WO2016093024A1 - 超音波診断装置、及び弾性評価方法 - Google Patents

超音波診断装置、及び弾性評価方法 Download PDF

Info

Publication number
WO2016093024A1
WO2016093024A1 PCT/JP2015/082206 JP2015082206W WO2016093024A1 WO 2016093024 A1 WO2016093024 A1 WO 2016093024A1 JP 2015082206 W JP2015082206 W JP 2015082206W WO 2016093024 A1 WO2016093024 A1 WO 2016093024A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
ultrasonic
velocity
diagnostic apparatus
unit
Prior art date
Application number
PCT/JP2015/082206
Other languages
English (en)
French (fr)
Inventor
吉川 秀樹
Original Assignee
日立アロカメディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アロカメディカル株式会社 filed Critical 日立アロカメディカル株式会社
Priority to CN201580065906.4A priority Critical patent/CN106999162B/zh
Priority to JP2016563585A priority patent/JP6353929B2/ja
Priority to US15/533,568 priority patent/US20170333004A1/en
Priority to EP15868469.6A priority patent/EP3231369A1/en
Publication of WO2016093024A1 publication Critical patent/WO2016093024A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • G01S7/52022Details of transmitters for pulse systems using a sequence of pulses, at least one pulse manipulating the transmissivity or reflexivity of the medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, and relates to a technique for generating a shear wave in a subject and evaluating elasticity from its propagation speed.
  • Medical image display devices represented by ultrasound, magnetic resonance (MRI), and X-ray CT (Computed Tomography) are widely used as devices that present in-vivo information in the form of numerical values or images. Yes.
  • an image display device using ultrasonic waves has a higher time resolution than other devices, and has the ability to image a heart under pulsation without bleeding.
  • Ultrasound propagating in the living body of the subject is mainly classified into longitudinal waves and transverse waves, and in many of the technologies installed in the product, that is, the technology to visualize the tissue form and the technology to measure the blood flow velocity, Mainly information on longitudinal waves (sound speed of about 1540 m / s) is used.
  • shear waves shear waves are generated inside the tissue to be measured, and elasticity is evaluated from the propagation velocity.
  • Methods for generating shear waves are broadly divided into mechanical methods and radiation pressure methods.
  • the mechanical system is a system that generates a shear wave by applying a vibration of about 1 kHz to the body surface using a vibrator or the like, and requires a driving device as a vibration source.
  • acoustic radiation pressure is applied to the living body using focused ultrasound that concentrates the ultrasound locally in the tissue, and shear waves are generated by the tissue displacement associated therewith.
  • Both methods are techniques for measuring tissue displacement in a living body accompanying propagation of generated shear waves using ultrasonic waves and evaluating information related to tissue hardness.
  • Patent Documents 1 and 2 relating to an elastic evaluation method using acoustic radiation pressure.
  • a radiating force is generated in a tissue using focused ultrasound, and a shear wave is propagated in the tissue.
  • a plurality of measurement points where ultrasonic transmission / reception is performed are provided in the propagation direction, and a temporal change in tissue displacement is measured.
  • the arrival time of the shear wave at each measurement point is measured using the measurement result of the displacement.
  • the propagation time of the shear wave between the measurement points is calculated, and the velocity is measured.
  • an optimal compression state is detected with respect to strain imaging using static elastography that compresses an inspection object from the outside and displays a displacement generated in the inspection object as a two-dimensional image. About. At this time, the strength of external compression is monitored over time using displacement, and the time phase at which, for example, the maximum displacement is selected from the result, is determined as the optimal time phase for strain imaging.
  • Non-Patent Document 1 When a force is applied to the medium through which shear waves propagate from the outside, elastic deformation, that is, internal stress is generated inside the medium, which affects the acoustic characteristics (for example, propagation velocity) of the shear wave, and is nondestructive such as concrete. It is known in the field of inspection (see Non-Patent Document 1). Specifically, there is a linear relationship between the propagation velocity and stress (or approximately strain), and the proportionality coefficient is described in terms of higher-order elastic constants including the third order. Furthermore, it is known that this proportionality coefficient has direction dependency on the direction of the force (stress axis), and is different depending on the propagation direction of the shear wave and the direction of the medium vibration.
  • the shear wave velocity distribution is constant regardless of the region to be inspected. However, if there is a difference in internal stress depending on the part, a difference also appears in the shear wave velocity distribution, a result different from the actual situation is derived, and the diagnostic accuracy is affected.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus and an elastic evaluation method capable of performing elastic evaluation with high accuracy and high reproducibility by utilizing a change in acoustic characteristics due to internal stress.
  • a transmitter / receiver that transmits / receives first, second, and third ultrasonic waves from a probe that transmits / receives ultrasonic waves to / from an inspection object, and a first ultrasonic wave
  • An image generation unit that generates an image to be inspected based on a received signal as a signal, and a second ultrasonic wave is transmitted to a measurement region set based on the image to generate a shear wave.
  • a velocity measurement unit that measures the ultrasonic wave of the sensor and an elasticity evaluation unit that evaluates the elasticity of the inspection object based on the propagation velocity. In the velocity measurement unit, the velocity measurement unit performs velocity measurement multiple times at the same location.
  • an elastic evaluation method using a probe which generates a shear wave in a measurement region to be inspected and transmits and receives ultrasonic waves from the probe.
  • An elastic evaluation method is provided in which the propagation velocity of shear waves in a measurement region is measured a plurality of times at the same location, and an elasticity evaluation index to be inspected is derived by using changes in the obtained plurality of velocity measurement results.
  • an elasticity evaluation index can be derived with high accuracy and good reproducibility.
  • FIG. 1 is a block diagram illustrating a configuration example of an ultrasonic diagnostic apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the flowchart of the process in the elasticity evaluation part of Example 1.
  • FIG. It is a figure which shows an example of the installation method of the measurement area
  • FIG. It is a figure which shows an example of the test object of Example 1, and an external force source.
  • FIG. It is a figure which shows coexistence of the wavefront measurement and displacement measurement of Example 1.
  • FIG. It is a figure which shows coexistence of the wavefront measurement and displacement measurement of Example 1.
  • FIG. 6 is a diagram illustrating an example of an image of elasticity evaluation index distribution of Example 1.
  • FIG. 6 is a diagram illustrating an example of an image of a change rate of an elasticity evaluation index according to the first embodiment.
  • 6 is a block diagram illustrating one configuration of an ultrasonic diagnostic apparatus according to Embodiment 2.
  • FIG. It is a figure which shows the flowchart which leads to the elasticity evaluation of Example 2.
  • FIG. It is a figure which shows the symmetry of the velocity vector of Example 2.
  • FIG. 10 is a diagram illustrating a first example of two-way transmission according to the second embodiment. It is a figure which shows the 2nd example of the two-way transmission of Example 2.
  • FIG. It is a figure which shows an example of the elasticity evaluation result of Example 2.
  • FIG. 10 is a diagram illustrating an example of a display form of Example 2. It is a figure which shows the calculation method of the stress parameter
  • FIG. 6 is a diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to Embodiment 3.
  • FIG. FIG. 10 is a diagram illustrating a first example of a transmission direction determination method according to the third embodiment. It is a figure which shows the 2nd example of the determination method of the transmission direction of Example 3.
  • FIG. 10 is a diagram illustrating a third example of the transmission direction determination method according to the third embodiment. It is a figure which shows the transmission / reception sequence and utilization method of the ultrasonic wave of Example 3.
  • FIG. FIG. 10 is a diagram illustrating a configuration of an ultrasonic diagnostic apparatus according to a fourth embodiment. It is a figure which shows the flowchart which leads to the elasticity evaluation of Example 4.
  • FIG. It is a figure which shows an example of the elasticity evaluation result of Example 4.
  • the elasticity evaluation index which is numerical information related to the elasticity of the object to be inspected, is displacement, strain, particle velocity, group velocity, phase velocity, damping factor, Young's modulus, stiffness modulus, complex modulus (storage elasticity Modulus, loss elastic modulus), bulk modulus, shear wave velocity, longitudinal wave velocity, viscosity, or Poisson's ratio, etc. explain.
  • the method of exciting a shear wave refers to an excitation source in general that gives vibration to an inspection object such as acoustic radiation pressure, mechanical excitation such as an excitation device, heartbeat, etc.
  • an inspection object such as acoustic radiation pressure, mechanical excitation such as an excitation device, heartbeat, etc.
  • the description will be given by taking an example of a method using acoustic radiation pressure, but is not limited thereto.
  • the external force that applies internal stress to the object to be examined includes examinations such as mechanical vibration using a vibration device, compression using a probe, pressure due to organ movement such as heartbeat, etc.
  • the external force source with respect to the object is indicated in general, the following description will be given by illustrating an external force caused by heartbeat.
  • the inspection target refers to all the mediums through which shear waves propagate, and is basically biological tissue, but is not particularly limited.
  • the following description will be given taking the liver tissue as an example.
  • an index related to the internal stress to be inspected that is, stress, displacement, strain, particle velocity, time corresponding to the magnitude of the stress, and the like are collectively referred to as a stress index.
  • the inspection target is inspected by the transmitter / receiver 13 that transmits / receives the first, second, and third ultrasonic waves from the probe that transmits / receives the ultrasonic waves, and the reception signal of the first ultrasonic signal.
  • a second ultrasonic wave is transmitted to a measurement region set based on the image and an image generation unit 16 that generates a target image to generate a shear wave, and a propagation speed of the shear wave is measured by the third ultrasonic wave.
  • a velocity measuring unit 17 and an elasticity evaluating unit 18 that evaluates the elasticity of the inspection object based on the propagation velocity. The velocity measuring unit 17 performs velocity measurement a plurality of times at the same location.
  • this example is an example in which an elasticity evaluation index to be inspected is output based on a plurality of shear wave propagation velocities measured at different time phases and different internal stress states. Furthermore, the present embodiment further includes a stress index measuring unit 20, which uses a reception signal obtained by transmitting the first ultrasonic wave or the third ultrasonic wave and accompanies an external force to be inspected.
  • An ultrasonic diagnostic apparatus configured to measure a change as a stress index and a reception signal obtained by transmitting the first ultrasonic wave or the third ultrasonic wave are used to measure a change accompanying an external force to be inspected as a stress index. It is an Example of the elasticity evaluation method.
  • the apparatus main body 10 includes a speed measurement unit 17 that transmits and receives the second and third ultrasonic waves to and from the measurement region in the subject and performs shear wave speed measurement,
  • the entire block that performs signal processing based on RF (Radio Frequency) data or video data, including an elastic evaluation unit 18 that performs speed measurement a plurality of times at different time phases and derives an elastic evaluation index based on the result.
  • RF Radio Frequency
  • the apparatus main body 10 can be configured by using a computer such as a normal personal computer (PC) except for the transmission / reception unit 13.
  • PC personal computer
  • an ultrasonic transmission / reception unit 13 that is, an ultrasonic signal is generated with respect to a probe 12 that is installed on the body surface of an inspection object 11 that is a subject and transmits / receives ultrasonic waves.
  • An electric signal for a transmission pulse is transmitted from a transmission beam former (transmission BF) through a digital / analog (D / A) converter.
  • the electrical signal input to the probe 12 is converted from an electrical signal to an acoustic signal by a ceramic element installed therein and transmitted to the inspection object.
  • the transmission is performed by a plurality of ceramic elements, and each element is subjected to a predetermined time delay so as to be focused at a predetermined depth in the inspection object 11 as the subject.
  • reception BF receives a complex RF data from the received ultrasonic signal through an analog-digital (A / D) converter after being converted into an electrical signal in the transmission / reception unit 13, contrary to the time of transmission.
  • a reception beamformer that generates a complex RF data from the received ultrasonic signal through an analog-digital (A / D) converter after being converted into an electrical signal in the transmission / reception unit 13, contrary to the time of transmission.
  • a reception beamformer that generates a complex RF data from the received ultrasonic signal through an analog-digital (A / D) converter after being converted into an electrical signal in the transmission / reception unit 13, contrary to the time of transmission.
  • a / D analog-digital
  • phasing addition which is an addition process considering time delay applied at the time of transmission is performed on signals received by a plurality of elements, and after processing such as attenuation correction, complex RF data is obtained. Generated.
  • the complex RF data is sent to the image generation unit 16 that generates a luminance mode image (B image) indicating the morphological information of the tissue.
  • a series of blocks related to transmission / reception of an ultrasonic signal including a transmission BF, a D / A converter, an A / D converter, and a reception BF are collectively referred to as a transmission / reception unit 13.
  • the control is performed by the control unit 14.
  • the control unit 14 can use a central processing unit (CPU) built in a PC or the like.
  • the memory 15 uses a storage unit built in the PC or the like, and stores various programs executed by the control unit 14 and various data obtained.
  • the RF data output from the transmission / reception unit 13 is element data of one specific line along the ultrasonic transmission / reception direction among the image data finally displayed on the display unit 19.
  • RF data is acquired as all received data as constituent elements of the image data, and the display unit 19 is displayed.
  • the display unit 19 can use a dedicated display device or a display device such as a PC.
  • the result of the elasticity evaluation derived by the elasticity evaluation unit 18 is expressed by a numerical value, a graph, and the like. It is also used to display in the form of images.
  • RF data which is received data acquired from the transmission / reception unit 13, is used in the image generation unit 16 for gain control, logarithmic compression, envelope detection, pixel interpolation and coordinate conversion according to the type of probe, and the like.
  • An image generation process generally used in the diagnostic apparatus is performed, and a B image indicating the form information inside the inspection target is generated.
  • the image generation unit 16 can be configured by a CPU such as a PC or a dedicated image processing integrated circuit (IC).
  • the generated B image is displayed on a display unit 19 that displays signal acquisition conditions, images, and numerical values.
  • the apparatus main body 10 of the present embodiment generates a shear wave in the inspection object 11 and measures the propagation speed thereof, and the inspection object 11 based on the measured propagation speed.
  • a stress index for measuring a stress index such as stress, displacement, strain, particle velocity, time corresponding to the magnitude of the stress, which is an index related to the internal stress of the inspection object 11, and an elasticity evaluation unit 18 for evaluating elasticity
  • a measurement unit 20 is provided.
  • the speed measurement unit 17, the elasticity evaluation unit 18, and the stress index measurement unit 20 can be realized by executing a program by the CPU of the PC described above.
  • FIG. 2 and FIG. 3A are used to show a flowchart of operation processing from setting of a measurement region to elasticity evaluation in the ultrasonic diagnostic apparatus of the present embodiment.
  • the first ultrasonic wave is transmitted / received via the transmission / reception unit 13, and in step 22, the inspection target B image is generated.
  • the surgeon who is the user selects the measurement region 31 for performing the elasticity evaluation. Selection of the position of the measurement region 31 can be performed using the input unit 21 such as a keyboard or a mouse which is an input means of the PC shown in FIG.
