WO2016095428A1 - 柔性电极结构、其制作方法及柔性显示基板 - Google Patents

柔性电极结构、其制作方法及柔性显示基板 Download PDF

Info

Publication number
WO2016095428A1
WO2016095428A1 PCT/CN2015/079493 CN2015079493W WO2016095428A1 WO 2016095428 A1 WO2016095428 A1 WO 2016095428A1 CN 2015079493 W CN2015079493 W CN 2015079493W WO 2016095428 A1 WO2016095428 A1 WO 2016095428A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent conductive
conductive layer
electrode structure
elastic mesh
Prior art date
Application number
PCT/CN2015/079493
Other languages
English (en)
French (fr)
Inventor
王家恒
白峰
杨久霞
刘建涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/893,887 priority Critical patent/US20160359135A1/en
Publication of WO2016095428A1 publication Critical patent/WO2016095428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to a flexible electrode structure, a method of fabricating the same, and a flexible display substrate.
  • Flexible display technology mainly uses flexible electronic technology to mount flexible display medium electronic components and materials on flexible or flexible substrates, so that the display has the characteristics of being able to bend or curl into any shape, and is light, thin and convenient to carry. .
  • the existing flexible display adopts an electrode formed of a single-layer metal conductive oxide material, and the metal conductive oxide material is generally an ITO material, and the electrical properties of the material are affected by the bending, folding and stretching operations required for the flexible display. influences. Therefore, how to realize the ductility and elastic operation of the electrode to meet the requirements of the flexible display on the basis of ensuring the conductivity of the electrode is a technical problem that needs to be solved in the field.
  • Embodiments of the present invention provide a flexible electrode structure, a method of fabricating the same, and a flexible display substrate, which are capable of realizing an electrode structure having good flexibility and electrical conductivity.
  • an embodiment of the present invention provides a flexible electrode structure comprising: at least one transparent elastic mesh interlaced layer and at least one transparent conductive layer disposed alternately stacked one upon another.
  • Embodiments of the present invention also provide a flexible display substrate including a flexible substrate, a first electrode, a light emitting layer, and a second electrode, which are sequentially disposed on the flexible substrate, the first electrode and/or the The second electrode is the above flexible electrode structure.
  • the embodiment of the present invention further provides a method for fabricating the above flexible electrode structure, comprising: forming at least one transparent conductive layer and at least one transparent elastic mesh interlacing layer alternately stacked on the carrier substrate; The carrier substrate is separated from the at least one transparent conductive layer and the at least one transparent elastic mesh interlacing layer which are alternately laminated.
  • FIG. 1a-1d are schematic structural views of a flexible electrode structure according to an embodiment of the present invention.
  • a flexible electrode structure as shown in FIG. 1a to FIG. 1c, includes at least one transparent elastic mesh interlacing layer 01 and at least one layer alternately laminated with the elastic mesh interlacing layer 01.
  • the "interleave alternately disposed" means that when the flexible electrode structure provided in the embodiment of the present invention has a plurality of transparent elastic mesh interlacing layers 01 and a plurality of transparent conductive layers 02, The elastic mesh interlacing layer 01 and the transparent conductive layer 02 are alternately arranged, that is, the materials of the adjacent two layers are different.
  • the flexible electrode structure provided by the embodiment of the present invention is adapted to flex and stretch operations required for flexible display, the flexible electrode structure comprises a composite film layer, and the composite film layer comprises at least one transparent elastic mesh interlacing layer 01 And at least one transparent conductive layer 02 disposed alternately with the elastic mesh interlacing layer 01, the flexible electrode structure can be used as an electrode in the flexible display substrate; since the elastic mesh interlacing layer 01 has good ductility and elasticity The transparent conductive layer 02 which is alternately laminated with the elastic mesh interlaced layer 01 has good electrical conductivity and can meet the electrical conductivity requirements of the electrode in the flexible display.
  • the sum of the number of layers of the elastic mesh interlaced layer 01 and the transparent conductive layer 02 in the above flexible electrode structure provided by the embodiment of the present invention can be set to about two to seven layers, and good electrical conductivity can be obtained.
