JP7258916B2 - 組織弾性モニタリング及び表示のためのせん断波振幅再構成 - Google Patents

組織弾性モニタリング及び表示のためのせん断波振幅再構成 Download PDF

Info

Publication number
JP7258916B2
JP7258916B2 JP2020560801A JP2020560801A JP7258916B2 JP 7258916 B2 JP7258916 B2 JP 7258916B2 JP 2020560801 A JP2020560801 A JP 2020560801A JP 2020560801 A JP2020560801 A JP 2020560801A JP 7258916 B2 JP7258916 B2 JP 7258916B2
Authority
JP
Japan
Prior art keywords
tissue
map
displacement
determined
target tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020560801A
Other languages
English (en)
Other versions
JPWO2019211336A5 (ja
JP2021522004A (ja
Inventor
ファイク カン メラル
シリラム セツラマン
ウィリアム タオ シ
ピンクン ヤン
ヨヘン クルエッカー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2021522004A publication Critical patent/JP2021522004A/ja
Publication of JPWO2019211336A5 publication Critical patent/JPWO2019211336A5/ja
Application granted granted Critical
Publication of JP7258916B2 publication Critical patent/JP7258916B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/58Testing, adjusting or calibrating the diagnostic device
    • A61B8/587Calibration phantoms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

[001] 本開示は、組織弾性を決定するための超音波システム及び方法に関する。特定の実装形態には、せん断波の振幅減衰及び非相関化に基づく組織弾性の決定が含まれる。
[002] 高周波焼灼(RFA)は、現在、世界で第2位の癌による死亡原因となっている肝臓癌の治療処置の最も広く使用されている方式である。RFAは、侵襲が最小限であり、腫瘍部位に挿入された焼灼電極、針、又はタイン(くし歯)を使用して、腫瘍を凝固壊死のポイントまで加熱することを伴う。RFAの標的となる腫瘍の明確な境界線の描写は、正確に癌組織を標的化するために重要である。現在のRFA治療プロトコルは、多くの場合、楕円焼灼ボリューム予測法を実装している。しかし、このような方法は、あまりにも単純である。結果として、実際の治療ボリュームは、予測されたボリュームから大幅に逸脱する場合があり、健康な組織の、標的から外れた焼灼及び/又は腫瘍組織の不完全な焼灼につながる。
[003] 超音波撮像は、RFA処置中の誘導に一般的に使用される。特に、超音波せん断波エラストグラフィ撮像(SWI)が、組織弾性を測定することによって焼灼の範囲を推定するために使用されてきた。超音波SWIは、トランスデューサから組織に「プッシュパルス」(音響放射力として知られる現象)を送信し、それによって内部を横方向に伝播するせん断波を生成することによって、肝臓組織を含むさまざまな組織の局所的な剛性レベルを決定することができる。次に、トランスデューサによって放出された追跡パルスを使用して、せん断波が伝播するときのその速度を測定することができる。これは、多くの場合、組織の剛性に比例する。例えば、同じプッシュパルスを使用して各組織タイプ内にせん断波を生成すると仮定すると、軟組織内のせん断波速度は、通常、硬組織内のせん断波速度よりも遅い。焼灼された壊死組織は通常、未処置の組織よりもはるかに硬いため、焼灼された組織の境界は、理論的にはせん断波速度に基づいて決定することができる。
しかし、現在のSWIモダリティ及び関連する組織再構成技術では、RFAによって生じた熱的病変の剛性が高いことや、治療部位に剛性の焼灼電極が存在することにより、このような境界を確実に判断することができない。これらの要因は、SWIシステムによって生成されるせん断波の振幅を減少し、さまざまな組織特徴から反射する外部信号の中でこのような波を検出することがさらに困難になり、その結果、焼灼ゾーン内の信号対ノイズ比(SNR)が低くなる。したがって、SWIを介して調べられる焼灼ゾーンの弾性推定値及び定量的弾性マップは、広く不正確であり、信頼性がない。焼灼治療及び組織マッピングの精度を高めるために、改良された組織弾性測定及び焼灼モニタリング技術が必要である。
[004] 本開示は、せん断波超音波撮像を介して標的組織の弾性を決定するシステム及び方法を説明する。標的組織は、剛性が増加した領域を含み得、局在的で、サイズが様々であり得る。いくつかの例では、領域は、焼灼処置によって生じた熱的病変を含む。せん断波撮像は、既存のシステムにおいて、組織弾性の情報を決定するために利用されてきたが、このようなシステムは、熱焼灼によって生じた硬い病変など、剛性の高い領域で生成される低振幅のせん断波によって妨げられることがよくある。硬組織の位置及び境界を正確に決定するために、本明細書のシステムは、伝播するせん断波の変位振幅を決定し、この振幅に基づいて、硬い領域の位置を正確かつ精密に示す定性的組織弾性マップを導出するように独自に構成されている。硬い領域の境界を明確に定め、計算効率を向上させるために、本明細書のシステムはまた、同じ領域の定量的組織マップからノイズを除去する。特定の例には、定性的組織弾性マップを定量的組織弾性マップと組み合わせ、結果として得られる組み合わせに基づいて、硬い領域の正確な境界を定めるプロセッサが含まれる。さまざまな実施形態では、2つのマップタイプを組み合わせることには、最初に、定性的組織弾性マップから組織弾性の等高線プロットを生成し、次に、等高線プロットを定量的マップにオーバーレイすることが含まれる。剛性が増加した領域に最適に適合する等高線が決定され、選択される。
[005] 本開示の原理によれば、超音波撮像システムは、標的組織に向けて送信された超音波パルスに応答するエコーを取得する超音波トランスデューサを含む。システムはまた、プッシュパルスに応答して超音波トランスデューサから追跡パルスを送信するように構成されるビームフォーマを含み、プッシュパルスは、標的組織内にせん断波を生成し、追跡パルスは、1つ又は複数の場所において、せん断波と交差するように空間的に計画されている。ビームフォーマはまた、追跡パルスがせん断波と交差した場所からのエコー信号を超音波トランスデューサから受信する。システムはまた、ビームフォーマと通信し、受信したエコー信号から生成された追跡エコーデータを記憶し、追跡エコーデータに応答して、標的組織を通って伝搬するせん断波の変位振幅を決定し、決定された変位振幅に基づいて、標的組織の定性的組織弾性マップを生成するプロセッサを含む。
[006] いくつかの例では、プロセッサは、決定された変位振幅を参照変位振幅と比較することによって、定性的組織弾性マップを生成する。いくつかの実施形態では、決定された変位振幅は、標的組織内の2つ以上の横方向に間隔を置いた点において決定されていて、参照変位振幅は、参照組織内の2つ以上の横方向に間隔を置いた点において決定されるか、又は、シミュレートされたモデルから数値的に決定される。いくつかの実施形態では、参照組織は、標的組織のファントムモデル、又は、標的組織に対応する組織タイプで、剛性が増加した領域を欠く患者サンプルを含む。
[007] いくつかの例では、プロセッサはさらに、標的組織内の横方向に間隔を置いた点の連続する対における、決定された変位振幅を比較することによって、変位振幅非相関化値を決定し、参照組織内の横方向に間隔を置いた点の連続する対における、決定された変位振幅を比較することによって、参照変位振幅非相関化値を決定し、変位振幅非相関化値を参照変位振幅非相関化値と比較し、比較に基づいて、定性的組織弾性マップを生成する。いくつかの実施形態では、超音波トランスデューサは、焼灼デバイスに結合され、焼灼デバイスは、剛性が増加した領域又は剛性が増加した領域を含むより大きな領域を焼灼する。いくつかの例では、超音波トランスデューサ、ビームフォーマ、及びプロセッサは、焼灼デバイスと同時に動作する。例示的なシステムはさらに、定性的組織弾性マップを表示するユーザーインターフェースを含む。いくつかの実施形態では、参照変位振幅は、参照マップから導出される。いくつかの例では、システムはまた、複数の参照マップを記憶するメモリを含む。いくつかの実施形態では、標的組織は、熱的病変からなる剛性が増加した領域を含む。
[008] 本開示の原理によれば、せん断波撮像用の超音波撮像システムは、標的組織に向けて送信された超音波パルスに応答するエコーを取得する超音波トランスデューサを含む。システムはまた、プッシュパルスに応答して超音波トランスデューサから追跡パルスを送信するように構成されたビームフォーマを含み、ここで、プッシュパルスは、標的組織内にせん断波を生成し、追跡パルスは、1つ又は複数の場所で、せん断波と交差するように空間的に計画される。ビームフォーマは、追跡パルスがせん断波と交差した場所からのエコー信号を超音波トランスデューサから受信する。システムはまた、ビームフォーマと通信するプロセッサを含む。プロセッサは、受信したエコー信号に基づいて、標的組織の定性的組織弾性マップを生成し、受信したエコー信号に基づいて、標的組織の定量的組織弾性マップを生成し、定性的組織弾性マップを定量的組織弾性マップと組み合わせることによって、標的組織内の剛性が増加した領域の境界を決定する。