  • the size of the measurement region 31 is determined in accordance with the propagation range of the shear wave. That is, regarding the depth direction, the control unit 14 is set to approximately the same as the distribution range of the acoustic radiation pressure, and is generally determined by the aperture, frequency, etc., which are the transmission conditions of the second ultrasound. Regarding the azimuth direction, the control unit 14 is also determined mainly by the attenuation of the generated shear wave, that is, the wavefront amplitude and speed measurement sensitivity. If the transmission sound pressure of the second ultrasonic wave is increased, a high-amplitude shear wave is generated and the propagation distance becomes longer.
  • the transmission sound pressure and wave length (wave number) of the second ultrasonic wave are limited from the viewpoint of safety.
  • a propagation distance of about 10 mm provides both safety and measurement sensitivity.
  • structures such as blood vessels and nodules disturb the shear wave front due to the effects of diffraction, refraction and reflection, and cause velocity measurement.
  • the measurement region 31 is set at a position avoiding these structures.
  • step 24 and step 25 of FIG. 2 generation of shear waves and speed measurement are executed by the speed measurement unit 17.
  • the velocity measuring unit 17 generates shear waves using the second and third ultrasonic waves and measures the propagation velocity thereof.
  • the acoustic radiation pressure is excited inside the inspection object by the second ultrasonic transmission to generate a local displacement.
  • a burst wave having a wave length (wave number) longer than that of an ultrasonic signal used for generating a B image is generally used.
  • a restoring force is applied to the medium to restore the local displacement.
  • the shear stress accompanying the restoring force is the starting point, and the shear wave propagates in a direction (radial direction) orthogonal to the second ultrasonic transmission direction.
  • the shear wave travels while vibrating the medium in a direction orthogonal to the propagation direction, that is, a direction parallel to the second ultrasonic transmission direction.
  • a direction orthogonal to the propagation direction that is, a direction parallel to the second ultrasonic transmission direction.
  • the distance between the measurement points and the time difference between the arrival times are obtained, and as a result, the propagation speed of the shear wave is calculated.
  • two measurement points are assumed and are called a first measurement point and a second measurement point.
  • the arrival time is measured by using the third ultrasonic transmission.
  • the transmission conditions of the third ultrasonic wave are substantially the same as the conditions for generating image data in terms of acoustic parameters such as frequency, wave number, and F number.
  • the conditions of frequency 1 to 5 MHz, wave number 1 to 3 and F number 1 to 2 are used.
  • the displacement measurement of the medium for detecting the shear wave is performed by complex correlation calculation such as Doppler method or speckle tracking method using the received signal (RF data) for the third ultrasonic transmission.
  • ultrasonic waves are continuously transmitted / received to / from the first measurement point, and the time change of the medium displacement is observed.
  • the medium displacement changes greatly as the wavefront arrives at the measurement point. Therefore, the arrival time is calculated from the extreme value of the wavefront, the zero cross point, and the like, which are the wavefront features.
  • the same processing as that at the first measurement point is executed, and the wavefront arrival time at the second measurement point is calculated.
  • PRF pulse transmission repetition frequency
  • the wavefront measurement is not particularly limited as long as it is a medium change that can detect the propagation, and in any case, the arrival time is calculated without any problem.
  • elasticity evaluation is performed in step 26.
  • the liver is close to the heart and receives a stress, which is an external force due to a periodic pulsatile movement of contraction and expansion, in the direction of the stress axis 32.
  • speed measurement is performed a plurality of times, speeds at different pulsation phases (that is, under different stresses) are calculated.
  • velocity measurement is performed a plurality of times, and an elasticity evaluation index (that is, a higher-order elastic constant indicating elasticity nonlinearity, and an index related thereto is considered in consideration of a speed change under different stresses. ) Is derived.
  • the corresponding measurement speeds (V1, V2, V3) are the speed V2 corresponding to the maximum systole, the state of low stress, and the maximum
  • the speed V3 corresponding to the diastole is graphed as shown in FIG.
  • the vertical axis of the graph is the shear wave velocity
  • the horizontal axis is a stress index that is a related index of internal stress.
  • the electrocardiogram is distinguished by waveforms (P, Q, R, S, T, U) according to the behaviors of the ventricle and the atrium. By using this, the relative state regarding the stress state in which each velocity measurement is performed is used. Can be measured.
  • the stress, displacement, strain, particle velocity, time corresponding to the magnitude of the stress, and the like are set as stress indices related to the internal stress.
  • the stress index is derived by the stress index measuring unit 20, and a plurality of means can be considered as the calculation method.
  • the first means is a method for determining the relative magnitude of the internal stress using the three time points (t1, t2, t3) of the electrocardiogram waveform as described above. That is, the stress index measuring unit 20 uses a reception signal obtained by transmitting the first ultrasonic wave or the third ultrasonic wave from the probe 12 and measures a change associated with the external force of the inspection target 11 as a stress index. .
  • the stress index measurement unit 20 derives a stress index based on the electrocardiogram waveform to be examined.
  • the elasticity evaluation unit evaluates the relationship between the plurality of propagation speeds measured by the speed measurement unit 17 and the stress index corresponding to each propagation speed with an approximate straight line, and the inclination angle or speed thereof. The change is used as an elasticity evaluation index.
  • a velocity measurement result that varies periodically is obtained as shown in the upper part of FIG.
  • the maximum speed (Vmax) and the minimum speed (Vmin) can be regarded as speeds corresponding to the maximum and minimum of internal stress due to pulsation. Therefore, for example, by measuring the pulsation period of the subject in advance, as shown in the lower part of FIG.
  • the pulsation period should coincide with the period of the speed measurement result, and the speed measurement and the measurement of the pulsation period can be performed simultaneously.
  • the displacement measurement method uses a general method for measuring the amount of movement of the medium, such as complex correlation calculation or speckle tracking.
  • a one-dimensional signal such as RF data
  • the measured displacement becomes a projection component in the transmission / reception direction of the ultrasonic wave related to the actual displacement.
  • a two-dimensional signal such as a B image
  • the displacement along the stress axis which is the stress direction, can be measured. Therefore, displacement measurement with higher sensitivity can be performed as compared with the case of using a one-dimensional signal.
  • the ultrasonic transmission / reception in the ultrasonic diagnostic apparatus is roughly classified into transmission / reception for the purpose of B image configuration and transmission / reception for the purpose of shear wave velocity measurement.
  • it is necessary to perform it continuously as much as possible, including the time zone for speed measurement.
  • the displacement accompanying the propagation of the shear wave overlaps, so a certain limitation is added.
  • the irradiation time zone of the second ultrasonic wave for exciting the acoustic radiation pressure uses a burst wave, displacement measurement cannot be performed and is avoided.
  • the wavefront propagation range 64 of the shear wave is also limited to this range.
  • the measurement region 31 in FIG. 3A set based on the B image is set in this propagation range. Therefore, the shallow and deep regions viewed from the probe 12 before and after the wavefront measurement region 61 are not affected by the shear wave and can be set as the displacement measurement region 62 derived from pulsation.
  • the burst wave which is the second ultrasonic wave that generates the shear wave, generally ranges from 0.1 millisecond to 1 millisecond and is extremely short compared to the pulsation cycle. That is, according to the above-described method, displacement measurement as continuous as possible can be realized from the generation stage of the B image to the speed measurement stage. Further, when the stress index measurement unit 20 uses a received signal obtained by transmission of the third ultrasonic wave and measures a change associated with the external force to be inspected as a stress index, the shear index is sheared from a region where the third ultrasonic wave propagates. It shows that it is preferable to perform measurement based on a received signal from a region excluding a region where waves propagate.
  • FIG. 6B shows the relationship between the flow of ultrasonic transmission / reception and the corresponding flow of velocity measurement and displacement measurement in the apparatus of this embodiment.
  • the first, second, and third ultrasonic transmissions or receptions are continuously executed, and the first and second measurements that are time measurement time zones.
  • the third ultrasonic transmission / reception time zone Corresponds to the third ultrasonic transmission / reception time zone.
  • An important aspect is the corresponding time zone for displacement measurement.
  • the tissue displacement measurement time zones 65 and 66 are set in parallel with the third ultrasonic transmission / reception time zone, that is, the velocity measurement, and the displacement measurement is executed.
  • the first ultrasonic transmission / reception time zone at the B image generation stage can also be used for tissue displacement measurement. Since the purpose of the tissue displacement measurement is to evaluate the state of the medium at the time when the shear wave is propagating, the displacement measurement in this time zone is not an essential process in carrying out the elasticity evaluation method of the present embodiment. However, the overall background information of the medium obtained by the displacement measurement in this time zone is important for more accurately associating the propagation velocity with the tissue displacement.
  • the elasticity evaluation index is derived by the elasticity evaluation unit 18 from the relationship graph between the stress index obtained by the above-described configuration and the shear wave velocity.
  • FIG. 7 shows an approximate straight line 71 indicating the relationship between the stress index and the shear wave velocity.
  • examples of the elasticity evaluation index include a speed change ⁇ V and an inclination angle ⁇ of the approximate straight line 71.
  • the elasticity evaluation unit 18 evaluates the relationship between the plurality of propagation velocities measured by the velocity measurement unit 17 and the stress index corresponding to each propagation velocity with an approximate line, and the inclination angle or velocity change is evaluated as the elasticity evaluation index. It is shown that it is preferable.
  • FIG. 8A is a diagram showing the influence of internal stress, which is an external force on the liver, in the prior art. Furthermore, when the internal stress changes periodically or aperiodically, the velocity distribution changes depending on the time phase to be measured, and both accuracy and reproducibility are reduced.
  • the speed change due to the magnitude of the internal stress or the inclination angle is used as the elasticity evaluation index.
  • the influence on the time phase to be measured can be reduced, but the influence due to the size of the internal stress due to the part is not avoided.
  • the range of the liver on which the elasticity evaluation is performed is small, the difference in internal stress depending on the site is small, and therefore the use of a speed change is also effective.
  • the inclination angle in order to maintain a constant value with respect to the change in internal stress, that is, with respect to the change of the external force in the arrow direction in FIG.
  • the stress axis 32 of FIG. 3B that is the direction of internal stress is not considered.
  • the increase / decrease (acceleration or deceleration) and quantitative contents of the speed change associated with the internal stress depend on the wavefront propagation direction and the wavefront vibration direction with respect to the stress axis. Therefore, the present embodiment relates to a simple method for deriving an elasticity evaluation index that does not require identification of a stress axis.
  • it is a technology that uses the relative speed change with respect to internal stress as an elasticity evaluation index, for example, when comparing before and after treatment, the location of the probe and the positional relationship between the measurement area and the heart are determined. It is preferable to reduce the influence of the stress axis as uniform as possible.
  • the description is given on the assumption that the examination target is the liver, but there is no particular limitation as long as it is an in vivo tissue.
  • the external force source any factor that acts as an external force on the test target, such as mechanical excitation from the body surface, intravascular pressure, gastrointestinal peristaltic movement, or abdominal cavity internal pressure, in addition to heart beat There is no particular limitation.
  • the present embodiment can be implemented as long as the probe 12 to be used is a device capable of transmitting and receiving ultrasonic waves, and there is no particular limitation on the type of probe such as a linear type, a convex type, and a sector type.
  • the type of probe such as a linear type, a convex type, and a sector type.
  • shear wave velocity can be measured in any direction in space.
  • the method for generating shear waves in this embodiment, the method using the acoustic radiation pressure of the second ultrasonic wave is shown as an example.
  • the method using a device such as a vibrator is used as a shearing target.
  • 8A, 8B, and 8C exemplify the two-dimensional image, but the elasticity evaluation index is measured in a specific region to be inspected and displayed as numerical information. This form is also included as a display form of the present embodiment.
  • an evaluation index related to the elasticity of the test object is derived from the relationship between the internal stress such as the liver and the speed, and the elasticity evaluation function having high accuracy and high reproducibility is provided.
  • An ultrasonic diagnostic apparatus is realized.
  • Example 2 is an example of an ultrasonic diagnostic apparatus having the function of extending the contents of Example 1, propagating shear waves in a plurality of directions that are not changed from each other, and deriving an elasticity evaluation index from a speed change in each direction. It is. That is, the apparatus according to the present embodiment further includes a transmission direction control unit 91 that controls the transmission direction of the ultrasonic waves, and the transmission direction control unit 91 determines a plurality of directions that are not parallel to each other, The ultrasonic wave is transmitted, and the velocity measuring unit 17 is an embodiment having a configuration for measuring the propagation velocity of the shear wave corresponding to the transmission in a plurality of directions.
  • the elasticity evaluation unit 18 evaluates the relationship between the plurality of propagation speeds measured by the speed measurement unit 17 and the stress index corresponding to each propagation speed with an approximate line, and the speed of the intersection of the approximate lines in each propagation direction. It is an Example of the structure which outputs a numerical value as an elasticity evaluation parameter
  • two directions are described as an example as a plurality of directions, but are not limited thereto.
  • the change in shear wave velocity in a plurality of directions is used to derive an elasticity evaluation index excluding the influence of internal stress.
  • the acoustic characteristics of the shear wave change depending on the propagation direction and the vibration direction around the stress axis. For example, it is known that the change in propagation velocity changes approximately linearly with respect to stress and strain. Using this characteristic, an approximate straight line of velocity and stress index is calculated for a shear wave propagating in two directions that are not parallel to each other, and the intersection point is calculated. This intersection means the coincidence of acoustic characteristics, and means a stress-free speed that cannot be reproduced in reality, so that it can be a universal elasticity evaluation index with respect to external force.
  • FIG. 9 shows a configuration example of an ultrasonic diagnostic apparatus according to the second embodiment.
  • the image generation unit 16 that generates the B image used for setting the measurement region, and the acoustic radiation pressure is excited on the inspection target, and the propagation speed of the shear wave is measured.
  • the processing contents of the speed measuring unit 17 are the same as those in the first embodiment, and detailed description thereof is omitted.
  • the speed direction control unit 31 can also be realized by executing a program of a CPU built in the PC or the like described in the first embodiment.
  • the operation processing contents of the apparatus of this embodiment will be described with reference to the flowchart shown in FIG.
  • the B image generation at the beginning (step 101) and the measurement area setting based on the generated B image (step 102) are the same as those in the first embodiment.
  • the speed change with respect to the internal stress is the same for the shear waves in the first and second directions.
  • step 104 a shear wave is generated by transmitting the second ultrasonic wave in the first direction, and then the shear wave velocity V1 is measured by the third ultrasonic wave transmission / reception.
  • step 105 a shear wave is generated by transmitting the second ultrasonic wave in the second direction, and then, the shear wave velocity V2 is measured by the third ultrasonic wave transmission / reception.