  • Extended performance the number of layers of the elastic mesh interlacing layer 01 and the transparent conductive layer 02 may be one layer, and the transparent conductive layer 02 may be disposed on the elastic mesh interlacing layer 01 as shown in FIG. 1a.
  • the surface may be disposed on the lower surface of the elastic mesh interlacing layer 01 as shown in FIG. 1b; or as shown in FIG. 1c, the elastic mesh interlacing layer 01 may be disposed as a layer on the upper surface of the elastic mesh interlacing layer 01.
  • a transparent conductive layer 02 is disposed on both the lower surface and the lower surface.
  • the elastic mesh interlacing layer 01 in the flexible electrode structure provided by the embodiment of the present invention functions to make the electrode structure have certain flexibility and ductility
  • the elastic mesh interlacing layer 01 can adopt, for example, a mesh.
  • a rubber layer is formed.
  • the elastic mesh interlacing layer 01 generally has an insulating property. Therefore, if the transparent conductive layer 02 is formed only on the lower surface or the upper surface of the elastic mesh interlacing layer 01, the flexible electrode structure can only achieve one-sided conduction. The conductivity and the square resistance are higher. Therefore, optionally, the flexible electrode structure provided by the embodiment of the present invention, as shown in FIG. 1c, may be provided with a plurality of transparent conductive layers 02 to increase conductivity and reduce square resistance. value.
  • the transparent protective layer 03 disposed on the uppermost transparent conductive layer 02 may be further included.
  • the transparent protective layer 03 can be made of a transparent resin material. Of course, other materials can also be used, which are not limited herein.
  • the transparent conductive layer 02 alternately disposed with the elastic mesh interlacing layer 01 may have a specific pattern.
  • the pattern can be matched with the pattern of each pixel in the display panel of the flexible electrode structure application, so that the flexible electrode structure can be directly used as an electrode after being attached to the desired display panel after the fabrication is completed.
  • the transparent conductive layers 02 are generally disposed to have the same pattern, so that the same mask can be produced by the same mask or the same process at the time of fabrication.
  • common A transparent conductive oxide material such as an ITO or IZO material, is used to prepare the transparent conductive layer 02.
  • the transparent conductive layer 02 was made of ITO, and when different thicknesses of the transparent conductive layer 02 and the elastic mesh interlaced layer 01 were selected to fabricate flexible electrode structures of different thicknesses, the conductivity, ductility and transmittance of each sample were tested.
  • the test results are shown in Table 1 below.
  • the transparent conductive layer 02 is made of a common transparent conductive oxide material
  • the square resistance of the flexible electrode structure is below 30 ⁇ / ⁇
  • the total thickness is 100-200 nm, which is extended on the basis of ensuring its conductive property.
  • the rate is only less than 20%.
  • the transparent conductive layer 02 is a nano-conductive layer.
  • the material may be a nano-metal or a nano-metal oxide of a rod-like structure.
  • the material of the nano conductive layer may be one or a combination of nano silver wire, nano gold wire or nano copper wire.
  • the transparent conductive layer 02 is made of a nano material, the overall elongation of the flexible electrode structure can be greatly improved as compared with the case where the transparent conductive layer 02 is formed using ITO.
  • the comprehensive performance of the flexible electrode structure is good, and the square resistance is as low as 15 ⁇ / ⁇ . With an elongation of 390% and a transmittance of 89%, it can meet the needs of flexible display substrates.
  • an embodiment of the present invention further provides a method for fabricating the flexible electrode structure provided by the embodiment of the present invention, including the following steps:
  • Forming a transparent conductive layer may include: forming a transparent conductive material solution on the carrier substrate or the elastic mesh interlaced layer, and curing the transparent conductive material solution to obtain a transparent conductive layer;
  • Forming the elastic mesh interlaced layer may include forming a prepolymer mixture material on the carrier substrate or the transparent conductive layer, and performing ultraviolet curing treatment on the prepolymer mixture material to form a transparent elastic mesh interlaced layer.
  • the carrier substrate used in the above step S201 is a support body of the finally formed flexible electrode structure, and the flexible electrode structure needs to be peeled off from the carrier substrate after the fabrication of the flexible electrode structure is completed, and therefore, for convenience
