WO2016090817A1 - 触控显示屏及其制作方法、显示装置 - Google Patents

触控显示屏及其制作方法、显示装置 Download PDF

Info

Publication number
WO2016090817A1
WO2016090817A1 PCT/CN2015/077677 CN2015077677W WO2016090817A1 WO 2016090817 A1 WO2016090817 A1 WO 2016090817A1 CN 2015077677 W CN2015077677 W CN 2015077677W WO 2016090817 A1 WO2016090817 A1 WO 2016090817A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
electrode
transmittance
touch
area
Prior art date
Application number
PCT/CN2015/077677
Other languages
English (en)
French (fr)
Inventor
周刚
郭明周
杨小飞
刘旭
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,649 priority Critical patent/US10372247B2/en
Publication of WO2016090817A1 publication Critical patent/WO2016090817A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch display screen, a manufacturing method thereof, and a display device.
  • the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch display screen can be divided into an add-on touch display panel and an in-cell touch display panel (In Cell Touch Panel) according to the composition structure.
  • the external touch display screen is produced by separately separating the touch component from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
  • LCD liquid crystal display
  • the in-cell touch display uses the principle of mutual capacitance or self-capacitance to detect the touch position of the finger.
  • the mutual capacitance type display screen is provided with a mutual capacitance formed by the touch driving electrode Tx and the touch sensing electrode Rx.
  • the electric field of the human body acts on the mutual capacitance, so that the capacitance value of the mutual capacitance occurs.
  • Change determine the position of the contact based on the change in capacitance value.
  • the self-capacitive display screen is provided with a plurality of touch electrodes (hereinafter referred to as self-capacitance electrodes) which form a self-capacitance with the human body.
  • the capacitance of the respective capacitor electrodes is a fixed value when the human body touches
  • the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance, and the touch position can be determined by detecting the change of the capacitance value of each capacitor electrode.
  • the touch electrodes in the touch display screen are connected to the driving IC (Integrated Circuit) of the non-display area through wires, so that the control signal can be transmitted to the electrodes.
  • the mutual-capacitive touch screen in the in-cell touch display screen is used as an example.
  • the touch driving electrode Tx and the touch sensing electrode Rx as touch electrodes are connected to the lead 10 .
  • the touch driving electrode Tx and the touch sensing electrode Rx are different from the touch pattern of the region where the lead 10 is located, the light transmittances of the two regions are different. In this way, the touch pattern is displayed during the display of the screen, which affects the uniformity of the display screen and reduces the display effect.
  • the embodiment of the present invention provides a touch display screen, a manufacturing method thereof, and a display device, which can reduce or avoid the problem that the display screen is uneven due to the difference in transmittance between the area where the touch electrode is located and the area where the lead is located.
  • An aspect of the present invention provides a method for manufacturing a touch display screen, including:
  • a touch display screen including:
  • An electrode region and a lead region wherein the electrode region is provided with a touch electrode, and a lead wire connected to the touch electrode is disposed in the lead region;
  • the first transmittance of the electrode region is equal to the second transmittance of the lead region.
  • Another aspect of the present invention provides a display device including any touch display screen provided by various embodiments of the present invention.
  • the embodiment of the invention provides a touch display screen, a manufacturing method thereof and a display device.
  • the method for manufacturing the touch display panel includes: providing a touch electrode in the electrode region; forming a lead connected to the touch electrode in the lead region, thereby transmitting a driving voltage to the touch electrode through the lead; respectively Collecting a first transmittance of a region where the touch electrode is located (ie, an electrode region), and a second transmittance of a region where the lead wire connected to the touch electrode (ie, a lead region); and The transmittance and the second transmittance are respectively compared with a preset reference value to determine a difference from the preset reference value; and according to the obtained difference, the shading area of the electrode region and/or the lead region is set, The first transmittance or the second transmittance is compensated such that the first transmittance is the same as the second transmittance. Therefore, the phenomenon that the display screen is uneven due to the difference in light transmittance between the electrode region and the lead region is avoided, and the display
  • FIG. 1 is a schematic structural diagram of a touch display screen provided by the prior art
  • FIG. 2 is a flowchart of a method for fabricating a touch display screen according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of area division of a touch display screen according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram illustrating uneven distribution of black matrix size according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram illustrating uneven distribution of a size of a region where a TFT is located according to an embodiment of the present disclosure
  • 6a is a schematic partial structural diagram of a touch display screen according to an embodiment of the present invention.
  • FIG. 6 is a partial structural diagram of another touch display screen according to an embodiment of the present invention.
  • 01-drive IC 10-lead; 20-touch electrode; 100-lead area; 200-electrode area; 300-electrode black matrix; 300'-black matrix in lead area; 301-electrode area The area where the TFT is located; the area where the TFT in the lead area is located; the Tx-touch driving electrode; and the Rx-touch sensing electrode.
  • An embodiment of the present invention provides a method for manufacturing a touch display screen, as shown in FIG. 2, which may include:
  • the touch electrode 20 is formed in the electrode region 200.
  • the transmittance refers to the transmittance of light.
  • the transmittance of light can be collected by a photosensitive device. Or calculating the coverage area of the touch electrode 20 in the electrode region 200 and the coverage area of the lead 10 in the lead region 100, according to the coverage area of the thin film layer of the touch electrode 20 or the lead 10, and the materials constituting the film layers. The factor gives the transmittance of light.
  • the light shielding area of the electrode region 200 and/or the lead region 100 is set according to the difference ⁇ t to compensate the first transmittance T1 and/or the second transmittance T2.
  • the touch display screen may be an external touch display screen or an in-cell touch display screen.
  • the invention is not limited thereto. However, the following embodiments are all described by taking an in-cell touch panel as an example.
  • the in-cell touch screen may include a mutual capacitive touch screen and a self-capacitive touch screen.
  • the touch electrode 20 can be a touch driving electrode Tx and a touch sensing electrode Rx, and the touch driving electrode Tx and the touch sensing electrode Rx form a mutual capacitance.
  • the touch electrode 20 can be a self-capacitance electrode that forms a self-capacitance with the human body or the ground.
  • the touch electrodes 20 in the embodiment of the present invention are described by taking the touch driving electrodes Tx and the touch sensing electrodes Rx constituting mutual capacitance as an example.