  • FIG. 12 is an example of the wavefronts of the shear waves in the first direction, the second direction, and V1 and V2 by the processes in Step 104 and Step 105. In this case, measurement of V1 and V2 is alternately performed a plurality of times.
  • a method of simultaneously transmitting the first ultrasonic waves in the first direction and the second direction is also conceivable.
  • the shear wave propagating in the first and second directions is mixed, but separation is possible by a filter process that extracts a wavefront propagating in a specific direction. According to this method, a significant reduction in measurement time can be expected.
  • FIG. 14 shows the results plotted with respect to the stress index calculated by the method described in Example 1 with respect to the speed measurement results.
  • Linear approximate lines 1401 and 1402 are fitted to the velocity V1 corresponding to the transmission in the first direction and V2 corresponding to the transmission in the second direction, and the intersection 1403 is calculated.
  • the stress index at the intersection 1403 indicates a no-stress state (for example, a state where stress or strain is zero), and the propagation velocity V0 is a numerical value of a shear wave velocity that can be expressed as a no-stress velocity and avoids the influence of internal stress.
  • the propagation velocity V0 is output in step 107 and displayed on the display unit 19. Then, the distribution region of the velocity V0 shown in FIG. 15 is configured by setting the measurement region over the entire liver and sequentially executing the velocity measurement. Unlike the conventional velocity distribution image shown in FIG. 8A, this is a velocity distribution image as an elasticity evaluation index that avoids the influence of internal stress.
  • FIG. 16 shows a first direction and a second direction, and a stress axis 1601 at which the maximum displacement can be obtained.
  • a component vector of displacement accompanying external force along each direction is measured.
  • a displacement vector along the stress axis 1601 is measured by adding the measured component vectors.
  • the positional relationship with the stress axis is not considered in the two directions in which shear waves are generated.
  • the velocity vector has point symmetry with respect to the stress axis. That is, when the first direction and the second direction are set to be equiangular with the stress axis in between, the acoustic characteristics of the speed V1 and the speed V2 are not different, and the speed calculation in the no-stress state is not realized.
  • derivation of the elasticity evaluation index is realized by changing the angle and performing re-measurement.
  • the third embodiment relates to the method for deriving the elasticity evaluation index by the two-way transmission shown in the second embodiment, and optimizes the transmission direction of the second ultrasonic wave for generating the shear wave, and has a highly accurate and highly sensitive elasticity evaluation function.
  • the apparatus according to the present embodiment further includes a stress axis identification unit 171, and the stress axis identification unit 171 uses the first or third ultrasonic wave to maximize the change in the stress index due to the external force.
  • the stress axis is identified, and the stress index measuring unit 20 has a configuration for measuring the stress index on the stress axis.
  • the transmission direction of the second ultrasonic wave determined by the transmission direction control unit 91 has a configuration that is optimized using the stress axis and the transmittable range of the probe 12.
  • the shear wave velocity vector has a point symmetry with respect to the stress axis in the inspection subject receiving the internal stress. That is, by identifying the stress axis in advance, it is possible to determine the optimum direction for calculating the no-stress rate V0.
  • FIG. 17 shows a configuration example of the ultrasonic diagnostic apparatus of this embodiment.
  • the stress axis identification unit 171 is added to the apparatus configuration of the second embodiment shown in FIG.
  • the processing contents of B image generation, shear wave generation, and propagation velocity measurement by the first, second, and third ultrasonic transmissions are the same as those of the first and second embodiments described above. Therefore, the description of the present embodiment focuses on the process from the identification of the stress axis in the stress axis identification unit 171 to the determination of the transmission direction in the transmission direction control unit 91 using the stress axis.
  • the stress axis identification unit 171 can also be realized by executing a program of a CPU built in a PC or the like.
  • the stress axis identification unit 171 various methods have already been proposed, including speckle tracking, for the method of constructing the displacement vector map of the inspection object based on the B image.
  • the stress axis can also be identified by the method. For example, when a tissue under heartbeat is targeted, a displacement vector map in the set measurement region is measured over the pulsation cycle. From the measurement result, for example, the direction in which the maximum displacement vector occurs or the average direction of the displacement vector can be calculated and identified as the stress axis.
  • a method based on ultrasonic transmission / reception in the first and second non-parallel directions shown in FIG. 16 is also practical.
  • the combined vector of the component vectors in each direction is used as the displacement vector, and the stress axis 1601 is identified by the same method as described above.
  • this method as described with reference to FIG. 6B of the first embodiment, it can be combined with shear wave velocity measurement, which is efficient in terms of continuous monitoring of the stress axis. Subsequently, as shown in FIG. 18 to FIG.
  • the second super-optimum which is optimal for the calculation of the stress-free speed, is taken into consideration with the identified stress axis and the orthogonal axis orthogonal thereto and the steering range of the probe 12.
  • Determine the direction of sound wave transmission That is, the transmission direction of the second ultrasonic wave is optimized using the stress axis and the transmittable range of the probe.
  • the first case shown in FIG. 18 is a case where either the stress axis or the orthogonal axis is included in the steering range of the probe 12.
  • the first direction is set along the stress axis or the orthogonal axis included in the steering range.
  • the second direction is set on the far side of both ends of the steering range.
  • the second case shown in FIG. 19 is a case where both the stress axis and the orthogonal axis are included in the steering range of the probe 12.
  • the first direction and the second direction are set along the stress axis and the orthogonal axis.
  • the stress axis and the orthogonal axis are both outside the steering range of the probe 12.
  • the first direction and the second direction are set at both ends of the steering range.
  • FIG. 21 shows timings indicating the correspondence between the flow of transmission / reception regarding the first, second, and third ultrasonic waves, the stress axis identification, for example, measurement of a stress index such as displacement, and shear wave velocity measurement.
  • a stress index such as displacement
  • shear wave velocity measurement An example of a chart is shown.
  • the measurement of the stress index can always be performed except for the second ultrasonic wave, that is, the transmission time zone for generating the shear wave by excitation of the acoustic radiation pressure.
  • the identification of the stress axis is also useful for highly sensitive measurement of the stress index, and the maximum displacement can be targeted by making the displacement measurement region as close as possible to the stress axis.
  • Example 4 relates to an elastic evaluation index derivation method shown in each of the above-described examples, and is an example of an ultrasonic diagnostic apparatus having an elasticity evaluation function that enables viscoelasticity evaluation by frequency analysis.
  • the apparatus according to the present embodiment further includes a frequency analysis unit 221, and the frequency analysis unit 221 has a configuration that performs frequency analysis on the waveform of the measured shear wave and outputs an index having frequency dependency.
  • the elasticity evaluation unit 18 is affected by the stress index from the propagation velocity, the stress index, and the index having frequency dependency based on the outputs from the speed measurement unit 17, the stress index measurement unit 20, and the frequency analysis unit 221.
  • FIG. 22 shows an example of the configuration of the ultrasonic diagnostic apparatus of this embodiment.
  • a frequency analysis unit 221 is newly added to the apparatus configuration of the third embodiment shown in FIG.
  • the processing contents relating to B image generation by first, second, and third ultrasonic transmissions, generation of shear waves, measurement of propagation velocity, and identification of stress axes are described in the first to second embodiments. Same as Example 3. Therefore, the explanation of the present embodiment focuses on the analysis of the relationship between the measured propagation velocity and frequency, and the processing contents of the elasticity evaluation method based on the result and the derivation of the elasticity evaluation index related to the viscoelasticity of the inspection object.
  • the frequency analysis unit 221 can also be realized by program processing in a CPU such as a PC in the above-described embodiment.
  • FIG. 23 shows an example of an operation follow chart of the apparatus of the present embodiment.
  • a B image is generated by the first ultrasonic wave (step 231)
  • a measurement region for generating a shear wave is set based on the B image (step 232)
  • the B image that is, the first image
  • the stress axis is identified based on the ultrasonic transmission / reception signal) (step 233)
  • the first direction and the second direction for transmitting the second ultrasonic wave are determined based on the stress axis and the steering range of the probe 12 (step 233).
  • the shear wave velocity (V1) in the first direction is measured a plurality of times (step 235)
  • the shear wave velocity (V2) in the second direction is measured a plurality of times (step 236).
  • the frequency analysis unit 221 performs frequency analysis on the measurement results (V1 and V2) (step 237), performs elasticity evaluation from the result of the frequency analysis (step 238), and displays it. It outputs to the part 19 (process 239).
  • the frequency analysis in the frequency analysis unit 221 is executed based on the transmission / reception signal of the third ultrasonic wave.
  • numerical values obtained from waveform analysis such as phase velocity and frequency-dependent attenuation are calculated as indices having the frequency dependency of the propagation velocity.
  • the phase velocity is effective information for evaluating the viscosity of the inspection object, and the higher the viscosity of the medium, the more significant the velocity change in the high frequency band.
  • attenuation-related numerical values are also effective information.
  • FIG. 24 illustrates the graph of the relationship between the phase speed and the frequency corresponding to the speeds V1 and V2 in the first direction and the second direction in a certain stress state (when the stress index is ⁇ 1).
  • This relationship graph is information obtained as a result of frequency analysis in the frequency analysis unit 221.
  • the stress index is changed, V1 and V2 are measured in a plurality of stress index states, and the results are subjected to frequency analysis, so that the shear wave velocity and the stress index can be obtained as illustrated in the lower part of FIG.
  • a three-dimensional graph with a frequency axis added is constructed.
  • the phase velocity V0 ( ⁇ ) in the no-stress state V0 has been described above as an example, but the elasticity evaluation unit 18 of the present embodiment is the output of the velocity measurement unit 17, the stress index measurement unit 20, the frequency analysis unit 221 and the like.
  • Propagation velocity, stress index, and frequency-dependent index are obtained as stress-free group velocity, phase velocity, complex elastic modulus (storage elastic modulus) And loss elastic modulus), and frequency-dependent damping.
  • FIG. 25 schematically shows a two-dimensional map of each elasticity evaluation index displayed on the display unit of the apparatus of the present embodiment.
  • 25 (a) is a B image of the liver
  • FIG. 25 (b) is a velocity map (numerical values representing the propagation speed of shear waves, such as group velocity, phase velocity, and no-stress velocity)
  • FIG. 25 (c) is Storage elastic modulus map (real part of complex elastic modulus)
  • FIG. 25 (d) represents loss elastic modulus map (imaginary part of complex elastic modulus)
  • FIG. 25 (e) represents attenuation coefficient (frequency dependent attenuation, etc.). .
  • various results of the elasticity evaluation derived by the elasticity evaluation unit 18 are output and displayed on the display unit 19 in the form of numerical values, graphs, and images. Needless to say, such a two-dimensional map of various results of the elasticity evaluation on the display unit 19 can be displayed not only in this embodiment but also in other embodiments. That is, the display unit 19 is used for displaying the elasticity evaluation index derived by the elasticity evaluation unit of each embodiment as a numerical value, a graph, or an image.
  • Example 4 the phase velocity of the shear wave in an unstressed state, avoiding the influence of internal stress, is calculated, and the elastic evaluation result related to viscoelasticity by frequency analysis is either a numerical value, a graph, or a two-dimensional map.
  • the elastic evaluation result related to viscoelasticity by frequency analysis is either a numerical value, a graph, or a two-dimensional map.
  • an elasticity evaluation index based on a change in speed due to a difference in internal stress of an inspection object is derived, thereby reducing measurement errors due to a part and a time phase, and high accuracy and reproducibility.
  • High elasticity evaluation is realized, and accurate qualitative diagnosis by ultrasound can be expected.
  • the internal pressure in the tumor interior and periphery is often increased due to the effect of tumor enlargement in the state before treatment, but according to the present invention, the internal pressure between the tumor interior or periphery and the normal region is increased.
  • a qualitative evaluation of the tumor can be expected.
  • accurate treatment effect determination can be expected by quantitatively evaluating the change in the tumor pressure before and after treatment.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those provided with all the configurations described above.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • a signal processing unit having both the configuration of FIG. 1 and the configuration of FIG. 2 can be used.
  • ⁇ List 1> First, second, and third ultrasonic waves are transmitted and received from the probe that transmits and receives ultrasonic waves to the inspection target, An image of the inspection object is generated by a reception signal by the first ultrasonic signal, A plurality of speed measurements at the same location are performed at the same location by transmitting the second ultrasonic wave to the measurement region set based on the image to generate a shear wave and measuring the propagation speed of the shear wave by the third ultrasonic wave. Times, Deriving the elasticity evaluation index of the object to be inspected using the change in the plurality of obtained propagation velocity measurement results, The elasticity evaluation method characterized by the above-mentioned.
  • ⁇ List 2> It is the elasticity evaluation method of List 1, Comprising: Using the received signal from the transmission of the first ultrasonic wave or the third ultrasonic wave, the change accompanying the external force of the inspection object is measured as a stress index, The elasticity evaluation method characterized by the above-mentioned.
  • ⁇ List 3> The elasticity evaluation method according to List 2, comprising: The measurement of the stress index by the third ultrasonic wave is performed in a region where the third ultrasonic wave propagates and other than the region where the shear wave propagates.
  • the elasticity evaluation method characterized by the above-mentioned.
  • ⁇ List 4> The elasticity evaluation method according to List 3, The relationship between the measured plurality of propagation speeds and the stress index corresponding to each propagation speed is evaluated with an approximate line, and the inclination angle or speed change is used as the elasticity evaluation index.
  • the elasticity evaluation method characterized by the above-mentioned.
  • An elasticity evaluation unit that generates shear waves in a measurement region to be inspected and is measured by a velocity measurement unit that measures the propagation speed of the shear waves by ultrasonic waves, and evaluates elasticity of the inspection object based on the propagation speed; , Using a reception signal by transmission of the ultrasonic wave, comprising a stress index measurement unit that measures a change associated with an external force of the inspection object as a stress index, and The speed measurement unit performs speed measurement a plurality of times at the same location, and the elasticity evaluation unit derives the elasticity evaluation index of the inspection target by using a plurality of speed measurement result changes and the stress index.
  • An ultrasonic diagnostic apparatus characterized by the above.
  • SYMBOLS 10 Apparatus main body, 11 ... Inspection object, 12 ... Probe, 13 ... Transmission / reception part, 14 ... Control part, 15 ... Memory, 16 ... Image generation part, 17 ... Speed measurement part, 18 ... Elasticity evaluation part, 19 ... Display unit, 20 ... Stress index measurement unit, 21 ... Input unit, 31 ... Measurement region, 32 ... Stress axis, 41 ... ECG waveform, 51 ... Waveform of pulsation period and velocity change, 61 ... Wavefront measurement region, 62 ... Displacement Measurement region, 63 ... Radiation pressure distribution, 64 ... Wavefront propagation range, 65, 66, 67 ... Time zone, 71, 1401, 1402 ... Approximate line, 91 ... Transmission direction control unit, 171 ... Stress axis identification unit, 221 ... Frequency Analysis part, 1601 ... Stress axis

