority Critical patent/US10345728B2/en
Priority to CN201580064633.1A priority patent/CN107003628B/zh
Priority to EP15869821.7A priority patent/EP3236318B1/en
Publication of WO2016098616A1 publication Critical patent/WO2016098616A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08726Polymers of unsaturated acids or derivatives thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Definitions

  • the present invention relates to an electrophotographic toner used for developing a latent image formed in, for example, an electrophotographic method, an electrostatic recording method, an electrostatic printing method, and the like, and a manufacturing method thereof.
  • toners with excellent low-temperature fixability are required.
  • the toner softening point or glass transition temperature is designed to be low in order to improve the low-temperature fixability, there is a problem that the storage stability is lowered. Therefore, in order to achieve both low-temperature fixability and storage stability, toners using crystalline polyester have been developed.
  • Patent Document 1 discloses a polycondensation resin component obtained by polycondensation of an alcohol component containing an aliphatic diol having 2 to 10 carbon atoms and a carboxylic acid component containing an aromatic dicarboxylic acid, and a styrene resin.
  • a crystalline resin for toner comprising a composite resin containing a component is disclosed.
  • Patent Document 2 discloses a raw material monomer of a crystalline polyester containing an diol having 8 to 12 carbon atoms and a dicarboxylic acid compound having 10 to 12 carbon atoms and having a total content of 80 mol% or more, and an addition polymerization resin.
  • the present invention [1] A toner for electrophotography containing a binder resin containing a crystalline composite resin C and an amorphous polyester A and an ester wax,
  • the crystalline composite resin C is obtained by polycondensing an alcohol component containing an aliphatic diol having 9 to 14 carbon atoms and a carboxylic acid component containing an aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms.
  • Step 1 Melting and kneading a toner component containing crystalline composite resin C, amorphous polyester A and ester wax using an open roll type kneader, and Step 2: obtaining The method for producing an electrophotographic toner according to the above [1], comprising a step of pulverizing the kneaded product.
  • Patent Document 1 uses an aromatic dicarboxylic acid compound as the carboxylic acid component constituting the polycondensation resin component, and uses a medium-chain aliphatic diol as the alcohol component. There is a need for further improvement in heat-resistant storage stability and durability.
  • the crystalline resin described in Patent Document 2 uses sebacic acid as the carboxylic acid component constituting the polycondensation resin component, and uses a long-chain aliphatic diol as the alcohol component, but is amorphous. Since the hybrid resin is used as the resin, the compatibility with the amorphous resin is increased, and further improvement in heat-resistant storage stability and durability is demanded.
  • the present invention relates to an electrophotographic toner excellent in low-temperature fixability, heat-resistant storage stability, and durability, and a method for producing the same.
  • the toner for electrophotography of the present invention exhibits excellent effects in low-temperature fixability, heat-resistant storage stability, and durability.
  • the toner for electrophotography of the present invention (hereinafter also simply referred to as toner) is a binder resin comprising a crystalline composite resin C containing a polycondensation resin component using a long-chain aliphatic monomer and an amorphous polyester A. And ester wax.
  • the electrophotographic toner of the present invention is excellent in low-temperature fixability, heat-resistant storage stability (hereinafter also simply referred to as storage stability) and durability is not clear, but is considered as follows. Since the crystalline composite resin C contained in the toner of the present invention contains a polycondensation resin component using a long-chain aliphatic monomer, it is highly hydrophobic. Therefore, the crystalline composite resin C has low compatibility with the amorphous polyester A, and thus is easily crystallized, and is considered to be excellent in low-temperature fixability and storage stability.
  • the crystallinity of the resin is represented by the crystallinity index defined by the ratio between the softening point and the maximum endothermic peak temperature measured by a differential scanning calorimeter, that is, the value of [softening point / maximum endothermic peak temperature].
  • the crystalline resin is a resin having a crystallinity index of 0.6 to 1.4, preferably 0.7 to 1.2, more preferably 0.9 to 1.2, and the amorphous resin has a crystallinity index of more than 1.4 or less than 0.6, preferably Is a resin of more than 1.5, 0.5 or less, more preferably 1.6 or more and 0.5 or less.
  • the crystallinity of the resin can be adjusted by the type and ratio of the raw material monomers, production conditions (for example, reaction temperature, reaction time, cooling rate) and the like.
  • the highest endothermic peak temperature refers to the temperature of the peak on the highest temperature side among the observed endothermic peaks. In the crystalline resin, the highest endothermic peak temperature is the melting point.
  • the term “resin” means both a crystalline resin and an amorphous resin.
  • the crystalline composite resin C is obtained by polycondensing an alcohol component containing an aliphatic diol having 9 to 14 carbon atoms and a carboxylic acid component containing an aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms. It is a resin containing a polycondensation resin component and a styrene resin component.
  • polyester examples include polyester, polyester / polyamide, and the like. From the viewpoint of improving the durability of the toner and from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner, polyester is preferable.
  • the polyester is preferably obtained by polycondensation of an alcohol component containing a divalent or higher alcohol and a carboxylic acid component containing a divalent or higher carboxylic acid compound.
  • the number of carbon atoms of the aliphatic diol contained in the alcohol component of the polycondensation resin component is 9 or more, preferably 10 or more, from the viewpoint of storage stability and durability. From the viewpoint of durability, it is 14 or less, preferably 12 or less, more preferably 10 or less, and further preferably 10.
  • Examples of the aliphatic diol having 9 to 14 carbon atoms include 1,9-nonanediol, 1,10-decanediol, 1,12-dodecanediol, 1,14-tetradecanediol, and the like.
  • ⁇ , ⁇ -linear alkanediol is preferred from the standpoint of enhancing low temperature fixability and storage stability, and one or two selected from 1,10-decanediol and 1,12-dodecanediol are more preferred.
  • 1,10-decanediol is more preferable.
  • the content of the aliphatic diol having 9 to 14 carbon atoms is preferably 70 mol% or more, more preferably 90 mol% or more, and still more preferably in the alcohol component, from the viewpoint of improving low-temperature fixability, storage stability and durability. Is 95 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, and still more preferably 100 mol%. Further, the proportion of one of the aliphatic diols having 9 to 14 carbon atoms in the alcohol component is preferably 50 mol% or more from the viewpoint of enhancing the crystallinity of the composite resin and improving the low-temperature fixability and storage stability. More preferably 70 mol% or more, still more preferably 90 mol% or more, further preferably 95 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, still more preferably 100 mol%. It is.
  • the alcohol component may contain polyhydric alcohols other than aliphatic diols having 9 to 14 carbon atoms, and have the formula (I):
  • R 1 O and OR 1 are oxyalkylene groups, R 1 is an ethylene and / or propylene group, x 1 and y 1 represent the average number of moles of alkylene oxide added, each being a positive number; The sum of x1 and y1 is preferably 1 or more, more preferably 1.5 or more, preferably 16 or less, more preferably 8 or less, and even more preferably 4 or less)
  • An aromatic diol such as an alkylene oxide adduct of bisphenol A represented by the formula: trivalent or higher alcohols such as glycerin, pentaerythritol, trimethylolpropane, sorbitol, and 1,4-sorbitan.
  • the carbon number of the aliphatic dicarboxylic acid compound contained in the carboxylic acid component of the polycondensation resin is 9 or more, preferably 10 or more, from the viewpoints of storage stability and durability. From the same viewpoint, it is 14 or less, preferably 12 or less, more preferably 10.
  • the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms is preferably an ⁇ , ⁇ -linear alkanedicarboxylic acid compound from the viewpoint of enhancing the crystallinity of the composite resin and enhancing the low-temperature fixability and storage stability, azelaic acid, Sebacic acid, dodecanedioic acid, tetradecanedioic acid, and the like are listed. From the viewpoint of improving the storage stability and durability of the toner, one or two selected from sebacic acid and dodecanedioic acid are preferable, and sebacic acid is more preferable. preferable.
  • the dicarboxylic acid compound refers to dicarboxylic acid, its anhydride, and alkyl ester having 1 to 3 carbon atoms, and among these, dicarboxylic acid is preferable. Moreover, the carbon number of the aliphatic dicarboxylic acid compound is the number of carbons including the dicarboxylic acid part, and does not include the alkyl ester part.
  • the carboxylic acid component may contain a polyvalent carboxylic acid compound other than the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms.
  • examples of the polyvalent carboxylic acid compound include oxalic acid, malonic acid, and maleic acid.
  • the content of the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms is preferably 70 mol in the total amount of the divalent or higher carboxylic acid compound in the carboxylic acid component, from the viewpoint of low-temperature fixability, storage stability, and durability. % Or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, still more preferably 100 mol%.
  • the content of the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms is preferably 70 mol% or more, more preferably 90 mol% or more, in the carboxylic acid component, from the viewpoint of low-temperature fixability, storage stability and durability. More preferably, it is 95 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, still more preferably 100 mol%.
  • a monovalent alcohol may be appropriately contained in the alcohol component
  • a monovalent carboxylic acid compound may be appropriately contained in the carboxylic acid component from the viewpoint of adjusting the molecular weight.
  • the bireactive monomer mentioned later is not included in calculation of content of an alcohol component or a carboxylic acid component.
  • the total number of aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms and aliphatic diol having 9 to 14 carbon atoms is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 93 mol% or more, still more preferably 95 mol% or more, and further preferably, from the viewpoint of improving low-temperature fixability, storage stability, and durability.
  • Is 97 mol% or more preferably 100 mol% or less, more preferably substantially 100 mol%, and still more preferably 100 mol%.
  • the total number of moles of the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms and the aliphatic diol having 9 to 14 carbon atoms is a polycondensation resin component from the viewpoint of improving low-temperature fixability, storage stability and durability.
  • a polycondensation resin component from the viewpoint of improving low-temperature fixability, storage stability and durability.
  • the total number of moles of the divalent or higher carboxylic acid compound in the carboxylic acid component as the raw material monomer and the divalent or higher alcohol in the alcohol component preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably Is 95 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, and still more preferably 100 mol%.
  • the equivalent ratio (COOH group / OH group) of the carboxylic acid component and the alcohol component in the polycondensation resin component is preferably 0.6 or more, more preferably 0.7 or more, from the viewpoint of adjusting the softening point of the composite resin. Is 1.3 or less, more preferably 1.1 or less.
  • the polycondensation reaction of the raw material monomer of the polycondensation resin component is performed in an inert gas atmosphere at a temperature of about 160 ° C. to 230 ° C. in the presence of an esterification catalyst, a polymerization inhibitor, and the like as necessary.
  • an esterification catalyst include tin compounds such as dibutyltin oxide and tin (II) 2-ethylhexanoate, and titanium compounds such as titanium diisopropylate bistriethanolamate.
  • the catalyst include gallic acid.
  • the amount of the esterification catalyst used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, preferably 1.5 parts by mass or less, more preferably with respect to 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component. 1.0 parts by mass or less.
  • the amount of esterification cocatalyst used is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, preferably 0.5 parts by mass or less, more preferably 100 parts by mass relative to the total amount of alcohol component and carboxylic acid component. Is 0.1 parts by mass or less.
  • styrene compound As the raw material monomer for the styrene-based resin component, at least styrene or styrene derivatives such as ⁇ -methylstyrene and vinyltoluene (hereinafter, styrene and styrene derivatives are collectively referred to as “styrene compound”) is used.
  • the content of the styrene compound is preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably in the raw material monomer of the styrene-based resin component, from the viewpoint of improving the low-temperature fixability, storage stability and durability of the toner. Is 95% by mass or more, preferably 100% by mass or less, more preferably substantially 100% by mass, and still more preferably 100% by mass.
  • Raw material monomers for styrene resin components used in addition to styrene compounds include (meth) acrylic acid alkyl esters; ethylenically unsaturated monoolefins such as ethylene and propylene; diolefins such as butadiene; and halovinyls such as vinyl chloride.
  • Vinyl esters such as vinyl acetate and vinyl propionate; ethylenic monocarboxylic esters such as dimethylaminoethyl (meth) acrylate; vinyl ethers such as vinyl methyl ether; vinylidene halides such as vinylidene chloride; N-vinyl pyrrolidone N-vinyl compounds such as
  • the raw material monomer of the styrene resin component used in addition to the styrene compound can be used in combination of two or more.
  • “(meth) acrylic acid” means acrylic acid and / or methacrylic acid.
  • (meth) acrylic acid alkyl ester is preferable from the viewpoint of improving the low-temperature fixability of the toner.
  • the carbon number of the alkyl group in the (meth) acrylic acid alkyl ester is preferably 1 or more, more preferably 8 or more, preferably 22 or less, more preferably 18 or less, from the above viewpoint.
  • carbon number of this alkyl ester means carbon number derived from the alcohol component which comprises ester.
  • (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, (iso) propyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (iso or tertiary ) Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (iso) octyl (meth) acrylate, (iso) decyl (meth) acrylate, (iso) stearyl (meth) acrylate, and the like.
  • (iso or tertiary)” and “(iso)” mean that both of these groups are present and not present, and when these groups are not present Indicates normal. Further, “(meth) acrylate” indicates that both acrylate and methacrylate are included.
  • the content of the (meth) acrylic acid alkyl ester is preferably 30% by mass or less, more preferably 20% by mass or less, more preferably 20% by mass or less, in the raw material monomer of the styrene resin component, from the viewpoint of improving the durability and storage stability of the toner.
  • it is 10 mass% or less, Preferably it is 0 mass% or more, More preferably, it is 0 mass%.
  • a resin obtained by addition polymerization of a raw material monomer containing a styrene compound and an alkyl (meth) acrylate is also referred to as a styrene- (meth) acrylic resin.
  • the addition polymerization reaction of the raw material monomer of the styrenic resin component can be carried out by a conventional method, for example, in the presence of a polymerization initiator such as dicumyl peroxide, a crosslinking agent, etc., in the presence of an organic solvent or in the absence of a solvent.
  • the temperature condition is preferably 110 ° C. or higher, more preferably 140 ° C. or higher, preferably 200 ° C. or lower, more preferably 170 ° C. or lower.
  • xylene, toluene, methyl ethyl ketone, acetone or the like can be used.
  • the amount of the organic solvent used is preferably 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the raw material monomer of the styrene resin component.
  • the glass transition temperature (Tg) of the styrenic resin component is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, more preferably 90 ° C. or higher, from the viewpoint of improving the low-temperature fixability, storage stability and durability of the toner. Yes, preferably 130 ° C. or lower, more preferably 120 ° C. or lower, and further preferably 110 ° C. or lower.
  • the both reactive monomer mentioned later shall not be included in calculation of content of a styrene resin component, and is not used for calculation of Tg of a styrene resin component.
  • Tgn of styrene 373 K (100 ° C.) and Tgn of 2-ethylhexyl acrylate: 223 K (-50 ° C.) are used.
  • the polycondensation resin component and the styrenic resin component are preferably bonded directly or via a linking group.
  • the linking group include amphoteric monomers described later, compounds derived from chain transfer agents, and other resins.
  • the crystalline composite resin C is preferably in a state where the polycondensation resin component and the styrene resin component are dispersed in each other, and the dispersion state is measured by the crystallinity measured by the method described in the following examples. It can be evaluated by the difference between the glass transition temperature (Tg) of the composite resin C and the calculated value of the Fox equation.
  • Tg glass transition temperature
  • the crystalline composite resin C in the present invention is a crystalline resin, but has an amorphous portion derived from the styrene resin component and the polycondensation resin component, and is derived from the styrene resin component. It has Tg derived from Tg and a polycondensation resin component.
  • the Tg of the styrene resin component and the Tg of the polycondensation resin component in the composite resin are values measured separately.
  • the Tg of the composite resin measured under the measurement conditions described later is different from the Tg calculated by the Fox equation of the styrene resin component.
  • the absolute value of the difference between the glass transition temperature of the crystalline composite resin C and the glass transition temperature calculated by the Fox equation of the styrene resin component in the crystalline composite resin C is preferably 10 ° C. or more. More preferably, it is 30 ° C. or higher, more preferably 50 ° C. or higher, and preferably 120 ° C. or lower.
  • the measured value of Tg of the composite resin is often lower than the calculated Tg of the styrene resin component.
  • Such a crystalline composite resin C is, for example, (1) a method of polycondensing a raw material monomer of a polycondensation resin component in the presence of a styrene resin having a carboxy group or a hydroxyl group (carboxy groups and hydroxyl groups will be described later). (2) The raw material monomer of the styrene resin component is subjected to addition polymerization in the presence of a polycondensation resin having a reactive unsaturated bond. It can be obtained by a method or the like.
  • the crystalline composite resin C is further added to the polycondensation resin component raw material monomer and the styrene resin component raw material monomer, and further to the polycondensation resin component. It is preferable that it is a resin (hybrid resin) obtained by using both reactive monomers capable of reacting with both the raw material monomer and the raw material monomer of the styrene resin component.
  • the crystalline composite resin C becomes a resin (hybrid resin) in which the polycondensation resin component and the styrene resin component are bonded via the structural unit derived from both reactive monomers, and the polycondensation resin component and the styrene resin are combined.
  • the resin component is more finely and uniformly dispersed.
  • the crystalline composite resin C includes (a) an alcohol component containing an aliphatic diol having 9 to 14 carbon atoms and a carboxylic acid component containing an aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms.
  • Raw monomer for polycondensation resin component (b) Raw material monomer for styrene resin component, and (c) Bi-reactive monomer capable of reacting with any of raw material monomer for polycondensation resin component and raw material monomer for styrene resin component It is preferable that it is resin obtained by polymerizing.
  • the both reactive monomers are preferably at least one selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid, maleic acid and maleic anhydride, but from the viewpoint of reactivity of polycondensation reaction and addition polymerization reaction Therefore, acrylic acid, methacrylic acid or fumaric acid is more preferable.
  • a polyvalent carboxylic acid compound having an ethylenically unsaturated bond such as fumaric acid functions as a raw material monomer for the polycondensation resin component.
  • fumaric acid or the like is not a bireactive monomer but a raw material monomer for a polycondensation resin component.
  • the amount of the both reactive monomers used is preferably 1 mol or more, more preferably 2 mol or more with respect to 100 mol in total of the alcohol components of the polycondensation resin component from the viewpoint of low-temperature fixability. Further, from the viewpoint of enhancing the dispersibility of the styrene resin component and the polycondensation resin component and improving the durability and storage stability of the toner, it is preferably 30 mol or less, more preferably 20 mol or less, and even more preferably 15 mol. Hereinafter, it is more preferably 10 mol or less, and further preferably 5 mol or less.
  • the amount of both reactive monomers used is preferably 1 part by mass or more, more preferably 2 parts by mass or more, with respect to a total of 100 parts by mass of the raw material monomers of the styrene resin component, from the viewpoint of low-temperature fixability. . Further, from the viewpoint of enhancing the dispersibility of the styrene resin component and the polycondensation resin component and improving the durability and storage stability of the toner, it is preferably 30 parts by mass or less, more preferably 20 parts by mass or less, and still more preferably. 15 parts by mass or less, more preferably 10 parts by mass or less.
  • a polymerization initiator is included in the total of the raw material monomers of the styrene resin component.
  • the hybrid resin obtained using the both reactive monomers is preferably produced by the following method.
  • Both reactive monomers are preferably used in the addition polymerization reaction together with the raw material monomer of the styrenic resin component from the viewpoint of improving the durability, low-temperature fixability and storage stability of the toner.
  • step (i) A method of performing a step (B) of an addition polymerization reaction with a raw material monomer of a styrene resin component and an amphoteric monomer after the step (A) of the polycondensation reaction with the raw material monomer of the polycondensation resin component.
  • the step (A) is carried out under reaction temperature conditions suitable for the polycondensation reaction, the reaction temperature is lowered, and the step (B) is carried out under temperature conditions suitable for the addition polymerization reaction. It is preferable that the raw material monomer and the both reactive monomers of the styrene resin component are added to the reaction system at a temperature suitable for the addition polymerization reaction.
  • Both reactive monomers undergo an addition polymerization reaction and also a polycondensation resin component.
  • the reaction temperature is raised again, and if necessary, a raw material monomer or the like of a polycondensation resin component such as a trivalent or higher that becomes a crosslinking agent is added to the polymerization system, and the polycondensation in the step (A)
  • a polycondensation resin component such as a trivalent or higher that becomes a crosslinking agent
  • step (ii) Method of performing the step (A) of the polycondensation reaction with the raw material monomer of the polycondensation resin component after the step (B) of the addition polymerization reaction with the raw material monomer of the styrene resin component and the amphoteric monomer.
  • the step (B) is carried out under reaction temperature conditions suitable for the addition polymerization reaction, the reaction temperature is raised, and the polycondensation reaction in step (A) is carried out under temperature conditions suitable for the polycondensation reaction. Both reactive monomers are involved in the polycondensation reaction as well as the addition polymerization reaction.
  • the raw material monomer of the polycondensation resin component may be present in the reaction system during the addition polymerization reaction, or may be added to the reaction system under temperature conditions suitable for the polycondensation reaction. In the former case, the progress of the polycondensation reaction can be controlled by adding an esterification catalyst at a temperature suitable for the polycondensation reaction.
  • step (iii) The polycondensation resin component raw material monomer polycondensation reaction step (A) and the styrene resin component raw material monomer and bi-reactive monomer addition polymerization reaction step (B) proceed in parallel.
  • step (A) and step (B) are performed under the reaction temperature conditions suitable for the addition polymerization reaction, the reaction temperature is increased, and under the temperature conditions suitable for the polycondensation reaction.
  • a radical polymerization inhibitor can be added to advance only the polycondensation reaction. Both reactive monomers are involved in the polycondensation reaction as well as the addition polymerization reaction.
  • a polycondensation resin polymerized in advance may be used instead of the step (A) in which the polycondensation reaction is performed.
  • a styrene resin is contained in the mixture containing the raw material monomer of the polycondensation resin component. A mixture containing the component raw material monomers can also be dropped and reacted.
  • the methods (i) to (iii) are preferably performed in the same container.
  • the mass ratio of the polycondensation resin component to the styrene resin component (polycondensation resin component / styrene resin component) in the crystalline composite resin C is preferably 55/45 or more, more preferably from the viewpoint of storage stability. 70/30 or more, more preferably 80/20 or more, and further preferably 85/15 or more. From the viewpoint of durability, it is preferably 95/5 or less, more preferably 92/8 or less.
  • the mass of the polycondensation resin component is an amount obtained by subtracting the amount of reaction water (calculated value) dehydrated by the polycondensation reaction from the mass of the raw material monomer of the polycondensation resin used.
  • the amount of both reactive monomers is included in the amount of raw material monomers of the polycondensation resin component.
  • the amount of the styrene resin component is the amount of the raw material monomer of the styrene resin component, but the amount of the polymerization initiator is not included in the amount of the raw material monomer of the styrene resin component.
  • the softening point of the crystalline composite resin C is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, and more preferably 80 ° C. or higher from the viewpoint of improving the storage stability of the toner. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower, and further preferably 100 ° C. or lower.
  • the melting point (maximum endothermic peak temperature) of the crystalline composite resin C is preferably 55 ° C. or higher, more preferably 65 ° C. or higher, from the viewpoint of improving the durability of the toner and the storage stability of the toner. More preferably, it is 70 ° C. or higher. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 140 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower, and further preferably 100 ° C. or lower.
  • the softening point and melting point of the crystalline composite resin C can be adjusted by adjusting the raw material monomer composition, the polymerization initiator, the molecular weight, the catalyst amount, etc., or by selecting the reaction conditions.
  • the glass transition temperature (Tg) of the crystalline composite resin C is preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher, from the viewpoint of improving the durability of the toner and the storage stability of the toner. More preferably, it is 10 ° C. or higher. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 60 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 45 ° C. or lower.
  • the toner of the present invention may contain a crystalline resin other than the crystalline composite resin C.
  • the crystalline composite The content of the resin C in the crystalline resin is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, preferably 100% by mass or less, more preferably substantially. 100% by mass, more preferably 100% by mass.
  • the content of the crystalline composite resin C in the binder resin is preferably 3% by mass or more, more preferably 5% by mass or more, further preferably 7% by mass or more, from the viewpoint of improving the low-temperature fixability of the toner. Preferably it is 8 mass% or more. Further, from the viewpoint of improving the durability of the toner and improving the storage stability of the toner, it is preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less, and further preferably 15% by mass. % Or less.
  • the amorphous polyester A in the present invention is preferably obtained by polycondensation of an alcohol component containing a divalent or higher alcohol and a carboxylic acid component containing a divalent or higher carboxylic acid compound.
  • divalent alcohol a diol having 2 or more carbon atoms, preferably 20 or less carbon atoms, more preferably 15 or less carbon atoms, or formula (I):
  • R 1 O and OR 1 are oxyalkylene groups, R 1 is an ethylene and / or propylene group, x 1 and y 1 represent the average number of moles of alkylene oxide added, each being a positive number; The sum of x1 and y1 is preferably 1 or more, more preferably 1.5 or more, preferably 16 or less, more preferably 8 or less, and even more preferably 4 or less)
  • Specific examples of the divalent alcohol having 2 to 20 carbon atoms include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and bisphenol.
  • A hydrogenated bisphenol A and the like.
  • an alkylene oxide adduct of bisphenol A represented by the formula (I) is preferable from the viewpoint of improving the durability and heat-resistant storage stability of the toner.
  • the content of the alkylene oxide adduct of bisphenol A represented by the formula (I) is preferably 50 mol% or more, more preferably 70 mol in the alcohol component from the viewpoint of improving the durability and heat-resistant storage stability of the toner.
  • the trivalent or higher alcohol is preferably a trivalent or higher alcohol having 3 or more carbon atoms, preferably 20 or less carbon atoms, more preferably 10 or less carbon atoms.
  • Specific examples include sorbitol, 1,4-sorbitan, pentaerythritol, glycerol, trimethylolpropane, and the like.
  • the divalent carboxylic acid compound is, for example, preferably 3 or more carbon atoms, more preferably 4 or more carbon atoms, preferably 30 or less carbon atoms, more preferably 20 or less carbon atoms, still more preferably 10 or less carbon atoms.
  • aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, alkyl groups having 1 to 30 carbon atoms, or
  • aliphatic dicarboxylic acids such as succinic acid substituted with an alkenyl group having 2 to 30 carbon atoms.
  • succinic acid substituted with an alkyl group having 1 to 30 carbon atoms or an alkenyl group having 2 to 30 carbon atoms is an aliphatic dicarboxylic acid having 4 carbon atoms.
  • Examples of the trivalent or higher carboxylic acid compound include preferably 4 or more carbon atoms, more preferably 6 or more carbon atoms, still more preferably 9 or more carbon atoms, preferably 30 or less carbon atoms, more preferably 20 carbon atoms. More preferably, examples thereof include trivalent or higher carboxylic acids having 10 or less carbon atoms, their anhydrides, and derivatives such as alkyl esters having 1 to 3 carbon atoms. Specific examples include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), and the like.
  • the carboxylic acid component is selected from the group consisting of terephthalic acid, succinic acid substituted with an alkyl group or alkenyl group having 2 to 20 carbon atoms, and trimellitic anhydride. It is preferable to contain at least one selected from the above, and it is more preferable to contain terephthalic acid.
  • the total content of terephthalic acid, succinic acid substituted with an alkyl group or alkenyl group having 2 to 20 carbon atoms, and trimellitic anhydride is preferably 60 mol% or more, more preferably 80 mol in the carboxylic acid component. % Or more, more preferably 90 mol% or more, and preferably 100 mol% or less.
  • a monovalent alcohol may be contained in the alcohol component, and a monovalent carboxylic acid compound in the carboxylic acid component may be appropriately contained from the viewpoint of adjusting the softening point of the polyester.
  • the equivalent ratio of the carboxylic acid component and the alcohol component in the polyester is preferably 0.7 or more, more preferably 0.8 or more, and preferably 1.3 or less. Preferably it is 1.2 or less.
  • Amorphous polyester A is, for example, an alcohol component and a carboxylic acid component in an inert gas atmosphere, if necessary, in the presence of an esterification catalyst, a polymerization inhibitor, etc. It can be produced by polycondensation at a temperature.
  • the esterification catalyst include tin compounds such as dibutyltin oxide and tin (II) 2-ethylhexanoate, and titanium compounds such as titanium diisopropylate bistriethanolamate.
  • Examples of the esterification cocatalyst that can be used together with the esterification catalyst include gallic acid and the like.
  • the amount of the esterification catalyst used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, preferably 1 part by mass or less, more preferably with respect to 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component. 0.6 parts by mass or less.
  • the amount of esterification cocatalyst used is preferably 0.001 parts by mass or more, more preferably 0.01 parts by mass or more, preferably 0.5 parts by mass or less, more preferably 100 parts by mass relative to the total amount of alcohol component and carboxylic acid component. Is 0.1 parts by mass or less.
  • the softening point of the amorphous polyester A is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, further preferably 105 ° C. or higher, from the viewpoint of improving the durability and storage stability of the toner. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, and further preferably 130 ° C. or lower. When two or more kinds of amorphous polyester A are contained, the weighted average value of the softening points is preferably in the above range.
  • the amorphous polyester A preferably contains two types of amorphous polyesters having different softening points from the viewpoint of a balance between low-temperature fixability, storage stability and durability of the toner.
  • the difference in softening point is preferably 5 ° C or higher, more preferably 10 ° C or higher, preferably 40 ° C or lower, more preferably 30 ° C or lower.
  • the softening point of the amorphous polyester AL having the lower softening point is preferably 80 ° C. or more, more preferably 95 ° C. from the viewpoint of low-temperature fixability and storage stability of the toner. More preferably, the temperature is 105 ° C.
  • the softening point of the amorphous polyester AH having a higher softening point is preferably 110 ° C. or higher, more preferably 115 ° C. or higher, more preferably 118 ° C. or higher, preferably from the viewpoint of improving the durability of the toner. It is 170 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 150 ° C. or lower.
  • the amorphous polyester AL having a lower softening point is a compound in which R 1 is an ethylene group in the formula (I). That is, formula (II):
  • R 2 O and OR 2 are oxyethylene groups, x 2 and y 2 represent the average number of moles added of ethylene oxide, each being a positive number, and the sum of x 2 and y 2 is preferably 1 Or more, more preferably 1.5 or more, preferably 16 or less, more preferably 8 or less, and further preferably 4 or less) It is preferable that it is resin obtained by polycondensing the alcohol component and carboxylic acid component containing the ethylene oxide adduct of bisphenol A represented by these.
  • the polycondensate using the ethylene oxide adduct of bisphenol A has higher reactivity and lower viscosity than the polycondensate using the propylene oxide adduct. Easy to increase molecular weight.
  • the content of the ethylene oxide adduct of bisphenol A represented by the formula (II) is preferably 55 mol% or more, more preferably 60 mol% or more, further preferably 62 mol in the alcohol component of the amorphous polyester AL. % Or more, preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less.
  • the other alcohol component preferably contains a propylene oxide adduct of bisphenol A (a compound in which R 1 is a propylene group in the formula (I)).
  • amorphous polyester AH having a higher softening point is a resin obtained by polycondensation of an alcohol component and a carboxylic acid component.
  • ethylene of bisphenol A represented by the formula (II) The content of the oxide adduct is preferably less than 55 mol%, more preferably 53 mol% or less, preferably 20 mol% or more, more preferably 30 mol% or more, from the viewpoint of toner storage stability and durability. More preferably, it is 40 mol% or more.
  • amorphous polyester AL As other alcohol components, it is preferable to contain a propylene oxide adduct of bisphenol A as in the case of the amorphous polyester AL.
  • Suitable carboxylic acid components of the amorphous polyester AH and the amorphous polyester AL are preferably those described for the amorphous polyester A, and the preferred ranges are also the same.
  • the mass ratio of amorphous polyester AH to amorphous polyester AL is preferably 1/9 or more, more preferably 2/2, from the viewpoint of durability and storage stability. 8 or more, more preferably 3/7 or more, from the viewpoint of low-temperature fixability, preferably 9/1 or less, more preferably 8/2 or less, more preferably 5/5 or less, more preferably 4/6 or less. It is.
  • the maximum endothermic peak temperature of the amorphous polyester A is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, and further preferably 60 ° C. or higher, from the viewpoint of improving the durability and storage stability of the toner. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower.
  • the glass transition temperature of the amorphous polyester A is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, further preferably 60 ° C. or higher, from the viewpoint of improving the durability and storage stability of the toner. Further, from the viewpoint of improving the low-temperature fixability of the toner, it is preferably 80 ° C. or lower, more preferably 75 ° C. or lower, and further preferably 70 ° C. or lower.
  • the glass transition temperature is a physical property peculiar to the amorphous phase and is distinguished from the highest peak temperature of endotherm.
  • the acid value of the amorphous polyester A is preferably 40 mgKOH / g or less, more preferably 30 mgKOH / g or less, still more preferably 20 mgKOH / g or less, from the viewpoint of improving the environmental stability of the charge amount of the toner. Is 1 mgKOH / g or more, more preferably 2 mgKOH / g or more.
  • the toner of the present invention may contain an amorphous resin other than the amorphous polyester A, such as a composite resin, a vinyl resin, an epoxy resin, a polycarbonate resin, and a polyurethane resin.
  • an amorphous resin other than the amorphous polyester A such as a composite resin, a vinyl resin, an epoxy resin, a polycarbonate resin, and a polyurethane resin.
  • the content of the amorphous polyester A in the amorphous resin is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably. Is 95% by mass or more, preferably 100% by mass or less, more preferably substantially 100% by mass, and still more preferably 100% by mass.
  • the mass ratio of the amorphous polyester A and the crystalline composite resin C is 95/5 or less, preferably 92/8 or less, from the viewpoint of low-temperature fixability. is there. Further, from the viewpoint of storage stability and durability, it is 60/40 or more, preferably 70/30 or more, more preferably 80/20 or more, further preferably 85/15 or more, and further preferably 88/12 or more. .
  • the binder resin a crystalline resin other than the crystalline composite resin C and an amorphous resin other than the amorphous polyester A are used in combination as long as the effects of the present invention are not impaired.
  • the total content of the crystalline composite resin C and the amorphous polyester A is preferably 60% by mass or more in the binder resin from the viewpoint of low-temperature fixability, heat-resistant storage stability and durability.
  • it is 80 mass% or more, More preferably, it is 95 mass% or more, Preferably it is 100 mass% or less, More preferably, it is substantially 100 mass%, More preferably, it is 100 mass%.
  • the solubility parameter (SP value) of the crystalline resin and the solubility parameter (SP value) of the amorphous resin are appropriate from the viewpoint of improving the durability of the toner and the heat resistant storage stability of the toner. It is preferable that they are separated from each other.
  • the difference in SP value between the crystalline resin and the amorphous resin is in a specific range, the crystalline resin is less compatible with the amorphous resin, and it is easy to maintain the crystal structure. Is thought to improve. Therefore, the difference in SP value between the crystalline resin and the amorphous resin, preferably the difference in SP value between the crystalline composite resin C and the amorphous polyester A is preferably 1.0 or more, more preferably 1.2 or more. .
  • the crystalline resin and the amorphous resin in the toner are preferably 2.0 or less.
  • the weighted average value is used.
  • the ester wax refers to a wax having an ester group, and examples thereof include natural ester wax and synthetic ester wax. From the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner, natural ester wax is preferred.
  • Examples of the natural ester wax include carnauba wax, montan ester wax, rice wax, and candelilla wax, and the toner of the present invention may be any one.
  • carnauba wax is preferred from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner.
  • Synthetic ester wax is an ester compound obtained by reacting carboxylic acid and alcohol.
  • the number of carbon atoms of the carboxylic acid is preferably 2 or more and 30 or less, more preferably 8 or more and 30 or less, still more preferably 12 or more and 30 or less, and still more preferably 12 or more, from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner. 24 or less, more preferably 14 or more and 24 or less, and further preferably 18 or more and 24 or less.
  • the valence of the carboxylic acid may be any of monovalent, divalent, trivalent or higher, but monovalent is preferable from the viewpoint of improving the low-temperature fixability and storability of the toner.
  • the carboxylic acid is preferably a fatty acid having a linear alkyl group or a linear alkenyl group, and more preferably a fatty acid having a linear alkyl group.
  • fatty acids having a linear alkyl group examples include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, and melicic acid. Is mentioned.
  • the valence of alcohol may be monovalent, divalent, trivalent or higher.
  • the carbon number of the monohydric alcohol is preferably 2 or more and 30 or less, more preferably 8 or more and 30 or less, further preferably 12 or more and 30 or less, and further preferably 12 from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner. It is 24 or less.
  • the monohydric alcohol preferably has a linear alkyl group or alkenyl group, and more preferably has a linear alkyl group.
  • Examples of the monohydric alcohol having a linear alkyl group or alkenyl group include lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, aralkyl alcohol, behenyl alcohol, tetracosanol, hexacosanol, octacosanol, tria. Examples thereof include contanol.
  • the carbon number of the dihydric alcohol is preferably 2 or more and 18 or less, more preferably 2 or more and 10 or less, from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner. From the same viewpoint, ⁇ , ⁇ -linear alkanediol is preferred.
  • dihydric alcohol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, and the like. Can be mentioned.
  • the carbon number of the trivalent or higher alcohol is preferably 3 or more and 10 or less, more preferably 3 or more and 5 or less, from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner. Further, from the same viewpoint, the valence of the trihydric or higher alcohol is preferably 3 or more and 6 or less, more preferably 3 or more and 4 or less.
  • trivalent or higher alcohol examples include glycerin, trimethylolpropane, pentaerythritol, and the like, and pentaerythritol is preferable from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner.
  • Synthetic ester waxes include esters and pentamers obtained by reacting a monovalent aliphatic alcohol having 14 to 24 carbon atoms and a fatty acid having 14 to 24 carbon atoms from the viewpoint of improving low-temperature fixability and heat-resistant storage stability of the toner.
  • Esters obtained by reacting erythritol with a fatty acid having 14 to 24 carbon atoms are preferred.
  • An ester obtained by reacting a fatty acid having a number of 18 or more and 24 or less is more preferable.
  • the ester wax includes carnauba wax, montan wax, rice wax, monovalent aliphatic alcohol having 14 to 24 carbon atoms and fatty acid having 14 to 24 carbon atoms from the viewpoint of improving low-temperature fixability and storage stability of the toner.
  • esters obtained by reacting pentaerythritol with fatty acids having 14 to 24 carbon atoms preferably carnauba wax, monovalent aliphatic alcohols having 18 to 24 carbon atoms and carbon.
  • An ester obtained by reacting a fatty acid having 18 to 24 carbon atoms and an ester obtained by reacting pentaerythritol with a fatty acid having 18 to 24 carbon atoms are more preferable, and carnauba wax is more preferable.
  • the melting point of the ester wax is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, more preferably 75 ° C. or higher, from the viewpoint of toner storage stability, and preferably 100 ° C. or lower from the viewpoint of low-temperature fixability of the toner. More preferably, it is 90 ° C. or less, and further preferably 85 ° C. or less.
  • the content of the ester wax is preferably 0.6 parts by mass or more, more preferably 1 part by mass or more, from the viewpoint of low temperature fixability, with respect to a total of 100 parts by mass of the crystalline composite resin C and the amorphous polyester A.
  • the amount is preferably 2 parts by mass or more, more preferably 2.5 parts by mass or more, further preferably 4 parts by mass or more, more preferably 6 parts by mass or more, and further preferably 8 parts by mass or more.
  • the content of the ester wax is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and still more preferably 100 parts by mass with respect to the total of 100 parts by mass of the crystalline composite resin C and the amorphous polyester A.
  • the content of the ester wax is preferably 0.6 parts by mass or more, more preferably 1 part by mass or more, further preferably 2 parts by mass or more, from the viewpoint of low-temperature fixability with respect to 100 parts by mass of the binder resin.
  • it is 2.5 parts by mass or more, more preferably 4 parts by mass or more, more preferably 6 parts by mass or more, and further preferably 8 parts by mass or more.
  • the content of the ester wax is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, still more preferably 6 parts by mass or less, more preferably 5 parts from the viewpoint of preservability with respect to 100 parts by mass of the binder resin. It is not more than part by mass, more preferably not more than 4 parts by mass, still more preferably not more than 2 parts by mass.
  • the mass ratio of the crystalline composite resin C and the ester wax (crystalline composite resin C / ester wax) is 9 or less, preferably 8 or less, more preferably 7 or less, even more preferably, from the viewpoint of low-temperature fixability. Is 6 or less, more preferably 5 or less, more preferably 4 or less, further preferably 2 or less, more preferably 1 or less, and still more preferably 0.6 or less. From the viewpoint of storage stability, the mass ratio of the crystalline composite resin C and the ester wax (crystalline composite resin C / ester wax) is 0.5 or more, preferably 0.7 or more, more preferably 1 or more, and further preferably 2 or more.
  • the mass ratio of the crystalline composite resin C and the ester wax is 0.5 or more, preferably 0.7 or more, more preferably 1 or more, and further preferably 2 or more. More preferably, it is 2.5 or more. From the same viewpoint, it is 9 or less, preferably 8 or less, more preferably 7 or less, further preferably 6 or less, more preferably 5 or less, and further preferably 4 or less.
  • the mass ratio of the crystalline composite resin C to the ester wax is 0.5 or more, preferably 0.7 or more, more preferably from the viewpoint of low-temperature fixability, storage stability and durability. Is 1 or more, more preferably 2 or more, more preferably 2.5 or more, and from the same viewpoint, it is 9 or less, preferably 8 or less, more preferably 7 or less, more preferably 6 or less, more preferably 4 or less. It is.
  • the toner of the present invention may contain a release agent other than ester wax.
  • Other mold release agents include polypropylene wax, polyethylene wax, polypropylene polyethylene copolymer wax, microcrystalline wax, paraffin wax, Fischer-Tropsch wax and other aliphatic hydrocarbon waxes and their oxides, fatty acid amides, fatty acids
  • the content of the ester wax is preferably 20% by mass or more, more preferably from the viewpoint of low temperature fixability, storage stability and durability in the release agent. It is 30% by mass or more, more preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 80% by mass or more, more preferably 90% by mass or more, and preferably 100% by mass or less.
  • the toner for electrophotography of the present invention may contain a colorant, a charge control agent and the like in addition to the binder resin and the ester wax.
  • the colorant all of the dyes and pigments used as toner colorants can be used, such as carbon black, phthalocyanine blue, permanent brown FG, brilliant first scarlet, pigment green B, rhodamine-B base, Solvent Red 49, Solvent Red 146, Solvent Blue 35, Quinacridone, Carmine 6B, Disazo Yellow and the like can be used, and the toner of the present invention may be either a black toner or a color toner.
  • phthalocyanine blue 15: 3 PB15: 3
  • PB15: 4 phthalocyanine blue 15: 4
  • carbon black are preferable
  • phthalocyanine blue 15: 3 is more preferable.
  • the content of the colorant is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, from the viewpoint of improving the toner image density with respect to 100 parts by mass of the binder resin. Further, from the viewpoint of improving the durability of the toner, and from the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner, it is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and even more preferably 7 parts by mass or less. .
  • the charge control agent is not particularly limited, and may contain either a positive charge control agent or a negative charge control agent.
  • positively chargeable charge control agents include nigrosine dyes such as “Nigrosine Base EX”, “Oil Black BS”, “Oil Black SO”, “Bontron N-01”, “Bontron N-04”, “Bontron N-07 ”,“ Bontron N-09 ”,“ Bontron N-11 ”(manufactured by Orient Chemical Co., Ltd.) and the like; triphenylmethane dyes containing tertiary amines as side chains, quaternary ammonium salt compounds such as“ Bontron P-51 "(manufactured by Orient Chemical Co., Ltd.), cetyltrimethylammonium bromide," COPY CHARGE435PX VP435 "(manufactured by Clariant Co., Ltd.), etc .; Imidazole derivatives such as “PLZ-2001” and “PLZ-8001” (manufactured by Shikoku Kasei Kogyo Co., Ltd.); styrene-acrylic
  • metal-containing azo dyes such as “Varifast Black 3804”, “Bontron S-31”, “Bontron S-32”, “Bontron S-34”, “Bontron S-36” (Above, manufactured by Orient Chemical Co., Ltd.), “Eisenspiron Black TRH”, “T-77” (manufactured by Hodogaya Chemical Co., Ltd.), etc .; metal compounds of benzylic acid compounds such as “LR-147” , “LR-297” (manufactured by Nippon Carlit Co., Ltd.), etc .; metal compounds of salicylic acid compounds such as “Bontron E-81”, “Bontron E-84”, “Bontron E-88”, “Bontron E-” 304 "(manufactured by Orient Chemical Co., Ltd.),” TN-105 "(manufactured by Hodogaya Chemical Co., Ltd.), etc .; copper phthalocyan
  • the content of the charge control agent is preferably 0.01 parts by mass or more, more preferably 0.2 parts by mass or more, with respect to 100 parts by mass of the binder resin, from the viewpoint of toner charging stability. From the same viewpoint, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, further preferably 3 parts by mass or less, and further preferably 2 parts by mass or less.
  • additives such as magnetic powder, fluidity improver, conductivity adjuster, reinforcing filler such as fibrous substance, antioxidant, anti-aging agent, and cleanability improver are appropriately used. It may be.
  • the electrophotographic toner of the present invention may be a toner obtained by any conventionally known method such as a melt-kneading method, an emulsion phase inversion method, or a polymerization method.
  • a pulverized toner by a melt-kneading method is preferable.
  • Step 1 A step of melt-kneading a toner component containing crystalline composite resin C, amorphous polyester A and ester wax using an open roll kneader
  • Step 2 a step of pulverizing the obtained kneaded product.
  • the pulverized toner obtained by the method of containing is preferable.
  • melt compounding of the toner component including crystalline composite resin C, amorphous polyester A and ester wax and, if necessary, colorant, charge control agent, etc. is carried out by a closed kneader, uniaxial or biaxial extrusion. It can carry out using well-known kneading machines, such as a machine and an open roll type kneading machine. From the viewpoint of efficiently and highly dispersing toner components such as ester wax, colorant, and charge control agent in the binder resin without repeating kneading or using a dispersion aid, an open roll type kneader Is preferably used.
  • toner components such as crystalline composite resin C, amorphous polyester A, ester wax, colorant and charge control agent are mixed in advance by a mixer such as a Henschel mixer or a ball mill and then supplied to a kneader.
  • the open roll type kneader means an open kneading unit that is not sealed, and can easily dissipate the kneading heat generated during kneading.
  • the continuous open roll type kneader is preferably a kneader equipped with at least two rolls, and the continuous open roll type kneader used in the present invention comprises two rolls having different peripheral speeds, That is, the kneading machine includes two rolls, a high rotation side roll having a high peripheral speed and a low rotation side roll having a low peripheral speed.
  • the high rotation side roll is preferably a heating roll and the low rotation side roll is preferably a cooling roll.
  • the temperature of the roll can be adjusted by, for example, the temperature of the heat medium passing through the inside of the roll, and each roll may be divided into two or more locations and passed through heat media having different temperatures.
  • the raw material charging side end temperature of the high-rotation side roll is preferably 100 ° C. or higher and 160 ° C. from the viewpoint of reducing mechanical force during melt-kneading and suppressing heat generation, and improving the durability and low-temperature fixability of the toner. From the same viewpoint, the raw material charging side end temperature of the low rotation side roll is preferably 30 ° C. or higher and 100 ° C. or lower.
  • the difference in the set temperature between the raw material input side end and the kneaded product discharge side end prevents the kneaded product from detaching from the roll, reduces the mechanical force during melt kneading, and suppresses heat generation
  • it is preferably 20 ° C. or higher, more preferably 30 ° C. or higher, preferably 60 ° C. or lower, more preferably 50 ° C. or lower.
  • the low rotation side roll has a difference in the set temperature between the raw material input side end and the kneaded product discharge side end, from the viewpoint of improving the dispersibility in the toner of additives such as ester wax, colorant, charge control agent, From the viewpoint of reducing mechanical force during melt-kneading and suppressing heat generation, and from the viewpoint of improving toner durability and low-temperature fixability, it is preferably 0 ° C or higher, more preferably 10 ° C or higher, and further preferably 20 ° C or higher. Yes, preferably 50 ° C. or lower.
  • the peripheral speed of the high-rotation side roll is a viewpoint that improves dispersibility in the toner of additives such as ester wax, a colorant, and a charge control agent, a viewpoint that reduces mechanical force during melt-kneading, and suppresses heat generation, From the viewpoint of improving the durability and low-temperature fixability of the toner, it is preferably 2 m / min or more, more preferably 10 m / min or more, still more preferably 25 m / min or more, preferably 100 m / min or less, more preferably 75 m / min or less, more preferably 50 m / min or less.
  • the peripheral speed of the low-rotation side roll is preferably 1 m / min or more, more preferably 5 m / min or more, still more preferably 15 m / min or more, preferably 90 m / min or less, more preferably 60 m. / min or less, more preferably 30 m / min or less.
  • the ratio of the peripheral speeds of the two rolls (low rotation side roll / high rotation side roll) is preferably 1/10 to 9/10, more preferably 3/10 to 8/10.
  • the structure, size, material, and the like of the roll are not particularly limited, and the roll surface may be any of smooth, corrugated, uneven, etc., but the kneading share is increased, ester wax, colorant, charge control agent. From the viewpoint of improving the dispersibility of the additives such as in the toner, reducing the mechanical force during melt-kneading, suppressing heat generation, and improving the durability and low-temperature fixability of the toner, It is preferable that a plurality of spiral grooves are carved on the surface.
  • the kneaded material obtained in step 1 is appropriately cooled until reaching a pulverizable hardness, and in step 2, pulverized.
  • the present invention does not require any heat treatment in order to promote recrystallization of the crystalline resin, it is preferable not to perform heating after the melt-kneading step, but within a range not affecting the toner productivity.
  • the kneaded product obtained may be subjected to a heat treatment step and then a pulverization step.
  • the temperature of the heat treatment step when performing the heat treatment step promotes the crystallization of the crystalline resin from the viewpoint of improving the dispersibility of the toner component such as ester wax, colorant, charge control agent and the like in the binder resin, From the viewpoint of improving the low-temperature fixability and heat-resistant storage stability of the toner, the temperature is preferably at least the glass transition temperature of the kneaded product, more preferably at least 10 ° C. above the glass transition temperature, and even more preferably at least 15 ° C.
  • the temperature is preferably a temperature below the melting point of the crystalline resin, more preferably a temperature lower by 10 ° C. or more than the melting point, more preferably 15 The temperature is lower than °C. Specifically, it is desirable to perform the heat treatment process at a temperature of 50 ° C. to 80 ° C., more preferably 60 ° C. to 80 ° C.
  • the heat treatment time is preferably 1 hour or more, more preferably 3 hours or more, and further preferably 6 hours from the viewpoint of promoting crystallization of the crystalline resin and improving the low-temperature fixability and heat-resistant storage stability of the toner. That's it. Further, from the viewpoint of not affecting the toner productivity, it is preferably 12 hours or less, more preferably 10 hours or less.
  • This time is the cumulative time within the temperature range (above the glass transition temperature of the kneaded product and below the melting point of the crystalline resin). Further, from the viewpoint of maintaining the dispersibility of the toner additive, it is preferable that the upper limit of the temperature range is not exceeded from the start to the end of the heat treatment step.
  • An oven or the like can be used for the heat treatment step.
  • the heat treatment step can be performed by maintaining the kneaded material at a constant temperature in the oven.
  • Aspect 1 An aspect in which, after the kneading step, the kneaded material is pulverized in the pulverizing step, and the pulverized kneaded material is held under the heat treatment conditions
  • Aspect 2 After the kneading step, in the process of cooling the obtained kneaded product to lower the temperature, the kneaded product is kept under the heat treatment conditions, and then further cooled until reaching a pulverizable hardness, A mode for the next step,
  • Aspect 3 After the kneading step, the obtained kneaded product is once cooled to a pulverizable hardness, then the cooled kneaded product is subjected to the heat treatment step, then the kneaded product is cooled again, and the next step such as the pulverizing step And the like.
  • the heat treatment step may be performed in any mode, but mode
  • the pulverization of the kneaded product may be performed in multiple stages.
  • the kneaded product may be coarsely pulverized to about 1 to 5 mm and further pulverized to a desired particle size.
  • the pulverizer used for the pulverization is not particularly limited, and examples of the pulverizer suitably used for the coarse pulverization include a hammer mill, an atomizer, and a rotoplex. Further, examples of the pulverizer suitably used for fine pulverization include a fluidized bed type counter jet mill, a collision plate type jet mill, and a rotary mechanical mill.
  • the pulverized product is preferably further classified and adjusted to a desired particle size.
  • classifiers used for classification include airflow classifiers, inertia classifiers, and sieve classifiers.
  • airflow classifiers Inertia classifiers
  • sieve classifiers At the time of classification, the pulverized product that has been removed due to insufficient pulverization may be subjected to the pulverization step again, and pulverization and classification may be repeated as necessary.
  • an external additive in order to improve transferability.
  • the external additive include inorganic fine particles such as silica, alumina, titania, zirconia, tin oxide and zinc oxide, and organic fine particles such as resin particles such as melamine resin fine particles and polytetrafluoroethylene resin fine particles.
  • silica is preferable, and hydrophobic silica that has been subjected to a hydrophobic treatment is more preferable from the viewpoint of toner transferability.
  • hydrophobizing agent for hydrophobizing the surface of silica particles examples include hexamethyldisilazane (HMDS), dimethyldichlorosilane (DMDS), silicone oil, octyltriethoxysilane (OTES), and methyltriethoxysilane. It is done.
