WO2016090742A1 - 一种含氟天然碱去氟生产重质纯碱的方法 - Google Patents

一种含氟天然碱去氟生产重质纯碱的方法 Download PDF

Info

Publication number
WO2016090742A1
WO2016090742A1 PCT/CN2015/071963 CN2015071963W WO2016090742A1 WO 2016090742 A1 WO2016090742 A1 WO 2016090742A1 CN 2015071963 W CN2015071963 W CN 2015071963W WO 2016090742 A1 WO2016090742 A1 WO 2016090742A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
alkali
sent
soda ash
water
Prior art date
Application number
PCT/CN2015/071963
Other languages
English (en)
French (fr)
Inventor
陈伟来
杨能红
陈军
丁杨
张迎杰
Original Assignee
化工部长沙设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 化工部长沙设计研究院 filed Critical 化工部长沙设计研究院
Publication of WO2016090742A1 publication Critical patent/WO2016090742A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/02Fluorides

Definitions

  • the invention relates to a method for producing heavy soda ash, in particular to a method for defluorinating a fluorine-containing trona to produce heavy soda ash.
  • the trona minerals have both liquid and solid minerals, and there are many minerals that are symbiotic with trona minerals, mainly NaCl, Na 2 SO 4 and NaF. Most of the soda ash produced by heavy soda ash is very small, not Affect the quality of heavy soda ash. However, when the content of NaF in the trona is more than 0.3% by weight (dry basis), the quality of the heavy soda ash is affected, and special treatment is required. There is no specific process for removing the fluoride salt from the trona for producing heavy soda ash.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a fluorine-containing trona defluorination heavy product capable of defluorinating a fluorine-containing trona containing NaF greater than 0.3 wt% (dry basis).
  • the method of soda ash is to overcome the deficiencies of the prior art and provide a fluorine-containing trona defluorination heavy product capable of defluorinating a fluorine-containing trona containing NaF greater than 0.3 wt% (dry basis).
  • the technical solution adopted by the present invention to solve the technical problem thereof is: a method for producing heavy soda ash by defluorination of a fluorine-containing trona, comprising the following steps:
  • Fluorine-containing trona calcination calcination conversion of fluorine-containing trona (preferably NaF mass content ⁇ 0.3wt%), calcination furnace temperature of 180 ° C ⁇ 200 ° C, calcination time of 30 min ⁇ 45 min, so that the fluorine-containing trona thoroughly Decomposition to obtain a fluorine-containing sodium carbonate, that is, a fluorine-containing crude base;
  • the calcination is preferably carried out by using a rotary calciner and heating with heavy oil, steam or electricity as a heat source;
  • the fluorine-containing crude alkali obtained in the step (1) is sent to a dissolution tank, and water and/or washing salt mud (NaF and water-insoluble matter) is added to the washing water and/or in the step (3).
  • the mother liquor and/or the mother liquor in the step (5) is dissolved, and the mass concentration of Na 2 CO 3 in the alkali liquor is controlled to be 28% to 33%, the mass concentration of NaCl is 2% to 5%, and the mass concentration of NaF is 0.3% to 0.5%.
  • the material stays in the dissolution tank for 25 ⁇ 35min; then the alkali solution is sent to the intermittent operation of the Chengshui trough for 4h ⁇ 8h or sent to the continuous operation of the thickener to clarify, clear equipment overflow
  • the flowing liquid is sent to the lower stage to be cold-analyzed and crystallized; the salt puree (NaF and water-insoluble matter) is discharged from the grading equipment, washed with water and filtered, and the NaF product can be further produced, and the washing water of the washing salt mud is sent to the alkali-removing process to dissolve Fluorine crude base;