Abstract

内部応力の影響を回避し、高精度で高い再現性を実現する、弾性評価機能を備える超音波診断装置を提供する。検査対象に対し、超音波を送受信する探触子12から第1、第2、第3の超音波を送受信する送受信部13と、第1の超音波による受信信号により画像を生成する画像生成部16と、生成された画像に基づき計測領域を設定し、計測領域に第2の超音波を送信してせん断波を発生し、計測領域に第3の超音波を送受信して得られる受信信号により、せん断波の伝搬速度を算出する速度計測部17と、算出された伝搬速度に基づき検査対象の弾性を評価する弾性評価部18とを備え、速度計測部において、同一個所で複数回の伝搬速度計測を行い、弾性評価部18において、複数回の伝搬速度の計測結果の変化を利用して弾性評価指標を導出する。

Description

超音波診断装置、及び弾性評価方法
 本発明は超音波診断装置に係り、被検体内にせん断波を発生させ、その伝搬速度から弾性を評価する技術に関する。
 超音波やMRI(Magnetic Resonance Imaging)、X線CT(Computed Tomography)に代表される医療用の画像表示装置は、目視できない生体内の情報を数値または画像の形態で提示する装置として広く利用されている。中でも超音波を利用した画像表示装置は、他の装置と比較して高い時間分解能を備えており、拍動下の心臓を滲みなく画像化できる性能を持つ。
 被検体である生体内を伝搬する超音波は主に縦波と横波に区別され、製品に搭載されている多くの技術、すなわち組織形態を映像化する技術や血流速度を計測する技術では、主に縦波(音速約1540m/s)の情報を利用している。
 近年、横波(以降、せん断波)を利用して組織の弾性率を評価するエラストグラフィなどの技術が注目されており、乳腺腫瘍や慢性肝疾患に対して臨床利用が進められている。
この技術では、計測対象となる組織内部にせん断波を発生させ、その伝搬速度から弾性を評価する。せん断波を発生させる手法は、機械方式と放射圧方式に大別される。機械方式は、バイブレータ等を利用して体表面に1kHz程度の振動を与えてせん断波を発生させる方式で、振動源となる駆動装置が必要である。一方、放射圧方式は、超音波を組織内の局所に集中させる集束超音波を利用して生体内に音響放射圧を加え、それに伴う組織変位によってせん断波を発生させる。いずれの方式も、発生したせん断波の伝搬に伴う生体内の組織変位を超音波を利用して計測し、組織の硬さに関する情報を評価する技術である。
 これらに関連する先行技術文献としては、例えば、音響放射圧を利用した弾性評価の手法に関する特許文献1、2がある。
特表2010-526626号公報 特開2014-064912号公報
「音弾性」社団法人 日本非破壊検査協会, P2-P15 (1994年11月20日発行)
 特許文献1に記載の手法においては、集束超音波を利用して組織内に放射力を発生させ、組織内にせん断波を伝搬させる。伝搬方向には超音波送受信を実施する複数の計測地点を設け、組織変位の時間変化を計測する。変位の計測結果を利用して各計測地点におけるせん断波の到来時間を計測する。各計測地点における到来時間を利用して、各計測地点間におけるせん断波の伝搬時間を算出し、速度を計測する。
 特許文献2に記載の手法においては、検査対象を外部から圧迫し、検査対象に発生する変位を2次元画像として表示する静的エラストグラフィを用いた歪イメージングに関し、最適な圧迫状態を検知する手法に関する。この時、外部からの圧迫の強弱を、変位を利用して継時的にモニタリングし、その結果から例えば最大変位となる時相を選択し、歪イメージングに最適な時相として判定する。
 せん断波が伝搬する媒質に外部から力が掛かる場合、媒質内部には弾性変形、即ち内部応力が発生し、せん断波の音響特性(例えば伝搬速度)に影響を及ぼすことが、コンクリートなどの非破壊検査の分野で知られている(非特許文献1参照)。具体的には、伝搬速度と応力(または近似的に歪)に線形的な関係性があり、その比例係数は3次を含む高次の弾性定数で記載される内容である。更に、この比例係数は、力の方向(応力軸)に対する方向依存性を持ち、せん断波の伝搬方向や媒質振動の方向で異なることが知られている。
 生体の軟部組織においても同様の現象が推察され、周辺組織からの外力による内部応力を含む可能性が考えられる。せん断波の伝搬経路に血管や結節が存在する場合、せん断波は回折や屈折の影響を受ける。この組織構造の存在は、画像情報等で確認できる「目に見える」誤差要因である。一方、内部応力による音響特性の変化は、「目に見えない」誤差要因で画像等の情報に基づく回避手段がないため、弾性評価機能の精度低下のみならず、再現性低下にも関わる重要な問題となっている。例えば、均質な弾性率を持つ検査対象であれば、せん断波の速度分布は、検査対象の部位によらず一定となる。しかし、部位によって内部応力に差異がある場合、せん断波の速度分布にも違いが現れ、実態と異なる結果が導出され、診断精度に影響を及ぼす。
 本発明の目的は、内部応力による音響特性の変化を利用し、高精度かつ高い再現性を持つ弾性評価が可能な超音波診断装置、及び弾性評価方法を提供することにある。
 本発明においては、上記目的を達成するため、検査対象に対し、超音波を送受信する探触子から、第1、第2、第3の超音波を送受信する送受信部と、第1の超音波信号による受信信号により検査対象の画像を生成する画像生成部と、画像に基づき設定した計測領域に、第2の超音波を送信してせん断波を発生し、せん断波の伝搬速度を、第3の超音波により計測する速度計測部と、伝搬速度に基づき検査対象の弾性を評価する弾性評価部と、を備え、速度計測部において、同一個所で複数回の速度計測を行い、弾性評価部において、速度計測結果の変化を利用して検査対象の弾性評価指標を導出する超音波診断装置を提供する。
 また、本発明においては、上記目的を達成するため、探触子を用いた弾性評価方法であって、検査対象の計測領域にせん断波を発生し、探触子から超音波を送受信することにより、計測領域のせん断波の伝搬速度を同一箇所で複数回計測し、得られた複数の速度計測結果の変化を利用して検査対象の弾性評価指標を導出する弾性評価方法を提供する。
 本発明により、高精度かつ再現性良く、弾性評価指標を導出できる。
実施例1の超音波診断装置の一構成例を示すブロック図である。 実施例1の弾性評価部における処理のフローチャートを示す図である。 実施例1の計測領域の設置手法の一例を示す図である。 実施例1の検査対象と外力源の一例を示す図である。 実施例1の心電図と速度計測の時点を示す図である。 実施例1の応力指標とせん断波速度の関係を示す図である。 実施例1の応力指標の換算に関する第2の手段を示す図である。 実施例1の波面計測と変位計測の両立を示す図である。 実施例1の超音波の送信シーケンスと利用法を示す図である。 実施例1の弾性評価指標を示す図である。 従来の速度分布の画像の一例を示す図である。 実施例1の弾性評価指標分布の画像の一例を示す図である。 実施例1の弾性評価指標の変化率の画像の一例を示す図である。 実施例2の超音波診断装置の一構成を示すブロック図である。 実施例2の弾性評価に至るフローチャートを示す図である。 実施例2の速度ベクトルの対称性を示す図である。 実施例2の2方向送信の第1例を示す図である。 実施例2の2方向送信の第2例を示す図である。 実施例2の弾性評価結果の一例を示す図である。 実施例2の表示形態の一例を示す図である。 実施例2の応力指標の算出手法を示す図である。 実施例3の超音波診断装置の一構成を示す図である。 実施例3の送信方向の確定手法の第1例を示す図である。 実施例3の送信方向の確定手法の第2例を示す図である。 実施例3の送信方向の確定手法の第3例を示す図である。 実施例3の超音波の送受信シーケンスと利用法を示す図である。 実施例4の超音波診断装置の一構成を示す図である。 実施例4の弾性評価に至るフローチャートを示す図である。 実施例4の弾性評価結果の一例を示す図である。 各実施例の弾性評価結果の表示の一例を示す図である。
 以下、本発明の実施形態を図面に従い説明する。なお、本明細書において、検査対象の弾性に係る数値情報である弾性評価指標は、変位、歪、粒子速度、群速度、位相速度、減衰率、ヤング率、剛性率、複素弾性率(貯蔵弾性率、損失弾性率)、体積弾性率、せん断波速度、縦波速度、粘性率、或いはポアソン比など、組織の物性値全般を指すこととするが、以下の説明はせん断波速度を例示して説明する。
 また、本明細書において、せん断波を励起する手法は、音響放射圧、加振装置などの機械的な加振、心拍動など、検査対象に振動を与える加振源全般を指すが、以下の説明は音響放射圧を利用する方法を例示して説明するが、これに限定されるものではない。更に、本明細書において、検査対象に内部応力を与える外力としては、加振装置を用いた機械的な加振、探触子を利用した圧迫、心拍動など臓器体動に伴う圧力など、検査対象に対する外力源全般を指すが、以下の説明は心拍動による外力を例示して説明する。また更に、本明細書において、検査対象とはせん断波が伝搬する媒質全般を指し、基本的には生体組織であるが、特に限定しない。以下の説明は、肝臓組織を例示して説明する。なお、本明細書において、検査対象の内部応力に関連する指標、すなわち応力、変位、歪、粒子速度、応力の大小に対応する時間など、総称して応力指標と呼ぶ。
 実施例1は、検査対象に対し、超音波を送受信する探触子から、第1、第2、第3の超音波を送受信する送受信部13と、第1の超音波信号による受信信号により検査対象の画像を生成する画像生成部16と、画像に基づき設定した計測領域に、第2の超音波を送信してせん断波を発生し、せん断波の伝搬速度を、第3の超音波により計測する速度計測部17と、伝搬速度に基づき検査対象の弾性を評価する弾性評価部18とを備え、速度計測部17において、同一個所で複数回の速度計測を行い、弾性評価部18において、速度計測結果の変化を利用して検査対象の弾性評価指標を導出する構成の超音波診断装置の実施例である。また、探触子を用いた弾性評価方法であって、検査対象の計測領域にせん断波を発生し、探触子から超音波を送受信することにより、計測領域のせん断波の伝搬速度を、同一箇所で複数回計測し、得られた複数の速度計測結果の変化を利用して検査対象の弾性評価指標を導出する弾性評価方法の実施例である。
 すなわち、本実施例は、異なる時相、異なる内部応力の状態で計測された、複数のせん断波伝搬速度に基づき、検査対象の弾性評価指標を出力する実施例である。更に、本実施例は、応力指標計測部20を更に備え、応力指標計測部20は、第1の超音波、或いは第3の超音波の送信による受信信号を利用し、検査対象の外力に伴う変化を応力指標として計測する構成の超音波診断装置、並びに、第1の超音波、或いは第3の超音波の送信による受信信号を利用し、検査対象の外力に伴う変化を応力指標として計測する弾性評価方法の実施例である。
 図1の超音波診断装置の一構成例を示すブロック図を用いて、本実施例の超音波診断装置、及びその弾性評価方法を説明する。図1の超音波診断装置の構成において、装置本体10は、被検体内の計測領域に第2および第3の超音波を送受信し、せん断波の速度計測を実施する速度計測部17を含み、また、速度計測を異なる時相で複数回実施し、その結果に基づいて弾性評価指標を導出する弾性評価部18を含む、RF(Radio Frequency)データまたはビデオデータに基づく信号処理を実施するブロック全体の総称である。後で説明するように、この装置本体10は、送受信部13を除いて、通常のパーソナルコンピュータ(PC)などのコンピュータを用いることにより構成できる。
 まず本実施例で利用する画像生成に関わる構成について説明する。探触子12を介して実施される画像生成に関する超音波送受信の方式は、一般的に知られる技術内容であるため、その詳細を省略して簡単に説明する。図1に示す様に、被検体である検査対象11の体表面に設置させた、超音波を送受信する探触子12に対して、超音波の送受信部13、すなわち、超音波信号を生成する送信ビームフォーマ(送信BF)から送信パルス用の電気信号がデジタルアナログ(D/A)変換器を経て伝送される。探触子12に入力された電気信号はその内部に設置されたセラミック素子にて、電気信号から音響信号に変換され、検査対象に送信される。送信は複数のセラミック素子で行ない、被検体である検査対象11内の所定の深度で集束するように、各素子には所定の時間遅延が掛けられる。
