WO2016093199A1 - スタビライザの製造方法 - Google Patents

スタビライザの製造方法 Download PDF

Info

Publication number
WO2016093199A1
WO2016093199A1 PCT/JP2015/084330 JP2015084330W WO2016093199A1 WO 2016093199 A1 WO2016093199 A1 WO 2016093199A1 JP 2015084330 W JP2015084330 W JP 2015084330W WO 2016093199 A1 WO2016093199 A1 WO 2016093199A1
Authority
WO
WIPO (PCT)
Prior art keywords
stabilizer
quenching
manufacturing
steel bar
steel
Prior art date
Application number
PCT/JP2015/084330
Other languages
English (en)
French (fr)
Inventor
真一郎 鍬塚
由利香 奥平
彰 丹下
岡田 秀樹
高橋 研
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to US15/534,470 priority Critical patent/US10995382B2/en
Priority to KR1020177018140A priority patent/KR20170095263A/ko
Priority to CN201580067175.7A priority patent/CN107109514B/zh
Priority to ES15867565T priority patent/ES2843588T3/es
Priority to MX2017007474A priority patent/MX2017007474A/es
Priority to EP15867565.2A priority patent/EP3231879B1/en
Publication of WO2016093199A1 publication Critical patent/WO2016093199A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/14Torsion springs consisting of bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C11/00Selection of abrasive materials or additives for abrasive blasts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/135Stabiliser bar and/or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/72Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/72Steel
    • B60G2206/724Wires, bars or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8103Shaping by folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8103Shaping by folding or bending
    • B60G2206/81035Shaping by folding or bending involving heating to relieve internal stresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8106Shaping by thermal treatment, e.g. curing hardening, vulcanisation
    • B60G2206/81062Shaping by thermal treatment, e.g. curing hardening, vulcanisation to relieve internal stresses, e.g. during folding or bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/84Hardening
    • B60G2206/8402Quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/84Hardening
    • B60G2206/8403Shot-peening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0208Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments

Definitions

  • the present invention relates to a stabilizer manufacturing method.
  • Vehicles such as automobiles are provided with a stabilizer (stabilizer bar or anti-roll bar) that suppresses the roll of the vehicle body due to the vertical shift of the wheels.
  • the stabilizer generally includes a torsion portion that extends in the vehicle width direction and a pair of left and right arm portions that are bent toward the front and rear direction of the vehicle, and includes a substantially U-shaped rod.
  • the stabilizer In a vehicle, the stabilizer is in a state of being suspended between the left and right suspension devices by connecting the tip of each arm portion to a wheel suspension device and inserting the torsion portion into a bush fixed to the vehicle body side. Supported.
  • the hollow stabilizer is suitable for reducing the weight of the vehicle, but has a feature that the manufacturing cost is relatively high because an electric-welded steel pipe or a drawn steel pipe is used as a raw material.
  • the solid stabilizer has an advantage that it is excellent in mechanical strength and can be manufactured at a low cost.
  • carbon steel such as S48C (JIS standard)
  • spring steel such as SUP9 (JIS standard) and SUP9A (JIS standard)
  • SUP9A JIS standard
  • Solid stabilizers are hot-rolled or cold-drawn steel bars of these materials that are either hot-bended or cold-bended and shaped into product shapes, and the bent workpieces are heat treated. It is often manufactured by applying.
  • As the heat treatment a quenching process and a tempering process are performed, and the quenching method is mainly oil quenching.
  • the heat-treated stabilizer semi-finished product is usually made into a product through surface processing by shot peening or finishing processing such as painting.
  • Patent Document 1 discloses that a heating furnace for heating a spring steel wire and a spring steel wire heated in the heating furnace are bent.
  • a stabilizer bar manufacturing apparatus for manufacturing a stabilizer bar, a quenching tank for quenching the manufactured stabilizer bar with quenching oil, a cleaning device for cleaning the quenched stabilizer bar, and a tempering furnace for tempering the cleaned stabilizer bar A bar production line is disclosed (see paragraphs 0021, 0022, etc.).
  • oil quenching is adopted as a quenching method.
  • the spring steel used as a conventional material does not necessarily have sufficient hardenability, and if the cooling rate is too high, distortion and cracking may occur.
  • coolants such as mineral oil used in oil quenching have a risk of ignition, and thus are restricted in equipment design, handling, storage, and the like from the viewpoint of safety.
  • high disposal costs are required, which is one factor that impairs the production efficiency of stabilizers.
  • an object of the present invention is to provide a stabilizer manufacturing method capable of manufacturing a stabilizer having good mechanical strength and toughness with high productivity in a compact production line.
  • a stabilizer manufacturing method is made by bending a steel bar material containing at least C: 0.15% by mass to 0.39% by mass, Mn, B, and Fe. And forming the product into a product shape, and a quenching step of quenching the bent steel bar with a medium having a heat transfer coefficient equal to or higher than water or close to water.
  • a stabilizer is manufactured without tempering the bar steel material.
  • a steel bar material containing at least C: 0.15 mass% or more and 0.39 mass% or less, Mn, B, and Fe is subjected to bending work and formed into a product shape.
  • the present invention it is possible to provide a stabilizer manufacturing method capable of manufacturing a stabilizer having good mechanical strength and toughness with high productivity on a compact production line.
  • (A) is a figure which shows the process of the deformation
  • (b) is a figure which shows the residual stress after plastic deformation. It is a figure which shows the correlation with the Rockwell hardness of a manganese boron steel material, and an impact value. It is a figure which shows the correlation with the carbon content and impact value of a manganese boron steel material. It is a SN diagram of the stabilizer concerning an example. It is a figure which shows the measurement result of the surface residual stress in the stabilizer manufactured without performing shot peening.
  • (A) is a figure which shows the result of the stabilizer which concerns on an Example
  • (b) is a figure which shows the result of the stabilizer which concerns on a comparative example.
  • (A) is a figure which shows the result of the stabilizer which concerns on an Example
  • (b) is a figure which shows the result of the stabilizer which concerns on a comparative example. It is a figure which shows the result of having analyzed the surface residual stress in the stabilizer which concerns on an Example.
  • (A) is a figure which shows the relationship between surface residual stress and the carbon content of steel materials
  • (b) is a figure which shows the relationship between surface residual stress and the diameter of steel materials.
  • the stabilizer manufacturing method relates to a vehicle stabilizer (stabilizer bar or anti-roll bar) that suppresses rolls of a vehicle body, and relates to a method for manufacturing a solid stabilizer having a solid structure.
  • this manufacturing method includes a forming process in which a steel bar having a predetermined shape that has been perforated is bent to form a product shape, and the steel bar that has been subjected to bending is equal to or more than water. And a quenching step of quenching with a medium having a close heat transfer coefficient, and manufacturing the stabilizer without quenching the quenched steel bar material.
  • the stabilizer manufacturing method according to the present embodiment includes a point where quenching with a medium having a heat transfer coefficient equivalent to or close to that of water is employed as a heat treatment method for steel, and a point where tempering is not performed after quenching. It has major process characteristics.
  • low carbon content manganese boron steel is adopted as the stabilizer material. It has characteristics.
  • FIG. 1 is a perspective view illustrating a stabilizer manufactured by a method for manufacturing a stabilizer according to an embodiment of the invention.
  • the stabilizer 1 manufactured by the method for manufacturing a stabilizer according to the present embodiment includes a torsion portion 1a extending in the vehicle width direction and a pair of left and right arm portions 1b, 1b extending in the front-rear direction of the vehicle. I have.
  • the rod body of the stabilizer 1 having the torsion part 1a and the arm parts 1b, 1b is bent substantially at the bending parts 1c, 1c positioned symmetrically in the vehicle width direction and is connected to the pair of left and right arm parts 1b, 1b. It has a shape.
  • each connecting portion is connected to a pair of left and right suspension devices 3, 3 provided in the vehicle via stabilizer links 2, 2.
  • a wheel (not shown) is attached to the axle portion 3a of each suspension device 3.
  • the torsion part 1a is inserted through a bush 4 fixed to a cross member (not shown) and is suspended between the left and right suspension devices 3 and 3.
  • the stabilizer 1 increases the roll rigidity of the vehicle body and stabilizes the traveling of the vehicle by the elastic force against the torsional deformation.
  • the rod body of the stabilizer 1 having the torsion part 1a and the arm parts 1b and 1b is manufactured using a steel bar having a solid structure as a raw material.
  • low-carbon manganese boron steel Mn—B steel
  • carbon (C): 0.15 mass% or more and 0.39 mass% or less, low carbon content manganese boron steel material containing at least manganese (Mn), boron (boron; B) and iron (Fe) is used as a raw material of the stabilizer 1 by using a hot-rolling process or a cold drawing process.
  • the amount of carbon is set from the viewpoints of hardness, fatigue strength, toughness and the like of the manufactured stabilizer 1.
  • Mn and B are selected from the viewpoint of ensuring hardenability (strength).
  • the steel bar made of manganese boron steel having a low carbon content is, in mass%, C: 0.15% to 0.39%, Si: 0.05% to 0.40%, Mn: 0 .50% or more and 1.70% or less, B: 0.0005% or more and 0.003% or less as essential elements, P: 0.040% or less, S: 0.040% or less, arbitrarily added elements As well as containing at least one element selected from the group consisting of Ni, Cr, Cu, Mo, V, Ti, Nb, Al, N, Ca and Pb in a range of 1.20% or less,
  • the balance preferably has a chemical composition composed of Fe and inevitable impurities. Specifically, Standard American Engineering Standard 15B23 equivalent steel or 15B26 equivalent steel is preferable.
  • manganese boron steel is considered to be a material excellent in hardenability and suitable for securing mechanical strength.
  • the stabilizer manufacturing method according to the present embodiment employs low carbon content steel among such manganese boron steels. This realizes a stabilizer having a high level of tensile strength, hardness, fracture impact value, toughness, and the like.
  • the residual compressive stress and toughness of the stabilizer 1 prevent or suppress burning cracking, prevent cracking, and suppress the formation of local batteries by forming a single phase of martensite structure to improve corrosion resistance. Yes.
  • the steel bar material of manganese boron steel having a low carbon content consists of essential elements (C, Si, Mn, B), P and S positioned as unavoidable impurities, Fe constituting the remainder, and other unavoidable impurities.
  • a chemical composition may be used, or a chemical composition containing an optional additive element in addition to these elements may be used.
  • Ar, Ni, Cr, Cu, Mo, V, Ti, Nb, Al, N, Ca, and Pb, which are optional addition elements, may contain one or more of them.
  • the content of the optional additive element is in the range of 1.20% by mass or less for each element added.
  • the steel bar material used as the raw material of the stabilizer 1 has a chemical composition that does not contain any additive element, a steel bar material having good hardenability can be obtained at a low material cost, so that the stabilizer 1 can achieve both strength and toughness. Can be manufactured with high productivity.
  • it is set as the chemical composition containing an arbitrary addition element it will become possible to modify
  • a chemical composition containing an optional additive element the balance with respect to the essential element, the optional additive element, and P and S positioned as inevitable impurities is occupied by Fe and other inevitable impurities.
  • each component element of the bar steel material used as the raw material of the stabilizer 1 is demonstrated.
  • Carbon (C) is a component that contributes to improvement of mechanical strength and hardness.
  • C Carbon (C) is a component that contributes to improvement of mechanical strength and hardness.
  • C By setting C to 0.15% by mass or more, good mechanical strength and hardness can be ensured, and quenching hardness superior to conventional spring steel can be achieved.
  • C On the other hand, by setting C to 0.39% by mass or less, it becomes possible to ensure predetermined toughness as well as mechanical strength after quenching. Further, it is possible to prevent the occurrence of cracking due to transformation stress and the like and the cracking due to residual austenite, and to suppress the deterioration of corrosion resistance due to the precipitation of carbides.
  • the C content is more preferably 0.18% by mass to 0.35% by mass, and still more preferably 0.20% by mass to 0.26% by mass. Thereby, the characteristic of the above-mentioned stabilizer 1 can be further enhanced.
  • Silicon (Si) is a component that contributes to improvement of mechanical strength and hardness. Moreover, it is also a component added for the purpose of deoxidation at the time of steelmaking of steel materials. By setting Si to 0.05 mass% or more, good mechanical strength, hardness, corrosion resistance, and sag resistance can be ensured. On the other hand, the fall of toughness and workability can be suppressed by making Si into 0.40 mass% or less.
  • the Si content is preferably 0.15% by mass or more and 0.30% by mass or less.
  • Manganese (Mn) is a component that contributes to improving hardenability and mechanical strength. Moreover, it is also a component added for the purpose of deoxidation at the time of steelmaking of steel materials. By making Mn 0.50 mass% or more, hardenability can be ensured with good mechanical strength. On the other hand, by setting Mn to 1.70% by mass or less, a decrease in toughness and corrosion resistance due to microsegregation and a decrease in workability can be suppressed.
  • the content of Mn is more preferably 0.60% by mass or more and 1.50% by mass or less, and further preferably 0.80% by mass or more and 1.50% by mass or less.
  • B Boron
  • B is a component that contributes to improving hardenability and mechanical strength.
  • B 0.0005 mass% or more and 0.003 mass% or less good hardenability can be ensured.
  • toughness and corrosion resistance can be improved by grain boundary strengthening.
  • the content of B exceeds 0.003% by mass, the effect of improving hardenability is saturated and the mechanical properties are deteriorated, so the upper limit of the content is limited.
  • Phosphorus (P) is an unavoidable impurity that remains from the time of steelmaking. By making P into 0.040 mass% or less, the fall of toughness and corrosion resistance by segregation can be suppressed.
  • the content of P is more preferably 0.030% by mass or less.
  • S is an unavoidable impurity that remains from the time of steelmaking. By making S into 0.040 mass% or less, the fall of toughness and corrosion resistance by segregation or precipitation of a MnS type inclusion can be suppressed.
  • the content of S is more preferably 0.030% by mass or less.
  • Nickel (Ni) is a component that contributes to improving corrosion resistance and hardenability. By adding Ni, it is possible to ensure good corrosion resistance and hardenability, and it is possible to reduce corrosion deterioration and quench cracking. On the other hand, even if Ni is excessively contained, the effect of improving the hardenability is saturated and the material cost is also increased. Therefore, the content is preferably 0.30% by mass or less, or intentionally added. It can also be set as the composition which does not.
  • Chromium (Cr) is a component that contributes to improving strength, corrosion resistance, and hardenability. By adding Cr, strength, corrosion resistance and hardenability can be improved. On the other hand, if Cr is excessively contained, the toughness and corrosion resistance are reduced due to segregation of carbides, the workability is reduced, and the material cost is also increased. And may be 0.60% by mass or less, or may be a composition not intentionally added.
  • Copper (Cu) is a component that contributes to improving hardenability and corrosion resistance. By adding Cu, hardenability and corrosion resistance can be improved. However, since excessive surface embrittlement may occur when Cu is excessively contained, it is preferably 0.30% by mass or less, or a composition that is not intentionally added can be used.
  • Molybdenum (Mo) is a component that contributes to improving hardenability, toughness, and corrosion resistance. By adding Mo, hardenability, toughness, and corrosion resistance can be improved. However, since the material cost increases when Mo is excessively contained, it is preferably 0.08% by mass or less, more preferably 0.02% by mass or less, or a composition not intentionally added. It can also be.
  • Vanadium (V) is a component that contributes to improvement of toughness and hardness, and prevents boron (B) from being fixed by N by being combined with nitrogen (N). By adding V, toughness and hardness can be improved, and the effect of boron (B) can be effectively expressed.
  • the content is preferably 0.30% by mass or less. It can also be set as the composition which is not added automatically.
  • Titanium (Ti) is a component that contributes to improvement of strength and corrosion resistance and prevents the fixation of boron (B) by N by combining with nitrogen (N). By adding Ti, the strength and corrosion resistance can be improved, and the effect of boron (B) can be effectively expressed. On the other hand, if Ti is excessively contained, the toughness and corrosion resistance may be lowered due to precipitation of carbonitrides. Therefore, it is preferably 0.05% by mass or less, or a composition not intentionally added. It can also be.
  • Niobium (Nb) is a component that contributes to the improvement of strength and toughness and prevents the fixation of boron (B) by N by combining with nitrogen (N). By adding Nb, the strength and toughness can be improved by making the crystal grains fine, and the effect of boron (B) can be effectively expressed. On the other hand, when Nb is contained excessively, the toughness and corrosion resistance may be lowered due to the precipitation of carbonitrides. Therefore, the content is preferably 0.06% by mass or less, or a composition not intentionally added. It can also be.
  • Aluminum (Al) is a component that contributes to improvement of toughness and the like and combines with nitrogen (N) to prevent boron (B) from being fixed by N. Moreover, it is also a component added for the purpose of deoxidation at the time of steelmaking of steel materials. By adding Al, the strength and toughness can be improved by making the crystal grains finer, and the effect of boron (B) can be effectively expressed. On the other hand, if Al is contained excessively, the toughness and corrosion resistance may decrease due to precipitation of nitrides and oxides. Therefore, it is preferable to be 0.30% by mass or less, or intentionally added. It can also be set as the composition which does not. This Al means Soluble Al.