  • the mother liquor in the step (3) used for the dissolution and/or the mother liquor in the step (5) contains saturated sodium fluoride, and the sodium fluoride is no longer dissolved or dissolved in a small amount during the alkali-reduction process, so that the NaF can be Discharged by solid phase separation, and further processed to produce sodium fluoride products;
  • the overflow liquid (ie, fluorine-containing lye) in the step (2) is sent to a cold precipitation crystallizer to be cooled to 15 ° C to 25 ° C, and then the crystal water is precipitated (Na 2 CO 3 ⁇ 10H 2 O)
  • the crystal slurry is sent to a thickening device to thicken to a solid content of 35 to 55 wt%, and then centrifuged to obtain a water alkali, and contains Na 2 CO 3 17% to 23%, NaCl 4%. ⁇ 7%, NaF 0.5% to 0.7% of the mother liquor is sent to the step (2) alkali recycling;
  • the fluorine-containing alkali liquid is sent to a cold precipitation crystallizer for cooling to crystallize Na 2 CO 3 ⁇ 10H 2 O, and the fluorine-containing cold precipitation mother liquid is sent to the step (2) to circulate the alkali, and the cold precipitation process is fluorinated.
  • the sodium does not precipitate, and the separated Na 2 CO 3 ⁇ 10H 2 O does not contain sodium fluoride, so that the final product has a sodium fluoride content of ⁇ 0.05 wt%;
  • the alkali obtained by centrifugation in step (3) enters the alkali tank, and is added with water to dissolve to obtain an alkali solution, and the concentration of Na 2 CO 3 in the alkali solution is controlled to be 30 to 33 wt%, and the dissolution temperature is 35 ° C. 45 ° C, the alkali solution stays in the dissolution tank for 10min ⁇ 20min;
  • step (4) the lye obtained in step (4) is sent to the intermittent operation of the sag tank for 4 to 8 hours or sent to the continuous operation of the thickener for clarification, the sludge is discharged from the grading equipment, and then washed with water and filtered. After that, the resulting waste residue is stored, and the residual liquid of the sump equipment is stored in the precision filtration equipment to remove small particles and some organic matter. Removing, and then removing the organic matter by the activated carbon to obtain a fine lye;
  • step (6) Evaporation and separation of monohydrate:
  • the eluate obtained in step (5) is evaporated and crystallized to obtain a slurry of monohydrate (Na 2 CO 3 ⁇ H 2 O), and the evaporation temperature is controlled from 90 ° C to 105 ° C to control evaporation.
  • the concentration of NaCl in the mother liquor is less than 5 wt%;
  • the monohydrate slurry is thickened to a solid content of 35 to 55 wt% by a thickening device, and then separated by a centrifuge to obtain monohydrate, and the mother liquor obtained by centrifugation is sent to the step (2) to form a base;
  • the monohydrate is dehydrated and dried, preferably a fluidized bed dryer using steam as a heat source or a rotary kiln using steam or electricity as a heat source.
  • NaF can be completely removed, and further processing can produce high-value NaF products
  • the concentration of alkali solution obtained by the alkali can be greatly increased, the equipment scale and investment of the subsequent device can be reduced, the amount of evaporation water of evaporation of monohydrate can be greatly reduced, and energy consumption can be reduced;
  • the product quality can be controlled by controlling the NaCl content of the evaporating crystallization mother liquor, which is convenient for practical operation;