 検査対象の内部を伝搬する過程で反射した音響信号は再び探触子12にて受信され、送受信部13に送られる。送受信部13の内部で、送信時とは逆に電気信号に変換され、アナログデジタル(A/D)変換器を経て、受信した超音波信号から複素のRFデータを生成する受信ビームフォーマ(受信BF)に受信データとして送られる。受信BFでは、複数の素子で受信した信号に対して、送信時に掛けた時間遅延を考慮した加算処理である整相加算が行なわれ、減衰補正等の処理がなされた後、複素のRFデータが生成される。複素のRFデータは、組織の形態情報を示す輝度モード画像(B画像)を生成する画像生成部16に送られる。以上説明したように、図1においては、送信BF、D/A変換器、A/D変換器、受信BFを含む、超音波信号の送受信に係わる一連のブロックを総称して、送受信部13と呼び、その制御は制御部14で実施される。制御部14は、PC等が内蔵する中央処理部(CPU)を用いることができる。メモリ15は、同様にPC等が内蔵する記憶部を利用し、制御部14で実行される各種のプログラムや、得られた各種のデータを記憶する。
 送受信部13から出力されるRFデータは、最終的に表示部19に表示される画像データのうち、超音波の送受信方向に沿った特定の1ラインの要素データとなる。検査対象に対する超音波の送受信を、探触子12を構成するセラミック素子の配列方向に順次切り替えて実施することにより、画像データの構成要素となる全ての受信データとしてRFデータが取得され、表示部19に表示される。この表示部19は、専用の表示装置やPC等の表示装置を利用することが可能であり、後で説明するように、弾性評価部18にて導出される弾性評価の結果を、数値、グラフ、画像の形態で表示するためにも使用される。
 送受信部13から取得した受信データであるRFデータは画像生成部16において、ゲイン制御、対数圧縮、包絡線検波、探触子の種類に応じた画素補間や座標変換など、普及している超音波診断装置で一般的に用いられている画像生成処理が実施され、検査対象の内部の形態情報を示すB画像が生成される。この画像生成部16は、上述した制御部14同様、PC等のCPUで構成したり、専用の画像処理用集積回路(IC)で構成したりすることができる。生成されたB画像は、信号の取得条件や画像、数値を表示する表示部19に表示される。
 本実施例の装置本体10は、図1に示すように、検査対象11にせん断波を発生させ、その伝搬速度を計測する速度計測部17と、計測された伝搬速度に基づいて検査対象11の弾性を評価する弾性評価部18と、更に、検査対象11の内部応力に関連する指標である、応力、変位、歪、粒子速度、応力の大小に対応する時間などの応力指標を計測する応力指標計測部20を備える。これら速度計測部17、弾性評価部18、応力指標計測部20は、先に説明したPCのCPUによるプログラム実行で実現することができる。
 次に、図2、図3Aを利用して、本実施例の超音波診断装置における、計測領域の設定から弾性評価に至る動作処理のフローチャートを示す。まず工程21では、送受信部13を介して第1の超音波を送受信し、工程22にて検査対象のB画像を生成する。次に、表示部19に表示されたこのB画像に基づき、ユーザである術者は弾性評価を実施する計測領域31を選定する。この計測領域31の位置の選定は、図1に示すPCの入力手段であるキーボードやマウス等の入力部21を用いて行うことができる。
 なお、この計測領域31のサイズは、せん断波の伝搬範囲に対応して決められる。即ち、深度方向に関しては、制御部14が、音響放射圧の分布範囲と同程度とし、第2超音波の送信条件である口径、周波数などで概ね確定する。方位方向に関しては、同じく制御部14が、主に発生したせん断波の減衰、すなわち波面振幅および速度計測の感度で確定する。第2超音波の送信音圧を上げれば高振幅のせん断波が発生し、伝搬距離は長くなる。
 しかしながら生体内での温度上昇を誘発し安全性が確保されなくなるため、第2超音波の送信音圧や波連長(波数)は安全性の観点で制限がかかる。一般的には、約10mm程度の伝搬距離が、安全性と計測感度が両立される。また、計測領域を設定する場所に関しては、血管や結節等の構造物は、回折や屈折、反射の効果により、せん断波の波面を乱し、速度計測の原因となるため、図3Aに示す様に、これら構造物を避けた位置に計測領域31が設定される。
 続いて、図2の工程24、工程25にて、せん断波の発生、および速度計測が速度計測部17で実行される。速度計測部17では、第2、第3の超音波を利用して、せん断波を発生させ、その伝搬速度を計測する。まず第2の超音波送信により検査対象内部に音響放射圧を励起し、局所的な変位を発生させる。この第2の超音波は、B画像の生成に用いられる超音波信号よりも波連長(波数)が長いバースト波が利用されることが、一般的である。第2の超音波送信を停止すると同時に、媒質には局所変位を元に戻そうとする復元力が働く。この復元力に伴うせん断応力が起点となり、第2の超音波送信方向に直交する方向(ラジアル方向)にせん断波が伝搬する。
 せん断波は、伝搬方向と直交する方向、すなわち第2の超音波送信方向に平行な方向に媒質を振動させながら進行する。伝搬方向に複数の計測地点を設け、せん断波の到達時間を計測することにより、各計測地点間の距離、および、到達時間の時間差が求まり、結果としてせん断波の伝搬速度が算出される。なお、図6Aに見るように、本説明では計測地点は2点を想定し、第1計測地点および第2計測地点と呼ぶ。到達時間の計測は、第3の超音波送信を利用して行われる。第3の超音波の送信条件は、周波数、波数、Fナンバなどの音響パラメータは画像データを生成する時の条件とほぼ同じとなる。検査対象が腹部の場合、周波数は1~5MHz、波数は1~3波、Fナンバは1~2の条件が利用される。せん断波を検知するための媒質の変位計測は、第3の超音波送信に対する受信信号(RFデータ)を利用し、ドプラ法、スペックルトラッキング法などの複素相関演算により実行される。
 具体的には、まず第1計測地点に対して連続的に超音波を送受信し、媒質変位の時間変化を観察する。波面計測領域において、計測地点への波面到達と共に、媒質変位は大きく変化するため、その波面特徴量である波面の極値やゼロクロス点などから、到達時間が算出される。第2計測地点においても、第1計測地点と同様の処理を実行し、第2計測地点への波面到達時間が算出される。上記説明では、波面計測を媒質変位で行なうことを想定しているが、超音波の送受信に要する時間であるパルス送信の繰り返し周波数(Pulse Repetition Time:PRF)における媒質変位として捉えれば、媒質の粒子速度と考えることもできる。その他、波面計測においては、その伝搬を検知できる媒質変化であれば特に限定はなく、いずれにおいても到達時間の算出は問題なく実行される。
 計測した伝搬速度に基づき、工程26で弾性評価が実行される。図3Bに示す通り、肝臓は心臓と近接しており、収縮および拡張の周期的な拍動運動による外力である応力を、応力軸32の方向に受けている。この環境において、速度計測を複数回実行すると、異なる拍動時相(すなわち異なる応力下)での速度が算出される。本実施例の弾性評価方法においては、複数回速度計測を実行し、異なる応力下での速度変化を考慮して弾性評価指標(即ち弾性の非線形性を示す高次弾性定数、およびそれに関連する指標)を導出する。
 説明の簡単のため、図4A、4Bの模式図で説明する。拍動運動を心電図(ECG)で表すと、図4AのECG波形41ように、心房の収縮、心室の収縮を経て、心室拡張に至る周期的な運動を繰り返す。肝臓に視点を移すと、心臓が縮む収縮期では外力が小さくなり、内部応力は低下する。一方、心臓が膨らむ拡張期では逆の現象、すなわち外力が大きくなり、内部応力は増加する。例えば心電図上の3つの時点(t1、t2、t3)で速度計測を実施した場合、対応する計測速度(V1、V2、V3)は、最大収縮期に対応する速度V2を応力小の状態、最大拡張期に対応する速度V3を応力大の状態として、図4Bのようにグラフ化される。グラフの縦軸がせん断波速度であり、横軸が内部応力の関連指標である応力指標である。なお、ここでは拡張時にせん断波速度が増加することを想定している。心電図は、心室および心房の挙動に応じて波形(P、Q、R、S、T、U)で区別されており、これを利用することにより、各速度計測が実行された応力状態に関する、相対的な大小関係を測ることができる。
 図4Bのグラフの横軸には、内部応力に関連する応力指標として、上述した応力、変位、歪、粒子速度、応力の大小に対応する時間などが設定される。この応力指標は応力指標計測部20にて導出されるが、その算出方法は複数の手段が考えられる。第1の手段は、上述のように心電図波形の3つの時点(t1、t2、t3)を利用して、内部応力の相対的な大小を判断する方法である。すなわち、応力指標計測部20は、探触子12からの第1の超音波、或いは第3の超音波の送信による受信信号を利用し、検査対象11の外力に伴う変化を応力指標として計測する。また、応力指標計測部20は、検査対象の心電図波形に基づき応力指標を導出する。
 次に図5を用いて、本実施例の応力指標計測部20における応力指標算出の第2の手段として、心電図を利用しない方法について説明する。この第2の手段においては、弾性評価部は、速度計測部17にて計測される複数の伝搬速度と、各伝搬速度に対応する応力指標の関係を近似直線で評価し、その傾き角または速度変化を弾性評価指標とするものである。
 周期的な拍動下にある肝臓において、せん断波の速度計測を断続的に複数回実施した場合、図5の上段に示すように、周期的に変動する速度計測結果が得られる。その最大速度(Vmax)と最小速度(Vmin)は、拍動による内部応力の最大と最小に対応する速度と見なせる。したがって、例えば被検体の拍動周期を予め計測することにより、図5の下段に示すように、応力指標と速度変化の関係グラフの波形51が構成される。拍動周期は、速度計測結果の周期と一致するはずであり、速度計測と拍動周期の計測は、同時に実行することが可能である。
 応力指標計測部20における応力指標算出の第3の手段として、内部応力を直接的に評価して、計測領域の変位を計測する例を説明する。変位計測の方法は、複素相関演算やスペックルトラッキングなど、媒質の移動量を計測する一般的な方法を利用する。RFデータなどの1次元信号を利用する場合、計測される変位は、実際の変位に関する、超音波の送受信方向への射影成分となる。B画像などの2次元信号を利用する場合には、応力方向である応力軸に沿った変位が計測可能なため、1次元信号を利用する場合に比べて高感度な変位計測が可能である。
 本実施例の超音波診断装置における超音波送受信に関しては、B画像構成を目的とする送受信と、せん断波の速度計測を目的とする送受信に大別される。数秒の周期性を持つ拍動に起因する変位を観察するには、速度計測の時間帯を含め、可能な限り連続的に実行することが必要である。しかし、速度計測の段階においては、拍動由来の変位に加えて、せん断波の伝搬に伴う変位が重なるため、一定の制限が加わる。まず、音響放射圧を励起するための、第2の超音波の照射時間帯は、バースト波を利用するため、変位計測は実行できず回避される。
 図6A、図6Bに示すように、せん断波の伝搬を計測する第3の超音波の照射時間帯に関しては、変位計測が可能である。音響放射圧は、深度方向の有限範囲に放射圧分布63を持つため、せん断波の波面伝搬範囲64もこの範囲に限られる。B画像に基づき設定される図3Aの計測領域31は、概ねこの伝搬範囲で設定される。したがって、波面計測領域61の前後である探触子12から見て浅部と深部の領域においては、せん断波の影響を受けないため、拍動由来の変位計測領域62として設定可能である。せん断波を発生させる第2の超音波であるバースト波は一般的に0.1ミリ秒から1ミリ秒の範囲であり、拍動周期に比べて極めて短時間である。即ち上述の方法によれば、B画像の生成段階から、速度計測の段階に至るまで、可能な限り継続的な変位計測が実現する。また、応力指標計測部20が、第3の超音波の送信による受信信号を利用し、検査対象の外力に伴う変化を応力指標として計測する場合、第3の超音波が伝搬する領域から、せん断波が伝搬する領域を除く領域からの受信信号に基づき計測することが好適であることを示している。
 図6Bに、本実施例の装置における超音波送受信の流れと、それに対応する速度計測と変位計測の処理の流れとの関係性を示す。図6Bの上段の送受信の流れに示す様に、第1、第2、第3の超音波送信または受信は連続的に実行され、速度計測の時間帯である第1回目、第2回目の計測は第3の超音波送受信の時間帯に対応する。重要な観点は変位計測の対応時間帯である。同図の下段に示すように、組織変位計測の時間帯65、66は、第3の超音波送受信の時間帯、即ち速度計測と並行して設定して、変位計測が実行される。
 また、破線枠の時間帯67で示すように、B画像生成段階の第1の超音波送受信の時間帯も組織変位計測に活用可能である。組織変位計測の目的は、せん断波が伝搬している時点の媒質の状態評価であるため、この時間帯の変位計測は本実施例の弾性評価方法を実施する上で必須処理ではない。しかし、この時間帯の変位計測で得られる媒質の全体的な背景情報は、伝搬速度と組織変位の対応付けをより高精度に実施する上で重要である。