  • the post-formed flexible electrode structure is peeled off from the carrier substrate, and before performing the step of forming at least one transparent conductive layer and at least one transparent elastic mesh interlacing layer alternately stacked on the carrier substrate in step S201, Includes the following steps: Forming an active medium layer on the carrier substrate, the adhesion between the material of the active medium layer and the carrier substrate needs to be greater than the adhesion between the material of the active medium layer and the transparent conductive layer or the elastic mesh interwoven layer, exemplarily, If the transparent conductive layer is first formed, the adhesion between the material of the active dielectric layer and the carrier substrate is greater than the adhesion between the material of the active dielectric layer and the transparent conductive layer; if an elastic mesh interwoven layer is first formed, activity is required.
  • the transparent elastic mesh interlacing layer is separated, for example, it can be realized by using at least one transparent conductive layer and at least one transparent elastic mesh which are alternately stacked on the carrier substrate by a transfer method or a direct peeling method. The interlaced layers are separated.
  • a transparent conductive material solution is formed on the carrier substrate.
  • a transparent conductive material solution disposed on the entire surface may be formed by a coating method.
  • the obtained transparent material is obtained.
  • the conductive layer is a transparent conductive layer of the entire layer. If in the flexible electrode structure, the transparent conductive layer has the same pattern as each pixel in the applied flexible display substrate, the transparent conductive layer may be patterned after the transparent conductive layer is obtained to form a desired preset pattern. .
  • a transparent conductive material solution having a predetermined pattern may be directly formed by using a printing method, so that after the curing process of the transparent conductive material solution, the transparent conductive layer obtained is a transparent pattern having a predetermined pattern. Conductive layer.
  • the prepolymer mixture material selected for forming the elastic mesh interlaced layer in the above step S201 provided by the embodiment of the present invention may include a urethane acrylate prepolymer, an epoxy resin, an initiator, a silane coupling agent, and the like.
  • an embodiment of the present invention further provides a flexible display substrate. Since the principle of solving the problem of the flexible display substrate is similar to the foregoing flexible electrode structure, the implementation of the flexible display substrate can be referred to the implementation of the flexible electrode structure. , the repetition will not be repeated.
  • a flexible display substrate provided by an embodiment of the present invention includes: a flexible substrate base
  • the first electrode, the light emitting layer and the second electrode are sequentially disposed on the flexible substrate, and the first electrode and/or the second electrode are the flexible electrode structures provided by the embodiments of the present invention.
  • the flexible display substrate is improved on the basis of the existing OLED display device, and therefore the basic components thereof are substantially the same as those of the existing OLED display device, and will not be described in detail herein.
  • an embodiment of the present invention further provides a display device, including the flexible display substrate provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, or a digital photo frame. , navigation, etc. Any product or component that has a display function.
  • a display device including the flexible display substrate provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, or a digital photo frame. , navigation, etc. Any product or component that has a display function.
  • the display device reference may be made to the embodiment of the flexible display substrate described above, and the repeated description is omitted.
  • the flexible electrode structure includes a composite film layer, and the composite film layer includes at least one a layer of transparent elastic mesh interlacing layer and at least one transparent conductive layer interposed alternately with the elastic mesh interlacing layer, the flexible electrode structure being usable as an electrode in a flexible display substrate; due to an elastic mesh interlacing layer It has good ductility and elasticity, and can meet the flexibility requirements of flexible display.
  • the transparent conductive layer which is alternately laminated with the elastic mesh interlaced layer has good electrical conductivity and can meet the conductivity requirement of the electrode in the flexible display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