  • the average particle diameter of the external additive is preferably 10 nm or more, more preferably 15 nm or more, from the viewpoint of the chargeability, fluidity, and transferability of the toner. From the same viewpoint, it is preferably 250 nm or less, more preferably 200 nm or less, and still more preferably 90 nm or less.
  • the content of the external additive is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass with respect to 100 parts by mass of the toner before being processed with the external additive, from the viewpoint of chargeability, fluidity, and transferability of the toner.
  • Part or more is preferably 0.3 part by weight or more. From the same viewpoint, it is preferably 5 parts by mass or less, more preferably 3 parts by mass or less.
  • the volume median particle size (D 50 ) of the toner of the present invention is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the volume-median particle size (D 50 ) means a particle size at which the cumulative volume frequency calculated by the volume fraction is 50% calculated from the smaller particle size.
  • the toner of the present invention can be used as a one-component developing toner or as a two-component developer mixed with a carrier.
  • the present invention further discloses the following toner for electrophotography and a method for producing the same.
  • An electrophotographic toner comprising a binder resin containing a crystalline composite resin C and an amorphous polyester A and an ester wax,
  • the crystalline composite resin C is obtained by polycondensing an alcohol component containing an aliphatic diol having 9 to 14 carbon atoms and a carboxylic acid component containing an aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms.
  • the mass ratio of the amorphous polyester A and the crystalline composite resin C is 60/40 or more and 95/5 or less
  • the mass ratio of the crystalline composite resin C and the ester wax (crystalline composite resin C / ester wax) is 0.5 or more and 9 or less
  • Toner for electrophotography is a resin containing a polycondensation resin component and a styrene resin component
  • the aliphatic diol contained in the alcohol component of the polycondensation resin component has 10 or more carbon atoms, preferably 12 or less, and more preferably 10 carbon atoms.
  • the aliphatic diol having 9 to 14 carbon atoms includes ⁇ , ⁇ -linear alkanediol, and includes one or two selected from 1,10-decanediol and 1,12-dodecanediol.
  • the electrophotographic toner according to any one of ⁇ 1> to ⁇ 3> which preferably contains 1,10-decanediol.
  • the content of the aliphatic diol having 9 to 14 carbon atoms is 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more in the alcohol component of the polycondensation resin component.
  • aliphatic dicarboxylic acid compound contained in the carboxylic acid component of the polycondensation resin has a carbon number of 10 or more, preferably 12 or less, more preferably 10.
  • the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms preferably includes an ⁇ , ⁇ -linear alkanedicarboxylic acid compound, and preferably includes one or two selected from sebacic acid and dodecanedioic acid. More preferably, the toner for electrophotography according to any one of ⁇ 1> to ⁇ 6>, further comprising sebacic acid.
  • the content of the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms is 70 mol% or more, preferably 90 mol% or more, more preferably 95 mol% in the carboxylic acid component of the polycondensation resin.
  • ⁇ 9> An aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms and an aliphatic diol having 9 to 14 carbon atoms in the total number of moles of the carboxylic acid component and the alcohol component, which are raw material monomers of the polycondensation resin component,
  • the total number of moles is 80 mol% or more, preferably 90 mol% or more, more preferably 93 mol% or more, still more preferably 95 mol% or more, still more preferably 97 mol% or more, and 100 mol% or less.
  • the toner for electrophotography according to any one of ⁇ 1> to ⁇ 8>, which is preferably substantially 100 mol%, more preferably 100 mol%.
  • the total number of moles of the aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms and the aliphatic diol having 9 to 14 carbon atoms is divalent in the carboxylic acid component which is a raw material monomer of the polycondensation resin component 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, and 100 mol% or less, in the total number of moles of the carboxylic acid compound and the dihydric or higher alcohol in the alcohol component.
  • the toner for electrophotography according to any one of ⁇ 1> to ⁇ 9>, which is preferably substantially 100 mol%, more preferably 100 mol%.
  • the glass transition temperature of the styrenic resin component is 60 ° C. or higher, preferably 80 ° C. or higher, more preferably 90 ° C. or higher, 130 ° C. or lower, preferably 120 ° C. or lower, more preferably 110
  • the absolute value of the difference between the glass transition temperature of the crystalline composite resin C and the glass transition temperature calculated by the Fox equation of the styrenic resin component in the crystalline composite resin C is 10 ° C.
  • the toner for electrophotography according to any one of ⁇ 1> to ⁇ 11>, wherein is 30 ° C. or higher, more preferably 50 ° C. or higher and 120 ° C. or lower.
  • the crystalline composite resin C includes (a) an alcohol component containing an aliphatic diol having 9 to 14 carbon atoms and a carboxylic acid component containing an aliphatic dicarboxylic acid compound having 9 to 14 carbon atoms.
  • a raw material monomer of a polycondensation resin component (b) a raw material monomer of a styrene resin component, and (c) a bireactivity capable of reacting with any of a raw material monomer of a polycondensation resin component and a raw material monomer of a styrene resin component
  • the electrophotographic toner according to any one of ⁇ 1> to ⁇ 12>, which is a resin obtained by polymerizing a monomer.
  • ⁇ 14> At least one functional group selected from the group consisting of a hydroxyl group, a carboxy group, an epoxy group, a primary amino group, and a secondary amino group, preferably a hydroxyl group, / Or a carboxy group, more preferably a compound having a carboxy group and an ethylenically unsaturated bond, and at least one selected from the group consisting of acrylic acid, methacrylic acid, fumaric acid, maleic acid and maleic anhydride
  • the toner for electrophotography according to ⁇ 13> preferably having acrylic acid, methacrylic acid or fumaric acid.
  • the amount of the both reactive monomers used is 1 mole or more, preferably 2 moles or more, preferably 30 moles or less, preferably 100 moles in total of the alcohol components of the polycondensation resin component.
  • the amount of the both reactive monomers used is 1 part by mass or more, preferably 2 parts by mass or more, and 30 parts by mass or less with respect to a total of 100 parts by mass of the raw material monomers of the styrene resin component.
  • the toner for electrophotography according to any one of ⁇ 13> to ⁇ 15>, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less.
  • the mass ratio of the polycondensation resin component to the styrene resin component (polycondensation resin component / styrene resin component) in the crystalline composite resin C is 55/45 or more, preferably 70/30 or more. More preferably 80/20 or more, still more preferably 85/15 or more, 95/5 or less, preferably 92/8 or less, for electrophotography according to any one of the above items ⁇ 1> to ⁇ 16> toner.
  • the content of the crystalline composite resin C in the binder resin is 3% by mass or more, preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 8% by mass or more.
  • Amorphous polyester A is obtained by polycondensation of an alcohol component containing a divalent or higher alcohol and a carboxylic acid component containing a divalent or higher carboxylic acid compound.
  • the toner for electrophotography according to any one of the above.
  • the alcohol component of the amorphous polyester A contains an alkylene oxide adduct of bisphenol A represented by the formula (I), and the content of the alkylene oxide adduct of bisphenol A represented by the formula (I) Is preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 90 mol% or more, preferably 100 mol% or less, more preferably substantially 100 mol%, still more preferably in the alcohol component.
  • the toner for electrophotography according to ⁇ 19>, wherein is 100 mol%.
  • the carboxylic acid component of the amorphous polyester A is at least one selected from the group consisting of terephthalic acid, succinic acid substituted with an alkyl group or alkenyl group having 2 to 20 carbon atoms, and trimellitic anhydride.
  • the total content of terephthalic acid, succinic acid substituted with an alkyl group or alkenyl group having 2 to 20 carbon atoms, and trimellitic anhydride is 60 mol% or more in the carboxylic acid component, preferably The electrophotographic toner according to ⁇ 21>, wherein the amount is 80 mol% or more, more preferably 90 mol% or more, and preferably 100 mol% or less.
  • the softening point of the amorphous polyester A is 90 ° C or higher, preferably 100 ° C or higher, more preferably 105 ° C or higher, 150 ° C or lower, preferably 140 ° C or lower, more preferably 130 ° C.
  • Amorphous polyester A contains two types of amorphous polyesters having different softening points, and the difference in softening point is preferably 5 ° C or higher, more preferably 10 ° C or higher, preferably 40 ° C.
  • the softening point of the amorphous polyester AL having a lower softening point is 80 ° C or higher, preferably 95 ° C or higher, more preferably 105 ° C or higher, and 135 ° C or lower, preferably 120 ° C.
  • the softening point of amorphous polyester AH having a higher softening point, more preferably less than 115 ° C is 110 ° C or higher, preferably 115 ° C or higher, more preferably 118 ° C or higher, and 170 ° C.
  • the content of the bisphenol A ethylene oxide adduct represented by the formula (II) is 55 mol% or more, preferably 60 mol% or more, more preferably in the alcohol component of the amorphous polyester AL.
  • the electrophotographic toner according to ⁇ 26> which is 62 mol% or more and 90 mol% or less, preferably 80 mol% or less, more preferably 70 mol% or less.
  • the content of the ethylene oxide adduct of bisphenol A represented by the formula (II) in the alcohol component of the amorphous polyester AH having a higher softening point is less than 55 mol%, preferably 53 mol % Or less, 20 mol% or more, preferably 30 mol% or more, and more preferably 40 mol% or more,
  • the toner for electrophotography according to any one of ⁇ 24> to ⁇ 27>.
  • the mass ratio (amorphous polyester AH / amorphous polyester AL) of amorphous polyester AH having a higher softening point and amorphous polyester AL having a lower softening point is 1/9 or more.
  • the toner for electrophotography according to any one of ⁇ 24> to ⁇ 28>.
  • the mass ratio of the amorphous polyester A to the crystalline composite resin C is 92/8 or less, 70/30 or more, preferably 80 /
  • the difference in SP value between the crystalline composite resin C and the amorphous polyester A is 1.0 or more, preferably 1.2 or more, more preferably 2.0 or less, any of the above ⁇ 1> to ⁇ 30> Or a toner for electrophotography.
  • the ester wax includes a synthetic ester wax
  • the synthetic ester wax is an ester obtained by reacting a monovalent aliphatic alcohol having 14 to 24 carbon atoms with a fatty acid having 14 to 24 carbon atoms, and pentaerythritol and carbon.
  • An ester obtained by reacting a fatty acid having 14 to 24 carbon atoms is preferable, an ester obtained by reacting a monovalent aliphatic alcohol having 18 to 24 carbon atoms with a fatty acid having 18 to 24 carbon atoms, and pentaerythritol and 18 or more carbon atoms.
  • An ester wax obtained by reacting carnauba wax, montan wax, rice wax, a monovalent aliphatic alcohol having 14 to 24 carbon atoms and a fatty acid having 14 to 24 carbon atoms, and pentaerythritol And at least one selected from the group consisting of esters obtained by reacting fatty acids having 14 to 24 carbon atoms, carnauba wax, monovalent aliphatic alcohols having 18 to 24 carbon atoms and carbon atoms 18
  • the melting point of the ester wax is 60 ° C or higher, preferably 70 ° C or higher, more preferably 75 ° C or higher, 100 ° C or lower, preferably 90 ° C or lower, more preferably 85 ° C or lower.
  • the electrophotographic toner according to any one of ⁇ 1> to ⁇ 34>.
  • the content of the ester wax is 0.6 parts by mass or more, preferably 1 part by mass or more, more preferably 2 parts by mass with respect to 100 parts by mass in total of the crystalline composite resin C and the amorphous polyester A.
  • the content of the ester wax is 10 parts by mass or less, preferably 8 parts by mass or less, more preferably 6 parts by mass with respect to 100 parts by mass in total of the crystalline composite resin C and the amorphous polyester A.
  • the content of the ester wax is 0.6 parts by mass or more with respect to 100 parts by mass of the binder resin, preferably 1 part by mass or more, more preferably 2 parts by mass or more, further preferably 2.5 parts by mass or more,
  • the toner for electrophotography according to any one of ⁇ 1> to ⁇ 37>, further preferably 4 parts by mass or more, more preferably 6 parts by mass or more, and further preferably 8 parts by mass or more.
  • the content of the ester wax is 10 parts by mass or less with respect to 100 parts by mass of the binder resin, preferably 8 parts by mass or less, more preferably 6 parts by mass or less, still more preferably 5 parts by mass or less,
  • the mass ratio of the crystalline composite resin C to the ester wax is 0.7 or more, preferably 1 or more, more preferably 2 or more, further preferably 2.5 or more,
  • Step 1 Step of melt-kneading a toner component containing crystalline composite resin C, amorphous polyester A and ester wax using an open roll type kneader, and Step 2: pulverizing the obtained kneaded product
  • Glass transition temperature of crystalline resin Using a differential scanning calorimeter “Q-100” (manufactured by TA Instruments Japan Co., Ltd.), 0.01 to 0.02 g of sample is weighed into an aluminum pan, heated to 200 ° C., and the rate of temperature decrease from that temperature. Cool to -80 ° C at 100 ° C / min. Next, the sample is heated in a modulated mode (temperature modulation mode) at a heating rate of 1 ° C / min and measured.
  • the glass transition temperature is defined as the temperature at the intersection of the base line extension below the maximum peak temperature of endotherm and the tangent line indicating the maximum slope from the peak rising portion to the peak apex.
  • Glass transition temperature of amorphous resin Using a differential scanning calorimeter “Q-100” (manufactured by TA Instruments Japan Co., Ltd.), 0.01 to 0.02 g of sample is weighed into an aluminum pan, heated to 200 ° C., and the rate of temperature decrease from that temperature. Cool to 0 ° C at 10 ° C / min. Next, the sample is heated and measured at a heating rate of 10 ° C./min.
  • the glass transition temperature is defined as the temperature at the intersection of the base line extension below the maximum peak temperature of endotherm and the tangent line indicating the maximum slope from the peak rising portion to the peak apex.
  • the average particle diameter refers to the number average particle diameter, and is the number average value of the particle diameters of 500 particles measured from a scanning electron microscope (SEM) photograph of the external additive. When there is a major axis and a minor axis, the major axis is indicated.
  • sample dispersion For 1 minute to prepare a sample dispersion. Measurement conditions: The sample dispersion is added to 100 ml of the electrolytic solution so that the particle size of 30,000 particles can be measured in 20 seconds, and 30,000 particles are measured. Determine the median particle size (D 50 ).
  • Resin production example 1 [resins a to h] A 10-liter four-neck equipped with a predetermined amount of raw material monomers for polycondensation resin components other than acrylic acid, which are both reactive monomers shown in Tables 1 and 2, equipped with a nitrogen introduction tube, a dehydration tube, a stirrer and a thermocouple The flask was placed in a flask and heated to 160 ° C. to dissolve. Raw material monomers, polymerization initiators and acrylic acid of styrene resin components shown in Tables 1 and 2 were added dropwise over 1 hour using a dropping funnel. Stirring was continued for 1 hour while maintaining the temperature at 160 ° C.
  • Resin Production Example 3 [Resin A] The raw material monomers shown in Table 3, 40 g tin 2-ethylhexanoate, and 2 g gallic acid were placed in a 10-liter four-necked flask equipped with a nitrogen introduction tube, dehydration tube, stirrer and thermocouple, and in a nitrogen atmosphere. The temperature was raised to 235 ° C. and the reaction was performed for 8 hours. The reaction was further continued at 8 kPa until the softening point reached 110 ° C. to obtain an amorphous polyester. Table 3 shows the physical properties of the obtained resin.
  • Resin Production Example 4 [Resin B] Raw material monomer other than trimellitic anhydride shown in Table 3, 40 g of tin 2-ethylhexanoate, and 2 g of gallic acid, a 10 liter four-necked flask equipped with a nitrogen inlet tube, dehydration tube, stirrer and thermocouple The mixture was heated to 235 ° C. and reacted for 8 hours in a nitrogen atmosphere. Next, the temperature was lowered to 210 ° C. to normal pressure (101.3 kPa), trimellitic anhydride was added, and the mixture was reacted at 210 ° C. and normal pressure for 1 hour. The reaction was further continued at 8 kPa until the softening point reached 121 ° C. to obtain an amorphous polyester. Table 3 shows the physical properties of the obtained resin.
  • Binder resin and release agent “Carnauba Wax C1” (made by Kato Yoko Co., melting point: 83 ° C.) shown in Tables 4 and 5 and colorant “ECB-301” (made by Dainichi Seika Co., Ltd., phthalocyanine) Blue (PB 15: 3)) 5 parts by mass and charge control agent “Bontron E-304” (manufactured by Orient Chemical Co., Ltd.) 0.5 parts by mass were mixed in a Henschel mixer and then melt-kneaded under the conditions shown below.
  • the obtained raw material mixture was supplied to a continuous open roll type kneader “NIDEX” (manufactured by Mitsui Mining Co., Ltd.) with a table feeder and kneaded to obtain a kneaded product.
  • the continuous open roll type kneader used at this time had a roll outer diameter of 0.14 m and an effective roll length of 0.8 m, and the operating conditions were that the rotation speed of the high rotation side roll (front roll) was 75 r / min (33 m / min), the rotation speed of the low-rotation side roll (rear roll) was 50 r / min (22 m / min), and the roll gap was 0.1 mm.
  • the heating and cooling medium temperature in the roll is 150 ° C on the raw material input side of the high-rotation roll, 100 ° C on the kneaded material discharge side, 75 ° C on the raw material input side of the low-rotation roll and the kneaded material discharge side
  • the temperature of was set to 30 ° C.
  • the feed rate of the raw material mixture was 10 kg / h, and the average residence time was about 5 minutes.
  • the obtained kneaded product was cooled and coarsely pulverized by a pulverizer “ROTOPLEX” (manufactured by Toa Machinery Co., Ltd.) to obtain a coarsely pulverized product having a particle size of 2 mm or less using a sieve having an opening of 2 mm.
  • Fine grinding and upper limit classification were performed with a counter jet mill “400AFG” (manufactured by Hosokawa Alpine Co., Ltd.).
  • lower limit classification (removal of fine powder) was performed with a classifier “TTSP” (manufactured by Hosokawa Alpine Co., Ltd.) to obtain toner particles having a volume median particle size of 5.5 ⁇ m.
  • hydrophobic silica “R972” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: DMDS, average particle size: 16 nm
  • hydrophobic silica “RY -50” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: silicone oil, average particle size: 40 nm
  • Example 18 A predetermined amount of binder resin shown in Table 4 and 5 parts by weight of a colorant “ECB-301” (manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)), a release agent “WEP-8” (Nippon Oil) A synthetic ester wax (pentaerythritol fatty acid ester), melting point: 79 ° C., 3 parts by mass, and a charge control agent “Bontron E-304” (manufactured by Orient Chemical Co., Ltd.) 0.5 parts by mass were mixed in a Henschel mixer and then carried out It was melt-kneaded under the same conditions as in Example 1.
  • a colorant “ECB-301” manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)
  • PB 15: 3 phthalocyanine blue
  • WEP-8 Nippon Oil
  • a synthetic ester wax penentaerythritol
  • the obtained kneaded product was cooled and coarsely pulverized by a pulverizer “ROTOPLEX” (manufactured by Toa Machinery Co., Ltd.) to obtain a coarsely pulverized product having a particle size of 2 mm or less using a sieve having an opening of 2 mm.
  • Fine grinding and upper limit classification were performed with a counter jet mill “400AFG” (manufactured by Hosokawa Alpine Co., Ltd.).
  • lower limit classification (removal of fine powder) was performed with a classifier “TTSP” (manufactured by Hosokawa Alpine Co., Ltd.) to obtain toner particles having a volume median particle size of 5.5 ⁇ m.
  • hydrophobic silica “R972” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: DMDS, average particle size: 16 nm
  • hydrophobic silica “RY -50” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: silicone oil, average particle size: 40 nm
  • Example 19 A predetermined amount of binder resin shown in Table 4, 5 parts by weight of a colorant “ECB-301” (manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)), a release agent “Carnauba wax C1” (Kato) Yoko Co., Ltd., melting point: 83 ° C.) 3 parts by mass, release agent “HNP-9” (Nippon Seiwa Co., Ltd., paraffin wax, melting point: 75 ° C.) 3 parts by mass, and charge control agent “Bontron E-304” 0.5 parts by mass (made by Orient Chemical Co., Ltd.) was mixed with a Henschel mixer, and then melt-kneaded under the same conditions as in Example 1.
  • a colorant “ECB-301” manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)
  • a release agent “Carnauba wax C1” Korean wax C1
  • the obtained kneaded product was cooled and coarsely pulverized by a pulverizer “ROTOPLEX” (manufactured by Toa Machinery Co., Ltd.) to obtain a coarsely pulverized product having a particle size of 2 mm or less using a sieve having an opening of 2 mm.
  • Fine grinding and upper limit classification were performed with a counter jet mill “400AFG” (manufactured by Hosokawa Alpine Co., Ltd.).
  • lower limit classification (removal of fine powder) was performed with a classifier “TTSP” (manufactured by Hosokawa Alpine Co., Ltd.) to obtain toner particles having a volume median particle size of 5.5 ⁇ m.
  • hydrophobic silica “R972” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: DMDS, average particle size: 16 nm
  • hydrophobic silica “RY -50” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: silicone oil, average particle size: 40 nm
  • Example 21 The specified amount of binder resin shown in Table 4 and 5 parts by weight of coloring agent “ECB-301” (manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)), release agent “SS-1” (Bosseau oil and fat) 3 parts by mass, rice wax, melting point: 79 ° C., and 0.5 parts by mass of charge control agent “Bontron E-304” (Orient Chemical Co., Ltd.) were mixed in a Henschel mixer, and the same conditions as in Example 1 Melt kneaded.
  • the obtained kneaded product was cooled and coarsely pulverized by a pulverizer “ROTOPLEX” (manufactured by Toa Machinery Co., Ltd.) to obtain a coarsely pulverized product having a particle size of 2 mm or less using a sieve having an opening of 2 mm.
  • Fine grinding and upper limit classification were performed with a counter jet mill “400AFG” (manufactured by Hosokawa Alpine Co., Ltd.).
  • lower limit classification (removal of fine powder) was performed with a classifier “TTSP” (manufactured by Hosokawa Alpine Co., Ltd.) to obtain toner particles having a volume median particle size of 5.5 ⁇ m.
  • hydrophobic silica “R972” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: DMDS, average particle size: 16 nm
  • hydrophobic silica “RY -50” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: silicone oil, average particle size: 40 nm
  • Comparative Example 10 A predetermined amount of binder resin shown in Table 5 and 5 parts by mass of a coloring agent “ECB-301” (manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)), a release agent “HNP-9” (Nippon Seiki) After mixing 3 parts by mass of wax company, paraffin wax, melting point: 75 ° C.) and 0.5 parts by mass of charge control agent “Bontron E-304” (manufactured by Orient Chemical Co., Ltd.) with a Henschel mixer, the same conditions as in Example 1 Was melt kneaded.
  • a coloring agent “ECB-301” manufactured by Dainichi Seika Co., Ltd., phthalocyanine blue (PB 15: 3)
  • a release agent “HNP-9” Nippon Seiki
  • the obtained kneaded product was cooled and coarsely pulverized by a pulverizer “ROTOPLEX” (manufactured by Toa Machinery Co., Ltd.) to obtain a coarsely pulverized product having a particle size of 2 mm or less using a sieve having an opening of 2 mm.
  • Fine grinding and upper limit classification were performed with a counter jet mill “400AFG” (manufactured by Hosokawa Alpine Co., Ltd.).
  • lower limit classification (removal of fine powder) was performed with a classifier “TTSP” (manufactured by Hosokawa Alpine Co., Ltd.) to obtain toner particles having a volume median particle size of 5.5 ⁇ m.
  • hydrophobic silica “R972” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: DMDS, average particle size: 16 nm
  • hydrophobic silica “RY -50” manufactured by Nippon Aerosil Co., Ltd., hydrophobizing agent: silicone oil, average particle size: 40 nm
  • Test Example 1 [low temperature fixability] Implement toner to the non-magnetic one-component developing device "OKI MICROLINE 5400" (manufactured by Oki Data Corporation), by adjusting the amount of toner adhesion to 0.45 ⁇ 0.03mg / cm 2, "J a solid image of 4.1 cm ⁇ 13.0 cm Printed on “paper” (Fuji Xerox Office Supply). A solid image was taken out before passing through the fixing machine to obtain an unfixed image. The obtained unfixed image was fixed at a fixing speed of 240 mm / sec by setting the temperature of the fixing roll to 100 ° C. with an external fixing device obtained by modifying a fixing device of “Microline 3010” (manufactured by Oki Data).
  • the fixing roll temperature was set to 105 ° C., and the same operation was performed. While this was raised by 5 ° C. up to 200 ° C., the fixing process of the unfixed image was performed at each temperature to obtain a fixed image.
  • a mending tape (manufactured by Sumitomo 3M) was attached to the image fixed at each temperature, and then a 500 g cylinder was placed on the cylinder to sufficiently attach the tape to the fixed image. Thereafter, the mending tape was slowly peeled off from the fixed image, and the optical reflection density of the image after tape peeling was measured using a reflection densitometer “RD-915” (manufactured by Macbeth).
  • the roll temperature was defined as the minimum fixing temperature, which was used as an index of low-temperature fixability. The results are shown in Tables 4 and 5. The lower the minimum fixing temperature, the better the low-temperature fixing property.
  • the minimum fixing temperature is preferably 165 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 158 ° C. or lower.
  • Test Example 2 [Heat resistant storage stability] A 20 mL polypropylene container was filled with 4 g of toner, placed in a constant temperature and humidity chamber with a temperature of 50 ° C. and a relative humidity of 80%, and left for 48 hours with the container open. The degree of aggregation was measured before and after standing, and the storage stability was evaluated by the difference in the degree of aggregation between the two. The results are shown in Tables 4 and 5. The smaller the difference value, the better the heat resistant storage stability. The value is preferably 3.0 or less, more preferably 2.0 or less, and even more preferably 1.5 or less.
  • the degree of aggregation is measured using a powder tester (manufactured by Hosokawa Micron). Overlay sieves with 150, 75, and 45 ⁇ m openings, place 4 g of toner on top, and vibrate for 10 seconds with a vibration width of 1 mm. After vibration, the amount of toner remaining on the sieve is calculated for the degree of aggregation using the following formula.
  • Test Example 3 The toner is mounted on the non-magnetic one-component developing device “OKI MICROLINE 9300PS” (Oki Data Corporation). After printing 20 images with a printing rate of 5% in an environment with a temperature of 30 ° C and a relative humidity of 90%, optical The reflection density was measured using a reflection densitometer “RD-915” (manufactured by Macbeth). Furthermore, after printing 1000 sheets, the optical reflection density was measured again using a reflection densitometer “RD-915” (manufactured by Macbeth). The difference in image density between the two was calculated to evaluate the durability. The results are shown in Tables 4 and 5. The smaller the difference value, the better the durability.
  • the value is preferably 0.30 or less, more preferably 0.20 or less, and even more preferably 0.10 or less.
  • “ ⁇ 0.10” indicates that the difference value is 0.10 or less
  • “> 0.50” indicates that the difference is 0.5 or more.
  • Example 1 In contrast to Examples 1, 12 to 14, and Comparative Example 8, the toner in Example 1 in which the mass ratio of the polycondensation resin component / styrene resin component in the crystalline composite resin is 90/10 is low-temperature fixability, It turns out that it is excellent by the balance of preservability and durability. In contrast to Examples 12, 15, and 16, the toner of Example 12 in which the alcohol component of the polycondensation resin part of the crystalline composite resin is 1,10-decanediol has low temperature fixability, storage stability, and durability. It can be seen that the balance is superior.
  • the carboxylic acid component of the polycondensation resin portion of the crystalline composite resin is superior in sebacate acid having 10 carbon atoms from the viewpoint of low-temperature fixability, storage stability, and durability.
  • Comparative Examples 1 and 5 since the amount of ester wax with respect to the crystalline composite resin is small, it is considered that the dispersibility is lowered and the storage stability and durability are lowered.
  • Comparative Examples 2 and 3 since the amount of the crystalline composite resin is small, the low-temperature fixability is not sufficiently exhibited.
  • Comparative Example 4 since the amount of ester wax is large, the storage stability and durability are lowered.
  • Comparative Example 6 since the amount of the crystalline composite resin is too large, storage stability and durability are deteriorated.
  • Comparative Example 7 uses a medium-chain aliphatic diol as the alcohol component of the polycondensation resin component of the crystalline composite resin and an aromatic dicarboxylic acid compound as the carboxylic acid component, it is highly compatible with the amorphous polyester. , Storage stability and durability are reduced.
  • Comparative Example 8 since the crystalline resin is a crystalline polyester having no styrenic resin component, the durability is lowered. This is probably because the dispersibility of the wax is lowered. Since the comparative example 9 does not use the crystalline resin, the low temperature fixability is lowered. In Comparative Example 10, paraffin wax is used as a release agent, so that the storage stability and durability are lowered.
  • the amorphous resin is a hybrid resin having a styrene resin component and a polycondensation resin component, the compatibility with the crystalline composite resin is high, and storage stability and durability are reduced. It is considered a thing.
  • the toner for electrophotography of the present invention is suitably used for developing a latent image formed by, for example, an electrostatic charge image developing method, an electrostatic recording method, an electrostatic printing method or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 結晶性複合樹脂Cと非晶質ポリエステルAとを含む結着樹脂及びエステルワックスを含有する電子写真用トナーであって、前記結晶性複合樹脂Cが炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と、炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分と、スチレン系樹脂成分とを含む樹脂であり、前記非晶質ポリエステルAと前記結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)が60/40以上95/5以下であり、前記結晶性複合樹脂Cと前記エステルワックスの質量比(結晶性複合樹脂C/エステルワックス)が0.5以上9以下である、電子写真用トナー。本発明の電子写真用トナーは、例えば、静電荷像現像法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。