  • N Nitrogen
  • the N content is preferably 0.02% by mass or less.
  • Calcium (Ca) is a component that contributes to improvement of machinability. By adding Ca, the machinability of the steel material can be further improved.
  • the Al content is preferably 0.40% by mass or less, or can be a composition not intentionally added.
  • Pb is a component that contributes to improvement of machinability. By adding Pb, the machinability of the steel material can be further improved.
  • the Pb content is preferably 0.40% by mass or less, or may be a composition not intentionally added.
  • Hot rolled steel can be used as the bar material of manganese boron steel with a low carbon content.
  • This hot-rolled steel material may be subjected to an annealing treatment such as cold rolling or spheroidizing annealing after hot rolling, if necessary. Moreover, it is not hindered to apply cold rolled steel instead of hot rolled steel.
  • the heating temperature of the slab is preferably about 1150 ° C. or higher and 1350 ° C. or lower
  • the finishing temperature is preferably 800 ° C. or higher and 1000 ° C. or lower. By setting the finishing temperature to 800 ° C. or higher, the component elements can be appropriately dissolved, and the effect of improving the hardenability by the solid solution boron can be effectively obtained.
  • the coiling temperature can be, for example, 400 ° C. or higher and 650 ° C. or lower.
  • FIG. 2 is a flowchart showing manufacturing steps of the stabilizer manufacturing method according to the embodiment of the present invention.
  • the stabilizer manufacturing method shown in FIG. 2 includes a processing step S10, a heating step S20, a forming step S30, a quenching step S40, a surface processing step S50, a pretreatment step S60, a preheating step S70, and a coating step. S80 and post-heating process S90 can be included sequentially.
  • the surface processing step S50 and the preheating step S70 are not essential steps and can be omitted as will be described later.
  • Processing step S10 is a step in which both ends of a bar steel material, which is a stabilizer material, are processed to form a connecting portion connected to the stabilizer link 2 (see FIG. 1).
  • a bar steel material which is a stabilizer material
  • the above-described low carbon content manganese boron steel bar material is used.
  • the length and diameter of the steel bar can be set to appropriate dimensions according to the desired product shape. However, the diameter is preferably in the range of 10 mm to 32 mm.
  • the form and the forming method of the connecting part are not particularly limited, and for example, the connecting part may be formed by forging the end of the steel bar into a flat shape and performing a punching process by pressing or the like. Is possible.
  • Heating step S20 is a step of heat-treating the steel bar to perform hot bending.
  • a heating method an appropriate method such as heating with a heating furnace, energization heating, high-frequency induction heating or the like can be used, but high-frequency induction heating is preferable.
  • the rapid heating using high frequency induction heating can be applied because the manganese boron steel material which has favorable hardenability is used as a material. Therefore, the steel bar can be heat-treated while suppressing decarburization and deboronation by rapid heating.
  • the forming step S30 is a step of forming a product shape by subjecting the heat-treated steel bar material to a hot (warm) bending process. That is, by bending the bar steel material, the torsion part 1a and the arm part 1b are formed in the bar steel material, and the shape of the bar steel material is shaped into a desired stabilizer shape.
  • the bending process can be performed at a plurality of locations so that a plurality of bending portions 1c are formed according to a desired product shape, and the torsion portion 1a and the arm portion 1b may be formed by multi-stage bending. it can.
  • the quenching step S40 is a step of quenching at or above the lower critical cooling rate after austenizing the bent steel bar. More specifically, the steel bar that has been subjected to the bending process is quenched with a medium having a heat transfer coefficient equivalent to or close to that of water. The heat transfer coefficient of the medium is preferably within a range of ⁇ 10% with respect to the heat transfer coefficient value of static water or water having flow with respect to the steel bar.
  • the quenching temperature, the heating rate, and the quenching holding time can be performed in appropriate ranges. For example, the quenching temperature can be 850 ° C. or higher and 1100 ° C. or lower. However, the quenching temperature is preferably set to an austenitizing temperature (AC3) + 100 ° C. or less from the viewpoint of avoiding excessive coarsening of austenite crystal grains and occurrence of quench cracking. After performing such heating, the steel bar is cooled using a coolant, and the metal structure of the steel bar is martensitic.
  • water quenching is a quenching process using water as a coolant.
  • the water temperature can be in the temperature range of about 0 ° C. to 100 ° C., preferably 5 ° C. to 40 ° C.
  • Aqueous solution quenching is a quenching process using an aqueous solution to which a polymer is added as a coolant.
  • the polymer for example, various polymers such as polyalkylene glycol and polyvinyl pyrrolidone can be used.
  • the polymer concentration is not particularly limited as long as it exhibits the predetermined heat transfer coefficient, and can be adjusted according to the type of polymer, the hardening target of the steel bar used for processing, and the like.
  • Salt water quenching is a quenching process using an aqueous solution to which salts such as sodium chloride are added as a coolant.
  • the salt concentration is not particularly limited as long as it exhibits the predetermined heat transfer coefficient, and can be adjusted according to the degree of quenching of the steel bar to be subjected to the treatment.
  • the coolant may or may not be stirred.
  • the steel bar material that has been quenched in this manner (hereinafter sometimes referred to as a semi-finished product of the stabilizer) is subjected to the surface processing step S50 or the pretreatment without tempering. It shall be used for step S60.
  • the surface processing step S50 is a step of performing shot peening on the hardened steel bar material. Shot peening may be performed either warm or cold, and may be repeated a plurality of times while changing conditions such as particle diameter and projection speed. By performing shot peening, compressive residual stress is applied to the surface of the steel bar, and fatigue strength and wear resistance are improved, and cracks and stress corrosion cracks are prevented. In addition, the steel bar material in which hardening was given can also be made into what does not give shot peening for the reason mentioned later. That is, as shown in FIG. 2, the pretreatment step S60 can be performed after the quenching step S40 without performing the surface processing step S50.
  • the pretreatment step S60 is a step of performing surface cleaning or surface treatment in order to perform a coating process on the steel bar. Specifically, it is a step of performing various pretreatments such as a removal treatment for removing oils and fats, foreign matters, and the like on the surface of the steel bar.
  • a removal treatment for removing oils and fats, foreign matters, and the like
  • the base treatment for example, a coating such as zinc phosphate or iron phosphate can be formed.
  • the steel bar is washed with water, and then sequentially subjected to various subsequent treatments after washing with water.
  • an appropriate method such as water absorption drying using a draining roller, blow drying, heat drying, or a combination of these can be used.
  • the steel bar pretreated in this way can be used for the preheating step S70 or the coating step S80 as shown in FIG.
  • the preheating step S70 is a step of preheating the steel bar material.
  • the baking time of the paint by post-heating can be shortened, and the coating processing efficiency can be improved.
  • the adhesion of the coating film can be improved.
  • a heating method an appropriate method such as heating in a heating furnace, energization heating, high-frequency induction heating, or the like can be used.
  • energization heating because the heating rate is high and the equipment is simple.
  • the preheating temperature is preferably in the range of 180 ° C. or more and 200 ° C.
  • the coating step S80 can be performed without performing the preheating step S70 after the pretreatment step S60.
  • the painting step S80 is a step of painting a steel bar material with paint.
  • a powder paint is preferably used, and for example, a powder paint made of an epoxy resin can be suitably used.
  • a coating method for example, a method of spraying a paint so as to form a coating film having a thickness of about 50 ⁇ m or more on the surface of a steel bar material, or a method of immersing in a paint can be used.
  • the post-heating step S90 is a step of heating and baking the painted paint.
  • heating by a heating furnace is preferable.
  • the post-heating temperature is preferably in the range of 180 ° C. or more and 200 ° C. or less, for example. Specifically, for example, post-heating at 180 ° C. for 5 minutes or post-heating at 200 ° C. for 5 minutes is allowed to be applied to the steel bar coated with the paint. This is because, under such heating conditions, it is possible to avoid a decrease in strength and hardness due to heating in the semi-finished product of the stabilizer.
  • electrodeposition coating, solvent coating, or the like may be performed as a coating process.
  • the stabilizer 1 can be manufactured through the steps described above.
  • the manufactured stabilizer 1 is made of a manganese boron steel material having a low carbon content, and quenching is performed with a medium having a heat transfer coefficient equivalent to or close to that of water. It has both strength and toughness. Due to this compressive residual stress and toughness, no cracking occurs, and the stabilizer 1 has improved corrosion resistance due to the formation of a low-carbon martensite structure.
  • the stabilizer manufacturing method according to the present embodiment has the advantages described below in comparison with the conventional manufacturing method by employing a low carbon content manganese boron steel material.
  • FIG. 3 is a flowchart showing the steps of the stabilizer manufacturing method according to the comparative example.
  • a rod that has undergone a bending process after undergoing a processing step S10, a heating step S20, and a forming step S30 is performed.
  • a quenching step S140 for performing oil quenching on the steel material is performed.
  • the stabilizer manufacturing method according to the comparative example by adopting oil quenching using mineral oil or the like as a coolant, the cooling rate of the steel material heated to the quenching temperature is slowed down, and the occurrence of distortion and cracking is reduced. ing. And after oil quenching, tempering is implemented and mechanical strength and toughness are adjusted.
  • the stabilizer manufacturing method according to the comparative example such a process is adopted because the spring steel material conventionally used as a stabilizer material has toughness and hardenability after quenching in the required performance of the stabilizer product. This is because it is not always sufficiently provided.
  • the stabilizer manufacturing method according to the present embodiment a manganese boron steel material having a low carbon content capable of exhibiting good toughness while maintaining high strength is employed. Therefore, the stabilizer 1 having both good mechanical strength and toughness can be manufactured without tempering after quenching. Therefore, it is not necessary to install a long tempering furnace on the stabilizer production line, reducing the scale of equipment related to stabilizer production, operating costs such as man-hours related to tempering and heating costs associated with tempering heating. It can be reduced.
  • the stabilizer 1 can be efficiently produced. ing. Furthermore, as described below, an effect of imparting compressive residual stress (for example, 150 MPa or more) to the surface layer of the stabilizer 1 (at least from the surface to a depth of 0.8 mm) can be obtained.
  • compressive residual stress for example, 150 MPa or more
  • FIG. 4 is a conceptual diagram showing the mechanism of generation of residual stress due to thermal stress.
  • (A) is a figure which shows the process of the deformation
  • (b) is a figure which shows the residual stress after plastic deformation.
  • FIG. 5 is a conceptual diagram showing the mechanism of generation of residual stress due to transformation stress.
  • (A) is a figure which shows the process of the deformation
  • (b) is a figure which shows the residual stress after plastic deformation.
  • Reference numeral 110 denotes a surface structure existing on the surface side of the steel material
  • reference numeral 120 denotes an internal structure existing on the inner side.
  • the thermal stress generated in quenching shows the distribution in the depth direction due to the difference in the cooling rate in the depth direction of the steel material due to the thermal contraction of the cooled steel material.
  • the inner side of the steel material is heated to the transformation temperature or higher, and stress and strain are not substantially observed in the surface structure 110 and the internal structure 120 as shown in the upper part of FIG. It has become.
  • the cooling of the steel material proceeds from the surface structure 110 side to the internal structure 120 over time, and a cooling rate difference is generated between the surface side and the internal side.
  • the surface tissue 110 side is thermally contracted to a greater extent than the internal tissue 120 side where heat conduction is delayed, and the internal tissue 120 side where heat conduction is delayed is dragged and contracted by plastic deformation due to the contraction deformation on the surface tissue 110 side. (See the middle part of FIG. 4 (a)).
  • the solidification of the metal structure is settled and there is no dimensional change, whereas the heat conduction is delayed. In this case, it is still cooled and heat shrinkage proceeds.
  • the residual stress shows a distribution in the depth direction in which the compressive residual stress is dominant when the surface tissue 110 side receives the contraction force by the internal tissue 120.
  • the internal structure 120 since the internal structure 120 receives an extension force from the surface structure 110, the internal structure 120 exhibits a distribution in the depth direction in which the tensile residual stress is dominant.
  • the transformation stress generated in quenching exhibits a distribution opposite to the thermal stress due to the expansion due to the martensitic transformation of the cooled steel material being constrained by the cooling rate difference in the depth direction of the steel material.
  • the cooling of the steel material proceeds from the surface structure 110 side, A cooling rate difference is generated between the inner side and the inner side. Therefore, the surface structure 110 side is below the martensite transformation start temperature (Ms) earlier than the internal structure 120 side where heat conduction is delayed, and greatly expands with the martensite transformation, whereas the internal structure where heat conduction is delayed.
  • the 120 side is plastically deformed by being dragged toward the surface texture 110 side (see the middle of FIG. 5A).
  • the surface texture 110 side is below the martensite transformation end temperature (Mf) before the internal structure 120 side where the heat conduction is delayed, and the metal structure Volume change subsides.
  • the internal structure 120 side where the heat conduction is delayed still causes expansion due to the martensitic transformation in a temperature range from the martensitic transformation start temperature (Ms) to the martensitic transformation end temperature (Mf).
  • the internal structure 120 that continues to expand ends plastic deformation while constraining the surface structure 110 in the tensile direction. As a result, as shown in FIG.
  • the residual stress to be generated becomes more dominant as the surface texture 110 is closer to the surface texture 110 because the surface texture 110 is pulled by the expansion of the internal texture 120.
  • the internal tissue 120 receives compressive force from the surface tissue 110, and the compressive residual stress becomes more dominant toward the internal tissue 120 side. As described above, the distribution is opposite to the thermal stress.
  • the distribution of the surface residual stress in the depth direction actually appears according to the balance between the residual stress caused by the thermal stress and the residual stress caused by the transformation stress. Therefore, in order to give the surface of the stabilizer 1 compressive residual stress effective for improving fatigue strength and wear resistance, it is effective to perform heat treatment in which thermal stress is generated more predominately than transformation stress.
  • the stabilizer manufacturing method according to the present embodiment focusing on the low-carbon martensite structure having high strength and high toughness, manganese boron steel with less carbon content than conventionally used spring steel Is used.