[009] いくつかの例では、プロセッサはさらに、定性的組織弾性マップから均一剛性の領域の境界を定める等高線プロットを導出する。いくつかの実施形態では、定性的組織弾性マップを定量的組織弾性マップと組み合わせることは、等高線プロットを定量的組織弾性マップにオーバーレイすることを含む。いくつかの実施形態では、プロセッサは、剛性が増加した領域の周りに最適適合の等高線をさらに決定することによって、剛性が増加した領域の境界を決定する。いくつかの実装形態では、最適適合の等高線は、ユーザーによって選択可能な基準のセットに基づいて、最適適合の2つ以上の候補等高線から選択される。いくつかの例では、基準のセットは、最適適合の等高線が組織の最大領域を画定する等高線を含むように、過剰封入バイアスを含む。いくつかの実施形態では、プロセッサはさらに、剛性が増加した領域の決定された境界に基づいてハイブリッド組織弾性マップを生成する。いくつかの実施形態では、プロセッサは、決定された境界の外側のハイブリッドマップの少なくとも1つの領域をマスキングすることによってハイブリッドマップを生成する。例示的なシステムはさらに、ハイブリッドマップを表示するユーザーインターフェースを含む。いくつかの実装形態では、定量的組織弾性マップは、組織弾性勾配マップを含む。いくつかの実施形態では、プロセッサは、等高線プロット内の各等高線に沿って勾配値を合計し、各等高線の勾配値の合計を各等高線の長さで割り、平均勾配が最大の等高線を選択することによって、最適適合の等高線を決定する。いくつかの例では、超音波トランスデューサは、焼灼デバイスに結合される。焼灼デバイスは、剛性が増加した領域又は剛性が増加した領域を含むより大きな領域を焼灼する。いくつかの実施形態では、剛性が増加した領域は、熱的病変を含む。
[010]本開示の原理によれば、せん断波撮像方法は、標的組織に向けて送信された超音波パルスに応答する超音波エコーを取得するステップと、プッシュパルスを標的組織に送信して、標的組織内にせん断波を生成するステップと、1つ又は複数の場所でせん断波と交差するように空間的に計画された追跡パルスを送信するステップと、追跡パルスがせん断波と交差した場所からエコー信号を受信するステップと、受信したエコー信号から生成された追跡エコーデータを記憶するステップと、追跡エコーデータに基づいて、標的組織を通って伝播するせん断波の変位振幅を決定するステップと、決定された変位振幅に基づいて、標的組織の定性的組織弾性マップを生成するステップとを含む。
[011] いくつかの例では、決定された変位振幅に基づいて、標的組織の定性的組織弾性マップを生成するステップは、決定された変位振幅を参照変位振幅と比較するステップを含む。いくつかの実施形態では、決定された変位振幅は、標的組織内の2つ以上の横方向に間隔を置いた点において決定されていて、参照変位振幅は、参照組織内の2つ以上の横方向に間隔を置いた点において決定されるか、又はシミュレートされたモデルから数値的に決定される。いくつかの例では、方法はさらに、標的組織内の横方向に間隔を置いた点の連続する対において決定された変位振幅を比較することによって、変位振幅非相関化値を決定するステップと、参照組織内の横方向に間隔を置いた点の連続する対において決定された変位振幅を比較することによって、参照変位振幅非相関化値を決定するステップと、変位振幅非相関化値を参照変位振幅非相関化値と比較するステップと、比較に基づいて、定性的組織弾性マップを生成するステップとを含む。
[012] いくつかの実施形態では、方法はさらに、定性的組織弾性マップをユーザーインターフェース上に表示するステップを含む。いくつかの例では、参照変位振幅は、参照マップから導出される。いくつかの実施形態では、標的組織は、熱的病変からなる剛性が増加した領域を含む。
[013] 本開示の原理によれば、せん断波撮像方法は、標的組織に向けて送信された超音波パルスに応答する超音波エコーを取得するステップと、プッシュパルスを標的組織に送信して、標的組織内にせん断波を生成するステップと、1つ又は複数の場所でせん断波と交差するように空間的に計画された追跡パルスを送信するステップと、追跡パルスがせん断波と交差した場所からエコー信号を受信するステップと、受信したエコー信号から生成された追跡エコーデータを記憶するステップと、受信したエコー信号に基づいて、標的組織の定性的組織弾性マップを生成するステップと、受信したエコー信号に基づいて、標的組織の定量的組織弾性マップを生成するステップと、定性的組織弾性マップを定量的組織弾性マップと組み合わせることによって、標的組織内の剛性が増加した領域の境界を決定するステップとを含む。
[014] いくつかの例では、方法はさらに、定性的組織弾性マップから均一剛性の領域の境界を定める等高線プロットを導出するステップを含む。いくつかの実施形態では、定性的組織弾性マップを定量的組織弾性マップと組み合わせるステップは、等高線プロットを定量的組織弾性マップにオーバーレイするステップを含む。いくつかの例では、剛性が増加した領域の境界を決定するステップは、剛性が増加した領域の周りの最適適合の等高線を決定するステップを含む。いくつかの実施形態では、決定された境界の外側の少なくとも1つの領域をマスキングすることによって、剛性が増加した領域の決定された境界に基づいてハイブリッド組織弾性マップが生成される。いくつかの例では、剛性が増加した領域は、熱的病変を含む。
[015] 本明細書に説明される方法のいずれか又はそのステップは、実行されると、医用撮像システムのプロセッサに、本明細書に具体化される方法又はステップを行わせることができる実行可能命令を含む非一時的コンピュータ可読媒体に具体化することができる。
[016]図1は、本開示の原理に従って構成された超音波撮像システムのブロック図である。 [017]図2は、本開示の原理に従って組織焼灼システムと同時に動作する超音波せん断波撮像システムの写真である。 [018]図3は、図2に示されるシステムによって生成された焼灼ゾーン及び隣接する関心領域の超音波画像及び対応する組織弾性マップである。 [019]図4Aは、本開示の原理に従って第1の時点において構成された参照せん断波振幅変位マップである。 [020]図4Bは、本開示の原理に従って第2の時点において構成された参照せん断波振幅変位マップである。 [021]図4Cは、本開示の原理に従って構成された参照せん断波振幅変位グラフである。 [022]図4Dは、本開示の原理に従って構成された参照せん断波非相関化グラフである。 [023]図5Aは、本開示の原理に従って第1の時点において構成されたせん断波振幅変位マップである。 [024]図5Bは、本開示の原理に従って第2の時点において構成されたせん断波振幅変位マップである。 [025]図5Cは、本開示の原理に従って構成されたせん断波振幅変位グラフである。 [026]図5Dは、本開示の原理に従って構成されたせん断波非相関化グラフである。 [027]図6Aは、本開示の原理に従って構成されたせん断波変位振幅再構成マップである。 [028]図6Bは、本開示の原理に従って構成されたせん断波非相関化再構成マップである。 [029]図7は、本開示の原理に従って実行される方法を示すフローチャートである。 [030]図8Aは、本開示の原理に従って構成されたせん断波非相関化再構成マップである。 [031]図8Bは、図8Aのせん断波非相関化再構成マップを使用して生成された等高線マップである。 [032]図8Cは、図8Bの等高線マップでオーバーレイされた定量的弾性マップである。 [033]図9Aは、本開示の原理による、病変の境界を定める候補等高線に適用される最適適合メトリックのグラフである。 [034]図9Bは、図9Aのグラフにおいて特定された最適な等高線でオーバーレイされたせん断波非相関化再構成マップである。 [035]図9Cは、図9Bに示される最適な等高線でオーバーレイされた定量的弾性マップである。 [036]図10Aは、本開示の原理による、病変の境界を定める候補等高線に適用される最適適合メトリックのグラフである。 [037]図10Bは、候補の最適な等高線でオーバーレイされたせん断波非相関化再構成マップである。 [038]図10Cは、図10Bに示される候補の最適な等高線でオーバーレイされた定量的弾性マップである。 [039]図10Dは、候補の最適な等高線でオーバーレイされた組織弾性勾配マップである。 [040]図11は、本開示の原理に従って実行される方法を示すフローチャートである。
[041] 特定の実施形態の以下の説明は、本質的に単なる例示であり、本発明又はその用途又は使用を制限することを決して意図するものではない。本システム及び方法の実施形態の以下の詳細な説明では、本明細書の一部を形成し、また、説明されるシステム及び方法を実施することができる特定の実施形態を例示として示す添付図面を参照する。これらの実施形態は、当業者が現在開示されているシステム及び方法を実践することを可能にするのに十分詳細に説明され、また、他の実施形態を利用することができ、構造的及び論理的変更を本システムの精神及び範囲から逸脱することなく行うことができることを理解されたい。さらに、明確にするために、いくつかの特徴の詳細な説明は、それらが当業者に明らかである場合には、本システムの説明を曖昧にしないように議論されない。したがって、以下の詳細な説明は、限定的な意味で解釈されるべきではなく、本システムの範囲は、添付の特許請求の範囲によってのみ定義される。
[042] 本技術はまた、本実施形態による方法、装置(システム)及び/又はコンピュータプログラム製品のブロック図及び/又はフローチャート図を参照して以下に説明される。ブロック図及び/又はフローチャート図のブロック、ならびにブロック図及び/又はフローチャート図のブロックの組み合わせは、コンピュータ実行可能命令によって実装され得ることが理解される。これらのコンピュータ実行可能命令は、汎用コンピュータ、特殊目的コンピュータ、及び/又は他のプログラム可能なデータ処理装置のプロセッサ、コントローラ、又は制御ユニットに提供されて、コンピュータ及び/又は他のプログラム可能なデータ処理装置のプロセッサを介して実行するこのような命令が、ブロック図及び/又はフローチャートブロック(複数可)で指定された機能/行為を実施するための手段を作成するようにマシンを作成する。
