WO2016092803A1 - 電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置 - Google Patents

電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置 Download PDF

Info

Publication number
WO2016092803A1
WO2016092803A1 PCT/JP2015/006061 JP2015006061W WO2016092803A1 WO 2016092803 A1 WO2016092803 A1 WO 2016092803A1 JP 2015006061 W JP2015006061 W JP 2015006061W WO 2016092803 A1 WO2016092803 A1 WO 2016092803A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrochemical measurement
measurement device
substrate
electrochemical
Prior art date
Application number
PCT/JP2015/006061
Other languages
English (en)
French (fr)
Inventor
荻原 淳
純弘 大塚
古本 憲輝
正博 安見
篤 守法
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016563498A priority Critical patent/JP6653490B2/ja
Priority to CN201580065357.0A priority patent/CN107003265B/zh
Publication of WO2016092803A1 publication Critical patent/WO2016092803A1/ja
Priority to US15/606,553 priority patent/US10458941B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/283Means for supporting or introducing electrochemical probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures

Definitions

  • the present disclosure relates to an electrochemical measurement device and an electrochemical measurement apparatus including the electrochemical measurement device.
  • Biological samples such as cells and tissues such as fertilized eggs carry various activities between the inside and outside.
  • cardiomyocytes transmit information such as electrical signals and compounds by transporting K ions, Na ions, Ca ions, etc., and control the pulsation of the heart.
  • fertilized eggs take oxygen in the surroundings by breathing, and divide inside the follicle while consuming the taken-in oxygen.
  • a method of holding these biological samples in an electrochemical measurement device and electrically measuring a physicochemical state change generated around the biological sample is known. It has been. These are used as pharmacological tests for new drug candidate compounds using model cells and methods for examining the activity of fertilized eggs.
  • a method for measuring the respiration activity of a fertilized egg for example, there is a method in which the fertilized egg is captured with a micromanipulator or a micropipette, and the oxygen concentration in the vicinity of the fertilized egg is measured electrochemically using a working electrode (electrode). is there. By using this method, the respiratory activity of the fertilized egg can be quantified.
  • the above electrochemical measurement method is based on a scanning electrochemical microscope (SECM)
  • SECM scanning electrochemical microscope
  • a biological sample having a working electrode (electrode) of the probe as an object to be measured, for example, in the vicinity of a fertilized egg It is necessary to perform an operation to bring it closer to.
  • the operation of the working electrode (electrode) needs to be performed manually, there is a problem in operability, and there is a problem that variations occur depending on the technique of the operator.
  • an electrochemical measurement device includes a substrate, a mounting portion provided on the substrate, on which a biological sample (measurement object) can be mounted, an electrode provided in the vicinity of the mounting portion, and an electrode. And an insulating film covering the surface of the substrate so as to be exposed. And the electrochemical measurement apparatus which has the space (well) for hold
  • the fertilized egg By placing the fertilized egg (object to be measured) on the mounting portion of this electrochemical measuring device, the fertilized egg is placed near the electrode, and the oxygen concentration in the vicinity of the fertilized egg is electrochemically determined. It can be easily measured, and the respiratory activity of the fertilized egg can be easily quantified.
  • This disclosure is intended to obtain an electrochemical measurement device capable of measuring more accurately and an electrochemical measurement apparatus including the electrochemical measurement device.
  • An electrochemical measurement device includes a base portion, a placement portion that is provided on the base portion and can place an object to be measured, and an electrode portion that is provided in the vicinity of the placement portion in the base portion. And a wiring part provided on the surface of the base part and electrically connected to the electrode part, an insulator covering the wiring part, and a protruding part provided on the base part so as to protrude from the insulator It is characterized by providing these.
  • an electrochemical measurement device capable of measuring more accurately and an electrochemical measurement apparatus including the electrochemical measurement device.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a figure which shows typically the manufacturing method of the electrochemical measuring device concerning a 1st embodiment of this indication, and is a sectional view showing the state where a pin was pressed on the upper part of an electrochemical measuring device. It is a figure which shows typically the manufacturing method of the electrochemical measuring device concerning 1st Embodiment of this indication, Comprising: A pin is pressed on the upper part of an electrochemical measuring device, and a peripheral wall part is formed in the peripheral part of an electrochemical measuring device. It is sectional drawing which shows the formed state.
  • FIG. 1 It is a figure showing typically the manufacturing method of the electrochemical measuring device concerning a 1st embodiment of this indication, and is a sectional view showing the state where the pin was removed and the electrochemical measuring device was formed. It is a figure which shows the protrusion part concerning the modification of 1st Embodiment of this indication, Comprising: It is a top view which shows the protrusion part concerning a 1st modification. It is a figure which shows the protrusion part concerning the modification of 1st Embodiment of this indication, Comprising: It is a top view which shows the protrusion part concerning a 2nd modification.
  • FIG. 8 is a diagram illustrating a protrusion according to a modification of the first embodiment of the present disclosure, and is a cross-sectional view taken along the line VIIIA-VIIIA in FIG. 7.
  • FIG. 8B is a cross-sectional view corresponding to a cross-sectional view taken along the line VIIIA-VIIIA in FIG. 8A, according to a third modification, of the protrusion according to the first embodiment of the present disclosure.
  • FIG. 8B is a cross-sectional view corresponding to the VIIIA-VIIIA cross-sectional view in FIG. 8A, according to a fourth modification, of the protrusion according to the first embodiment of the present disclosure. It is a top view which shows the electrochemical measuring device concerning 2nd Embodiment of this indication.
  • the mounting portion 131 and the electrode 140 are formed on the surface 130a of the substrate 130 on which the insulating film 130b is formed, and the electrode 140 is formed so that at least a part of the surface 140a of the electrode 140 is exposed.
  • the electrochemical measurement device 120 is formed by covering with the insulator 160.
  • the pin 180 is placed on the surface 120a of the electrochemical measurement device 120 (see FIG. 14). At this time, the pin 180 is placed so that the lower surface 180 a of the pin 180 abuts on the surface 160 a of the insulator 160. Therefore, in the state shown in FIG. 14, the pin 180 is pressed against the insulator 160.
  • the peripheral wall portion 111 is formed in a state where the insulator 160 is pressed by the pin 180. Therefore, a large external force is applied to the insulator 160 when the electrochemical measuring device 110 is formed, and the insulator 160 may be damaged. If the insulator 160 is damaged, a desired electrical signal cannot be obtained, and accurate measurement may not be possible.
  • the electrochemical measurement device and the electrochemical measurement apparatus that are used for the inspection and analysis of the activity state of a biological sample such as a cell or tissue such as a fertilized egg are exemplified.
  • the vertical direction is defined in a state where the substrate is arranged so that the substrate surface faces upward.
  • FIGS. 1 and 2 an electrochemical measurement device (an electrochemical measurement device for biological sample measurement) 20 is provided on a substrate (base portion) 30 and a substrate (base portion) 30. And a sample placement portion (placement portion) 31 on which (measurement object) can be placed.
  • FIG. 1 is a top view of the electrochemical measurement device 20.
  • 2 is a cross-sectional view taken along line II-II in FIG.
  • the substrate 30 is formed in a substantially rectangular plate shape, and can be formed of, for example, glass, resin, silicon, ceramic, etc. (In this embodiment, the substrate 30 formed using silicon is illustrated. ). Note that the shape of the substrate 30 is not limited to a rectangular shape, and may be various shapes such as a circle and a polygon. Further, the base part is not limited to a plate-like substrate, and any shape can be used as long as the sample mounting part 31 is formed and the surface on which the electrode part 40 described later is formed. It may be.
  • the sample placement unit 31 can be, for example, a depression provided on the surface 30a of the substrate 30. And as a shape of a hollow, it can be set as columnar shape or polygonal column shape, for example. In this embodiment, as shown in FIG. 1 and FIG. 2, the sample placement portion 31 is formed on the substrate 30 by forming a cylindrical recess at a substantially central portion of the surface 30 a of the substrate 30.
  • the depth of the sample placement part 31 is preferably less than half the height of the biological sample.
  • the depth of the sample mounting part 31 can be freely set according to the size of the biological sample, and is not limited to half or less of the height of the biological sample.
  • the wall surface 31a of the sample placement unit 31 and the bottom surface 31b of the sample placement unit 31 it is preferable to subject the wall surface 31a of the sample placement unit 31 and the bottom surface 31b of the sample placement unit 31 to hydrophilic treatment.
  • the wall surface 31a and the bottom surface 31b of the sample mounting part 31 have hydrophilicity, and the liquid is easily injected into the sample mounting part 31 to prevent bubbles and the like from remaining. Will be able to.
  • the hydrophilic treatment of the wall surface 31a and the bottom surface 31b can be performed by, for example, ashing treatment.
  • the biological sample may be more reliably fixed by making the wall surface of the sample mounting portion into a tapered shape having an angle of 90 ° to 180 ° with respect to the bottom surface. Moreover, you may enable it to fix a biological sample more reliably by making the shape of a sample mounting part into a cone shape or a polygonal shape.
  • the electrochemical measurement device 20 includes an electrode unit 40 provided in the vicinity of the sample mounting unit (mounting unit) 31 on the substrate (base unit) 30 and protruding from the substrate 30. It is sufficient that at least a part of the electrode unit 40 is provided in the vicinity of the sample mounting unit (mounting unit) 31 on the substrate (base unit) 30, and all the electrode units are disposed on the substrate (base unit) 30. It is not necessary to provide in the vicinity of the sample mounting part (mounting part) 31 in FIG.
  • the substrate 30 is a conductor or a semiconductor
  • This insulating layer can be composed of silicon dioxide, silicon nitride, organic matter, or the like.
  • a silicon substrate is used as the substrate 30, and an insulating portion 30 b made of silicon dioxide is formed on the surface 30 a side of the substrate 30.
  • the insulating portion 30b insulates the electrode portion 40 from the substrate body 30c.
  • a first ring electrode 41 having a substantially C shape in plan view is provided on the surface 30a of the substrate 30 so as to surround the sample mounting portion 31.
  • the first ring electrode 41 is preferably arranged concentrically around the sample placement portion 31.
  • the first ring electrode 41 is illustrated as having a configuration in which a part of the ring is interrupted.
  • the first ring electrode 41 has a shape in which the ring is connected. It may be O-shaped.
  • the 1st ring electrode 41 can be comprised with noble metals, such as platinum, gold
  • the first ring electrode 41 can be made of a material generally used as a battery electrode material, such as carbon or lithium cobalt oxide. That is, the material of the first ring electrode 41 can be appropriately selected in consideration of the composition of the culture solution at the time of measurement, the necessary voltage, current, and the like.
  • the electrochemical measurement device 20 includes a wiring part 50 provided on the surface 30 a of the substrate (base part) 30 and electrically connected to the electrode part 40.
  • the first electrode exposed portion 51a located at one end of the wiring pattern 51 is connected to one end 41c of the first ring electrode 41 formed in a C-shape.
  • the first electrode exposed portion 51a extends linearly toward the side opposite to the sample mounting portion 31 side (the radially outer side of the sample mounting portion 31).
  • the shape of the wiring pattern 51 is not limited to a linear shape.
  • the electrochemical measurement device 20 includes an insulator 60 that covers portions (surface 51b and side surface 51c) exposed from the substrate 30 of the wiring portion 50.
  • the insulator 60 includes a first insulating layer 61 covering a portion (surface 41a and side surface 41d) exposed from the substrate 30 of the first ring electrode 41, and a portion (surface 51b and surface exposed from the substrate 30 of the wiring pattern 51). And a second insulating layer 62 covering the side surface 51c).
  • the first insulating layer 61 and the second insulating layer 62 are integrally formed. That is, the part exposed from the substrate 30 of the first ring electrode 41 and the part exposed from the substrate 30 of the wiring pattern 51 are covered with one insulator 60.
  • the first insulating layer 61 is provided on the surface 30a of the substrate 30 so as to cover the first ring electrode 41, and the first insulating layer 61 contains the first ring electrode 41 and the culture solution. It is made of silicon dioxide, silicon nitride, organic matter or the like so that it can be insulated.
  • the second insulating layer 62 is provided on the surface 30a of the substrate 30 so as to cover the wiring pattern 51, and the second insulating layer 62 can insulate the wiring pattern 51 from the culture solution.
  • it is composed of silicon dioxide, silicon nitride, organic matter or the like.
  • the opening 61 a is formed in the first insulating layer 61. Then, a portion of the first ring electrode 41 exposed from the substrate 30, that is, a portion of the portion (surface 41 a and side surface 41 d) exposed from the substrate 30 when not covered with the first insulating layer 61 (this embodiment) In the embodiment, a part of the surface 41a) is exposed through the opening 61a.
  • the first ring electrode 41 has a first electrode exposed portion 41 b exposed from the opening 61 a of the first insulating layer 61. By doing so, the first ring electrode 41 comes into contact with the culture solution at the first electrode exposed portion 41b.
  • the opening 61a of the first insulating layer 61 can be formed, for example, in a circular shape or a polygonal shape (the circular opening 61a is illustrated in FIG. 1).
  • the wiring pattern 51 drawn from the first ring electrode 41 is covered with the second insulating layer 62 so that the wiring pattern 51 can be prevented from coming into contact with the culture solution. ing. With such a configuration, it is possible to reduce current detection by an electrochemical reaction at an unnecessary position.
  • the first ring electrode 41 when the first ring electrode 41 is not covered with the first insulating layer 61 and the entire first ring electrode 41 is brought into contact with the culture solution and the electrochemical measurement is performed, noise is generated as the electrode area is increased. An increase in Faraday current may occur, and accurate electrochemical measurement may not be performed.
  • the oxygen consumption accompanying an electrochemical reaction increases as the electrode area expands, affecting the oxygen concentration in the vicinity of the fertilized egg. In some cases, respiratory activity cannot be measured accurately.
  • the area of the first electrode exposed portion 41b is 500 ⁇ m so that the non-Faraday current that is measurement noise is small and the influence of the oxygen concentration in the vicinity of the fertilized egg due to oxygen consumption accompanying the electrochemical reaction is small. It is preferable to set it to 2 or less.
  • a plurality of first electrode exposed portions 41b are arranged on the first ring electrode 41 in order to measure the biological sample from a plurality of directions. At this time, it is preferable that the plurality of first electrode exposure portions 41 b be provided at positions equidistant from the sample placement portion 31. With such a configuration, a physicochemical state change such as an oxygen concentration around the biological sample can be easily measured by electrochemical measurement, regardless of the bias of the biological sample activity.
  • first electrode exposed portions 41 b are provided on the first ring electrode 41, and the four first electrode exposed portions 41 b are every 90 degrees with the sample mounting portion 31 as the center. Are arranged at equal intervals. Note that the number of first electrode exposed portions 41b is not limited to four. For example, eight first electrode exposed portions 41 b can be provided on the first ring electrode 41. In this case, the sample placement unit 31 can be arranged at regular intervals every 45 degrees.
  • the diffusion layers formed by the respective first electrode exposed portions 41b overlap with each other, and they do not affect the electrochemical reaction that occurs in the first electrode exposed portion 41b. It is preferable to arrange them as described above.
  • the distance between two adjacent first electrode exposed portions 41b is preferably 6.5 times or more the diameter of the first electrode exposed portion 41b.
  • the diameter of the first electrode exposed portion 41b is the diameter of the smallest circle including the first electrode exposed portion 41b inside.
  • the diameter of the first electrode exposed portion 41b is a diameter.
  • the diameter of the first electrode exposed portion 41b is the length of the diagonal line.
  • the plurality of first electrode exposed portions 41 b are arranged at a position equidistant from the center of the sample placing portion 31. As described above, by providing the plurality of first electrode exposed portions 41b at an equal distance from the sample mounting portion 31, a physicochemical state change such as an oxygen concentration around the biological sample is biased to the biological sample activity. Regardless, it can be easily measured by electrochemical measurement.