Description

電子写真用トナー
 本発明は、例えば、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像に用いられる電子写真用トナー及びその製造方法に関する。
 印刷装置の高速化、省エネルギー化の観点から、低温定着性に優れたトナーが要求されている。しかしながら、低温定着性を改良するために、トナーの軟化点やガラス転移温度を低く設計すると、保存安定性が低下するという弊害が生じる。そこで、低温定着性及び保存安定性を両立させるため、結晶性ポリエステルを用いたトナーの開発が行われている。
 例えば、特許文献1には、炭素数2~10の脂肪族ジオールを含有したアルコール成分と芳香族ジカルボン酸を含有したカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分とスチレン系樹脂成分とを含む複合樹脂からなる、トナー用結晶性樹脂が開示されている。
 特許文献2には、炭素数8~12のジオールと炭素数10~12のジカルボン酸化合物を含み、両者の総含有量が80モル%以上である結晶性ポリエステルの原料モノマー、付加重合系樹脂の原料モノマー及び該付加重合系樹脂の原料モノマー100重量部に対して、3~15重量部の結晶性ポリエステルの原料モノマーと付加重合系樹脂の原料モノマーのいずれとも反応し得る化合物を重合させることにより得られる、結晶性ポリエステル成分と付加重合系樹脂成分とを含む結晶性ハイブリッド樹脂(1-2)と、
アルコール成分と、芳香族ジカルボン酸化合物を含有したカルボン酸成分を含む非晶質縮重合系樹脂の原料モノマー、付加重合系樹脂の原料モノマー及び該付加重合系樹脂の原料モノマー100重量部に対して、2~15重量部の非晶質縮重合系樹脂の原料モノマーと付加重合系樹脂の原料モノマーのいずれとも反応し得る化合物を重合させることにより得られる、非晶質縮重合系樹脂成分と付加重合系樹脂成分とを含む非晶質ハイブリッド樹脂(2-2)
を含有してなる結着樹脂を含有してなる静電荷像現像用トナーであって、前記の結晶性ハイブリッド樹脂(1-2)と非晶質ハイブリッド樹脂(2-2)の重量比(結晶性ハイブリッド樹脂(1-2)/非晶質ハイブリッド樹脂(2-2))が1/99~40/60である、静電荷像現像用トナーが開示されている。
特開2010-139659号公報 特開2013-109237号公報
 本発明は、
〔1〕 結晶性複合樹脂Cと非晶質ポリエステルAとを含む結着樹脂及びエステルワックスを含有する電子写真用トナーであって、
前記結晶性複合樹脂Cが炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と、炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分と、スチレン系樹脂成分とを含む樹脂であり、
前記非晶質ポリエステルAと前記結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)が60/40以上95/5以下であり、
前記結晶性複合樹脂Cと前記エステルワックスの質量比(結晶性複合樹脂C/エステルワックス)が0.5以上9以下である、
電子写真用トナー、並びに
〔2〕 工程1:結晶性複合樹脂C、非晶質ポリエステルA及びエステルワックスを含むトナー成分を、オープンロール型混練機を用いて溶融混練する工程、及び
工程2:得られた混練物を粉砕する工程
を含む、前記〔1〕記載の電子写真用トナーの製造方法
に関する。
発明の詳細な説明
 特許文献1に記載の結晶性樹脂は、重縮合系樹脂成分を構成するカルボン酸成分として芳香族ジカルボン酸化合物を用いており、アルコール成分として中鎖の脂肪族ジオールを用いているため、非晶質樹脂と相溶性が高くなり、耐熱保存性及び耐久性において、更なる向上が求められている。
 また、特許文献2に記載の結晶性樹脂は、重縮合系樹脂成分を構成するカルボン酸成分としてセバシン酸を用いており、アルコール成分として長鎖の脂肪族ジオールを用いているものの、非晶質樹脂としてハイブリッド樹脂を用いているため、非晶質樹脂と相溶性が高くなり、同様に耐熱保存性及び耐久性において、更なる向上が求められている。
 本発明は、低温定着性、耐熱保存性、及び耐久性に優れる電子写真用トナー及びその製造方法に関する。
 本発明の電子写真用トナーは、低温定着性、耐熱保存性、及び耐久性において優れた効果を奏するものである。
 本発明の電子写真用トナー(以下、単にトナーともいう。)は、長鎖脂肪族モノマーを用いた重縮合系樹脂成分を含む結晶性複合樹脂Cと非晶質ポリエステルAとを含む結着樹脂及びエステルワックスを含むものである。
 本発明の電子写真用トナーが、低温定着性、耐熱保存性(以下、単に保存性ともいう)、及び耐久性に優れる理由は定かではないが、次のように考えられる。
 本発明のトナーに含まれる結晶性複合樹脂Cは、長鎖脂肪族モノマーを用いた重縮合系樹脂成分を含んでいるため、疎水性が高い。従って、結晶性複合樹脂Cは非晶質ポリエステルAとの相溶性が低いため、結晶化し易く、低温定着性と保存性に優れると考えられる。しかしながら、結晶性が高いために、非晶質ポリエステルA中での分散性が悪くなり、当初予想したような低温定着性や保存性が発揮されず、さらにトナー中、結晶性複合樹脂Cと非晶質ポリエステルAとの界面で割れやすくなり、耐久性も低下する。
 そこで、エステルワックスを、特定量併用することで、低温定着性及び耐熱保存性を満足しつつ、耐久性にも優れることを見出した。これは、エステルワックスの親疎水バランスが、結晶性複合樹脂Cと非晶質ポリエステルAとの中間に位置するためか、トナー中の結晶性複合樹脂Cの分散性を高めたためと考えられる。
 本発明において、樹脂の結晶性は、軟化点と示差走査熱量計による吸熱の最高ピーク温度との比、即ち[軟化点/吸熱の最高ピーク温度]の値で定義される結晶性指数によって表わされる。結晶性樹脂は、結晶性指数が0.6~1.4、好ましくは0.7~1.2、より好ましくは0.9~1.2の樹脂であり、非晶質樹脂は、結晶性指数が、1.4を超えるか、0.6未満、好ましくは1.5を超えるか、0.5以下、より好ましくは1.6以上か、0.5以下の樹脂である。樹脂の結晶性は、原料モノマーの種類とその比率、及び製造条件(例えば、反応温度、反応時間、冷却速度)等により調整することができる。なお、吸熱の最高ピーク温度とは、観測される吸熱ピークのうち、最も高温側にあるピークの温度を指す。結晶性樹脂においては、吸熱の最高ピーク温度を融点とする。なお、本発明において、単に「樹脂」という場合は、結晶性樹脂及び非晶質樹脂の両方を意味する。
 結晶性複合樹脂Cは、炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と、炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分と、スチレン系樹脂成分とを含む樹脂である。
 重縮合系樹脂成分としては、ポリエステル、ポリエステル・ポリアミド等が挙げられるが、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、ポリエステルが好ましい。
 ポリエステルは、2価以上のアルコールを含有するアルコール成分と2価以上のカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られるものが好ましい。
 重縮合系樹脂成分のアルコール成分に含まれる脂肪族ジオールの炭素数は、保存性及び耐久性の観点から、9以上であり、好ましくは10以上である。また、耐久性の観点から、14以下であり、好ましくは12以下、より好ましくは10以下、さらに好ましくは10である。
 炭素数9以上14以下の脂肪族ジオールとしては、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、及び1,14-テトラデカンジオール等が挙げられ、複合樹脂の結晶性を高め、低温定着性や保存性を高める観点から、α,ω-直鎖アルカンジオールが好ましく、1,10-デカンジオール及び1,12-ドデカンジオールから選ばれた1種又は2種がより好ましく、1,10-デカンジオールがさらに好ましい。
 炭素数9以上14以下の脂肪族ジオールの含有量は、低温定着性、保存性及び耐久性を高める観点から、アルコール成分中、好ましくは70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。さらに、アルコール成分に占める炭素数9以上14以下の脂肪族ジオールのなかの1種の割合は、複合樹脂の結晶性を高め、低温定着性や保存性を高める観点から、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、さらに好ましくは95モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。
 アルコール成分には、炭素数9以上14以下の脂肪族ジオール以外の多価アルコールが含有されていてもよく、式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、R1O及びOR1はオキシアルキレン基であり、R1はエチレン及び/又はプロピレン基であり、x1及びy1はアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、x1とy1の和の値は、好ましくは1以上、より好ましくは1.5以上であり、好ましくは16以下、より好ましくは8以下、さらに好ましくは4以下である)
で表されるビスフェノールAのアルキレンオキサイド付加物等の芳香族ジオール;グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトール、1,4-ソルビタン等の3価以上のアルコールが挙げられる。
 重縮合系樹脂のカルボン酸成分に含まれる脂肪族ジカルボン酸化合物の炭素数は、保存性及び耐久性の観点から、9以上であり、好ましくは10以上である。また、同様の観点から、14以下であり、好ましくは12以下、より好ましくは10である。
 炭素数9以上14以下の脂肪族ジカルボン酸化合物としては、複合樹脂の結晶性を高め、低温定着性や保存性を高める観点から、α,ω-直鎖アルカンジカルボン酸化合物が好ましく、アゼライン酸、セバシン酸、ドデカン2酸、テトラデカン2酸等が挙げられ、トナーの保存性及び耐久性を向上させる観点から、セバシン酸及びドデカン2酸から選ばれた1種又は2種が好ましく、セバシン酸がより好ましい。なお、ジカルボン酸化合物とは、ジカルボン酸、その無水物及びその炭素数1以上3以下のアルキルエステルを指すが、これらの中では、ジカルボン酸が好ましい。また、脂肪族ジカルボン酸化合物の炭素数とは、ジカルボン酸部分を含む炭素数であり、アルキルエステル部は含めない。
 カルボン酸成分には、炭素数9以上14以下の脂肪族ジカルボン酸化合物以外の多価カルボン酸化合物が含有されていてもよく、該多価カルボン酸化合物としては、シュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アジピン酸、炭素数が1以上30以下のアルキル基又は炭素数2以上30以下のアルケニル基で置換されたコハク酸等の脂肪族ジカルボン酸、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、トリメリット酸、2,5,7-ナフタレントリカルボン酸、ピロメリット酸等の3価以上の芳香族カルボン酸、及びこれらの酸無水物、炭素数1以上3以下のアルキルエステル等が挙げられる。
 炭素数9以上14以下の脂肪族ジカルボン酸化合物の含有量は、低温定着性、保存性及び耐久性の観点から、カルボン酸成分中の2価以上のカルボン酸化合物の総量中、好ましくは70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上であり、好ましくは100モル%以下であり、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。
 炭素数9以上14以下の脂肪族ジカルボン酸化合物の含有量は、低温定着性、保存性及び耐久性の観点から、カルボン酸成分中、好ましくは70モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。
 また、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸化合物が、分子量調整等の観点から、適宜含有されていてもよい。
 なお、本明細書において、後述する両反応性モノマーは、アルコール成分やカルボン酸成分の含有量の計算には含めない。
 重縮合系樹脂成分の原料モノマーであるカルボン酸成分とアルコール成分との合計モル数中、炭素数9以上14以下の脂肪族ジカルボン酸化合物と炭素数9以上14以下の脂肪族ジオールとの合計モル数は、低温定着性、保存性及び耐久性を高める観点から、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは93モル%以上、さらに好ましくは95モル%以上、さらに好ましくは97モル%以上であり、好ましくは100モル%以下、より好ましくは実質100モル%、さらに好ましくは100モル%である。
 炭素数9以上14以下の脂肪族ジカルボン酸化合物と炭素数9以上14以下の脂肪族ジオールとの合計モル数は、低温定着性、保存性及び耐久性を高める観点から、重縮合系樹脂成分の原料モノマーであるカルボン酸成分中の2価以上のカルボン酸化合物とアルコール成分中の2価以上のアルコールとの合計モル数中、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。
 重縮合系樹脂成分におけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、複合樹脂の軟化点を調整する観点から、好ましくは0.6以上、より好ましくは0.7以上であり、好ましくは1.3以下、より好ましくは1.1以下である。
 重縮合系樹脂成分の原料モノマーの重縮合反応は、不活性ガス雰囲気中にて、必要に応じて、エステル化触媒、重合禁止剤等の存在下、160℃以上230℃以下程度の温度で行うことができる。エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられ、エステル化触媒とともに用い得るエステル化助触媒としては、没食子酸等が挙げられる。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、好ましくは1.5質量部以下、より好ましくは1.0質量部以下である。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
 スチレン系樹脂成分の原料モノマーとしては、少なくとも、スチレン、又はα-メチルスチレン、ビニルトルエン等のスチレン誘導体(以下、スチレンとスチレン誘導体をまとめて「スチレン化合物」という)が用いられる。
 スチレン化合物の含有量は、トナーの低温定着性、保存性及び耐久性を向上させる観点から、スチレン系樹脂成分の原料モノマー中、好ましくは70質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、好ましくは100質量%以下、より好ましくは実質的に100質量%、さらに好ましくは100質量%である。
 スチレン化合物以外に用いられるスチレン系樹脂成分の原料モノマーとしては、(メタ)アクリル酸アルキルエステル;エチレン、プロピレン等のエチレン性不飽和モノオレフィン類;ブタジエン等のジオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;(メタ)アクリル酸ジメチルアミノエチル等のエチレン性モノカルボン酸エステル;ビニルメチルエーテル等のビニルエーテル類;ビニリデンクロリド等のビニリデンハロゲン化物;N-ビニルピロリドン等のN-ビニル化合物類等が挙げられる。
 スチレン化合物以外に用いられるスチレン系樹脂成分の原料モノマーは2種以上を組み合わせて使用することができる。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸及び/又はメタクリル酸を意味する。
 スチレン化合物以外に用いられるスチレン系樹脂成分の原料モノマーの中では、トナーの低温定着性を向上させる観点から、(メタ)アクリル酸アルキルエステルが好ましい。(メタ)アクリル酸アルキルエステルにおけるアルキル基の炭素数は、上記の観点から好ましくは1以上、より好ましくは8以上であり、好ましくは22以下、より好ましくは18以下である。なお、該アルキルエステルの炭素数は、エステルを構成するアルコール成分由来の炭素数をいう。
 (メタ)アクリル酸アルキルエステルとしては、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(イソ)プロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、(イソ又はターシャリー)ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、(イソ)オクチル(メタ)アクリレート、(イソ)デシル(メタ)アクリレート、(イソ)ステアリル(メタ)アクリレート等が挙げられる。ここで、「(イソ又はターシャリー)」、「(イソ)」は、これらの基が存在している場合とそうでない場合の双方を含むことを意味し、これらの基が存在していない場合には、ノルマルであることを示す。また、「(メタ)アクリレート」は、アクリレートとメタクリレートの双方の場合を含むことを示す。
 (メタ)アクリル酸アルキルエステルの含有量は、トナーの耐久性及び保存性を向上させる観点から、スチレン系樹脂成分の原料モノマー中、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下であり、好ましくは0質量%以上、より好ましくは0質量%である。
 なお、スチレン化合物と(メタ)アクリル酸アルキルエステルとを含む原料モノマーを付加重合させて得られる樹脂をスチレン-(メタ)アクリル樹脂ともいう。
 スチレン系樹脂成分の原料モノマーの付加重合反応は、例えば、ジクミルパーオキサイド等の重合開始剤、架橋剤等の存在下、有機溶媒存在下又は無溶媒下で、常法により行うことができるが、温度条件としては、好ましくは110℃以上、より好ましくは140℃以上であり、好ましくは200℃以下、より好ましくは170℃以下である。
 付加重合反応の際に有機溶媒を使用する場合、キシレン、トルエン、メチルエチルケトン、アセトン等を用いることができる。有機溶媒の使用量は、スチレン系樹脂成分の原料モノマー100質量部に対して、10質量部以上50質量部以下が好ましい。
 スチレン系樹脂成分のガラス転移温度(Tg)は、トナーの低温定着性、保存性及び耐久性を向上させる観点から、好ましくは60℃以上、より好ましくは80℃以上、さらに好ましくは90℃以上であり、好ましくは130℃以下、より好ましくは120℃以下、さらに好ましくは110℃以下である。
 スチレン系樹脂成分のTgは、高分子の場合は熱加成性式というTgを予測する経験式、Fox式(T.G.Fox、Bull.Am.Physics Soc.、第1巻、第3号、123ページ(1956))に従って、ポリマーを構成する各々の単量体の単独重合体のTgnより、下記式(1)から計算により求められる値を使用する。
 1/Tg=Σ(Wn/Tgn)   (1)
(式中、Tgnは、各単量体成分の単独重合体の絶対温度で表したTgであり、Wnは各単量体成分の質量分率である。)
 なお、本明細書において、後述する両反応性モノマーは、スチレン系樹脂成分の含有量の計算に含まれないものとし、スチレン系樹脂成分のTgの計算に用いない。
 本発明の実施例で用いられるFoxの式のガラス転移温度(Tg)の計算には、スチレンのTgn:373K(100℃)、アクリル酸2-エチルヘキシルのTgn:223K(-50℃)を用いる。
 結晶性複合樹脂Cにおいて、重縮合樹脂成分とスチレン系樹脂成分とは、直接に又は連結基を介して結合していることが好ましい。連結基としては、後述する両反応性モノマー、連鎖移動剤等由来の化合物、他の樹脂等が挙げられる。
 結晶性複合樹脂Cは、前記重縮合系樹脂成分とスチレン系樹脂成分とが相互に分散している状態が好ましく、前記分散状態は、以下のような、実施例で述べる方法で測定した結晶性複合樹脂Cのガラス転移温度(Tg)と前記Fox式の計算値との差で評価することができる。
 すなわち、本発明における結晶性複合樹脂Cは結晶性樹脂であるが、スチレン系樹脂成分と重縮合系樹脂成分とに由来する非晶質部分とを有しており、スチレン系樹脂成分に由来するTgと重縮合系樹脂成分に由来するTgを持つ。複合樹脂中のスチレン系樹脂成分のTgと重縮合系樹脂成分のTgとは、別個に測定される値であるが、重縮合系樹脂成分とスチレン系樹脂成分との分散度が高まるにつれて、両Tgが相互に近づき、重縮合系樹脂成分とスチレン系樹脂成分とがほぼ均一な状態にまで分散すると、両Tgが重複し、測定値はほぼ一つになる。
 従って、スチレン系樹脂成分と重縮合系樹脂成分とが相互に分散している状態では、後述する測定条件で測定した複合樹脂のTgは、前記スチレン系樹脂成分のFox式で計算したTgと異なった値となる。具体的には、結晶性複合樹脂Cのガラス転移温度と、結晶性複合樹脂C中のスチレン系樹脂成分のFox式で計算されたガラス転移温度との差の絶対値は、好ましくは10℃以上、より好ましくは30℃以上、さらに好ましくは50℃以上であり、好ましくは120℃以下である。一般に、重縮合系樹脂成分のTgは、スチレン系樹脂成分のTgより低いことから、複合樹脂のTgの測定値は、スチレン系樹脂成分の計算値のTgより低くなることが多い。
 このような結晶性複合樹脂Cは、例えば、(1)カルボキシ基や水酸基を有するスチレン系樹脂の存在下で、重縮合系樹脂成分の原料モノマーを重縮合させる方法(カルボキシ基や水酸基は後述する両反応性モノマーや連鎖移動剤など由来のものを用いることができる)や、(2)反応性不飽和結合を有する重縮合系樹脂の存在下で、スチレン系樹脂成分の原料モノマーを付加重合させる方法等で得ることができる。
 結晶性複合樹脂Cは、トナーの低温定着性、保存性及び耐久性を向上させる観点から、重縮合系樹脂成分の原料モノマーとスチレン系樹脂成分の原料モノマーに加えて、さらに重縮合系樹脂成分の原料モノマー及びスチレン系樹脂成分の原料モノマーのいずれとも反応し得る、両反応性モノマーを用いて得られる樹脂(ハイブリッド樹脂)であることが好ましい。従って、重縮合系樹脂成分の原料モノマー及びスチレン系樹脂成分の原料モノマーを重合させて結晶性複合樹脂Cを得る際に、重縮合反応及び/又は付加重合反応は、両反応性モノマーの存在下で行うことが好ましい。これにより、結晶性複合樹脂Cは、両反応性モノマー由来の構成単位を介して重縮合系樹脂成分とスチレン系樹脂成分とが結合した樹脂(ハイブリッド樹脂)となり、重縮合系樹脂成分とスチレン系樹脂成分とがより微細に、かつ均一に分散したものとなる。
 即ち、結晶性複合樹脂Cは、(イ)炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを含む、重縮合系樹脂成分の原料モノマー、(ロ)スチレン系樹脂成分の原料モノマー、及び(ハ)重縮合系樹脂成分の原料モノマー及びスチレン系樹脂成分の原料モノマーのいずれとも反応し得る両反応性モノマーを重合させることにより得られる樹脂であることが好ましい。
 両反応性モノマーとしては、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基からなる群より選ばれた少なくとも1種の官能基、好ましくは水酸基及び/又はカルボキシ基、より好ましくはカルボキシ基と、エチレン性不飽和結合とを有する化合物が好ましく、このような両反応性モノマーを用いることにより、分散相となる樹脂の分散性をより向上させることができる。両反応性モノマーは、アクリル酸、メタクリル酸、フマル酸、マレイン酸及び無水マレイン酸からなる群より選ばれた少なくとも1種であることが好ましいが、重縮合反応及び付加重合反応の反応性の観点から、アクリル酸、メタクリル酸又はフマル酸がより好ましい。但し、重合禁止剤と共に用いた場合は、フマル酸等のエチレン性不飽和結合を有する多価カルボン酸化合物は、重縮合系樹脂成分の原料モノマーとして機能する。この場合、フマル酸等は両反応性モノマーではなく、重縮合系樹脂成分の原料モノマーである。
 両反応性モノマーの使用量は、低温定着性の観点から、重縮合系樹脂成分のアルコール成分の合計100モルに対して、好ましくは1モル以上、より好ましくは2モル以上である。また、スチレン系樹脂成分と重縮合系樹脂成分との分散性を高め、トナーの耐久性及び保存性を向上させる観点から、好ましくは30モル以下、より好ましくは20モル以下、さらに好ましくは15モル以下、さらに好ましくは10モル以下、さらに好ましくは5モル以下である。
 また、両反応性モノマーの使用量は、低温定着性の観点から、スチレン系樹脂成分の原料モノマーの合計100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上である。また、スチレン系樹脂成分と重縮合系樹脂成分との分散性を高め、トナーの耐久性及び保存性を向上させる観点から、好ましくは30質量部以下、より好ましくは20質量部以下、さらに好ましくは15質量部以下、さらに好ましくは10質量部以下である。ここで、スチレン系樹脂成分の原料モノマーの合計に重合開始剤を含める。
 両反応性モノマーを用いて得られるハイブリッド樹脂は、具体的には、以下の方法により製造することが好ましい。両反応性モノマーは、トナーの耐久性、低温定着性及び保存性を向上させる観点から、スチレン系樹脂成分の原料モノマーとともに付加重合反応に用いることが好ましい。
(i) 重縮合系樹脂成分の原料モノマーによる重縮合反応の工程(A)の後に、スチレン系樹脂成分の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)を行う方法
 この方法では、重縮合反応に適した反応温度条件下で工程(A)を行い、反応温度を低下させ、付加重合反応に適した温度条件下で工程(B)を行う。スチレン系樹脂成分の原料モノマー及び両反応性モノマーは、付加重合反応に適した温度で反応系内に添加にすることが好ましい。両反応性モノマーは付加重合反応をすると共に重縮合系樹脂成分とも反応する。