[043] 本明細書において、焼灼処置の精度を向上させるやり方で組織焼灼の正確でリアルタイムのモニタリング及び表示を提供する超音波ベースのSWIシステムが提供される。既存の焼灼モニタリングシステムは、SWIを利用して、組織の領域を通過するせん断波の伝播速度を測定することにより、組織弾性を推定することができる。ピーク到達時間(time-to-peak)再構成とも呼ばれるこのような飛行時間型アプローチは、通常、超音波トランスデューサから放出される横方向に間隔を置いた追跡ビームを介して領域全体で検出された波の遅延を測定することによってせん断波速度を推定する。RFAに関連する複数の要因により、このような手法の精度が低下する。例えば、飛行時間型アプローチは、RFAによって生成された熱的病変を通過するせん断波の振幅が小さいことによる低信号対ノイズ比によって妨げられる。熱的病変は、焼灼後の組織の乾燥状態によって、周囲の健康又は癌性の組織よりも6~8倍硬い場合がある。せん断波は、このような硬い組織をすばやく通過し、波の振幅を減少させる。焼灼処置が続くにつれて、熱的病変のボリュームが増加し、低振幅のせん断波によって生成される信頼性の低い定量的データの割合も増加する。この結果、残っている腫瘍組織の量が最小である処置の終わり近くで、焼灼モニタリングの精度が最低になる可能性がある。したがって、継続焼灼の精度は、処置の最も重要な時点、すなわち、最小量の癌性組織が残っているときに、低い点に達する可能性があり、それによって、健康な組織の、標的から外れた焼灼及び癌性組織の不完全な焼灼のリスクを増幅する。SWエラストグラフィは、自由場のせん断波伝播を想定しており、RFAで使用される固体焼灼電極又はタイン(くし歯)の存在は、この想定を無効にし、電極がせん断波撮像の視野内に直接置かれていなくても、伝播するせん断波の振幅をさらに減少させる可能性がある。これらの要因の累積的な影響は、一貫して低いSNRであり、中程度の解像度又は精度でさえ組織弾性マップの解明を妨げる。これらの問題を解決するために、本明細書に開示されるシステムは、硬い焼灼針に近接している場合でも高感度で病変境界を識別し、焼灼ゾーン全体にわたって包括的でリアルタイムの焼灼モニタリング及び表示を提供することによって超音波SWIを向上させる。例示的なシステムは、治療部位内の異なる空間位置においてせん断波振幅変位及び相関値を検出することによって、定性的な組織弾性マップを生成するように具体的に構成することができる。システムはまた、病変境界の描写の精度を高めるやり方で、定量的組織弾性マップを定性的組織再構成マップと組み合わせるように構成される。本明細書に説明される実施例のほとんどは、焼灼によって生じた組織病変の位置及び境界の決定に関連しているが、当業者は、開示されたシステムを利用して、病変が存在しているかいないかに関わらず、硬組織の領域や、プッシュパルスの受信に応答して低振幅のせん断波を生成する組織の領域を含む多くの組織タイプを調べることができることを理解すべきである。
[044] 図1は、焼灼ゾーンを横切ってせん断波エラストグラフィを実行し、正確な組織弾性データを生成することによって焼灼ゾーンの境界を決定し、生成されたデータに基づいて、焼灼ゾーンの定性的弾性マップを生成する例示的な超音波システム100を示す。システム100は、超音波信号を送受信する超音波センサーアレイ114を収容する超音波プローブ112を含む超音波取得ユニット110を含む。アレイ114は、腫瘍又は硬組織封入体などの1つ又は複数の組織異常120を含む標的領域118に、高振幅プッシュパルス116を放出する。追加の又は代替の実施形態では、プッシュパルス116は、アレイ114以外のアレイによって生成される。例えば、いくつかの例では、1つのアレイが音響放射力(ARF)を加えるために使用され、異なるアレイが撮像のために使用される。さらに他の例では、組織は、例えば、外部の機械力を加えるように構成された外部の機械的アクチュエータを使用して、機械的に刺激される。治療段階に応じて、凝固領域又は熱的病変とも呼ばれることがある少なくとも1つの焼灼ゾーン122が存在する。標的領域118は、ヒトの肝臓、膵臓、腎臓、肺、心臓、又は脳を含むがこれらに限定されない臓器、又は組織の領域、例えば、筋肉組織を含む。アレイ114はまた、複数の追跡パルス又はビーム124を標的ゾーン118に送信して、プッシュパルス116によって生成されたせん断波119の伝播を検出する。追跡パルス124は、プッシュパルス116に隣接して送信することができ、いくつかの例では、プッシュパルスに対して横方向に間隔を空けられている。いくつかの実施形態では、追跡パルス124は、例えば、線形プローブが追跡パルスを放出するために利用される場合、プッシュパルス116に平行である。他の例では、追跡パルス124は、プッシュパルス116と平行に送信されなくてもよい。例えば、湾曲したプローブが、追跡パルスを半径方向に、それらの間に角距離を置いて送信することができる。このようなパルスは、デカルト空間では平行ではない場合があるが、極座標フレーム又は円筒座標フレームでは同じ方向に送信される。アレイ114は、送信/受信(T/R)スイッチ130を介して送信ビームフォーマ126及びマルチライン受信ビームフォーマ128に結合されている。ビームフォーマ126、128による送信及び受信の調整は、ビームフォーマコントローラ132によって制御することができる。動作中、送信ビームフォーマ126は、アレイ114を制御して、1つ又は複数の、例えば、一連のプッシュパルス116を、焼灼ゾーン122(焼灼処置がまだ始まっていない場合、予想焼灼ゾーンを含んでもよい)に隣接する標的領域118に送信することができる。マルチライン受信ビームフォーマ128は、アレイ114によって受信されるエコー信号134であって、信号プロセッサ136によってフィルタリング、ノイズ低減などによって処理されるエコー信号134の空間的に異なる受信ライン(Aライン)を生成する。いくつかの実施形態では、取得ユニット110の構成要素は、超音波エコー134から複数の連続する超音波画像フレーム138を生成する。
[045] システム100はまた、焼灼ゾーン122を通って伝播するせん断波119の変位振幅を決定する定性的処理モジュール140などの1つ又は複数のプロセッサを含む。実施形態では、変位振幅は、焼灼ゾーン122内の2つ以上の横方向に間隔を置いた点において検出することができ、これにより、プッシュパルスから離れた組織全体の変位振幅の減衰を決定する。次に、定性的処理モジュール140は、振幅減衰を、選択された参照マップ142から導出された参照振幅減衰と比較する。図1に示されるように、参照マップ142は、定性的処理モジュール140と通信可能に結合されたメモリ構成要素144から選択的に抽出する。メモリ構成要素144は、ライブラリ又はデータベース146に複数の参照マップを記憶する。決定された振幅減衰と参照振幅減衰との比較に基づいて、定性的処理モジュール140は、プッシュパルス116によって生成されるせん断波119の振幅が小さいにもかかわらず、焼灼ゾーン122内及びその近くの下にある組織の弾性を高精度で再構成する。
[046] さまざまな実施形態では、システム100はまた、定性的処理モジュール140と結合された表示プロセッサ148を、表示プロセッサの出力を表示するユーザーインターフェース150とともに含む。表示プロセッサ148は、画像フレーム138及び定性的せん断波再構成マップ154から超音波画像152を生成する。以下に説明するように、定性的せん断波再構成マップ154は、せん断波変位振幅再構成マップ又はせん断波非相関化再構成マップを含み、これらは両方とも、組織焼灼ゾーン内及びその近くの組織弾性の定性的表現を具体化する。ユーザーインターフェース150は、超音波スキャン及び/又は焼灼処置が実行されているときに、画像152及び定性的再構成マップ154をリアルタイムで表示することができ、また、このような処置の前、最中、又は後にいつでもユーザー入力156を受け取ることができる。いくつかの例では、ユーザーインターフェース150に表示される超音波画像及び/又はマップは、超音波SWIスキャン中、また、いくつかの実施形態では、焼灼処置中に、データ取得ユニット110によって受信及び処理される取得フレームごとに更新される。
[047] いくつかの実装形態では、システム100はまた、定性的せん断波再構成マップ154及び定量的弾性マップ160を受信し、2つのマップに基づいて、焼灼によって生成された熱的病変または硬組織の領域を含む病変の決定された境界を精緻化する境界モジュール158を含む。簡単にするために、本明細書では病変境界を参照するが、追加の組織境界、例えば、臓器境界又は一部の癌性病変などの剛性が増加した局所領域もまた、開示されるシステム及び方法を介して識別可能であることが当業者に理解されるべきである。病変の境界を精緻化することにより、境界モジュール158は、以前は病変の境界をぼやけさせていた信号ノイズを低減又は排除し、これにより、システム100の精度及び精密さを高めることができる。境界モジュール158は、病変の実際の物理的境界を正確に追跡する絶対閾値を決定するように具体的に構成される。定量的弾性マップ160は、SWI中にデータ取得ユニット110によって生成された超音波画像フレーム138から生成される。特定の実施形態では、定量的処理モジュール162が、画像フレーム138から定量的弾性マップ160を生成する。定量的剛性マップは、メモリ構成要素162に記憶される。さらに示されるように、ユーザーインターフェース150と結合される境界表示プロセッサ164が含まれる。表示プロセッサ164は、単独で又は境界モジュール158及び/又はユーザーインターフェース150とともに構成されて、病変168及び病変境界の外側の少なくとも1つのマスクされた領域170を含むハイブリッドマップ166を生成する。
[048] 図1に示されるシステム100の構成は、異なっていてもよい。例えば、システム100は、携帯型であっても固定式であってもよい。さまざまな携帯機器、例えば、ラップトップ、タブレット、スマートフォンなどを使用して、システム100の1つ又は複数の機能を実装することができる。このようなデバイスを組み込んだ例では、超音波センサーアレイ114は、例えば、USBインターフェースを介して接続可能である。システム100は、RFA、マイクロ波焼灼、又は高密度焦点式超音波焼灼を含むがこれらに限定されない焼灼療法を実行する焼灼デバイス172と同時に動作することができる。いくつかの例では、焼灼デバイス172は、焼灼ゾーン122を構成する組織に挿入される針、タイン(くし歯)又はプローブを含み、デバイスは、いくつかの実施形態では、局所的な熱を向ける。システム100の1つ又は複数の構成要素は、焼灼デバイス172と通信可能に、動作可能に、及び/又は物理的に結合し、これにより、デバイス及びシステムが、他方の動作に応答できる。例えば、いくつかの実施形態では、焼灼デバイス172は、定性的処理モジュール140及び/又は境界モジュール158によって生成された組織弾性マップに基づいて、焼灼ゾーンのサイズ及び/又は位置を調整する。したがって、システム100は、焼灼処置中又はその前に、焼灼デバイス172及び/又はその操作者に病変の位置及び/又は境界に関する情報を提供することによって、焼灼精度を向上させ、及び/又は焼灼時間を短縮する。いくつかの例では、システム100はまた、生検針の存在により、生検標的の有効剛性がその間に増加することが多い画像誘導生検処置と連携して動作する。システム100はまた、疾患、例えば脂肪肝疾患の結果として起こりうる病変など、強いせん断波減衰を引き起こす組織における組織弾性を決定するために使用される。このような組織は、焼灼された領域又は針を含まない可能性がある。図1に示される1つ又は複数の構成要素は、いくつかの例では、組み合わせることができる。例えば、いくつかの実施形態では、定性的処理モジュール140、定量的処理モジュール162、及び/又は境界モジュール158を組み合わせて、1つの処理モジュールとすることもできる。定量的表示プロセッサ164及び定性的表示プロセッサ148もまた、いくつかの例では、統合されてもよい。