  • Fluorine-containing trona calcination calcination conversion of fluorine-containing trona (NaF content: 1.28 wt%), using a rotary calciner, heating with heavy oil as a heat source, the furnace temperature is 200 ° C, and the calcination time is 30 min, The fluorine-containing trona is completely decomposed to obtain a fluorine-containing sodium carbonate, that is, a fluorine-containing crude base;
  • the crude fluorine-containing base obtained in the step (1) is sent to a dissolution tank, and water, washing water (NaF and water-insoluble matter) washing water, mother liquid in the step (3), and a step are added ( 5)
  • the mother liquor is dissolved, the concentration of Na 2 CO 3 in the lye is 28%, the mass concentration of NaCl is 3%, the mass concentration of NaF is 0.35%, the dissolution temperature is 35 ° C, and the material stays in the dissolution tank for 30 min.
  • the lye is sent to the intermittent operation and the clarification tank is clarified.
  • the residence time is 8 hours.
  • the overflow liquid of the sump equipment is sent to the lower stage for cold crystallization; the salt mud (NaF and water insoluble matter) is discharged from the septic equipment, washed with water and filtered.
  • the NaF product can be further produced, and the washing water of the washing salt mud is sent to the alkali-alkating process to dissolve the fluorine-containing crude alkali;
  • the overflow liquid from the Chengyi equipment in step (2) is sent to a cold precipitation crystallizer to be cooled to 25 ° C, and then the crystallized water slurry (Na 2 CO 3 ⁇ 10H 2 O) crystal slurry is precipitated.
  • the thickening device is fed to thicken to a solid content of 45 wt%, and then centrifuged to obtain a water alkali, and the mother liquor containing Na 2 CO 3 19 wt%, NaCl 5 wt%, NaF 0.55 wt% is sent to the step (2) alkali cycle use;
  • alkali base the water alkali obtained by centrifugation in step (3) enters the alkali tank, and is added with water to dissolve to obtain an alkali solution, and the concentration of Na 2 CO 3 in the alkali solution is controlled to be 32 wt%, the dissolution temperature is 35 ° C, and the alkali solution Stay in the dissolution tank for 20 min;
  • lye refining the lye obtained in step (4) is sent to the intermittent operation to clear the trough, the residence time is 4-8 h, the sludge is discharged from the grading equipment, and then washed with water and filtered (waste residue). , the overflowing liquid of the Chengshui equipment is removed by the precision filtering equipment to remove the remaining small particles and part of the organic matter, and then the organic matter is removed by the activated carbon to obtain the refined alkali liquor;
  • Evaporation crystallization and separation of monohydrate The lye solution obtained in the step (5) is subjected to evaporation and crystallization by mechanical thermal compression to obtain a slurry of monohydrate (Na 2 CO 3 ⁇ H 2 O), and the evaporation temperature is controlled to 95. °C, control the concentration of NaCl in the evaporation mother liquor is less than 5wt%; the monohydrate slurry is thickened to a solid content of 45wt% by thickening equipment, and then centrifuged to obtain monohydrate, and part of the mother liquor is separated by centrifugation (2) Base
  • the monohydrate obtained by the step (6) is sent to a fluidized bed dryer which uses steam as a heat source to dry, the drying temperature is 130 ° C, and the controlled moisture content is ⁇ 0.5 wt%. Heavy soda ash.
  • the weight of the soda ash obtained in this example is 76 wt% of ⁇ 180 ⁇ m, the whiteness is 80%, the NaF content is 0.03 wt%, and the product purity (dry Na 2 CO 3 ⁇ 99.7 wt%) is higher than GB/T210.1-2004I. Class standard.