  • a pressure receiving portion (protruding portion) 70 that protrudes from the insulator 60 (second insulator 62) is provided on the surface 30a of the substrate (base portion) 30.
  • the pressure receiving portion 70 is pressed by the pin 80 when forming the peripheral wall portion 11 of the electrochemical measuring device 10 described later.
  • the pressure receiving part 70 is provided in the site
  • the pressure receiving part 70 is formed so as to surround the mounting part 31 and further, is formed so as to surround the electrode part 40 (first ring electrode 41). By doing so, when forming the peripheral wall portion 11 of the electrochemical measurement device 10, the molten resin is prevented from flowing into the placement portion 31 or the electrode portion 40 (first ring electrode 41) side.
  • the pressure receiving portion 70 is formed in a substantially C shape in plan view, and a gap d is formed in the cut portion.
  • the wiring pattern 51 (wiring part 50) covered with the second insulating layer 62 is disposed between the gaps d.
  • pressure receiving portions 70 are formed on both sides of the wiring pattern 51 (wiring portion 50).
  • the size of the gap d takes into account the viscosity of the resin forming the peripheral wall portion 11, and the resin does not flow into the placement portion 31 or the electrode portion 40 (first ring electrode 41) side from the gap d. It is set to such a size.
  • the pressure receiving part 70 is also preferably arranged concentrically with the sample placement part 31 as the center.
  • the surface (side surface 70 b) of the pressure receiving portion 70 on the electrode portion 40 side is the electrode portion 40. It will be formed along the surface (side surface 41d) on the pressure receiving portion 70 side.
  • the pressure receiving portion 70 can include a portion formed of the same material as the insulator 60.
  • the layer 71 on the substrate 30 side of the pressure receiving portion 70 can be formed at the same time (FIG. 2).
  • the upper layer 72 of the pressure receiving portion 70 may be formed of the same material as that of the insulator 60 or may be formed of a material different from that of the insulator 60.
  • the pressure receiving portion 70 includes a portion formed of a material different from that of the insulator 60. Note that all of the pressure receiving portion 70 may be formed of a material different from that of the insulator 60.
  • the outer periphery or the peripheral portion of the substrate 30 is surrounded by the peripheral wall portion 11 so that the well 12 is formed in the peripheral wall portion 11. 10 can be obtained.
  • the peripheral wall portion 11 can be formed of, for example, glass, resin, silicon, ceramic, silicone rubber, or the like.
  • FIGS. 3 to 5 are diagrams schematically showing a method for manufacturing the electrochemical measuring apparatus 10.
  • FIG. 3 is a cross-sectional view showing a state in which a pin is pressed against the upper part of the gas chemical measurement device.
  • FIG. 4 is a cross-sectional view showing a state in which a pin is pressed against the upper part of the electrochemical measurement device, and a peripheral wall portion is formed at the peripheral portion of the electrochemical measurement device.
  • FIG. 5 is a cross-sectional view showing a state where an electrochemical measuring device is formed by removing the pins.
  • the electrochemical measurement device 20 having the above-described configuration is formed.
  • the pin 80 is placed on the surface 20a of the electrochemical measuring device 20 (see FIG. 3). At this time, the pin 80 is placed so that the lower surface 80a of the pin 80 contacts the surface 70a of the pressure receiving portion 70. Therefore, in the state shown in FIG. 3, the insulator 60 is not pressed by the pin 80, and the pressure receiving portion 70 is pressed by the pin 80.
  • a resin is poured around the substrate 30 and the pin 80 to form the peripheral wall portion 11 around the substrate 30 (see FIG. 4).
  • the peripheral wall portion 11 is formed using a mold (not shown).
  • the electrochemical measuring device 10 having the well 12 for holding the solution (culture medium or the like) is formed (see FIG. 5).
  • the electrochemical measurement device 10 includes the electrochemical measurement device 20 and the electrochemical measurement device 20 such that the surface on which the sample placement portion 31 of the electrochemical measurement device 20 is formed becomes the bottom surface 10a. And a peripheral wall portion 11 surrounding the periphery of 20.
  • the shape of the pressure receiving part 70 is not limited to this shape.
  • An example of the shape of the pressure receiving unit 70 will be described below as a modification.
  • the pressure receiving portion (projecting portion) 70 may be formed to be a part of a substantially square shape in plan view.
  • the shape of the pressure receiving part (projection part) 70 it can be set as the shape which follows the circumference
  • the contour shape of the pressure receiving portion 70 in plan view can be circular on the inner peripheral side and rectangular on the outer peripheral side. With such a shape, the surface (side surface 70b) of the pressure receiving unit 70 on the electrode unit 40 side is aligned with the surface (side surface 41d) of the electrode unit 40 on the pressure receiving unit 70 side, and the surface 70a of the pressure receiving unit 70 is formed. The area (contact area with the lower surface 80a of the pin 80) can be increased.
  • FIG. 8A shows a cross-sectional view of the pressure receiving portion 70 according to the second modification. This sectional view is a sectional view taken along the line VIIIA-VIIIA in FIG. In FIG. 8A, the surface 70a of the pressure receiving part 70 is a flat surface.
  • the surface 70a of the pressure receiving unit 70 is a flat surface is illustrated, but the shape of the pressure receiving unit 70 is not limited to this, for example, FIG. As shown in the sectional view of 8B, the surface 70a may have a stepped shape.
  • the surface 70a may be inclined as shown in the cross-sectional view of FIG. 8C.
  • the electrochemical measurement device 20 is provided on the substrate (base portion) 30 and the substrate (base portion) 30 and can place a biological sample (measurement object).
  • the electrochemical measurement device 20 includes a first ring electrode 41 (electrode part 40) provided in the vicinity of the sample mounting part 31 on the substrate (base part) 30, and the surface of the substrate (base part) 30.
  • a wiring pattern 51 (wiring unit 50) provided on 30a and electrically connected to the first ring electrode 41 (electrode unit 40); and an insulator 60 covering the wiring pattern 51 (wiring unit 50). ing.
  • a pressure receiving part (protruding part) 70 is provided on the substrate (base part) 30 of the electrochemical measuring device 20 so as to protrude from the insulator 60.
  • the electrochemical measurement device 10 is formed using the electrochemical measurement device 20
  • the insulator 60 is suppressed from being pressed by the pins 80, and the insulator 60 is damaged. Can be suppressed. As a result, it is possible to obtain the electrochemical measurement device 20 that can measure more accurately.
  • a part of the first ring electrode 41 is exposed through the opening 61 a formed in the first insulating layer 61. Specifically, the portion (surface 51 b and side surface 51 c) exposed from the substrate 30 of the first ring electrode 41 is covered with the first insulating layer 61. A part of the portion of the first ring electrode 41 exposed from the substrate 30 (a part of the surface 41a) is exposed through the opening 61a.
  • the first electrode exposed portion 41b only comes into contact with the culture solution, noise can be reduced, and electrochemical measurement can be performed more accurately.
  • the pressure receiving part (projecting part) 70 is formed so as to surround the sample mounting part 31. Therefore, in a state where the pressure receiving unit 70 is pressed by the pin 80, the portion where the sample mounting unit 31 communicates with the peripheral portion of the substrate 30 can be reduced. As a result, it is possible to suppress the resin from flowing out to the sample mounting portion 31 side.
  • the first ring electrode 41 is formed in a ring shape, and the pressure receiving portion (projecting portion) 70 has a side surface 70b on the electrode portion 40 side along the side surface 41d on the pressure receiving portion 70 side of the electrode portion 40. Is formed. By doing so, the pressure receiving part (projecting part) 70 can be formed in the minimum necessary part, and the pressure receiving part (projecting part) 70 can be formed more efficiently with a simpler configuration. .
  • the manufacturing process can be simplified, and the pressure receiving portion (projecting portion) 70 is formed of a material different from that of the insulator 60. Then, the pressure receiving part (protrusion part) 70 can be formed with a more optimal material according to the application.
  • the peripheral wall portion 11 surrounds the electrochemical measurement device 20 so that the surface on which the sample placement portion 31 of the electrochemical measurement device 20 is formed becomes the bottom surface 10 a.
  • the electrochemical measuring device 10 is formed by surrounding with. By doing so, it is possible to obtain the electrochemical measurement apparatus 10 that can measure more accurately.
  • the electrochemical measurement device 20A has basically the same configuration as the electrochemical measurement device 20 shown in the first embodiment.
  • the configuration of the electrochemical measurement device 20A will be described with reference to the top view shown in FIG.
  • the electrochemical measurement device 20 ⁇ / b> A is provided on a substrate (base part) 30 and a substrate (base part) 30, and can place a biological sample (measurement object).
  • the electrochemical measurement device 20 ⁇ / b> A includes a first ring electrode 41 (electrode part 40) provided in the vicinity of the sample mounting part 31 on the substrate (base part) 30 and the surface of the substrate (base part) 30.
  • a wiring pattern 51 (wiring unit 50) provided on 30a and electrically connected to the first ring electrode 41 (electrode unit 40); and an insulator 60 covering the wiring pattern 51 (wiring unit 50). ing.
  • a pressure receiving part (protrusion part) 70 is provided so as to protrude from the insulator 60.
  • the pressure receiving portion (projecting portion) 70 is formed over the entire circumference. That is, the pressure receiving portion (projecting portion) 70 is formed so as to be substantially O-shaped in a plan view, and the pressure receiving portion (projecting portion) 70 is a second insulating layer that covers the wiring pattern 51.
  • the second insulating layer 62 is partly covered with a pressure receiving part (projecting part) 70.
  • the pressure receiving portion (projecting portion) 70 is formed of at least a layer 71 on the substrate 30 side that covers the second insulating layer 62 by a member having elasticity such as polyimide.
  • a part of the second insulating layer 62 is covered with the pressure receiving part (projecting part) 70, and at least a part of the pressure receiving part (projecting part) 70 covers the second insulating layer 62.
  • the layer 71 on the substrate 30 side is formed of an elastic member such as polyimide.
  • the insulator 60 is pressed by the pin 80 via the pressure receiving portion (projecting portion) 70. Since the site
  • the present embodiment can be applied to the pressure receiving portion shown in FIGS. 6 and 7. That is, it is possible to prevent the cut portion from being formed in the pressure receiving portion 70 shown in FIGS. 6 and 7.
  • the electrochemical measurement device 20B has basically the same configuration as the electrochemical measurement device 20 shown in the first embodiment.
  • the configuration of the electrochemical measurement device 20B will be described with reference to the top view shown in FIG. 10 and the cross-sectional view shown in FIG. FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.
  • the electrochemical measurement device 20 ⁇ / b> B As shown in FIGS. 10 and 11, the electrochemical measurement device 20 ⁇ / b> B according to this embodiment is provided on a substrate (base part) 30 and a substrate (base part) 30, and a biological sample (measurement object) is used. And a sample placing portion (mounting portion) 31 that can be placed.
  • the electrochemical measurement device 20 ⁇ / b> B includes a first ring electrode 41 (electrode part 40) provided in the vicinity of the sample mounting part 31 on the substrate (base part) 30, and the surface of the substrate (base part) 30.
  • a wiring pattern 51 (wiring part 50) provided on 30a and electrically connected to the first ring electrode 41 (electrode part 40); and an insulator 60 covering the wiring pattern 51 (wiring part 50). ing.
  • a pressure receiving part (protruding part) 70 is provided so as to protrude from the insulator 60.
  • the counter electrode 42 as the electrode unit 40 is provided on the substrate 30.
  • the counter electrode 42 as the electrode portion 40 has a substantially C shape in a plan view, and is provided on the surface 30 a of the substrate 30 so as to surround the first ring electrode 41.
  • This counter electrode 42 is also preferably arranged concentrically around the sample mounting portion 31.
  • the counter electrode 42 can be made of a noble metal such as platinum, gold, or silver. Moreover, the counter electrode 42 can also be comprised with the material generally used as an electrode material of a battery, such as carbon and lithium cobaltate. That is, the material of the counter electrode 42 can also be appropriately selected in consideration of the composition of the culture medium at the time of measurement, the necessary voltage, current, and the like.
  • the electrochemical measurement device 20B includes a wiring pattern 52 as the wiring portion 50 that is electrically connected to the counter electrode 42.
  • one end 52a of the wiring pattern 52 is connected to one end 42c of the counter electrode 42 formed in a C shape, and the wiring pattern 52 is substantially parallel to the wiring pattern 51 from the one end 52a. It extends in a straight line.
  • the shape of the wiring pattern 52 is not limited to a linear shape.
  • the electrochemical measurement device 20B includes a fourth insulating layer 64 as an insulator 60 that covers a portion (surface 52b and side surface 52c) exposed from the substrate 30 of the wiring pattern 52.
  • the insulator 60 in addition to the first insulating layer 61 and the second insulating layer 62, the insulator 60 has portions (surface 42 a and side surface 42 d) exposed from the substrate 30 of the counter electrode 42.
  • a third insulating layer 63 to be covered and a fourth insulating layer 64 to cover a portion (surface 52b and side surface 52c) exposed from the substrate 30 of the wiring pattern 52 are provided.
  • the third insulating layer 63 and the fourth insulating layer 64 are integrally formed.
  • the third insulating layer 63 is provided on the surface 30a of the substrate 30 so as to cover the counter electrode 42, and the third insulating layer 63 can insulate the counter electrode 42 from the culture solution. It is composed of silicon, silicon nitride, organic matter or the like.
  • the fourth insulating layer 64 is provided on the surface 30a of the substrate 30 so as to cover the wiring pattern 52, and the fourth insulating layer 64 can insulate the wiring pattern 52 from the culture solution.
  • it is composed of silicon dioxide, silicon nitride, organic matter or the like.
  • an opening 63 a is formed in the third insulating layer 63. Then, a portion of the counter electrode 42 exposed from the substrate 30, that is, a portion of the portion (surface 42 a and side surface 42 d) exposed from the substrate 30 when not covered with the third insulating layer 63 (in this embodiment, A part of the surface 42a is exposed through the opening 63a.
  • the counter electrode 42 has a counter electrode exposed portion 42 b exposed from the opening 63 a of the third insulating layer 63. By doing so, the counter electrode 42 comes into contact with the culture solution at the counter electrode exposed portion 42b.
  • the opening 63a of the third insulating layer 63 can be formed, for example, in a circular shape or a polygonal shape (in FIG. 10, the opening 63a curved in a circumferential shape is illustrated). It is also possible not to provide an insulating layer on the counter electrode 42 or the wiring pattern 52.
  • the counter electrode exposed part 42b is preferably arranged so that a physicochemical change around the biological sample does not affect the electrochemical reaction occurring in the counter electrode exposed part 42b.
  • the distance between the end portion of the counter electrode exposed portion 42b and the end portion of the sample mounting portion 31 is preferably 400 ⁇ m or more.
  • the counter electrode exposed portion 42b has a structure in which the diffusion layer formed by the counter electrode exposed portion 42b and the diffusion layer formed by the first electrode exposed portion 41b overlap, and the first electrode exposed portion 41b and the counter electrode exposed portion 42b It is preferably arranged so as not to affect the resulting electrochemical reaction.
  • the distance between the end portion of the counter electrode exposed portion 42b and the end portion of the first electrode exposed portion 41b is preferably 400 ⁇ m or more.
  • the distance between the end of the counter electrode exposed portion 42b and the biological sample is preferably 400 ⁇ m or more so as not to affect the physicochemical state change in the vicinity of the biological sample.
  • the area of the counter electrode exposed portion 42b is preferably equal to or greater than the total area of the first electrode exposed portion 41b.
  • the counter electrode 42 is not necessarily formed on the substrate 30.
  • the counter electrode 42 is a bulk made of a material generally used as a battery electrode material such as platinum, a noble metal such as gold or silver, carbon, or lithium cobalt oxide. The body may be inserted into the culture medium and measured. Further, the counter electrode 42 is not necessarily required and may not be present.
  • the blank electrode 43 is provided on the substrate 30 for the reference measurement that is not influenced by the activity of the biological sample.
  • the blank electrode 43 is covered with a fifth insulating layer 65 having a surface 43a and a side surface 43d having an opening 65a, and has a blank electrode exposed portion 43b on the surface 43a.
  • the blank electrode 43 is made of the same material as the first ring electrode 41.
  • the total area of the blank electrode exposed portion 43b is the same as the total area of the first electrode exposed portion 41b.
  • the blank electrode exposed part 43b is arrange
  • the distance between the end of the nearest blank electrode exposed portion 43b and the end of the sample mounting portion 31 is preferably 400 ⁇ m or more.
  • the blank electrode exposed portion 43b overlaps the diffusion layer formed by the blank electrode exposed portion 43b and the diffusion layer formed by the first electrode exposed portion 41b or the diffusion layer formed by the counter electrode exposed portion 42b.
  • the first electrode exposed portion 41b, the counter electrode exposed portion 42b, and the blank electrode exposed portion 43b are preferably arranged so as not to affect the electrochemical reaction occurring.
  • the distance between the end of the nearest blank electrode exposed portion 43b and the end of the first electrode exposed portion 41b is half of the diameter of the first electrode exposed portion 41b and half of the diameter of the blank electrode exposed portion 43b. It is preferable that it is 6.5 times or more of the sum of.
  • the distance between the ends of the adjacent blank electrode exposed portions 43b is preferably 6.5 times or more the diameter of the blank electrode exposed portion 43b.
  • the diameter of the blank electrode exposed portion 43b is the diameter of the smallest circle including the blank electrode exposed portion 43b inside.
  • the diameter of the blank electrode exposed portion 43b is a diameter.
  • the diameter of the blank electrode exposed part 43b is the length of a diagonal line.
  • first to fifth insulating layers may be formed of the same insulating layer. That is, an insulator may be provided between the first ring electrode 41, the counter electrode 42, and the blank electrode 43. In this way, by configuring with the same insulating layer, man-hours can be reduced in the manufacturing process.
  • reference electrode 13 is illustrated as being inserted into the culture solution 14 in FIG. 13, it may be formed on the substrate 30. This also applies to the first and second embodiments.
  • the diffusion layer formed by the reference electrode 13 overlaps the diffusion layer formed by the first electrode exposed portion 41b, the counter electrode exposed portion 42b, and the blank electrode exposed portion 43b, and the first electrode exposed portion 41b, It is preferable that they are arranged so as not to affect the electrochemical reaction occurring at the counter electrode exposed portion 42b and the blank electrode exposed portion 43b.
  • the distance between the end portion of the reference electrode 13 and the end portions of the first electrode exposed portion 41b, the counter electrode exposed portion 42b, and the blank electrode exposed portion 43b is preferably 400 ⁇ m or more.
  • first ring electrode 41 and the blank electrode 43 are individually connected to the measurement amplifier.
  • the potential difference between the first ring electrode 41 and the blank electrode 43 and the reference electrode 13 and the current due to the electrochemical reaction detected at the first ring electrode 41 and the blank electrode 43 are individually measured.
  • the substrate (base portion) 30 of the electrochemical measuring device 20B has a pressure receiving portion (protrusion portion) 70 on all electrode exposed portions (first electrode exposed portions) provided on the substrate (base portion) 30. 41b, the counter electrode exposed portion 42b, and the blank electrode exposed portion 43b).
  • the pressure receiving portion 70 is provided with a cut portion, and a gap d is formed in the cut portion.
  • the electrochemical measurement device 20C according to the present embodiment has basically the same configuration as the electrochemical measurement device 20B shown in the third embodiment.
  • the configuration of the electrochemical measurement device 20C will be described with reference to the top view shown in FIG.
  • the electrochemical measurement device 20 ⁇ / b> C is provided on a substrate (base unit) 30 and a substrate (base unit) 30, and a biological sample (measurement object) can be placed thereon.
  • the electrochemical measurement device 20 ⁇ / b> C includes a first ring electrode 41 (electrode part 40) provided in the vicinity of the sample mounting part 31 on the substrate (base part) 30, and the surface of the substrate (base part) 30.
  • a wiring pattern 51 (wiring unit 50) provided on 30a and electrically connected to the first ring electrode 41 (electrode unit 40); and an insulator 60 covering the wiring pattern 51 (wiring unit 50). ing.
  • the electrode unit 40 includes a first ring electrode 41, a counter electrode 42, and a blank electrode 43.
  • a pressure receiving part (protruding part) 70 is provided so as to protrude from the insulator 60.
  • the second ring electrode 44 is provided on the substrate 30 so as to surround the first ring electrode 41.
  • the second ring electrode 44 is formed between the first ring electrode 41 and the counter electrode 42.
  • the distance between the second electrode exposed portion 44b and the sample mounting portion 31 is larger than the distance between the first electrode exposed portion 41b and the sample mounting portion 31.
  • the second ring electrode 44 outside the first ring electrode 41, it becomes possible to perform electrochemical measurement of a biological sample at different distances from the sample mounting portion 31.
  • the activity state of the biological sample depending on the distance from the sample can be monitored.
  • the second ring electrode 44 as the electrode portion 40 has a substantially C shape in plan view, and is provided on the surface 30 a of the substrate 30 so as to surround the first ring electrode 41.
  • the second ring electrode 44 is also preferably arranged concentrically around the sample mounting portion 31.
  • the 2nd ring electrode 44 can be comprised with noble metals, such as platinum, gold
  • the second ring electrode 44 can be made of a material generally used as a battery electrode material, such as carbon or lithium cobalt oxide. That is, the material of the second ring electrode 44 can also be appropriately selected in consideration of the composition of the culture medium at the time of measurement, the necessary voltage, current, and the like.
  • the electrochemical measurement device 20 ⁇ / b> C includes a wiring pattern 54 as the wiring portion 50 that is electrically connected to the second ring electrode 44 as the electrode portion 40.
  • one end 54a of the wiring pattern 54 is connected to one end 44c of the second ring electrode 44 formed in a C shape, and the wiring pattern 54 is substantially parallel to the wiring pattern 51 from the one end 54a. It is extended so that it may become straight.
  • the shape of the wiring pattern 54 is not limited to a linear shape.
  • the electrochemical measurement device 20 ⁇ / b> C includes an insulator 60 that covers a portion (surface 54 b and side surface 54 c) exposed from the substrate 30 of the wiring unit 50.
  • the insulator 60 includes, in addition to the first insulating layer 61 to the fifth insulating layer 65, a sixth insulating layer that covers portions (surface 44a and side surface 44d) exposed from the substrate 30 of the second ring electrode 44. 66, and a seventh insulating layer 67 that covers the portion (surface 54b and side surface 54c) exposed from the substrate 30 of the wiring pattern 54.
  • the sixth insulating layer 66 and the seventh insulating layer 67 are integrally formed. That is, the portion of the second ring electrode 44 exposed from the substrate 30 and the portion of the wiring pattern 54 exposed from the substrate 30 are covered by one insulator (sixth insulating layer 66 and seventh insulating layer 67). Will be.
  • the sixth insulating layer 66 is provided on the surface 30 a of the substrate 30 so as to cover the second ring electrode 44, and the sixth insulating layer 66 passes the second ring electrode 44 and the culture solution. It is made of silicon dioxide, silicon nitride, organic matter or the like so that it can be insulated.
  • the seventh insulating layer 67 is provided on the surface 30a of the substrate 30 so as to cover the wiring pattern 54, and the seventh insulating layer 67 can insulate the wiring pattern 54 from the culture solution.
  • it is composed of silicon dioxide, silicon nitride, organic matter or the like.
  • an opening 66 a is formed in the sixth insulating layer 66. Then, a portion of the second ring electrode 44 exposed from the substrate 30, that is, a portion of the portion (surface 44 a and side surface 44 d) exposed from the substrate 30 when not covered with the sixth insulating layer 66 (this embodiment) In the embodiment, a part of the surface 44a is exposed through the opening 66a.
  • the second ring electrode 44 has a second electrode exposed portion 44 b exposed from the opening 66 a of the sixth insulating layer 66. By doing so, the second ring electrode 44 comes into contact with the culture solution at the second electrode exposed portion 44b.
  • the opening 66a of the sixth insulating layer 66 can be formed, for example, in a circular shape or a polygonal shape (in FIG. 12, the circular opening 66a is illustrated).
  • first to seventh insulating layers may be formed of the same insulating layer. That is, an insulator may be provided between each of the first ring electrode 41, the counter electrode 42, the blank electrode 43, and the second ring electrode 44. In this way, by configuring with the same insulating layer, man-hours can be reduced in the manufacturing process.
  • the wiring pattern 54 drawn out from the second ring electrode 44 is covered with the seventh insulating layer 67 so that the wiring pattern 54 can be prevented from coming into contact with the culture solution. ing.
  • the second ring electrode 44 when the second ring electrode 44 is not covered with the sixth insulating layer 66 and the entire second ring electrode 44 is brought into contact with the culture solution and the electrochemical measurement is performed, noise that accompanies the expansion of the electrode area is generated. An increase in Faraday current may occur, and accurate electrochemical measurement may not be performed.
  • the oxygen consumption accompanying an electrochemical reaction increases as the electrode area expands, affecting the oxygen concentration in the vicinity of the fertilized egg. In some cases, respiratory activity cannot be measured accurately.
  • the area of the second electrode exposed portion 44b is 500 ⁇ m so that the non-Faraday current that is measurement noise is reduced, and the influence of the oxygen concentration in the vicinity of the fertilized egg due to oxygen consumption accompanying the electrochemical reaction is reduced. It is preferable to set it to 2 or less.
  • a plurality of second electrode exposed portions 44b are arranged on the second ring electrode 44 in order to measure the biological sample from a plurality of directions. At this time, it is preferable that the plurality of second electrode exposed portions 44b be provided at positions equidistant from the sample placement portion 31. With such a configuration, a physicochemical state change such as an oxygen concentration around the biological sample can be easily measured by electrochemical measurement, regardless of the bias of the biological sample activity.
  • second electrode exposed portions 44 b are provided on the second ring electrode 44, and the four second electrode exposed portions 44 b are every 90 degrees with the sample mounting portion 31 as the center. Are arranged at equal intervals. Note that the number of second electrode exposed portions 44b is not limited to four. For example, eight second electrode exposed portions 44 b can be provided on the second ring electrode 44. In this case, the sample placement unit 31 can be arranged at regular intervals every 45 degrees.
  • the plurality of second electrode exposed portions 44b overlap each other with diffusion layers formed by the respective second electrode exposed portions 44b, so that they do not affect the electrochemical reaction that occurs in the second electrode exposed portion 44b. It is preferable to arrange them as described above.
  • the distance between two adjacent second electrode exposed portions 44b is preferably at least 6.5 times the diameter of the second electrode exposed portion 44b.
  • the distance between the end of the first electrode exposed portion 41b and the end of the second electrode exposed portion 44b is also more than 6.5 times the diameter of the second electrode exposed portion 44b.
  • the second electrode exposed portion 44 b of the second ring electrode 44 is provided between two adjacent first electrode exposed portions 41 b of the first ring electrode 41 when viewed from the sample mounting portion 31. it can.
  • the second electrode exposed portion 44b of the second ring electrode 44 has a distance from the blank electrode exposed portion 43b that is half the diameter of the second electrode exposed portion 44b and half the diameter of the blank electrode exposed portion 43b.
  • the distance between the counter electrode exposed portion 42b and the reference electrode 13 is preferably 400 ⁇ m or more.
  • the diameter of the second electrode exposed portion 44b is the diameter of the smallest circle including the second electrode exposed portion 44b inside.
  • the diameter of the second electrode exposed portion 44b is a diameter.
  • the diameter of the second electrode exposed portion 44b is the length of the diagonal line.
  • the plurality of second electrode exposed portions 44 b are arranged at a position equidistant from the center of the sample mounting portion 31. In this way, by providing the plurality of second electrode exposed portions 44b equidistant from the sample mounting portion 31, physicochemical state changes such as oxygen concentration around the biological sample are biased in the biological sample activity. Regardless, it can be easily measured by electrochemical measurement.
  • the number and the total area of the second electrode exposed portions 44b of the second ring electrode 44 are preferably the same as the number and the total area of the first electrode exposed portions 41b of the first ring electrode 41.
  • the plurality of first electrode exposed portions 41b have the same area.
  • the plurality of second electrode exposed portions 44b have the same area.
  • the second ring electrode 44 has a structure in which a part of the ring is interrupted, but may be connected.
  • the wiring pattern 51 of the first ring electrode 41 is provided on the surface 30 a of the substrate 30, it is preferable that the second ring electrode 44 has a partially broken configuration. In this case, the wiring pattern 51 of the first ring electrode 41 can be provided in a portion where the second ring electrode 44 is interrupted.
  • the counter electrode 42 may have a configuration in which a part of the ring is interrupted.
  • one or a plurality of ring electrodes may be further provided outside the second ring electrode 44.
  • the electrode exposure part at a different distance from the sample placement part 31, it is possible to perform electrochemical measurement according to the distance from the biological sample in more detail.
  • the first ring electrode 41 and the second ring electrode 44 are each connected to a measurement amplifier and can measure each current simultaneously. Thereby, the dissolved oxygen amount etc. which are the physicochemical changes which generate
  • the first ring electrode 41 and the second ring electrode 44 may be connected to one measurement amplifier using a switch or a relay, and time may be divided (time division) for measurement.
  • the apparatus can be miniaturized by connecting a plurality of ring electrodes to one measurement amplifier using a switching circuit composed of a switch or a relay.
  • the switches and relays operate at high speed.
  • a switch or the like that can operate at high speed, it is possible to accurately perform electrochemical measurement around a biological sample with respect to time changes such as the amount of dissolved oxygen.
  • the substrate (base part) 30 of the electrochemical measurement device 20C has a pressure receiving part (protrusion part) 70 on all the electrode exposed parts (first electrode exposed parts) provided on the substrate (base part) 30. 41b, the counter electrode exposed portion 42b, the blank electrode exposed portion 43b, and the second electrode exposed portion 44b).
  • the pressure receiving portion 70 is provided with a cut portion, and a gap d is formed in the cut portion.
  • a well for holding a solution (a culture solution or the like) by forming the peripheral wall portion 11 around the substrate 30 by the method shown in the first embodiment using the electrochemical measurement device 20C. 12 is formed.
  • FIG. 13 is a cross-sectional view schematically illustrating use of the electrochemical measurement device 10 according to the present disclosure.
  • FIG. 13 exemplifies the electrochemical measurement apparatus 10 formed using the electrochemical measurement device 20B shown in the third embodiment.
  • the electrochemical measurement device 10 shown in the other embodiment is used for electricity.
  • a chemical measuring device is formed, basically the same operation is performed.
  • Examples of the biological sample 15 include cells, tissues, and fertilized eggs. Concentration gradients are formed radially for active oxygen, metabolites, and the like from the biological sample 15. Below, what uses a fertilized egg as the biological sample 15 is illustrated.
  • Electrochemical measurement device 20B is provided with a peripheral wall 11 at the peripheral edge. Therefore, a well 12 into which the culture solution 14 is introduced is formed in a region surrounded by the substrate 30 and the peripheral wall portion 11.
  • the culture solution 14 containing the fertilized egg as the biological sample 15 is injected into the well 12, and the fertilized egg is placed on the sample placement unit 31.
  • the reference electrode 13 is inserted into the culture solution 14.
  • the reference electrode 13 is provided on the substrate 30, it is not necessary to insert it.
  • the counter electrode 42 is not provided on the substrate 30, the counter electrode is inserted into the culture medium.
  • the counter electrode 42 is not necessarily required and may not be inserted into the culture medium.
  • a potential is applied to the first ring electrode 41, and a current value due to an electrochemical reaction detected at the first ring electrode 41 is measured.
  • the amount of dissolved oxygen in the culture solution 14 can be measured.
  • the amount of dissolved oxygen is related to the amount of oxygen consumed as a result of the activity of a biological sample 15 such as a fertilized egg. Therefore, the activity state of the biological sample 15 such as a fertilized egg can be determined by measuring the dissolved oxygen amount.
  • the specifications (shape, size, layout, etc.) of the electrode part, the insulator, and other details can be changed as appropriate.

Abstract

 より正確に測定することが可能な電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置を得る。電気化学測定デバイス(20)は、基台部(30)と、基台部(30)に設けられ、被測定物を載置可能な載置部(31)と、を備えている。また、電気化学測定デバイス(20)は、基台部(30)における載置部(31)の近傍に設けられた電極部(40)と、基台部(30)の表面(30a)に設けられ、電極部(40)に電気的に接続された配線部と、配線部を覆う絶縁体と、を備えている。そして、電気化学測定デバイス(20)の基台部(30)に、突出部(70)を絶縁体よりも突出するように設けた。

Description

電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置
 本開示は、電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置に関する。
 受精卵等の細胞や組織などの生体試料(被測定物)は、その内部と外部の間に様々な物質を輸送して活動を行っている。たとえば、心筋細胞はKイオン、Naイオン、Caイオン等の輸送を行うことで電気信号や化合物による情報伝達を行い、心臓の脈動を制御している。また、受精卵は周辺の酸素を呼吸によって細胞内部に取り込み、取り込んだ酸素を消費しながら卵胞内部で分割を行っている。このような生体試料の活動状況を測定するための手段として、これら生体試料を電気化学測定デバイスに保持し、生体試料の周辺で発生する物理化学的な状態変化を電気的に測定する方法が知られている。これらは、モデル細胞による新薬候補化合物の薬理テストや、受精卵の活性を検査する方法として用いられている。
 受精卵の呼吸活性を測定する方法としては、例えば、マイクロマニピュレータやマイクロピペットで受精卵を捕捉し、受精卵の近傍の酸素濃度を、作用電極(電極)を用いて電気化学測定を行う方法がある。この方法を用いることにより、受精卵の呼吸活性を定量できる。
 上記の電気化学測定方法は、走査型電気化学顕微鏡(Scanning Electrochemical Microscopy、SECM)を基に構成されているため、プローブの作用電極(電極)を被測定物としての生体試料、例えば、受精卵近傍に近づける操作を行う必要がある。しかしながら、この作用電極(電極)の操作は手動により行う必要があるため操作性に問題があり、作業者の技術によりばらつきが生じるという課題があった。
 一方で、操作性を向上させる手段として、基板上に微小な作用電極(電極)を設置したプレーナー型の電気化学測定デバイスが知られている(例えば、特許文献1参照)。
 この特許文献1では、電気化学測定デバイスは、基板と、基板に設けられ、生体試料(被測定物)を載置可能な載置部と、載置部近傍に設けられた電極と、電極が露出するように基板の表面を覆う絶縁膜と、を有している。そして、電気化学測定デバイスの基板の周囲に周壁部を設けることで、溶液を保持するための空間(ウェル)を有する電気化学測定装置を形成している。
 この電気化学測定装置の載置部に受精卵(被測定物)を載置することで、受精卵が電極の近傍に設置されることとなって、受精卵近傍の酸素濃度を電気化学的に容易に計測でき、受精卵の呼吸活性を容易に定量することができるようになる。
特開2010-121948号公報
 本開示は、より正確に測定することが可能な電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置を得ることを目的とする。
 本開示にかかる電気化学測定デバイスは、基台部と、基台部に設けられ、被測定物を載置可能な載置部と、基台部における載置部の近傍に設けられた電極部と、基台部の表面に設けられ、電極部に電気的に接続された配線部と、配線部を覆う絶縁体と、基台部に、絶縁体よりも突出するように設けられた突出部と、を備えることを特徴としている。
 本開示によれば、より正確に測定することが可能な電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置を得ることができる。
本開示の第1実施形態にかかる電気化学測定デバイスを示す上面図である。 図1におけるII-II線に沿って切った断面図である。 本開示の第1実施形態にかかる電気化学測定装置の製造方法を模式的に示す図であって、電気化学測定デバイスの上部にピンを押し当てた状態を示す断面図である。 本開示の第1実施形態にかかる電気化学測定装置の製造方法を模式的に示す図であって、電気化学測定デバイスの上部にピンを押し当てて、電気化学測定デバイスの周縁部に周壁部を形成した状態を示す断面図である。 本開示の第1実施形態にかかる電気化学測定装置の製造方法を模式的に示す図であって、ピンを取り除いて、電気化学測定装置が形成された状態を示す断面図である。 本開示の第1実施形態の変形例にかかる突出部を示す図であって、第1変形例にかかる突出部を示す上面図である。 本開示の第1実施形態の変形例にかかる突出部を示す図であって、第2変形例にかかる突出部を示す上面図である。 本開示の第1実施形態の変形例にかかる突出部を示す図であって、図7におけるVIIIA-VIIIA線に沿って切った断面図である。 本開示の第1実施形態にかかる突出部の、第3変形例にかかる、図8AにおけるVIIIA-VIIIA断面図に対応する断面図である。 本開示の第1実施形態にかかる突出部の、第4変形例にかかる、図8AにおけるVIIIA-VIIIA断面図に対応する断面図である。 本開示の第2実施形態にかかる電気化学測定デバイスを示す上面図である。 本開示の第3実施形態にかかる電気化学測定デバイスを示す上面図である。 図10のXI-XI線に沿って切った断面図である。 本開示の第4実施形態にかかる電気化学測定デバイスを示す上面図である。 本開示にかかる電気化学測定装置の使用を模式的に示す断面図である。 従来の電気化学測定装置の製造方法を模式的に示す図であって、電気化学測定デバイスの上部にピンを押し当てた状態を示す断面図である。 従来の電気化学測定装置の製造方法を模式的に示す図であって、電気化学測定デバイスの上部にピンを押し当てて、電気化学測定デバイスの周縁部に周壁部を形成した状態を示す断面図である。 従来の電気化学測定装置の製造方法を模式的に示す図であって、ピンを取り除いて、電気化学測定装置が形成された状態を示す断面図である。
 本開示に係る発明の実施の形態の説明に先立ち、従来技術に関する問題点を以下に説明する。
 従来の電気化学測定装置の製造を簡素化するには、図14~図16に示す方法で製造されるのが一般的である。
 具体的には、まず、絶縁膜130bが形成された基板130の表面130aに、載置部131および電極140を形成するとともに、電極140の表面140aの少なくとも一部が露出するように電極140を絶縁体160で覆うことで、電気化学測定デバイス120を形成する。
 次に、電気化学測定デバイス120の表面120a上にピン180を載置する(図14参照)。このとき、ピン180の下面180aが絶縁体160の表面160aに当接するようにピン180を載置している。したがって、図14に示す状態では、ピン180が絶縁体160に押し当てられた状態となっている。
 次に、ピン180が絶縁体160に押し当てられた状態で、基板130およびピン180の周囲に樹脂を流し込み、基板130の周囲に周壁部111を形成する(図15参照)。なお、周壁部111は、図示せぬ金型を用いて形成される。
 その後、ピン180を引き抜くことで、溶液を保持するためのウェル112を有する電気化学測定装置110が形成される(図16参照)。
 しかしながら、上記従来の方法では、絶縁体160がピン180によって押圧された状態で、周壁部111が形成されるようになっている。そのため、電気化学測定装置110の形成時に絶縁体160に大きな外力がかかってしまい、絶縁体160が損傷を受けてしまうことがある。そして、絶縁体160が損傷してしまうと、所望の電気信号が得られなくなってしまうため、正確に測定することができなくなってしまうことがある。
 このように、上記従来の技術では、正確に測定することができなくなってしまうおそれがあった。
 以下、本開示にかかる発明の実施の形態について、図面を参照しながら説明する。
 以下では、電気化学測定デバイスおよび電気化学測定装置として、受精卵等の細胞や組織などの生体試料の活動状態の検査、解析に用いられるものを例示する。また、以下では、基板表面が上方を向くように基板を配置した状態で上下方向を規定して説明する。
 また、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
 (第1実施形態)
 電気化学測定デバイス(生体試料測定用の電気化学測定デバイス)20は、図1および図2に示すように、基板(基台部)30と、基板(基台部)30に設けられ、生体試料(被測定物)を載置可能な試料載置部(載置部)31と、を備えている。なお、図1は電気化学測定デバイス20の上面図である。また、図2は図1においてII-II線に沿って切った断面図である。
 この基板30は、略矩形板状に形成されており、例えば、ガラス、樹脂、シリコン、セラミックなどで形成することができる(本実施形態では、シリコンを用いて形成した基板30を例示している)。なお、基板30の形状は、矩形状に限られるものではなく、円形や多角形等様々な形状とすることができる。また、基台部は、板状の基板に限られるものではなく、試料載置部31が形成されるとともに、後述する電極部40が形成される面を有していれば、いかなる形状をしていてもよい。
 試料載置部31は、例えば、基板30の表面30aに設けられる窪みとすることができる。そして、窪みの形状としては、例えば、円柱状や多角柱状とすることができる。本実施形態では、図1および図2に示すように、基板30の表面30aの略中央部に、円柱状の窪みを形成することで、基板30に試料載置部31を形成している。
 この試料載置部31の深さは、生体試料の高さの半分以下であることが好ましい。このように、試料載置部31の深さを生体試料の高さの半分以下とすれば、生体試料が試料載置部31から露出するため、電極部40による酸素濃度などの物理化学的な状態変化を検出しやすくすることができる。ただし、試料載置部31の深さは生体試料の大きさに応じて自由に設定することができ、生体試料の高さの半分以下に限定されるものではない。
 また、試料載置部31の壁面31aと試料載置部31の底面31bに親水処理を施すようにするのが好ましい。こうすれば、試料載置部31の壁面31aと底面31bとが親水性を有することになり、試料載置部31の内部に溶液が容易に注入されて気泡等が残留してしまうのを抑制することができるようになる。この壁面31aと底面31bの親水処理は、例えばアッシング処理などにより行うことができる。
 なお、試料載置部の壁面が底面に対して90°以上180°以下の角度を有するテーパ形状とすることで、生体試料をより確実に固定できるようにしてもよい。また、試料載置部の形状を、円錐状や多角形状とすることで、生体試料をより確実に固定できるようにしてもよい。
 さらに、電気化学測定デバイス20は、基板(基台部)30における試料載置部(載置部)31の近傍に設けられ、かつ基板30より突出した電極部40を備えている。この電極部40は、少なくとも一部が基板(基台部)30における試料載置部(載置部)31の近傍に設けられていればよく、全ての電極部を基板(基台部)30における試料載置部(載置部)31の近傍に設ける必要はない。
 なお、基板30が導体あるいは半導体の場合、基板30と電極部40との間には絶縁層を設けることが好ましい。この絶縁層は、二酸化ケイ素、窒化ケイ素、有機物等で構成することができる。本実施形態では、基板30としてシリコン基板を用いており、基板30の表面30a側には、二酸化ケイ素で形成された絶縁部30bが形成されている。そして、この絶縁部30bによって電極部40と基板本体30cとが絶縁されるようにしている。
 この電極部40として、本実施形態では、平面視で略C字状の第1のリング電極41が、基板30の表面30a上に、試料載置部31を囲むように設けられている。第1のリング電極41は、試料載置部31を中心とした同心円状に配置するのが好ましい。なお、本実施形態では、第1のリング電極41として、リングの一部が途切れた構成をしているものを例示しているが、第1のリング電極41の形状を、リングがつながった略O字状としてもよい。
 そして、第1のリング電極41は、例えば、白金、金、銀などの貴金属で構成することができる。また、第1のリング電極41を、炭素、コバルト酸リチウムなどの、電池の電極材料として一般的に使用される材料で構成することも可能である。すなわち、第1のリング電極41の材料は、測定時の培養液の組成や必要な電圧、電流等を考慮して適宜選択することができる。
 また、電気化学測定デバイス20は、基板(基台部)30の表面30aに設けられ、電極部40に電気的に接続された配線部50を備えている。
 本実施形態では、配線パターン51の一端に位置する第1の電極露出部51aがC字状に形成された第1のリング電極41の一端41cに接続されており、この配線パターン51は、第1の電極露出部51aから試料載置部31側とは反対側(試料載置部31の径方向外側)に向けて直線状に延設されている。なお、配線パターン51の形状は、直線状に限られるものではない。
 また、電気化学測定デバイス20は、配線部50の基板30から露出する部位(表面51bおよび側面51c)を覆う絶縁体60を備えている。
 この絶縁体60は、第1のリング電極41の基板30から露出する部位(表面41aおよび側面41d)を覆う第1の絶縁層61と、配線パターン51の基板30から露出する部位(表面51bおよび側面51c)を覆う第2の絶縁層62と、を備えている。また、本実施形態では、第1の絶縁層61および第2の絶縁層62が一体に形成されている。すなわち、第1のリング電極41の基板30から露出する部位および配線パターン51の基板30から露出する部位が、1つの絶縁体60によって覆われていることとなる。
 第1の絶縁層61は、第1のリング電極41を覆うように、基板30の表面30a上に設けられており、この第1の絶縁層61は第1のリング電極41と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 同様に、第2の絶縁層62は、配線パターン51を覆うように、基板30の表面30a上に設けられており、この第2の絶縁層62は配線パターン51と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 また、本実施形態では、第1の絶縁層61に開口61aを形成している。そして、第1のリング電極41の基板30から露出する部位、すなわち、第1の絶縁層61で覆われていないときに基板30から露出する部位(表面41aおよび側面41d)の一部(本実施形態では、表面41aの一部)が、開口61aを介して露出するようにしている。
 具体的には、第1のリング電極41は、第1の絶縁層61の開口61aから露出した第1の電極露出部41bを有している。こうすることで、第1のリング電極41が、第1の電極露出部41bで培養液と接触するようになる。なお、第1の絶縁層61の開口61aは、例えば、円形や多角形等で形成することができる(図1では、円形の開口61aを例示している)。
 このように、第1のリング電極41を第1の絶縁層61で覆い、第1の電極露出部41bのみで培養液と接触する構成とすることにより、ノイズを低減することができ、より正確に電気化学測定を行うことができるようになる。
 さらに、本実施形態では、第1のリング電極41から引き出された配線パターン51が第2の絶縁層62で被覆されており、配線パターン51が培養液に接触してしまうのを抑制できるようにしている。このような構成とすることで、不要な位置での電気化学反応による電流検出を低減することができるようになる。
 なお、第1のリング電極41を第1の絶縁層61で覆わずに、第1のリング電極41全体を培養液と接触させて電気化学測定を行う場合、電極面積拡大にともないノイズとなる非ファラデー電流の増大が生じ、正確な電気化学測定を行うことができない場合がある。また、例えば、受精卵の呼吸活性に伴う培養液の溶存酸素を測定する際、電極面積拡大にともない電気化学反応に伴う酸素消費量が増大し、受精卵近傍の酸素濃度に影響を及ぼしてしまい、正確に呼吸活性測定を行うことができない場合がある。
 したがって、第1の電極露出部41bの面積は、測定ノイズである非ファラデー電流が小さくなるよう、また、電気化学反応に伴う酸素消費による受精卵近傍の酸素濃度の影響が小さくなるように、500μm以下とすることが好ましい。
 また、本実施形態では、第1の電極露出部41bは、生体試料に対し複数の方向から測定を行うため、第1のリング電極41上に複数配置されている。このとき、複数の第1の電極露出部41bは、試料載置部31から等距離の位置に設けられるようにするのが好ましい。このような構成とすれば、生体試料の周囲における酸素濃度などの物理化学的な状態変化を、生体試料の活動の偏りによらず、電気化学測定により容易に測定できる。
 本実施形態では、第1のリング電極41上に第1の電極露出部41bが4つ設けられており、4つの第1の電極露出部41bは、試料載置部31を中心として90度ごとに等間隔に配置されるようにしている。なお、第1の電極露出部41bは4つに限られるものではない。例えば、第1のリング電極41上に第1の電極露出部41bを8つ設けることも可能である。この場合、試料載置部31を中心として45度ごとに等間隔に配置されるようにすることができる。
 また、複数の第1の電極露出部41bは、それぞれの第1の電極露出部41bが形成する拡散層同士が重なり、それらが第1の電極露出部41bで生じる電気化学反応に影響を及ぼさないように配置されるようにするのが好ましい。例えば、隣り合う2つの第1の電極露出部41b間の距離は、第1の電極露出部41bの径の6.5倍以上であることが好ましい。
 ここで、第1の電極露出部41bの径とは、第1の電極露出部41bを内部に含む最小の円の直径である。例えば、第1の電極露出部41bが円であるとき、第1の電極露出部41bの径は、直径である。また、第1の電極露出部41bが長方形であるとき、第1の電極露出部41bの径は、対角線の長さである。
 また、複数の第1の電極露出部41bは、試料載置部31の中心から等距離の位置に配置される。このように、試料載置部31から等距離に複数の第1の電極露出部41bを設けることにより、生体試料の周囲における酸素濃度などの物理化学的な状態変化を、生体試料活動の偏りによらず、電気化学測定により容易に測定できるようになる。
 ここで、本実施形態では、基板(基台部)30の表面30a上に、絶縁体60(第2の絶縁体62)よりも突出する受圧部(突出部)70を設けている。この受圧部70は、後述する電気化学測定装置10の周壁部11を形成する際に、ピン80によって押圧されるものである。
 本実施形態では、受圧部70は、図1に示すように、基板30の表面30aにおける電極部40が存在しない部位に設けられている。
 また、この受圧部70は、載置部31を包囲するように形成されており、さらに、電極部40(第1のリング電極41)を包囲するように形成されている。こうすることで、電気化学測定装置10の周壁部11を形成する際に、溶融した樹脂が載置部31や電極部40(第1のリング電極41)側に流れ込まないようにしている。
 具体的には、受圧部70は、平面視で略C字状に形成されており、切れ目部分には隙間dが形成されている。そして、隙間dの間に、第2の絶縁層62で覆われた配線パターン51(配線部50)が介在するように配置されている。別の言葉でいえば、配線パターン51(配線部50)の両側に、受圧部70が形成されている。なお、隙間dの大きさは、周壁部11を形成する樹脂の粘性等を考慮して、この隙間dから樹脂が載置部31や電極部40(第1のリング電極41)側に流れ込まないような大きさに設定している。
 そして、この受圧部70も、試料載置部31を中心とした同心円状に配置するのが好ましい。
 このように、試料載置部31を中心とした同心円状に第1のリング電極41および受圧部70を配置すれば、受圧部70の電極部40側の面(側面70b)が、電極部40の受圧部70側の面(側面41d)に沿うように形成されることとなる。
 また、受圧部70は、絶縁体60と同じ材料で形成されている部位を含むようにすることができる。例えば、製造工程の簡素化を図るために、絶縁体60を基板30の表面30aに形成する際に、受圧部70の基板30側の層71も同時に形成されるようにすることができる(図2参照)。なお、受圧部70の上側の層72は、絶縁体60と同じ材料で形成してもよいし、絶縁体60とは異なる材料で形成してもよい。このように、上側の層72を絶縁体60とは異なる材料で形成すれば、受圧部70は、絶縁体60とは異なる材料で形成されている部位を含むようになる。なお、受圧部70の全てを、絶縁体60とは異なる材料で形成してもよい。
 受圧部70を形成する際に用いられる材料としては、樹脂、金属等様々なものがあり、薬品耐久性を有する材料、酸化しにくい材料、機械的な耐久性を有する材料等、用途に応じて適宜選択することができる。
 かかる構成の電気化学測定デバイス20を用いて、基板30の外周、または、周縁部が、周壁部11によって囲まれるようにすることで、周壁部11内部にウェル12が形成された電気化学測定装置10を得ることができる。この周壁部11は、例えば、ガラス、樹脂、シリコン、セラミック、シリコーンゴム等により形成することができる。
 ここで、電気化学測定デバイス20を用いて電気化学測定装置10を形成する方法の一例を、図3~図5に基づき説明する。なお、図3~図5は、電気化学測定装置10の製造方法を模式的に示す図である。図3は、気化学測定デバイスの上部にピンを押し当てた状態を示す断面図である。図4は、電気化学測定デバイスの上部にピンを押し当てて、電気化学測定デバイスの周縁部に周壁部を形成した状態を示す断面図である。図5は、ピンを取り除いて、電気化学測定装置が形成された状態を示す断面図である。
 まず、上述した構成の電気化学測定デバイス20を形成する。
 次に、電気化学測定デバイス20の表面20a上にピン80を載置する(図3参照)。このとき、ピン80の下面80aが受圧部70の表面70aに当接するようにピン80を載置している。したがって、図3に示す状態では、絶縁体60がピン80によって押さえられておらず、受圧部70がピン80によって押さえられた状態となっている。
 次に、ピン80が受圧部70に押し当てられた状態で、基板30およびピン80の周囲に樹脂を流し込み、基板30の周囲に周壁部11を形成する(図4参照)。なお、周壁部11は、図示せぬ金型を用いて形成される。
 その後、ピン80を引き抜くことで、溶液(培養液等)を保持するためのウェル12を有する電気化学測定装置10が形成される(図5参照)。
 すなわち、本実施形態にかかる電気化学測定装置10は、電気化学測定デバイス20と、電気化学測定デバイス20の試料載置部31が形成された面が底面10aとなるように、この電気化学測定デバイス20の周囲を囲む周壁部11と、を備えている。
 なお、本実施形態では、平面視で略C字状に形成された受圧部70を例示しているが、受圧部70の形状はこの形状に限定されるものではない。受圧部70の形状の例について、変形例として以下に説明する。
 (第1変形例)
 例えば、図6の上面図に示すように、受圧部(突出部)70を、平面視で略四角形の一部となるように形成してもよい。このように、受圧部(突出部)70の形状を略四角形状とすることで、矩形板状の基板30の周囲に沿うような形状とすることができる。
 (第2変形例)
 また、図7の上面図に示すように、受圧部70の平面視における輪郭形状を、内周側を円形にするとともに、外周側を四角形にすることも可能である。このような形状とすれば、受圧部70の電極部40側の面(側面70b)を、電極部40の受圧部70側の面(側面41d)に沿わせつつ、受圧部70の表面70aの面積(ピン80の下面80aとの接触面積)を大きくすることができる。
 図8Aに、この第2変形例にかかる受圧部70の断面図を示す。この断面図は、図7におけるVIIIA-VIIIA断面図である。図8Aにおいて、受圧部70の表面70aは平坦面である。
 (第3変形例)
 また、第2変形例では、図8Aに示すように、受圧部70の表面70aが平坦面である場合を例示しているが、受圧部70の形状はこれに限るものではなく、例えば、図8Bの断面図に示すように、表面70aが段差状をしていてもよい。
 (第4変形例)
 また、受圧部70の形状として、図8Cの断面図に示すように、表面70aが傾斜していてもよい。
 以上説明したように、本実施形態にかかる電気化学測定デバイス20は、基板(基台部)30と、基板(基台部)30に設けられ、生体試料(被測定物)を載置可能な試料載置部(載置部)31と、を備えている。また、電気化学測定デバイス20は、基板(基台部)30における試料載置部31の近傍に設けられた第1のリング電極41(電極部40)と、基板(基台部)30の表面30aに設けられ、第1のリング電極41(電極部40)に電気的に接続された配線パターン51(配線部50)と、配線パターン51(配線部50)を覆う絶縁体60と、を備えている。
 そして、電気化学測定デバイス20の基板(基台部)30に、受圧部(突出部)70を絶縁体60よりも突出するように設けている。
 こうすることで、電気化学測定デバイス20を用いて電気化学測定装置10を形成する際に、絶縁体60がピン80によって押さえられてしまうことが抑制され、絶縁体60が破損してしまうのを抑制することができる。その結果、より正確に測定することが可能な電気化学測定デバイス20を得ることができるようになる。
 また、本実施形態では、第1のリング電極41の一部が、第1の絶縁層61に形成された開口61aを介して露出している。具体的には、第1のリング電極41の基板30から露出する部位(表面51bおよび側面51c)が第1の絶縁層61によって覆われている。そして、第1のリング電極41の基板30から露出する部位の一部(表面41aの一部)が、開口61aを介して露出するようにしている。
 こうすることで、第1の電極露出部41bのみで培養液と接触することとなり、ノイズを低減することができ、より正確に電気化学測定を行うことができるようになる。
 また、本実施形態では、受圧部(突出部)70が試料載置部31を包囲するように形成されている。そのため、受圧部70がピン80によって押さえられた状態で、試料載置部31が基板30の周縁部と連通する部位を少なくすることができる。その結果、試料載置部31側に樹脂が流出してしまうのを抑制することができる。
 また、第1のリング電極41がリング状に形成されており、受圧部(突出部)70は、電極部40側の側面70bが、電極部40の受圧部70側の側面41dに沿うように形成されている。こうすることで、受圧部(突出部)70を必要最小限の部位に形成することができ、受圧部(突出部)70をより簡素な構成でより効率的に形成することができるようになる。
 なお、受圧部(突出部)70を絶縁体60と同じ材料で形成すれば、製造工程の簡素化を図ることができ、受圧部(突出部)70を、絶縁体60とは異なる材料で形成すれば、用途に応じてより最適な材料で受圧部(突出部)70を形成することができる。
 そして、このような電気化学測定デバイス20を用いて、電気化学測定デバイス20の試料載置部31が形成された面が底面10aとなるように、この電気化学測定デバイス20の周囲を周壁部11で囲むことで、電気化学測定装置10を形成している。こうすることで、より正確に測定することが可能な電気化学測定装置10を得ることができる。
 (第2実施形態)
 本実施形態にかかる電気化学測定デバイス20Aは、基本的に上記第1実施形態で示した電気化学測定デバイス20とほぼ同様の構成をしている。この電気化学測定デバイス20Aの構成について、図9に示す上面図を用いて説明する。
 本実施形態にかかる電気化学測定デバイス20Aは、図9に示すように、基板(基台部)30と、基板(基台部)30に設けられ、生体試料(被測定物)を載置可能な試料載置部(載置部)31と、を備えている。また、電気化学測定デバイス20Aは、基板(基台部)30における試料載置部31の近傍に設けられた第1のリング電極41(電極部40)と、基板(基台部)30の表面30aに設けられ、第1のリング電極41(電極部40)に電気的に接続された配線パターン51(配線部50)と、配線パターン51(配線部50)を覆う絶縁体60と、を備えている。
 そして、電気化学測定デバイス20Aの基板(基台部)30には、受圧部(突出部)70が絶縁体60よりも突出するように設けられている。
 ここで、本実施形態にかかる電気化学測定デバイス20Aでは、受圧部(突出部)70が全周に亘って形成されている。すなわち、受圧部(突出部)70は、平面視で、切れ目のない略O字状となるように形成されており、受圧部(突出部)70が、配線パターン51を覆う第2の絶縁層62を交差するように配置されており、第2の絶縁層62の一部が受圧部(突出部)70によって覆われている。そして、この受圧部(突出部)70は、少なくとも、第2の絶縁層62を覆う部位における基板30側の層71がポリイミド等の弾性を有する部材で形成されている。
 そして、このような電気化学測定デバイス20Aを用いて、上記第1実施形態で示した方法で基板30の周囲に周壁部11を形成することで、溶液(培養液等)を保持するためのウェル12を有する電気化学測定装置10が形成される。
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。
 また、本実施形態では、第2の絶縁層62の一部が受圧部(突出部)70によって覆われるようにし、受圧部(突出部)70の、少なくとも、第2の絶縁層62を覆う部位における基板30側の層71をポリイミド等の弾性を有する部材で形成している。
 こうすることで、電気化学測定デバイス20Aを用いて電気化学測定装置10を形成する際に、絶縁体60が受圧部(突出部)70を介してピン80によって押さえられることになるが、受圧部(突出部)70の絶縁体60を押圧する部位が弾性を有する部材で形成されているため、ピン80からの力を受圧部(突出部)70によって緩和することができる。その結果、絶縁体60が破損してしまうのを抑制することができるようになる。
 なお、図6および図7に示した受圧部に本実施形態を適用することも可能である。すなわち、図6および図7に示した受圧部70に切れ目部分が形成されないようにすることが可能である。
 (第3実施形態)
 本実施形態にかかる電気化学測定デバイス20Bは、基本的に上記第1実施形態で示した電気化学測定デバイス20とほぼ同様の構成をしている。この電気化学測定デバイス20Bの構成について、図10に示す上面図および図11に示す断面図を用いて説明する。なお、図11は、図10において線分XI-XIで切った断面図である。
 本実施形態にかかる電気化学測定デバイス20Bは、図10および図11に示すように、基板(基台部)30と、基板(基台部)30に設けられ、生体試料(被測定物)を載置可能な試料載置部(載置部)31と、を備えている。また、電気化学測定デバイス20Bは、基板(基台部)30における試料載置部31の近傍に設けられた第1のリング電極41(電極部40)と、基板(基台部)30の表面30aに設けられ、第1のリング電極41(電極部40)に電気的に接続される配線パターン51(配線部50)と、配線パターン51(配線部50)を覆う絶縁体60と、を備えている。
 そして、電気化学測定デバイス20Bの基板(基台部)30には、受圧部(突出部)70が絶縁体60よりも突出するように設けられている。
 ここで、本実施形態にかかる電気化学測定デバイス20Bでは、基板30上に電極部40としての対向電極42を設けている。
 この電極部40としての対向電極42は、平面視で略C字状をしており、基板30の表面30a上に、第1のリング電極41を囲むように設けられている。この対向電極42も、試料載置部31を中心とした同心円状に配置するのが好ましい。
 そして、対向電極42は、例えば、白金、金、銀などの貴金属で構成することができる。また、対向電極42を、炭素、コバルト酸リチウムなどの、電池の電極材料として一般的に使用される材料で構成することも可能である。すなわち、対向電極42の材料も、測定時の培養液の組成や必要な電圧、電流等を考慮して適宜選択することができる。
 また、電気化学測定デバイス20Bは、対向電極42に電気的に接続される配線部50としての配線パターン52を備えている。
 本実施形態では、配線パターン52の一端52aがC字状に形成された対向電極42の一端42cに接続されており、この配線パターン52は、一端52aから配線パターン51と略平行となるように直線状に延設されている。なお、配線パターン52の形状も、直線状に限られるものではない。
 また、電気化学測定デバイス20Bは、配線パターン52の基板30から露出する部位(表面52bおよび側面52c)を覆う絶縁体60としての第4の絶縁層64を備えている。
 具体的には、本実施形態では、絶縁体60は、第1の絶縁層61および第2の絶縁層62に加えて、対向電極42の基板30から露出する部位(表面42aおよび側面42d)を覆う第3の絶縁層63と、配線パターン52の基板30から露出する部位(表面52bおよび側面52c)を覆う第4の絶縁層64と、を備えている。また、本実施形態では、第3の絶縁層63および第4の絶縁層64が一体に形成されている。
 第3の絶縁層63は、対向電極42を覆うように、基板30の表面30a上に設けられており、この第3の絶縁層63は対向電極42と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 同様に、第4の絶縁層64は、配線パターン52を覆うように、基板30の表面30a上に設けられており、この第4の絶縁層64は配線パターン52と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 また、本実施形態では、第3の絶縁層63に開口63aを形成している。そして、対向電極42の基板30から露出する部位、すなわち、第3の絶縁層63で覆われていないときに基板30から露出する部位(表面42aおよび側面42d)の一部(本実施形態では、表面42aの一部)が、開口63aを介して露出するようにしている。
 具体的には、対向電極42は、第3の絶縁層63の開口63aから露出した対向電極露出部42bを有している。こうすることで、対向電極42が、対向電極露出部42bで培養液と接触するようになる。第3の絶縁層63の開口63aは、例えば、円形や多角形等で形成することができる(図10では、円周状に湾曲した開口63aを例示している)。なお、対向電極42や配線パターン52に絶縁層を設けないようにすることも可能である。
 対向電極露出部42bは、生体試料周辺の物理化学的な変化が対向電極露出部42bで生じる電気化学反応に影響を及ぼさないように配置されることが好ましい。例えば、対向電極露出部42bの端部と試料載置部31の端部との距離は400μm以上であることが好ましい。
 また、対向電極露出部42bは、対向電極露出部42bが形成する拡散層と、第1の電極露出部41bが形成する拡散層が重なり、第1の電極露出部41bおよび対向電極露出部42bで生じる電気化学反応に影響を及ぼさないように配置されることが好ましい。例えば、対向電極露出部42bの端部と第1の電極露出部41bの端部との距離は400μm以上であることが好ましい。
 また、生体試料近傍の物理化学的状態変化に影響をおよぼすことがないよう、対向電極露出部42bの端部と生体試料との距離は400μm以上であることが望ましい。また、対向電極露出部42bの面積は、第1の電極露出部41bの総面積以上であることが好ましい。
 この対向電極42は必ずしも基板30上に形成される必要はない。基板30上に設けない場合は、対向電極42として白金や、金、銀などの貴金属や、炭素や、コバルト酸リチウムなどの、電池の電極材料として一般的に使用される材料で構成されたバルク体を培養液中に挿入して測定してもよい。また、対向電極42は必ずしも必要ではなく、存在しなくてもよい。
 また、本実施形態にかかる電気化学測定デバイス20Bでは、生体試料の活動に影響されない基準測定のために、基板30上にブランク電極43を設けている。
 このブランク電極43は、表面43aおよび側面43dが開口65aを有する第5の絶縁層65で覆われており、表面43aにブランク電極露出部43bを有している。
 このブランク電極43は、第1のリング電極41と同じ素材により構成される。ブランク電極露出部43bの総面積は、第1の電極露出部41bの総面積と同じである。また、ブランク電極露出部43bは、生体試料周辺の物理化学的な変化がブランク電極露出部43bで生じる電気化学反応に影響を及ぼさないように配置されることが好ましい。例えば、最も近いブランク電極露出部43bの端部と試料載置部31の端部との距離は400μm以上であることが好ましい。
 また、ブランク電極露出部43bは、ブランク電極露出部43bが形成する拡散層と、第1の電極露出部41bが形成する拡散層、または、対向電極露出部42bが形成する拡散層とが重なり、第1の電極露出部41b、対向電極露出部42bおよびブランク電極露出部43bで生じる電気化学反応に影響を及ぼさないように配置されることが好ましい。例えば、最も近いブランク電極露出部43bの端部と、第1の電極露出部41bの端部との距離は、第1の電極露出部41bの径の半分とブランク電極露出部43bの径の半分の和の6.5倍以上であることが好ましい。また、ブランク電極露出部43bが複数個存在する場合は、隣り合うブランク電極露出部43bの端部間の距離は、ブランク電極露出部43bの径の6.5倍以上であることが好ましい。なお、ブランク電極露出部43bの径とは、ブランク電極露出部43bを内部に含む最小の円の直径である。例えば、ブランク電極露出部43bが円であるとき、ブランク電極露出部43bの径は、直径である。また、ブランク電極露出部43bが長方形であるとき、ブランク電極露出部43bの径は、対角線の長さである。
 なお、第1~第5の絶縁層は、同一の絶縁層で構成してもよい。つまり、第1のリング電極41や対向電極42、ブランク電極43の間に絶縁体が設けられるようにしてもよい。このように、同一の絶縁層で構成することにより、製造プロセスにおいて工数を削減することができる。
 また、参照電極13は、図13では、培養液14中に挿入されるものを例示しているが、基板30上に形成されていてもよい。このことは、上記第1、第2実施形態においても同様である。
 参照電極13の材料としては、Ag/AgClや、Au等が使用される。参照電極13は、参照電極13が形成する拡散層と、第1の電極露出部41b、対向電極露出部42b、ブランク電極露出部43bが形成する拡散層が重なり、第1の電極露出部41b、対向電極露出部42b、ブランク電極露出部43bで生じる電気化学反応に影響を及ぼさないように配置されることが好ましい。例えば、参照電極13の端部と第1の電極露出部41b、対向電極露出部42b、ブランク電極露出部43bの端部との距離は400μm以上であることが好ましい。
 また、第1のリング電極41とブランク電極43は、それぞれ個別に計測アンプに接続される。第1のリング電極41やブランク電極43と参照電極13との間の電位差や、第1のリング電極41やブランク電極43において検出される電気化学反応による電流は個別に計測される。
 そして、電気化学測定デバイス20Bの基板(基台部)30には、受圧部(突出部)70が、基板(基台部)30に設けられた全ての電極露出部(第1の電極露出部41b、対向電極露出部42bおよびブランク電極露出部43b)を囲うように設けられている。
 また、本実施形態においても、受圧部70には切れ目部分が設けられており、この切れ目部分には隙間dが形成されている。
 なお、本実施形態においても、上記第2実施形態のように、受圧部70に切れ目部分が形成されないようにすることが可能である。
 そして、このような電気化学測定デバイス20Bを用いて、上記第1実施形態で示した方法で基板30の周囲に周壁部11を形成することで、溶液(培養液等)を保持するためのウェル12を有する電気化学測定装置10が形成される。
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。
 (第4実施形態)
 本実施形態にかかる電気化学測定デバイス20Cは、基本的に上記第3実施形態で示した電気化学測定デバイス20Bとほぼ同様の構成をしている。この電気化学測定デバイス20Cの構成について、図12に示す上面図を用いて説明する。
 本実施形態にかかる電気化学測定デバイス20Cは、図12に示すように、基板(基台部)30と、基板(基台部)30に設けられ、生体試料(被測定物)を載置可能な試料載置部(載置部)31と、を備えている。また、電気化学測定デバイス20Cは、基板(基台部)30における試料載置部31の近傍に設けられた第1のリング電極41(電極部40)と、基板(基台部)30の表面30aに設けられ、第1のリング電極41(電極部40)に電気的に接続された配線パターン51(配線部50)と、配線パターン51(配線部50)を覆う絶縁体60と、を備えている。
 また、電極部40は、第1のリング電極41、対向電極42およびブランク電極43を備えている。
 そして、電気化学測定デバイス20Cの基板(基台部)30には、受圧部(突出部)70が絶縁体60よりも突出するように設けられている。
 ここで、本実施形態にかかる電気化学測定デバイス20Cでは、基板30上に、第1のリング電極41を囲むように第2のリング電極44が設けられている。
 すなわち、第2のリング電極44は、第1のリング電極41と対向電極42との間に形成されている。
 そのため、本実施形態では、第2の電極露出部44bと試料載置部31との距離が、第1の電極露出部41bと試料載置部31との距離よりも大きくなる。