一种柔性电极结构、其制作方法及柔性显示基板,所述柔性电极结构包括复合膜层,所述复合膜层包括至少一层透明的弹性网状交织层(01)以及与所述弹性网状交织层相互交替层叠设置的至少一层透明导电层(02),所述柔性电极结构可作为电极应用于柔性显示基板中。

Description

柔性电极结构、其制作方法及柔性显示基板 技术领域
本发明的实施例涉及一种柔性电极结构、其制作方法及柔性显示基板。
背景技术
柔性显示技术主要应用柔性电子技术,是将柔性显示介质电子元件与材料安装在柔性或可弯曲的基板上,使得显示器具有能够弯曲或卷曲成任意形状的特性,有轻、薄且方便携带等特点。
现有的柔性显示器采用单层金属导电氧化物材料形成的电极,上述金属导电氧化物材料一般为ITO材料,在柔性显示所需求的弯曲、折叠以及延展操作下,该种材料的电性能会受到影响。因此,如何在保证电极导电性能的基础上,实现电极的延展性和弹性操作,以满足柔性显示的需求,是本领域亟需解决的技术问题。
发明内容
本发明的实施例提供一种柔性电极结构、其制作方法及柔性显示基板,能够实现具有良好柔性和导电性能的电极结构。
一方面,本发明的实施例提供了一种柔性电极结构,包括:相互交替层叠设置的至少一层透明的弹性网状交织层和至少一层透明导电层。
本发明的实施例还提供了一种柔性显示基板,包括柔性衬底基板,依次设置在柔性衬底基板上的第一电极、发光层和第二电极,所述第一电极和/或所述第二电极为上述柔性电极结构。
本发明实施例还提供了一种上述柔性电极结构的制作方法,包括:在载体基板上形成相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层;将所述载体基板与所述相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a-图1d分别为本发明实施例提供的柔性电极结构的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明实施例提供的柔性电极结构、其制作方法及柔性显示基板的具体实施方式进行详细地说明。
附图中各层薄膜厚度和大小不反映柔性电极结构的真实比例,目的只是示意说明本发明内容。
本发明实施例提供的一种柔性电极结构,如图1a至图1c所示,包括:至少一层透明的弹性网状交织层01,与弹性网状交织层01相互交替层叠设置的至少一层透明导电层02。
值得注意的是,上述描述中的“相互交替层叠设置”是指:在本发明实施例提供的上述柔性电极结构中当具有多层透明的弹性网状交织层01和多层透明导电层02时,弹性网状交织层01和透明导电层02交替设置,即相邻两层的材质不同。
本发明实施例提供的上述柔性电极结构,为适应柔性显示需要的弯折和伸展操作,所述柔性电极结构包括复合膜层,所述复合膜层包括至少一层透明的弹性网状交织层01以及与弹性网状交织层01相互交替层叠设置的至少一层透明导电层02,所述柔性电极结构可在柔性显示基板中作为电极使用;由于弹性网状交织层01具有良好的延展性和弹性,可以满足柔性显示的柔性要求,而与弹性网状交织层01交替层叠设置的透明导电层02具有良好的导电性,可以满足柔性显示中电极的导电性要求。
示例性地,在本发明实施例提供的上述柔性电极结构中的弹性网状交织层01和透明导电层02的层数之和可以设定为二至七层左右,可获得良好的导电性能和延展性能。例如图1a和图1b所示,弹性网状交织层01和透明导电层02的层数可以各为一层,且透明导电层02可以如图1a所示设置于弹性网状交织层01的上表面;也可以如图1b所示设置于弹性网状交织层01的下表面;还可以如图1c所示,弹性网状交织层01设置为一层,在弹性网状交织层01的上表面和下表面均设置透明导电层02。
示例性地,由于本发明实施例提供的上述柔性电极结构中的弹性网状交织层01的作用是使电极结构具有一定的柔性和可延展性,因此,弹性网状交织层01可以采用例如网状橡胶层形成。
根据橡胶的特性可知,弹性网状交织层01一般具有绝缘特性,因此,若仅在弹性网状交织层01的下表面或上表面形成透明导电层02,柔性电极结构仅能实现单侧导电,其导电率和方阻值较高,因此,可选的,本发明实施例提供的上述柔性电极结构,如图1c所示,可设置多层透明导电层02,以增加导电率并降低方阻值。
并且,在本发明实施例提供的上述柔性电极结构中,若柔性电极结构中的最上层为透明导电层02,由于水汽以及环境因素的影响,透明导电层02的性能可能会下降,因此,可选的,在本发明实施例提供的上述柔性电极结构中,如图1d所示,还可以包括:设置在最上层的透明导电层02上的透明保护层03。示例性地,可以采用透明树脂材料制作透明保护层03,当然也可以利用其它材料,在此不做限定。
示例性地,由于本发明实施例提供的柔性电极结构中的弹性网状交织层01一般具有绝缘性质,因此,与弹性网状交织层01交替设置的透明导电层02可以具有特定的图案。例如,该图案可以与柔性电极结构应用的显示面板中各像素的图案相匹配,这样,在制作完成后直接将柔性电极结构贴覆于所需的显示面板中即可作为电极使用。并且,在柔性电极结构中设置有多层透明导电层02时,一般将各透明导电层02设置为具有相同的图案,这样在制作时采用同一掩模板或同一工序即可分别制作出具有相同图案的各层透明导电层02。
进一步地,在本发明实施例提供的上述柔性电极结构中,可以采用常见 的透明导电氧化物材料,例如ITO或IZO材料,制备透明导电层02,。
通过实验测试采用ITO制作透明导电层02,在选择不同层数的透明导电层02和弹性网状交织层01制作不同厚度的柔性电极结构时,测试各样品的导电性能、延展性能和透过率,测试结果如下表1所示。
表1
Figure PCTCN2015079493-appb-000001
通过实验测试可知,采用常见的透明导电氧化物材料制作透明导电层02时,柔性电极结构的方阻在30Ω/□以下,总厚度在100~200nm,在保证其导电性能的基础上,其延展率仅不足20%。