  • Fluorine-containing trona calcination a fluorine-containing trona (NaF content of 1.28 wt%) is calcined and converted, and a rotary calciner is used, and steam is used as a heat source for heating at a furnace temperature of 180 ° C and a calcination time of 45 min.
  • the fluorine-containing trona is completely decomposed to obtain a fluorine-containing sodium carbonate, that is, a fluorine-containing crude base;
  • the crude fluorine-containing base obtained in the step (1) is sent to a dissolution tank, water and washing water (washing salt of NaF and water insoluble matter) and a mother liquid and a step in the step (3) are added ( 5)
  • the mother liquor is dissolved, the concentration of Na 2 CO 3 in the alkali solution is controlled to be 28%, the mass concentration of NaCl is 3%, the mass concentration of NaF is 0.35%, the control dissolution temperature is 40 ° C, and the material stays in the dissolution tank for 30 min;
  • the lye is then clarified into a continuous operation thickener, and the overflow liquid of the sump equipment is sent to the lower stage for cold crystallization; the salt mud (NaF and water insoluble matter) is discharged from the sloping equipment, washed with water, and filtered to further produce.
  • the NaF product, the washing water of the washing salt mud is sent to the alkali-smelting process to dissolve the fluorine-containing crude alkal
  • the overflow liquid from the Chengyi equipment in step (2) is sent to a cold precipitation crystallizer to be cooled to 25 ° C, and then the crystallized water slurry (Na 2 CO 3 ⁇ 10H 2 O) crystal slurry is precipitated.
  • the thickening device is sent to thicken to a solid content of 50% by weight, and then centrifuged to obtain a water alkali, and the mother liquor containing Na 2 CO 3 19%, NaCl 5%, and NaF 0.55% is sent to the step (2) alkali cycle use;
  • alkali the alkali obtained by centrifugation in step (3) enters the alkali tank, and is added with water to dissolve to obtain an alkali solution, and the concentration of Na 2 CO 3 in the alkali solution is controlled to be 32 wt%, the dissolution temperature is 45 ° C, and the alkali solution Stay in the dissolution tank for 10 min;
  • step (4) the lye obtained in step (4) is sent to a continuous operation thickener for clarification, the sludge is discharged from the slag-removing equipment, and then washed with water, filtered (waste residue), and the equipment is overflowed.
  • the flowing liquid is removed by the precision filtering equipment to remove the remaining small particles and part of the organic matter, and then the organic matter is removed by the activated carbon to obtain the refined alkali solution;
  • step (5) Evaporation crystallization and separation of monohydrate:
  • the lye obtained in step (5) is subjected to evaporation by four-effect vacuum evaporation to obtain monohydrate (Na 2 CO 3 ⁇ H 2 O) slurry, and the material is countercurrently flowed.
  • the monohydrate obtained by the step (6) is sent to a rotary kiln which is heated as a heat source, and the drying temperature is 140 ° C, and the water content is controlled to be ⁇ 0.5 wt% to obtain a heavy soda ash. .
  • the weight of the soda ash obtained in this example is ⁇ 180 ⁇ m, 79wt%, the whiteness is 80%, the NaF content is 0.04wt%, and the product purity (dry basis Na 2 CO 3 ⁇ 99.8wt%) is higher than GB/T210.1-2004I. Class standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种含氟天然碱去氟生产重质纯碱的方法,包括以下步骤:(1)含氟天然碱煅烧;(2)化碱去氟;(3)冷析结晶;(4)化碱;(5)碱液精制;(6)一水碱蒸发结晶与分离;(7)一水碱脱水干燥,得到重质纯碱。该方法具有以下优点:(1)可以充分去除NaF,可进一步生产高价值的NaF产品;(2)通过煅烧能大大提高化碱得到的碱液浓度,减少后续装置的设备规模和投资,减少一水碱蒸发的蒸发水量,减少能耗;(3)所得重质纯碱产品质量稳定可靠,粒度均匀,白度好;(4)可以通过控制排放蒸发结晶母液的NaCl含量来控制产品质量,便于操作;(5)利用机械热压缩技术或多效真空蒸发减少能耗。