 以上説明した構成により得られた応力指標と、せん断波速度の関係グラフから、弾性評価部18で弾性評価指標が導出される。図7に、応力指標とせん断波速度との関係示す近似直線71を示す。同図に示す通り、弾性評価指標としては、速度変化ΔV、近似直線71の傾斜角θが挙げられる。線維化などの肝疾患の進行により肝組織の硬化が進むと、拍動に伴う内部応力が低下、または変位低下するため、速度の絶対値は増加するものの、その速度変化は低下する。同時に傾斜角θも鋭角化する。したがって、例えば治療前後で上記のような弾性評価指標を比較することにより、治療の効果判定をサポートする情報が提供される。言い換えるなら、弾性評価部18は、速度計測部17で計測される複数の伝搬速度と、各伝搬速度に対応する応力指標の関係を近似直線で評価し、その傾き角または速度変化を弾性評価指標とすることが好適であることを示している。
 従来技術では、弾性評価指標として、せん断波の伝搬速度が直接的に使われてきた。この場合、内部応力の大小によって伝搬速度が変化し、すなわち図7の矢印Aの方向への変化に対して、伝搬速度は縦軸方向へ変化し、実際には弾性率が均質な検査対象であっても、速度分布に差異が現れる。図8Aは、従来の技術における、肝臓に対する外力である内部応力の影響を示す図である。更に、内部応力が周期的または非周期的に変化する場合においては、計測する時相によって速度分布が変化し、精度と再現性が共に低下する。
 一方、本実施例の方法によれば、内部応力の大小による速度変化、または傾斜角を弾性評価指標とする。速度変化によれば、計測する時相に対する影響は軽減できるが、部位による内部応力の大小による影響は回避されない。弾性評価を実施する肝臓範囲が小さい場合には、部位による内部応力の差異は小さいため、速度変化の利用も有効である。一方、傾斜角に関しては、内部応力の変化に対して一定値を保つため、即ち図7の外力の矢印方向への変化に対して、傾斜角の角度θは不変のため、図8Bに示す様に、傾斜角分布を2次元画像として構成した場合には、内部応力に依らず均質な分布像となる。すなわち、本実施例の弾性評価方法によれば、精度と再現性が高い診断情報の提供が実現される。
更に治療経過に伴う弾性評価指標の変化も臨床的には重要である。そこで、治療前後の弾性評価指標分布の比率を取り、その数値の大小に応じて配色を変更した表示形態(図8C)も有効である。この場合には、図7の傾斜角または速度変化ΔVなど、治療前後の弾性評価指標の比率(相対比較)であれば同様の臨床効果を有する。
 以上説明した実施例1の超音波診断装置、及び弾性評価方法では、内部応力の方向である図3Bの応力軸32を考慮しない構成となっている。実際には、内部応力に伴う速度変化に関し、その増減(加速または減速)や量的内容は、応力軸に対する波面伝搬の方向および波面振動の方向に依存する。そのため、本実施例は、応力軸の同定を必要としない、簡易な弾性評価指標の導出方法に関する内容である。しかしながら、内部応力に対する相対的な速度変化を弾性評価指標として活用する技術であるため、例えば、治療前後の比較を行う場合などでは、探触子の設置場所や、計測領域と心臓の位置関係を可能な限り統一して、応力軸の影響を低減すると好適である。
 以上の実施例1の説明においては、検査対象を肝臓として説明を記載したが、生体内組織であれば、特に限定を設けない。外力源に関しても、心臓の拍動の他、体表部からの機械的な加振や、血管内圧、消化管の蠕動運動、または腹腔の内圧など、検査対象に外力として作用する因子であれば、特に限定を設けない。
 また、使用する探触子12は超音波を送受信できるデバイスであれば本実施例は実行可能であり、リニア型、コンベックス型、セクタ型など探触子の種類に関して、特に限定を設けない。例えば2次元アレイを有する探触子を利用することにより、空間上の任意の方向にてせん断波の速度計測が可能である。更に、せん断波を発生させる方法に関しても、本実施例では第2超音波の音響放射圧を利用する方法を一例として示したが、加振器などのデバイスを利用した方法など、検査対象にせん断応力を発生させられる方式であれば、特に限定を設けない。
また、表示形態に関しては、図8A、図8B、図8Cには2次元画像の形態を例示しているが、検査対象の特定の領域にて弾性評価指標の計測を実行し、数値情報として表示する形態も本実施例の表示形態として含む。
 以上、詳述した実施例1によれば、肝臓等の内部応力と速度の関係性から、検査対象の弾性に関する評価指標が導出され、高精度かつ高い再現性を持つ弾性評価機能を備えた、超音波診断装置が実現される。
 実施例2は、実施例1の内容を拡張し、せん断波を互いに変更でない複数の方向に伝搬させ、各方向の速度変化から弾性評価指標を導出する機能を備えた超音波診断装置の実施例である。すなわち、本実施例の装置は、超音波の送信方向を制御する送信方向制御部91を更に備え、送信方向制御部91は、互いに平行でない複数方向を確定して、当該複数方向に第2の超音波を送信し、速度計測部17は、複数方向の送信に対応するせん断波の伝搬速度を計測する構成の実施例である。更に、弾性評価部18は、速度計測部17で計測される複数の伝搬速度と、各伝搬速度に対応する応力指標の関係を近似直線で評価し、各伝搬方向に係る近似直線の交点の速度数値を弾性評価指標として出力する構成の実施例である。ここでは複数の方向として例示的に2方向で説明するが、それに限定されるものでない。
 なお、本実施例で複数の方向のせん断波の速度変化を用いるのは、内部応力の影響を排除した弾性評価指標を導出することにある。前述したように、せん断波の音響特性は、応力軸を中心に伝搬方向や振動方向によって変化する。そして、例えば伝搬速度の変化は、応力や歪に対して近似的には線形的に変化することが知られている。この特性を利用し、互いに平行でない2方向に伝搬するせん断波に関して、速度と応力指標の近似直線を算出し、その交点を算出する。この交点は音響特性の一致を意味し、現実には再現できない無応力状態の速度を意味するため、外力に対して普遍的な弾性評価指標とすることができる。
 以下、図面に従い、実施例2に関する詳細説明を行う。図9は実施例2に係る超音波診断装置の構成例を示している。同図において、送信方向制御部91を除いて、計測領域の設定に利用するB画像を生成する、画像生成部16、及び、検査対象に音響放射圧を励起し、せん断波の伝搬速度を計測する、速度計測部17の処理内容は実施例1と同様であり、詳細説明は省略する。なお、速度方向制御部31も、実施例1で説明したPC等が内蔵するCPUのプログラム実行によって実現することができる。
 本実施例の装置の動作処理内容に関して、図10に示すフローチャートに従って説明する。冒頭部分のB画像生成(工程101)、生成したB画像に基づく計測領域の設定(工程102)は実施例1と同じである。
 続いて、音響放射圧を励起するための第2超音波の送信方向を確定する(工程103)。第1方向と第2方向が成す角度をθとすれば、まず内部応力に対する音響的特性から、0度<θ<=90度の条件を満たす必要がある。これは、図11の上段に示すように、2次元空間では、応力軸および直交軸に対する速度ベクトルの線対称性(V=Va=Vb=Vc)、また下段に示す様に、3次元空間では、応力軸に対する回転対称性および直交面に対する面対称性から、規定される条件である。例えばθ=0度であれば、第1および第2方向のせん断波に関し、内部応力に対する速度変化は同一となる。第1方向を0度とし、第2方向をθ=100度に設定した場合、第2方向に伝搬するせん断波の音響特性は、θ=80度のそれと同一となる。また、2方向に伝搬するせん断波の音響特性の差異を最大にするには、θを可能な限り90度に近づけることが有効である。
 次に、考慮すべき条件は、探触子12にて送信可能な角度(ステアリング範囲)である。ステアリング範囲は、基本的にサイドローブの影響が発生しない範囲として規定される。即ち、ステアリング範囲が90度以上であれば、θ=90度として第1方向および第2方向が確定する。一方、ステアリング範囲が90度未満であれば、θは可能な限り大きく設定する観点から、第1方向および第2方向は、ステアリング範囲の両端に確定される。
 次に、工程104にて第1方向に対する第2超音波の送信により、せん断波が発生され、続いて第3の超音波送受信によりせん断波速度V1が計測される。次に、工程105にて第2方向に対する第2超音波の送信により、せん断波が発生され、続いて第3の超音波送受信によりせん断波速度V2が計測される。
 図12は、工程104および工程105の処理による第1方向、第2方向、及びV1およびV2のせん断波の波面の一例である。この場合、V1およびV2の計測は、交互に複数回実施される。
 図13に示す様に、2方向に伝搬するせん断波を計測する手法としては、第1方向および第2方向に第1超音波を同時に送信する手法も考えられる。この場合、第1、第2方向に伝搬するせん断波が混在した状態になるが、特定の方向に伝搬する波面を抽出するフィルタ処理により、分離が可能である。この方式によれば、計測時間の大幅な短縮が期待できる。
 以上の方法により計測した、せん断波速度V1およびV2に基づき、弾性評価が実行される(工程106)。速度計測の結果に関し、実施例1に記載した方法により算定した応力指標に対してプロットした結果を図14に示す。第1方向の送信に対応する速度V1、および第2方向の送信に対応するV2に関して、線形的な近似直線1401、1402をフィッティングし、その交点1403を算出する。交点1403の応力指標は無応力状態(例えば、応力または歪がゼロの状態)を示し、伝搬速度V0は、無応力速度と表現できる、内部応力の影響を回避したせん断波速度の数値となる。この伝搬速度V0は工程107にて出力され、表示部19に表示される。そして、計測領域を肝臓全体に設置し、速度計測を順次実行することにより、図15に示す速度V0の分布像が構成される。これは、図8Aに示した従来の速度分布像とは異なり、内部応力の影響を回避した弾性評価指標としての速度分布像となる。
 応力指標の算出に関しては、実施例1に記載の方法で実現可能であるが、本実施例の2方向への送信を活用した方式が追加で考えられる。図16には第1方向と第2方向、および最大変位が得られる応力軸1601が図示されている。第1方向および第2方向への超音波送受信により、各方向に沿う、外力に伴う変位の成分ベクトルが計測される。計測した成分ベクトルの合算により、応力軸1601に沿う変位ベクトルが計測される。
 本実施例においては、せん断波を発生させる2方向に関し、応力軸との位置関係については考慮されていない。図11に示すように速度ベクトルは応力軸に対して点対称性を持つ。即ち、応力軸を挟む形で、第1方向および第2方向が等角に設定された場合、速度V1および速度V2の音響特性に差異が出ず、無応力状態の速度算出が実現しない。本実施例の実現において、この様な状況が発生した場合には、角度を変えて再計測することにより、弾性評価指標の導出が実現される。
 以上、詳述した実施例2によれば、内部応力を影響を回避した無応力状態におけるせん断波速度の推定が可能であり、これを弾性評価指標として数値表示または画像表示することにより、高精度かつ高い再現性を持つ弾性評価機能を備えた、超音波診断装置の提供が実現される。
 実施例3は、実施例2に示した2方向送信による弾性評価指標の導出手法に関し、せん断波を発生させるための第2超音波の送信方向を最適化し、高精度かつ高感度な弾性評価機能を備えた、超音波診断装置の実施例である。すなわち、本実施例の装置は、応力軸同定部171を更に備え、応力軸同定部171で、第1または第3の超音波を利用して、外力に起因する応力指標の変化が最大となる応力軸を同定し、応力指標計測部20は、この応力軸上で応力指標を計測する構成を有する。更に、送信方向制御部91で確定される第2の超音波の送信方向は、この応力軸と探触子12の送信可能範囲を用いて最適化される構成を備える。
 図11に示したように、内部応力を受ける検査対象において、せん断波の速度ベクトルは、応力軸に対して点対称性を持つ。即ち、応力軸を予め同定することにより、無応力速度V0を算定する上で最適な方向を確定できる。
 図17に本実施例の超音波診断装置の構成例を示す。図9に示した実施例2の装置構成に応力軸同定部171が追加された構成となっている。第1、第2、第3の超音波送信によるB画像生成、せん断波の発生、伝搬速度の計測の処理内容は、これまでに説明した実施例1ないし実施例2と同じである。したがって、本実施例の説明は、応力軸同定部171における応力軸の同定から、この応力軸を利用した送信方向制御部91での送信方向の確定に至る処理に重点を置く。なお、この応力軸同定部171も、PC等が内蔵するCPUのプログラム実行で実現することが可能である。