因此,为了使透明导电层02在满足导电性能的基础上,具有良好的延展性,可以采用新型的纳米导电材料,即透明导电层02为纳米导电层。例如,为了防止纳米导电层在延展的过程中断裂而影响其导电性能,其材料可以选用棒状结构的纳米金属或纳米金属氧化物。例如,纳米导电层的材料可以选用纳米银线、纳米金线或纳米铜线中的之一或组合。
通过实验测试采用不同的纳米材料作为透明导电层02,在选择不同粒径的纳米材料,以及选用不同层数的透明导电层02和弹性网状交织层01制作成不同厚度的柔性电极结构时,测试各样品的导电性能、延展性能和透过率,测试结果如下表2所示。
表2
Figure PCTCN2015079493-appb-000002
Figure PCTCN2015079493-appb-000003
从表2的测试结果可知,采用纳米材料制作透明导电层02时,相对于采用ITO制作透明导电层02,柔性电极结构总体的延展率可以大幅提高。
进一步地,当采用粒径为70nm的纳米银线作为透明导电层02且制作出的柔性电极结构的厚度为110nm时,柔性电极结构的综合性能较好,方阻较低为15Ω/□,具有390%的延展率,且具有89%的透过率,能够满足柔性显示基板的需要。
基于同一发明构思,本发明实施例还提供了一种本发明实施例提供的上述柔性电极结构的制作方法,包括以下步骤:
S201、在载体基板上形成相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层;
S202、将载体基板与相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离;其中,
形成透明导电层可以包括:在载体基板或弹性网状交织层上形成透明导电材料溶液,对透明导电材料溶液进行固化处理,得到透明导电层;
形成弹性网状交织层可以包括:在载体基板或透明导电层上形成预聚物混合物材料,对预聚物混合物材料进行紫外固化处理,形成透明的弹性网状交织层。
示例性地,上述步骤S201中所使用的载体基板是作为最终形成的柔性电极结构的支撑体,在完成柔性电极结构的制作后需要将柔性电极结构从载体基板上剥离,因此,为了便于将其后形成的柔性电极结构从载体基板上剥离,在执行步骤S201的“在载体基板上形成相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层”之前,还可以包括以下步骤: 在载体基板上形成活性介质层,该活性介质层的材料与载体基板之间的粘着力需要大于活性介质层的材料与透明导电层或弹性网状交织层之间的粘着力,示例性地,若先制作透明导电层,则需要活性介质层的材料与载体基板之间的粘着力大于活性介质层的材料与透明导电层之间的粘着力;若先制作弹性网状交织层,则需要活性介质层的材料与载体基板之间的粘着力大于活性介质层的材料与弹性网状交织层之间的粘着力。
由于在制作柔性电极结构之前,已经在载体基板上制作了一层活性介质层,因此对应地,在执行步骤S202的“将载体基板与相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离”时,例如可以采用如下方式实现:采用转印方式或直接剥离方式,将载体基板与相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离。
示例性地,上述步骤S201在载体基板上形成透明导电材料溶液,例如可以采用涂布方式形成整面设置的透明导电材料溶液,此时,在经过透明导电材料溶液进行固化处理后,得到的透明导电层即为整层的透明导电层。若在柔性电极结构中,透明导电层具有与应用的柔性显示基板中各像素相同的图案,则可在得到透明导电层之后,对透明导电层进行构图工艺处理,以便形成所需的预设图案。
可以看出在上述步骤S201中采用涂布方式形成透明导电材料溶液时,需要增加构图工艺的步骤才可形成具有预设图案的透明导电层的图形,其工艺步骤较为繁琐,因此,为了简化工艺,在执行步骤S201时,还可以直接采用打印方式形成具有预设图案的透明导电材料溶液,这样在经过对透明导电材料溶液进行固化处理后,得到的透明导电层即为具有预设图案的透明导电层。
例如,在本发明实施例提供的上述步骤S201中形成弹性网状交织层所选用的预聚物混合物材料可以包括聚氨酯丙烯酸酯预聚体、环氧树脂、引发剂和硅烷偶联剂等。
基于同一发明构思,本发明实施例还提供了一种柔性显示基板,由于该柔性显示基板解决问题的原理与前述一种柔性电极结构相似,因此该柔性显示基板的实施可以参见柔性电极结构的实施,重复之处不再赘述。
示例性地,本发明实施例提供的一种柔性显示基板,包括:柔性衬底基 板,依次设置在柔性衬底基板上的第一电极、发光层和第二电极,第一电极和/或第二电极为本发明实施例提供的上述柔性电极结构。值得注意的是,该柔性显示基板是在现有的OLED显示器件的基础上进行改进,因此其基本部件和现有的OLED显示器件大致相同,在此不作详述。
基于同一发明构思,本发明实施例还提供了一种显示装置,包括本发明实施例提供的上述柔性显示基板,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述柔性显示基板的实施例,重复之处不再赘述。
本发明实施例提供的一种柔性电极结构、其制作方法及柔性显示基板,为适应柔性显示需要的弯折和伸展操作,所述柔性电极结构包括复合膜层,所述复合膜层包括至少一层透明的弹性网状交织层以及与所述弹性网状交织层相互交替层叠设置的至少一层透明导电层,所述柔性电极结构可在柔性显示基板中作为电极使用;由于弹性网状交织层具有良好的延展性和弹性,可以满足柔性显示的柔性要求,而与弹性网状交织层交替层叠设置的透明导电层具有良好的导电性,可以满足柔性显示中电极的导电性要求。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2014年12月15日递交的中国专利申请第201410778951.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (18)