  • quenching is employed that has a higher cooling rate than conventional oil quenching with a medium having a heat transfer coefficient that is equal to or greater than that of water.
  • the volume change accompanying the martensitic transformation is suppressed to reduce the generation of transformation stress, and a large thermal stress is generated by rapid cooling.
  • the residual stress resulting from the thermal stress is superior to the residual stress resulting from the transformation stress, and a compressive residual stress suitable for the stabilizer 1 is applied to the surface of the hardened steel bar.
  • a compressive residual stress suitable for the stabilizer 1 is applied to the surface of the hardened steel bar.
  • the heat transfer rate of water is higher than that of oil, and therefore heat can be quickly taken away from the steel material.
  • the quenching step S40 that employs quenching with a fast cooling rate, it is possible to impart deep and large compressive residual stress while quenching the steel bar (see FIG. 9A). Therefore, it is possible to manufacture the stabilizer 1 in which the compressive residual stress is applied to the surface layer without performing shot peening (surface processing step S50) on the steel bar subjected to water quenching. That is, in this embodiment (the present invention), the stabilizer 1 can be commercialized without performing the tempering step and the shot peening step.
  • a pretreatment step S60 for applying a powder coating material to a steel bar at room temperature
  • a heating step S190 for baking the coated powder coating is performed.
  • compressive residual stress deeper than shot peening is applied in the quenching step S40 (see FIG. 9A and FIG.
  • the heat treatment in the preheating step S70 and the postheating step S90 is less likely to excessively relieve residual stress, and is advantageous in that the allowable condition range of the heating conditions in the preheating step S70 and the postheating step S90 is expanded. It is.
  • the stabilizer 1 manufactured by the method for manufacturing a stabilizer according to the above-described embodiment can be made to have a substantially single-phase martensitic metal structure. More specifically, in the semi-finished product of the stabilizer 1, 90% or more of the central portion of the cross section can have a martensite structure.
  • the metal structure obtained by using a conventional spring steel material and oil quenching and tempering becomes a two-phase structure of ferrite and cementite, and a local battery is easily formed between the two phases.
  • a low-carbon manganese boron steel is used as a material, so that a single-phase martensitic structure can be formed, which is difficult to ionize, and is made of carbide. Precipitation can be reduced. Therefore, it is difficult to form a local battery in the metal structure, and it is possible to manufacture the stabilizer 1 having excellent corrosion resistance as compared with a stabilizer using a conventional spring steel material.
  • the grain size number G preferably exceeds 8 and more preferably 9 or more with respect to the crystal grain size of the prior austenite grain boundary.
  • the refinement of the crystal grain size can be realized, for example, by lowering the quenching temperature or increasing the content of Mn or an optional additive element.
  • the crystal grain size of the prior austenite grain boundaries can be measured in accordance with JIS G 0551.
  • the particle size number G can be determined based on a microscope observation image of the as-quenched metal structure, and is preferably obtained as an average value of the particle size numbers of 5 to 10 fields of view.
  • HRC Rockwell hardness
  • Such hardness can be realized with necessary toughness if the carbon content is in the range of 0.15% to 0.39% by mass.
  • the manufactured stabilizer 1 has better toughness (for example, Charpy at room temperature in HRC 44.5) compared to a stabilizer made of a conventional spring steel material and conditioned to the same hardness. Impact value is 30 J / cm 2 or more).
  • test materials 1 to 9 having the chemical composition shown in Table 1 below.
  • the test materials 1 to 8 are manganese boron steel materials, and the test material 9 is a conventional spring steel material (SUP9A (“SUP9N”)).
  • FIG. 6 is a diagram showing the correlation between Rockwell hardness and impact value of manganese boron steel.
  • FIG. 7 is a figure which shows the correlation with the carbon content of a manganese boron steel material, and an impact value.
  • the impact value remains at about 30 J / cm 2 at the practical upper limit of hardness (HRC 44.5) in the stabilizer (in the figure). (Shown with a broken line).
  • the practical upper limit of hardness in the stabilizer of the test material 9 (HRC44.5) is in the range of HRC44.5 to 56.
  • the impact value exceeds about 30 J / cm 2 , and it can be seen that both mechanical strength and toughness can be achieved.
  • FIG. 5 shows that both mechanical strength and toughness can be achieved.
  • the impact value in manganese boron steel has a negative correlation with the carbon content (mass%) of each test material, and the toughness mainly depends on the carbon content.
  • the impact values of the test materials 1 to 8 which are manganese boron steel materials are the impact values (30 J / cm 2 ) recognized in the test material 9, and the carbon content is 0.39 mass%. It exceeds the following range (indicated by a broken line in the figure). Therefore, it is recognized that manganese boron steel having a carbon content of 0.39% by mass or less is suitable as a stabilizer material.
  • Example 1-1 The stabilizer according to Example 1-1 is manufactured without performing tempering by using a specimen 1 shown in Table 1 as a material, and undergoing a molding step S30 for performing cold bending and a quenching step S40 for performing water quenching. did.
  • the diameter of the stabilizer was 23 mm.
  • Example 1-2 The stabilizer according to Example 1-2 was manufactured in the same manner as in Example 1-1 except that the material was changed to the test material 4 shown in Table 1.
  • Example 1-3 The stabilizer according to Example 1-3 was manufactured in the same manner as in Example 1-1 except that the forming step S30 was replaced with hot bending.
  • Comparative Example 1 The stabilizer according to Comparative Example 1 was manufactured by using the test material 9 shown in Table 1 as a material and tempering after oil quenching. The diameter of the stabilizer was 23 mm.
  • FIG. 8 is a SN diagram of the stabilizer according to the example.
  • the stabilizers according to Examples 1-1 to 1-3 all have improved durability compared to the stabilizer according to Comparative Example 1 indicated by the solid line. Further, the stabilizer according to Example 1-1 and the stabilizer according to Example 1-3 have the same fatigue limit, and it is recognized that both hot bending and cold bending can be employed. .
  • Example 2-1 to Example 2-4 were manufactured, and surface residual stress was evaluated.
  • stabilizers according to Comparative Examples 2-1 and 2-2 were manufactured and evaluated together.
  • Example 2-1 The stabilizer according to Example 2-1 uses the test material 1 shown in Table 1 as a material, and undergoes a molding step S30 and a quenching step S40 for performing water quenching without performing shot peening (surface processing step S50). Manufactured.
  • Example 2-2 The stabilizer according to Example 2-2 was manufactured in the same manner as in Example 2-1, except that the material was changed to the test material 4 shown in Table 1.
  • Example 2-3 The stabilizer according to Example 2-3 was manufactured using the specimen 1 shown in Table 1 as a material, and through a molding step S30, a quenching step S40 for performing water quenching, and a surface processing step S50 for performing shot peening.
  • Example 2-4 The stabilizer according to Example 2-4 was manufactured in the same manner as in Example 2-3, except that the material was changed to the test material 4 shown in Table 1.
  • Comparative Example 2-1 The stabilizer according to Comparative Example 2-1 was manufactured without using tempering and shot peening after quenching with oil, using the specimen 9 shown in Table 1.
  • Comparative Example 2-2 The stabilizer according to Comparative Example 2-2 was manufactured by using Specimen 9 shown in Table 1 as a material and performing tempering and shot peening after oil quenching.
  • FIG. 9 is a diagram showing a measurement result of the surface residual stress in a stabilizer manufactured without performing shot peening.
  • (A) is a figure which shows the result of the stabilizer which concerns on an Example
  • (b) is a figure which shows the result of the stabilizer which concerns on a comparative example.
  • FIG. 10 is a figure which shows the measurement result of the surface residual stress in the stabilizer manufactured by performing shot peening.
  • (A) is a figure which shows the result of the stabilizer which concerns on an Example
  • (b) is a figure which shows the result of the stabilizer which concerns on a comparative example.
  • the vertical axis represents the residual stress (MPa).
  • the ( ⁇ ) side is compressive stress and the (+) side is tensile stress.
  • FIG. 9 (a) in Example 2-1 and Example 2-2, a deeper distribution than that in FIG. 9 (b) of the comparative example, although tempering and shot peening were not performed. It can be seen that compressive residual stress is generated. Specifically, the crossing point at which the compressive residual stress changes to the tensile residual stress is at least 0.8 mm deep from the surface, and the compressive residual stress (no load) is 150 MPa or higher at a depth of 0.8 mm from the surface. Compressive residual stress at time).
  • Example 2-1 and Example 2-2 the residual stress is relatively large and the shot peening of the comparative example of FIG.
  • the surface residual stress of the stabilizer By referring to the surface residual stress of the stabilizer, it can be seen that even if the shot peening is omitted, an effective compressive residual stress can be applied.
  • the compressive residual stress at a depth of 0.42 mm from the surface is about 200 MPa or more, and the compressive residual stress at a depth of 0.8 mm from the surface (compressed residual stress at no load).
  • the compressive residual stress at a depth of 1.0 mm from the surface is 100 MPa or more, and the compressive residual stress is 150 MPa or more from the surface to a depth of at least 0.8 mm.
  • the tensile residual stress is distributed, and it is recognized that the generation of surface residual stress due to thermal stress is less likely to be dominant in oil quenching.
  • Example 2-3 and Example 2-4 (see FIG. 10A) subjected to shot peening, Example 2-1 and Example 2-2 (FIG. 9 ( It can be seen that the compressive residual stress on the surface side is further enhanced as compared with (a).
  • Comparative Example 2-2 (see FIG. 10B), it is recognized that the compressive residual stress on the surface side is enhanced by performing oil quenching and shot peening, but compression is performed. The distribution of residual stress remains on the surface side (0.42 mm or less from the surface shown in FIG. 10B). For this reason, in the stabilizer of the comparative example, cracks starting from the vicinity of the bottom of the grown corrosion pit are likely to propagate, and there is a possibility that sufficient fatigue strength and corrosion resistance cannot be obtained.
  • the surface residual stress of the manganese boron steel material is obtained by using the test materials 1, 2, 6, 7, and 8 having different carbon contents as materials, respectively, through a forming step S30 and a quenching step S40 for performing water quenching, It measured about the stabilizer semi-finished product manufactured without performing tempering.
  • the diameter of each semi-finished product was set in a range of 21 mm to 25 mm.
  • the correlation between the surface residual stress and the diameter indicates that the surface residual stress that can occur at each diameter (diameter) is produced by water quenching (water cooling) and oil quenching (oil cooling). ) And estimated by simulation.
  • FIG. 11 is a diagram illustrating a result of analyzing the surface residual stress in the stabilizer according to the example.
  • A is a figure which shows the relationship between surface residual stress and the carbon content of steel materials
  • (b) is a figure which shows the relationship between surface residual stress and the diameter of steel materials.
  • FIG. 11 (a) it can be seen that the compressive residual stress applied to the surface by water quenching increases as the carbon content decreases and decreases as the carbon content increases. Therefore, when manufacturing a stabilizer using a manganese boron steel material having a low carbon content, it can be said that a stabilizer having high fatigue strength and corrosion resistance can be manufactured even if shot peening is omitted.
  • FIG. 11B tensile residual stress is generated in oil quenching, whereas compressive residual stress is generated in water quenching, and the stress value is in a range of 20 mm to 30 mm in diameter. Can be confirmed to reach a sufficient size (maximum value of about 300 MPa or more).
  • a stabilizer semi-finished product (Sample 1-1) manufactured without performing tempering by using the specimen 1 as a material, undergoing a molding step S30 and a quenching step S40 in which water quenching is performed.
  • a stabilizer semi-finished product (Sample 1-2) was used, which was made of the test material 9 which is a conventional spring steel material, subjected to oil quenching and then tempered. The diameter was 14 mm in all cases.
  • the corrosion resistance test is a cycle test (CCTI), using each sample masked leaving a range of diameter 10 mm ⁇ length 50 mm as a corroded surface, salt spray for 4 hours at 35 ° C.
  • Corrosion weight loss was determined by dividing the difference between the weight before the test and the weight after the test by the area of the corroded surface.
  • FIG. 12 is a diagram showing the results of the corrosion resistance test.
  • Sample 1-2 which was made of a low carbon content manganese boron steel material and subjected to water quenching, a conventional spring steel material was used as a material, and after oil quenching, tempering was performed. It can be seen that the corrosion resistance is improved as compared with Sample 1-2. In Sample 1-2, since troastite or sorbite is produced by tempering, it is recognized that the corrosion rate is increased compared to Sample 1-1 having a low-carbon martensite structure. .
  • a specimen 9 which is a conventional spring steel material is used as a material, and a stabilizer semi-finished product (sample 2-1) which has been tempered after oil quenching and a specimen 1 are prepared.
  • a stabilizer half product (sample 2-2) produced without being tempered was used after being subjected to a molding step S30 and a quenching step S40 for water quenching.
  • the hardness of sample 2-1 was 42.7 (HRC), and the hardness of sample 2-2 was 45.8 (HRC).
  • FIG. 13 is a diagram showing the result of analyzing the progress of fatigue cracks.
  • the vertical axis represents the fatigue crack propagation rate da / dN (mm / cycle), and the horizontal axis represents the stress intensity factor range ⁇ K (kgf / mm 3/2 ).
  • the plot of ⁇ is Sample 2-1, the plot of ⁇ is Sample 2-2, the plot of ⁇ is Reference Example 1 (reported value of SUP7 (HRC46.5)), and the plot of ⁇ is Reference Example 2 (SUP7 (HRC61.0)). ) (Reported value).
  • the fatigue crack propagation rate of Sample 2-2 is about 1/10 to 1/100 of Sample 2-1, and Reference Example 1, Reference Example 2, etc., which are conventional spring steel materials, etc. It can be seen that the toughness is good even when compared with. Further, when the fracture toughness value (Kc) was determined, the Kc of sample 2-2 reached about 1.6 times that of sample 2-1, and it was confirmed that the fatigue durability was also good.
  • Embodiments >> 1.
  • the type of the medium is not particularly limited.
  • it may be water or oil containing ice, an organic solvent, a liquid or solid having a high heat transfer coefficient.
  • the phase of the medium is not particularly limited, such as a liquid or a liquid containing a solid.
  • a molding step of bending a steel bar material containing at least C: 0.15% by mass to 0.39% by mass, Mn, B and Fe into a product shape Including a quenching step of quenching at or above the lower critical cooling rate after the bent steel bar is austenitized, and producing a stabilizer without tempering the hardened steel bar Is possible.
  • a raw material of the stabilizer 1 by mass%, C: 0.15% or more and 0.39% or less, Si: 0.05% or more and 0.40% or less, Mn: 0.50% or more 1 70% or less, B: 0.0005% or more and 0.003% or less as essential elements, P: 0.040% or less, S: 0.040% or less, and optional additive elements include Ni, Cr , Cu, Mo, V, Ti, Nb, Al, N, Ca and Pb, each containing at least one element selected from the group consisting of 1.20% or less, and the balance being Fe and Although the case where the steel bar material which is an unavoidable impurity is used was described as an example, if the predetermined performance such as the mechanical strength and toughness described in the stabilizer 1 is obtained, the raw material of the stabilizer 1 is C: 0.
  • Mn, B, and Fe may be at least including bar steel material.
  • C 0.15% to 0.39%
  • Mn 0.50% to 1.70%
  • B 0.0005% to 0.003%
  • at least Fe A steel bar may be used.
  • each configuration may be selected, or each configuration may be appropriately selected and combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本発明は、焼戻しを行わないことでコンパクトな生産ラインで生産性高く製造できるスタビライザの製造方法を提供する。本発明のスタビライザの製造方法は、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する工程と、前記棒鋼材に水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを施す工程とを含むことを特徴とする。