 工程(B)の後に、再度反応温度を上昇させ、必要に応じて架橋剤となる3価以上等の重縮合系樹脂成分の原料モノマー等を重合系に添加し、工程(A)の重縮合反応や両反応性モノマーとの反応をさらに進めることができる。
(ii) スチレン系樹脂成分の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)の後に、重縮合系樹脂成分の原料モノマーによる重縮合反応の工程(A)を行う方法
 この方法では、付加重合反応に適した反応温度条件下で工程(B)を行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、工程(A)の重縮合反応を行う。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
 重縮合系樹脂成分の原料モノマーは、付加重合反応時に反応系内に存在してもよく、重縮合反応に適した温度条件下で反応系内に添加してもよい。前者の場合は、重縮合反応に適した温度でエステル化触媒を添加することで重縮合反応の進行を調節できる。
(iii) 重縮合系樹脂成分の原料モノマーによる重縮合反応の工程(A)とスチレン系樹脂成分の原料モノマー及び両反応性モノマーによる付加重合反応の工程(B)とを、並行して進行する条件で反応を行う方法
 この方法では、付加重合反応に適した反応温度条件下で工程(A)と工程(B)とを行い、反応温度を上昇させ、重縮合反応に適した温度条件下で、必要に応じて架橋剤となる3価以上の重縮合系樹脂成分の原料モノマーを重合系に添加し、工程(A)の重縮合反応をさらに行うことが好ましい。その際、重縮合反応に適した温度条件下では、ラジカル重合禁止剤を添加して重縮合反応だけを進めることもできる。両反応性モノマーは付加重合反応と共に重縮合反応にも関与する。
 上記(i)の方法においては、重縮合反応を行う工程(A)の代わりに、予め重合した重縮合系樹脂を用いてもよい。上記(iii)の方法において、工程(A)と工程(B)が並行して進行する条件で反応を行う際には、重縮合系樹脂成分の原料モノマーを含有した混合物中に、スチレン系樹脂成分の原料モノマーを含有した混合物を滴下して反応させることもできる。
 上記(i)~(iii)の方法は、同一容器内で行うことが好ましい。
 結晶性複合樹脂Cにおける重縮合系樹脂成分とスチレン系樹脂成分との質量比(重縮合系樹脂成分/スチレン系樹脂成分)は、保存性の観点から、好ましくは55/45以上、より好ましくは70/30以上、さらに好ましくは80/20以上、さらに好ましくは85/15以上である。また、耐久性の観点から、好ましくは95/5以下、より好ましくは92/8以下である。なお、上記の計算において、重縮合系樹脂成分の質量は、用いられる重縮合系樹脂の原料モノマーの質量から、重縮合反応により脱水される反応水の量(計算値)を除いた量であり、両反応性モノマーの量は、重縮合系樹脂成分の原料モノマー量に含める。また、スチレン系樹脂成分の量は、スチレン系樹脂成分の原料モノマー量であるが、重合開始剤の量はスチレン系樹脂成分の原料モノマー量に含めない。
 結晶性複合樹脂Cの軟化点は、トナーの保存性を向上させる観点から、好ましくは60℃以上、より好ましくは70℃以上、さらに好ましくは75℃以上、さらに好ましくは80℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは140℃以下、より好ましくは120℃以下、さらに好ましくは110℃以下、さらに好ましくは100℃以下である。
 また、結晶性複合樹脂Cの融点(吸熱の最高ピーク温度)は、トナーの耐久性を向上させる観点、及びトナーの保存性を向上させる観点から、好ましくは55℃以上、より好ましくは65℃以上、さらに好ましくは70℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは140℃以下、より好ましくは120℃以下、さらに好ましくは110℃以下、さらに好ましくは100℃以下である。
 結晶性複合樹脂Cの軟化点及び融点は、原料モノマー組成、重合開始剤、分子量、触媒量等の調整又は反応条件の選択により調整することができる。
 また、結晶性複合樹脂Cのガラス転移温度(Tg)は、トナーの耐久性を向上させる観点、及びトナーの保存性を向上させる観点から、好ましくは-10℃以上、より好ましくは0℃以上、さらに好ましくは10℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは60℃以下、より好ましくは50℃以下、さらに好ましくは45℃以下である。
 本発明のトナーは、結晶性複合樹脂C以外の結晶性樹脂を含有していてもよいが、トナーの耐久性を向上させる観点、及びトナーの耐熱保存性を向上させる観点から、前記結晶性複合樹脂Cの含有量は、結晶性樹脂中、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、好ましくは100質量%以下、より好ましくは実質的に100質量%、さらに好ましくは100質量%である。
 結着樹脂中の結晶性複合樹脂Cの含有量は、トナーの低温定着性を向上させる観点から、好ましくは3質量%以上、より好ましくは5質量%以上、さらに好ましくは7質量%以上、さらに好ましくは8質量%以上である。また、トナーの耐久性を向上させる観点、及びトナーの保存性を向上させる観点から、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、さらに好ましくは15質量%以下である。
 本発明における非晶質ポリエステルAは、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸化合物を含むカルボン酸成分とを重縮合させて得られるものが好ましい。
 2価のアルコールとしては、好ましくは炭素数2以上であり、好ましくは炭素数20以下、より好ましくは炭素数15以下のジオールや、式(I):
Figure JPOXMLDOC01-appb-C000004
(式中、R1O及びOR1はオキシアルキレン基であり、R1はエチレン及び/又はプロピレン基であり、x1及びy1はアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、x1とy1の和の値は、好ましくは1以上、より好ましくは1.5以上であり、好ましくは16以下、より好ましくは8以下、さらに好ましくは4以下である)
で表されるビスフェノールAのアルキレンオキサイド付加物等が挙げられる。炭素数2以上20以下の2価のアルコールとして、具体的には、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ビスフェノールA、水素添加ビスフェノールA等が挙げられる。
 アルコール成分としては、トナーの耐久性及び耐熱保存性を向上させる観点から、式(I)で表されるビスフェノールAのアルキレンオキサイド付加物が好ましい。式(I)で表されるビスフェノールAのアルキレンオキサイド付加物の含有量は、トナーの耐久性及び耐熱保存性を向上させる観点から、アルコール成分中、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である。
 3価以上のアルコールとしては、好ましくは炭素数3以上であり、好ましくは炭素数20以下、より好ましくは炭素数10以下の3価以上のアルコールが挙げられる。具体的には、ソルビトール、1,4-ソルビタン、ペンタエリスリトール、グリセロール、トリメチロールプロパン等が挙げられる。
 2価のカルボン酸化合物としては、例えば、好ましくは炭素数3以上、さらに好ましくは炭素数4以上であり、好ましくは炭素数30以下、より好ましくは炭素数20以下、さらに好ましくは炭素数10以下のジカルボン酸、及びそれらの酸無水物、炭素数1以上3以下のアルキルエステル等の誘導体等が挙げられる。具体的には、フタル酸、イソフタル酸、テレフタル酸等の芳香族ジカルボン酸や、フマル酸、マレイン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、炭素数が1以上30以下のアルキル基又は炭素数2以上30以下のアルケニル基で置換されたコハク酸等の脂肪族ジカルボン酸が挙げられる。なお、炭素数が1以上30以下のアルキル基又は炭素数2以上30以下のアルケニル基で置換されたコハク酸は、炭素数4の脂肪族ジカルボン酸とする。
 3価以上のカルボン酸化合物としては、例えば、好ましくは炭素数4以上、より好ましくは炭素数6以上、さらに好ましくは炭素数9以上であり、好ましくは炭素数30以下、より好ましくは炭素数20以下、さらに好ましくは炭素数10以下の3価以上のカルボン酸、及びそれらの酸無水物、炭素数1以上3以下のアルキルエステル等の誘導体等が挙げられる。具体的には、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、1,2,4,5-ベンゼンテトラカルボン酸(ピロメリット酸)等が挙げられる。
 トナーの耐久性及び保存性を向上させる観点から、カルボン酸成分は、テレフタル酸、炭素数2以上20以下のアルキル基又はアルケニル基で置換されたコハク酸、及び無水トリメリット酸からなる群より選ばれた少なくとも1種を含むことが好ましく、テレフタル酸を含むことがより好ましい。
 テレフタル酸、炭素数2以上20以下のアルキル基又はアルケニル基で置換されたコハク酸、及び無水トリメリット酸の合計含有量は、カルボン酸成分中、好ましくは60モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上であり、好ましくは100モル%以下である。
 なお、アルコール成分には1価のアルコールが、カルボン酸成分には1価のカルボン酸化合物が、ポリエステルの軟化点を調整する観点から、適宜含有されていてもよい。
 ポリエステルにおけるカルボン酸成分とアルコール成分との当量比(COOH基/OH基)は、ポリエステルの軟化点を調整する観点から、好ましくは0.7以上、より好ましくは0.8以上であり、好ましくは1.3以下、より好ましくは1.2以下である。
 非晶質ポリエステルAは、例えば、アルコール成分とカルボン酸成分とを不活性ガス雰囲気中にて、必要に応じて、エステル化触媒、重合禁止剤等の存在下、180℃以上250℃以下程度の温度で重縮合させて製造することができる。エステル化触媒としては、酸化ジブチル錫、2-エチルヘキサン酸錫(II)等の錫化合物、チタンジイソプロピレートビストリエタノールアミネート等のチタン化合物等が挙げられる。エステル化触媒とともに用い得るエステル化助触媒としては、没食子酸等が挙げられる。エステル化触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.1質量部以上であり、好ましくは1質量部以下、より好ましくは0.6質量部以下である。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、好ましくは0.5質量部以下、より好ましくは0.1質量部以下である。
 非晶質ポリエステルAの軟化点は、トナーの耐久性及び保存性を向上させる観点から、好ましくは90℃以上、より好ましくは100℃以上、さらに好ましくは105℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは150℃以下、より好ましくは140℃以下、さらに好ましくは130℃以下である。2種以上の非晶質ポリエステルAを含有する場合は、軟化点の加重平均値が上記範囲にあることが好ましい。
 また、本発明において、非晶質ポリエステルAは、トナーの低温定着性、保存性及び耐久性のバランスの観点から、軟化点が異なる2種類の非晶質ポリエステルを含有していることが好ましい。軟化点の差は、好ましくは5℃以上、より好ましくは10℃以上であり、好ましくは40℃以下、より好ましくは30℃以下である。2種類の非晶質ポリエステルAのうち、軟化点を低い方の非晶質ポリエステルALの軟化点は、トナーの低温定着性及び保存性の観点から、好ましくは80℃以上、より好ましくは95℃以上、さらに好ましくは105℃以上であり、好ましくは135℃以下、より好ましくは120℃以下、さらに好ましくは115℃未満である。軟化点が高い方の非晶質ポリエステルAHの軟化点は、トナーの耐久性を向上させる観点から、好ましくは110℃以上、より好ましくは115℃以上、さらに好ましくは118℃以上であり、好ましくは170℃以下、より好ましくは160℃以下、さらに好ましくは150℃以下である。
 なお、非晶質ポリエステルAが軟化点の異なる2種の非晶質ポリエステルを含む場合、軟化点が低い方の非晶質ポリエステルALは、前記式(I)においてR1がエチレン基である化合物、即ち、式(II):
Figure JPOXMLDOC01-appb-C000005
(式中、R2O及びOR2はオキシエチレン基であり、x2及びy2はエチレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、x2とy2の和の値は、好ましくは1以上、より好ましくは1.5以上であり、好ましくは16以下、より好ましくは8以下、さらに好ましくは4以下である)
で表されるビスフェノールAのエチレンオキサイド付加物を含むアルコール成分とカルボン酸成分とを重縮合して得られる樹脂であることが好ましい。ビスフェノールAのエチレンオキサイド付加物を用いた重縮合物は、プロピレンオキサイド付加物を用いた重縮合物よりも、反応性が高く、粘度が低いため、同じ軟化点の重縮合物で比較すると、高分子量化し易い。従って、エチレンオキサイド付加物を含むアルコール成分を軟化点が低い方の非晶質ポリエステルに用いることで、軟化点が低い樹脂と高い樹脂の分子量差を少なくすることができ、結着樹脂中、結晶性樹脂をより均一に分散させることができるため、トナーの保存性及び耐久性が向上すると考えられる。式(II)で表されるビスフェノールAのエチレンオキサイド付加物の含有量は、非晶質ポリエステルALのアルコール成分中、好ましくは55モル%以上、より好ましくは60モル%以上、さらに好ましくは62モル%以上であり、好ましくは90モル%以下、より好ましくは80モル%以下、さらに好ましくは70モル%以下である。他のアルコール成分としては、ビスフェノールAのプロピレンオキサイド付加物(前記式(I)において、R1がプロピレン基である化合物)を含有することが好ましい。
一方、軟化点が高い方の非晶質ポリエステルAHは、アルコール成分とカルボン酸成分とを重縮合して得られる樹脂であり、該アルコール成分中、式(II)で表されるビスフェノールAのエチレンオキサイド付加物の含有量は、トナーの保存性及び耐久性の観点から、好ましくは55モル%未満、より好ましくは53モル%以下であり、好ましくは20モル%以上、より好ましくは30モル%以上、さらに好ましくは40モル%以上である。他のアルコール成分としては、非晶質ポリエステルALと同様、ビスフェノールAのプロピレンオキサイド付加物を含有することが好ましい。
 非晶質ポリエステルAH及び非晶質ポリエステルALの好適なカルボン酸成分は、前述の非晶質ポリエスエルAで記載したものが好ましく、好ましい範囲も同じである。
 非晶質ポリエステルAHと非晶質ポリエステルALの質量比(非晶質ポリエステルAH/非晶質ポリエステルAL)は、耐久性及び保存性の観点から、好ましくは1/9以上、より好ましくは2/8以上、さらに好ましくは3/7以上であり、低温定着性の観点から、好ましくは9/1以下、より好ましくは8/2以下、さらに好ましくは5/5以下、さらに好ましくは4/6以下である。
 非晶質ポリエステルAの吸熱の最高ピーク温度は、トナーの耐久性及び保存性を向上させる観点から、好ましくは50℃以上、より好ましくは55℃以上、さらに好ましくは60℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは100℃以下、より好ましくは90℃以下、さらに好ましくは80℃以下である。
 非晶質ポリエステルAのガラス転移温度は、トナーの耐久性を及び保存性を向上させる観点から、好ましくは50℃以上、より好ましくは55℃以上、さらに好ましくは60℃以上である。また、トナーの低温定着性を向上させる観点から、好ましくは80℃以下、より好ましくは75℃以下、さらに好ましくは70℃以下である。なお、ガラス転移温度は非晶質相に特有の物性であり、吸熱の最高ピーク温度とは区別される。
 非晶質ポリエステルAの酸価は、トナーの帯電量の環境安定性を向上させる観点から、好ましくは40mgKOH/g以下、より好ましくは30mgKOH/g以下、さらに好ましくは20mgKOH/g以下であり、好ましくは1mgKOH/g以上、より好ましくは2mgKOH/g以上である。
 本発明のトナーは、非晶質ポリエステルA以外の非晶質樹脂、例えば、複合樹脂、ビニル系樹脂、エポキシ樹脂、ポリカーボネート樹脂、ポリウレタン樹脂等を含有してもよい。トナーの低温定着性、保存性及び耐久性を向上させる観点から、非晶質樹脂中の非晶質ポリエステルAの含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、好ましくは100質量%以下、より好ましくは実質的に100質量%、さらに好ましくは100質量%である。
 非晶質ポリエステルAと結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)は、低温定着性の観点から、95/5以下であり、好ましくは92/8以下である。また、保存性及び耐久性の観点から、60/40以上であり、好ましくは70/30以上、より好ましくは80/20以上、さらに好ましくは85/15以上、さらに好ましくは88/12以上である。
 本発明の電子写真用トナーには、結着樹脂として、本発明の効果を損なわない範囲で、結晶性複合樹脂C以外の結晶性樹脂及び非晶質ポリエステルA以外の非晶質樹脂が併用されていてもよいが、結晶性複合樹脂C及び非晶質ポリエステルAの総含有量は、低温定着性、耐熱保存性及び耐久性の観点から、結着樹脂中、好ましくは60質量%以上、より好ましくは80質量%以上、さらに好ましくは95質量%以上であり、好ましくは100質量%以下、より好ましくは実質的に100質量%、さらに好ましくは100質量%である。
 本発明においては、トナーの耐久性を向上させる観点、及びトナーの耐熱保存性を向上させる観点から、結晶性樹脂の溶解度パラメータ(SP値)と非晶質樹脂の溶解度パラメータ(SP値)が適度に離れていることが好ましい。結晶性樹脂と非晶質樹脂のSP値の差が特定の範囲にある場合には、結晶性樹脂が非晶質樹脂と相溶しにくく結晶構造を維持しやすくなり、耐久性や耐熱保存性が向上するものと考えられる。従って、結晶性樹脂と非晶質樹脂のSP値の差、好ましくは結晶性複合樹脂Cと非晶質ポリエステルAのSP値の差は、好ましくは1.0以上であり、より好ましくは1.2以上である。また、トナー中の結晶性樹脂と非晶質樹脂の混合性を高める観点から、好ましくは2.0以下である。結晶性樹脂及び非晶質樹脂が2種以上の樹脂からなる場合は、加重平均値とする。
 上記SP値の測定方法や計算方法は幾つか知られているが、本発明においては、Michael M. Collman, John F. Graf, Paul C. Painter (Pensylvania State Univ.)による、"Specific Interactions and the Miscibility of Polymer Blends" (1991), Technomic Publishing Co. Inc.に記載されている計算方法を用いる。
 本発明において、エステルワックスとは、エステル基を有するワックスをいい、天然エステルワックス及び合成エステルワックスが挙げられる。トナーの低温定着性及び耐熱保存性を向上させる観点から、天然エステルワックスが好ましい。
 天然エステルワックスとしては、カルナバワックス、モンタン系エステルワックス、ライスワックス、キャンデリラワックス等が挙げられ、本発明のトナーはいずれであってもよい。本発明では、トナーの低温定着性及び耐熱保存性を向上させる観点から、カルナバワックスが好ましい。
 合成エステルワックスとは、カルボン酸とアルコールを反応させて得られるエステル化合物である。
 カルボン酸の炭素数は、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは2以上30以下、より好ましくは8以上30以下、さらに好ましくは12以上30以下、さらに好ましくは12以上24以下、さらに好ましくは14以上24以下、さらに好ましくは18以上24以下である。
 また、カルボン酸の価数は、1価、2価、3価以上のいずれであってもよいが、トナーの低温定着性及び保存性を向上させる観点から、1価が好ましい。
 カルボン酸は、同様の観点から、直鎖アルキル基又は直鎖アルケニル基を有する脂肪酸が好ましく、直鎖のアルキル基を有する脂肪酸がより好ましい。
 直鎖アルキル基を有する脂肪酸としては、例えば、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、べへン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸等が挙げられる。
 アルコールの価数は、1価、2価、3価以上のいずれであってもよい。
 1価アルコールの炭素数は、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは2以上30以下、より好ましくは8以上30以下、さらに好ましくは12以上30以下、さらに好ましくは12以上24以下である。また、同様の観点から、1価アルコールは、直鎖のアルキル基又はアルケニル基を持つものが好ましく、直鎖のアルキル基を持つものがより好ましい。
 直鎖のアルキル基又はアルケニル基を有する1価アルコールとしては、例えば、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、アラキルアルコール、べへニルアルコール、テトラコサノール、ヘキサコサノール、オクタコサノール、トリアコンタノール等が挙げられる。
 2価アルコールの炭素数は、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは2以上18以下、より好ましくは2以上10以下である。また、同様の観点から、α,ω-直鎖アルカンジオールが好ましい。
 2価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等が挙げられる。
 3価以上のアルコールの炭素数は、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは3以上10以下、より好ましくは3以上5以下である。また、3価以上のアルコールの価数は、同様の観点から、好ましくは3以上6以下、より好ましくは3以上4以下である。
 3価以上のアルコールとしては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられ、トナーの低温定着性及び耐熱保存性を向上させる観点から、ペンタエリスリトールが好ましい。
 合成エステルワックスとしては、トナーの低温定着性及び耐熱保存性を向上させる観点から、炭素数14以上24以下の1価の脂肪族アルコールと炭素数14以上24以下の脂肪酸を反応させたエステル及びペンタエリスリトールと炭素数14以上24以下の脂肪酸を反応させたエステルが好ましく、炭素数18以上24以下の1価の脂肪族アルコールと炭素数18以上24以下の脂肪酸を反応させたエステル及びペンタエリスリトールと炭素数18以上24以下の脂肪酸を反応させたエステルがより好ましい。
 エステルワックスとしては、トナーの低温定着性及び保存性を向上させる観点から、カルナバワックス、モンタンワックス、ライスワックス、炭素数14以上24以下の1価の脂肪族アルコールと炭素数14以上24以下の脂肪酸を反応させて得られたエステル、及びペンタエリスリトールと炭素数14以上24以下の脂肪酸を反応させて得られたエステルが好ましく、カルナバワックス、炭素数18以上24以下の1価の脂肪族アルコールと炭素数18以上24以下の脂肪酸を反応させたエステル、及びペンタエリスリトールと炭素数18以上24以下の脂肪酸を反応させたエステルがより好ましく、カルナバワックスがさらに好ましい。
 エステルワックスの融点は、トナーの保存性の観点から、好ましくは60℃以上、より好ましくは70℃以上、さらに好ましくは75℃以上であり、トナーの低温定着性の観点から、好ましくは100℃以下、より好ましくは90℃以下、さらに好ましくは85℃以下である。
 エステルワックスの含有量は、結晶性複合樹脂Cと非晶質ポリエステルAの合計100質量部に対して、低温定着性の観点から、好ましくは0.6質量部以上、より好ましくは1質量部以上、さらに好ましくは2質量部以上、さらに好ましくは2.5質量部以上、さらに好ましくは4質量部以上、さらに好ましくは、6質量部以上、さらに好ましくは8質量部以上である。
 エステルワックスの含有量は、結晶性複合樹脂Cと非晶質ポリエステルAの合計100質量部に対して、保存性の観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは6質量部以下、さらに好ましくは5質量部以下、さらに好ましくは4質量部、さらに好ましくは2質量部以下である。
 また、エステルワックスの含有量は、結着樹脂100質量部に対して、低温定着性の観点から、好ましくは0.6質量部以上、より好ましくは1質量部以上、さらに好ましくは2質量部以上、さらに好ましくは2.5質量部以上、さらに好ましくは4質量部以上、さらに好ましくは6質量部以上、さらに好ましくは8質量部以上である。
 エステルワックスの含有量は、結着樹脂100質量部に対して、保存性の観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは6質量部以下、さらに好ましくは5質量部以下、さらに好ましくは4質量部以下、さらに好ましくは2質量部以下である。
 また、結晶性複合樹脂Cとエステルワックスの質量比(結晶性複合樹脂C/エステルワックス)は、低温定着性の観点から、9以下であり、好ましくは8以下、より好ましくは7以下、さらに好ましくは6以下、さらに好ましくは5以下、さらに好ましくは4以下、さらに好ましくは2以下、さらに好ましくは1以下、さらに好ましくは0.6以下である。