  1. 一种柔性电极结构,包括:相互交替层叠设置的至少一层透明的弹性网状交织层和至少一层透明导电层。
  2. 如权利要求1所述的柔性电极结构,其中,所述弹性网状交织层和所述透明导电层的层数之和为二至七层。
  3. 如权利要求1所述的柔性电极结构,其中,所述弹性网状交织层为一层,在所述弹性网状交织层的上表面和/或下表面设置有所述透明导电层。
  4. 如权利要求1所述的柔性电极结构,其中,当设置有多层所述透明导电层时,每层所述透明导电层具有相同的图案。
  5. 如权利要求1所述的柔性电极结构,其中,当柔性电极结构的最上层为所述透明导电层时,还包括:设置于最上层的所述透明导电层上的透明保护层。
  6. 如权利要求1-5中任一项所述的柔性电极结构,其中,所述透明导电层为纳米导电层。
  7. 如权利要求6所述的柔性电极结构,其中,所述纳米导电层的材料为棒状结构的纳米金属或纳米金属氧化物。
  8. 如权利要求7所述的柔性电极结构,其中,所述纳米导电层的材料为纳米银线、纳米金线或纳米铜线之一或组合。
  9. 如权利要求1-5中任一项所述的柔性电极结构,其中,所述弹性网状交织层为网状橡胶层。
  10. 一种柔性显示基板,包括柔性衬底基板、依次设置在柔性衬底基板上的第一电极、发光层和第二电极,其中,所述第一电极和/或所述第二电极为如权利要求1-9中任一项所述的柔性电极结构。
  11. 一种如权利要求1-9中任一项所述的柔性电极结构的制作方法,包括:
    在载体基板上形成相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层;
    将所述载体基板与所述相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离。
  12. 如权利要求11所述的制作方法,其中形成所述透明导电层包括:在所述载体基板或所述弹性网状交织层上形成透明导电材料溶液,对所述透明导电材料溶液进行固化处理,得到透明导电层。
  13. 如权利要求11或12所述的制作方法,其中形成所述弹性网状交织层包括:在所述载体基板或所述透明导电层上形成预聚物混合物材料,对所述预聚物混合物材料进行紫外固化处理,形成透明的弹性网状交织层。
  14. 如权利要求11所述的制作方法,其中,所述形成透明导电材料溶液,包括:
    采用涂布方式形成整面设置的透明导电材料溶液;
    在得到透明导电层之后,还包括:
    对所述透明导电层进行构图工艺,形成预设图案。
  15. 如权利要求11所述的制作方法,其中,所述形成透明导电材料溶液,包括:采用打印方式形成具有预设图案的透明导电层。
  16. 如权利要求11所述的制作方法,其中,所述预聚物混合物材料包括聚氨酯丙烯酸酯预聚体、环氧树脂、引发剂和硅烷偶联剂。
  17. 如权利要求11-16中任一项所述的制作方法,其中,在载体基板上形成相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层之前,还包括:
    在所述载体基板上形成活性介质层,所述活性介质层的材料与载体基板之间的粘着力大于所述活性介质层的材料与所述透明导电层或所述弹性网状交织层之间的粘着力。
  18. 如权利要求17所述的制作方法,其中,将所述载体基板与所述相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离,包括:
    采用转印方式或直接剥离方式,将所述载体基板与所述相互交替层叠设置的至少一层透明导电层和至少一层透明的弹性网状交织层分离。
PCT/CN2015/079493 2014-12-15 2015-05-21 柔性电极结构、其制作方法及柔性显示基板 WO2016095428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/893,887 US20160359135A1 (en) 2014-12-15 2015-05-21 Flexible Electrode Structure, Manufacturing Method Thereof and Flexible Display Substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778951.1 2014-12-15
CN201410778951.1A CN104485345A (zh) 2014-12-15 2014-12-15 一种柔性电极结构、其制作方法及柔性显示基板