 まず応力軸同定部171における応力軸の同定に関し、B画像をベースにした検査対象の変位ベクトルマップを構成する手法に関しては、スペックルトラッキングを始め、様々な方式が既に提案されており、いずれの方式によっても応力軸の同定は実現する。例えば心拍動下の組織を対象にする場合、設定した計測領域内の変位ベクトルマップを拍動周期に渡り計測する。その計測結果から、例えば最大変位ベクトルが発生する方向、または変位ベクトルの平均的方向を算出し、応力軸として同定することができる。
 別の簡易的手法として、図16に示す平行でない第1、第2の二方向への超音波送受信による方式も実用的である。各方向の成分ベクトル(変位ベクトルの射影成分)の合成ベクトルを変位ベクトルとし、上述と同様の方法で応力軸1601を同定する。この方式では、実施例1の図6Bで説明した通り、せん断波の速度計測と兼ねることが可能であり、応力軸の継続的なモニタリングの観点で効率的である。続いて、図18-図20に示すように、同定された応力軸とそれに直交する直交軸、および探触子12のステアリング範囲を勘案し、無応力速度の算定に最適な、第2の超音波の送信方向を確定する。すなわち、この第2の超音波の送信方向は、応力軸と探触子の送信可能範囲を用いて最適化される。
 図18に示す第1のケースは、応力軸または直交軸のいずれか一方が、探触子12のステアリング範囲に含まれる場合である。まずステアリング範囲に含まれる応力軸または直交軸に沿って、第1方向が設定される。続いて、その第1方向を起点に、ステアリング範囲の両端のうち、遠方側に第2方向が設定される。
 図19に示す第2のケースは、応力軸および直交軸の両方が、探触子12のステアリング範囲に含まれる場合である。この場合、応力軸および直交軸に沿って、第1方向および第2方向が設定される。
 図20に示す第3のケースは、応力軸および直交軸が、共に探触子12のステアリング範囲の外にある場合である。この場合、ステアリング範囲の両端において、第1方向および第2方向が設定される。
 最後に、図21に、第1、第2、第3の超音波に関する送受信の流れ、および、応力軸の同定、例えば変位などの応力指標の計測、せん断波の速度計測の対応関係を示すタイミングチャートの一例を示す。図6Bでも説明したように、図21に示す通り、応力指標の計測は、第2の超音波、すなわち、音響放射圧の励起によるせん断波発生の送信時間帯以外は常に実行可能である。
 本実施例に基づき、第2の超音波の最適な送信方向を確定することにより、第1方向に対応する速度V1、および第2方向に対応する速度V2の、応力指標の変化に対する変化の違いが最大化し、無応力速度V0を算定精度が向上する。更に、応力軸の同定は、応力指標の高感度計測にも有用であり、変位計測の領域を応力軸に可能な限り近接させることにより、最大変位を対象にすることができる。
 以上、詳述した実施例3によれば、内部応力の影響を回避した、無応力状態におけるせん断波速度を高精度かつ高感度に推定でき、これを弾性評価指標として数値表示または画像表示することにより、高精度かつ高い再現性を持つ弾性評価機能を備えた、超音波診断装置、弾性評価方法の提供が実現される。
 実施例4は、上述した各実施例に示した弾性評価指標の導出手法に関し、周波数解析により粘弾性評価を可能とする弾性評価機能を備えた、超音波診断装置の実施例である。本実施例の装置にあっては、周波数解析部221を更に備え、周波数解析部221は、計測されるせん断波の波形を周波数解析し、周波数依存性を有する指標を出力する構成を有する。更に、弾性評価部18は、速度計測部17、応力指標計測部20、および周波数解析部221からの出力に基づき、伝搬速度と応力指標と周波数依存性を有する指標から、応力指標の影響を受けない、伝搬速度と周波数の関係性を導出して無応力位相速度とし、この無応力位相速度の周波数依存性に基づき、検査対象の粘弾性に係わる弾性評価指標を導出して出力する構成を備える。
 図22に本実施例の超音波診断装置の一構成例を示す。同図に明らかなように、図17に示した実施例3の装置構成に、周波数解析部221が新たに追加された構成となっている。第1、第2、第3の超音波送信によるB画像生成、せん断波の発生、伝搬速度の計測、応力軸の同定に関する処理内容は、これまでに説明した実施例1ないし実施例2ないし実施例3と同じである。したがって、本実施例の説明は、計測された伝搬速度と周波数の関係性の解析、および、その結果に基づく、検査対象の粘弾性に係わる弾性評価指標の導出による弾性評価手法の処理内容に重点を置く。なお、この周波数解析部221も、上述した実施例におけるPC等のCPUにおけるプログラム処理により実現することができる。
 図23に本実施例の装置の動作フォローチャートの一例を示す。まず、第1の超音波によりB画像を生成し(工程231)、前記B画像に基づきせん断波を発生させる計測領域の設定し(工程232)、前記計測領域において、前記B画像(即ち第1の超音波送受信信号)に基づき応力軸を同定し(工程233)、前記応力軸と探触子12のステアリング範囲に基づき第2超音波を送信する第1方向および第2方向を確定し(工程234)、第1方向に関するせん断波の速度(V1)の計測を複数回実行し(工程235)、続いて第2方向に関するせん断波の速度(V2)の計測を複数回実行する(工程236)。
 そして、本実施例においては、周波数解析部221において、この計測結果(V1およびV2)について周波数解析を実行し(工程237)、周波数解析の結果から、弾性評価を実行し(工程238)、表示部19へ出力する(工程239)。
 周波数解析部221における周波数解析は、第3の超音波の送受信信号に基づき実行されるものである。周波数解析を高精度化するには、せん断波の伝搬方向に設置する計測地点を短い間隔で多数設定することが望まれる。検査対象を伝搬するせん断波の周波数解析により、伝搬速度の周波数依存性を有する指標として、位相速度や周波数依存減衰などの波形解析から求まる数値が算出される。一般的に、位相速度は検査対象の粘性を評価する上で有効な情報であり、粘性が高い媒質であるほど、高周波帯域にて速度変化が顕著になる。同じく、減衰に関しても高周波帯域ほど減衰は顕著になるため、周波数依存減衰に関する数値も有効な情報である。
 図24の上段に、ある応力状態(応力指標:σ1の時)における、第1方向、第2方向の速度V1、V2に対応する位相速度と周波数の関係グラフを例示する。この関係グラフが、周波数解析部221における周波数解析の結果で得られる情報である。これを念頭に応力指標を変化させ、複数の応力指標の状態において、V1およびV2を計測し、その結果を周波数解析することにより、図24の下段に例示するようにせん断波速度、応力指標に周波数軸が追加された3次元のグラフが構成される。同図の下段に例示するグラフから判るように、第1方向の速度(V1)および第2方向の速度(V2)はそれぞれ面として描画され、その交線が無応力状態V0の位相速度V0(ω)(fを周波数として、ω=2πf)として算出される。
 以上、無応力状態V0の位相速度V0(ω)を例に説明したが、本実施例の弾性評価部18で、速度計測部17、応力指標計測部20、周波数解析部221等の出力である、伝搬速度と応力指標と周波数依存性を有する指標(位相速度や周波数依存減衰など波形解析から求まる数値)得られる情報としては、無応力状態の群速度、位相速度、複素弾性率(貯蔵弾性率および損失弾性率)、周波数依存減衰、が挙げられる。これらは全て検査対象の弾性に関連する弾性評価指標であり、各指標の数値、グラフ、2次元マップとして表示部19に表示することは、検査対象の質的診断をサポートする診断情報として有効である。
 図25には、本実施例の装置の表示部に表示される各弾性評価指標の2次元マップを模式的に示す。図25の(a)は肝臓のB画像、図25の(b)は速度マップ(群速度、位相速度、無応力速度など、せん断波の伝搬速度を表す数値)、図25の(c)は貯蔵弾性率マップ(複素弾性率の実部)、図25の(d)は損失弾性率マップ(複素弾性率の虚部)、図25の(e)は減衰率(周波数依存減衰など)を表す。このように、弾性評価部18にて導出される弾性評価の種々の結果は、数値、グラフ、画像の形態で表示部19に出力され表示される。なお、このような表示部19における弾性評価の種々の結果の2次元マップは、本実施例のみならず、他の実施例においても表示可能であることは言うまでもない。すなわち、表示部19は、各実施例の弾性評価部にて導出される弾性評価指標を、数値、グラフ、或いは画像として表示するための利用される。
 実施例4によれば、内部応力の影響を回避した、無応力状態におけるせん断波の位相速度を算出し、周波数解析による粘弾性に関する弾性評価結果を、数値、グラフ、2次元マップのいずれか、または組み合わせて表示することにより、高精度かつ高い再現性を持つ弾性評価機能を備えた、超音波診断装置の提供が実現される。
 以上詳述した本発明により、検査対象の内部応力の違いに起因する速度変化に基づく、弾性評価指標が導出されることにより、部位や時相による計測誤差を軽減し、高精度かつ再現性が高い弾性評価が実現し、超音波による正確な質的診断が期待できる。
 特に、慢性的に進行する疾患の場合、治療介入の判断や、治療効果を判定する上で、組織弾性に関する中長期的な観察が必要となるが、本発明における精度と再現性は臨床的に有用な効果となる。
 また腫瘍を想定する場合、治療前の状態では腫瘍内部および周辺部は、腫瘍肥大の影響により内部圧力が高くなることが多いが、本発明により、腫瘍内部または周辺部と、正常領域との内圧の違いを評価することで、腫瘍の質的評価が期待できる。また、治療前後にて、同じく腫瘍内圧の変化を定量的に評価することにより、正確な治療効果判定が期待できる。
 以上、本発明の種々の実施の形態を説明してきたが、本発明は上述した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることが可能である。例えは、図1の構成と図2の構成を合わせ持つ信号処理部を利用することができる。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 更に、上述した各構成、機能、処理部等は、それらの一部又は全部を実現するプログラム実行するPC等のCPUを用いる例を中心に説明したが、例えばそれらの一部又は全部を例えば機能を特化したICを設計する等により専用ハードウェアで実現しても良いことは言うまでもない。
 以上詳述した各種の実施例には、特許請求の範囲に記載された発明のみならず、種々の発明が開示されている。それらの一部を下記に列記する。
 <列記1>
検査対象に対し、超音波を送受信する探触子から、第1、第2、第3の超音波を送受信し、
前記第1の超音波信号による受信信号により前記検査対象の画像を生成し、
前記画像に基づき設定した計測領域に、前記第2の超音波を送信してせん断波を発生し、前記せん断波の伝搬速度を前記第3の超音波により計測する速度計測を、同一箇所で複数回計測し、
得られた複数の伝搬速度計測結果の変化を利用して前記検査対象の弾性評価指標を導出する、
ことを特徴とする弾性評価方法。
 <列記2>
列記1に記載の弾性評価方法であって、
前記第1の超音波、或いは前記第3の超音波の送信による受信信号を利用し、前記検査対象の外力に伴う変化を応力指標として計測する、
ことを特徴とする弾性評価方法。
 <列記3>
列記2に記載の弾性評価方法であって、
前記第3の超音波による応力指標の計測は、前記第3の超音波が伝搬する領域であって、前記せん断波が伝搬する領域以外の領域で実行する、
ことを特徴とする弾性評価方法。
 <列記4>
列記3に記載の弾性評価方法であって、
計測される複数の前記伝搬速度と、各伝搬速度に対応する前記応力指標の関係を近似直線で評価し、その傾き角または速度変化を前記弾性評価指標とする、
ことを特徴とする弾性評価方法。
 <列記5>
検査対象の計測領域にせん断波を発生し、前記せん断波の伝搬速度を、超音波により計測する速度計測部で計測された、前記伝搬速度に基づき前記検査対象の弾性を評価する弾性評価部と、
前記超音波の送信による受信信号を利用し、前記検査対象の外力に伴う変化を応力指標として計測する応力指標計測部と、を備え、
前記速度計測部において、同一個所で複数回の速度計測を行い、前記弾性評価部において、複数の速度計測結果の変化と前記応力指標を利用して、前記検査対象の弾性評価指標を導出することを特徴とする超音波診断装置。
10…装置本体,11…検査対象,12…探触子,13…送受信部,14…制御部,15…メモリ,16…画像生成部,17…速度計測部,18…弾性評価部,19…表示部,20…応力指標計測部,21…入力部,31…計測領域,32…応力軸,41…ECG波形,51…拍動周期と速度変化の波形,61…波面計測領域,62…変位計測領域,63…放射圧分布,64…波面伝搬範囲,65、66、67…時間帯,71、1401、1402…近似直線,91…送信方向制御部,171…応力軸同定部,221…周波数解析部,1601…応力軸