[049] 参照マップ142は、さまざまなソースから導出する。いくつかの例では、参照マップ146は、特定の組織タイプを模倣するようにデザインされ、また、組織内の病変の存在を模倣するために剛性が増加した1つ又は複数の領域を含む人工的に作成された組織ファントムから導出される。例えば、参照マップ142は、1つ又は複数の腫瘍及び/又は焼灼された領域を含む肝臓ファントム、膀胱ファントム、肺ファントムなどについて作成される。さらに又はあるいは、参照マップ142は、実際の患者組織から導出される。参照マップ146を作成するために使用される組織は、健康な組織、例えば、病変、腫瘍、又は他の異常のない弾性的に均質な組織である。このような組織から得られたSNR比は、異種組織よりも高いので、ベースライン参照として組織の信頼性が高まる。しかし、いくつかの例では、少なくとも1つの異常がある組織が参照として利用される。例えば、いくつかの実施形態では、参照マップ142は、より早い時点で超音波SWIを受けた患者から導出された癌性組織のマップである。異なる時点で得られた同じ組織の振幅減衰値を比較することによって、異常組織の拡大又は縮小、したがって治療の進捗状況を決定できる。進捗状況は、治療全体で、又は個別の治療後に追跡できる。例えば、参照マップは、焼灼処置の前に作成され、メモリ144に書き込まれ、次いで、比較目的で、処置中又は処置の直後に1回又は複数回メモリから読み出される。参照マップ142は、新しいデータが蓄積されるにつれて時間とともに変更されても、又は新しい超音波スキャンが実行されるたびに単に置き換えられてもよい。さらに又はあるいは、参照マップ142は、数値モデル、例えば、シミュレートされ、数値計算されたモデルから導出される。モデル特性を変更するために、定量的SWI測定値を使用してもしなくてもよい。いくつかの例では、参照組織情報は、組織サンプルや数値モデルから導出されるのではなく、代わりに、特定の媒体の先験的知識から導出される。いくつかの実装形態では、参照マップ142は、特定の組織タイプ、例えば、肝臓組織について決定された振幅減衰を、同じ組織タイプから導出された参照マップから決定された振幅減衰値と比較できるように、さまざまな組織について作成される。参照マップ142は、システム100を使用してSWIが実行されるたびに作成して、メモリ144に記憶され、これにより、参照マップ146のライブラリを時間の経過とともに追補できる。包括的なライブラリは、複数の患者や組織タイプに固有の参照マップを含み得る。
[050] 定性的処理モジュール140は、1つ又は複数の要因に基づいて特定の参照マップ142を選択的に抽出する。例えば、定性的処理モジュールは、現在検査されている及び/又は焼灼の標的とされている組織タイプに対応する参照マップを選択する。処理モジュールはまた、現在検査されている特定の患者に対応する参照マップを選択する。同じ患者から導出された参照マップを、時間の経過とともに記憶し、処理モジュールは、特定の時点で記憶された参照マップを選択する。いくつかの実施形態では、ユーザーが、特定の参照マップを手動で選択する。さらに又はあるいは、定性的処理モジュールは、ユーザー入力なしで、特定の参照マップを自動的に選択する。このような例によれば、定性的処理モジュールは、参照マップ選択基準を適用する。例えば、定性的処理モジュールは、組織タイプよりも患者のアイデンティティを優先し、これにより、モジュールは、現在検査されている特定の患者に対応する参照マップを最初に要求する。その特定の患者に利用可能な参照マップがない場合、モジュールは、患者のアイデンティティに関係なく、検査されている特定の組織タイプに対応する参照マップの要求に進む。患者の年齢及び/又は健康状態などの追加の基準もまた、処理モジュールによって適用されて、超音波スキャン及び/又は組織焼灼処置中にメモリから特定のマップを選出する。
[051] 図2は、焼灼システムと同時に動作する超音波システムの写真である。超音波トランスデューサ202及び焼灼針204は、肝臓206内の関心領域に向けられている。超音波トランスデューサ202は、焼灼針204によって標的とされる焼灼部位に隣接する肝臓206の領域にプッシュパルスを放出する。示されているように、撮像及び焼灼が同じ組織領域で同時に実行できるように、撮像構成要素及び焼灼構成要素を物理的に近接して結合する。図2に示される組織は、肝臓組織であるが、当業者は、本明細書に説明されるシステム及び方法が肝臓に限定されず、広範囲の組織タイプに適用できることを理解すべきである。
[052] 図3は、図2に示される超音波SWIシステムによって得られた組織領域の超音波画像である。関心のせん断波領域302が、焼灼ゾーン境界304及び焼灼針標的部位306と共に示されている。せん断波ROIの弾性マップ308が画像にオーバーレイされている。せん断波ROI302は、各プッシュパルスが組織内へと(この画像では上から下に)放出された後に、せん断波が伝播する組織の領域を包含し、焼灼針標的部位306に隣接して配置される焼灼ゾーン境界304と重なる。伝播するせん断波の変位振幅を検出するために、横方向に間隔を置いた追跡ビームをせん断波ROI302内へと放出する。示されているように、プッシュビームは、予想される病変領域のすぐ外側の組織内へと伝達する。したがって、システムは、隣接する、例えば、焼灼された領域とは異なる弾性特性を有する領域の組織弾性特性を決定する。
[053] さまざまな実施形態では、図3に示されるゾーンのうちの1つ又は複数は、単独で又は焼灼システムと連携して、超音波SWIシステムによって自動的に定義される。いくつかの例では、システムを操作するユーザーが、せん断波ROI302、焼灼ゾーン境界304、及び/又は焼灼針306の標的部位を修正、例えば、再配置及び/又はサイズ変更できる。このような変更は、超音波画像を表示するユーザーインターフェースで入力する。いくつかの実施形態では、あるゾーンの調整が別のゾーンの自動調整を促すように、2つ以上のゾーン間の空間的関係を事前定義する。例えば、焼灼ゾーン境界304の調整は、せん断波ROI302の調整を引き起こすことができ、逆もまた同様である。さらに又はあるいは、例えば、画面上で針を表すグラフィックを動かすことによって、ユーザーインターフェース、例えば、ユーザーインターフェース150で焼灼針標的部位306を指定する。せん断波ROI302及び焼灼ゾーン境界304は、針標的部位306の移動に応答して自動的に動いて、焼灼ゾーンと撮像領域との一貫した空間配置を維持する。超音波トランスデューサによって撮像されるカバレッジエリアは、約1から約10cm、約2から約8cm、約3から約6cm、約4から約5cm、又は約2から約3cmの幅の範囲で変化する。さまざまな実施形態では、本明細書のシステムによって生成された組織マップは、カバレッジエリア全体に及ぶ。せん断波がせん断波ROI302を通って伝播するにつれて、波の振幅は減少する可能性がある。焼灼ゾーン境界304内の焼灼された硬い領域の存在など、基礎となる組織特性の変動は、波の振幅に追加の変化を引き起こし、波の減衰パターンを変化させる可能性がある。熱焼灼によって引き起こされる剛性の増加など、組織の基礎となる材料特性の変化は、せん断波振幅の減衰の変化を引き起こす。本明細書のシステムは、せん断波変位振幅を参照変位振幅と比較することによって、このような変動を検出する。例えば、標的領域内の横方向に間隔を置いた点での現在のせん断波振幅と参照せん断波振幅とのピーク間差を決定することによって、減衰変動を定性的処理モジュール140によって検出できる。
[054] 図4A及び図4Bは、ほぼ一貫した弾性によって特徴付けられる、実際の又は人工の病変のない媒体を含む均質組織媒体内のROIを通るせん断波伝播の参照振幅変位マップを示す。変位マップは、図1に示されるデータ取得及び表示構成要素と協調して動作する定性的処理モジュール140によって生成される。参照マップの生成後、これらはメモリ構成要素144に記憶され、後で超音波SWI処置の開始に応答して、定性的処理モジュールによって抽出される。図4Aは、プッシュパルスの送信から9ミリ秒後のせん断波伝播のスナップショットを提供し、図4Bは、プッシュパルスの送信から12ミリ秒のせん断波伝播のスナップショットを提供する。y軸に組織の深さを示し、x軸に組織内の横方向距離を示す。各マップ上に、3つの横方向に間隔を置いた点402、404、406が示されている。各点の座標は、例えば、処理モジュールによって自動的に指定される。いくつかの例では、座標は、例えば、ユーザー入力の受信を介して手動で指定されるが、いくつかの例では、ROIのみがユーザーによって指定される。各図に示されている点の特定の配置及び数は、説明のみを目的としており、限定的なものと見なされるべきではない。点は、再構成マップに最終的に具体化される弾性情報を決定することに従って指定される。図4Cは、経時的に測定された、点402、404、406のそれぞれで検出されたせん断波変位プロファイルのグラフであり、図4Dは、横方向に間隔を置いた点の連続する対間の対応する相互相関値のグラフである。図4Cにおいて明らかなように、プッシュパルスの送信から約3ミリ秒後に、プッシュパルスの部位の最も近くに位置付けられた第1の点402において、最大絶対せん断波変位が検出された。
[055] 図5A及び図5Bは、少なくとも1つの病変を含んでいる可能性があり、媒体の残りの部分と比較して異なる弾性値によって特徴付けられる不均質媒体内のROIを通るせん断波伝播の振幅変位マップを示す。振幅変位マップは、図1の構成要素を使用する超音波SWI及び焼灼処置中に、定性的処理モジュール140によって生成される。本明細書で説明されるように、変位振幅マップを参照振幅変位マップと比較して、マップ間のせん断波減衰の変動を特定する。図5Aは、プッシュパルスの送信から9ミリ秒後のせん断波伝搬のスナップショットを提供し、図5Bは、プッシュパルス送信から12ミリ秒後のせん断波伝搬のスナップショットを提供する。各マップ上に、3つの横方向に間隔を置いた点502、504、506が示されている。図4Bに示される点のように、図5Bに示される点も、自動で、又は、いくつかの例では手動で指定する。上記のように、図5Bに示される点は、説明のみを目的としており、限定的なものと見なされるべきではない。図5Cは、経時的に測定された、点502、504、506のそれぞれで検出されたせん断波変位プロファイルのグラフであり、図5Dは、横方向に間隔を置いた点の連続する対の間の対応する相互相関値のグラフである。