 このように、第1のリング電極41の外側に第2のリング電極44を設けることで、試料載置部31から異なる距離で生体試料の電気化学測定を行うことができるようになって、生体試料からの距離に依存した生体試料の活動状況をモニタリングすることができるようになる。
 この電極部40としての第2のリング電極44は、平面視で略C字状をしており、基板30の表面30a上に、第1のリング電極41を囲むように設けられている。この第2のリング電極44も、試料載置部31を中心とした同心円状に配置するのが好ましい。
 そして、第2のリング電極44は、例えば、白金、金、銀などの貴金属で構成することができる。また、第2のリング電極44を、炭素、コバルト酸リチウムなどの、電池の電極材料として一般的に使用される材料で構成することも可能である。すなわち、第2のリング電極44の材料も、測定時の培養液の組成や必要な電圧、電流等を考慮して適宜選択することができる。
 また、電気化学測定デバイス20Cは、電極部40としての第2のリング電極44に電気的に接続される配線部50としての配線パターン54を備えている。
 本実施形態では、配線パターン54の一端54aがC字状に形成された第2のリング電極44の一端44cに接続されており、この配線パターン54は、一端54aから配線パターン51と略平行となるように直線状に延設されている。なお、配線パターン54の形状も、直線状に限られるものではない。
 また、電気化学測定デバイス20Cは、配線部50の基板30から露出する部位(表面54bおよび側面54c)を覆う絶縁体60を備えている。
 この絶縁体60は、第1の絶縁層61~第5の絶縁層65に加えて、第2のリング電極44の基板30から露出する部位(表面44aおよび側面44d)を覆う第6の絶縁層66と、配線パターン54の基板30から露出する部位(表面54bおよび側面54c)を覆う第7の絶縁層67と、を備えている。また、本実施形態では、第6の絶縁層66および第7の絶縁層67が一体に形成されている。すなわち、第2のリング電極44の基板30から露出する部位および配線パターン54の基板30から露出する部位が、1つの絶縁体(第6の絶縁層66および第7の絶縁層67)によって覆われていることとなる。
 第6の絶縁層66は、第2のリング電極44を覆うように、基板30の表面30a上に設けられており、この第6の絶縁層66は第2のリング電極44と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 同様に、第7の絶縁層67は、配線パターン54を覆うように、基板30の表面30a上に設けられており、この第7の絶縁層67は配線パターン54と培養液とを絶縁できるように、二酸化ケイ素、窒化ケイ素、有機物等で構成されている。
 また、本実施形態では、第6の絶縁層66に開口66aを形成している。そして、第2のリング電極44の基板30から露出する部位、すなわち、第6の絶縁層66で覆われていないときに基板30から露出する部位(表面44aおよび側面44d)の一部(本実施形態では、表面44aの一部)が、開口66aを介して露出するようにしている。
 具体的には、第2のリング電極44は、第6の絶縁層66の開口66aから露出した第2の電極露出部44bを有している。こうすることで、第2のリング電極44が、第2の電極露出部44bで培養液と接触するようになる。なお、第6の絶縁層66の開口66aは、例えば、円形や多角形等で形成することができる(図12では、円形の開口66aを例示している)。
 なお、第1~第7の絶縁層は、同一の絶縁層で構成してもよい。つまり、第1のリング電極41、対向電極42、ブランク電極43、第2のリング電極44のそれぞれの間に絶縁体が設けられるようにしてもよい。このように、同一の絶縁層で構成することにより、製造プロセスにおいて工数を削減することができる。
 そして、第2のリング電極44を第6の絶縁層66で覆い、第2の電極露出部44bのみで培養液と接触する構成とすることにより、ノイズを低減することができ、より正確に電気化学測定を行うことができるようになる。
 さらに、本実施形態では、第2のリング電極44から引き出された配線パターン54が第7の絶縁層67で被覆されており、配線パターン54が培養液に接触してしまうのを抑制できるようにしている。このような構成とすることで、不要な位置(意図しない位置)での電気化学反応による電流検出を低減することができるようになる。
 なお、第2のリング電極44を第6の絶縁層66で覆わずに、第2のリング電極44全体を培養液と接触させて電気化学測定を行う場合、電極面積拡大にともないノイズとなる非ファラデー電流の増大が生じ、正確な電気化学測定を行うことができない場合がある。また、例えば、受精卵の呼吸活性に伴う培養液の溶存酸素を測定する際、電極面積拡大にともない電気化学反応に伴う酸素消費量が増大し、受精卵近傍の酸素濃度に影響を及ぼしてしまい、正確に呼吸活性測定を行うことができない場合がある。
 したがって、第2の電極露出部44bの面積は、測定ノイズである非ファラデー電流が小さくなるよう、また、電気化学反応に伴う酸素消費による受精卵近傍の酸素濃度の影響が小さくなるように、500μm以下とすることが好ましい。
 また、本実施形態では、第2の電極露出部44bは、生体試料に対し複数の方向から測定を行うため、第2のリング電極44上に複数配置されている。このとき、複数の第2の電極露出部44bは、試料載置部31から等距離の位置に設けられるようにするのが好ましい。このような構成とすれば、生体試料の周囲における酸素濃度などの物理化学的な状態変化を、生体試料の活動の偏りによらず、電気化学測定により容易に測定できる。
 本実施形態では、第2のリング電極44上に第2の電極露出部44bが4つ設けられており、4つの第2の電極露出部44bは、試料載置部31を中心として90度ごとに等間隔に配置されるようにしている。なお、第2の電極露出部44bは4つに限られるものではない。例えば、第2のリング電極44上に第2の電極露出部44bを8つ設けることも可能である。この場合、試料載置部31を中心として45度ごとに等間隔に配置されるようにすることができる。
 また、複数の第2の電極露出部44bは、それぞれの第2の電極露出部44bが形成する拡散層同士が重なり、それらが第2の電極露出部44bで生じる電気化学反応に影響を及ぼさないように配置されるようにするのが好ましい。例えば、隣り合う2つの第2の電極露出部44b間の距離は、第2の電極露出部44bの径の6.5倍以上であることが好ましい。
 また、上記理由から、第1の電極露出部41bの端部と第2の電極露出部44bの端部との距離も第2の電極露出部44bの径の6.5倍以上離れていることが好ましい。例えば、第2のリング電極44の第2の電極露出部44bは、試料載置部31から見て第1のリング電極41の隣り合う2つの第1の電極露出部41bの間に設けることができる。
 なお、第2のリング電極44の第2の電極露出部44bは、ブランク電極露出部43bとの距離が、第2の電極露出部44bの径の半分とブランク電極露出部43bの径の半分との和の6.5倍以上離れて設置されることが好ましく、対向電極露出部42b、参照電極13との距離が400μm以上離れて配置されることが好ましい。ここで、第2の電極露出部44bの径とは、第2の電極露出部44bを内部に含む最小の円の直径である。例えば、第2の電極露出部44bが円であるとき、第2の電極露出部44bの径は、直径である。また、第2の電極露出部44bが長方形であるとき、第2の電極露出部44bの径は、対角線の長さである。
 また、複数の第2の電極露出部44bは、試料載置部31の中心から等距離の位置に配置される。このように、試料載置部31から等距離に複数の第2の電極露出部44bを設けることにより、生体試料の周囲における酸素濃度などの物理化学的な状態変化を、生体試料活動の偏りによらず、電気化学測定により容易に測定できるようになる。
 第2のリング電極44の第2の電極露出部44bの個数、総面積は、第1のリング電極41の第1の電極露出部41bの個数、総面積と同じであることが好ましい。
 本実施形態では、複数の第1の電極露出部41bはそれぞれ同じ面積としている。また、複数の第2の電極露出部44bもそれぞれ同じ面積としている。
 なお、第2のリング電極44は、リングの一部が途切れた構成となっているが、つながっていてもよい。ただし、第1のリング電極41の配線パターン51を基板30の表面30aに設ける場合、第2のリング電極44は、一部が途切れた構成であることが好ましい。この場合、第1のリング電極41の配線パターン51は、第2のリング電極44の途切れた部分に設けることができる。同様に、対向電極42もリングの一部が途切れた構成とすることができる。
 なお、第2のリング電極44の外側に、さらに1つまたは複数のリング電極を設けた構成としてもよい。試料載置部31から異なる距離に電極露出部を設けることにより、より詳細に、生体試料からの距離に応じた電気化学測定を行うことができる。
 第1のリング電極41、および、第2のリング電極44は、それぞれ計測アンプに接続され、それぞれの電流を同時に計測できる。これにより、生体試料の周辺で発生する物理化学的変化である溶存酸素量等を同時に計測できる。
 また、スイッチやリレーを用いて一つの計測アンプに第1のリング電極41と第2のリング電極44をつなげ、時間を分割(時分割)して計測してもよい。スイッチやリレーからなるスイッチング回路を用いて、複数のリング電極を一つの計測アンプに接続することにより、装置を小型化することができる。
 ただし、スイッチング回路を用いる場合、スイッチやリレーは、高速に動作するものであることが望ましい。高速に動作できるスイッチ等を用いることで、溶存酸素量等の時間変化に対して正確に生体試料の周囲の電気化学測定を行うことができる。
 そして、電気化学測定デバイス20Cの基板(基台部)30には、受圧部(突出部)70が、基板(基台部)30に設けられた全ての電極露出部(第1の電極露出部41b、対向電極露出部42b、ブランク電極露出部43bおよび第2の電極露出部44b)を囲うように設けられている。
 また、本実施形態においても、受圧部70には切れ目部分が設けられており、この切れ目部分には隙間dが形成されている。
 なお、本実施形態においても、上記第2実施形態のように、受圧部70に切れ目部分が形成されないようにすることが可能である。
 そして、このような電気化学測定デバイス20Cを用いて、上記第1実施形態で示した方法で基板30の周囲に周壁部11を形成することで、溶液(培養液等)を保持するためのウェル12を有する電気化学測定装置10が形成される。
 以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。
 次に、生体試料の電気化学測定装置10の動作を、図13を参照しつつ説明する。図13は、本開示にかかる電気化学測定装置10の使用を模式的に示す断面図である。
 図13には、上記第3実施形態で示した電気化学測定デバイス20Bを用いて形成した電気化学測定装置10を例示しているが、他の実施形態で示した電気化学測定デバイスを用いて電気化学測定装置を形成した場合にも、基本的には同様の動作が行われる。
 生体試料15としては、例えば、細胞や、組織や、受精卵などがあげられる。生体試料15からの活性酸素や代謝物などは、放射状に濃度勾配が形成される。以下では、生体試料15として受精卵を用いたものを例示する。
 電気化学測定デバイス20Bは周縁部に周壁部11が設けられている。そのため、基板30と周壁部11に囲まれた領域内に、培養液14を導入するウェル12が形成されている。
 そして、ウェル12内に、生体試料15としての受精卵を含む培養液14を注入し、受精卵を試料載置部31に載置する。
 その後、参照電極13を培養液14内に挿入する。なお、参照電極13が基板30上に設けられている場合は、挿入する必要はない。また、対向電極42が基板30に設けられていない場合は、対向電極を培養液内に挿入する。なお、対向電極42は必ずしも必要なく、培養液内に挿入しなくてもよい。
 そして、参照電極13の電位を基準とし、第1のリング電極41に電位を印加し、第1のリング電極41において検出される電気化学反応による電流値を計測する。電流値を計測することにより、培養液14内の溶存酸素量が測定できる。溶存酸素量は受精卵等の生体試料15が活動した結果として消費された酸素量と関係している。そのため、溶存酸素量を測定することにより、受精卵等の生体試料15の活動状態がわかる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。
 例えば、上記各実施形態で示した構成を適宜組み合わせた構成とすることが可能である。
 また、電極部や絶縁体、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。
 10,110 電気化学測定装置
 10a,31b 底面
 11,111 周壁部
 15 生体試料(被測定物)
 20,20A,20B,20C,120 電気化学測定デバイス
 20a,30a,41a,42a,43a,44a,51b,52b,54b,70a,120a,130a,140a,160a 表面
 30,130 基板(基台部)
 31,131 試料載置部(載置部)
 40 電極部
 41 第1のリング電極(リング状の電極)
 41b,51a 第1の電極露出部(電極部の基台部から露出する部位の一部)
 41d,42d,43d,44d,51c,52c,54c,70b 側面
 42 対向電極(リング状の電極)
 42b 対向電極露出部(電極部の基台部から露出する部位の一部)
 43b ブランク電極露出部(電極部の基台部から露出する部位の一部)
 44 第2のリング電極(リング状の電極)
 44b 第2の電極露出部(電極部の基台部から露出する部位の一部)
 50 配線部
 60,160 絶縁体
 61a,63a,65a,66a 開口
 70 受圧部(突出部)