 結晶性複合樹脂Cとエステルワックスの質量比(結晶性複合樹脂C/エステルワックス)は、保存性の観点から、0.5以上であり、好ましくは0.7以上、より好ましくは1以上、さらに好ましくは2以上、さらに好ましくは2.5以上、さらに好ましくは5以上、さらに好ましくは7以上である。
 結晶性複合樹脂Cとエステルワックスの質量比(結晶性複合樹脂C/エステルワックス)は、耐久性の観点から、0.5以上であり、好ましくは0.7以上、より好ましくは1以上、さらに好ましくは2以上、さらに好ましくは2.5以上である。また、同様の観点から、9以下であり、好ましくは8以下、より好ましくは7以下、さらに好ましくは6以下、より好ましくは5以下、さらに好ましくは4以下である。
 従って、結晶性複合樹脂Cとエステルワックスの質量比(結晶性複合樹脂C/エステルワックス)は、低温定着性、保存性及び耐久性の観点から、0.5以上であり、好ましくは0.7以上、より好ましくは1以上、さらに好ましくは2以上、さらに好ましくは2.5以上であり、同様の観点から、9以下であり、好ましくは8以下、より好ましくは7以下、さらに好ましくは6以下、さらに好ましくは4以下である。
 本発明のトナーは、エステルワックス以外の離型剤を含有していてもよい。他の離型剤としては、ポリプロピレンワックス、ポリエチレンワックス、ポリプロピレンポリエチレン共重合体ワックス、マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス等の脂肪族炭化水素系ワックス及びそれらの酸化物、脂肪酸アミド類、脂肪酸類、高級アルコール類、脂肪酸金属塩等が挙げられるが、エステルワックスの含有量は、離型剤中、低温定着性、保存性及び耐久性の観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、さらに好ましくは50質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上であり、好ましくは100質量%以下である。
 本発明の電子写真用トナーは、結着樹脂及びエステルワックス以外に、着色剤、荷電制御剤等を含有していてもよい。
 着色剤としては、トナー用着色剤として用いられている染料、顔料等のすべてを使用することができ、カーボンブラック、フタロシアニンブルー、パーマネントブラウンFG、ブリリアントファーストスカーレット、ピグメントグリーンB、ローダミン-Bベース、ソルベントレッド49、ソルベントレッド146、ソルベントブルー35、キナクリドン、カーミン6B、ジスアゾエロー等が用いることができ、本発明のトナーは、黒トナー、カラートナーのいずれであってもよい。着色剤としては、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、フタロシアニンブルー15:3(P.B.15:3)、フタロシアニンブルー15:4(P.B.15:4)、及びカーボンブラックが好ましく、フタロシアニンブルー15:3がより好ましい。
 着色剤の含有量は、結着樹脂100質量部に対して、トナーの画像濃度を向上させる観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上である。また、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは10質量部以下、より好ましくは8質量部以下、さらに好ましくは7質量部以下である。
 荷電制御剤は、特に限定されず、正帯電性荷電制御剤及び負帯電性荷電制御剤のいずれを含有していてもよい。
 正帯電性荷電制御剤としては、ニグロシン染料、例えば「ニグロシンベースEX」、「オイルブラックBS」、「オイルブラックSO」、「ボントロンN-01」、「ボントロンN-04」、「ボントロンN-07」、「ボントロンN-09」、「ボントロンN-11」(以上、オリエント化学工業株式会社製)等;3級アミンを側鎖として含有するトリフェニルメタン系染料、4級アンモニウム塩化合物、例えば「ボントロンP-51」(オリエント化学工業株式会社製)、セチルトリメチルアンモニウムブロミド、「COPY CHARGE PX VP435」(クラリアント社製)等;ポリアミン樹脂、例えば「AFP-B」(オリエント化学工業株式会社製)等;イミダゾール誘導体、例えば「PLZ-2001」、「PLZ-8001」(以上、四国化成工業株式会社製)等;スチレン-アクリル系樹脂、例えば「FCA-701PT」(藤倉化成株式会社製)等が挙げられる。
 また、負帯電性荷電制御剤としては、含金属アゾ染料、例えば「バリファーストブラック3804」、「ボントロンS-31」、「ボントロンS-32」、「ボントロンS-34」、「ボントロンS-36」(以上、オリエント化学工業株式会社製)、「アイゼンスピロンブラックTRH」、「T-77」(保土谷化学工業株式会社製)等;ベンジル酸化合物の金属化合物、例えば、「LR-147」、「LR-297」(以上、日本カーリット株式会社製)等;サリチル酸化合物の金属化合物、例えば、「ボントロンE-81」、「ボントロンE-84」、「ボントロンE-88」、「ボントロンE-304」(以上、オリエント化学工業株式会社製)、「TN-105」(保土谷化学工業株式会社製)等;銅フタロシアニン染料;4級アンモニウム塩、例えば「COPY CHARGE NX VP434」(クラリアント社製)、ニトロイミダゾール誘導体等;有機金属化合物等が挙げられる。
 荷電制御剤の含有量は、トナーの帯電安定性の観点から、結着樹脂100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.2質量部以上である。また、同様の観点から、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは3質量部以下、さらに好ましくは2質量部以下である。
 本発明トナーには、さらに、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、老化防止剤、クリーニング性向上剤等の添加剤が適宜用いられていてもよい。
 本発明の電子写真用トナーは、溶融混練法、乳化転相法、重合法等の従来公知のいずれの方法により得られたトナーであってもよいが、トナーの耐久性を向上させる観点、トナーの低温定着性及び耐熱保存性を向上させる観点から、溶融混練法による粉砕トナーが好ましい。具体的には、
工程1:結晶性複合樹脂C、非晶質ポリエステルA及びエステルワックスを含むトナー成分を、オープンロール型混練機を用いて溶融混練する工程、及び
工程2:得られた混練物を粉砕する工程
を含む方法により得られる粉砕トナーが好ましい。
 工程1において、結晶性複合樹脂C、非晶質ポリエステルA及びエステルワックス、必要に応じて着色剤、荷電制御剤等を含むトナー成分の溶融混練は、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて行うことができる。混練の繰り返しや分散助剤の使用をしなくても、結着樹脂に、エステルワックス、着色剤、荷電制御剤等のトナー成分を効率よく高分散させることができる観点から、オープンロール型混練機を用いることが好ましい。
 結晶性複合樹脂C、非晶質ポリエステルA、エステルワックス、着色剤、荷電制御剤等のトナー成分は、あらかじめヘンシェルミキサー、ボールミル等の混合機で混合した後、混練機に供給することが好ましい。
 オープンロール型混練機とは、混練部が密閉されておらず開放されているものをいい、混練の際に発生する混練熱を容易に放熱することができる。また、連続式オープンロール型混練機は、少なくとも2本のロールを備えた混練機であることが好ましく、本発明に用いられる連続式オープンロール型混練機は、周速度の異なる2本のロール、即ち、周速度の高い高回転側ロールと周速度の低い低回転側ロールとの2本のロールを備えた混練機である。本発明においては、エステルワックス、着色剤、荷電制御剤等の添加剤のトナー中での分散性を向上させる観点、溶融混練時の機械力を低減し、発熱を抑制する観点、及び溶融混練時の温度を低減し、トナーの耐久性及び低温定着性を向上させる観点から、高回転側ロールは加熱ロール、低回転側ロールは冷却ロールであることが好ましい。
 ロールの温度は、例えば、ロール内部に通す熱媒体の温度により調整することができ、各ロールには、ロール内部を2箇所以上に分割して温度の異なる熱媒体を通じてもよい。
 高回転側ロールの原料投入側端部温度は、溶融混練時の機械力を低減し、発熱を抑制する観点、トナーの耐久性及び低温定着性を向上させる観点から、好ましくは100℃以上160℃以下であり、同様の観点から、低回転側ロールの原料投入側端部温度は好ましくは30℃以上100℃以下である。
 高回転側ロールは、原料投入側端部と混練物排出側端部の設定温度の差が、混練物のロールからの脱離防止の観点、溶融混練時の機械力を低減し、発熱を抑制する観点、トナーの耐久性及び低温定着性を向上させる観点から、好ましくは20℃以上、より好ましくは30℃以上であり、好ましくは60℃以下、より好ましくは50℃以下である。
 低回転側ロールは、原料投入側端部と混練物排出側端部の設定温度の差は、エステルワックス、着色剤、荷電制御剤等の添加剤のトナー中での分散性を向上させる観点、溶融混練時の機械力を低減し、発熱を抑制する観点、トナーの耐久性及び低温定着性を向上させる観点から、好ましくは0℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上であり、好ましくは50℃以下である。
 高回転側ロールの周速度は、エステルワックス、着色剤、荷電制御剤等の添加剤のトナー中での分散性を向上させる観点、溶融混練時の機械力を低減し、発熱を抑制する観点、及びトナーの耐久性及び低温定着性を向上させる観点から、好ましくは2m/min以上、より好ましくは10m/min以上、さらに好ましくは25m/min以上であり、好ましくは100m/min以下、より好ましくは75m/min以下であり、さらに好ましくは50m/min以下である。
 低回転側ロールの周速度は、同様の観点から、好ましくは1m/min以上、より好ましくは5m/min以上、さらに好ましくは15m/min以上であり、好ましくは90m/min以下、より好ましくは60m/min以下、さらに好ましくは30m/min以下である。また、2本のロールの周速度の比(低回転側ロール/高回転側ロール)は、好ましくは1/10~9/10、より好ましくは3/10~8/10である。
 ロールの構造、大きさ、材料等は特に限定されず、ロール表面も、平滑、波型、凸凹型等のいずれであってもよいが、混練シェアを高め、エステルワックス、着色剤、荷電制御剤等の添加剤のトナー中での分散性を向上させる観点、溶融混練時の機械力を低減し、発熱を抑制する観点、及びトナーの耐久性及び低温定着性を向上させる観点から、各ロールの表面には複数の螺旋状の溝が刻んであることが好ましい。
 工程1で得られた混練物を粉砕可能な硬度に達するまで適宜冷却し、工程2において、粉砕する。ここで、本発明は、結晶性樹脂の再結晶化を促進するために特に加熱処理は必要としないため、溶融混練工程後に加熱は行わないことが好ましいが、トナーの生産性に影響しない範囲で、混練工程後、得られた混練物を加熱処理工程に供してから、粉砕工程を行ってもよい。
 加熱処理工程を行う場合の加熱処理工程の温度は、エステルワックス、着色剤、荷電制御剤等のトナー成分の結着樹脂への分散性を向上させる観点、結晶性樹脂の結晶化を促進し、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは混練物のガラス転移温度以上、より好ましくはガラス転移温度より10℃以上、さらに好ましくは15℃以上高い温度である。また、結晶の溶解に伴う配列の乱れによるトナーの耐熱保存性の低下を防止する観点から、好ましくは結晶性樹脂の融点以下の温度、より好ましくは融点より10℃以上低い温度、さらに好ましくは15℃以上低い温度である。具体的には、50℃以上80℃以下、より好ましくは60℃以上80℃以下の温度で加熱処理工程を行うことが望ましい。
 また、加熱処理時間は、結晶性樹脂の結晶化を促進し、トナーの低温定着性及び耐熱保存性を向上させる観点から、好ましくは1時間以上、より好ましくは3時間以上、さらに好ましくは6時間以上である。また、トナーの生産性に影響を与えない観点から、好ましくは12時間以下、より好ましくは10時間以下である。なお、この時間は当該温度範囲内(混練物のガラス転移温度以上、結晶性樹脂の融点以下)となる累計の時間である。また、トナーの添加剤の分散性を維持する観点から、加熱処理工程の開始から終了までに当該温度範囲の上限値を超えないことが好ましい。
 加熱処理工程には、オーブン等を用いることができる。例えば、オーブンを用いる場合、混練物をオーブン内で、一定温度に保持することにより、加熱処理工程を行うことができる。
 加熱処理工程を行う態様は特に限定されないが、例えば、
態様1:混練工程後、粉砕工程で混練物を粉砕し、粉砕された混練物を前記加熱処理条件下に保持する態様、
態様2:混練工程後、得られた混練物を冷却して温度を下げる過程において、混練物を前記加熱処理条件下に保持し、次いで粉砕可能な硬度に達するまでさらに冷却し、粉砕工程等の次の工程に供する態様、
態様3:混練工程後、得られた混練物を粉砕可能な硬度まで一旦冷却した後、冷却した混練物を前記加熱処理工程に供し、次いで混練物を再び冷却し、粉砕工程等の次の工程に供する態様
等が挙げられる。本発明ではいずれの態様で加熱処理工程を行ってもよいが、トナー中の添加剤の分散性を維持する観点から、態様3が好ましい。
 混練物の粉砕は、多段階に分けて行ってもよい。例えば、混練物を、1~5mm程度に粗粉砕した後、さらに所望の粒径に微粉砕してもよい。
 粉砕に用いられる粉砕機は特に限定されないが、例えば、粗粉砕に好適に用いられる粉砕機としては、ハンマーミル、アトマイザー、ロートプレックス等が挙げられる。また、微粉砕に好適に用いられる粉砕機としては、流動層式カウンタージェットミル、衝突板式ジェットミル、回転型機械式ミル等が挙げられる。
 粉砕物は、さらに分級し、所望の粒径に調整することが好ましい。
 分級に用いられる分級機としては、気流式分級機、慣性式分級機、篩式分級機等が挙げられる。分級の際、粉砕が不十分で除去された粉砕物は再度粉砕工程に供してもよく、必要に応じて粉砕と分級を繰り返してもよい。
 本発明のトナーには、転写性を向上させるために、外添剤を用いることが好ましい。外添剤としては、シリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化亜鉛等の無機微粒子や、メラミン系樹脂微粒子、ポリテトラフルオロエチレン樹脂微粒子等の樹脂粒子等の有機微粒子が挙げられ、2種以上が併用されていてもよい。これらの中では、シリカが好ましく、トナーの転写性の観点から、疎水化処理された疎水性シリカであることがより好ましい。
 シリカ粒子の表面を疎水化するための疎水化処理剤としては、ヘキサメチルジシラザン(HMDS)、ジメチルジクロロシラン(DMDS)、シリコーンオイル、オクチルトリエトキシシラン(OTES)、メチルトリエトキシシラン等が挙げられる。
 外添剤の平均粒子径は、トナーの帯電性や流動性、転写性の観点から、好ましくは10nm以上、より好ましくは15nm以上である。また、同様の観点から、好ましくは250nm以下、より好ましくは200nm以下、さらに好ましくは90nm以下である。
 外添剤の含有量は、トナーの帯電性や流動性、転写性の観点から、外添剤で処理する前のトナー100質量部に対して、好ましくは0.05質量部以上、より好ましくは0.1質量部以上、さらに好ましくは0.3質量部以上である。また、同様の観点から、好ましくは5質量部以下、より好ましくは3質量部以下である。
 本発明のトナーの体積中位粒径(D50)は、好ましくは3μm以上、より好ましくは4μm以上であり、好ましくは15μm以下、より好ましくは10μm以下である。本明細書において、体積中位粒径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。また、トナーを外添剤で処理している場合には、外添剤で処理する前のトナー粒子の体積中位粒径をトナーの体積中位粒径とする。
 本発明のトナーは、一成分現像用トナーとして、又はキャリアと混合して二成分現像剤として用いることができる。
 上述した実施形態に関し、本発明はさらに以下の電子写真用トナー及びその製造方法を開示する。
<1> 結晶性複合樹脂Cと非晶質ポリエステルAとを含む結着樹脂及びエステルワックスを含有する電子写真用トナーであって、
前記結晶性複合樹脂Cが炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と、炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分と、スチレン系樹脂成分とを含む樹脂であり、
前記非晶質ポリエステルAと前記結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)が60/40以上95/5以下であり、
前記結晶性複合樹脂Cと前記エステルワックスの質量比(結晶性複合樹脂C/エステルワックス)が0.5以上9以下である、
電子写真用トナー。
<2> 重縮合系樹脂成分が、ポリエステルである、前記<1>記載の電子写真用トナー。
<3> 重縮合系樹脂成分のアルコール成分に含まれる脂肪族ジオールの炭素数が、10以上であり、好ましくは12以下であり、より好ましくは10である、前記<1>又は<2>記載の電子写真用トナー。
<4> 炭素数9以上14以下の脂肪族ジオールが、α,ω-直鎖アルカンジオールを含み、1,10-デカンジオール及び1,12-ドデカンジオールから選ばれた1種又は2種を含むことが好ましく、1,10-デカンジオールを含むことがより好ましい、前記<1>~<3>いずれか記載の電子写真用トナー。
<5> 炭素数9以上14以下の脂肪族ジオールの含有量が、重縮合系樹脂成分のアルコール成分中、70モル%以上であり、好ましくは90モル%以上、より好ましくは95モル%以上であり、100モル%以下であり、好ましくは実質的に100モル%、より好ましくは100モル%である、前記<1>~<4>いずれか記載の電子写真用トナー。
<6> 重縮合系樹脂のカルボン酸成分に含まれる脂肪族ジカルボン酸化合物の炭素数が、10以上であり、好ましくは12以下であり、より好ましくは10である、前記<1>~<5>いずれか記載の電子写真用トナー。
<7> 炭素数9以上14以下の脂肪族ジカルボン酸化合物が、α,ω-直鎖アルカンジカルボン酸化合物を含み、セバシン酸及びドデカン2酸から選ばれた1種又は2種を含むことが好ましく、セバシン酸を含むことがより好ましい、前記<1>~<6>いずれか記載の電子写真用トナー。
<8> 炭素数9以上14以下の脂肪族ジカルボン酸化合物の含有量が、重縮合系樹脂のカルボン酸成分中、70モル%以上であり、好ましくは90モル%以上、より好ましくは95モル%以上であり、好ましくは100モル%以下であり、より好ましくは実質的に100モル%、さらに好ましくは100モル%である、前記<1>~<7>いずれか記載の電子写真用トナー。
<9> 重縮合系樹脂成分の原料モノマーであるカルボン酸成分とアルコール成分との合計モル数中、炭素数9以上14以下の脂肪族ジカルボン酸化合物と炭素数9以上14以下の脂肪族ジオールとの合計モル数が、80モル%以上であり、好ましくは90モル%以上、より好ましくは93モル%以上、さらに好ましくは95モル%以上、さらに好ましくは97モル%以上であり、100モル%以下であり、好ましくは実質100モル%、より好ましくは100モル%である、前記<1>~<8>いずれか記載の電子写真用トナー。
<10> 炭素数9以上14以下の脂肪族ジカルボン酸化合物と炭素数9以上14以下の脂肪族ジオールとの合計モル数が、重縮合系樹脂成分の原料モノマーであるカルボン酸成分中の2価以上のカルボン酸化合物とアルコール成分中の2価以上のアルコールとの合計モル数中、80モル%以上であり、好ましくは90モル%以上、より好ましくは95モル%以上であり、100モル%以下であり、好ましくは実質的に100モル%、より好ましくは100モル%である、前記<1>~<9>いずれか記載の電子写真用トナー。
<11> スチレン系樹脂成分のガラス転移温度が、60℃以上であり、好ましくは80℃以上、より好ましくは90℃以上であり、130℃以下であり、好ましくは120℃以下、より好ましくは110℃以下である、前記<1>~<10>いずれか記載の電子写真用トナー。
<12> 結晶性複合樹脂Cのガラス転移温度と、結晶性複合樹脂C中のスチレン系樹脂成分のFox式で計算されたガラス転移温度との差の絶対値が、10℃以上であり、好ましくは30℃以上、より好ましくは50℃以上であり、120℃以下である、前記<1>~<11>いずれか記載の電子写真用トナー。
<13> 結晶性複合樹脂Cが、(イ)炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを含む、重縮合系樹脂成分の原料モノマー、(ロ)スチレン系樹脂成分の原料モノマー、及び(ハ)重縮合系樹脂成分の原料モノマー及びスチレン系樹脂成分の原料モノマーのいずれとも反応し得る両反応性モノマーを重合させることにより得られる樹脂である、前記<1>~<12>いずれか記載の電子写真用トナー。
<14> 両反応性モノマーが、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基からなる群より選ばれた少なくとも1種の官能基、好ましくは水酸基及び/又はカルボキシ基、より好ましくはカルボキシ基と、エチレン性不飽和結合とを有する化合物であり、アクリル酸、メタクリル酸、フマル酸、マレイン酸及び無水マレイン酸からなる群より選ばれた少なくとも1種であることが好ましく、アクリル酸、メタクリル酸又はフマル酸がより好ましい、前記<13>記載の電子写真用トナー。
<15> 両反応性モノマーの使用量が、重縮合系樹脂成分のアルコール成分の合計100モルに対して、1モル以上であり、好ましくは2モル以上であり、30モル以下であり、好ましくは20モル以下、より好ましくは15モル以下、さらに好ましくは10モル以下、さらに好ましくは5モル以下である、前記<13>又は<14>記載の電子写真用トナー。
<16> 両反応性モノマーの使用量が、スチレン系樹脂成分の原料モノマーの合計100質量部に対して、1質量部以上であり、好ましくは2質量部以上であり、30質量部以下であり、好ましくは20質量部以下、より好ましくは15質量部以下、さらに好ましくは10質量部以下である、前記<13>~<15>いずれか記載の電子写真用トナー。
<17> 結晶性複合樹脂Cにおける重縮合系樹脂成分とスチレン系樹脂成分との質量比(重縮合系樹脂成分/スチレン系樹脂成分)が、55/45以上であり、好ましくは70/30以上、より好ましくは80/20以上、さらに好ましくは85/15以上であり、95/5以下であり、好ましくは92/8以下である、前記<1>~<16>いずれか記載の電子写真用トナー。
<18> 結着樹脂中の結晶性複合樹脂Cの含有量が、3質量%以上であり、好ましくは5質量%以上、より好ましくは7質量%以上、さらに好ましくは8質量%以上であり、40質量%以下であり、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である、前記<1>~<17>いずれか記載の電子写真用トナー。
<19> 非晶質ポリエステルAが、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸化合物を含むカルボン酸成分とを重縮合させて得られるものである、前記<1>~<18>いずれか記載の電子写真用トナー。
<20> 非晶質ポリエステルAのアルコール成分が、式(I)で表されるビスフェノールAのアルキレンオキサイド付加物を含み、該式(I)で表されるビスフェノールAのアルキレンオキサイド付加物の含有量は、アルコール成分中、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上であり、好ましくは100モル%以下、より好ましくは実質的に100モル%、さらに好ましくは100モル%である、前記<19>記載の電子写真用トナー。
<21> 非晶質ポリエステルAのカルボン酸成分が、テレフタル酸、炭素数2以上20以下のアルキル基又はアルケニル基で置換されたコハク酸、及び無水トリメリット酸からなる群より選ばれた少なくとも1種を含み、テレフタル酸を含むことが好ましい、前記<19>又は<20>記載の電子写真用トナー。
<22> テレフタル酸、炭素数2以上20以下のアルキル基又はアルケニル基で置換されたコハク酸、及び無水トリメリット酸の合計含有量が、カルボン酸成分中、60モル%以上であり、好ましくは80モル%以上、より好ましくは90モル%以上であり、好ましくは100モル%以下である、前記<21>記載の電子写真用トナー。
<23> 非晶質ポリエステルAの軟化点は、90℃以上であり、好ましくは100℃以上、より好ましくは105℃以上であり、150℃以下であり、好ましくは140℃以下、より好ましくは130℃以下である、前記<1>~<22>いずれか記載の電子写真用トナー。
<24> 非晶質ポリエステルAが、軟化点が異なる2種の非晶質ポリエステルを含有し、軟化点の差は、好ましくは5℃以上、より好ましくは10℃以上であり、好ましくは40℃以下、より好ましくは30℃以下である、前記<1>~<22>いずれか記載の電子写真用トナー。
<25> 軟化点を低い方の非晶質ポリエステルALの軟化点が、80℃以上であり、好ましくは95℃以上、より好ましくは105℃以上であり、135℃以下であり、好ましくは120℃以下、より好ましくは115℃未満であり、軟化点が高い方の非晶質ポリエステルAHの軟化点が、110℃以上であり、好ましくは115℃以上、より好ましくは118℃以上であり、170℃以下であり、好ましくは160℃以下、より好ましくは150℃以下である、前記<24>記載の電子写真用トナー。
<26> 軟化点が低い方の非晶質ポリエステルALが、式(II)で表されるビスフェノールAのエチレンオキサイド付加物を含むアルコール成分とカルボン酸成分とを重縮合して得られる樹脂である、前記<24>又は<25>記載の電子写真用トナー。