[056] 図4C及び図5Cに示される変位プロファイルから、各点502、504、506における最大振幅変位(「ピーク変位」)を決定するか、又は各点502、504、506における最大値と最小値との差(「ピーク間変位」)を決定して、このような値を、各参照点402、404、406において決定された対応するピーク変位又はピーク間変位と比較することによって、定性的なせん断波振幅変位再構成マップを計算する。例えば、x,yにある単一ピクセルの変位振幅値は、p(x,y)=D(x,y)/Dref(x,y)として与えられる。ここで、Dは、変位ピーク振幅又はピーク間振幅を表し、refは、選択した参照マップから抽出された対応する振幅値を示す。せん断波変位振幅は、受信した超音波ビームごとに検出される。いくつかの実施形態では、受信ビームの数は、約40から約48の範囲の値をとる。各受信ビームに沿って、変位振幅は、垂直軸に沿った高解像度で、例えば、約300から約600ピクセルのそれぞれで決定される。垂直軸の点数は、マップを表示する前に、後のスキャン変換ステップにおいて減少する。定性的マップ154は、いくつかの例では、データ取得ユニット110で受信した空間的に異なるAラインのそれぞれについてせん断波振幅のピーク又はピーク間分析を実行することによって得られる。
[057] いくつかの例では、本明細書のシステムはまた、横方向に間隔を置いた2つの点でのせん断波振幅変位プロファイル間の相関を具体化するせん断波非相関化マップを生成する。横方向に間隔を置いた点間の相関値を、参照マップ内の同等の横方向に間隔を置いた点から導出された相関値と比較することによって、せん断波相関の変動、したがって、組織弾性を特定する。いくつかの実施形態では、非相関化マップは、波形及び周波数の変化にも敏感であることから、せん断波振幅変位マップよりも好ましい場合がある。図4Dの線408は、第1の点402と第2の点404との間の相互相関を表し、線410は、第2の点406及び第3の点408との間の経時的な相互相関を表す。同様に、図5Dにおいて、線508は、図5A及び図5Bに示される第1の点502と第2の点504との間の相互相関を表し、線510は、第2の点506と第3の点508との間の経時的な相互相関を表す。図4Dに示されるように、相互相関値は、均質媒体内の各横方向の対の間では、比較的高い。対照的に、図5の線510では、相互相関値ははるかに低く、不均質媒体中の点504と点506との間に病変が存在する可能性が高いことを示している。振幅変位及び相互相関値を対応する参照値と比較することによって、本明細書のシステムは、図6A及び図6Bに示される組織弾性の定性的表現を再構成する。これは、せん断波の飛行時間に基づく定量的マップとは異なり、高いせん断波変位SNRを必要としない。さまざまな実施形態において、参照マップに対するものも含む、定性的処理モジュール140によって行われたすべての振幅変位決定は、最大変位量に対して正規化され、したがって、変位振幅の差に基づく相対的な組織弾性変化の正確な描写が提供される。
[058][059] 特定の態様では、参照マップは、評価されている媒体に対応する参照相関値と比較された、ピクセルについて測定された相関値を使用して生成する。例えば、隣接する空間位置でのせん断波の相関係数は、空間剛性分布のマッピングに使用される。このようなマップは、封入体がない場合に最大相関が観察され、また、封入体の検出は相関の喪失(したがって、「非相関化」の呼称の所以である)に基づいているため、非相関化マップと呼ぶ。せん断変位振幅に基づく「従来の」マップは、波の振幅の変化にのみ敏感であるが、2つの空間点の変位プロファイル間の相関係数の変化(非相関化)も波形及び周波数の変化に敏感であり、したがって、材料特性の変化に対する高い感度を実現できる。この高い感度は、低変位振幅および低SNRの場合の病変の検出及びモニタリングに不可欠である。また、参照マップが実験的に得られ、ピクセルについて測定された相関値が参照相関値で除算されて、均質媒体と比較した組織剛性の違いによる相関の喪失が得られる。(x,y)にあるピクセルの非相関化値は、次のように与えられる。
Figure 0007258916000001
ここで、*は、2つの信号間の相互相関演算子を示し、D(x,y)は、2つの連続する点について測定された、座標(x,y)における時間の関数としての変位信号を示し、下付きのrefは、参照測定を示す。計算された非相関化マップは、次に、視覚化を良くするためにデシベルスケールで表示される。
[060][061][062][063] また、比較は、変更された相互相関関数を用いて実行できる。
Figure 0007258916000002
これは、積分範囲を、適切に選択された最大時間差Tに制限し、したがって、信号の潜在的にノイズの多い部分が非常に早い時間/遅い時間に除外される。
[064] あるいは、制限された積分範囲は、非対称である。つまり、TminからTmaxの範囲であって、積分時間の最小値及び最大値の値は適切に選択される。
[065][066][067] あるいは、比較は、式(1)の相互相関演算子を適用する前に、適切に選択された重み付け関数wを関数D、Drefに掛けることによって、信号D及び/又はDrefの重み付けされたバージョンを用いて実行する。ピークから離れた低信号レベルからのノイズを低減するための適切な重み付け関数の1つは、ガウス関数である。
Figure 0007258916000003
スケールパラメータとして任意のa及び定数bは、重み付け関数のピークが期待信号D(x)のピークと一致するように選択される。
[068] 図6Aは、図4C及び図5Cから抽出されたデータを比較することによって生成されたせん断波変位振幅再構成マップである。マップは、参照に関連して、振幅変動が高い領域602aを含み、振幅変動が比較的低い領域604aに囲まれた、焼灼によって誘発された病変の存在の可能性を示している。図6Bは、図4D及び図5Dから抽出されたデータを比較することによって生成されたせん断波非相関化再構成マップである。焼灼によって誘発された病変の存在及びおおよその位置は、図6Aに示される振幅変動の高い領域及び低い領域に密接に位置合わせされる、非相関化が比較的低い領域604bに囲まれた非相関化が高い局所領域602bによって確証される。図6Aのせん断波振幅変位再構成マップ及び/又は図6Bのせん断波非相関化再構成マップを生成するとき、本明細書の1つ又は複数の構成要素、例えば、定性的処理モジュール140及び/又は表示プロセッサ148は、横方向に間隔を置いた受信ビームのそれぞれの間に配置された振幅変位値/非相関化値を補間でき、これにより、カバレッジエリア全体の滑らかで空間的に連続なマップが生成される。
[069] 定性的再構成マップにおいて特定された1つ又は複数の病変の外側境界を明確に解明するために、本明細書のシステム構成要素、例えば、境界モジュール158は、例えば、図6A及び図6Bのマップなどの定性的マップを、同じ領域の少なくとも1つの定量的弾性マップと組み合わせる。そうすることで、定量的弾性マップからノイズを取り除くことができる。したがって、本明細書のシステムは、定量的弾性マップに通常見られるノイズの多い低SNRデータを省き、代わりに明確な境界によって描写される定義された病変位置を具体化する向上された弾性データを生成する。このようにして、本明細書のシステムは、ノイズを除去し、病変同定の精度を向上させ、処理時間を短縮することによって、超音波SWI技術を向上させる。
[070] 図7は、本開示の原理に従って実行されるせん断波撮像方法のフロー図である。例示的な方法700は、本明細書に説明されるシステム及び/又は装置によって、任意の順序で利用するステップを示している。方法700は、システム100などの超音波撮像システム、又は例えば、コーニンクレッカ・フィリップス社(「フィリップス」)によるLUMIFYなどの移動システムを含む他のシステムによって実行できる。追加の例示的なシステムには、同じくフィリップスによって製造されているSPARQ及び/又はEPIQが含まれる。
[071] 図示の実施形態では、方法700は、「標的組織に向けて送信された超音波パルスに応答する超音波エコーを取得する」ことによって、ステップ702で開始する。
[072] ステップ704において、方法は、「プッシュパルスを標的組織に送信して、標的組織内にせん断波を生成する」ことを含む。
[073] ステップ706において、方法は、「1つ又は複数の場所で、せん断波と交差するように空間的に計画された追跡パルスを送信する」ことを含む。
[074] ステップ708において、方法は、「追跡パルスがせん断波と交差した場所からエコー信号を受信する」ことを含む。
[075] ステップ710において、方法は、「受信したエコー信号から生成された追跡エコーデータを記憶する」ことを含む。
[076] ステップ712において、方法は、「追跡エコーデータに基づいて、標的組織を通って伝播するせん断波の変位振幅を決定する」ことを含む。
[077] ステップ714において、方法は、「決定された変位振幅に基づいて、標的組織の定性的組織弾性マップを生成する」ことを含む。
[078] 図8Aは、せん断波非相関化再構成マップの例である。図6Bに示される非相関化マップのように、図8Aのマップは、定性的であり、非相関化が高い1つの局所領域802aを含む。境界モジュール158は、同様の非相関化の個別の領域を非相関化再構成マップから識別しグループ化する。境界モジュール158は、各個別の領域間の境界を定め、これらを描写する等高線を生成し、これにより、図8Bに示されるように、非相関化等高線プロットが生成される。
[079][080][081][082] 実際の病変境界に関して等高線の精度を高めるために、境界モジュール158はまた、図8Cのオーバーレイプロットに示されるように、等高線プロットを定量的組織弾性マップ上にオーバーレイできる。定量的弾性マップは、例えば飛行時間型アプローチに従って、文献に説明されているさまざまなやり方で生成される。図8Cに示されているように、非相関化マップから生成された等高線は、定量的マップにおいて明らかである明確な剛性レベルの領域と正確に位置合わせしていない場合がある。等高線が下にある組織内に存在する任意の焦点病変を正確に包むように、等高線プロットと定量的弾性マップとの間の適合を評価及び向上させるために、境界モジュール158は2つのメトリックを生成する。最初のメトリックである局限性(focality)(f)は、等高線の重心に関する所与の等高線内の平均剛性分布を具体化する。2番目のメトリックであるペナルティ(p)は、所与の等高線の外側の組織剛性の平均分布を具体化する。オーバーレイプロット上の点(x,z)が等高線内にある場合、その点でのヤング率は、境界モジュール158によって等高線の局限性に寄与する。その点が等高線の外側にある場合、その点でのヤング率は、その等高線のペナルティに寄与する。この関係は、数学的に表すことができる。
(x,y)∈Cの場合、
Figure 0007258916000004
であり、
そうではない場合、
Figure 0007258916000005