Description

スタビライザの製造方法
 本発明は、スタビライザの製造方法に関する。
 自動車等の車両には、車輪の上下の偏移による車体のロールを抑制するスタビライザ(スタビライザーバー又はアンチロールバー)が備えられている。スタビライザは、一般に、車幅方向に延びるトーション部と、車両の前後方向に向けて曲げ成形された左右一対のアーム部とを備えており略コ字状の棒体からなる。車両において、スタビライザは、各アーム部の先端が車輪の懸架装置にそれぞれ連結され、トーション部が車体側に固定されたブッシュに挿通されることによって、左右の懸架装置の間に懸架された状態で支持される。
 運転時に車両がコーナリングしたり路面の起伏を乗り越えたりする際には、左右の車輪の上下により左右の懸架装置にストローク差が生じる。このとき、スタビライザの各アーム部には、各懸架装置間のストローク差に起因する荷重(変位)がそれぞれ入力され、各アーム部からの荷重(変位差)によってトーション部がねじれ、ねじれ変形を復元しようとする弾性力が生じる。スタビライザは、このねじれ変形を復元しようとする弾性力によって左右の車輪の上下変位差を抑え車体のロール剛性を高め、車体のロールを抑制する。
 スタビライザの形態としては、中空構造を有する中空スタビライザと、中実構造を有する中実スタビライザとがある。中空スタビライザは、車両の軽量化に適している一方で、電縫鋼管や引抜鋼管等を原材として使用するため、製造コストが比較的高い特徴を有している。これに対して、中実スタビライザは、機械的強度に優れ、製造コストも低廉に抑えられるという利点を有している。
 従来、スタビライザの材料としては、S48C(JIS規格)等の炭素鋼、引張強さ等の機械的強度や耐疲労性が良好なSUP9(JIS規格)、SUP9A(JIS規格)等のばね鋼が一般に採用されている。中実スタビライザは、このような材料の熱間圧延棒鋼或いは冷間引抜棒鋼に熱間曲げ加工又は冷間曲げ加工を施して製品形状に賦形し、曲げ加工が施された被加工材に熱処理を施すことによって製造することが多い。熱処理としては、焼入れ処理と焼戻し処理とが行われており、焼入れの方法は、油焼入れが主流である。そして、熱処理されたスタビライザの半製品は、通常、ショットピーニングによる表面加工処理や、塗装処理等の仕上処理を経て製品化されている。
 油焼入れと焼戻しとを経てスタビライザの製造を行う製造ラインの一例として、例えば、特許文献1には、バネ鋼線を加熱する加熱炉と、加熱炉で加熱されたバネ鋼線を曲げ加工してスタビライザバーを製造するスタビライザバー製造装置と、製造されたスタビライザバーを焼入れ油で焼入れする焼入れ槽と、焼入れしたスタビライザバーを洗浄する洗浄装置と、洗浄したスタビライザバーを焼戻しする焼戻し炉とを備えるスタビライザバー製造ラインが開示されている(段落0021、段落0022等参照)。
特開2009-072806号公報
 ところで、スタビライザに対する要求性能の中でも耐衝撃性や疲労耐久性は特に重要であり、より優れた機械的強度と靭性とを兼ね備えるスタビライザが求められている。そこで、従来のスタビライザの製造方法では、機械的強度や耐疲労性が良好なばね鋼鋼材を材料として使用し、焼入れを施した後に焼戻しを施すことで靭性を向上させて、良好な機械的強度と靭性との両立を図っている。また、従来行われている焼戻しは、置割れを防止する観点からも重要な工程として位置付けられている。
 しかしながら、スタビライザの製造にあたって焼戻しを行う場合には、特許文献1に開示されるように、製造ライン上に長大な焼戻し炉を設置し、焼入れ後に長時間にわたる熱処理を付加的に実施しなければならない。近年、戦略的に生産拠点を新設・移設する車両メーカの近くでスタビライザの製造を行うことの要求が高い。そこで、最近はコンパクトなスタビライザの製造ラインが強く求められている。従って、従来の長大な焼戻し炉を設置せねばならないことは、新たな製造ラインを作る上で、コスト的にも場所的にも大きな負担となっている。そのため、従来の長大な焼戻し炉をもつ製造ラインは、昨今の要求に反しており、改善が求められている。以上のように、従来のスタビライザの製造ラインは、製造設備規模、工数、運転経費等の観点で生産性が大きく減殺されコスト負担も大きく、製造工程のコンパクト化が妨げられているのが現状である。
 また、従来のスタビライザの製造方法では、特許文献1に開示されるように、焼入れの方法として油焼入れが採用されている。従来材料として使用されているばね鋼は焼入れ性が必ずしも十分ではなく、冷却速度が速すぎると歪や焼割れを生じてしまうことがあるためである。しかしながら、油焼入れにおいて使用される鉱油等の冷却剤は、発火の危険性があるため、保安上の観点から設備設計、取り扱い、保管等について制約を受ける。加えて、廃油の環境負荷も少なくないため、高い廃棄経費を要しており、スタビライザの生産効率を損なう一因ともなっている。
 そこで、本発明は、良好な機械的強度と靭性とを有するスタビライザを、コンパクトな生産ラインで生産性高く製造できるスタビライザの製造方法を提供することを目的とする。
 前記課題を解決するために、第1の本発明に係るスタビライザの製造方法は、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、曲げ加工が施された前記棒鋼材に水と同等以上または水に近い熱伝達率を有する媒体による焼入れを施す焼入れ工程とを含み、前記焼入れが施された前記棒鋼材に焼戻しを施すこと無くスタビライザを製造することを特徴とする。
 第2の本発明に係るスタビライザの製造方法は、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、曲げ加工が施された前記棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す焼入れ工程とを含み、前記焼入れが施された前記棒鋼材に焼戻しを施すこと無くスタビライザを製造することを特徴とする。
 本発明によれば、良好な機械的強度と靭性とを有するスタビライザを、コンパクトな生産ラインで生産性高く製造できるスタビライザの製造方法を提供することができる。
本発明の実施形態に係るスタビライザの製造方法によって製造されるスタビライザを例示する斜視図である。 本発明の実施形態に係るスタビライザの製造方法の工程を示す流れ図である。 比較例に係るスタビライザの製造方法の工程を示す流れ図である。 熱応力による残留応力の生成の機序を示す概念図である。(a)は、冷却に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。 変態応力による残留応力の生成の機序を示す概念図である。(a)は、マルテンサイト変態に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。 マンガンボロン鋼鋼材のロックウェル硬さと衝撃値との相関を示す図である。 マンガンボロン鋼鋼材の炭素量と衝撃値との相関を示す図である。 実施例に係るスタビライザのS-N線図である。 ショットピーニングを施すこと無く製造したスタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係るスタビライザの結果を示す図であり、(b)は、比較例に係るスタビライザの結果を示す図である。 ショットピーニングを施して製造したスタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係るスタビライザの結果を示す図であり、(b)は、比較例に係るスタビライザの結果を示す図である。 実施例に係るスタビライザにおける表面残留応力を解析した結果を示す図である。(a)は、表面残留応力と鋼材の炭素量との関係を示す図であり、(b)は、表面残留応力と鋼材の径との関係を示す図である。 耐食性試験の結果を示す図である。 疲労き裂の進展性を解析した結果を示す図である。
 以下、本発明の一実施形態に係るスタビライザの製造方法について説明する。なお、各図において共通する構成要素については、同一の符号を付し、重複した説明を省略する。
 本実施形態に係るスタビライザの製造方法は、車体のロールを抑制する車両用スタビライザ(スタビライザバー又はアンチロールバー)であって、中実構造を有する中実スタビライザの製造方法に関する。この製造方法は、詳細には、穴開け等された所定形状の棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、曲げ加工が施された棒鋼材に水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを施す焼入れ工程とを含んでおり、焼入れされた棒鋼材に焼戻しを施さずスタビライザを製造する方法である。
 本実施形態に係るスタビライザの製造方法は、鋼材の熱処理方法として水と同等以上又は水に近い熱伝達率を有する媒体による焼入れが採用されている点と、焼き入れ後に焼戻しを施さない点とに工程上の大きな特徴を有している。また、良好な機械的強度と靭性とを兼ね備え、耐衝撃性や疲労耐久性に優れたスタビライザを製造するために、スタビライザの材料として、低炭素量のマンガンボロン鋼を採用している点にも特徴を有している。
 はじめに、本実施形態に係るスタビライザの製造方法によって製造されるスタビライザについて説明する。
 図1は、本発明の実施形態に係るスタビライザの製造方法によって製造されるスタビライザを例示する斜視図である。
 図1に示すように、本実施形態に係るスタビライザの製造方法によって製造されるスタビライザ1は、車幅方向に延びるトーション部1aと、車両の前後方向に延びる左右一対のアーム部1b,1bとを備えている。トーション部1aとアーム部1b,1bとを有するスタビライザ1の棒体は、車幅方向に対称的に位置する曲げ部1c,1cにおいてそれぞれ屈曲され左右一対のアーム部1b,1bに連なる略コ字状の形状を有している。
 各アーム部1b,1bの先端には、鍛造等によって取り付け孔を有する平板状の連結部(目玉部)がそれぞれ形成されている。各連結部は、スタビライザリンク2,2を介して、車両に備えられる左右一対の懸架装置3,3にそれぞれ連結される。なお、これら各懸架装置3の車軸部3aには、不図示の車輪が取り付けられる。また、トーション部1aは、不図示のクロスメンバ等に固定されたブッシュ4に挿通されて、左右の懸架装置3,3の間に懸架される。そのため、左右の車輪の上下により左右の懸架装置3,3にストローク差が生じると、各懸架装置3,3から各アーム部1b,1bに変位による荷重が伝達され、トーション部1aがねじり変形し、該ねじり変形を復元する弾性力が生じる。スタビライザ1は、このねじり変形に抗する弾性力によって、車体のロール剛性を高めて車両の走行を安定化させる。
 トーション部1aとアーム部1b,1bとを有するスタビライザ1の棒体は、中実構造を有する棒鋼を原材として製造される。本実施形態に係るスタビライザの製造方法では、この棒鋼の材料として、特に、低炭素量のマンガンボロン鋼(Mn-B鋼)を使用している。具体的には、炭素(C):0.15質量%以上0.39質量%以下、マンガン(Mn)、ホウ素(ボロン;B)及び鉄(Fe)を少なくとも含む低炭素量のマンガンボロン鋼鋼材を被加工材とし、熱間圧延加工或いは冷間引抜加工を行うことによって製造される棒鋼材をスタビライザ1の原材として用いている。後に詳述するように、炭素量は、製造されるスタビライザ1の硬度、疲労強度、靭性等の観点から設定される。Mn、Bは、焼き入れ性(強度)を確保する観点から選択されたものである。
 低炭素量のマンガンボロン鋼からなる棒鋼材は、詳細には、質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部が、Feと不可避的不純物とからなる化学組成を有することが好ましい。具体的には、Standard American Engineering 規格の15B23相当鋼又は15B26相当鋼が好ましい。
 一般に、マンガンボロン鋼は、焼入れ性に優れ、機械的強度の確保にも適した材料であるとされている。本実施形態に係るスタビライザの製造方法では、このようなマンガンボロン鋼の中でも低炭素量の鋼を採用する。これにより、引張強さ、硬さ、破壊衝撃値、靭性等が高い水準にあるスタビライザを実現する。加えて、スタビライザ1の圧縮残留応力の残存や靭性により、焼割れの防止または抑制、置割れの防止、マルテンサイト組織の単相の形成により局部電池化を抑えて耐食性の向上等をも図っている。
 低炭素量のマンガンボロン鋼の棒鋼材は、必須元素(C、Si、Mn、B)と、不可避的不純物として位置づけられるP、Sと、残部を組成するFe及びその他の不可避的不純物とからなる化学組成としてよいし、或いは、これらの元素に加えて任意添加元素を含有する化学組成としてもよい。任意添加元素である、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbは、これらのうち一種を含有させてよいし、複数種を含有させてもよい。任意添加元素の含有量は、添加される各元素あたり1.20質量%以下の範囲である。
 スタビライザ1の原材となる棒鋼材を任意添加元素を含有しない化学組成とすると、良好な焼入れ性を有する棒鋼材を低廉な材料費で得ることができるため、強度と靭性とが両立するスタビライザ1を生産性良く製造することができる。一方、任意添加元素を含有する化学組成とすると、元素種類に応じて棒鋼材の諸特性を改質することが可能になる。任意添加元素を含有する化学組成では、必須元素と、任意添加元素と、不可避的不純物として位置づけられるP及びSとに対する残部が、Feとその他の不可避的不純物とで占められることになる。以下、スタビライザ1の原材となる棒鋼材の各成分元素について説明する。
 炭素(C)は、機械的強度や硬さの向上等に寄与する成分である。Cを0.15質量%以上とすることで、良好な機械的強度や硬さを確保することができ、従来のばね鋼よりも優れた焼入れ硬さとすることが可能になる。一方で、Cを0.39質量%以下とすることによって、焼入れ後に機械的強度と共に所定の靭性を確保することが可能になる。また、変態応力等に起因する焼割れや残留オーステイナイトに起因する置割れを阻止し、炭化物の析出による耐食性の低下を抑制することができる。Cの含有量は、より好ましくは0.18質量%以上0.35質量%以下、さらに好ましくは0.20質量%以上0.26質量%以下である。これにより、上述のスタビライザ1の特性をより高めることが可能となる。
 ケイ素(Si)は、機械的強度や硬さの向上等に寄与する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Siを0.05質量%以上とすることで、良好な機械的強度や硬さや耐食性や耐へたり性を確保することができる。一方で、Siを0.40質量%以下とすることで、靭性や加工性の低下を抑えることができる。Siの含有量は、好ましくは0.15質量%以上0.30質量%以下である。
 マンガン(Mn)は、焼入れ性や機械的強度の向上等に寄与する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Mnを0.50質量%以上とすることで、良好な機械的強度と共に焼入れ性を確保することができる。一方で、Mnを1.70質量%以下とすることで、ミクロ偏析による靭性や耐食性の低下や、加工性の低下を抑制することができる。Mnの含有量は、より好ましくは0.60質量%以上1.50質量%以下、さらに好ましくは0.80質量%以上1.50質量%以下である。
 ホウ素(B;Boron)は、焼入れ性や機械的強度の向上等に寄与する成分である。Bを0.0005質量%以上0.003質量%以下とすることで、良好な焼入れ性を確保することができる。また、粒界強化によって靭性や耐食性を向上させることができる。その一方で、Bを0.003質量%を超える含有量としても、焼入れ性の向上の効果は飽和し、機械的性質は悪化してしまうため、含有量の上限を制限する。
 リン(P)は、鋼材の製鋼時から残留する不可避的不純物である。Pを0.040質量%以下とすることで、偏析による靭性や耐食性の低下を抑えることができる。Pの含有量は、より好ましくは0.030質量%以下である。
 硫黄(S)は、鋼材の製鋼時から残留する不可避的不純物である。Sを0.040質量%以下とすることで、偏析やMnS系介在物の析出による靭性や耐食性の低下を抑えることができる。Sの含有量は、より好ましくは0.030質量%以下である。
 ニッケル(Ni)は、耐食性や焼入れ性の向上等に寄与する成分である。Niを添加することで、良好な耐食性や焼入れ性を確保することができ、腐食劣化や焼割れの低減を図ることが可能である。その一方で、Niを過剰に含有させても、焼入れ性の向上の効果は飽和し、材料コストも増大してしまうため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 クロム(Cr)は、強度や耐食性や焼入れ性の向上等に寄与する成分である。Crを添加することで、強度や耐食性や焼入れ性を向上させることができる。その一方で、Crを過剰に含有させると、炭化物の偏析による靭性や耐食性の低下が生じたり、加工性が低下したり、材料コストも増大してしまうため、1.20質量%以下とすることが好ましく、0.60質量%以下としてもよく、或いは、意図的に添加しない組成とすることもできる。
 銅(Cu)は、焼入れ性や耐食性の向上等に寄与する成分である。Cuを添加することで、焼入れ性や耐食性を向上させることができる。但し、Cuを過剰に含有させると、熱間での表面脆化が生じる場合があるため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 モリブデン(Mo)は、焼入れ性や靭性や耐食性の向上等に寄与する成分である。Moを添加することで、焼入れ性や靭性や耐食性を向上させることができる。但し、Moを過剰に含有させると、材料コストが増大するため、0.08質量%以下とすることが好ましく、0.02質量%以下とすることがより好ましく、或いは、意図的に添加しない組成とすることもできる。
 バナジウム(V)は、靭性や硬さの向上等に寄与するすると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Vを添加することで、靭性や硬さやを向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Vを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じ、材料コストも増大してしまうため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 チタン(Ti)は、強度や耐食性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Tiを添加することで、強度や耐食性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Tiを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じる場合があるため、0.05質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 ニオブ(Nb)は、強度や靭性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。Nb添加することで、結晶粒の微小化により強度や靭性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Nbを過剰に含有させると、炭窒化物の析出による靭性や耐食性の低下が生じる場合があるため、0.06質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 アルミニウム(Al)は、靭性の向上等に寄与すると共に、窒素(N)と結合してNによるホウ素(B)の固定を防止する成分である。また、鋼材の製鋼時に脱酸の目的で添加される成分でもある。Alを添加することで、結晶粒の微小化により強度や靭性を向上させたり、ホウ素(B)による効果を有効に発現させたりすることができる。その一方で、Alを過剰に含有させると、窒化物や酸化物の析出による靭性や耐食性の低下が生じる場合があるため、0.30質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。このAlとは、Soluble Alを意味する。
 窒素(N)は、鋼材の製鋼時から残留する不可避的不純物であるが、強度の向上等に寄与する成分である。Nを所定含有量の範囲で含有させることで、窒化物の析出による靭性や耐食性の低下を避けつつ、強度を向上させることができる。Nの含有量は、0.02質量%以下とすることが好ましい。
 カルシウム(Ca)は、被削性の向上等に寄与する成分である。Caを添加することで、鋼材の被削性をより向上させることができる。Alの含有量は、0.40質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 鉛(Pb)は、被削性の向上等に寄与する成分である。Pbを添加することで、鋼材の被削性をより向上させることができる。Pbの含有量は、0.40質量%以下とすることが好ましく、或いは、意図的に添加しない組成とすることもできる。