  • the electrode area 200 is the area where the touch driving electrode Tx and the touch sensing electrode Rx are located on the touch display screen.
  • the lead area 100 refers to the touch display screen and the touch.
  • the driving electrode Tx or the region where the lead 10 to which the touch sensing electrode Rx is connected is located.
  • the predetermined reference value T may be the first transmittance T1, and the second transmittance T2 of the lead region 100 is equal to the first transmittance T1 by adjusting the light shielding area of the lead region 100.
  • the predetermined reference value T may be the second transmittance T2, and the first transmittance T1 of the electrode region 200 is equal to the second transmittance T2 by adjusting the light shielding area of the electrode region 200.
  • the preset reference value T may also be a third value set by a staff member in the field according to actual needs, and respectively adjusted by The light shielding areas of the lead region 100 and the electrode region 200 are such that the first transmittance T1 and the second transmittance T2 are equal to the third value, respectively.
  • the first transmittance T1 or the second transmittance T2 is taken as an example of the preset reference value T.
  • the embodiment of the invention provides a method for manufacturing a touch display screen, comprising: providing a touch electrode in an electrode region; and then forming a lead connected to the touch electrode in the lead region, thereby transmitting a driving voltage to the Touching the electrode; next, respectively acquiring a first transmittance of the region where the touch electrode is located (ie, the electrode region) and a second region of the region where the lead wire connected to the touch electrode is connected (ie, the lead region) And the first transmittance and the second transmittance are respectively compared with a preset reference value to determine a difference from the preset reference value, and finally, according to the obtained difference, the electrode region and/or Or the light-shielding area of the lead region is set to compensate the first transmittance or the second transmittance such that the first transmittance is the same as the second transmittance. Therefore, the phenomenon that the display screen is uneven due to the difference in light transmittance between the electrode region and the lead region is avoided, and the display effect is improved.
  • the transmittance of the electrode region 200 or the lead region 100 is related to the light shielding area of the electrode region 200 or the lead region 100, respectively.
  • the transmittance is also related to the material of the film layer constituting the touch electrode or the lead.
  • the touch electrode 20 and the lead 10 may be disposed in the same layer. It can be made of a transparent conductive material such as ITO (Indium Tin Oxide). In this way, since the touch electrode 20 and the lead 10 are both made of ITO, the material of the thin film layer of the touch electrode or the lead has the same influence on the transmittance of the two regions.
  • ITO Indium Tin Oxide
  • the coverage of the ITO film of the touch electrode 20 in the electrode region 200 is greater than the coverage of the ITO film of the lead 10 in the lead region 100. Therefore, at present, the first light transmittance T1 of the electrode region 200 is smaller than the second light transmittance T2 of the lead region 100. Therefore, in order to make the first light transmittance T1 and the second light transmittance T2 equal, the light shielding area of the electrode region 200 can be reduced, or the light shielding area of the lead region 100 can be increased.
  • the minimum display unit on the display screen is a pixel unit, and the pixel unit may include a display area and a non-display area.
  • the display area is provided with a pixel electrode
  • the non-display area is provided with a switching element for charging and controlling the pixel electrode, such as TFT (Thin Film) Transistor, Thin film transistor).
  • TFT Thin Film Transistor
  • a black matrix may be disposed at the position of the corresponding TFT on the light outgoing side of the display screen. Since the black matrix has a light blocking property, the larger the area of the black matrix, the larger the light blocking area of the pixel unit, and the smaller the light transmittance.
  • step S105 may include:
  • the area of the black matrix in the electrode region 200 and/or the lead region 100 is set according to the difference ⁇ t between the first transmittance T1 and the second transmittance T2 and the preset reference value T, respectively.
  • the preset reference value T is the second transmittance T2
  • the current first transmittance T1 is smaller than the second transmittance T2
  • it is necessary to increase the first transmittance T1 so that the electrode needs to be reduced.
  • the area of the black matrix 300 in the region 200 is compensated for the first transmittance T1.
  • the preset reference value T is the first transmittance T1
  • the second transmittance T2 since the current first transmittance T1 is smaller than the second transmittance T2, it is necessary to reduce the second transmittance T2, so that it is necessary to increase the lead region.
  • the area of the black matrix 300' in 100 is compensated negatively for the second transmittance T2.
  • the area of the black matrix 300 in the electrode region 200 is smaller than the area of the black matrix 300' in the lead region 100.
  • the TFT has a light-shielding property, the larger the area where the TFT region is located, the larger the light-shielding area of the pixel unit, and the smaller the light transmittance.
  • step S105 may include:
  • the area of the region where the TFT is located in the electrode region 200 and/or the lead region 100 is set according to the difference ⁇ t between the first transmittance T1 and the second transmittance T2 and the preset reference value T, respectively.
  • the preset reference value T is the second transmittance T2
  • the current first transmittance T1 is smaller than the second transmittance T2
  • it is necessary to increase the first transmittance T1 so that the electrode needs to be reduced.
  • the area of the region 301 where the TFT is located in the region 200 compensates for the first transmittance T1.
  • the preset reference value T is the first transmittance T1
  • the second transmittance T2 since the current first transmittance T1 is smaller than the second transmittance T2, it is necessary to reduce the second transmittance T2, so that it is necessary to increase the lead region.
  • the area of the region 301' where the TFT is located in 100 compensates for the second transmittance T2 in the negative direction.
  • the area of the region 301 where the TFT is located in the electrode region 200 is smaller than the area of the region 301' where the TFT in the lead region 100 is located.
  • the gate, the source and the drain of the TFT may be made of metal.
  • the above metal material is composed of a simple metal or a metal alloy, and is a material that is opaque. Therefore, the area of the region where the TFT is located may be set to the area of the gate of the TFT, the area of the source, or the area of the drain.
  • the common electrode line on the display screen can generally be made of a gate metal, it has a light blocking property.
  • the area of the common electrode line is larger, the larger the light blocking area of the pixel unit, the smaller the transmittance of light.
  • step S105 may include:
  • the area of the common electrode line in the electrode region 200 and/or the lead region 100 is set according to the difference ⁇ t between the first transmittance T1 and the second transmittance T2 and the preset reference value T, respectively.
  • the specific setting method is the same as above, and will not be described here.
  • the preset reference value T is the second transmittance T2 since the current first transmittance T1 is smaller than the second transmittance T2, it is necessary to increase the first transmittance T1.
  • a hollow pattern may be formed on the surface of the touch electrode 20 by a patterning process, wherein a position corresponding to the hollow pattern is not covered by the touch electrode 20 .
  • the light-shielding area of the touch electrode 20 can be reduced, thereby increasing the first transmittance T1 of the electrode region 200, and compensating the first transmittance T1 such that the first transmittance T1 and the lead region 100
  • the second transmittance T2 is equal.
  • the hollow pattern may be a dot pattern as shown in FIG. 6a or a stripe pattern as shown in FIG. 6b.
  • the direction of the stripe pattern is not limited, and may be a vertical stripe pattern as shown in FIG. 6b, or a horizontal stripe pattern perpendicular to the longitudinal stripe direction shown in FIG. 6b, or may be associated with FIG. 6b.
  • the illustrated longitudinal stripe direction has a slanted stripe pattern with a certain oblique angle.
  • the stripe pattern may be a square or a rectangle or the like.
  • the above-mentioned hollow pattern may also be a stripe combination pattern, for example, a V-shaped or T-shaped pattern composed of two stripes, or a "work” type, a "meter” type, or the like, which is combined by a plurality of stripes. Made of patterns.
  • the embodiment of the invention provides a touch display screen, as shown in FIG. 3, which may include:
  • the first transmittance T1 of the electrode region 200 is equal to the second transmittance T2 of the lead region 100.
  • the embodiment of the invention provides a touch display screen comprising an electrode area and a lead area; wherein the electrode area is provided with a touch electrode; and the lead area is provided with a lead connected to the touch electrode.
  • the first transmittance of the electrode region is equal to the second transmittance of the lead region. Therefore, the phenomenon that the display screen is uneven due to the difference in light transmittance between the electrode region and the lead region is avoided, and the display effect is improved.
  • the transmittance of the electrode region 200 or the lead region 100 is related to the light shielding area of the electrode region 200 or the lead region 100, respectively.
  • the transmittance is also related to the material of the film layer constituting the touch electrode or the lead.
  • the touch electrode 20 and the lead 10 may be disposed in the same layer.
  • a transparent conductive material such as ITO (Indium Tin Oxide) can be used. In this way, since the touch electrode 20 and the lead 10 are both made of ITO, the material of the thin film layer of the touch electrode or the lead has the same influence on the transmittance of the two regions.
  • the coverage of the ITO film of the touch electrode 20 in the electrode region 200 is greater than the coverage of the ITO film of the lead 10 in the lead region 100. Therefore, the first light transmittance T1 of the current electrode region 200 is smaller than the second light transmittance T2 of the lead region 100. Therefore, in order to make the first light transmittance T1 and the second light transmittance T2 equal, the light shielding area of the electrode region 200 can be reduced, or the light shielding area of the lead region 100 can be increased.
  • the minimum display unit on the display screen is a pixel unit, and the pixel unit may include a display area and a non-display area.
  • the display area is provided with a pixel electrode
  • the non-display area is provided with a switching element for charging and controlling the pixel electrode, such as TFT (Thin Film) Transistor, Thin film transistor).
  • TFT Thin Film Transistor
  • a black matrix may be disposed at the position of the corresponding TFT on the light outgoing side of the display screen. Since the black matrix has a light blocking property, the larger the area of the black matrix, the larger the light blocking area of the pixel unit, and the smaller the light transmittance.
  • the area of the black matrix in the electrode region 200 may be different from the area of the black matrix in the lead region 100.
  • the area of the black matrix 300 in the electrode region 200 can be reduced to increase the first transmittance T1 such that the first transmittance T1 is equal to the second transmittance T2.
  • the area of the black matrix 300' in the lead region 100 is increased to reduce the second transmittance T2 such that the first transmittance T1 and the second transmittance T2 are equal.
  • the area of the black matrix 300 in the electrode region 200 is smaller than the area of the black matrix 300' in the lead region 100.
  • the TFT has a light-shielding property, the larger the area where the TFT region is located, the larger the light-shielding area of the pixel unit, and the smaller the light transmittance.
  • the area of the region where the TFT in the electrode region 200 is located is different from the area of the region where the TFT in the lead region 100 is located.
  • the area of the region 301 where the TFT is located in the electrode region 200 can be reduced to increase the first transmittance T1, so that the first transmission The rate T1 is equal to the second transmittance T2.
  • the area of the region 301' where the TFT is located in the lead region 100 is increased to reduce the second transmittance T2 such that the first transmittance T1 and the second transmittance T2 are equal.
  • the area of the region 301 where the TFT is located in the electrode region 200 is smaller than the area of the region 301' where the TFT in the lead region 100 is located.
  • the gate of the TFT may be formed of a gate metal, and the source and the drain may be formed of a data metal.
  • the above metal material is composed of a simple metal or a metal alloy, and is a material that is opaque. Therefore, it is preferable that the area of the region where the TFT is located may be set to the area of the gate of the TFT, the area of the source, or the area of the drain. Thereby, the area of the region where the TFT in the electrode region 200 is located is different from the area of the region where the TFT in the lead region 100 is located.
  • the common electrode line on the display screen can be made of a gate metal, it has a light blocking property.
  • the area of the common electrode line is larger, the larger the light blocking area of the pixel unit, the smaller the transmittance of light.
  • the area of the common electrode line in the electrode region 200 is different from the area of the common electrode line in the lead region 100.
  • the specific structure is the same as above, and will not be described here.
  • a hollow pattern may be formed on the surface of the touch electrode 20, wherein the position corresponding to the hollow pattern is not The touch electrode 20 is covered. In this way, the light-shielding area of the touch electrode 20 can be reduced, thereby increasing the first transmittance T1 of the electrode region 200 such that the first transmittance T1 is equal to the second transmittance T2 of the lead region 100.
  • the hollow pattern may be a dot pattern as shown in FIG. 6a or a stripe pattern as shown in FIG. 6b.
  • the direction of the stripe pattern is not limited, and may be a vertical stripe pattern as shown in FIG. 6b, or a horizontal stripe pattern perpendicular to the longitudinal stripe direction shown in FIG. 6b, or may be associated with FIG. 6b.
  • the illustrated longitudinal stripe direction has a slanted stripe pattern with a certain oblique angle.
  • Embodiments of the present invention provide a display device including any of the touch display screens described above. It has the same structure and advantageous effects as the touch display screen provided by the foregoing embodiments. Since the beneficial effects of the touch display screen have been described in the foregoing embodiments, they are not described herein again.
  • the display device may include a liquid crystal display device, for example, the display device may be any product or component having a display function, such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, or a tablet computer.
  • the display device may be any product or component having a display function, such as a liquid crystal display, a liquid crystal television, a digital photo frame, a mobile phone, or a tablet computer.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种触控显示屏及其制作方法、显示装置,涉及显示技术领域,能够减轻或避免由于触控电极所在区域与引线所在区域透过率不同,而引起的显示画面不均匀的问题。所述触控显示屏的制作方法包括在电极区域(200)形成触控电极(20);在引线区域(100)形成与触控电极(20)相连接的引线(10);分别采集电极区域(200)的第一透过率以及引线区域(100)的第二透过率;确定第一透过率和第二透过率分别与预设基准值的差值;根据差值设置电极区域(200)和/或引线区域(100)的遮光面积,以对第一透过率和/或第二透过率进行补偿。

Description

一种触控显示屏及其制作方法、显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种触控显示屏及其制作方法、显示装置。
背景技术
随着显示技术的飞速发展,触控显示屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触控显示屏按照组成结构可以分为:外挂式触控显示屏(Add on Mode Touch Panel)、以及内嵌式触控显示屏(In Cell Touch Panel)。
其中,外挂式触控显示屏是将触控组件与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏。
内嵌(In cell)式触控显示屏是利用互电容或自电容的原理实现检测手指触摸位置。具体地,互电容式显示屏中设置有由触控驱动电极Tx和触控感应电极Rx构成的互电容,在触控的过程中,人体电场作用在互电容上,使互电容的电容值发生变化,根据电容值的变化确定触点位置。自电容式显示屏中设置多个与人体构成自电容的触控电极(以下称为自电容电极),当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,对应的自电容电极所承受的电容为固定值叠加人体电容,通过检测各自电容电极的电容值变化可以判断出触控位置。
此外,触控显示屏中的触控电极均通过引线连接至非显示区域的驱动IC(Integrated Circuit,集成电路)上,以使得控制信号能够传输至上述电极上。如图1所示,以内嵌式触控显示屏中的互电容式触控屏为例,作为触控电极的触控驱动电极Tx和触控感应电极Rx均与引线10相连接。然而,由于触控驱动电极Tx和触控感应电极Rx所在的区域与引线10所在的区域的触摸图案(Touch Pattern)存在差异,因此两个区域的光线透过率不同。这样在显示画面的过程中会显示出所述触摸图案,影响显示画面的均匀性,降低显示效果。
发明内容
本发明的实施例提供一种触控显示屏及其制作方法、显示装置,能够减轻或者避免由于触控电极所在区域与引线所在区域透过率不同,而引起的显示画面不均匀的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
本发明实施例的一方面,提供一种触控显示屏的制作方法,包括:
在电极区域形成触控电极;
在引线区域形成与所述触控电极相连接的引线;
分别采集所述电极区域的第一透过率以及所述引线区域的第二透过率;
确定所述第一透过率和所述第二透过率分别与预设基准值的差值;
根据所述差值设置所述电极区域和/或所述引线区域的遮光面积,以对所述第一透过率和/或所述第二透过率进行补偿。
本发明实施例的另一方面,提供一种触控显示屏,包括:
电极区域和引线区域;其中,所述电极区域设置有触控电极,所述引线区域内设置有与所述触控电极相连接的引线;
所述电极区域的第一透过率与所述引线区域的第二透过率相等。
本发明实施例的另一方面,提供一种显示装置,包括如本发明的各实施例提供的任意一种触控显示屏。
本发明实施例提供一种触控显示屏及其制作方法、显示装置。其中,制作所述触控显示屏的方法包括:在电极区域内设置触控电极;在引线区域形成与触控电极相连接的引线,从而通过引线将驱动电压传输至所述触控电极;分别采集所述触控电极所在区域(即电极区域)的第一透过率,以及与所述触控电极相连接的引线的所在区域(即引线区域)的第二透过率;并将第一透过率和第二透过率分别与预设基准值进行对比,确定出其与预设基准值的差值;根据得到的差值,对电极区域和/或引线区域的遮光面积进行设置,以对第一透过率或第二透过率进行补偿,使得第一透过率与第二透过率相同。从而避免了电极区域与引线区域之间由于光线的透过率不同而引起的显示画面不均匀的现象,提升了显示效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的一种触控显示屏的结构示意图;
图2为本发明实施例提供的一种触控显示屏的制作方法流程图;
图3为本发明实施例提供的一种触控显示屏的区域划分示意图;
图4为本发明实施例提供的一种说明黑矩阵大小分布不均的结构示意图;
图5为本发明实施例提供的一种说明TFT所在区域大小分布不均的结构示意图;
图6a为本发明实施例提供的一种触控显示屏的局部结构示意图;
图6b为本发明实施例提供的另一种触控显示屏的局部结构示意图。
附图说明:
01-驱动IC;10-引线;20-触控电极;100-引线区域;200-电极区域;300-电极区域内的黑矩阵;300’-引线区域内的黑矩阵;301-电极区域内的TFT所在区域;301’-引线区域内的TFT所在区域;Tx-触控驱动电极;Rx-触控感应电极。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例提供一种触控显示屏的制作方法,如图2所示,可以包括:
S101、如图3所示,在电极区域200形成触控电极20。
S102、在引线区域100形成与触控电极20相连接的引线10。
S103、分别采集电极区域200的第一透过率T1以及引线区域100的第二透过率T2。
其中,所述透过率是指光线的透过率。可以通过光敏器件对光线的透过率进行采集。或者对电极区域200内触控电极20的覆盖面积,以及引线区域100内引线10的覆盖面积进行计算,根据触控电极20或引线10的薄膜层的覆盖面积,以及构成这些薄膜层的材料等因素得出光线的透过率。
S104、确定第一透过率T1和第二透过率T2分别与预设基准值T的差值Δt。
S105、根据差值Δt设置电极区域200和/或引线区域100的遮光面积,以对第一透过率T1和/或第二透过率T2进行补偿。
需要说明的是,第一、所述触控显示屏可以是外挂式触控显示屏,也可以是内嵌式触控显示屏。本发明对此不做限制。但以下实施例均是以内嵌式触控屏为例进行的说明。
第二、内嵌式触控屏可以包括互电容式触控屏和自电容式触控屏。对于互电容式触控屏而言,上述触控电极20可以为触控驱动电极Tx和触控感应电极Rx,所述触控驱动电极Tx和触控感应电极Rx构成互电容。
对于自电容式触控屏而言,上述触控电极20可以为与人体或接地端构成自电容的自电容电极。
本发明实施例中的触控电极20均以构成互电容的触控驱动电极Tx和触控感应电极Rx为例进行说明。
第三、所述电极区域200是指,触控显示屏上的触控驱动电极Tx和触控感应电极Rx所在的区域;所述引线区域100是指,触控显示屏上与所述触控驱动电极Tx或所述触控感应电极Rx相连接的引线10所在的区域。
第四、上述预设基准值T可以是所述第一透过率T1,通过调整引线区域100的遮光面积,使得引线区域100的第二透过率T2与所述第一透过率T1相等;或者,上述预设基准值T可以是所述第二透过率T2,通过调整电极区域200的遮光面积,使得电极区域200的第一透过率T1与所述第二透过率T2相等;又或者,上述预设基准值T还可以是本领域工作人员根据实际需要设置的一个第三值,通过分别调整 引线区域100和电极区域200的遮光面积,使得第一透过率T1和所述第二透过率T2分别与所述第三值相等。本发明实施例均是以第一透过率T1或第二透过率T2为所述预设基准值T为例进行的说明。
本发明实施例提供一种触控显示屏的制作方法,包括在电极区域内设置触控电极;然后,在引线区域形成与触控电极相连接的引线,从而通过引线将驱动电压传输至所述触控电极;接下来,分别采集所述触控电极所在区域(即电极区域)的第一透过率以及与所述触控电极相连接的引线的所在区域(即引线区域)的第二透过率;并将第一透过率和第二透过率分别与预设基准值进行对比,确定出其与预设基准值的差值,最后,根据得到的差值,对电极区域和/或引线区域的遮光面积进行设置,以对第一透过率或第二透过率进行补偿,使得第一透过率与第二透过率相同。从而避免了电极区域与引线区域之间由于光线的透过率不同而引起的显示画面不均匀的现象,提升了显示效果。
由于电极区域200或引线区域100的透过率分别与电极区域200或引线区域100的遮光面积有关。遮光面积越大,透过率越小;遮光面积越小,透过率越大。其中,透过率还与构成触摸电极或引线的薄膜层的材料有关。为了简化制作工序,可将触控电极20与引线10同层同材料设置。可以采用透明导电材料,例如ITO(Indium Tin Oxide,氧化铟锡)构成。这样一来,因为触控电极20与引线10均由ITO构成,触摸电极或引线的薄膜层的材料对两个区域透过率的影响相同。
然而,如图3所示,电极区域200中触控电极20的ITO薄膜的覆盖率大于引线区域100中引线10的ITO薄膜的覆盖率。因此,当前,电极区域200的第一透光率T1小于引线区域100的第二透光率T2。所以,为了使得第一透光率T1与第二透光率T2相等,可以减小电极区域200的遮光面积,或增大引线区域100的遮光面积。
以下通过具体的实施例对根据第一透过率T1和第二透过率T2分别与预设基准值T的差值Δt,设置电极区域200和/或引线区域100的遮光面积的方法进行详细的举例说明。
实施例一
显示屏上的最小显示单元为像素单元,像素单元可以包括显示区域和非显示区域,显示区域内设置有像素电极,非显示区域设置有对像素电极进行充电控制的开关元件,例如TFT(Thin Film Transistor, 薄膜晶体管)。为了使得TFT的电学性能不受到影响,可在显示屏的出光侧,在对应TFT的位置设置黑矩阵。由于黑矩阵具有遮光性能,因此黑矩阵的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括黑矩阵的情况下,步骤S105可以包括:
根据第一透过率T1和第二透过率T2分别与预设基准值T的差值Δt,设置电极区域200和/或引线区域100内的黑矩阵的面积。
具体地,当预设基准值T为第二透过率T2时,由于当前第一透过率T1小于第二透过率T2,因此需要增大第一透过率T1,从而需要减小电极区域200内的黑矩阵300的面积,以对第一透过率T1进行补偿。
或者,当预设基准值T为第一透过率T1时,由于当前第一透过率T1小于第二透过率T2,因此需要减小第二透过率T2,从而需要增大引线区域100内的黑矩阵300’的面积,以对第二透过率T2进行负向的补偿。
因此,如图4所示,电极区域200内的黑矩阵300的面积小于引线区域100内的黑矩阵300’的面积。
实施例二
由于TFT具有遮光性能,因此TFT区域所在的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括TFT的情况下,步骤S105可以包括:
根据第一透过率T1和第二透过率T2分别与预设基准值T的差值Δt,设置电极区域200和/或引线区域100内TFT所在区域的面积。
具体地,当预设基准值T为第二透过率T2时,由于当前第一透过率T1小于第二透过率T2,因此需要增大第一透过率T1,从而需要减小电极区域200内的TFT所在区域301的面积,以对第一透过率T1进行补偿。
或者,当预设基准值T为第一透过率T1时,由于当前第一透过率T1小于第二透过率T2,因此需要减小第二透过率T2,从而需要增大引线区域100内的TFT所在区域301’的面积,以对第二透过率T2进行负向的补偿。
因此,如图5所示,电极区域200内的TFT所在区域301的面积小于引线区域100内的TFT所在区域301’的面积。
由于TFT由栅极、源极和漏极构成,为了保证TFT具有较高的导通性能,TFT的栅极、源极和漏极可采用金属构成。上述金属材料由金属单质或金属合金构成,均为不透光的材料。因此,对TFT所在区域的面积进行设置可以是对TFT的栅极的面积、源极的面积或漏极的面积进行设置。
此外,由于显示屏上的公共电极线一般可以采用栅极金属制成,因此其具有遮光性能。当公共电极线的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括公共电极线的情况下,步骤S105可以包括:
根据第一透过率T1和第二透过率T2分别与预设基准值T的差值Δt,设置电极区域200和/或引线区域100内公共电极线的面积。具体的设置方式同上所述,此处不再赘述。
实施例三
当预设基准值T为第二透过率T2时,由于当前第一透过率T1小于第二透过率T2,因此需要增大第一透过率T1。
具体地,可以通过构图工艺在所述触控电极20的表面形成镂空图案,其中,镂空图案对应的位置未被触控电极20覆盖。这样一来,能够减小触控电极20的遮光面积,从而提高电极区域200的第一透过率T1,通过对第一透过率T1进行补偿,使得第一透过率T1与引线区域100的第二透过率T2相等。
此外,为了制作方便,所述镂空图案可以如图6a所示为圆点状图案,或如图6b所示条纹状图案。其中本发明对条纹状图案的纹路方向不做限定,可以是如图6b所示的纵向条纹图案,也可以是与图6b所示的纵向条纹方向垂直的横向条纹图案,还可以是与图6b所示的纵向条纹方向具有一定倾斜角度的倾斜条纹图案。所述条纹图案可以是正方形或长方形等。此外,上述镂空图案还可以是条纹组合图案,例如,V字型或T字型等由两条条纹组合而成的图案,或者“工”字型,“米”字型等由多条条纹组合而成的图案。
当然,上述仅仅是对镂空图案的举例说明,其它形状的镂空图案在此不再一一赘述,但都应当属于本发明的保护范围。
本发明实施例提供一种触控显示屏,如图3所示,可以包括:
电极区域200和引线区域100;其中,所述电极区域200设置有触控电极20;引线区域100内设置有与触控电极20相连接的引线10。
电极区域200的第一透过率T1与引线区域100的第二透过率T2相等。
本发明实施例提供一种触控显示屏,包括电极区域和引线区域;其中,所述电极区域设置有触控电极;引线区域内设置有与触控电极相连接的引线。电极区域的第一透过率与引线区域的第二透过率相等。从而避免了电极区域与引线区域之间由于光线的透过率不同而引起的显示画面不均匀的现象,提升了显示效果。
由于电极区域200或引线区域100的透过率分别与电极区域200或引线区域100的遮光面积有关。遮光面积越大,透过率越小;遮光面积越小,透过率越大。其中,透过率还与构成触控电极或引线的薄膜层的材料有关。为了简化制作工序,可将触控电极20与引线10同层同材料设置。一般可以采用透明导电材料,例如ITO(Indium Tin Oxide,氧化铟锡)构成。这样一来,因为触控电极20与引线10均由ITO构成,触控电极或引线的薄膜层的材料对两个区域透过率的影响相同。
然而如图3所示,电极区域200中触控电极20的ITO薄膜的覆盖率大于引线区域100中引线10的ITO薄膜的覆盖率。因此,当前电极区域200的第一透光率T1小于引线区域100的第二透光率T2。所以,为了使得第一透光率T1与第二透光率T2相等,可以减小电极区域200的遮光面积,或增大引线区域100的遮光面积。
以下,通过具体的实施例,对其中电极区域200的第一透过率T1与引线区域100的第二透过率T2相等的触控显示屏的具体结构进行详细的描述。
实施例四
显示屏上的最小显示单元为像素单元,像素单元可以包括显示区域和非显示区域,显示区域内设置有像素电极,非显示区域设置有对像素电极进行充电控制的开关元件,例如TFT(Thin Film Transistor, 薄膜晶体管)。为了使得TFT的电学性能不受到影响,可在显示屏的出光侧,在对应TFT的位置设置黑矩阵。由于黑矩阵具有遮光性能,因此黑矩阵的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括黑矩阵的情况下,电极区域200内的黑矩阵的面积可以与引线区域100内的黑矩阵的面积不同。
具体地,由于当前第一透过率T1小于第二透过率T2,因此可以减小电极区域200内的黑矩阵300的面积,以增大第一透过率T1,使得第一透过率T1与第二透过率T2相等。
或者,增大引线区域100内的黑矩阵300’的面积,以减小第二透过率T2,使得第一透过率T1与第二透过率T2相等。
因此,如图4所示,电极区域200内的黑矩阵300的面积小于引线区域100内的黑矩阵300’的面积。
实施例五
由于TFT具有遮光性能,因此TFT区域所在的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括TFT的情况下,电极区域200内的TFT所在区域的面积与引线区域100内的TFT所在区域的面积不同。
具体地,由于当前第一透过率T1小于第二透过率T2,因此可以减小电极区域200内的TFT所在区域301的面积,以增大第一透过率T1,使得第一透过率T1与第二透过率T2相等。
或者,增大引线区域100内的TFT所在区域301’的面积,以减小第二透过率T2,使得第一透过率T1与第二透过率T2相等。
因此,如图5所示,电极区域200内的TFT所在区域301的面积小于引线区域100内的TFT所在区域301’的面积。
由于TFT由栅极、源极和漏极构成,为了保证TFT具有较高的导通性能,TFT的栅极可采用栅极金属构成,而源极和漏极可采用数据金属构成。上述金属材料由金属单质或金属合金构成,均为不透光的材料。因此,优选的,对TFT所在区域的面积进行设置可以是对TFT的栅极的面积、源极的面积或漏极的面积进行设置。从而使得电极区域200内的TFT所在区域的面积与引线区域100内的TFT所在区域的面积不同。
此外,由于显示屏上的公共电极线可可以采用栅极金属制成,因此其具有遮光性能。当公共电极线的面积越大,像素单元的遮光面积越大,光线的透过率越小。
所以,在上述触控显示屏包括公共电极线的情况下,电极区域200内的公共电极线的面积与引线区域100内的公共电极线的面积不同。具体的结构同上所述,这里不再赘述。
实施例六
由于当前第一透过率T1小于第二透过率T2,因此为了增大第一透过率T1,可以在触控电极20的表面形成有镂空图案,其中,镂空图案对应的位置未被所述触控电极20覆盖。这样一来,能够减小触控电极20的遮光面积,从而提高电极区域200的第一透过率T1,使得第一透过率T1与引线区域100的第二透过率T2相等。
此外,所述镂空图案可以如图6a所示为圆点状图案,或如图6b所示条纹状图案。其中本发明对条纹状图案的纹路方向不做限定,可以是如图6b所示的纵向条纹图案,也可以是与图6b所示的纵向条纹方向垂直的横向条纹图案,还可以是与图6b所示的纵向条纹方向具有一定倾斜角度的倾斜条纹图案。
当然上述仅仅是对镂空图案的举例说明,其它类型的镂空图案在此不再一一赘述,但都应当属于本发明的保护范围。
本发明实施例提供一种显示装置,包括如上所述的任意一种触控显示屏。具有与前述实施例提供的触控显示屏相同的结构和有益效果。由于前述实施例中已经对触控显示屏的有益效果进行了说明,此处不再赘述。
需要说明的是,在本发明实施例中,显示装置可以包括液晶显示装置,例如该显示装置可以为液晶显示器、液晶电视、数码相框、手机或平板电脑等任何具有显示功能的产品或者部件。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种触控显示屏的制作方法,其中该方法包括:
    在电极区域形成触控电极;
    在引线区域形成与所述触控电极相连接的引线;
    分别采集所述电极区域的第一透过率以及所述引线区域的第二透过率;
    确定所述第一透过率和所述第二透过率分别与预设基准值的差值;
    根据所述差值设置所述电极区域和/或所述引线区域的遮光面积,以对所述第一透过率和/或所述第二透过率进行补偿。
  2. 根据权利要求1所述的触控显示屏的制作方法,其中所述根据所述差值设置所述电极区域和/或所述引线区域的遮光面积的步骤包括:
    根据所述差值,设置所述电极区域和/或所述引线区域内的所述黑矩阵的面积。
  3. 根据权利要求1所述的触控显示屏的制作方法,其中所述根据所述差值设置所述电极区域和/或所述引线区域的遮光面积的步骤包括:
    根据所述差值,设置所述电极区域和/或所述引线区域内所述薄膜晶体管所在区域的面积。
  4. 根据权利要求3所述的触控显示屏的制作方法,其中所述根据所述差值,设置所述电极区域和/或所述引线区域内所述薄膜晶体管所在区域的面积的步骤包括:
    根据所述差值,设置所述电极区域和/或所述引线区域内所述薄膜晶体管的栅极的面积。
  5. 根据权利要求3所述的触控显示屏的制作方法,其中所述根据所述差值,设置所述电极区域和/或所述引线区域内所述薄膜晶体管所在区域的面积的步骤包括:
    根据所述差值,设置所述电极区域和/或所述引线区域内所述薄膜晶体管的源极或漏极的面积。
  6. 根据权利要求1所述的触控显示屏的制作方法,其中所述根据所述差值设置所述电极区域和/或所述引线区域的遮光面积的步骤包括:
    根据所述差值,设置所述电极区域和/或所述引线区域内所述公共电极线的面积。
  7. 根据权利要求1所述的触控显示屏的制作方法,其中所述根据所述差值设置所述电极区域的遮光面积的步骤包括:
    通过构图工艺在所述触控电极的表面形成镂空图案,其中所述镂空图案对应的位置未被所述触控电极覆盖。
  8. 根据权利要求7所述的触控显示屏的制作方法,其中所述镂空图案为圆点状图案、条纹状图案或条纹组合图案。
  9. 根据权利要求1-8任一项所述的触控显示屏的制作方法,其中所述预设基准值包括所述第一透过率或所述第二透过率。
  10. 根据权利要求1-8任一项所述的触控显示屏的制作方法,其中所述触控电极包括触控驱动电极和触控感应电极;或者与人体或接地端构成自电容的自电容电极。
  11. 一种触控显示屏,所述显示屏包括:
    电极区域和引线区域;其中所述电极区域设置有触控电极,所述引线区域内设置有与所述触控电极相连接的引线;
    所述电极区域的第一透过率与所述引线区域的第二透过率相等。
  12. 根据权利要求11所述的触控显示屏,其中所述电极区域内的所述黑矩阵的面积与所述引线区域内的所述黑矩阵的面积不同。
  13. 根据权利要求11所述的触控显示屏,其中所述电极区域内的所述薄膜晶体管所在区域的面积与所述引线区域内的所述薄膜晶体管所在区域的面积不同。
  14. 根据权利要求11所述的触控显示屏,其中所述电极区域内的所述公共电极线的面积与所述引线区域内的所述公共电极线的面积不同。
  15. 根据权利要求11所述的触控显示屏,其中在所述触控电极的表面形成有镂空图案,所述镂空图案对应的位置未被所述触控电极覆盖。
  16. 根据权利要求15所述的触控显示屏,其中所述镂空图案为圆点或条纹状图案。
  17. 一种显示装置,其中所述显示装置包括如权利要求11-16任一项所述的触控显示屏。
PCT/CN2015/077677 2014-12-11 2015-04-28 触控显示屏及其制作方法、显示装置 WO2016090817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,649 US10372247B2 (en) 2014-12-11 2015-04-28 Touch display panel and manufacture method thereof, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410765460.3 2014-12-11
CN201410765460.3A CN104461146B (zh) 2014-12-11 2014-12-11 一种触控显示屏及其制作方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016090817A1 true WO2016090817A1 (zh) 2016-06-16

Family

ID=52907309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077677 WO2016090817A1 (zh) 2014-12-11 2015-04-28 触控显示屏及其制作方法、显示装置

Country Status (3)

Country Link
US (1) US10372247B2 (zh)
CN (1) CN104461146B (zh)
WO (1) WO2016090817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112767866A (zh) * 2021-01-28 2021-05-07 昆山国显光电有限公司 显示设备及其控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104461146B (zh) * 2014-12-11 2017-12-19 京东方科技集团股份有限公司 一种触控显示屏及其制作方法、显示装置
CN106371684A (zh) * 2016-09-20 2017-02-01 京东方科技集团股份有限公司 一种触控显示装置、触控显示面板及其制作方法
CN106843591B (zh) * 2017-02-16 2019-11-26 京东方科技集团股份有限公司 一种触控面板、其制作方法及触控显示装置
DE102018105927B4 (de) * 2018-03-14 2024-05-08 Bcs Automotive Interface Solutions Gmbh Berührungsempfindliches Bedienelement mit einer Lichtquelle, einem Dekorteil und dazwischen einer Lage aus mehreren Leitern, die zwei Bereiche unterschiedlicher Lichtdurchlässigkeit besitzt
US11036322B2 (en) * 2019-06-24 2021-06-15 Wuhan China Star Optoelectronics Technology Co., Ltd Array substrate and method of manufacturing same
CN112558815B (zh) * 2020-12-24 2024-03-15 京东方科技集团股份有限公司 触控基板和显示装置
CN113311523B (zh) * 2021-06-24 2023-05-30 嘉兴驭光光电科技有限公司 衍射抑制光学部件和衍射抑制显示屏
CN113325498B (zh) * 2021-06-24 2023-05-30 嘉兴驭光光电科技有限公司 衍射抑制光学部件和衍射抑制显示屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286886A (ja) * 2009-06-09 2010-12-24 Gunze Ltd タッチスイッチ
US20120327569A1 (en) * 2011-06-27 2012-12-27 Samsung Electro-Mechanics Co., Ltd. Touch panel
CN203588222U (zh) * 2013-09-17 2014-05-07 位元奈米科技股份有限公司 触控式面板的透明感应结构
CN103970392A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN203838681U (zh) * 2013-08-27 2014-09-17 介面光电股份有限公司 电容传感器
CN104461146A (zh) * 2014-12-11 2015-03-25 京东方科技集团股份有限公司 一种触控显示屏及其制作方法、显示装置
CN204242149U (zh) * 2014-12-11 2015-04-01 京东方科技集团股份有限公司 一种触控显示屏及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495139C (zh) * 2007-10-10 2009-06-03 友达光电股份有限公司 触控面板及其制作方法
CN101303635A (zh) * 2008-07-01 2008-11-12 友达光电股份有限公司 电容式触控面板及其制作方法
CN101488066B (zh) * 2009-03-09 2010-12-22 友达光电股份有限公司 触控显示面板与触控基板
KR101082293B1 (ko) 2009-09-04 2011-11-09 삼성모바일디스플레이주식회사 터치 스크린 패널
CN103246422B (zh) * 2013-05-21 2016-10-26 敦泰科技有限公司 一种触摸屏设备及其触摸屏体
CN103926729B (zh) * 2013-12-31 2017-12-22 上海天马微电子有限公司 一种阵列基板、彩膜基板、触控显示装置及其驱动方法
US9465471B2 (en) * 2014-01-24 2016-10-11 Innolux Corporation Transparent electrode layer, touch panel and electronic device
CN104123054B (zh) * 2014-07-22 2017-10-20 昆山龙腾光电有限公司 触控显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286886A (ja) * 2009-06-09 2010-12-24 Gunze Ltd タッチスイッチ
US20120327569A1 (en) * 2011-06-27 2012-12-27 Samsung Electro-Mechanics Co., Ltd. Touch panel
CN203838681U (zh) * 2013-08-27 2014-09-17 介面光电股份有限公司 电容传感器
CN203588222U (zh) * 2013-09-17 2014-05-07 位元奈米科技股份有限公司 触控式面板的透明感应结构
CN103970392A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104461146A (zh) * 2014-12-11 2015-03-25 京东方科技集团股份有限公司 一种触控显示屏及其制作方法、显示装置
CN204242149U (zh) * 2014-12-11 2015-04-01 京东方科技集团股份有限公司 一种触控显示屏及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112767866A (zh) * 2021-01-28 2021-05-07 昆山国显光电有限公司 显示设备及其控制方法

Also Published As

Publication number Publication date
US10372247B2 (en) 2019-08-06
CN104461146B (zh) 2017-12-19
CN104461146A (zh) 2015-03-25
US20160342249A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2016090817A1 (zh) 触控显示屏及其制作方法、显示装置
US10788914B2 (en) Touch panel, method for driving same and touch display device
US9606661B2 (en) Display device with touch detection function, touch detection device, and electronic unit
US9619089B2 (en) Capacitive touch panel, manufacturing method of capacitive touch panel and display device
US10409425B2 (en) In-cell touch panel with shielding electrode and display device
JP5616184B2 (ja) タッチ検出機能付き表示装置および電子機器
US9164306B2 (en) In-cell touch display panel system using metal wires to connect with sensing electrodes
JP5458443B2 (ja) タッチ検出機能付き表示装置、および電子機器
WO2015176459A1 (zh) 触控显示面板及其制作方法、触控显示装置
CN104536633B (zh) 阵列基板及其制作方法、显示装置
US20180275809A1 (en) In-cell touch screen and display device
US10191592B2 (en) Touch-control display panel and display device, and driving method of display panel
US9557594B2 (en) Liquid-crystal display screen with touch-control function and manufacturing method thereof and electronic apparatus
WO2017193745A1 (zh) 一种内嵌式触摸屏及其驱动方法、显示装置
US9239485B2 (en) Touch display panel and fabrication method thereof, and display device
KR20140145526A (ko) 터치 디스플레이 패널 및 그 구동 방법
US20160131938A1 (en) Display With Blue Pigment Layer Under Black Matrix
US20140192275A1 (en) In-Cell Touch Display Panel Structure with Metal Layer on Lower Substrate for Sensing
US9569048B2 (en) Touch display panel and display device
JP2014021865A (ja) タッチパネル付液晶表示装置及びタッチパネル付液晶表示装置の製造方法
JP5905730B2 (ja) タッチパネル付液晶表示装置
WO2016169191A1 (zh) 触摸屏及触摸显示装置
CN204242149U (zh) 一种触控显示屏及显示装置
JP5893697B2 (ja) タッチ検出機能付き表示装置および電子機器
KR102076844B1 (ko) 터치 센서 내장형 액정 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785649

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15867528

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2017)