であり、E(x,z)は、等高線によって画定される領域の重心から距離rにある特定のピクセル位置(x,z)における剛性値を示し、Cは、非相関化dBレベル「i」において等高線によって囲まれた領域を示す。境界モジュール158は、cost=p-fと定義される費用関数を操作する。各等高線と定量的マップに含まれる局限性病変との適合を向上させ、これにより、いくつかの例において、病変を包含する最適な等高線を生成するために、境界モジュール158はさらに、1つ又は複数の候補等高線の局限性値を最大化し、ペナルティ値を最小化することによって、費用関数を最小化する。
[083] 図9Aは、図9Bの定性的非相関化マップから生成された、さまざまな等高線候補値(デシベル(dB)単位)についてのペナルティ902、局限性904、及び費用関数906のグラフである。示されるように、費用関数906は最初に、約29dBで最小点に到達するまで減少する。次に、費用関数906は、ペナルティ902項が上昇するにつれて増加し、異なる断面積を包含する各等高線候補の外側にある硬組織を表すピクセルの数が増加していることを示す。29dBにおける等高線は、図9Bの非相関化マップ上に等高線がオーバーレイされたときに、等高線908と実際の病変との緊密な適合によって示されるように、図9Bに示される病変910の最適な等高線を表す。最適な等高線908はまた、境界モジュール158によって、定量的剛性マップ上にオーバーレイされる。図9Cに示されるように、これにより、病変を表さない高剛性の領域を明らかにできる。このような領域は、代わりに、実際の病変に寄与しない信号ノイズ又は高剛性の構造を表す場合がある。ノイズの存在下で実際の病変を明確に描写するために、境界モジュール158はさらに、領域912などの最適な等高線の外側にある定量的マップ内の領域をマスクし、このようなマスクされた領域がマスクされているハイブリッドマップをディスプレイ上に生成する。図1を参照すると、図示のハイブリッドマップ166は、病変168及びマスクされた領域170を含む。図示の特定の実施形態では、病変168のみがマップ166に示されている。追加の例では、組織弾性変動の1つ又は複数の領域がマップ上に維持される。例えば、境界モジュール158は、単独で、又は境界表示プロセッサ164及び/又はユーザーインターフェース150と組み合わせて、異なるマスキング閾値を適用して、最終的なハイブリッドマップ166に表される詳細を増減する。
[084] いくつかの例では、境界モジュール158は、ペナルティ関数及び局限性関数に最大値演算子を適用して費用関数を定義し、次に費用関数を最小化する等高線を特定する。このような実装形態によれば、費用関数は、図10Aに示されるように、ペナルティ関数と局限性関数との交点において最小化される。ペナルティ関数1002は、約32.8dBにおいて、局限性関数1004と交差する。この等高線閾値は、図10Bの定性的非相関化マップ上に表示される第1の最適等高線1006によって示される。あるいは、最適等高線は、図10Dの勾配マップに示されている定性的非相関化マップの勾配に、少なくとも部分的に基づいて決定される。勾配に基づいて最適等高線を特定するために、さまざまな等高線を勾配マップに描画し、各線について、勾配値を合計し、合計を等高線の長さで割って、各線の平均勾配を算出する。最大平均勾配を有する等高線を選択して、図10B及び図10Cの線1008によって示されるように、非相関化マップ及び/又は定量的剛性マップ上にオーバーレイする。したがって、境界は、最も顕著な勾配の変化の境界を定める。さまざまな例において、境界モジュール158は、線1006及び1008などの2つ以上の候補等高線を評価し、病変の境界を定めるために1つを選択する。各線について信頼水準を計算し、信頼水準が最も高い線が選択される。さらに又はあるいは、ユーザーによる選択のために、2つ以上の候補等高線を表示する。ユーザーは、候補等高線の視覚的評価に基づいて、及び/又は事前設定された基準を適用することによって、単一の等高線を選択する。いくつかの例では、基準には、過剰封入の組織についてプログラムされた選好が含まれてよく、これにより、標的組織を焼灼しない可能性を減少させる。対照的に、基準には、過小封入の組織についてプログラムされた選好が含まれてもよく、これにより、健康な組織を焼灼する可能性が最小限に抑えられる。
[085] いくつかの実施形態では、意味のある定量的剛性マップを得るにはSNRが低すぎる場合がある。このような場合、境界モジュール158は、焼灼プロセスの熱的モデルから導出されたヒートマップ又は弾性マップ上のペナルティ関数及び局限性関数を決定する。このような実装形態によれば、定性的非相関化マップは、定量的熱データによって具体化できる。
[086] 図11は、本開示の原理に従って実行されるせん断波撮像方法のフロー図である。例示的な方法1100は、本明細書に説明されるシステム及び/又は装置によって、任意の順序で利用できるステップを示している。方法1100は、システム100などの超音波撮像システム、又は例えば、コーニンクレッカ・フィリップス社(「フィリップス」)によるLUMIFYなどの移動システムを含む他のシステムによって実行できる。追加の例示的なシステムには、同じくフィリップスによって製造されているSPARQ及び/又はEPIQが含まれる。
[087] 図示の実施形態では、方法1100は、「標的組織に向けて送信される超音波パルスに応答する超音波エコーを取得する」ことによって、ステップ1102で開始する。
[088] ステップ1104において、方法は、「プッシュパルスを標的組織に送信して、標的組織内にせん断波を生成する」ことを含む。
[089] ステップ1106において、方法は、「1つ又は複数の場所で、せん断波と交差するように空間的に計画された追跡パルスを送信する」ことを含む。
[090] ステップ1108において、方法は、「追跡パルスがせん断波と交差した場所からエコー信号を受信する」ことを含む。
[091] ステップ1110において、方法は、「受信したエコー信号から生成された追跡エコーデータを記憶する」ことを含む。
[092] ステップ1112で、方法は、「受信したエコー信号に基づいて、標的組織の定性的組織弾性マップを生成する」ことを含む。
[093] ステップ1114において、方法は、「受信したエコー信号に基づいて、標的組織の定量的組織弾性マップを生成する」ことを含む。
[094] ステップ1116において、方法は、「定性的組織弾性マップを定量的組織弾性マップと組み合わせることによって、標的組織内の剛性が増加した領域の境界を決定する」ことを含む。
[095] 構成要素、システム、及び/又は方法が、コンピュータベースのシステム又はプログラマブルロジックなどのプログラム可能デバイスを使用して実装されるさまざまな実施形態では、上記のシステム及び方法は、「C」、「C++」、「FORTRAN」、「Pascal」、「VHDL」などのさまざまな既知の又は後に開発されたプログラミング言語のいずれかを使用して実装することができることが理解されるべきである。したがって、コンピュータなどのデバイスに上記のシステム及び/又は方法を実装するように指示することができる情報を含むことができる、磁気コンピュータディスク、光ディスク、電子メモリなどのようなさまざまな記憶媒体を準備することができる。適切なデバイスが記憶媒体に含まれる情報及びプログラムにアクセスできるようになると、記憶媒体は、情報及びプログラムをデバイスに提供することができ、したがって、デバイスが本明細書に説明されるシステムの機能及び/又は方法を実行できるようにする。例えば、ソースファイル、オブジェクトファイル、実行可能ファイルなどの適切な資料を含むコンピュータディスクが、コンピュータに提供された場合、コンピュータはその情報を受け取り、それ自体を適切に構成し、さまざまな機能を実装するように上記の図及びフローチャートに概説されるさまざまなシステムの機能及び方法を実行できる。すなわち、コンピュータは、上記のシステム及び/又は方法の異なる要素に関連する情報のさまざまな部分をディスクから受信し、個々のシステム及び/又は方法を実装し、前述の個々のシステムの機能及び/又は方法を調整できる。
[096] 本開示を考慮して、本明細書に説明されるさまざまな方法及びデバイスは、ハードウェア、ソフトウェア、及びファームウェアで実装することができることに留意されたい。さらに、さまざまな方法及びパラメータは、例としてのみ含まれており、限定的な意味では含まれていない。本開示を考慮して、当業者は、本発明の範囲内に留まりながら、それらの技術及びこれらの技術に影響を与えるために必要な機器を決定する際に本発明の教示を実装することができる。本明細書に説明される1つ又は複数のプロセッサの機能は、より少ない数の又は単一の処理ユニット(例えば、CPU)に組み込まれてもよく、また、特定用途向け集積回路(ASIC)又は本明細書に説明される機能を実行するための実行可能命令に応答するようにプログラムされた汎用処理回路を使用して実装することができる。
[097] 本システムは、特に超音波撮像システムを参照して説明されたが、本システムは、1つ又は複数の画像が体系的に得られる他の医用撮像システムに拡張できることも想定されている。したがって、本システムは、腎臓、精巣、乳房、卵巣、子宮、甲状腺、肝臓、肺、筋骨格、脾臓、心臓、動脈及び血管系に関連するがこれらに限定されない画像情報だけでなく、超音波誘導介入に関連する他の撮像アプリケーションを取得及び/又は記録するために使用できる。さらに、本システムはまた、本システムの特徴及び利点を提供できるように、従来の撮像システムと共に使用できる1つ又は複数のプログラムを含む。本開示の特定の追加の利点及び特徴は、本開示を研究する際に当業者に明らかであるか、又は本開示の新規のシステム及び方法を使用する人によって経験され得る。本システム及び方法の別の利点は、従来の医用画像システムを容易にアップグレードして、本システム、デバイス、及び方法の特徴及び利点を組み込む点である。
[098] 当然ながら、本明細書に説明される例、実施形態又はプロセスのいずれか1つは、1つ又は複数の他の例、実施形態及び/又はプロセスと組み合わせることができ、又は本システム、デバイス、及び方法に従って、別個のデバイス又はデバイス部分の間で分離及び/又は実行できることが理解されたい。
[099] 最後に、上記の議論は、本システムを単に例示することを意図しており、添付の特許請求の範囲を特定の実施形態又は実施形態のグループに限定するものとして解釈されるべきではない。したがって、本システムは、例示的な実施形態を参照して特に詳細に説明されたが、以下の特許請求の範囲に記載されている本システムのより広く意図された精神及び範囲から逸脱することなく、当業者によって多数の修正及び代替実施形態が考案されうることも理解されたい。したがって、明細書及び図面は、例示的に見なされるべきであり、添付の特許請求の範囲を限定することを意図するものではない。