Publications (1)

Publication Number Publication Date
WO2016095428A1 true WO2016095428A1 (zh) 2016-06-23

Family

ID=52759873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079493 WO2016095428A1 (zh) 2014-12-15 2015-05-21 柔性电极结构、其制作方法及柔性显示基板

Country Status (3)

Country Link
US (1) US20160359135A1 (zh)
CN (1) CN104485345A (zh)
WO (1) WO2016095428A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485345A (zh) * 2014-12-15 2015-04-01 京东方科技集团股份有限公司 一种柔性电极结构、其制作方法及柔性显示基板
CN105244072B (zh) * 2015-09-17 2017-03-29 上海天马有机发光显示技术有限公司 一种柔性电极及其制备方法及柔性显示装置
KR101966634B1 (ko) * 2015-11-02 2019-04-08 동우 화인켐 주식회사 필름 터치 센서
CN105355272A (zh) * 2015-11-18 2016-02-24 中国科学院上海硅酸盐研究所 一种双面导电透明导电薄膜及其制备方法
KR101876436B1 (ko) * 2016-01-25 2018-07-13 숭실대학교산학협력단 발광 소자 및 제조방법
WO2018116112A1 (en) 2016-12-22 2018-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN106784389A (zh) * 2017-02-17 2017-05-31 京东方科技集团股份有限公司 一种复合透明电极、有机发光二极管及其制备方法
CN209265885U (zh) * 2018-09-19 2019-08-16 昆山工研院新型平板显示技术中心有限公司 拉伸电极及包含其的电子器件
KR20200093737A (ko) * 2019-01-28 2020-08-06 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN109935570B (zh) * 2019-03-22 2021-04-27 京东方科技集团股份有限公司 一种柔性基板
CN110610979A (zh) * 2019-09-29 2019-12-24 武汉天马微电子有限公司 柔性显示面板及其制作方法、显示装置
CN111128443B (zh) * 2019-12-30 2021-05-28 深圳市华科创智技术有限公司 一种透明导电膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193472A (zh) * 2006-11-20 2008-06-04 比亚迪股份有限公司 El 膜片及其制作方法以及具有该膜片的移动电话键盘
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
CN204230306U (zh) * 2014-12-15 2015-03-25 京东方科技集团股份有限公司 一种柔性电极结构、柔性显示基板及显示装置
CN104485345A (zh) * 2014-12-15 2015-04-01 京东方科技集团股份有限公司 一种柔性电极结构、其制作方法及柔性显示基板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1127381B1 (en) * 1998-11-02 2015-09-23 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
US7750076B2 (en) * 2006-06-07 2010-07-06 Second Sight Medical Products, Inc. Polymer comprising silicone and at least one metal trace
JP2009211847A (ja) * 2008-02-29 2009-09-17 Fujifilm Corp 導電性ポリマー材料、導電性ポリマー材料の製造方法及び電極材料
WO2010010838A1 (ja) * 2008-07-25 2010-01-28 コニカミノルタホールディングス株式会社 透明電極および透明電極の製造方法
KR20120039946A (ko) * 2010-10-18 2012-04-26 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
US20120103660A1 (en) * 2010-11-02 2012-05-03 Cambrios Technologies Corporation Grid and nanostructure transparent conductor for low sheet resistance applications
FR2977712A1 (fr) * 2011-07-05 2013-01-11 Hutchinson Electrode transparente conductrice multicouche et procede de fabrication associe
WO2013080908A1 (ja) * 2011-11-29 2013-06-06 東レ株式会社 導電積層体およびそれを用いてなる表示体
KR20150013292A (ko) * 2012-05-18 2015-02-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 오버코팅된 나노와이어 투명 전도성 코팅의 코로나 패터닝
KR20140046923A (ko) * 2012-10-11 2014-04-21 제일모직주식회사 투명 도전체, 이를 제조하기 위한 조성물 및 이를 포함하는 광학표시 장치
CN103588954A (zh) * 2013-11-27 2014-02-19 常熟市富邦胶带有限责任公司 一种oca光学胶带及其制作方法
EP3084776B1 (de) * 2013-12-19 2018-06-20 Fraunhofer Gesellschaft zur Förderung der Angewand Transparente nanodrahtelektrode mit funktionaler organischer schicht
CN203982828U (zh) * 2014-07-07 2014-12-03 苏州斯迪克新材料科技股份有限公司 一种基于纳米银线平板触摸屏用透明导电膜组
CN104134484B (zh) * 2014-07-31 2017-09-19 中国电子科技集团公司第五十五研究所 基于纳米银线的柔性透明导电薄膜及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362A (zh) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 基于纳米线的透明导体
CN101193472A (zh) * 2006-11-20 2008-06-04 比亚迪股份有限公司 El 膜片及其制作方法以及具有该膜片的移动电话键盘
CN204230306U (zh) * 2014-12-15 2015-03-25 京东方科技集团股份有限公司 一种柔性电极结构、柔性显示基板及显示装置
CN104485345A (zh) * 2014-12-15 2015-04-01 京东方科技集团股份有限公司 一种柔性电极结构、其制作方法及柔性显示基板