 低炭素量のマンガンボロン鋼の棒鋼材としては、熱間圧延鋼材を適用することができる。この熱間圧延鋼材は、必要に応じて、熱間圧延後に冷間圧延や球状化焼鈍等の焼鈍処理が施されていてもよい。また、熱間圧延鋼材に代えて、冷間圧延鋼材を適用することも妨げられない。熱間圧延を行う場合には、スラブの加熱温度は、1150℃以上1350℃以下程度が好ましく、仕上温度は、800℃以上1000℃以下とすることが好ましい。仕上温度を800℃以上とすることによって、成分元素を適切に固溶させることができ、固溶ホウ素による焼入れ性の向上の効果を有効に得ることができるようになる。また、仕上温度を1000℃以下とすることによって、オーステナイト結晶粒の粗大化を防止することができ、残留オーステイナイトによる硬さの低下や置割れを阻止することができる。巻取温度は、例えば、400℃以上650℃以下等とすることができる。
 次に、本実施形態に係るスタビライザの製造方法の一例について各製造工程に沿って説明する。
 図2は、本発明の実施形態に係るスタビライザの製造方法の製造工程を示す流れ図である。
 図2に示すスタビライザの製造方法は、加工工程S10と、加熱工程S20と、成形工程S30と、焼入れ工程S40と、表面加工工程S50と、前処理工程S60と、予加熱工程S70と、塗装工程S80と、後加熱工程S90とを順次含むものとすることができる。なお、この製造方法において、表面加工工程S50及び予加熱工程S70は、必須の工程ではなく、後記するように実施を省略することも可能である。
 加工工程S10は、スタビライザの材料である棒鋼材の両端部に加工を施して、スタビライザリンク2(図1参照)に連結される連結部を形成する工程である。スタビライザの材料としては、前記の低炭素量のマンガンボロン鋼の棒鋼材が使用される。棒鋼材の長さ及び径は、所望の製品形状に応じて適宜の寸法とすることが可能である。但し、径については、10mm以上32mm以下の範囲にすることが好ましい。また、連結部の形態や形成方法は、特に制限されるものではなく、例えば、棒鋼材の末端を扁平状に鍛造してプレス加工等で孔開け加工を施すことによって連結部を形成することが可能である。
 加熱工程S20は、熱間曲げ加工を施すために棒鋼材を加熱処理する工程である。加熱方法としては、加熱炉による加熱、通電加熱、高周波誘導加熱等の適宜の方法を用いることができるが、高周波誘導加熱によることが好ましい。本実施形態に係るスタビライザ1の製造方法では、良好な焼入れ性を有するマンガンボロン鋼鋼材が材料として使用されることで、高周波誘導加熱を利用した急速加熱を適用することが可能となっている。そのため、急速加熱によって脱炭や脱ホウ素を抑制しつつ棒鋼材を加熱処理することができるようになっている。
 成形工程S30は、加熱処理された棒鋼材に熱間(温間)曲げ加工を施して製品形状に成形する工程である。すなわち、棒鋼材に曲げ加工を施すことによって、棒鋼材にトーション部1a及びアーム部1bを形成し、棒鋼材の形状を所望のスタビライザの形状に賦形する。なお、曲げ加工は、所望の製品形状に応じて、複数の曲げ部1cが形成されるように複数箇所に施すことが可能であり、多段曲げによってトーション部1a及びアーム部1bを形成することもできる。
 焼入れ工程S40は、曲げ加工が施された棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す工程である。詳細には、曲げ加工が施された棒鋼材に水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを施す。媒体の熱伝達率は、棒鋼材に対する静止した水ないし流れを有する水の熱伝達率値に対して±10%以内の範囲であることが好ましい。焼入れ温度、加熱速度及び焼入れ保持時間は、適宜の範囲で行うことが可能である。例えば、焼入れ温度は、850℃以上1100℃以下等とすることができる。但し、焼入れ温度は、オーステナイト結晶粒が過度に粗大化したり、焼割れが発生したりするのを避ける観点から、オーステナイト化温度(AC3)+100℃以下とすることが好ましい。このような加熱を行った後、冷却剤を用いて棒鋼材の冷却を行い、棒鋼材の金属組織をマルテンサイト化させる。
 焼入れ処理としては、具体的には、水焼入れ、水溶液焼入れ又は塩水焼入れを施すことが好ましい。水焼入れは、冷却剤として、水を用いる焼入れ処理である。水温は、0℃以上100℃以下程度、好ましくは5℃以上40℃以下の温度範囲とすることができる。水溶液焼入れ(ポリマー焼入れ)は、冷却剤として、高分子を添加した水溶液を用いる焼入れ処理である。高分子としては、例えば、ポリアルキレングリコール、ポリビニルピロリドン等の各種の高分子を用いることができる。高分子濃度は、前記の所定熱伝達率を示す限り特に制限されるものではなく、高分子の種類や処理に供する棒鋼材の焼入れ目標等に応じて調節することができる。塩水焼入れは、冷却剤として、塩化ナトリウム等の塩類を添加した水溶液を用いる焼入れ処理である。塩濃度は、前記の所定熱伝達率を示す限り特に制限されるものではなく、処理に供する棒鋼材の焼入れの程度に応じて調節することができる。これらの焼入れ処理において、冷却剤は、攪拌してよいし、攪拌しなくてもよい。また、これらの焼入れ処理を、拘束焼入れ、噴霧焼入れ、噴射焼入れ等の形態で行ってもよい。本実施形態に係るスタビライザの製造方法では、このようにして焼入れが施された棒鋼材(以下、スタビライザの半製品ということがある。)を、焼戻しを施すこと無く、表面加工工程S50又は前処理工程S60に供するものとする。
 表面加工工程S50は、焼入れが施された棒鋼材にショットピーニングを施す工程である。ショットピーニングは、温間及び冷間のいずれで行ってもよく、粒子径や投射速度等の条件を変えて複数回繰り返し行ってもよい。ショットピーニングを施すことによって、棒鋼材の表面に圧縮残留応力が付加され、疲労強度や耐摩耗性の向上と共に、置割れや応力腐食割れ等の防止が図られる。なお、焼入れが施された棒鋼材は、後記する理由により、ショットピーニングを施さないものとすることもできる。すなわち、図2に示すように、焼入れ工程S40の後に、表面加工工程S50を行うこと無く、前処理工程S60を実施することも可能である。
 前処理工程S60は、棒鋼材に塗装処理を行うために表面洗浄や表面処理を行う工程である。具体的には、棒鋼材の表面に、油脂分や異物等を除去する除去処理や下地処理等の各種の前処理を施す工程である。下地処理としては、例えば、リン酸亜鉛、リン酸鉄等の被膜を形成することができる。除去処理や下地処理等の各処理後には、棒鋼材を水洗し、水洗後に後段の各種処理に順次供する。水洗された棒鋼材の水切りの方法としては、例えば、水切りローラー等を使用した吸水乾燥や、ブロー乾燥や、加熱乾燥や、これらの組み合わせ等による適宜の方法を利用することが可能である。このようにして前処理された棒鋼材は、図2に示すように、予加熱工程S70又は塗装工程S80に供することができる。
 予加熱工程S70は、棒鋼材に予加熱を施す工程である。塗装される棒鋼材にあらかじめ予加熱を施すことによって、後加熱による塗料の焼付時間を短縮させることができ、塗装処理効率を向上させることができる。また、塗料の温度上昇が表面側に偏らないようにすることが可能であるため、塗膜の密着性を向上させることができる。加熱方法としては、加熱炉による加熱、通電加熱、高周波誘導加熱等の適宜の方法を用いることができるが、加熱速度が速く設備が簡易な点で、通電加熱によることが好ましい。予加熱温度は、例えば、塗料の塗着が可能な180℃以上200℃以下の範囲とすることが好ましい。このような温度の予加熱であれば、低温焼鈍による効果を得ることが可能であるし、また、低温焼鈍後に塗料の塗着温度に再冷却する処理も不要にすることができる。なお、前処理工程S60において加熱乾燥による水切りを実施する場合には、加熱乾燥後の余熱を塗料の塗着に利用することもできる。そのため、水切りにおける加熱乾燥温度が十分に高い場合には、前処理工程S60の後に、予加熱工程S70を行うこと無く、塗装工程S80を実施することも可能である。
 塗装工程S80は、棒鋼材に塗料を塗装する工程である。塗料としては、粉体塗料が好ましく用いられ、例えば、エポキシ樹脂製の粉体塗料を好適に用いることができる。塗装方法としては、例えば、棒鋼材の表面に厚さ50μm以上程度の塗膜が形成されるように塗料の噴射を行う方法や、塗料への浸漬を行う方法を用いることができる。
 後加熱工程S90は、塗装された塗料を加熱して焼き付ける工程である。加熱方法としては、加熱炉による加熱が好ましい。後加熱温度は、例えば、180℃以上200℃以下の範囲とすることが好ましい。具体的には、例えば、180℃で5分間の後加熱、ないしは200℃で5分間の後加熱を塗料が塗装された棒鋼材に施すことが許容される。このような加熱条件であれば、スタビライザの半製品について加熱による強度や硬さの低下が生じるのを避けることができるためである。なお、これら予加熱工程S70、塗装工程S80及び後加熱工程S90に代えて、塗装処理として、電着塗装、溶剤塗装等を実施してもよい。
 以上説明した工程を経て、スタビライザ1を製造することができる。製造されるスタビライザ1は、低炭素量のマンガンボロン鋼鋼材を材料とし、水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを行うため、圧縮残留応力が残存し、良好な機械的強度と靭性とが兼ね備えられている。この圧縮残留応力や靭性により、置割れが発生せず、低炭素量のマルテンサイト組織の形成により耐食性も向上したスタビライザ1となっている。加えて、本実施形態に係るスタビライザの製造方法は、低炭素量のマンガンボロン鋼鋼材が採用されることによって、従来の製造方法と比較して以下に説明する利点を有している。
 図3は、比較例に係るスタビライザの製造方法の工程を示す流れ図である。
 図3に示すように、従来のスタビライザの製造方法(比較例に係るスタビライザの製造方法)では、加工工程S10と、加熱工程S20と、成形工程S30とを経た後、曲げ加工が施された棒鋼材に油焼入れを施す焼入れ工程S140が実施されている。比較例に係るスタビライザの製造方法では、鉱油等を冷却剤として使用する油焼入れを採用することによって、焼入れ温度に加熱された鋼材の冷却速度を緩速化し、歪や焼割れの発生を低減させている。そして、油焼入れ後には、焼戻しが実施されて、機械的強度と靭性との調整が行われている。比較例に係るスタビライザの製造方法においてこのような工程が採用されているのは、従来スタビライザの材料として使用されているばね鋼鋼材は、焼入れ後の靭性や焼入れ性が、スタビライザ製品の要求性能に対して必ずしも十分に備わっていないためである。
 これに対して、本実施形態に係るスタビライザの製造方法では、高強度を維持しつつ良好な靭性をも示すことができる低炭素量のマンガンボロン鋼鋼材が採用されている。そのため、焼入れの後に焼戻しを施すこと無く、良好な機械的強度と靭性とを兼ね備えるスタビライザ1を製造することができる。そのため、スタビライザの製造ライン上には、長大な焼戻し炉を設置する必要が無く、スタビライザの製造に関わる設備規模を縮小させたり、焼戻し処理に関わる工数や焼戻し加熱に伴う加熱経費等の操業経費を低減させたりすることが可能になっている。
 また、本実施形態に係るスタビライザの製造方法では、良好な焼入れ性を有する低炭素量のマンガンボロン鋼鋼材が採用されているため、焼入れの不良に起因する歪みや焼割れが生じ難くなっている。そのため、従来実施されている油焼入れと比較して冷却速度が速い焼入れ条件を採用したとしても、焼割れや熱変形によって被加工材(棒鋼材)が損なわれることが少なく、従来行われている油焼入れと比較して冷却速度が速い焼入れを製造工程上において採用することが許容されるようになっている。そして、冷却速度が速い焼入れ方法が採用されることで、残留オーステナイトの生成が抑制され、置割れが阻止されている。また、油焼入れに代えて水焼入れ、水溶液焼入れ又は塩水焼入れが採用されることで、鉱油等の油性冷却剤の管理保安や廃棄経費が不要となってスタビライザ1の効率的な生産が可能になっている。さらには、次のとおり、スタビライザ1の表層(少なくとも表面から0.8mmの深さまで)に圧縮残留応力(例えば、150MPa以上)を付与する効果を得ることができる。
 図4は、熱応力による残留応力の生成の機序を示す概念図である。(a)は、冷却に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。また、図5は、変態応力による残留応力の生成の機序を示す概念図である。(a)は、マルテンサイト変態に伴う変形の過程を示す図であり、(b)は、塑性変形後の残留応力を示す図である。
 図4及び図5においては、鋼材の表面近傍の組織体積変化が模式的に示されている。符号110は、鋼材の表面側に存在する表面組織、符号120は、内部側に存在する内部組織である。
 焼入れにおいて生成する熱応力は、冷却された鋼材の熱収縮が、鋼材の深さ方向の冷却速度差により深さ方向の分布を示す。通常、焼入れでは、鋼材の内部側までが変態温度以上に加熱され、図4(a)の上段に示すように、表面組織110及び内部組織120において応力や歪が実質的には認められない状態となっている。この状態から鋼材が焼入れされると、鋼材の冷却は時間経過とともに表面組織110側から内部組織120へ進行し、表面側と内部側との間に冷却速度差が生じる。そのため、表面組織110側は、熱伝導が遅れる内部組織120側よりも大きく熱収縮し、熱伝導が遅れる内部組織120側は、表面組織110側の収縮変形に引きずられて塑性変形して収縮する(図4(a)の中段参照)。
 ところが、さらに冷却が進行すると、図4(a)の下段に示すように、表面組織110側においては、金属組織の凝固が納まり寸法変化が無くなるのに対して、熱伝導が遅れる内部組織120側においては、依然として冷却され熱収縮が進行する。そして、熱収縮を続ける内部組織120は、表面組織110を収縮方向に拘束しながら塑性変形の収縮を終える。その結果、図4(b)に示すように、残留応力は、表面組織110側が内部組織120よる収縮力を受けて圧縮残留応力が優位になる深さ方向の分布を示す。一方、内部組織120は、表面組織110から伸長力を受けることから、引張残留応力が優位になる深さ方向の分布を示すことになる。
 これに対し、焼入れにおいて生成する変態応力は、冷却された鋼材のマルテンサイト変態による膨張が、鋼材の深さ方向の冷却速度差によって拘束され膨張し、熱応力とは逆向きの分布を示す。図5(a)の上段に示す表面組織110及び内部組織120において応力や歪が実質的には認められない状態から鋼材が焼入れされると、鋼材の冷却は表面組織110側から進行し、表面側と内部側との間に冷却速度差が生じる。そのため、表面組織110側は、熱伝導が遅れる内部組織120側よりも先にマルテンサイト変態開始温度(Ms)を下回り、マルテンサイト変態に伴って大きく膨張するのに対し、熱伝導が遅れる内部組織120側は、表面組織110側に引きずられて塑性変形する(図5(a)の中段参照)。
 さらに冷却が進行すると、図5(a)の下段に示すように、表面組織110側は、熱伝導が遅れる内部組織120側よりも先にマルテンサイト変態終了温度(Mf)を下回り、金属組織の体積変化が治まる。これに対して、熱伝導が遅れる内部組織120側は、マルテンサイト変態開始温度(Ms)以上マルテンサイト変態終了温度(Mf)以下の温度域で依然としてマルテンサイト変態に伴う膨張を生じる。そして、膨張を続ける内部組織120は、表面組織110を引張方向に拘束しながら塑性変形を終える。その結果、図5(b)に示すように、生成する残留応力は、表面組織110が内部組織120の膨張に引張られて、表面組織110側ほど引張残留応力が優位になる。一方、内部組織120は表面組織110から圧縮する力を受けて内部組織120側ほど圧縮残留応力が優位になる。以上より、熱応力とは逆向きの分布を示すことになる。
 焼入れされる鋼材においては、実際には、このような熱応力に起因する残留応力と変態応力に起因する残留応力との兼ね合いにしたがって、表面残留応力の深さ方向の分布が顕れる。よって、スタビライザ1の表面に、疲労強度や耐摩耗性の向上に有効な圧縮残留応力を付与する上では、熱応力が変態応力よりも優位に発生する熱処理を施すことが有効である。
 この点について、本実施形態に係るスタビライザの製造方法では、高強度・高靭性な低炭素マルテンサイト組織に着目し、従来使用されているばね鋼鋼材と比較して炭素量が少ないマンガンボロン鋼鋼材を使用する。加えて、水と同等以上又は水に近い熱伝達率を有する媒体による、従来の油焼入れと比較して冷却速度が速い焼入れを採用する。これによって、マルテンサイト変態に伴う体積変化を抑制して変態応力の発生を低減させ、急冷により大きな熱応力を発生させる。その結果、熱応力に起因する残留応力は変態応力に起因する残留応力よりも優位になり、焼入れが施された棒鋼材の表面に、スタビライザ1に好適な圧縮残留応力が付与される。これは、水の熱伝達率が、油の熱伝達率より大きいため、鋼材から熱を早く奪えることに起因するものと考えられる。また、冷却速度が速い焼き入れを採用した焼入れ工程S40では、棒鋼材に焼入れしたままで、深く大きい圧縮残留応力を付与することが可能である(図9(a)参照)。そのため、水焼入れが施された棒鋼材にショットピーニング(表面加工工程S50)を施すこと無く、圧縮残留応力が表層に付与されたスタビライザ1の製作が可能である。つまり、本実施形態(本発明)では、焼き戻し工程、ショットピーニング工程を行うことなく、スタビライザ1の製品化が可能である。
 また、従来(比較例)のスタビライザの製造方法では、図3に示すように、表面加工工程S50の後工程として、前処理工程S60、常温の棒鋼材に粉体塗料を塗装する塗装工程S80、塗装された粉体塗料を焼き付ける加熱工程S190が実施されている。これに対して、本実施形態に係るスタビライザの製造方法では、焼入れ工程S40において、ショットピーニングよりも深い圧縮残留応力が付与されているため(図9(a)、図10(a)参照)、予加熱工程S70や後加熱工程S90における加熱処理によって、残留応力が過度に緩和されることが少なく、予加熱工程S70や後加熱工程S90における加熱条件の許容条件範囲が拡大される点においても有利である。
 以上の本実施形態に係るスタビライザの製造方法によって製造されるスタビライザ1は、実質的に略単相のマルテンサイト組織の金属組織にすることができる。より具体的には、スタビライザ1の半製品について、横断面の中心部分の90%以上がマルテンサイト組織を有するものとすることが可能である。通常、従来のばね鋼鋼材を使用し、油焼入れ及び焼戻しを施して得られる金属組織は、フェライトとセメンタイトとの二相組織となり、二相間に局部電池が形成され易い状態となってしまう。これに対し、本実施形態に係るスタビライザの製造方法では、低炭素量のマンガンボロン鋼を材料として使用しているため、単相のマルテンサイト組織を形成することができ、電離しづらく、炭化物の析出を少なくすることができる。そのため、金属組織中に局部電池が形成され難く、従来のばね鋼鋼材を使用したスタビライザと比較して耐食性に優れたスタビライザ1を製造することができるようになっている。
 本実施形態に係るスタビライザの製造方法によって製造されるスタビライザ1は、旧オーステナイト結晶粒界の結晶粒度について粒度番号Gが8を超えるようにすることが好ましく、9以上にすることがより好ましい。旧オーステナイト結晶粒界の結晶粒度をこのように微細化しておくことで、靭性を損なわず機械的強度をより向上させることができる。結晶粒度の微細化は、例えば、焼入れ温度を低下させたり、Mnや、任意添加元素の含有量を高めたりすることによって実現することが可能である。なお、旧オーステナイト結晶粒界の結晶粒度は、JIS G 0551の規定に準じて測定することができる。粒度番号Gは、焼き入れままの金属組織の顕微鏡観察像に基いて判定することができ、望ましくは5~10視野の粒度番号の平均値として求められる。
 また、本実施形態に係るスタビライザの製造方法によって製造されるスタビライザ1は、ロックウェル硬さ(HRC)が、44.5を超え55.5以下の範囲となるようにすることが好ましい。このような硬さは、炭素量が0.15%以上0.39質量%以下の範囲であれば、必要な靭性を有して実現させることが可能である。製造されるスタビライザ1は、このような硬さにおいても、従来のばね鋼鋼材を材料とし同等の硬さに調質したスタビライザと比較して、良好な靭性(例えば、HRC44.5において室温のシャルピー衝撃値が30J/cm以上)を兼ね備えるものとすることができる。
 以下、本発明の実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
 はじめに、次の表1に示す化学成分組成を有する鋼材(供試材1~供試材9)について、硬さ及び炭素量と衝撃値との相関を評価した。なお、供試材1~供試材8は、マンガンボロン鋼鋼材であり、供試材9は、従来のばね鋼鋼材(SUP9A(「SUP9N」))である。
Figure JPOXMLDOC01-appb-T000001
 