Claims (18)

  1. せん断波撮像用の超音波撮像システムであって、
    標的組織に向けて送信された超音波パルスに応答するエコーを取得する超音波トランスデューサと、
    ビームフォーマと、
    前記ビームフォーマと通信するプロセッサと、
    を含み、
    前記ビームフォーマは、プッシュパルスに応答して追跡パルスを、前記超音波トランスデューサから送信するように構成され、前記プッシュパルスは、前記標的組織内にせん断波を生成し、前記追跡パルスは、1つ又は複数の場所において、前記せん断波と交差するように空間的に計画され、
    前記ビームフォーマは、前記追跡パルスが前記せん断波と交差した場所からのエコー信号を、前記超音波トランスデューサから受信するように構成され、
    前記プロセッサは、受信した前記エコー信号から生成される追跡エコーデータを記憶し、前記追跡エコーデータに応答して、前記標的組織を通って伝搬する前記せん断波の変位振幅を2つ以上の点において決定し、前記変位振幅を決定することに応答して、前記変位振幅の減衰を決定し、決定された前記変位振幅の減衰に基づいて、決定された前記変位振幅の減衰を前記変位振幅の参照減衰と比較することによって、前記標的組織の定性的組織弾性マップを生成する、
    超音波撮像システム。
  2. 決定された前記変位振幅は、前記標的組織内の2つ以上の横方向に間隔を置いた点において決定されていて、前記変位振幅の参照減衰は、参照組織内の2つ以上の横方向に間隔を置いた点において決定されるか、又は、シミュレートされたモデルから数値的に決定される、請求項に記載の超音波撮像システム。
  3. 前記参照組織は、前記標的組織のファントムモデルを含む、請求項に記載の超音波撮像システム。
  4. 前記参照組織は、前記標的組織に対応する組織タイプで、剛性が増加した領域を欠く患者サンプルを含む、請求項に記載の超音波撮像システム。
  5. 前記プロセッサはさらに、
    前記標的組織内の前記横方向に間隔を置いた点の連続する対における、決定された前記変位振幅を比較することによって、変位振幅非相関化値を決定し、
    前記参照組織内の前記横方向に間隔を置いた点の連続する対における、決定された前記変位振幅を比較することによって、参照変位振幅非相関化値を決定し、
    前記変位振幅非相関化値を前記参照変位振幅非相関化値と比較し、
    前記比較に基づいて、前記定性的組織弾性マップを生成する、
    請求項に記載の超音波撮像システム。
  6. 前記超音波トランスデューサは、焼灼デバイスに結合され、前記焼灼デバイスは、剛性が増加した領域又は前記剛性が増加した領域を含むより大きな領域を焼灼する、請求項1に記載の超音波撮像システム。
  7. 前記超音波トランスデューサ、前記ビームフォーマ及び前記プロセッサは、前記焼灼デバイスと同時に動作する、請求項に記載の超音波撮像システム。
  8. 前記定性的組織弾性マップを表示するユーザーインターフェースをさらに含む、請求項1に記載の超音波撮像システム。
  9. 前記変位振幅の参照減衰は、参照マップから導出される、請求項に記載の超音波撮像システム。
  10. 複数の参照マップを記憶するメモリをさらに含む、請求項に記載の超音波撮像システム。
  11. 前記標的組織は、熱的病変からなる剛性が増加した領域を含む、請求項1に記載の超音波撮像システム。
  12. 標的組織に向けて送信された超音波パルスに応答する超音波エコーを取得するステップと、
    前記標的組織内にせん断波を生成するように、前記標的組織内へとプッシュパルスを送信するステップと、
    1つ又は複数の場所で、前記せん断波と交差するように空間的に計画された追跡パルスを送信するステップと、
    前記追跡パルスが前記せん断波と交差した場所からエコー信号を受信するステップと、
    受信した前記エコー信号から生成される追跡エコーデータを記憶するステップと、
    前記追跡エコーデータに基づいて、前記標的組織を通って伝播する前記せん断波の変位振幅を2つ以上の点において決定するステップと、
    前記変位振幅の減衰を決定するステップと、
    決定された前記変位振幅の減衰を前記変位振幅の参照減衰と比較することによって、前記標的組織の定性的組織弾性マップを生成するステップと、
    を含む、せん断波撮像方法。
  13. 決定された前記変位振幅は、前記標的組織内の2つ以上の横方向に間隔を置いた点において決定されていて、前記変位振幅の参照減衰は、参照組織内の2つ以上の横方向に間隔を置いた点において決定されるか、又は、シミュレートされたモデルから数値的に決定される、請求項12に記載の方法。
  14. 前記標的組織内の前記横方向に間隔を置いた点の連続する対における、決定された前記変位振幅を比較することによって、変位振幅非相関化値を決定するステップと、
    前記参照組織内の前記横方向に間隔を置いた点の連続する対における、決定された前記変位振幅を比較することによって、参照変位振幅非相関化値を決定するステップと、
    前記変位振幅非相関化値を前記参照変位振幅非相関化値と比較するステップと、
    前記比較に基づいて、前記定性的組織弾性マップを生成するステップと、
    をさらに含む、請求項13に記載の方法。
  15. 前記定性的組織弾性マップを、ユーザーインターフェース上に表示するステップをさらに含む、請求項12に記載の方法。
  16. 前記変位振幅の参照減衰は、参照マップから導出される、請求項15に記載の方法。
  17. 前記標的組織は、熱的病変からなる剛性が増加した領域を含む、請求項12に記載の方法。
  18. 実行されると、超音波撮像システムのプロセッサに、請求項12から17のいずれか一項に記載の方法を行わせる、実行可能命令を含む、非一時的コンピュータ可読媒体。
JP2020560801A 2018-05-03 2019-05-01 組織弾性モニタリング及び表示のためのせん断波振幅再構成 Active JP7258916B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862666348P 2018-05-03 2018-05-03
US62/666,348 2018-05-03
US201862741905P 2018-10-05 2018-10-05
US62/741,905 2018-10-05
PCT/EP2019/061156 WO2019211336A1 (en) 2018-05-03 2019-05-01 Shear wave amplitude reconstruction for tissue elasticity monitoring and display