Also Published As

Publication number Publication date
CN104485345A (zh) 2015-04-01
US20160359135A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2016095428A1 (zh) 柔性电极结构、其制作方法及柔性显示基板
JP6870959B2 (ja) 透明電極およびこれを含む素子
TWI503714B (zh) 觸控面板及其製作方法
Park et al. Graphene-based conformal devices
KR101095097B1 (ko) 투명 전극 필름 및 이의 제조 방법
KR101519519B1 (ko) 신축성 배선을 이용하여 형성된 무 베젤 디스플레이 장치 및 그 제조 방법
US9137892B2 (en) Laminated structure, method of manufacturing laminated structure, and electronic apparatus
KR101521694B1 (ko) 플렉서블/스트레처블 투명도전성 필름 및 그 제조방법
TWI524232B (zh) 觸控面板及其製造方法
JP2013001009A5 (zh)
TWI675321B (zh) 觸控顯示裝置及觸控顯示裝置的製造方法
TWI553711B (zh) 觸控面板及其製作方法
US20150221413A1 (en) Conductor and method of manufacturing the same
JPWO2018155106A1 (ja) 導電性フィルム、3次元形状を有する導電性フィルムおよびその製造方法、延伸フィルムの製造方法、タッチセンサーフィルム
US20150324047A1 (en) Touch panel including patterns of mesh structures
CN204230306U (zh) 一种柔性电极结构、柔性显示基板及显示装置
KR101521693B1 (ko) 플렉서블/스트레처블 투명도전성 필름 및 그 제조방법
TW201349425A (zh) 觸控面板
US20170242508A1 (en) Touch device and manufacturing method thereof
US20160259454A1 (en) Touch unit, touch substrate and manufacturing method thereof, and flexible touch display device
CN208569590U (zh) 薄膜层叠结构、触控屏和触控显示装置
TW201516775A (zh) 觸摸屏及其製備方法
CN110246862B (zh) 一种柔性显示面板和柔性电子设备
CN108962962B (zh) 一种柔性显示面板、其制作方法及显示装置
CN103455183A (zh) 触摸面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14893887

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15868940

Country of ref document: EP

Kind code of ref document: A1