<27> 式(II)で表されるビスフェノールAのエチレンオキサイド付加物の含有量が、非晶質ポリエステルALのアルコール成分中、55モル%以上であり、好ましくは60モル%以上、より好ましくは62モル%以上であり、90モル%以下であり、好ましくは80モル%以下、より好ましくは70モル%以下である、前記<26>記載の電子写真用トナー。
<28> 軟化点が高い方の非晶質ポリエステルAHのアルコール成分中の式(II)で表されるビスフェノールAのエチレンオキサイド付加物の含有量が、55モル%未満であり、好ましくは53モル%以下であり、20モル%以上であり、好ましくは30モル%以上、より好ましくは40モル%以上である、前記<24>~<27>いずれか記載の電子写真用トナー。
<29> 軟化点が高い方の非晶質ポリエステルAHと軟化点が低い方の非晶質ポリエステルALの質量比(非晶質ポリエステルAH/非晶質ポリエステルAL)が、1/9以上であり、好ましくは2/8以上、より好ましくは3/7以上であり、9/1以下であり、好ましくは8/2以下、より好ましくは5/5以下、さらに好ましくは4/6以下である、前記<24>~<28>いずれか記載の電子写真用トナー。
<30> 非晶質ポリエステルAと結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)が、92/8以下であり、70/30以上であり、好ましくは80/20以上、より好ましくは85/15以上、さらに好ましくは88/12以上である、前記<1>~<29>いずれか記載の電子写真用トナー。
<31> 結晶性複合樹脂Cと非晶質ポリエステルAのSP値の差が、1.0以上であり、好ましくは1.2以上であり、より好ましくは2.0以下である、前記<1>~<30>いずれか記載の電子写真用トナー。
<32> エステルワックスが、天然エステルワックスを含み、該天然エステルワックスは、カルナバワックスが好ましい、前記<1>~<31>いずれか記載の電子写真用トナー。
<33> エステルワックスが、合成エステルワックスを含み、合成エステルワックスは、炭素数14以上24以下の1価の脂肪族アルコールと炭素数14以上24以下の脂肪酸を反応させたエステル及びペンタエリスリトールと炭素数14以上24以下の脂肪酸を反応させたエステルが好ましく、炭素数18以上24以下の1価の脂肪族アルコールと炭素数18以上24以下の脂肪酸を反応させたエステル及びペンタエリスリトールと炭素数18以上24以下の脂肪酸を反応させたエステルがより好ましい、前記<1>~<31>いずれか記載の電子写真用トナー。
<34> エステルワックスが、カルナバワックス、モンタンワックス、ライスワックス、炭素数14以上24以下の1価の脂肪族アルコールと炭素数14以上24以下の脂肪酸を反応させて得られたエステル、及びペンタエリスリトールと炭素数14以上24以下の脂肪酸を反応させて得られたエステルからなる群より選ばれた少なくとも1種であり、カルナバワックス、炭素数18以上24以下の1価の脂肪族アルコールと炭素数18以上24以下の脂肪酸を反応させたエステル、及びペンタエリスリトールと炭素数18以上24以下の脂肪酸を反応させたエステルからなる群より選ばれた少なくとも1種が好ましく、カルナバワックスがより好ましい、前記<1>~<31>いずれか記載の電子写真用トナー。
<35> エステルワックスの融点が、60℃以上であり、好ましくは70℃以上、より好ましくは75℃以上であり、100℃以下であり、好ましくは90℃以下、より好ましくは85℃以下である、前記<1>~<34>いずれか記載の電子写真用トナー。
<36> エステルワックスの含有量が、結晶性複合樹脂Cと非晶質ポリエステルAの合計100質量部に対して、0.6質量部以上であり、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは2.5質量部以上、さらに好ましくは4質量部以上、さらに好ましくは、6質量部以上、さらに好ましくは8質量部以上である、前記<1>~<35>いずれか記載の電子写真用トナー。
<37> エステルワックスの含有量が、結晶性複合樹脂Cと非晶質ポリエステルAの合計100質量部に対して、10質量部以下であり、好ましくは8質量部以下、より好ましくは6質量部以下、さらに好ましくは5質量部以下、さらに好ましくは4質量部、さらに好ましくは2質量部以下である、前記<1>~<36>いずれか記載の電子写真用トナー。
<38> エステルワックスの含有量が、結着樹脂100質量部に対して、0.6質量部以上であり、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは2.5質量部以上、さらに好ましくは4質量部以上、さらに好ましくは6質量部以上、さらに好ましくは8質量部以上である、前記<1>~<37>いずれか記載の電子写真用トナー。
<39> エステルワックスの含有量が、結着樹脂100質量部に対して、10質量部以下であり、好ましくは8質量部以下、より好ましくは6質量部以下、さらに好ましくは5質量部以下、さらに好ましくは4質量部以下、さらに好ましくは2質量部以下である、前記<1>~<38>いずれか記載の電子写真用トナー。
<40> 結晶性複合樹脂Cとエステルワックスの質量比(結晶性複合樹脂C/エステルワックス)が、0.7以上であり、好ましくは1以上、より好ましくは2以上、さらに好ましくは2.5以上であり、8以下であり、好ましくは7以下、より好ましくは6以下、さらに好ましくは4以下である、前記<1>~<39>いずれか記載の電子写真用トナー。
<41> 工程1:結晶性複合樹脂C、非晶質ポリエステルA及びエステルワックスを含むトナー成分を、オープンロール型混練機を用いて溶融混練する工程、及び
工程2:得られた混練物を粉砕する工程
を含む、前記<1>~<40>いずれか記載の電子写真用トナーの製造方法。
 以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。樹脂等の物性は、以下の方法により測定した。
〔樹脂の軟化点〕
 フローテスター「CFT-500D」(株式会社島津製作所社製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出す。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とする。
〔樹脂の吸熱の最高ピーク温度〕
 示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて、試料0.01~0.02gをアルミパンに計量し、室温から降温速度10℃/minで0℃まで冷却し、0℃にて1分間保持する。その後、昇温速度10℃/minで測定する。観測される吸熱ピークのうち、最も高温側にあるピークの温度を吸熱の最高ピーク温度とする。
〔結晶性樹脂のガラス転移温度〕
 示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン社製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度100℃/minで-80℃まで冷却する。次に試料をモジュレーティッドモード(温度変調モード)で昇温速度1℃/minで昇温し測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
〔非晶質樹脂のガラス転移温度〕
 示差走査熱量計「Q-100」(ティー・エイ・インスツルメント・ジャパン社製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却する。次に試料を昇温速度10℃/minで昇温し測定する。吸熱の最高ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移温度とする。
〔樹脂の酸価〕
 JIS K0070の方法に基づき測定する。ただし、測定溶媒のみJIS K0070の規定のエタノールとエーテルの混合溶媒から、アセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))に変更する。
〔離型剤の融点〕
 示差走査熱量計「DSC Q20」(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて、試料0.01~0.02gをアルミパンに計量し、昇温速度10℃/minで200℃まで昇温し、その温度から降温速度5℃/minで-10℃まで冷却する。次に試料を昇温速度10℃/minで180℃まで昇温し測定する。そこで得られた融解吸熱カーブから観察される吸熱の最高ピーク温度を離型剤の融点とする。
〔外添剤の平均粒子径〕
 平均粒子径は、個数平均粒子径を指し、外添剤の走査型電子顕微鏡(SEM)写真から測定した、500個の粒子の粒径の数平均値とする。長径と短径がある場合は長径を指す。
〔トナーの体積中位粒径〕
測定機:コールターマルチサイザーII(ベックマンコールター株式会社製)
アパチャー径:50μm
解析ソフト:コールターマルチサイザーアキュコンプ バージョン 1.19(ベックマンコールター株式会社製)
電解液:アイソトンII(ベックマンコールター株式会社製)
分散液:電解液にエマルゲン109P(花王株式会社製、ポリオキシエチレンラウリルエーテル、HLB(グリフィン):13.6)を溶解して5質量%に調整したもの
分散条件:前記分散液5mlに測定試料10mgを添加し、超音波分散機(機械名:(株)エスエヌディー社製US-1、出力:80W)にて1分間分散させ、その後、前記電解液25mlを添加し、さらに、超音波分散機にて1分間分散させて、試料分散液を調製する。
測定条件:前記電解液100mlに、3万個の粒子の粒径を20秒間で測定できる濃度となるように、前記試料分散液を加え、3万個の粒子を測定し、その粒度分布から体積中位粒径(D50)を求める。
樹脂製造例1〔樹脂a~h〕
 表1、2に示す両反応性モノマーであるアクリル酸以外の重縮合系樹脂成分の原料モノマーを所定量、窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ160℃に加熱し、溶解させた。表1、2に示すスチレン系樹脂成分の原料モノマー、重合開始剤及びアクリル酸を滴下ロートにより1時間かけて滴下した。160℃に保持したまま1時間攪拌を続けスチレン系樹脂成分の原料モノマー及びアクリル酸を重合させた後、8.3kPaにて1時間攪拌し、スチレン系樹脂成分の未反応モノマーの除去を行った。その後、2-エチルヘキサン酸錫(II)40g及び没食子酸3gを加えて210℃に昇温し8時間反応を行った。さらに8kPaにて1時間反応を行い、結晶性ハイブリッド樹脂を得た。得られた樹脂の物性を表1、2に示す。
樹脂製造例2〔樹脂i〕
 表2に示す重縮合系樹脂成分の原料モノマー、2-エチルヘキサン酸錫(II)40g、及び没食子酸2gを、窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、窒素雰囲気下、210℃に昇温して10時間反応させた。さらに8kPaにて1時間反応を行い、結晶性ポリエステルを得た。得られた樹脂の物性を表2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
樹脂製造例3〔樹脂A〕
 表3に示す原料モノマー、2-エチルヘキサン酸錫40g、及び没食子酸2gを、窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、窒素雰囲気下、235℃に昇温して8時間反応させた。さらに8kPaにて軟化点が110℃になるまで反応を行い、非晶質ポリエステルを得た。得られた樹脂の物性を表3に示す。
樹脂製造例4〔樹脂B〕
 表3に示す無水トリメリット酸以外の原料モノマー、2-エチルヘキサン酸錫40g、及び没食子酸2gを、窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、窒素雰囲気下、235℃に昇温して8時間反応させた。次に、210℃に温度を下げて常圧(101.3kPa)に戻し、無水トリメリット酸を加えて、210℃、常圧の条件にて1時間反応させた。さらに8kPaにて軟化点が121℃になるまで反応を行い、非晶質ポリエステルを得た。得られた樹脂の物性を表3に示す。
樹脂製造例5〔樹脂C〕
 表3に示すフマル酸及び無水トリメリット酸以外のポリエステルの原料モノマー、2-エチルヘキサン酸錫(II)40g、及び没食子酸1gを窒素導入管、脱水管、攪拌器及び熱電対を装備した10リットル容の四つ口フラスコに入れ、230℃にて8時間反応を行った後、8.3kPaにて1時間反応させた。170℃に降温し、スチレン系樹脂の原料モノマー、両反応性モノマー及びジブチルパーオキサイドを滴下ロートにより1時間かけて滴下した。170℃に保持したまま1時間付加重合反応を熟成させた後、210℃に昇温し、8.3kPaにて1時間スチレン系樹脂の原料モノマーの除去、及び両反応性モノマーとポリエステル部位の反応を行った。さらに、210℃にて、無水トリメリット酸、フマル酸及びターシャリブチルカテコール5gを添加し、所望の軟化点に達するまで反応を行い、非晶質ハイブリッド樹脂を得た。得られた樹脂の物性を表3に示す。
Figure JPOXMLDOC01-appb-T000008
実施例1~17、20、比較例1~9、11
 表4、5に示す所定量の結着樹脂及び離型剤「カルナウバワックスC1」(加藤洋行社製、融点:83℃)と、着色剤「ECB-301」(大日精化社製、フタロシアニンブルー(P.B. 15:3))5質量部、及び荷電制御剤「ボントロンE-304」(オリエント化学工業社製)0.5質量部をヘンシェルミキサーにて混合後、以下に示す条件で溶融混練した。
 得られた原料混合物をテーブルフィーダーにて、連続式オープンロール型混練機「ニーデックス」(三井鉱山社製)に供給して混練を行い、混練物を得た。この際に使用した連続式オープンロール型混練機は、ロール外径が0.14m、有効ロール長が0.8mのものであり、運転条件は、高回転側ロール(前ロール)の回転数が75r/min(33m/min)、低回転側ロール(後ロール)の回転数が50r/min(22m/min)、ロール間隙が0.1mmであった。ロール内の加熱及び冷却媒体温度は、高回転ロールの原料投入側の温度を150℃、混練物排出側の温度を100℃、低回転ロールの原料投入側の温度を75℃及び混練物排出側の温度を30℃に設定した。また、原料混合物の供給速度は10kg/h、平均滞留時間は約5分間であった。
 得られた混練物を冷却し、粉砕機「ロートプレックス」(東亜機械社製)により粗粉砕し、目開きが2mmのふるいを用いて粒径が2mm以下の粗粉砕物を得た。カウンタージェットミル「400AFG」(ホソカワアルピネ社製)にて微粉砕・上限分級(粗粉除去)を行った。さらに、分級機「TTSP」(ホソカワアルピネ社製)にて下限分級(微粉除去)を行い、体積中位粒径が5.5μmのトナー粒子を得た。
 得られたトナー粒子100質量部と、外添剤として、疎水性シリカ「R972」(日本アエロジル社製、疎水化処理剤:DMDS、平均粒子径:16nm)1.0質量部、及び疎水性シリカ「RY-50」(日本アエロジル社製、疎水化処理剤:シリコーンオイル、平均粒子径:40nm)1.0質量部をヘンシェルミキサー(三井鉱山社製)にて3000r/min(周速度32m/sec)で3分間混合して、トナーを得た。
実施例18
 表4に示す所定量の結着樹脂と、着色剤「ECB-301」(大日精化社製、フタロシアニンブルー(P.B. 15:3))5質量部、離型剤「WEP-8」(日油社製、合成エステルワックス(ペンタエリスリトール脂肪酸エステル)、融点:79℃)3質量部、及び荷電制御剤「ボントロンE-304」(オリエント化学社製)0.5質量部をヘンシェルミキサーにて混合後、実施例1と同様の条件で溶融混練した。
 得られた混練物を冷却し、粉砕機「ロートプレックス」(東亜機械社製)により粗粉砕し、目開きが2mmのふるいを用いて粒径が2mm以下の粗粉砕物を得た。カウンタージェットミル「400AFG」(ホソカワアルピネ社製)にて微粉砕・上限分級(粗粉除去)を行った。さらに、分級機「TTSP」(ホソカワアルピネ社製)にて下限分級(微粉除去)を行い、体積中位粒径が5.5μmのトナー粒子を得た。
 得られたトナー粒子100質量部と、外添剤として、疎水性シリカ「R972」(日本アエロジル社製、疎水化処理剤:DMDS、平均粒子径:16nm)1.0質量部、及び疎水性シリカ「RY-50」(日本アエロジル社製、疎水化処理剤:シリコーンオイル、平均粒子径:40nm)1.0質量部をヘンシェルミキサー(三井鉱山社製)にて3000r/min(周速度32m/sec)で3分間混合して、トナーを得た。
実施例19
 表4に示す所定量の結着樹脂と、着色剤「ECB-301」(大日精化社製、フタロシアニンブルー(P.B. 15:3))5質量部、離型剤「カルナウバワックスC1」(加藤洋行社製、融点:83℃)3質量部、離型剤「HNP-9」(日本精蝋社製、パラフィンワックス、融点:75℃)3質量部、及び荷電制御剤「ボントロンE-304」(オリエント化学社製)0.5質量部をヘンシェルミキサーにて混合後、実施例1と同様の条件で溶融混練した。
 得られた混練物を冷却し、粉砕機「ロートプレックス」(東亜機械社製)により粗粉砕し、目開きが2mmのふるいを用いて粒径が2mm以下の粗粉砕物を得た。カウンタージェットミル「400AFG」(ホソカワアルピネ社製)にて微粉砕・上限分級(粗粉除去)を行った。さらに、分級機「TTSP」(ホソカワアルピネ社製)にて下限分級(微粉除去)を行い、体積中位粒径が5.5μmのトナー粒子を得た。
 得られたトナー粒子100質量部と、外添剤として、疎水性シリカ「R972」(日本アエロジル社製、疎水化処理剤:DMDS、平均粒子径:16nm)1.0質量部、及び疎水性シリカ「RY-50」(日本アエロジル社製、疎水化処理剤:シリコーンオイル、平均粒子径:40nm)1.0質量部をヘンシェルミキサー(三井鉱山社製)にて3000r/min(周速度32m/sec)で3分間混合して、トナーを得た。
実施例21
 表4に示す所定量の結着樹脂と、着色剤「ECB-301」(大日精化社製、フタロシアニンブルー(P.B. 15:3))5質量部、離型剤「SS-1」(ボーソー油脂社製、ライスワックス、融点:79℃)3質量部、及び荷電制御剤「ボントロンE-304」(オリエント化学社製)0.5質量部をヘンシェルミキサーにて混合後、実施例1と同様の条件で溶融混練した。
 得られた混練物を冷却し、粉砕機「ロートプレックス」(東亜機械社製)により粗粉砕し、目開きが2mmのふるいを用いて粒径が2mm以下の粗粉砕物を得た。カウンタージェットミル「400AFG」(ホソカワアルピネ社製)にて微粉砕・上限分級(粗粉除去)を行った。さらに、分級機「TTSP」(ホソカワアルピネ社製)にて下限分級(微粉除去)を行い、体積中位粒径が5.5μmのトナー粒子を得た。
 得られたトナー粒子100質量部と、外添剤として、疎水性シリカ「R972」(日本アエロジル社製、疎水化処理剤:DMDS、平均粒子径:16nm)1.0質量部、及び疎水性シリカ「RY-50」(日本アエロジル社製、疎水化処理剤:シリコーンオイル、平均粒子径:40nm)1.0質量部をヘンシェルミキサー(三井鉱山社製)にて3000r/min(周速度32m/sec)で3分間混合して、トナーを得た。
比較例10
 表5に示す所定量の結着樹脂と、着色剤「ECB-301」(大日精化社製、フタロシアニンブルー(P.B. 15:3))5質量部、離型剤「HNP-9」(日本精蝋社製、パラフィンワックス、融点:75℃)3質量部、及び荷電制御剤「ボントロンE-304」(オリエント化学社製)0.5質量部をヘンシェルミキサーにて混合後、実施例1と同様の条件で溶融混練した。
 得られた混練物を冷却し、粉砕機「ロートプレックス」(東亜機械社製)により粗粉砕し、目開きが2mmのふるいを用いて粒径が2mm以下の粗粉砕物を得た。カウンタージェットミル「400AFG」(ホソカワアルピネ社製)にて微粉砕・上限分級(粗粉除去)を行った。さらに、分級機「TTSP」(ホソカワアルピネ社製)にて下限分級(微粉除去)を行い、体積中位粒径が5.5μmのトナー粒子を得た。
 得られたトナー粒子100質量部と、外添剤として、疎水性シリカ「R972」(日本アエロジル社製、疎水化処理剤:DMDS、平均粒子径:16nm)1.0質量部、及び疎水性シリカ「RY-50」(日本アエロジル社製、疎水化処理剤:シリコーンオイル、平均粒子径:40nm)1.0質量部をヘンシェルミキサー(三井鉱山社製)にて3000r/min(周速度32m/sec)で3分間混合して、トナーを得た。
試験例1〔低温定着性〕
 非磁性一成分現像装置「OKI MICROLINE 5400」(沖データ社製)にトナーを実装し、トナー付着量を0.45±0.03mg/cm2に調整して、4.1cm×13.0cmのベタ画像を「J紙」(富士ゼロックスオフィスサプライ社製)に印字した。定着機を通過する前にベタ画像を取り出して未定着画像を得た。得られた未定着画像を「Microline3010」(沖データ社製)の定着機を改造した外部定着機にて、定着ロールの温度を100℃に設定し、240mm/secの定着速度で定着させた。その後、定着ロール温度を105℃に設定し、同様の操作を行った。これを200℃まで5℃ずつ上昇させながら、各温度で未定着画像の定着処理を行い、定着画像を得た。各温度で定着させた画像にメンディングテープ(住友スリーエム社製)を付着させた後、500gの円筒上の重石を載せることにより、十分にテープを定着画像に付着させた。その後、ゆっくりとメンディングテープを定着画像より剥がし、テープ剥離後の画像の光学反射密度を反射濃度計「RD-915」(マクベス社製)を用いて測定した。あらかじめテープを貼る前の画像についても光学反射密度を測定しておき、その値との比([テープ剥離後の反射密度/テープ貼付前の反射密度]×100)が最初に90%を超える定着ロールの温度を最低定着温度とし、低温定着性の指標とした。結果を表4、5に示す。最低定着温度が低いほど低温定着性に優れることを示し、最低定着温度は、165℃以下が好ましく、160℃以下がより好ましく、158℃以下がさらに好ましい。
試験例2〔耐熱保存性〕
 20mLのポリプロピレン製の容器にトナー4gを充填し、温度50℃、相対湿度80%の恒温恒湿槽に入れ、容器の蓋をあけた状態で48時間放置した。放置前後で凝集度を測定し、両者の凝集度の差により保存性を評価した。結果を表4、5に示す。差の値が小さいほど耐熱保存性に優れることを示し、その値は、3.0以下が好ましく、2.0以下がより好ましく、1.5以下がさらに好ましい。
 凝集度は、パウダーテスター(ホソカワミクロン社製)を用いて測定する。150μm、75μm、45μmの目開きの篩を重ね、一番上にトナーを4g載せ、1mmの振動幅で10秒間振動させる。振動後、篩い上に残ったトナー量を、下記の計算式を用いて凝集度の計算を行う。
Figure JPOXMLDOC01-appb-M000009
試験例3〔耐久性〕
 非磁性一成分現像装置「OKI MICROLINE 9300PS」(沖データ社製)にトナーを実装し、印字率5%の画像を、温度30℃、相対湿度90%の環境下で20枚印刷した後、光学反射密度を反射濃度計「RD-915」(マクベス社製)を用いて測定した。さらに、1000枚印刷を行った後、再度光学反射密度を反射濃度計「RD-915」(マクベス社製)を用いて測定した。両者の画像濃度の差を算出し、耐久性を評価した。結果を表4、5に示す。差の値が小さいほど耐久性に優れることを示し、その値は、0.30以下が好ましく、0.20以下がより好ましく、0.10以下がさらに好ましい。表中、「<0.10」は差の値が0.10以下であること、「>0.50」は差が0.5以上であることを示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例1~3と比較例1の対比、実施例5~7と比較例4の比較、及び実施例10~11と比較例5の対比から、エステルワックス量が増加するにつれて、C/W質量比が低下し、C/W比が3.3である実施例1のトナーが、低温定着性、保存性、及び耐久性のバランスにより優れることがわかる。
 実施例1、5、8と比較例2の対比において、非晶質ポリエステル樹脂/結晶性複合樹脂の質量比が90/10である実施例1のトナーが、低温定着性、保存性、及び耐久性のバランスにより優れることがわかる。
 実施例1、12~14、比較例8の対比において、結晶性複合樹脂における重縮合系樹脂成分/スチレン系樹脂成分の質量比が90/10である実施例1にトナーが、低温定着性、保存性、及び耐久性のバランスにより優れることがわかる。
 実施例12、15、16の対比において、結晶性複合樹脂の重縮合系樹脂部分のアルコール成分が1,10-デカンジオールである実施例12のトナーが、低温定着性、保存性、及び耐久性のバランスにより優れることがわかる。
 実施例12、17の対比において、結晶性複合樹脂の重縮合系樹脂部分のカルボン酸成分は、低温定着性、保存性、及び耐久性の観点から、炭素数が10のセバシン酸が優れていることがわかる。
 比較例1、5は、結晶性複合樹脂に対するエステルワックスの量が少ないため、分散性が低下し、保存性及び耐久性が低下しているものと考えられる。
 比較例2、3は、結晶性複合樹脂の量が少ないために、低温定着性が十分発揮されていない。
 比較例4は、エステルワックスの量が多いため、保存性及び耐久性が低下している。
 比較例6は、結晶性複合樹脂の量が多すぎるため、保存性及び耐久性が低下している。
 比較例7は、結晶性複合樹脂の重縮合系樹脂成分のアルコール成分として中鎖の脂肪族ジオール、カルボン酸成分として芳香族ジカルボン酸化合物を用いているため、非晶質ポリエステルと相溶性が高く、保存性及び耐久性が低下している。
 比較例8は、結晶性樹脂が、スチレン系樹脂成分を有していない結晶性ポリエステルであるため、耐久性が低下しているが、これはワックスの分散性が低下したためと考えられる。
 比較例9は、結晶性樹脂を用いていないため、低温定着性が低下している。
 比較例10は、離型剤としてパラフィンワックスを用いているため、保存性及び耐久性が低下しているが、これは、結晶性樹脂の分散性が低下したためと考えられる。
 比較例11は、非晶質樹脂が、スチレン系樹脂成分と重縮合系樹脂成分とを有するハイブリッド樹脂であるため、結晶性複合樹脂と相溶性が高く、保存性及び耐久性が低下しているものと考えられる。
 本発明の電子写真用トナーは、例えば、静電荷像現像法、静電記録法、静電印刷法等において形成される潜像の現像等に好適に用いられるものである。