Description

一种含氟天然碱去氟生产重质纯碱的方法 技术领域
本发明涉及一种生产重质纯碱的方法,尤其是涉及一种含氟天然碱去氟生产重质纯碱的方法。
背景技术
天然碱矿物既有液体矿又有固体矿,与天然碱矿物共生的矿物比较多,主要有NaCl、Na2SO4和NaF,大多数生产重质纯碱的天然碱矿含氟量非常小,不影响重质纯碱品质。但天然碱中含NaF大于0.3wt%(干基)时就会影响重质纯碱品质,就需要对其进行特别处理,目前没有专门针对用于生产重质纯碱的天然碱去除氟盐的工艺。
发明内容
本发明所要解决的技术问题是,克服现有技术的不足,提供一种能对含NaF大于0.3wt%(干基)的含氟天然碱进行去氟处理的含氟天然碱去氟生产重质纯碱的方法。
本发明解决其技术问题采用的技术方案是:一种含氟天然碱去氟生产重质纯碱的方法,包括以下步骤:
(1)含氟天然碱煅烧:将含氟天然碱(优选NaF质量含量≥0.3wt%)煅烧转化,煅烧炉温为180℃~200℃,煅烧时间为30min~45min,使得含氟天然碱彻底分解,得到含氟碳酸钠即含氟粗碱;
煅烧优选采用回转式煅烧炉,以重油、蒸汽或电为热源进行加热;
(2)化碱去氟:将步骤(1)所得含氟粗碱送入溶解槽,加入水和/或洗涤 盐泥(NaF和水不溶物)的洗水和/或步骤(3)中的母液和/或步骤(5)中的母液溶解,控制碱液中Na2CO3质量浓度为28%~33%,NaCl质量浓度为2%~5%,NaF质量浓度为0.3%~0.5%,控制溶解温度为30℃~60℃,物料在溶解槽内停留25~35min;再将碱液送入间断运行澄降槽停留4h~8h或者送入连续运行的浓密机中澄清,澄降设备溢流液送入下段工序冷析结晶;盐泥(NaF和水不溶物)从澄降设备排出后用水洗涤、过滤,可进一步生产NaF产品,洗涤盐泥的洗水送入化碱工序中溶解含氟粗碱;
步骤(2)中,溶解所用步骤(3)中的母液和/或步骤(5)中的母液含饱和的氟化钠,在化碱过程中氟化钠不再溶解或少量溶解,使得NaF可以以固相分离排出,经进一步加工可生产氟化钠产品;
(3)冷析结晶:将步骤(2)中澄降设备溢流液(即含氟碱液)送入冷析结晶器冷却至15℃~25℃,然后将结晶析出的水碱(Na2CO3·10H2O)结晶料浆送入增稠设备增稠至固含量为35~55wt%,再离心机分离得到水碱,并将含Na2CO317%~23%,NaCl 4%~7%,NaF 0.5%~0.7%的母液送去步骤(2)化碱循环利用;
步骤(3)中,将含氟碱液送入冷析结晶器冷却使Na2CO3·10H2O结晶析出,含氟冷析母液送去步骤(2)循环化碱,冷析过程氟化钠不析出,分离出的Na2CO3·10H2O不含氟化钠,使得最终产品氟化钠含量≤0.05wt%;
(4)化碱:由步骤(3)离心分离得到的水碱进入化碱槽,加入水溶解得到碱液,控制碱液中Na2CO3浓度为30~33wt%,溶解温度为35℃~45℃,碱液在溶解槽内停留10min~20min;
(5)碱液精制:将步骤(4)所得碱液送入间断运行澄降槽停留4~8h或者送入连续运行的浓密机中澄清,泥渣从澄降设备排出,后用水洗涤、过滤后,所得废渣堆存,澄降设备溢流液经精密过滤设备将残存的小颗粒及部分有机物 除去,再经活性炭脱除有机物后得到精碱液;