 衝撃試験では、各供試材から採取したJIS3号片(Uノッチ2mm深さ)を使用し、衝撃値uE20(J/cm)を求めた。なお、供試材は、表1に示す各組成の鋼を溶製して鋼塊とし、角ビレットに溶接して熱間圧延材を得た後、この熱間圧延材から採取した棒鋼材について、水焼入れを施したものを試験片の採取に用いた。
 図6は、マンガンボロン鋼鋼材のロックウェル硬さと衝撃値との相関を示す図である。また、図7は、マンガンボロン鋼鋼材の炭素量と衝撃値との相関を示す図である。
 図6に示すように、従来のばね鋼鋼材である供試材9では、スタビライザにおける実用上の硬さ上限(HRC44.5)で、衝撃値が約30J/cmに留まっている(図中に破線で示す)。これに対して、マンガンボロン鋼鋼材である供試材1~供試材8では、HRC44.5以上56以下の範囲において、供試材9のスタビライザにおける実用上の硬さ上限(HRC44.5)で、衝撃値が約30J/cmを上回っており、機械的強度と靭性とを両立し得ることが分かる。また、図7に示すように、マンガンボロン鋼鋼材における衝撃値は、各供試材の炭素量(質量%)に対して負の相関を示しており、靭性が主として炭素量に依存していることが分かる。そして、マンガンボロン鋼鋼材である供試材1~供試材8の衝撃値は、供試材9において認められた衝撃値(30J/cm)の値を、炭素量が0.39質量%以下の範囲で上回っている(図中に破線で示す)。よって、スタビライザの材料としては、炭素量が0.39質量%以下のマンガンボロン鋼が好適であると認められる。
 次に、実施例1-1~実施例1-3に係るスタビライザを製造し、耐久性について評価を行った。また、対照として、比較例1に係るスタビライザを製造し、併せて評価を行った。
[実施例1-1]
 実施例1-1に係るスタビライザは、表1に示す供試材1を材料とし、冷間曲げ加工を施す成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造した。なお、スタビライザの径は23mmとした。
[実施例1-2]
 実施例1-2に係るスタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例1-1と同様にして製造した。
[実施例1-3]
 実施例1-3に係るスタビライザは、成形工程S30を熱間曲げ加工に代えた点を除いて、実施例1-1と同様にして製造した。
[比較例1]
 比較例1に係るスタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻しを施して製造した。なお、スタビライザの径は23mmとした。
 そして、製造した各スタビライザについて耐久試験を行った。耐久試験では、スタビライザの両端を固定し、所定繰返し応力を負荷して、両振りの疲労限度を求めた。
 図8は、実施例に係るスタビライザのS-N線図である。
 図8に示すように、実施例1-1~実施例1-3に係るスタビライザでは、実線で示す比較例1に係るスタビライザと比較して、いずれも耐久性が向上していることが分かる。また、実施例1-1に係るスタビライザと実施例1-3に係るスタビライザとでは、疲労限度が同等となっており、熱間曲げ成形及び冷間曲げ成形のいずれも採用し得ることが認められる。
 次に、実施例2-1~実施例2-4に係るスタビライザを製造し、表面残留応力について評価を行った。また、対照として、比較例2-1~比較例2-2に係るスタビライザを製造し、併せて評価を行った。
[実施例2-1]
 実施例2-1に係るスタビライザは、表1に示す供試材1を材料とし、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、ショットピーニング(表面加工工程S50)を施すこと無く製造した。
[実施例2-2]
 実施例2-2に係るスタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例2-1と同様にして製造した。
[実施例2-3]
 実施例2-3に係るスタビライザは、表1に示す供試材1を材料とし、成形工程S30と、水焼入れを施す焼入れ工程S40と、ショットピーニングを施す表面加工工程S50とを経て製造した。
[実施例2-4]
 実施例2-4に係るスタビライザは、材料を表1に示す供試材4に代えた点を除いて、実施例2-3と同様にして製造した。
[比較例2-1]
 比較例2-1に係るスタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻し及びショットピーニングを施すこと無く製造した。
[比較例2-2]
 比較例2-2に係るスタビライザは、表1に示す供試材9を材料とし、油焼入れ後に焼戻しとショットピーニングとを施して製造した。
 図9は、ショットピーニングを施すこと無く製造したスタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係るスタビライザの結果を示す図であり、(b)は、比較例に係るスタビライザの結果を示す図である。また、図10は、ショットピーニングを施して製造したスタビライザにおける表面残留応力の測定結果を示す図である。(a)は、実施例に係るスタビライザの結果を示す図であり、(b)は、比較例に係るスタビライザの結果を示す図である。
 図9及び図10において、縦軸は、残留応力(MPa)を示す。(-)側が圧縮応力、(+)側が引張応力である。図9(a)に示すように、実施例2-1及び実施例2-2では、比較例の図9(b)に比べ、焼戻しとショットピーニングとを施していないにも関わらず、深い分布をもって圧縮残留応力が生成していることが分かる。詳細には、圧縮残留応力が引張残留応力に変わるクロッシングポイントが、表面から少なくとも0.8mm以上の深さになっており、表面から0.8mmの深さにおいて150MPa以上の圧縮残留応力(無負荷時における圧縮残留応力)が認められる。
 また、実施例2-1及び実施例2-2では、残留応力が比較的大きくなっており、冷却速度が速い焼入れを施してさえいれば、図10(b)の比較例のショットピーニングを施したスタビライザの表面残留応力を参照して、ショットピーニングの実施を省略したとしても有効な圧縮残留応力を付与し得ることが分かる。詳細には、表面から0.42mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が約200MPa以上、表面から0.8mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が150MPa以上、表面から1.0mmの深さにおける圧縮残留応力(無負荷時における圧縮残留応力)が100MPa以上に及んでおり、表面から少なくとも0.8mmの深さまでにわたって150MPa以上の圧縮残留応力が分布している。これに対して、比較例2-1(図9(b)参照)では、引張残留応力が分布しており、油焼入れでは、熱応力による表面残留応力の生成が優位になり難いと認められる。
 他方、図10に示すように、ショットピーニングを施した実施例2-3及び実施例2-4(図10(a)参照)では、実施例2-1及び実施例2-2(図9(a)参照)と比較して、表面側の圧縮残留応力が更に増強されていることが分かる。これに対して、比較例2-2(図10(b)参照)では、油焼入れ及びショットピーニングが施されることによって、表面側の圧縮残留応力が増強されていることは認められるものの、圧縮残留応力の分布は表面側(図10(b)に示す表面から0.42mm以下)に留まっている。そのため、比較例のスタビライザでは、成長した腐食ピットの底部近傍を起点とした割れが伝播し易く、十分な疲労強度や耐食性が得られない可能性がある。
 次に、表面残留応力とマンガンボロン鋼鋼材の炭素量及び径との相関の解析を行った。
 マンガンボロン鋼鋼材の表面残留応力は、炭素量が互いに異なる供試材1、2、6、7、8を材料としてそれぞれ使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造したスタビライザ半製品について計測した。なお、各半製品の径は、21mm~25mmの範囲に揃えた。また、表面残留応力と径との相関は、各径(直径)において発生し得る表面残留応力を、水焼入れを施して製造した場合(水冷)と、油焼入れを施して製造した場合(油冷)とについてシミュレーションによって推定した。
 図11は、実施例に係るスタビライザにおける表面残留応力を解析した結果を示す図である。(a)は、表面残留応力と鋼材の炭素量との関係を示す図であり、(b)は、表面残留応力と鋼材の径との関係を示す図である。
 図11(a)に示すように、水焼入れを施すことによって表面に付与される圧縮残留応力は、炭素量が低いほど大きく、炭素量が高いほど低下することが分かる。よって、炭素量が低いマンガンボロン鋼鋼材を使用してスタビライザを製造する場合には、ショットピーニングの実施を省略しても、高い疲労強度や耐食性を有するスタビライザを製造し得るといえる。また、図11(b)に示すように、油焼入れでは引張残留応力が生成されるのに対して、水焼入れでは圧縮残留応力が生成されており、その応力値は、径20mm~30mmの範囲においては、十分な大きさ(最大値で300MPa程度以上)に達することが確認できる。
 次に、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施して製造されるスタビライザの耐食性を評価した。
 耐食性試験の試料としては、供試材1を材料として使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造したスタビライザ半製品(試料1-1)を供した。また、対照として、従来のばね鋼鋼材である供試材9を材料とし、油焼入れを施した後、焼戻しを施したスタビライザ半製品(試料1-2)を供した。なお、径は、いずれも14mmとした。耐食性試験は、サイクル試験(CCTI)とし、直径10mm×長さ50mmの範囲を被腐食面として残してマスキングした各試料を使用して、35℃で4時間の塩水噴霧(NaCl濃度5%)、60℃で2時間の乾燥処理、50℃且つ95%RHで2時間の湿潤処理からなるサイクルを繰り返して腐食減量の測定を行った。なお、腐食減量は、試験前重量と試験後重量との差分を被腐食面の面積で除算して求めた。
 図12は、耐食性試験の結果を示す図である。
 図12に示すように、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施した試料1-2では、従来のばね鋼鋼材を材料とし、油焼入れを施した後、焼戻しを施した試料1-2と比較して、耐食性が向上していることが分かる。試料1-2では、焼戻しにより、トルースタイトないしソルバイトが生成しているために、低炭素量のマルテンサイト組織を有する試料1-1と比較して、腐食速度が増大しているものと認められる。
 次に、低炭素量のマンガンボロン鋼鋼材を材料とし、水焼入れを施して製造されるスタビライザの疲労き裂の進展性を評価した。
 破壊靭性試験の試料としては、従来のばね鋼鋼材である供試材9を材料とし、油焼入れを施した後、焼戻しを施したスタビライザ半製品(試料2-1)と、供試材1を材料として使用し、成形工程S30と、水焼入れを施す焼入れ工程S40とを経て、焼戻しを施すこと無く製造したスタビライザ半製品(試料2-2)とを供した。なお、試料2-1の硬さは42.7(HRC)、試料2-2の硬さは45.8(HRC)とした。
 図13は、疲労き裂の進展性を解析した結果を示す図である。
 図13において、縦軸は、疲労き裂伝播速度da/dN(mm/cycle)、横軸は、応力拡大係数範囲ΔK(kgf/mm3/2)を示す。×のプロットは試料2-1、▲のプロットは試料2-2、◆のプロットは参考例1(SUP7(HRC46.5)の既報値)、■のプロットは参考例2(SUP7(HRC61.0)の既報値)である。
 図13に示すように、試料2-2の疲労き裂伝播速度は、試料2-1の1/10~1/100程度であり、従来のばね鋼鋼材である参考例1や参考例2等と比較しても、靭性が良好であることが分かる。また、破壊靭性値(Kc)を求めたところ、試料2-2のKcは、試料2-1の約1.6倍に達しており、疲労耐久性も良好であることが認められた。
<<その他の実施形態>>
1.前記実施形態では、水と同等以上又は水に近い熱伝達率を有する水性の冷却剤を用いる場合を例示して説明したが、焼入れ対象を急冷でき、説明した機械的強度、強靭性等の所定の性能がスタビライザ1に得られれば、媒体の種類は特に制限されない。例えば、氷、有機溶剤、熱伝達率が大きい液体や固体などを含む水や油であってよい。なお、媒体とは液体、固体を含む液体などその相は特に限定されない。すなわち、スタビライザ1の要求性能によっては、C:0.15質量%以上0.39質量%以下、Mn、B及びFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、曲げ加工が施された前記棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す焼入れ工程とを含み、前記焼入れが施された前記棒鋼材に焼戻しを施すこと無くスタビライザを製造することも可能である。
2.前記実施形態では、スタビライザ1の原材として、質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部が、Feと不可避的不純物である棒鋼材を用いる場合を例示して説明したが、スタビライザ1に説明した機械的強度、強靭性等の所定の性能が得られれば、スタビライザ1の原材として、C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材でもよい。または、質量%で、C:0.15%以上0.39%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下、およびFeを少なくとも含む棒鋼材を用いてもよい。
3.前記実施形態では、中実のスタビライザ1を用いる場合を例示して説明したが、パイプ状の中空のスタビライザを製作する場合に本発明を適用してもよい。
4.前記実施形態では、様々な構成を説明したが、各構成を選択したり、各構成を適宜選択して組み合わせて構成してもよい。
5.前記実施形態は、本発明の一例を説明したものであり、本発明は、特許請求の範囲内または実施形態で説明した範囲において、様々な具体的な変形形態が可能である。
1 スタビライザ
1a トーション部
1b アーム部
1c 曲げ部
2 スタビライザリンク
3 懸架装置
3a 車軸部
4 ブッシュ
S10 加工工程
S20 加熱工程
S30 成形工程
S40 焼入れ工程
S50 表面加工工程
S60 前処理工程
S70 予加熱工程
S80 塗装工程
S90 後加熱工程

Claims (13)

  1.  C:0.15質量%以上0.39質量%以下、Mn、B、およびFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、
     曲げ加工が施された前記棒鋼材に水と同等以上又は水に近い熱伝達率を有する媒体による焼入れを施す焼入れ工程とを含み、
     前記焼入れが施された前記棒鋼材に焼戻しを施すこと無くスタビライザを製造する
    ことを特徴とするスタビライザの製造方法。
  2.  前記棒鋼材は、質量%で、C:0.15%以上0.39%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下である
    ことを特徴とする請求項1に記載のスタビライザの製造方法。
  3.  前記棒鋼材は、質量%で、C:0.15%以上0.39%以下、Si:0.05%以上0.40%以下、Mn:0.50%以上1.70%以下、B:0.0005%以上0.003%以下を必須元素として含有し、P:0.040%以下、S:0.040%以下であり、任意添加元素として、Ni、Cr、Cu、Mo、V、Ti、Nb、Al、N、Ca及びPbからなる群より選択される少なくとも一種以上の元素をそれぞれ1.20%以下の範囲で含有し得ると共に、残部が、Feと不可避的不純物からなる
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  4.  前記焼入れは、水焼入れ、水溶液焼入れ又は塩水焼入れである
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  5.  前記媒体は、水である
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  6.  前記焼入れが施された前記棒鋼材にショットピーニングを施す表面加工工程と、
     ショットピーニングが施された前記棒鋼材に予加熱を施す予加熱工程と、
     予加熱が施された前記棒鋼材に塗料を塗装する塗装工程と、
     塗装された前記塗料を加熱して塗着させる後加熱工程と
    をさらに含むことを特徴とする請求項1に記載のスタビライザの製造方法。
  7.  焼入れが施された前記棒鋼材にショットピーニングを施すこと無く予加熱を施す予加熱工程と、
     予加熱が施された前記棒鋼材に塗料を塗装する塗装工程と、
     塗装された前記塗料を加熱して塗着させる後加熱工程と
    をさらに含むことを特徴とする請求項1に記載のスタビライザの製造方法。
  8.  前記予加熱工程及び前記後加熱工程における加熱温度が、180℃以上200℃以下の範囲である
    ことを特徴とする請求項6又は請求項7に記載のスタビライザの製造方法。
  9.  製造される前記スタビライザは、
     前記棒鋼材の表面から0.8mmの深さまでにわたって150MPa以上の圧縮残留応力が分布している
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  10.  製造される前記スタビライザは、
     ロックウェル硬さ(HRC)が44.5を超え、且つ、室温におけるシャルピー衝撃値が30J/cm以上である
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  11.  製造される前記スタビライザは、
     金属組織の90%以上にマルテンサイト組織が形成される
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  12.  前記棒鋼材は、Standard American Engineering 規格の15B23相当鋼又は15B26相当鋼である
    ことを特徴とする請求項1又は請求項2に記載のスタビライザの製造方法。
  13.  C:0.15質量%以上0.39質量%以下、Mn、B及びFeを少なくとも含む棒鋼材に曲げ加工を施して製品形状に成形する成形工程と、
     曲げ加工が施された前記棒鋼材をオーステナイト化後、下部臨界冷却速度以上で焼入れを施す焼入れ工程とを含み、
     前記焼入れが施された前記棒鋼材に焼戻しを施すこと無くスタビライザを製造する
    ことを特徴とするスタビライザの製造方法。
PCT/JP2015/084330 2014-12-08 2015-12-07 スタビライザの製造方法 WO2016093199A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/534,470 US10995382B2 (en) 2014-12-08 2015-12-07 Production method for stabilizers
KR1020177018140A KR20170095263A (ko) 2014-12-08 2015-12-07 스태빌라이저의 제조 방법
CN201580067175.7A CN107109514B (zh) 2014-12-08 2015-12-07 一种稳定器的制造方法
ES15867565T ES2843588T3 (es) 2014-12-08 2015-12-07 Método de producción de estabilizadores
MX2017007474A MX2017007474A (es) 2014-12-08 2015-12-07 Método de producción para estabilizadores.
EP15867565.2A EP3231879B1 (en) 2014-12-08 2015-12-07 Production method for stabilizers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014248409A JP6110840B2 (ja) 2014-12-08 2014-12-08 スタビライザの製造方法
JP2014-248409 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016093199A1 true WO2016093199A1 (ja) 2016-06-16

Family

ID=56107383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084330 WO2016093199A1 (ja) 2014-12-08 2015-12-07 スタビライザの製造方法

Country Status (9)

Country Link
US (1) US10995382B2 (ja)
EP (1) EP3231879B1 (ja)
JP (1) JP6110840B2 (ja)
KR (1) KR20170095263A (ja)
CN (1) CN107109514B (ja)
ES (1) ES2843588T3 (ja)
HU (1) HUE053000T2 (ja)
MX (1) MX2017007474A (ja)
WO (1) WO2016093199A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069018A1 (ja) * 2015-10-23 2017-04-27 日本発條株式会社 スタビライザのための塗料吹付装置と塗装設備および塗装方法
CN109722519A (zh) * 2018-11-30 2019-05-07 天津市大港汽车配件弹簧厂 硬度在hrc45.3~49.1范围的汽车稳定杆热处理工艺
CN109722503A (zh) * 2017-10-27 2019-05-07 上海中国弹簧制造有限公司 空心稳定杆端头的加工工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101991895B1 (ko) * 2017-11-09 2019-06-24 대원강업주식회사 스태빌라이저 바의 제작방법
KR102131137B1 (ko) * 2019-05-21 2020-07-07 대원강업주식회사 뜨임 공정 생략을 통해 제조된 스프링
US11413926B2 (en) * 2020-07-31 2022-08-16 Nhk Spring Co., Ltd. Stabilizer manufacturing device and method for manufacturing stabilizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406341B2 (ja) * 2004-09-22 2010-01-27 Jfe条鋼株式会社 靭性に優れた高強度スタビライザの製造方法
JP2011189892A (ja) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd 自動車用スタビライザの製造方法
JP2011196491A (ja) * 2010-03-23 2011-10-06 Chuo Spring Co Ltd ばねの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188532A (ja) 1982-04-28 1983-11-04 Nhk Spring Co Ltd 中空スタビライザの製造方法
JPS644424A (en) * 1987-06-23 1989-01-09 Kobe Steel Ltd Manufacture of seam-welded tube for heat treatment excellent in workability
JP3409277B2 (ja) * 1998-05-13 2003-05-26 株式会社神戸製鋼所 非調質ばね用圧延線状鋼または棒状鋼
JP3814710B2 (ja) 1998-06-30 2006-08-30 Jfe条鋼株式会社 高強度冷間成形非調質緩衝・復元機構部材用鋼材の製造方法
DE10225035B4 (de) 2002-06-06 2004-11-04 ZF Lemförder Metallwaren AG Geteilter Stabilisator und Verfahren zur Herstellung einer verzahnten Anbindung des äußeren Drehteils an einen der beiden Stabilisatorteile
JP4129203B2 (ja) 2003-06-09 2008-08-06 中央発條株式会社 高強度スタビライザ
JP4406342B2 (ja) * 2004-09-22 2010-01-27 Jfe条鋼株式会社 靭性に優れた高強度スタビライザの製造方法
US20060243355A1 (en) * 2005-04-29 2006-11-02 Meritor Suspension System Company, U.S. Stabilizer bar
JP4735315B2 (ja) * 2006-02-15 2011-07-27 Jfeスチール株式会社 自動車構造部材用高張力溶接鋼管およびその製造方法
ES2430839T3 (es) * 2006-09-29 2013-11-22 Ezm Edelstahlzieherei Mark Gmbh Acero de alta resistencia y usos de un acero de este tipo
JP5087353B2 (ja) 2007-09-19 2012-12-05 三菱製鋼株式会社 バネ製品製造ライン
JP5306845B2 (ja) 2009-02-12 2013-10-02 Jfe条鋼株式会社 耐食性と低温靭性に優れた車両用高強度スタビライザ用鋼及びその製造方法とスタビライザ
DE112011100846T8 (de) * 2010-03-08 2013-03-14 Chuo Hatsujo Kabushiki Kaisha Massiver Stabilisator, Stahlmaterial für den massiven Stabilisator und Herstellungsverfahren des massiven Stabilisators
JP5764383B2 (ja) 2011-05-12 2015-08-19 Jfe条鋼株式会社 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法
JP6232324B2 (ja) 2014-03-24 2017-11-15 Jfeスチール株式会社 高強度で耐食性に優れたスタビライザー用鋼とスタビライザーおよびその製造方法
JP6408933B2 (ja) 2014-08-28 2018-10-17 日本発條株式会社 車両用サスペンション部材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406341B2 (ja) * 2004-09-22 2010-01-27 Jfe条鋼株式会社 靭性に優れた高強度スタビライザの製造方法
JP2011189892A (ja) * 2010-03-16 2011-09-29 Chuo Spring Co Ltd 自動車用スタビライザの製造方法
JP2011196491A (ja) * 2010-03-23 2011-10-06 Chuo Spring Co Ltd ばねの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069018A1 (ja) * 2015-10-23 2017-04-27 日本発條株式会社 スタビライザのための塗料吹付装置と塗装設備および塗装方法
US10792683B2 (en) 2015-10-23 2020-10-06 Nhk Spring Co., Ltd. Paint spraying apparatus for stabilizer, coating installation, and coating method
CN109722503A (zh) * 2017-10-27 2019-05-07 上海中国弹簧制造有限公司 空心稳定杆端头的加工工艺
CN109722519A (zh) * 2018-11-30 2019-05-07 天津市大港汽车配件弹簧厂 硬度在hrc45.3~49.1范围的汽车稳定杆热处理工艺

Also Published As

Publication number Publication date
EP3231879A1 (en) 2017-10-18
KR20170095263A (ko) 2017-08-22
JP2016108626A (ja) 2016-06-20
CN107109514B (zh) 2019-03-12
US20170349961A1 (en) 2017-12-07
ES2843588T3 (es) 2021-07-19
CN107109514A (zh) 2017-08-29
EP3231879A4 (en) 2018-07-18
HUE053000T2 (hu) 2021-06-28
JP6110840B2 (ja) 2017-04-05
US10995382B2 (en) 2021-05-04
MX2017007474A (es) 2018-02-01
EP3231879B1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2016093199A1 (ja) スタビライザの製造方法
CN107109509B (zh) 热处理钢材、耐久特性优异的超高强度成型品及其制造方法
CN108138279B (zh) 高强度中空稳定器用电阻焊接钢管、高强度中空稳定器用电阻焊接钢管的制造方法、高强度中空稳定器及高强度中空稳定器的制造方法
JP3988095B2 (ja) 冷間塑性変形で鋼製品を製造するための鋼と、その製造方法
JP4018905B2 (ja) 機械構造用熱間圧延線材・棒鋼およびその製造方法
CN107107701B (zh) 稳定器
JP2009541589A (ja) 低温における等方じん性が向上した油圧シリンダー用継ぎ目なし精密鋼管およびこれを得る方法
JP2010506052A (ja) 冷間加工性に優れた高強度・高靭性のばね用鋼線材、その鋼線材の製造方法及びその鋼線材でばねを製造する方法
CN106103781B (zh) 高强度且耐腐蚀性优异的稳定器用钢和使用其的车辆用稳定器及其制造方法
JP5476598B2 (ja) 高強度中空ばね用シームレス鋼管の製造方法
WO2012093506A1 (ja) 腐食疲労強度に優れるばね
JP5653022B2 (ja) 腐食疲労強度に優れるばね用鋼、及びばね
CN112368410A (zh) 中空稳定器制造用电阻焊钢管、中空稳定器以及它们的制造方法
JP2005002365A (ja) 高強度スタビライザ
WO2016158408A1 (ja) 懸架装置用ばねの製造方法及び懸架装置用ばね
JP5778903B2 (ja) 切欠き疲労強度に優れた高強度鋼製加工品の製造方法
JP5653020B2 (ja) 腐食疲労強度に優れるばね用鋼及びばね
JP5125601B2 (ja) 自動車構造部材用高張力溶接鋼管およびその製造方法
JP6796472B2 (ja) 中空部材及びその製造方法
JP2020076154A (ja) 懸架装置用ばねの製造方法
JP5653021B2 (ja) 腐食疲労強度に優れるばね用鋼、及びばね
WO2024161363A1 (en) A high-strength hot-rolled wear resistant steel and a method of manufacturing thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15534470

Country of ref document: US

Ref document number: MX/A/2017/007474

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20177018140

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015867565

Country of ref document: EP