Claims (15)

  1. 検査対象に対し、超音波を送受信する探触子から、第1、第2、第3の超音波を送受信する送受信部と、
    前記第1の超音波信号による受信信号により前記検査対象の画像を生成する画像生成部と、
    前記画像に基づき設定した計測領域に、前記第2の超音波を送信してせん断波を発生し、前記せん断波の伝搬速度を、前記第3の超音波により計測する速度計測部と、
    前記伝搬速度に基づき前記検査対象の弾性を評価する弾性評価部と、を備え、
    前記速度計測部において、同一個所で複数回の速度計測を行い、前記弾性評価部において、速度計測結果の変化を利用して前記検査対象の弾性評価指標を導出する、
    ことを特徴とする超音波診断装置。 
  2. 請求項1に記載の超音波診断装置であって、
    応力指標計測部を更に備え、
    前記応力指標計測部は、前記第1の超音波、或いは前記第3の超音波の送信による受信信号を利用し、前記検査対象の外力に伴う変化を応力指標として計測する、
    ことを特徴とする超音波診断装置。
  3. 請求項2に記載の超音波診断装置であって、
    前記応力指標計測部は、前記検査対象の心電図波形に基づき前記応力指標を導出する、
    ことを特徴とする超音波診断装置。
  4. 請求項2に記載の超音波診断装置であって、
    前記応力指標計測部は、前記第3の超音波を利用する前記応力指標を、前記第3の超音波が伝搬する領域から、前記せん断波が伝搬する領域を除く領域からの受信信号に基づき計測する、
    ことを特徴とする超音波診断装置。
  5. 請求項2に記載の超音波診断装置であって、
    前記弾性評価部は、前記速度計測部にて計測される複数の前記伝搬速度と、各伝搬速度に対応する前記応力指標の関係を近似直線で評価し、その傾き角または速度変化を前記弾性評価指標とする、
    ことを特徴とする超音波診断装置。
  6. 請求項2に記載の超音波診断装置であって、
    前記超音波の送信方向を制御する送信方向制御部を更に備え、
    前記送信方向制御部は、互いに平行でない複数方向を確定して、前記複数方向に前記第2の超音波を送信し、
    前記速度計測部は、前記複数方向の送信に対応する前記せん断波の伝搬速度を計測する、ことを特徴とする超音波診断装置。
  7. 請求項6に記載の超音波診断装置であって、
    前記弾性評価部は、前記速度計測部にて計測される複数の前記伝搬速度と、各伝搬速度に対応する前記応力指標の関係を近似直線で評価し、各伝搬方向に係る前記近似直線の交点の速度数値を前記弾性評価指標として出力する、
    ことを特徴とする超音波診断装置。
  8. 請求項6に記載の超音波診断装置であって、
    応力軸同定部を更に備え、
    前記応力軸同定部で、前記第1または第3の超音波を利用して、外力に起因する前記応力指標の変化が最大となる応力軸を同定し、
    前記応力指標計測部は、前記応力軸上で前記応力指標を計測する、
    ことを特徴とする超音波診断装置。
  9. 請求項8に記載の超音波診断装置であって、
    前記送信方向制御部で確定される前記第2の超音波の送信方向は、前記応力軸と前記探触子の送信可能範囲を用いて最適化される、
    ことを特徴とする超音波診断装置。
  10. 請求項2に記載の超音波診断装置であって、
    周波数解析部を更に備え、
    前記周波数解析部は、計測される前記せん断波の波形を周波数解析し、周波数依存性を有する指標を出力する、
    ことを特徴とする超音波診断装置。
  11. 請求項10に記載の超音波診断装置であって、
    前記弾性評価部は、前記速度計測部、前記応力指標計測部、および前記周波数解析部の出力に基づき、応力指標の影響を受けない前記伝搬速度と周波数の関係性を導出して無応力位相速度とし、前記無応力位相速度の周波数依存性に基づき、前記検査対象の粘弾性に係わる弾性評価指標を導出する、
    ことを特徴とする超音波診断装置。
  12. 請求項1に記載の超音波診断装置であって、
    表示部を更に備え、
    前記表示部は、前記弾性評価部にて導出される前記弾性評価指標を、数値、グラフ、或いは画像として表示する、
    ことを特徴とする超音波診断装置。
  13. 請求項1に記載の超音波診断装置であって、
    前記弾性評価指標は、前記検査対象の変位、歪、粒子速度、群速度、位相速度、減衰率、ヤング率、剛性率、複素弾性率(貯蔵弾性率、損失弾性率)、体積弾性率、せん断波速度、縦波速度、粘性率、或いはポアソン比で得られる、物質の弾性に係わる数値情報である、
    ことを特徴とする超音波診断装置。
  14. 探触子を用いた弾性評価方法であって、
    検査対象の計測領域にせん断波を発生し、
    前記探触子から超音波を送受信することにより、前記計測領域の前記せん断波の伝搬速度を、同一箇所で複数回計測し、
    得られた複数の速度計測結果の変化を利用して前記検査対象の弾性評価指標を導出する、ことを特徴とする弾性評価方法。
  15. 請求項14に記載の弾性評価方法であって、
    前記第1の超音波、或いは前記第3の超音波の送信による受信信号を利用し、前記検査対象の外力に伴う変化を応力指標として計測する、
    ことを特徴とする弾性評価方法。
PCT/JP2015/082206 2014-12-08 2015-11-17 超音波診断装置、及び弾性評価方法 WO2016093024A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580065906.4A CN106999162B (zh) 2014-12-08 2015-11-17 超声波诊断装置以及弹性评价方法
JP2016563585A JP6353929B2 (ja) 2014-12-08 2015-11-17 超音波診断装置、及び弾性評価方法
US15/533,568 US20170333004A1 (en) 2014-12-08 2015-11-17 Ultrasound Diagnostic Device and Elasticity Evaluation Method
EP15868469.6A EP3231369A1 (en) 2014-12-08 2015-11-17 Ultrasound diagnostic device and elasticity evaluation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014248132 2014-12-08
JP2014-248132 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016093024A1 true WO2016093024A1 (ja) 2016-06-16

Family

ID=56107218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082206 WO2016093024A1 (ja) 2014-12-08 2015-11-17 超音波診断装置、及び弾性評価方法

Country Status (5)

Country Link
US (1) US20170333004A1 (ja)
EP (1) EP3231369A1 (ja)
JP (1) JP6353929B2 (ja)
CN (1) CN106999162B (ja)
WO (1) WO2016093024A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006213A (ja) * 2015-06-17 2017-01-12 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
JPWO2016093024A1 (ja) * 2014-12-08 2017-09-21 株式会社日立製作所 超音波診断装置、及び弾性評価方法
JP2021522004A (ja) * 2018-05-03 2021-08-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 組織弾性モニタリング及び表示のためのせん断波振幅再構成
JP2021528157A (ja) * 2018-06-27 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的粘度の剪断波検出 、関連するデバイス、システム、及び方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658085B2 (ja) * 2016-02-26 2020-03-04 コニカミノルタ株式会社 超音波診断装置、超音波診断装置の制御方法及びプログラム
US11426146B2 (en) * 2017-09-08 2022-08-30 Samsung Medison Co., Ltd. Ultrasound imaging apparatus and control method thereof
JP6996035B2 (ja) * 2017-11-02 2022-01-17 富士フイルムヘルスケア株式会社 超音波診断装置、および、生体組織の物性評価方法
US11576654B2 (en) * 2017-12-21 2023-02-14 Samsung Medison Co., Ltd. Ultrasound diagnosis apparatus for measuring and displaying elasticity of object and method of operating the same
CN108065964B (zh) * 2018-01-16 2021-04-20 中国科学院苏州生物医学工程技术研究所 一种超声成像方法、装置、设备及超声成像探头
CN108158610B (zh) * 2018-01-16 2024-02-06 苏州国科昂卓医疗科技有限公司 一种弹性成像方法、装置、设备及超声成像探头
WO2019218141A1 (zh) * 2018-05-15 2019-11-21 深圳迈瑞生物医疗电子股份有限公司 一种剪切波弹性测量方法及剪切波弹性成像系统
CN114173670A (zh) * 2020-04-24 2022-03-11 深圳迈瑞生物医疗电子股份有限公司 粘弹性测量方法和超声测量系统
CN112345130A (zh) * 2020-11-02 2021-02-09 哈尔滨工程大学 基于超声侧波的应力分布测量装置与方法
WO2022197918A1 (en) * 2021-03-18 2022-09-22 University Of Southern California Non-contact ultrasound viscoelastic spectroscopy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183705A (ja) * 2008-02-07 2009-08-20 Siemens Medical Solutions Usa Inc 超音波ベースの変位イメージング方法およびコンピュータで読み出し可能な記憶媒体
JP2010069295A (ja) * 2008-09-18 2010-04-02 General Electric Co <Ge> 剛性が変化した領域を検出するためのシステム及び方法
JP2014506523A (ja) * 2011-02-25 2014-03-17 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 非合焦超音波による超音波振動法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100562293C (zh) * 2003-04-17 2009-11-25 布赖汉姆妇女医院 剪切式诊断超声波系统
US20090177084A1 (en) * 2006-05-25 2009-07-09 Takeshi Matsumura Ultrasonic Diagnostic Apparatus
JP5361184B2 (ja) * 2007-12-25 2013-12-04 株式会社東芝 超音波診断装置並びにストレスエコー閲覧装置及びストレスエコー閲覧プログラム
US9168021B2 (en) * 2009-06-04 2015-10-27 Super Sonic Imagine Method and apparatus for measuring heart contractility
US10368843B2 (en) * 2009-11-25 2019-08-06 Koninklijke Philips N.V. Ultrasonic shear wave imaging with focused scanline beamforming
CN102283679B (zh) * 2011-08-04 2014-05-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
KR102134763B1 (ko) * 2012-02-21 2020-07-16 마우이 이미징, 인코포레이티드 다중의 어퍼처 초음파를 사용한 물질 강성의 결정
JP5771758B2 (ja) * 2012-12-25 2015-09-02 日立アロカメディカル株式会社 超音波診断装置
US20150141821A1 (en) * 2013-04-03 2015-05-21 Hitachi Aloka Medical, Ltd. Ultrasonic diagnostic apparatus and elastic evaluation method
US10143442B2 (en) * 2013-10-24 2018-12-04 Ge Medical Systems Global Technology, Llc Ultrasonic diagnosis apparatus
EP3231369A1 (en) * 2014-12-08 2017-10-18 Hitachi, Ltd. Ultrasound diagnostic device and elasticity evaluation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183705A (ja) * 2008-02-07 2009-08-20 Siemens Medical Solutions Usa Inc 超音波ベースの変位イメージング方法およびコンピュータで読み出し可能な記憶媒体
JP2010069295A (ja) * 2008-09-18 2010-04-02 General Electric Co <Ge> 剛性が変化した領域を検出するためのシステム及び方法
JP2014506523A (ja) * 2011-02-25 2014-03-17 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ 非合焦超音波による超音波振動法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRISTINA PISLARU ET AL.: "Shearwave Dispersion Ultrasound Vibrometry Applied to In Vivo Myocardium", PROCEEDINGS OF THE 31ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE EMBS, September 2009 (2009-09-01), pages 2891 - 2894, XP031881453 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016093024A1 (ja) * 2014-12-08 2017-09-21 株式会社日立製作所 超音波診断装置、及び弾性評価方法
JP2017006213A (ja) * 2015-06-17 2017-01-12 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム
JP2021522004A (ja) * 2018-05-03 2021-08-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 組織弾性モニタリング及び表示のためのせん断波振幅再構成
JP7258916B2 (ja) 2018-05-03 2023-04-17 コーニンクレッカ フィリップス エヌ ヴェ 組織弾性モニタリング及び表示のためのせん断波振幅再構成
JP2021528157A (ja) * 2018-06-27 2021-10-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 解剖学的粘度の剪断波検出 、関連するデバイス、システム、及び方法
JP7284769B2 (ja) 2018-06-27 2023-05-31 コーニンクレッカ フィリップス エヌ ヴェ 解剖学的粘度の剪断波検出 、関連するデバイス、システム、及び方法

Also Published As

Publication number Publication date
EP3231369A1 (en) 2017-10-18
US20170333004A1 (en) 2017-11-23
JPWO2016093024A1 (ja) 2017-09-21
CN106999162A (zh) 2017-08-01
JP6353929B2 (ja) 2018-07-04
CN106999162B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6353929B2 (ja) 超音波診断装置、及び弾性評価方法
JP5735718B2 (ja) 超音波診断装置、及び弾性評価方法
US20200297320A1 (en) Determining material stiffness using multiple aperture ultrasound
Deng et al. Ultrasonic shear wave elasticity imaging sequencing and data processing using a verasonics research scanner
KR101398948B1 (ko) 진폭―위상 변조된 초음파를 이용한 점탄성 측정
JP5665040B2 (ja) 変位計測方法及び装置、並びに、超音波診断装置
JP5753798B2 (ja) 超音波診断装置およびその作動方法
US9138200B2 (en) Ultrasonic diagnosis method and apparatus image processing for calculating rotational angles in a space by three-dimensional position tracking
WO2007138751A1 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JPWO2006082966A1 (ja) 超音波診断装置
US11490876B2 (en) Ultrasonic diagnostic device and method for evaluating physical properties of biological tissue
CN104995530A (zh) 被检体信息获取装置、被检体信息获取方法和程序
JP6386853B2 (ja) 超音波診断装置
JP6698511B2 (ja) 超音波信号処理装置、および、それを用いた超音波送受信装置
JP2006523485A (ja) 心臓壁ひずみ画像法
KR20180096342A (ko) 초음파 영상장치 및 그 제어방법
WO2015163202A1 (ja) 超音波診断装置
JP4581596B2 (ja) 超音波診断装置
JP2008183118A (ja) 超音波診断装置
JP2021019813A (ja) 超音波撮像装置および超音波信号処理装置
JP2006166957A (ja) 超音波診断装置
JP2016010560A (ja) 血管探索装置、超音波計測装置及び血管探索方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563585

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015868469

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE