WO2017193745A1 - 一种内嵌式触摸屏及其驱动方法、显示装置 - Google Patents

一种内嵌式触摸屏及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2017193745A1
WO2017193745A1 PCT/CN2017/079962 CN2017079962W WO2017193745A1 WO 2017193745 A1 WO2017193745 A1 WO 2017193745A1 CN 2017079962 W CN2017079962 W CN 2017079962W WO 2017193745 A1 WO2017193745 A1 WO 2017193745A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
light
touch screen
electrode
substrate
Prior art date
Application number
PCT/CN2017/079962
Other languages
English (en)
French (fr)
Inventor
王德帅
冀新友
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/561,559 priority Critical patent/US10671224B2/en
Publication of WO2017193745A1 publication Critical patent/WO2017193745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an in-cell touch panel, a driving method thereof, and a display device.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel according to the composition structure.
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then being bonded together to become a liquid crystal display with touch function.
  • the external touch screen has higher production cost and light transmittance. Low, thicker modules and other shortcomings.
  • the in-cell touch screen embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by major panel manufacturers.
  • the existing in-cell touch screen utilizes the principle of mutual capacitance or self-capacitance to detect the touch position of the finger.
  • the self-capacitance principle can be used to set a plurality of self-capacitance touch electrodes arranged in the same layer and insulated from each other in the touch screen.
  • the capacitance of each touch electrode is a fixed value.
  • the capacitance of the corresponding touch electrode is a fixed value superimposed on the human body capacitance, and the touch detection chip can determine the touch position by detecting the change of the capacitance value of each touch electrode during the touch time period.
  • the human body capacitance can act on all self-capacitances, the body capacitance can only act on the projection capacitance in the mutual capacitance, and the touch change caused by the human body touching the screen is greater than the touch screen produced by the mutual capacitance principle, so The mutual capacitance touch screen can effectively improve the signal-to-noise ratio of the touch, thereby improving the accuracy of the touch sensing.
  • the present invention provides an in-cell touch panel, a driving method thereof, and a display device for implementing touch without affecting a pixel aperture ratio.
  • An embodiment of the present invention provides an in-cell touch panel including a plurality of touch electrodes and a light shielding structure, wherein the light shielding structure includes a plurality of first light shielding strips disposed in parallel along the first direction and a plurality of parallel light shielding lines disposed along the second direction. a second light shielding strip, wherein the first direction and the second direction are perpendicular to each other;
  • the first light shielding strip has electrical conductivity, and the touch electrodes are electrically connected to the light shielding strips, respectively.
  • the light shielding structure is formed between sub-pixels of the touch screen to block external light and/or light from adjacent sub-pixels.
  • Each of the touch electrodes corresponds to a plurality of the sub-pixel units.
  • a surface of the first light shielding strip is coated with a first conductive layer.
  • the touch screen further includes a first substrate and a second substrate disposed on the box.
  • the touch electrode and the first light shielding strip are disposed on the same substrate;
  • the touch electrode and the first light shielding strip are respectively disposed on different substrates.
  • the touch screen when the touch electrode and the first light-shielding strip are respectively disposed on different substrates, the touch screen further includes:
  • a projection of the support on the first substrate or the second substrate is located in the first light shielding strip at the first Within the projected area on a substrate or second substrate.
  • the inside of the support has a conductive silicon ball.
  • the surface of the support is partially coated with a second conductive layer, and the second conductive layer is used for electrically connecting the touch The control electrode and the first light shielding strip corresponding to the touch electrode.
  • the surface of the support is entirely coated with the second conductive layer.
  • the second conductive layer is a transparent conductive layer
  • the second conductive layer is composed of a metal material or a metal oxide.
  • the touch screen further includes a common electrode layer, and the touch electrode is a part of the common electrode layer.
  • the embodiment of the invention further provides a display device, which comprises an in-cell touch panel provided by any embodiment of the invention.
  • an embodiment of the present invention further provides a driving method for an in-cell touch panel provided by an embodiment of the present invention, where the method includes:
  • the present invention provides an in-cell touch panel, a driving method thereof, and a display device.
  • the touch panel includes a plurality of touch electrodes and a light shielding structure, and the light shielding structure includes a plurality of first light shielding strips disposed in parallel along the first direction. a plurality of second light shielding strips disposed in parallel along the second direction, wherein the first direction and the second direction are perpendicular to each other; the first light shielding strip has conductivity, each of the touch electrodes and each of the The first light shielding strips are corresponding to one another and electrically connected.
  • the first light-shielding strip in the light-shielding structure in the touch screen is made to have a guide
  • the electrical structure is used as a signal line connecting the touch electrodes.
  • the first light bar connected to the touch electrode is used to send the touch detection signal for driving the integrated electrode to the touch electrode, and when the human body touches In the touch screen, the signal line is used to feed back the touch sensing signal of the touch electrode after receiving the touch detection signal to the driving integrated circuit, thereby implementing a self-capacitive touch function. Therefore, the in-cell touch panel provided by the embodiment of the present invention multiplexes the first light-shielding strip in the light-shielding structure into a signal line to implement the touch function without affecting the aperture ratio of the touch screen.
  • FIG. 1 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective structural view of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a second in-cell touch panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a third in-cell touch panel according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth in-cell touch panel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a fifth in-cell touch panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a sixth in-cell touch panel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of an in-cell touch panel according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic structural diagram of another in-cell touch panel according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic flowchart diagram of a driving method of an in-cell touch panel according to an embodiment of the present invention.
  • the present invention provides an in-cell touch panel, a driving method thereof, and a display device for implementing touch without affecting a pixel aperture ratio.
  • the in-cell touch panel provided by the embodiment of the invention can be integrated into a TN mode liquid crystal display panel or an advanced super-dimensional field switching (ADS) mode liquid crystal display panel.
  • the ADS mode is a planar electric field wide viewing angle core technology. Its core technical characteristics are described as: forming an electric field generated by the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate electrode layer to form a multi-dimensional electric field, so that the liquid crystal cell All of the aligned liquid crystal molecules between the inner slit electrodes and directly above the electrodes can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • ADS mode switching technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, and no push mura. .
  • ADS technology has improved high-transmission I-ADS technology, high aperture ratio H-ADS and high-resolution S-ADS technology.
  • the in-cell touch panel of the embodiment of the invention includes an in-cell touch panel in which the touch electrodes and the light shielding structure are disposed on the same substrate, and an in-cell touch panel in which the touch electrodes and the light shielding structure are disposed on different substrates.
  • the touch electrodes and the light shielding structure are all located on the array substrate of the touch screen; or the touch electrodes and the light shielding structure are both located on the opposite substrate of the touch screen; or the touch electrodes are located on the array substrate of the touch screen, and the light shielding structure is located on the touch screen.
  • the touch electrodes are located on the opposite substrate of the touch screen, and the light shielding structure is located on the array substrate of the touch screen.
  • the touch electrodes provided in the embodiments of the present invention may be a block structure or a circular or strip-shaped structure, which is not specifically limited herein.
  • Each of the touch electrodes 12 is in one-to-one correspondence with each of the first light-shielding strips 131 in the above embodiment, but the invention is not limited thereto.
  • the number of touch electrodes 12 may be different from the number of first light blocking bars 131.
  • a plurality of first light-shielding strips 131 may be connected to the same touch electrode 12, or a part of the first light-shielding strips 131 may not be connected to any of the touch electrodes 12.
  • the present invention is not limited to the above, as long as the touch electrodes 12 are electrically connected to the light-shielding strips 131, for example, the touch electrodes 12 can be electrically connected to the at least one first light-shielding strip 131 and can be connected to the first light-shielding strips 131 through the first light-shielding strips 131. Drive circuit.
  • each touch electrode corresponds to a plurality of sub-pixel units.
  • FIG. 2 only three sub-pixel units are used for each touch electrode, or six sub-pixel units corresponding to each touch electrode are taken as an example, but not limited to three for each touch electrode or Six sub-pixel units, of course, one touch electrode can correspond to more sub-pixel units, which is not specifically limited herein.
  • the shape and size of each touch electrode are not specifically limited herein.
  • the first light-shielding strip has a conductive structure, and may be made of a material having light shielding property and conductivity when the first light-shielding strip is formed.
  • a first conductive layer may also be applied to the surface of the structure from which the existing first light-shielding strip is formed.
  • the first conductive layer is a transparent conductive layer; or the first conductive layer is composed of a metal material or a metal oxide.
  • the in-cell touch panel provided by the embodiment of the present invention further includes a first substrate and a second substrate disposed on the box, and the touch electrodes and the first light bar are disposed. On the same substrate, or the touch electrodes and the first light shielding strips are respectively disposed on different substrates.
  • first substrate is an opposite substrate, and the second substrate is an array substrate; or the first substrate is an array substrate, and the second substrate is an opposite substrate.
  • the in-cell touch panel of the embodiment of the present invention includes an in-cell touch panel in which the touch electrodes and the first shading are disposed on the same substrate, and the touch panel and the in-cell touch panel disposed on the different substrates.
  • the touch electrodes and the first light shielding are both located on the array substrate of the touch screen; or the touch electrodes and the first light shielding are both located on the opposite substrate of the touch screen; or the touch electrodes are located on the array substrate of the touch screen, the first light blocking Located on the opposite substrate of the touch screen; or, the touch electrodes are located on the opposite substrate of the touch screen, and the first light shielding is located on the array substrate of the touch screen.
  • the aperture ratio of the in-cell touch panel is not further affected.
  • the projection of the support 15 on the first substrate 1 or the second substrate 2 is located on the first substrate 1 or the second substrate 2 on the first light-shielding strip 131. Within the projected area.
  • the support in order to enable the support provided by the embodiment of the present invention to function as a first light-shielding strip and a touch electrode, the support is electrically conductive.
  • the inside of the support 15 has a conductive silicon ball 16.
  • the support in order to enable the support provided by the embodiment of the present invention to function as a first light-shielding strip and a touch electrode, the support is electrically conductive.
  • the surface of the support 15 is partially coated.
  • the second conductive layer 17 is electrically connected to the touch electrode 12 and the first light-shielding strip 131 corresponding to the touch electrode.
  • the surface of the support portion is coated with the second conductive layer, and may include a first surface of the support contacting the first substrate and a partial surface of the second surface not contacting the first substrate and the second substrate.
  • which surface of the support is coated with the second conductive layer is not specifically limited herein.
  • the second conductive layer coated on the surface of the support is electrically connected to the first light-shielding strip and the touch electrode.
  • the support in order to enable the support provided by the embodiment of the present invention to function as a connection signal line and a touch electrode, the support is electrically conductive.
  • the surface of the support 15 is entirely coated with the second conductive layer 17. Thereby the support acts as a good connection.
  • the second conductive layer provided by the embodiment of the present invention may be a transparent conductive layer; or the second conductive layer is composed of a metal material or a metal oxide.
  • the transparent conductive material may be indium tin oxide ITO or indium zinc oxide IZO.
  • the touch screen further includes a common electrode layer, and the touch electrode is a part of the common electrode layer. Therefore, in the embodiment of the present invention, the common electrode is multiplexed into a touch electrode, and an insulating layer is formed between the common electrode and the pixel electrode, so that the touch electrode does not interfere with the pixel electrode in the in-cell touch panel. .
  • the in-cell touch panel provided by the embodiment of the present invention is described in detail below.
  • an in-cell touch panel provided by an embodiment of the present invention includes an array substrate 21 and a counter substrate 22 disposed on the array.
  • the array substrate 21 is provided with a common electrode layer 23, and the opposite substrate 22 is provided with a light shielding structure.
  • the light shielding structure includes a first light shielding strip 131 extending in a first direction, and a second light shielding strip extending in a second direction. Only the structure of the first light shielding strip is illustrated in FIG.
  • the first conductive layer 24 is coated so that the first light-shielding strip has conductivity; the common electrode layer is multiplexed into a plurality of touch electrodes 12 arranged in an array, wherein the first light-shielding strip having conductivity is used as the touch electrode a signal line, each touch electrode 12 is in one-to-one correspondence with the first light-shielding strip 131 and is electrically connected;
  • the surface of the support is coated with a second conductive layer 17 on the support 15 between the array substrate 21 and the opposite substrate 22, so that the support has conductivity for connecting the touch electrode 12 and the first light-shielding strip 131. Specifically, as shown in FIG.
  • the array substrate 21 further includes a substrate substrate 210, a gate electrode 211 on the substrate substrate 210, a gate insulating layer 212, an active layer 213, a source electrode 214, and a drain electrode 215. And a pixel electrode 216 disposed in the same layer as the source 214 and the drain 215, and an insulating layer 217 above the source 214 and the drain 215, wherein the common electrode layer is located above the insulating layer 217.
  • the support 15 is located above the structure of the thin film transistor of the array substrate 21.
  • the opposite substrate 22 sequentially includes a color filter substrate 221, a first light-shielding strip 131 having conductivity, a colored resin layer 222 disposed in the same layer as the first light-shielding strip, and a first light-shielding strip 131 and a colored resin layer 222.
  • the projection of the support on the array substrate or the opposite substrate is located in a region where the first light-shielding strip 131 is projected on the array substrate or the opposite substrate.
  • the first light-shielding strip in Embodiment 1 may be a black matrix in the prior art as long as the first conductive layer is coated on the surface of the black matrix.
  • the black matrix of the prior art is used as the first light-shielding strip
  • the surface of the first light-shielding strip may be selectively coated with the first conductive layer. For example, if each touch electrode corresponds to a plurality of black matrices, One of the plurality of black matrices is coated with the first conductive layer to become a first light-shielding strip having conductivity.
  • an in-cell touch panel provided by the present invention, as shown in FIG. 9, includes an array substrate 21 and a counter substrate 22 disposed on the array, and a common electrode layer 23 is disposed on the array substrate 21, and the opposite substrate 22 is disposed on the substrate
  • the light-shielding structure includes a first light-shielding strip 131 extending in a first direction and a second light-shielding strip extending in a second direction, and only the structure of the first light-shielding strip is illustrated in FIG.
  • the strip is made of a material having electrical conductivity and light shielding property, so that the first light shielding strip has conductivity; the common electrode layer is divided into a plurality of touch electrodes 12 arranged in an array, wherein the first conductive layer is electrically conductive.
  • the light-shielding strip serves as a signal line of the touch electrode, and each of the touch electrodes 12 is electrically connected to the first light-shielding strip 131; and further includes a support 15 between the array substrate 21 and the opposite substrate 22, the support The conductive silicon ball is included to make the support electrically conductive for connecting the touch electrode 12 and the first light shielding strip 131. Specifically, as shown in FIG.
  • the array substrate 21 is further The substrate substrate 210, the gate electrode 211 on the base substrate 210, the gate insulating layer 212, the active layer 213, the source electrode 214, the drain electrode 215, and the pixels disposed in the same layer as the source electrode 214 and the drain electrode 215 are sequentially included.
  • the electrode 216 is located on the insulating layer 217 above the source 214 and the drain 215, wherein the common electrode layer is located above the insulating layer 217.
  • the support 15 is located above the structure of the thin film transistor of the array substrate 21.
  • the opposite substrate 22 sequentially includes a color filter substrate 221, a first light-shielding strip 131 having conductivity, a colored resin layer 222 disposed in the same layer as the first light-shielding strip, and a first light-shielding strip 131 and a colored resin layer 222.
  • the projection of the support on the array substrate or the opposite substrate is located in a region where the first light-shielding strip 131 is projected on the array substrate or the opposite substrate.
  • S901 Applying a touch detection signal to the touch electrodes electrically connected to the first light-shielding strip in the touch screen by the first light-shielding strip during the touch-time period of the touch screen;
  • S903 Determine, by using the difference between the touch detection signals and the touch sensing signals and the positions of the touch electrodes connected to the first light shielding strips, an area where touch is generated in the touch screen.
  • the driving method of the in-cell touch panel provided by the embodiment of the present invention is to implement the touch function on the basis of the in-cell touch screen provided by the embodiment of the present invention. Specifically, when the touch electrode is used as a part of the common electrode, each touch electrode is used to time-load the common electrode signal and the touch detection signal during the display time of one frame.
  • an embodiment of the present invention further provides a display device, including
  • the above-mentioned in-cell touch panel provided by the embodiment of the present invention may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
  • the present invention provides an in-cell touch panel, a driving method thereof, and a display device.
  • the touch panel includes a plurality of touch electrodes and a light shielding structure, and the light shielding structure includes a plurality of first light shielding strips disposed in parallel along the first direction. a plurality of second light shielding strips disposed in parallel along the second direction, wherein the first direction and the second direction are perpendicular to each other; the first light shielding strip has conductivity, each of the touch electrodes and each of the The first light shielding strips are corresponding to one another and electrically connected.
  • the first light-shielding strip in the light-shielding structure in the touch screen is made into a conductive structure, and is used as a signal line connecting the touch electrodes.
  • the first light-shielding strip connected to the touch electrode is used for
  • the touch detection signal for driving the integrated electrode is sent to the touch electrode, and when the human body touches the touch screen, the signal line is used to feed back the touch sensing signal of the touch electrode after receiving the touch detection signal to the driver.
  • the in-cell touch panel provided by the embodiment of the present invention multiplexes the first light-shielding strip in the light-shielding structure into a signal line to implement the touch function without affecting the aperture ratio of the touch screen.

Abstract

一种内嵌式触摸屏(11)及其驱动方法、显示装置,用以在不影响像素开口率的情况下实现触控。内嵌式触摸屏(11),包括多个触控电极(12)和遮光结构(13),遮光结构(13)包括多条沿第一方向平行设置的第一遮光条(131)和多条沿第二方向平行设置的第二遮光条(132),第一方向和第二方向相互垂直;第一遮光条(131)具有导电性,触控电极(12)分别电连接至第一遮光条(131)。

Description

一种内嵌式触摸屏及其驱动方法、显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种内嵌式触摸屏及其驱动方法、显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel)、覆盖表面式触摸屏(On Cell Touch Panel)、以及内嵌式触摸屏(In Cell Touch Panel)。其中,外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏,外挂式触摸屏存在制作成本较高、光透过率较低、模组较厚等缺点。而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家青睐。
目前,现有的内嵌(In cell)式触摸屏是利用互电容或自电容的原理实现检测手指触摸位置。其中,利用自电容的原理可以在触摸屏中设置多个同层设置且相互绝缘的自电容的触控电极,当人体未触碰屏幕时,各触控电极所承受的电容为一固定值,当人体触碰屏幕时,对应的触控电极所承受的电容为固定值叠加人体电容,触控侦测芯片在触控时间段通过检测各触控电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中的投射电容,由人体碰触屏幕所引起的触控变化量会大于利用互电容原理制作出的触摸屏,因此相对于互电容的触摸屏能有效提高触控的信噪比,从而提高触控感应的准确性。
发明内容
本发明提供一种内嵌式触摸屏及其驱动方法、显示装置,用以在不影响像素开口率的情况下实现触控。
本发明实施例提供了一种内嵌式触摸屏,包括多个触控电极和遮光结构,所述遮光结构包括多条沿第一方向平行设置的第一遮光条和多条沿第二方向平行设置的第二遮光条,所述第一方向和所述第二方向相互垂直;
所述第一遮光条具有导电性,所述触控电极分别电连接至所述遮光条。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述遮光结构形成在所述触摸屏的亚像素之间以阻挡外部光和/或来自邻近的亚像素的光。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述第一遮光条和所述第二遮光条交叉设置的区域组成亚像素单元;
所述每一触控电极对应多个所述亚像素单元。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述第一遮光条的表面涂覆有第一导电层。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述触摸屏还包括对盒设置的第一基板和第二基板,
所述触控电极和所述第一遮光条设置在同一基板上;
或者,所述触控电极和所述第一遮光条分别设置在不同基板上。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述触控电极和所述第一遮光条分别设置在不同基板上时,所述触摸屏还包括:
设置在所述第一遮光条和触控电极之间的具有导电性的支撑物;每个所述触控电极通过所述支撑物与该触控电极所对应的第一遮光条电性相连。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述支撑物在所述第一基板或者第二基板上的投影位于所述第一遮光条在所述第一基板或第二基板上的投影的区域内。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述支撑物的内部具有导电硅球。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述支撑物表面部分涂覆有第二导电层,所述第二导电层用于电性连接所述触控电极和与该触控电极所对应的第一遮光条。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述支撑物表面全部涂覆有所述第二导电层。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述第二导电层为透明导电层;或者,
所述第二导电层由金属材料或金属氧化物组成。
在一种可能的实施方式中,本发明实施例提供的上述内嵌式触摸屏中,所述触摸屏还包括公共电极层,且所述触控电极为所述公共电极层的一部分。
相应地,本发明实施例还提供了一种显示装置,包括本发明实施例提供的任一种的内嵌式触摸屏。
相应地,本发明实施例还提供了一种本发明实施例提供的任一种内嵌式触摸屏的驱动方法,该方法包括:
在触摸屏的触控时间段内,通过所述第一遮光条分别对触摸屏中与该第一遮光条电性相连的触控电极施加触控侦测信号,通过所述第一遮光条分别接收所述触控侦测信号经过所述触控电极后反馈的触控感测信号,通过所述各触控侦测信号和触控感测信号的差异以及各第一遮光条连接的触控电极的位置,确定在所述触摸屏中发生触控的区域。
本发明有益效果如下:
本发明提供的一种内嵌式触摸屏及其驱动方法、显示装置,所述触摸屏包括多个触控电极和遮光结构,所述遮光结构包括多条沿第一方向平行设置的第一遮光条和多条沿第二方向平行设置的第二遮光条,所述第一方向和所述第二方向相互垂直;所述第一遮光条具有导电性,每一所述触控电极与每一所述第一遮光条一一对应且电性相连。本发明中通过将触摸屏中的遮光结构中的第一遮光条做成具有导 电性的结构,并作为连接触控电极的信号线,具体地,与触控电极连接的第一遮光条用于将驱动集成电极的触控侦测信号发送给触控电极,且当人体触摸该触摸屏时,信号线用于将触控电极在接收到该触控侦测信号后的触控感测信号反馈给驱动集成电路,从而实现自容式的触控功能。因此本发明实施例提供的内嵌式触摸屏,将遮光结构中的第一遮光条复用为信号线实现触控功能,同时不会影响触摸屏的开口率。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的一种内嵌式触摸屏的结构示意图;
图2为本发明实施例提供的一种内嵌式触摸屏的立体结构示意图;
图3为本发明实施例提供的第二种内嵌式触摸屏的结构示意图;
图4为本发明实施例提供的第三种内嵌式触摸屏的结构示意图;
图5为本发明实施例提供的第四种内嵌式触摸屏的结构示意图;
图6为本发明实施例提供的第五种内嵌式触摸屏的结构示意图;
图7为本发明实施例提供的第六种内嵌式触摸屏的结构示意图;
图8为本发明实施例1提供的一种内嵌式触摸屏的结构示意图;
图9为本发明实施例2提供的另一种内嵌式触摸屏的结构示意图;
图10为本发明实施例提供的一种内嵌式触摸屏的驱动方法的流程示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明提供一种内嵌式触摸屏及其驱动方法、显示装置,用以在不影响像素开口率的情况下实现触控。
下面结合附图,对本发明实施例提供的内嵌式触摸屏及其驱动方法、显示装置的具体实施方式进行详细地说明。
附图中各层膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本发明实施例提供的内嵌式触摸屏,可以集成在TN模式的液晶显示面板,或高级超维场转换(ADS,Advanced Super Dimension Switch)模式的液晶显示面板。ADS模式是平面电场宽视角核心技术,其核心技术特性描述为:通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都能够产生旋转,从而提高了液晶工作效率并增大了透光效率。ADS模式的开关技术可以提高TFT-LCD产品的画面品质,具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差、无挤压水波纹(push Mura)等优点。针对不同应用,ADS技术的改进技术有高透过率I-ADS技术、高开口率H-ADS和高分辨率S-ADS技术等。
本发明实施例中的内嵌式触摸屏,包括触控电极与遮光结构均设置在同一基板的内嵌式触摸屏,也包括触控电极与遮光结构设置在不同基板上的内嵌式触摸屏。例如,触控电极和遮光结构均位于触摸屏的阵列基板上;或者,触控电极和遮光结构均位于触摸屏的对向基板上;或者,触控电极位于触摸屏的阵列基板上,遮光结构位于触摸屏的对向基板上;或者,触控电极位于触摸屏的对向基板上,遮光结构位于触摸屏的阵列基板上。
其中,本发明实施例提供的触控电极可以为块状结构,或者圆形、条形等结构,在此不做具体限定。
本发明实施例提供的一种内嵌式触摸屏,参见图1,内嵌式触摸屏11包括多个触控电极12和遮光结构13,遮光结构13包括多条沿 第一方向平行设置的第一遮光条131和多条沿第二方向平行设置的第二遮光条132,第一方向和第二方向相互垂直;第一遮光条131具有导电性,每一触控电极12与每一第一遮光条131一一对应且电性相连。
上述实施例中示出了每一触控电极12与每一第一遮光条131一一对应,然而本发明不限于此。在其它的实施例中,触控电极12的数量可以与第一遮光条131的数量不同。在这种情况下,可以存在多个第一遮光条131被连接到同一个触控电极12上,或者其中一部分第一遮光条131未连接至任何触控电极12。本发明对此不作限制,只要触控电极12分别电连接至遮光条131即可,例如,触控电极12可以与至少一条第一遮光条131电性连接并且能够通过第一遮光条131连接至驱动电路。
需要说明的是,第一方向可以为横向,第二方向为纵向;或者,第一方向为纵向,第二方向为横向。在此不做具体限定。本发明实施例中的遮光结构包括阵列基板或者对向基板中的黑矩阵的图形。然而本发明不限于此,例如,在本发明的实施例中,遮光结构可以是形成在内嵌式触摸屏的亚像素之间区域的用于遮挡外部光和/或邻近的亚像素发出的光的结构或者能够起到类似作用的结构。其中,图1中仅以横向方向的第一遮光条设计为具有导电性,但不限于仅以横向方向的第一遮光结构设计为具有导电性,也可以纵向排布方遮光结构作为第一遮光条,并设计为具有导电性。
具体地,为了进一步解释本发明实施例提供的内嵌式触摸屏的结构,本发明实施例还提供一种内嵌式触控屏的立体结构图,如图2所示,触控电极12的形状为块状电极,但不限于仅为块状,第一遮光条131和第二遮光条132为位于同层设置的遮光结构,第一遮光条131与对应的触控电极12通过连接结构3进行电性相连,其中连接结构可以通过位于第一遮光条131和触控电极之间的层结构中设置过孔进行连接,也可以采用其他结构进行连接,如采用支撑物等。在此不做具体限定。
本发明提供的一种内嵌式触摸屏包括多个触控电极和遮光结 构,遮光结构包括多条沿第一方向平行设置的第一遮光条和多条沿第二方向平行设置的第二遮光条,第一方向和所述第二方向相互垂直;第一遮光条具有导电性,每一触控电极与每一第一遮光条一一对应且电性相连。本发明中通过将触摸屏中的遮光结构中的第一遮光条做成具有导电性的结构,并作为连接触控电极的信号线,具体地,与触控电极连接的第一遮光条用于将驱动集成电极的触控侦测信号发送给触控电极,且当人体触摸该触摸屏时,信号线用于将触控电极在接收到该触控侦测信号后的触控感测信号反馈给驱动集成电路,从而实现自容式的触控功能。因此本发明实施例提供的内嵌式触摸屏,将遮光结构中的第一遮光条复用为信号线实现触控功能,同时不会影响触摸屏的开口率。
在具体实施例中,本发明实施例提供的上述内嵌式触摸屏中,参见图3,第一遮光条131和第二遮光条132交叉设置的区域组成亚像素单元14,每一触控电极对应多个亚像素单元14。具体地,亚像素单元作为显示的最小单元,为了提高显示的分辨率,亚像素单元的面积越来越小,用于实现触控的触控电极用于实现触控,因此,每一触控电极的面积可以适当的做大,同时减少与触控电极连接的信号线的个数。较佳地,每一触控电极对应多个亚像素单元。图2中仅以每一触控电极对应三个亚像素单元,或者每一触控电极对应六个亚像素单元为例画出的结构示意图,但不限于每个触控电极仅对应三个或者六个亚像素单元,当然一个触控电极可以对应更多的亚像素单元,在此不做具体限定。每一触控电极的形状以及大小在此也不做具体限定。
在具体实施例中,本发明实施例中提供的上述内嵌式触摸屏中,第一遮光条作为具有导电性的结构,可以在制作第一遮光条时采用具有遮光性和具有导电性的材料进行制作,例如金属材料,也可以在制作现有的第一遮光条的结构表面涂覆第一导电层。其中,第一导电层为透明导电层;或者,第一导电层由金属材料或金属氧化物组成。
在具体实施例中,本发明实施例提供的上述内嵌式触摸屏中,还包括对盒设置的第一基板和第二基板,触控电极和第一遮光条设置 在同一基板上,或者触控电极和第一遮光条分别设置在不同基板上。
需要说明的是,第一基板为对向基板,第二基板为阵列基板;或者,第一基板为阵列基板,第二基板为对向基板。
本发明实施例中的内嵌式触摸屏,包括触控电极与第一遮光均设置在同一基板的内嵌式触摸屏,也包括触控电极与第一遮光设置在不同基板上的内嵌式触摸屏。例如,触控电极和第一遮光均位于触摸屏的阵列基板上;或者,触控电极和第一遮光均位于触摸屏的对向基板上;或者,触控电极位于触摸屏的阵列基板上,第一遮光位于触摸屏的对向基板上;或者,触控电极位于触摸屏的对向基板上,第一遮光位于触摸屏的阵列基板上。
在具体实施例中,本发明实施例提供的上述内嵌式触摸屏中,触控电极和第一遮光条分别设置在不同基板上时,参见图4,触控电极12位于第一基板1,第一遮光条131位于第二基板2上,触摸屏还包括:设置在第一遮光条131和触控电极12之间的具有导电性的支撑物15;每个触控电极12通过支撑物15与该触控电极所对应的第一遮光条131电性相连。其中,图3中仅以触控电极位于第一基板,第一遮光条位于第二基板为例进行画图的,第一基板可以为对向基板,第二基板为阵列基板,或者第一基板为阵列基板,第二基板为对向基板。
在具体实施例中,为了进一步不影响内嵌式触摸屏的开口率。本发明实施例提供的上述内嵌式触摸屏中,参见图4,支撑物15在第一基板1或者第二基板2上的投影位于第一遮光条131在第一基板1或第二基板2上的投影的区域内。
在具体实施例中,为了使得本发明实施例提供的支撑物起到连接第一遮光条和触控电极的作用,支撑物是具有导电性的。本发明实施例提供的上述内嵌式触摸屏中,参见图5,支撑物15的内部具有导电硅球16。
在具体实施例中,为了使得本发明实施例提供的支撑物起到连接第一遮光条和触控电极的作用,支撑物是具有导电性的。本发明实施例提供的上述内嵌式触摸屏中,参见图6,支撑物15表面部分涂 覆有第二导电层17,第二导电层17用于电性连接触控电极12和与该触控电极所对应的第一遮光条131。
需要说明的是,支撑物部分表面涂覆第二导电层,可以包括支撑物与第一基板接触的第一表面、以及不与第一基板和第二基板接触的第二表面的部分区域涂覆有第二导电层即可。具体地,将支撑物的哪个表面涂覆有第二导电层,在此不做具体限定。只要使得支撑物表面涂覆的第二导电层电性连接了第一遮光条和触控电极即可。
在具体实施例中,进一步地,为了使得本发明实施例提供的支撑物起到连接信号线和触控电极的作用,支撑物是具有导电性的。本发明实施例提供的上述内嵌式触摸屏中,参见图7,支撑物15表面全部涂覆有第二导电层17。从而使得支撑物起到很好的连接作用。
在具体实施例中,本发明实施例提供的第二导电层可以为透明导电层;或者,第二导电层由金属材料或金属氧化物组成。其中,透明导电材料可以为铟锡氧化物ITO或铟锌氧化物IZO。
在具体实施例中,为了进一步简化触摸屏的结构,本发明实施例提供的上述内嵌式触摸屏中,触摸屏还包括公共电极层,且触控电极为公共电极层的一部分。因此,本发明实施例中将公共电极分块复用为触控电极,由于公共电极与像素电极之间存在绝缘层,使得触控电极不会与内嵌式触摸屏中的像素电极产生信号的干扰。
具体地,当第一基板为阵列基板,第二基板为对向基板时,下面详细描述本发明实施例提供的内嵌式触摸屏。
实施例1
参见图8,本发明实施例提供的内嵌式触摸屏,包括,对盒设置的阵列基板21和对向基板22,阵列基板21上设置有公共电极层23,对向基板22上设置有遮光结构,其中遮光结构包括沿第一方向延伸的第一遮光条131,和沿第二方向延伸的第二遮光条,图8中仅画出了第一遮光条的结构,且第一遮光条表面涂覆第一导电层24,使得第一遮光条具有导电性;公共电极层分块复用为阵列排布的多块触控电极12,其中,具有导电性的第一遮光条作为触控电极的信号线,每一触控电极12与第一遮光条131一一对应且电性相连;还包括位 于阵列基板21和对向基板22之间的支撑物15,支撑物的表面涂覆有第二导电层17,使得支撑物具有导电性,用于连接触控电极12和第一遮光条131。具体地,如图8所示,阵列基板21上还依次包括衬底基板210,衬底基板210上的栅极211、栅极绝缘层212、有源层213、源极214、漏极215,以及与源极214和漏极215同层设置的像素电极216,位于源极214和漏极215上方的绝缘层217,其中公共电极层位于绝缘层217的上方。参见图8,支撑物15位于阵列基板21的薄膜晶体管的结构的上方。对向基板22依次包括彩膜衬底基板221、具有导电性的第一遮光条131、与第一遮光条同层设置的有色树脂层222,以及覆盖第一遮光条131和有色树脂层222的有机覆盖层223。其中,支撑物在阵列基板或者对向基板上的投影位于第一遮光条131在阵列基板或者对向基板的投影的区域内。
需要说明的是,实施例1中的第一遮光条可以为现有技术中的黑矩阵,只要在黑矩阵的表面涂覆第一导电层即可。采用现有技术中的黑矩阵作为第一遮光条时,可以选择性地,将第一遮光条的表面涂覆第一导电层,例如若每一触控电极对应多条黑矩阵时,可以将多条黑矩阵中的一条表面涂覆第一导电层,成为具有导电性的第一遮光条。
实施例2
具体地,本发明提供的一种内嵌式触摸屏,参见图9,包括,对盒设置的阵列基板21和对向基板22,阵列基板21上设置有公共电极层23,对向基板22上设置有遮光结构,其中遮光结构包括沿第一方向延伸的第一遮光条131,和沿第二方向延伸的第二遮光条,图9中仅画出了第一遮光条的结构,且第一遮光条是具有导电性和遮光性的材料制作而成,使得第一遮光条具有导电性;公共电极层分块复用为阵列排布的多块触控电极12,其中,具有导电性的第一遮光条作为触控电极的信号线,每一触控电极12与第一遮光条131一一对应且电性相连;还包括位于阵列基板21和对向基板22之间的支撑物15,支撑物中包括导电硅球,使得支撑物具有导电性,用于连接触控电极12和第一遮光条131。具体地,如图9所示,阵列基板21上还 依次包括衬底基板210,衬底基板210上的栅极211、栅极绝缘层212、有源层213、源极214、漏极215,以及与源极214和漏极215同层设置的像素电极216,位于源极214和漏极215上方的绝缘层217,其中公共电极层位于绝缘层217的上方。参见图9,支撑物15位于阵列基板21的薄膜晶体管的结构的上方。对向基板22依次包括彩膜衬底基板221、具有导电性的第一遮光条131、与第一遮光条同层设置的有色树脂层222,以及覆盖第一遮光条131和有色树脂层222的有机覆盖层223。其中,支撑物在阵列基板或者对向基板上的投影位于第一遮光条131在阵列基板或者对向基板的投影的区域内。
另外,针对本发明实施例2中的支撑物的设置可以采用与实施例1中的支撑物相同的方式和结构进行设计。重复之处不再赘述。
需要说明的是,当触控电极和第一遮光条位于同一基板上时。例如,触控电极和第一遮光条均设置在阵列基板上,或者,触控电极和第一遮光条均设置在对向基板上。将第一遮光条与触控电极电性相连,可以采用设置过孔等方式进行电性连接,具体地,本发明实施例不做具体限定。
基于同一发明构思,本发明实施例还提供了一种本发明实施例提供的内嵌式触摸屏的驱动方法,参见图10,该方法包括:
S901、在触摸屏的触控时间段内,通过第一遮光条分别对触摸屏中与该第一遮光条电性相连的触控电极施加触控侦测信号;
S902、通过所述第一遮光条分别接收所述触控侦测信号经过所述触控电极后反馈的触控感测信号;
S903、通过所述各触控侦测信号和触控感测信号的差异以及各第一遮光条连接的触控电极的位置,确定在所述触摸屏中发生触控的区域。
需要说明的是,本发明实施例提供的内嵌式触摸屏的驱动方法,是在本发明实施例提供的内嵌式触摸屏的基础上实现触控功能。具体地,当触控电极作为公共电极的一部分时,在一帧画面的显示时间内,各触控电极用于分时地加载公共电极信号和触控侦测信号。
基于同一发明构思,本发明实施例还提供了一种显示装置,包 括本发明实施例提供的上述内嵌式触摸屏,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
本发明提供的一种内嵌式触摸屏及其驱动方法、显示装置,所述触摸屏包括多个触控电极和遮光结构,所述遮光结构包括多条沿第一方向平行设置的第一遮光条和多条沿第二方向平行设置的第二遮光条,所述第一方向和所述第二方向相互垂直;所述第一遮光条具有导电性,每一所述触控电极与每一所述第一遮光条一一对应且电性相连。本发明中通过将触摸屏中的遮光结构中的第一遮光条做成具有导电性的结构,并作为连接触控电极的信号线,具体地,与触控电极连接的第一遮光条用于将驱动集成电极的触控侦测信号发送给触控电极,且当人体触摸该触摸屏时,信号线用于将触控电极在接收到该触控侦测信号后的触控感测信号反馈给驱动集成电路,从而实现自容式的触控功能。因此本发明实施例提供的内嵌式触摸屏,将遮光结构中的第一遮光条复用为信号线实现触控功能,同时不会影响触摸屏的开口率。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种内嵌式触摸屏,包括多个触控电极和遮光结构,其中,所述遮光结构包括多条沿第一方向平行设置的第一遮光条和多条沿第二方向平行设置的第二遮光条,所述第一方向和所述第二方向相互垂直;
    所述第一遮光条具有导电性,所述触控电极分别电连接至所述遮光条。
  2. 根据权利要求1所述的触摸屏,其中,所述遮光结构形成在所述触摸屏的亚像素之间以阻挡外部光和/或来自邻近的亚像素的光。
  3. 根据权利要求1所述的触摸屏,其中,所述第一遮光条和所述第二遮光条交叉设置的区域组成亚像素单元;
    所述每一触控电极对应多个所述亚像素单元。
  4. 根据权利要求1所述的触摸屏,其中,所述第一遮光条的表面涂覆有第一导电层。
  5. 根据权利要求1所述的触摸屏,其中,所述触摸屏还包括对盒设置的第一基板和第二基板,
    所述触控电极和所述第一遮光条设置在同一基板上;
    或者,所述触控电极和所述第一遮光条分别设置在不同基板上。
  6. 根据权利要求5所述的触摸屏,其中,
    所述触控电极和所述第一遮光条分别设置在不同基板上时,所述触摸屏还包括:
    设置在所述第一遮光条和触控电极之间的具有导电性的支撑物;每个所述触控电极通过所述支撑物与该触控电极所对应的第一遮光条电性相连。
  7. 根据权利要求6所述的触摸屏,其中,所述支撑物在所述第一基板或者第二基板上的投影位于所述第一遮光条在所述第一基板或第二基板上的投影的区域内。
  8. 根据权利要求6或7所述的触摸屏,其中,所述支撑物的内部具有导电硅球。
  9. 根据权利要求6或7所述的触摸屏,其中,所述支撑物表面部分涂覆有第二导电层,所述第二导电层用于电性连接所述触控电极和与该触控电极所对应的第一遮光条。
  10. 根据权利要求9所述的触摸屏,其中,所述支撑物表面全部涂覆有所述第二导电层。
  11. 根据权利要求9或10所述的触摸屏,其中,所述第二导电层为透明导电层;或者,
    所述第二导电层由金属材料或金属氧化物组成。
  12. 根据权利要求1、5或6任一权项所述的触摸屏,其中,所述触摸屏还包括公共电极层,且所述触控电极为所述公共电极层的一部分。
  13. 一种显示装置,其中,包括权利要求1-12任一权项所述的内嵌式触摸屏。
  14. 一种权利要求1-12任一权项所述的内嵌式触摸屏的驱动方法,其中,该方法包括:
    在触摸屏的触控时间段内,通过所述第一遮光条分别对触摸屏中与该第一遮光条电性相连的触控电极施加触控侦测信号,通过所述第一遮光条分别接收所述触控侦测信号经过所述触控电极后反馈的触控感测信号,通过所述各触控侦测信号和触控感测信号的差异以及各第一遮光条连接的触控电极的位置,确定在所述触摸屏中发生触控的区域。
PCT/CN2017/079962 2016-05-13 2017-04-10 一种内嵌式触摸屏及其驱动方法、显示装置 WO2017193745A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/561,559 US10671224B2 (en) 2016-05-13 2017-04-10 Cell touch screen, method for driving the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610320032.9A CN105786263B (zh) 2016-05-13 2016-05-13 一种内嵌式触摸屏及其驱动方法、显示装置
CN201610320032.9 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017193745A1 true WO2017193745A1 (zh) 2017-11-16

Family

ID=56379937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079962 WO2017193745A1 (zh) 2016-05-13 2017-04-10 一种内嵌式触摸屏及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US10671224B2 (zh)
CN (1) CN105786263B (zh)
WO (1) WO2017193745A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105786263B (zh) 2016-05-13 2018-09-11 京东方科技集团股份有限公司 一种内嵌式触摸屏及其驱动方法、显示装置
CN106597597B (zh) * 2016-12-28 2023-09-12 京东方科技集团股份有限公司 一种线偏光片及显示装置
CN107144997A (zh) * 2017-06-28 2017-09-08 武汉华星光电技术有限公司 内嵌式触控液晶显示装置
CN107657231B (zh) * 2017-09-27 2020-08-11 京东方科技集团股份有限公司 指纹识别传感器及其制作方法和显示装置
CN107741662B (zh) * 2017-10-31 2020-10-23 武汉华星光电技术有限公司 内嵌式触摸屏以及显示装置
US10488694B2 (en) 2017-10-31 2019-11-26 Wuhan China Star Optoelectronics Technology Co., Ltd. In-cell touch panel and display device
CN110164951B (zh) * 2019-06-29 2021-08-06 上海天马有机发光显示技术有限公司 一种显示面板及显示装置
CN111722749A (zh) * 2020-04-29 2020-09-29 信利(惠州)智能显示有限公司 触控有机发光显示面板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911707Y (zh) * 2006-03-24 2007-06-13 比亚迪股份有限公司 彩色滤光片
US20120120005A1 (en) * 2010-11-12 2012-05-17 Samsung Electronics Co. Ltd. Touch screen panel display
CN203299763U (zh) * 2013-05-30 2013-11-20 京东方科技集团股份有限公司 一种触摸面板及显示装置
JP2014071734A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd カラーフィルタ一体型タッチパネルセンサ用基板、カラーフィルタ一体型タッチパネルセンサおよびカラーフィルタ一体型タッチパネルモジュール
CN203588224U (zh) * 2013-09-25 2014-05-07 位元奈米科技股份有限公司 触控感应装置
CN104020908A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置
CN105786263A (zh) * 2016-05-13 2016-07-20 京东方科技集团股份有限公司 一种内嵌式触摸屏及其驱动方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825787B (zh) * 2009-03-04 2013-06-12 北京京东方光电科技有限公司 触摸显示屏及其制造方法
KR101793073B1 (ko) * 2010-12-06 2017-11-03 삼성디스플레이 주식회사 터치 스크린 패널
CN103268036B (zh) * 2012-08-17 2016-03-30 上海天马微电子有限公司 一种内嵌式触摸屏彩膜基板及内嵌式触摸屏
CN103488341A (zh) * 2013-09-23 2014-01-01 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN103941447B (zh) * 2013-11-25 2017-01-18 上海天马微电子有限公司 彩膜基板及其制造方法、触摸显示面板和触摸显示装置
CN103926736B (zh) * 2013-12-23 2017-06-06 上海天马微电子有限公司 一种彩膜基板以及触摸屏显示装置
US9671886B2 (en) * 2014-03-13 2017-06-06 Lg Display Co., Ltd. Touch-sensitive display device
CN104635372B (zh) * 2015-02-06 2017-02-22 京东方科技集团股份有限公司 彩膜基板及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911707Y (zh) * 2006-03-24 2007-06-13 比亚迪股份有限公司 彩色滤光片
US20120120005A1 (en) * 2010-11-12 2012-05-17 Samsung Electronics Co. Ltd. Touch screen panel display
JP2014071734A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd カラーフィルタ一体型タッチパネルセンサ用基板、カラーフィルタ一体型タッチパネルセンサおよびカラーフィルタ一体型タッチパネルモジュール
CN203299763U (zh) * 2013-05-30 2013-11-20 京东方科技集团股份有限公司 一种触摸面板及显示装置
CN203588224U (zh) * 2013-09-25 2014-05-07 位元奈米科技股份有限公司 触控感应装置
CN104020908A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置
CN105786263A (zh) * 2016-05-13 2016-07-20 京东方科技集团股份有限公司 一种内嵌式触摸屏及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20180196545A1 (en) 2018-07-12
US10671224B2 (en) 2020-06-02
CN105786263A (zh) 2016-07-20
CN105786263B (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2017193745A1 (zh) 一种内嵌式触摸屏及其驱动方法、显示装置
US9665222B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9529482B2 (en) Capacitive in-cell touch screen and display device
JP5924452B2 (ja) 液晶表示装置
US9939938B2 (en) Display panel with touch detecting and display device
US9772723B2 (en) Capacitive in-cell touch panel and display device
US10198130B2 (en) In-cell touch panel and display device
US20180275809A1 (en) In-cell touch screen and display device
US9760218B2 (en) Capacitive touch panel and display device
US10261617B2 (en) In-cell touch panel and display device
KR101546049B1 (ko) 터치 디스플레이 패널 및 그 구동 방법
US20150029148A1 (en) Capacitive in-cell touch screen panel and display device
WO2016206245A1 (zh) 内嵌式触摸屏及显示装置
KR200479143Y1 (ko) 감지용 하부기판 상에 금속층을 가지는 인-셀 터치 디스플레이 패널 구조
WO2017008450A1 (zh) 平面转换模式阵列基板及其制作方法、显示器件
US10191592B2 (en) Touch-control display panel and display device, and driving method of display panel
JP2019101095A (ja) 液晶パネル
US20180224966A1 (en) Touch Sensor
US20160377898A1 (en) Ips in-cell touch display panel and manufacturing method thereof
WO2016078172A1 (zh) 电容式内嵌触控屏及显示装置
JPWO2016208660A1 (ja) タッチパネル、及び表示装置
US20180373091A1 (en) Display panel
US10768753B2 (en) Touch display panel, display device and touch panel
TW201633092A (zh) 位置輸入裝置及具有位置輸入功能之顯示裝置
US10203808B2 (en) Position input device and display device having position input function

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795363

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 150319)

122 Ep: pct application non-entry in european phase

Ref document number: 17795363

Country of ref document: EP

Kind code of ref document: A1