Claims (8)

  1.  基台部と、
     前記基台部に設けられ、被測定物を載置可能な載置部と、
     前記基台部における前記載置部の近傍に設けられた電極部と、
     前記基台部の表面に設けられ、前記電極部に電気的に接続された配線部と、
     前記配線部を覆う絶縁体と、
     前記基台部に、前記絶縁体よりも突出するように設けられた突出部と、
     を備えることを特徴とする電気化学測定デバイス。
  2.  前記電極部の一部が、前記絶縁体に形成された開口を介して露出していることを特徴とする請求項1に記載の電気化学測定デバイス。
  3.  前記突出部は、前記配線部の両側に形成されていることを特徴とする請求項1または請求項2に記載の電気化学測定デバイス。
  4.  前記突出部が前記載置部を包囲するように形成されていることを特徴とする請求項1~3のうちいずれか1項に記載の電気化学測定デバイス。
  5.  前記電極部がリング状に形成されており、
     前記突出部は、前記電極部側の面が、前記電極部の前記突出部側の面に沿うように形成されていることを特徴とする請求項1~4のうちいずれか1項に記載の電気化学測定デバイス。
  6.  前記突出部は、前記絶縁体と同じ材料で形成されている部位を含むことを特徴とする請求項1~5のうちいずれか1項に記載の電気化学測定デバイス。
  7.  前記突出部は、前記絶縁体とは異なる材料で形成されている部位を含むことを特徴とする請求項1~6のうちいずれか1項に記載の電気化学測定デバイス。
  8.  請求項1~7のうちいずれか1項に記載の電気化学測定デバイスと、
     前記電気化学測定デバイスの前記載置部が形成された面が底面となるように、当該電気化学測定デバイスの周囲を囲む周壁部と、
     を備えることを特徴とする電気化学測定装置。
PCT/JP2015/006061 2014-12-12 2015-12-07 電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置 WO2016092803A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016563498A JP6653490B2 (ja) 2014-12-12 2015-12-07 電気化学測定装置
CN201580065357.0A CN107003265B (zh) 2014-12-12 2015-12-07 电化学测量装置
US15/606,553 US10458941B2 (en) 2014-12-12 2017-05-26 Electrochemical measurement device and electrochemical measurement apparatus provided with electrochemical measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014251393 2014-12-12
JP2014-251393 2014-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/606,553 Continuation US10458941B2 (en) 2014-12-12 2017-05-26 Electrochemical measurement device and electrochemical measurement apparatus provided with electrochemical measurement device

Publications (1)

Publication Number Publication Date
WO2016092803A1 true WO2016092803A1 (ja) 2016-06-16

Family

ID=56107023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006061 WO2016092803A1 (ja) 2014-12-12 2015-12-07 電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置

Country Status (4)

Country Link
US (1) US10458941B2 (ja)
JP (1) JP6653490B2 (ja)
CN (1) CN107003265B (ja)
WO (1) WO2016092803A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047013A1 (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 電気化学測定デバイスおよび電気化学測定システム
JP2022010070A (ja) * 2017-11-17 2022-01-14 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド センサーアセンブリおよびその使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327041B2 (en) * 2016-03-14 2022-05-10 The Trustees Of The University Of Pennsylvania pH sensing technique based on graphene electrodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116242A1 (ja) * 2004-05-31 2005-12-08 Matsushita Electric Industrial Co., Ltd. 医薬品安全性試験方法及び医薬品安全性試験システム
JP2007240324A (ja) * 2006-03-08 2007-09-20 Univ Of Tsukuba pHスタットおよびpH変化測定方法
JP2009109328A (ja) * 2007-10-30 2009-05-21 Toyama Prefecture マイクロウェル電気化学的検出装置および電気化学的検出方法
JP2012154783A (ja) * 2011-01-26 2012-08-16 Tohoku Univ 光学顕微鏡観察機能を備えた電気化学計測用微小電極システム
WO2014073195A1 (ja) * 2012-11-06 2014-05-15 パナソニック株式会社 生体由来物の検査デバイス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571292A (en) * 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
US20020022261A1 (en) * 1995-06-29 2002-02-21 Anderson Rolfe C. Miniaturized genetic analysis systems and methods
AU2002230817A1 (en) * 2000-12-08 2002-06-18 The Regents Of The University Of California Microelectronic arrays for cell-based functional genomics / high throughput phenotyping by electrokinetic assembly
US6721586B2 (en) * 2001-06-12 2004-04-13 Lifescan, Inc. Percutaneous biological fluid sampling and analyte measurement devices and methods
CA2495021A1 (en) * 2001-08-06 2003-07-03 Vanderbilt University System and methods for measuring at least one metabolic rate of a plurality of cells
DE602007010480D1 (de) * 2006-09-19 2010-12-23 Panasonic Corp Blutsensor und diesen enthaltendes blutuntersuchungsinstrument
JP4283880B2 (ja) * 2007-07-20 2009-06-24 パナソニック株式会社 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法
JP2010121948A (ja) * 2008-11-17 2010-06-03 Tohoku Univ 受精卵の呼吸活性測定装置および受精卵の呼吸活性測定方法
CN102449468B (zh) * 2009-03-26 2014-02-26 独立行政法人物质·材料研究机构 被检物质检测传感器
EP2241882A1 (fr) * 2009-04-15 2010-10-20 Neroxis SA Capteur électrochimique ampérométrique et son procédé de fabrication
SG189192A1 (en) * 2010-09-30 2013-05-31 Nat Univ Corp Tokyo Med & Dent Method and device for myocardial cell evaluation and myocardial toxicity inspection
CN102654477B (zh) * 2012-04-23 2014-12-17 华东理工大学 用于等离子体观察的暗场纳米光谱电化学检测池
CN103633361B (zh) * 2012-08-24 2016-01-20 太阳诱电株式会社 电化学装置
US9885012B2 (en) * 2013-11-05 2018-02-06 Axion Biosystems, Inc. Devices, systems, and methods for targeted plating of materials in high-throughput culture plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005116242A1 (ja) * 2004-05-31 2005-12-08 Matsushita Electric Industrial Co., Ltd. 医薬品安全性試験方法及び医薬品安全性試験システム
JP2007240324A (ja) * 2006-03-08 2007-09-20 Univ Of Tsukuba pHスタットおよびpH変化測定方法
JP2009109328A (ja) * 2007-10-30 2009-05-21 Toyama Prefecture マイクロウェル電気化学的検出装置および電気化学的検出方法
JP2012154783A (ja) * 2011-01-26 2012-08-16 Tohoku Univ 光学顕微鏡観察機能を備えた電気化学計測用微小電極システム
WO2014073195A1 (ja) * 2012-11-06 2014-05-15 パナソニック株式会社 生体由来物の検査デバイス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047013A1 (ja) * 2015-09-18 2017-03-23 パナソニックIpマネジメント株式会社 電気化学測定デバイスおよび電気化学測定システム
JPWO2017047013A1 (ja) * 2015-09-18 2018-07-12 パナソニックIpマネジメント株式会社 電気化学測定デバイスおよび電気化学測定システム
JP2022010070A (ja) * 2017-11-17 2022-01-14 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレイテッド センサーアセンブリおよびその使用方法

Also Published As

Publication number Publication date
CN107003265A (zh) 2017-08-01
JP6653490B2 (ja) 2020-02-26
CN107003265B (zh) 2021-08-24
US20170261460A1 (en) 2017-09-14
JPWO2016092803A1 (ja) 2017-09-28
US10458941B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
JP6501082B2 (ja) 電気化学測定デバイス
JP6229175B2 (ja) 生体由来物の検査デバイスおよび検査方法
US10620151B2 (en) Electrochemical sensor, and a method of forming an electrochemical sensor
CN101165484B (zh) 细胞外电位测量用传感元件及细胞外电位测量器件
WO2016092803A1 (ja) 電気化学測定デバイスおよび当該電気化学測定デバイスを備える電気化学測定装置
WO2004079354A1 (ja) 細胞外電位測定デバイスおよびその製造方法
JP5375609B2 (ja) バイオセンサ
US11268927B2 (en) Electrochemical sensor, and a method of forming an electrochemical sensor
JP3925439B2 (ja) 細胞外電位測定デバイスおよびその製造方法
US20220146449A1 (en) Electrochemical sensor, and a method of forming an electrochemical sensor
WO2017145239A1 (ja) 生体試料分析チップ、生体試料分析装置、及び生体試料分析方法
JP2006313131A (ja) 微小酸素電極および微小酸素電極フローセル
JP2009291135A (ja) 細胞電気生理センサ
WO2012120852A1 (ja) センサチップ
WO2017068778A1 (ja) 電気化学測定デバイスおよび電気化学測定システム
JP5011984B2 (ja) 細胞電気生理センサ
EP3351932B1 (en) Electrochemical measurement device and electrochemical measurement system
JP2007198876A (ja) 細胞電気生理センサおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866862

Country of ref document: EP

Kind code of ref document: A1