Claims (16)

  1.  結晶性複合樹脂Cと非晶質ポリエステルAとを含む結着樹脂及びエステルワックスを含有する電子写真用トナーであって、
    前記結晶性複合樹脂Cが炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と、炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを重縮合させて得られる重縮合系樹脂成分と、スチレン系樹脂成分とを含む樹脂であり、
    前記非晶質ポリエステルAと前記結晶性複合樹脂Cの質量比(非晶質ポリエステルA/結晶性複合樹脂C)が60/40以上95/5以下であり、
    前記結晶性複合樹脂Cと前記エステルワックスの質量比(結晶性複合樹脂C/エステルワックス)が0.5以上9以下である、
    電子写真用トナー。
  2.  結晶性複合樹脂Cにおける重縮合系樹脂成分とスチレン系樹脂成分との質量比(重縮合系樹脂成分/スチレン系樹脂成分)が55/45以上95/5以下である、請求項1記載の電子写真用トナー。
  3.  結晶性複合樹脂Cが、(イ)炭素数9以上14以下の脂肪族ジオールを含有するアルコール成分と炭素数9以上14以下の脂肪族ジカルボン酸化合物を含有するカルボン酸成分とを含む、重縮合系樹脂成分の原料モノマー、(ロ)スチレン系樹脂成分の原料モノマー、及び(ハ)重縮合系樹脂成分の原料モノマー及びスチレン系樹脂成分の原料モノマーのいずれとも反応し得る両反応性モノマーを重合させることにより得られる樹脂である、請求項1又は2記載の電子写真用トナー。
  4.  両反応性モノマーの使用量が、重縮合系樹脂成分のアルコール成分の合計100モルに対して、1モル以上30モル以下である、請求項3記載の電子写真用トナー。
  5.  エステルワックスの融点が、60℃以上100℃以下である、請求項1~4いずれか記載の電子写真用トナー。
  6.  エステルワックスが、カルナバワックス、モンタンワックス、ライスワックス、炭素数14以上24以下の1価の脂肪族アルコールと炭素数14以上24以下の脂肪酸を反応させて得られたエステル、及びペンタエリスリトールと炭素数14以上24以下の脂肪酸を反応させて得られたエステルからなる群より選ばれた少なくとも1種である、請求項1~5いずれか記載の電子写真用トナー。
  7.  エステルワックスの含有量が、結晶性複合樹脂Cと非晶質ポリエステルAの合計100質量部に対して、0.6質量部以上10質量部以下である、請求項1~6いずれか記載の電子写真用トナー。
  8.  エステルワックスの含有量が、結着樹脂100質量部に対して、0.6質量部以上10質量部以下である、請求項1~7いずれか記載の電子写真用トナー。
  9.  非晶質ポリエステルAが、2価以上のアルコールを含むアルコール成分と2価以上のカルボン酸化合物を含むカルボン酸成分とを重縮合させて得られるものである、請求項1~8いずれか記載の電子写真用トナー。
  10.  非晶質ポリエステルAのアルコール成分が、式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1O及びOR1はオキシアルキレン基であり、R1はエチレン及び/又はプロピレン基であり、x1及びy1はアルキレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、x1とy1の和の値は、好ましくは1以上16以下である)
    で表されるビスフェノールAのアルキレンオキサイド付加物を50モル%以上含む、請求項9記載の電子写真用トナー。
  11.  非晶質ポリエステルAのカルボン酸成分が、テレフタル酸、炭素数2以上20以下のアルキル基又はアルケニル基で置換されたコハク酸、及び無水トリメリット酸からなる群より選ばれた少なくとも1種を含む、請求項9又は10記載の電子写真用トナー。
  12.  非晶質ポリエステルAが、軟化点が5℃以上異なる2種の非晶質ポリエステルを含有する、請求項1~11いずれか記載の電子写真用トナー。
  13.  軟化点が低い方の非晶質ポリエステルALが、式(II):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R2O及びOR2はオキシエチレン基であり、x2及びy2はエチレンオキサイドの平均付加モル数を示し、それぞれ正の数であり、x2とy2の和の値は1以上16以下である)
    で表されるビスフェノールAのエチレンオキサイド付加物を55モル%以上90モル%以下含むアルコール成分と、カルボン酸成分とを重縮合して得られる樹脂である、請求項12記載の電子写真用トナー。
  14.  炭素数9以上14以下の脂肪族ジオールが、1,10-デカンジオール及び1,12-ドデカンジオールから選ばれた1種又は2種を含む、請求項1~13いずれか記載の電子写真用トナー。
  15.  炭素数9以上14以下の脂肪族ジカルボン酸化合物が、セバシン酸を含む、請求項1~14いずれか記載の電子写真用トナー。
  16.  工程1:結晶性複合樹脂C、非晶質ポリエステルA及びエステルワックスを含むトナー成分を、オープンロール型混練機を用いて溶融混練する工程、及び
    工程2:得られた混練物を粉砕する工程
    を含む、請求項1~15いずれか記載の電子写真用トナーの製造方法。
PCT/JP2015/084171 2014-12-16 2015-12-04 電子写真用トナー WO2016098616A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/528,585 US10345728B2 (en) 2014-12-16 2015-12-04 Toner for electrophotography
CN201580064633.1A CN107003628B (zh) 2014-12-16 2015-12-04 电子照相用调色剂
EP15869821.7A EP3236318B1 (en) 2014-12-16 2015-12-04 Toner for electrophotography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254148A JP6440255B2 (ja) 2014-12-16 2014-12-16 電子写真用トナー
JP2014-254148 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098616A1 true WO2016098616A1 (ja) 2016-06-23

Family

ID=56126509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084171 WO2016098616A1 (ja) 2014-12-16 2015-12-04 電子写真用トナー

Country Status (5)

Country Link
US (1) US10345728B2 (ja)
EP (1) EP3236318B1 (ja)
JP (1) JP6440255B2 (ja)
CN (1) CN107003628B (ja)
WO (1) WO2016098616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054866B2 (en) * 2016-04-19 2018-08-21 Canon Kabushiki Kaisha Toner

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126564A1 (ja) 2016-01-18 2017-07-27 株式会社リコー トナー、現像剤、及び画像形成装置
JP6551370B2 (ja) * 2016-11-25 2019-07-31 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー
JP2018124460A (ja) * 2017-02-02 2018-08-09 コニカミノルタ株式会社 静電荷像現像用トナー
JP6874436B2 (ja) 2017-03-13 2021-05-19 株式会社リコー トナー及び画像形成方法
JP6854189B2 (ja) * 2017-05-18 2021-04-07 花王株式会社 トナーの製造方法
JP7151229B2 (ja) * 2017-07-24 2022-10-12 京セラドキュメントソリューションズ株式会社 トナー
EP3671349A4 (en) * 2017-08-17 2021-04-07 Kao Corporation POSITIVELY CHARGED TONER FOR ELECTROSTATIC CHARGED IMAGE DEVELOPMENT
EP3719579A4 (en) * 2017-11-29 2021-07-28 Kao Corporation LIQUID DEVELOPER
WO2019131780A1 (ja) * 2017-12-26 2019-07-04 花王株式会社 液体現像剤
CN111684361B (zh) * 2018-02-08 2023-07-21 花王株式会社 调色剂的制造方法
JP7237688B2 (ja) * 2018-05-01 2023-03-13 キヤノン株式会社 トナー

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053494A (ja) * 2009-09-02 2011-03-17 Kao Corp 電子写真トナー用結着樹脂
JP2011107341A (ja) * 2009-11-16 2011-06-02 Kao Corp トナー用結着樹脂の製造方法
JP2012226296A (ja) * 2010-12-10 2012-11-15 Kao Corp 画像形成方法
JP2013109237A (ja) * 2011-11-22 2013-06-06 Kao Corp 静電荷像現像用トナー

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390848B2 (ja) 2008-12-10 2014-01-15 花王株式会社 トナー用結晶性樹脂
JP5478167B2 (ja) * 2009-09-10 2014-04-23 花王株式会社 電子写真用トナー
JP5456584B2 (ja) * 2010-06-01 2014-04-02 花王株式会社 トナー
JP5579546B2 (ja) * 2010-09-06 2014-08-27 花王株式会社 電子写真用トナー
JP5576223B2 (ja) * 2010-09-14 2014-08-20 花王株式会社 電子写真用トナー
JP5859760B2 (ja) * 2011-07-06 2016-02-16 花王株式会社 電子写真用トナー
JP6027865B2 (ja) * 2011-12-09 2016-11-16 花王株式会社 静電荷像現像用トナーの製造方法
JP2014059430A (ja) * 2012-09-18 2014-04-03 Ricoh Co Ltd 静電荷像現像用トナー、現像剤、トナー容器、プロセスカートリッジ、画像形成方法および装置
JP6036451B2 (ja) * 2013-03-25 2016-11-30 コニカミノルタ株式会社 静電荷像現像用トナーおよびその製造方法
JP6054810B2 (ja) * 2013-05-28 2016-12-27 花王株式会社 トナー用結着樹脂組成物
JP6102530B2 (ja) * 2013-06-04 2017-03-29 コニカミノルタ株式会社 静電荷像現像用トナーおよびその製造方法
JP5768837B2 (ja) * 2013-06-05 2015-08-26 コニカミノルタ株式会社 静電潜像現像用トナー及び電子写真画像形成方法
JP6082659B2 (ja) * 2013-06-05 2017-02-15 花王株式会社 静電荷像現像用トナーの製造方法
JP6386899B2 (ja) 2014-12-16 2018-09-05 花王株式会社 電子写真用トナー
JP6353356B2 (ja) 2014-12-16 2018-07-04 花王株式会社 電子写真用トナー
JP6370700B2 (ja) 2014-12-16 2018-08-08 花王株式会社 電子写真用トナーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011053494A (ja) * 2009-09-02 2011-03-17 Kao Corp 電子写真トナー用結着樹脂
JP2011107341A (ja) * 2009-11-16 2011-06-02 Kao Corp トナー用結着樹脂の製造方法
JP2012226296A (ja) * 2010-12-10 2012-11-15 Kao Corp 画像形成方法
JP2013109237A (ja) * 2011-11-22 2013-06-06 Kao Corp 静電荷像現像用トナー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054866B2 (en) * 2016-04-19 2018-08-21 Canon Kabushiki Kaisha Toner

Also Published As

Publication number Publication date
JP2016114824A (ja) 2016-06-23
JP6440255B2 (ja) 2018-12-19
CN107003628A (zh) 2017-08-01
US20180348656A1 (en) 2018-12-06
CN107003628B (zh) 2020-10-02
EP3236318B1 (en) 2019-09-18
EP3236318A1 (en) 2017-10-25
US10345728B2 (en) 2019-07-09
EP3236318A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP6440255B2 (ja) 電子写真用トナー
JP5714392B2 (ja) トナー及びトナーの製造方法
JP6353356B2 (ja) 電子写真用トナー
JP6370700B2 (ja) 電子写真用トナーの製造方法
JP5563971B2 (ja) 静電荷像現像用トナー
JP5376591B2 (ja) トナーの製造方法
JP5415324B2 (ja) トナーの製造方法
JP5937667B1 (ja) 電子写真用トナー
JP5456584B2 (ja) トナー
JP7108494B2 (ja) 静電荷像現像用正帯電性トナー
JP6386899B2 (ja) 電子写真用トナー
JP6762788B2 (ja) トナー用結着樹脂組成物
JP6370206B2 (ja) 電子写真用トナー
JP5419216B2 (ja) トナー
JP6935324B2 (ja) トナーの製造方法
JP2022098008A (ja) トナー用結着樹脂組成物
JP7142542B2 (ja) 電子写真用トナー
JP7341867B2 (ja) 電子写真用白色トナー
JP7394600B2 (ja) 電子写真用トナー
JP2022086769A (ja) トナー用結着樹脂組成物
JP2023160770A (ja) 静電荷像現像用トナー
JP2023005219A (ja) 静電荷像現像用トナーの製造方法
JP2023088165A (ja) 静電荷像現像用トナーの製造方法
JP2023085815A (ja) 静電荷像現像用トナーの製造方法
JP2023085816A (ja) 静電荷像現像用トナーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015869821

Country of ref document: EP