(6)一水碱蒸发结晶与分离:将步骤(5)所得精碱液蒸发结晶得到一水碱(Na2CO3·H2O)料浆,控制蒸发温度90℃~105℃,控制蒸发母液中NaCl浓度小于5wt%;一水碱料浆经增稠设备增稠至固含量为35~55wt%,再离心机分离得到一水碱,离心分离的母液送入步骤(2)化碱;
蒸发结晶时优选机械热压缩技术或多效真空蒸发技术;
(7)一水碱脱水干燥:将步骤(6)分离得到的一水碱干燥,干燥温度为125℃~150℃,控制含水率≤0.5wt%,得到重质纯碱。
步骤(7)中,一水碱脱水干燥优选以蒸汽为热源的流化床干燥器或用蒸汽或电为热源的回转窑。
本发明具有以下优点:
(1)可以充分去除NaF,进一步加工可生产高价值的NaF产品;
(2)通过煅烧能大大提高化碱得到的碱液浓度,减少后续装置的设备规模和投资,极大的减少一水碱蒸发的蒸发水量,减少能耗;
(3)本发明所得重质纯碱产品质量稳定可靠,粒度均匀(≥180μm超过75wt%),白度好可达80%,NaF含量低(<0.05wt%),产品纯度高于GB/T210.1-2004Ⅰ类标准;
(4)可以通过控制排放蒸发结晶母液的NaCl含量来控制产品质量,便于实际操作;
(5)机械热压缩技术或多效真空蒸发是非常节能的工艺。
具体实施方式
以下结合实施例对本发明作进一步说明。
本发明说明书中,除特殊说明外,所述百分比均指重量百分比。
实施例1
本实施例包括以下步骤:
(1)含氟天然碱煅烧:将含氟天然碱(NaF含量为1.28wt%)煅烧转化,采用回转式煅烧炉,以重油为热源进行加热,炉温为200℃,煅烧时间为30min,使得含氟天然碱彻底分解,得到含氟碳酸钠即含氟粗碱;
(2)化碱去氟:将步骤(1)所得含氟粗碱送入溶解槽,加入水、洗涤盐泥(NaF和水不溶物)的洗水、步骤(3)中的母液和步骤(5)中的母液溶解,控制碱液中Na2CO3质量浓度为28%,NaCl质量浓度为3%,NaF质量浓度为0.35%,溶解温度为35℃,物料在溶解槽内停留30min,再将碱液送入间断运行澄降槽澄清,停留时间8h,澄降设备溢流液送入下段工序冷析结晶;盐泥(NaF和水不溶物)从澄降设备排出后用水洗涤、过滤后可进一步生产NaF产品,洗涤盐泥的洗水送入化碱工序中溶解含氟粗碱;
(3)冷析结晶:将步骤(2)中澄降设备溢流液送入冷析结晶器冷却至25℃,然后将结晶析出的水碱(Na2CO3·10H2O)结晶料浆送入增稠设备增稠至固含量为45wt%,再离心机分离得到水碱,并将含Na2CO319wt%,NaCl5wt%,NaF0.55wt%的母液送去步骤(2)化碱循环利用;
(4)化碱:由步骤(3)离心分离得到的水碱进入化碱槽,加入水溶解得到碱液,控制碱液中Na2CO3浓度为32wt%,溶解温度为35℃,碱液在溶解槽内停留20min;
(5)碱液精制:将步骤(4)中所得碱液送入间断运行澄降槽澄清,停留时间4~8h,泥渣从澄降设备排出,后用水洗涤、过滤后(废渣)堆存,澄降设备溢流液经精密过滤设备将残存的小颗粒及部分有机物除去,再经活性炭脱除有机物后得到精碱液;
(6)一水碱蒸发结晶与分离:将步骤(5)中所得精碱液采用机械热压缩技术进行蒸发结晶得到一水碱(Na2CO3·H2O)料浆,控制蒸发温度95℃,控制蒸发母液中NaCl浓度小于5wt%;一水碱料浆经增稠设备增稠至固含量为45wt%,再离心机分离得到一水碱,离心分离的部分母液去步骤(2)化碱;
(7)一水碱脱水干燥:将步骤(6)分离得到的一水碱送入以蒸汽为热源的流化床干燥器中干燥,干燥温度为130℃,控制含水率≤0.5wt%,得到重质纯碱。
本实施例所得重质纯碱粒度≥180μm为76wt%,白度为80%,NaF含量为0.03wt%,产品纯度(干基Na2CO3≥99.7wt%)高于GB/T210.1-2004Ⅰ类标准。
实施例2
本实施例包括以下步骤:
(1)含氟天然碱煅烧:将含氟天然碱(NaF含量为1.28wt%)煅烧转化,采用回转式煅烧炉,以蒸汽为热源进行加热,炉温为180℃,煅烧时间为45min,使得含氟天然碱彻底分解,得到含氟碳酸钠即含氟粗碱;
(2)化碱去氟:将步骤(1)所得含氟粗碱送入溶解槽,加入水和洗涤盐泥(NaF和水不溶物)的洗水和步骤(3)中的母液和步骤(5)中的母液溶解,控制碱液中Na2CO3质量浓度为28%,NaCl质量浓度为3%,NaF质量浓度为0.35%,控制溶解温度为40℃,物料在溶解槽内停留30min;再将碱液进入连续运行的浓密机中澄清,澄降设备溢流液送入下段工序冷析结晶;盐泥(NaF和水不溶物)从澄降设备排出后用水洗涤、过滤后可进一步生产NaF产品,洗涤盐泥的洗水送入化碱工序中溶解含氟粗碱;
(3)冷析结晶:将步骤(2)中澄降设备溢流液送入冷析结晶器冷却至25℃,然后将结晶析出的水碱(Na2CO3·10H2O)结晶料浆送入增稠设备增稠至固含 量为50wt%,再离心机分离得到水碱,并将含Na2CO319%,NaCl5%,NaF0.55%的母液送去步骤(2)化碱循环利用;
(4)化碱:由步骤(3)离心分离得到的水碱进入化碱槽,加入水溶解得到碱液,控制碱液中Na2CO3浓度为32wt%,溶解温度为45℃,碱液在溶解槽内停留10min;
(5)碱液精制:将步骤(4)中所得碱液送入连续运行的浓密机中澄清,泥渣从澄降设备排出,后用水洗涤、过滤后(废渣)堆存,澄降设备溢流液经精密过滤设备将残存的小颗粒及部分有机物除去,再经活性炭脱除有机物后得到精碱液;
(6)一水碱蒸发结晶与分离:将步骤(5)所得精碱液采用四效真空蒸发技术进行蒸发结晶得到一水碱(Na2CO3·H2O)料浆,物料采用逆流转料、第三效排料,控制排料(第三效蒸发温度)在105℃,控制蒸发母液中NaCl浓度小于5wt%,一水碱料浆经增稠设备增稠至固含量为50wt%,再离心机分离得到一水碱,离心分离的母液送入步骤(2)化碱;
(7)一水碱脱水干燥:将步骤(6)分离得到的一水碱送入以电为热源的回转窑中干燥,干燥温度为140℃,控制含水率≤0.5wt%,得到重质纯碱。
本实施例所得重质纯碱粒度≥180μm为79wt%,白度为80%,NaF含量为0.04wt%,产品纯度(干基Na2CO3≥99.8wt%)高于GB/T210.1-2004Ⅰ类标准。