Publications (3)

Publication Number Publication Date
JP2021522004A JP2021522004A (ja) 2021-08-30
JPWO2019211336A5 JPWO2019211336A5 (ja) 2022-05-11
JP7258916B2 true JP7258916B2 (ja) 2023-04-17

Family

ID=66379923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560801A Active JP7258916B2 (ja) 2018-05-03 2019-05-01 組織弾性モニタリング及び表示のためのせん断波振幅再構成

Country Status (5)

Country Link
US (1) US11766244B2 (ja)
EP (1) EP3787519B1 (ja)
JP (1) JP7258916B2 (ja)
CN (1) CN112135567A (ja)
WO (1) WO2019211336A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092575A1 (en) * 2019-11-07 2021-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for harmonic motion elastography
CN114173670A (zh) * 2020-04-24 2022-03-11 深圳迈瑞生物医疗电子股份有限公司 粘弹性测量方法和超声测量系统
CN113855235B (zh) * 2021-08-02 2024-06-14 应葵 用于肝脏部位的微波热消融手术中磁共振导航方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106852A1 (ja) 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
JP2014004375A (ja) 2012-06-25 2014-01-16 Siemens Medical Solutions Usa Inc 超音波の音響吸収量または音響減衰量の測定方法
WO2014136502A1 (ja) 2013-03-05 2014-09-12 日立アロカメディカル株式会社 超音波診断装置、及び送受信方法
US20150087976A1 (en) 2013-09-24 2015-03-26 Siemens Medical Solutions Usa, Inc. Shear Wave Estimation from Analytic Data
US20150305717A1 (en) 2014-04-23 2015-10-29 Duke University Methods, systems and computer program products for multi-resolution imaging and analysis
JP2016067399A (ja) 2014-09-26 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
WO2016093024A1 (ja) 2014-12-08 2016-06-16 日立アロカメディカル株式会社 超音波診断装置、及び弾性評価方法
US20170311929A1 (en) 2015-10-29 2017-11-02 Wuxi Hisky Medical Technologies Co., Ltd. Method and device for elasticity detection
WO2017211757A1 (en) 2016-06-10 2017-12-14 Koninklijke Philips N.V. Using reflected shear waves for monitoring lesion growth in thermal ablations
US20180014814A1 (en) 2016-07-13 2018-01-18 Siemens Medical Solutions Usa, Inc. Tissue characterization in medical diagnostic ultrasound
JP2018509263A (ja) 2015-03-31 2018-04-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波弾性に基づく病変境界マッピングの較正

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984209B2 (en) * 2003-07-02 2006-01-10 The Brigham And Women's Hospital, Inc. Harmonic motion imaging
US20050215899A1 (en) 2004-01-15 2005-09-29 Trahey Gregg E Methods, systems, and computer program products for acoustic radiation force impulse (ARFI) imaging of ablated tissue
US20100016719A1 (en) 2008-07-16 2010-01-21 Siemens Medical Solutions Usa, Inc. Adaptive regulation of acoustic output power in medical ultrasound imaging
US8602994B2 (en) * 2009-03-09 2013-12-10 Mayo Foundation For Medical Education And Research Method for ultrasound vibrometry using orthogonal basis functions
CN102667522B (zh) * 2009-11-25 2014-10-08 皇家飞利浦电子股份有限公司 采用聚焦扫描线波束形成的超声剪切波成像
US9468421B2 (en) * 2012-02-16 2016-10-18 Siemens Medical Solutions Usa, Inc. Visualization of associated information in ultrasound shear wave imaging
CN104394771B (zh) * 2012-06-04 2017-07-04 泰尔哈绍梅尔医学研究基础设施和服务有限公司 超声图像处理
US11191522B2 (en) 2014-06-30 2021-12-07 Koninklijke Philips N.V. Ultrasound shear wave elastography featuring therapy monitoring
CN107205724B (zh) * 2014-10-28 2020-10-30 超声成像 成像方法以及进行剪切波弹性成像的装置
WO2016077173A1 (en) * 2014-11-10 2016-05-19 University Of Houston System Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases
CN104825195A (zh) * 2015-05-25 2015-08-12 无锡海斯凯尔医学技术有限公司 剪切波粘弹性成像方法及系统
WO2016196631A1 (en) * 2015-06-01 2016-12-08 Duke University Methods, systems and computer program products for single track location shear wave elasticity imaging

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106852A1 (ja) 2005-03-30 2006-10-12 Hitachi Medical Corporation 超音波診断装置
JP2014004375A (ja) 2012-06-25 2014-01-16 Siemens Medical Solutions Usa Inc 超音波の音響吸収量または音響減衰量の測定方法
WO2014136502A1 (ja) 2013-03-05 2014-09-12 日立アロカメディカル株式会社 超音波診断装置、及び送受信方法
US20150087976A1 (en) 2013-09-24 2015-03-26 Siemens Medical Solutions Usa, Inc. Shear Wave Estimation from Analytic Data
US20150305717A1 (en) 2014-04-23 2015-10-29 Duke University Methods, systems and computer program products for multi-resolution imaging and analysis
JP2016067399A (ja) 2014-09-26 2016-05-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
WO2016093024A1 (ja) 2014-12-08 2016-06-16 日立アロカメディカル株式会社 超音波診断装置、及び弾性評価方法
JP2018509263A (ja) 2015-03-31 2018-04-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 超音波弾性に基づく病変境界マッピングの較正
US20170311929A1 (en) 2015-10-29 2017-11-02 Wuxi Hisky Medical Technologies Co., Ltd. Method and device for elasticity detection
WO2017211757A1 (en) 2016-06-10 2017-12-14 Koninklijke Philips N.V. Using reflected shear waves for monitoring lesion growth in thermal ablations
US20180014814A1 (en) 2016-07-13 2018-01-18 Siemens Medical Solutions Usa, Inc. Tissue characterization in medical diagnostic ultrasound

Also Published As

Publication number Publication date
EP3787519A1 (en) 2021-03-10
CN112135567A (zh) 2020-12-25
US20210113192A1 (en) 2021-04-22
JP2021522004A (ja) 2021-08-30
WO2019211336A1 (en) 2019-11-07
US11766244B2 (en) 2023-09-26
EP3787519B1 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP6994494B2 (ja) エラストグラフィ測定システム及びその方法
RU2702090C2 (ru) Калибровка ультразвукового, основанного на эластичности, отображения границы очага поражения
EP3013244B1 (en) System and method for mapping ultrasound shear wave elastography measurements
EP2232299B1 (en) Method and system for imaging vessels
JP7258916B2 (ja) 組織弾性モニタリング及び表示のためのせん断波振幅再構成
US20070083110A1 (en) Programmable phase velocity in an ultrasonic imaging system
KR102396008B1 (ko) 정반사체를 트래킹하기 위한 초음파 이미징 시스템 및 방법
EP3632330B1 (en) Method for determining a speed of sound in a medium, an ultrasound imaging system implementing said method
US20220386996A1 (en) Ultrasonic shearwave imaging with patient-adaptive shearwave generation
JP7354145B2 (ja) 組織弾性モニタリング及び表示のためのせん断波振幅再構成
WO2019155037A1 (en) Multi-parametric tissue stiffness quantification
CN113332620A (zh) 一种超声医疗设备
KR20230124893A (ko) 다중 어퍼쳐 초음파를 사용한 조직 특성 묘사를 위한 시스템들 및 방법들
CN114072060A (zh) 一种超声成像方法以及超声成像系统
JP2022500136A (ja) 超音波画像内のツールを追跡するためのシステム及び方法
JP2023108765A (ja) 超音波診断装置及び判定方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230405

R150 Certificate of patent or registration of utility model

Ref document number: 7258916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150