Claims (6)

  1. 一种含氟天然碱去氟生产重质纯碱的方法,其特征在于,包括以下步骤:
    (1)含氟天然碱煅烧:将含氟天然碱煅烧转化,煅烧炉温为180℃~200℃,煅烧时间为30min~45min,使得含氟天然碱彻底分解,得到含氟碳酸钠即含氟粗碱;
    (2)化碱去氟:将步骤(1)所得含氟粗碱送入溶解槽,加入水和/或洗涤盐泥的洗水和/或步骤(3)中的母液和/或步骤(5)中的母液溶解,控制碱液中Na2CO3质量浓度为28%~33%,NaCl质量浓度为2%~5%,NaF质量浓度为0.3%~0.5%,控制溶解温度为30℃~60℃,物料在溶解槽内停留25~35min;再将碱液送入间断运行澄降槽停留4h~8h或者送入连续运行的浓密机中澄清,澄降设备溢流液送入下段工序冷析结晶;
    (3)冷析结晶:将步骤(2)中澄降设备溢流液送入冷析结晶器冷却至15℃~25℃,然后将结晶析出的水碱即Na2CO3·10H2O结晶料浆送入增稠设备增稠至固含量为35~55wt%,再离心机分离得到水碱,并将含Na2CO3 17%~23%,NaCl 4%~7%,NaF 0.5%~0.7%的结晶母液送去步骤(2)化碱循环利用;
    (4)化碱:由步骤(3)离心分离得到的水碱进入化碱槽,加入水溶解得到碱液,控制碱液中Na2CO3浓度为30~33wt%,溶解温度为35℃~45℃,碱液在溶解槽内停留10min~20min;
    (5)碱液精制:将步骤(4)所得碱液送入间断运行澄降槽停留4~8h或者送入连续运行的浓密机中澄清,泥渣从澄降设备排出,后用水洗涤、过滤后,所得废渣堆存,澄降设备溢流液经精密过滤设备将残存的小颗粒及部分有机物除去,再经活性炭脱除有机物后得到精碱液;
    (6)一水碱蒸发结晶与分离:将步骤(5)所得精碱液蒸发结晶得到一水 碱即Na2CO3·H2O料浆,控制蒸发温度90℃~105℃,控制蒸发母液的NaCl浓度小于5wt%;一水碱料浆经增稠设备增稠至固含量为35~55wt%,再离心机分离得到一水碱,离心分离的部分母液送入步骤(2)化碱;
    (7)一水碱脱水干燥:将步骤(6)分离得到的一水碱干燥,干燥温度为125℃~150℃,控制含水率≤0.5wt%,得到重质纯碱。
  2. 根据权利要求1所述的含氟天然碱去氟生产重质纯碱的方法,其特征在于,步骤(1)中,所用原料含氟天然碱中NaF质量含量≥0.2%。
  3. 根据权利要求1或2所述的含氟天然碱去氟生产重质纯碱的方法,其特征在于,步骤(1)中,煅烧采用回转式煅烧炉,以重油、蒸汽或电为热源进行加热。
  4. 根据权利要求1或2所述的含氟天然碱去氟生产重质纯碱的方法,其特征在于,步骤(6)中,蒸发结晶时选用机械热压缩技术或多效真空蒸发技术。
  5. 根据权利要求1或2所述的含氟天然碱去氟生产重质纯碱的方法,其特征在于,步骤(7)中,一水碱脱水干燥选用以蒸汽为热源的流化床干燥器或用蒸汽或电为热源的回转窑。
  6. 根据权利要求1或2所述的含氟天然碱去氟生产重质纯碱的方法,其特征在于,步骤(2)中,盐泥从澄降设备排出后用水洗涤、过滤,进一步生产NaF产品,洗涤盐泥的洗水送入化碱工序中溶解含氟粗碱。
PCT/CN2015/071963 2014-12-09 2015-01-30 一种含氟天然碱去氟生产重质纯碱的方法 WO2016090742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410741769.9 2014-12-09
CN201410741769.9A CN104445286B (zh) 2014-12-09 2014-12-09 一种含氟天然碱去氟生产重质纯碱的方法

Publications (1)

Publication Number Publication Date
WO2016090742A1 true WO2016090742A1 (zh) 2016-06-16

Family

ID=52892149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071963 WO2016090742A1 (zh) 2014-12-09 2015-01-30 一种含氟天然碱去氟生产重质纯碱的方法

Country Status (2)

Country Link
CN (1) CN104445286B (zh)
WO (1) WO2016090742A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538477B (zh) * 2022-04-27 2022-09-02 天津渤化永利化工股份有限公司 一种改进的重质纯碱生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158043A (en) * 1978-01-18 1979-06-12 Texasgulf Inc. Process for producing soda ash from natural alkali metal carbonate-containing ores
CN101531383A (zh) * 2009-04-24 2009-09-16 唐山三友化工股份有限公司 固、液相水合法共存生产低盐重质纯碱的方法
CN101708858A (zh) * 2009-11-28 2010-05-19 大连化工研究设计院 一种生产低盐优质重质纯碱的方法
CN102277484A (zh) * 2011-07-28 2011-12-14 内蒙古科技大学 混合稀土精矿碱法冶炼工艺中磷酸钠、氟化钠的分离回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158043A (en) * 1978-01-18 1979-06-12 Texasgulf Inc. Process for producing soda ash from natural alkali metal carbonate-containing ores
CN101531383A (zh) * 2009-04-24 2009-09-16 唐山三友化工股份有限公司 固、液相水合法共存生产低盐重质纯碱的方法
CN101708858A (zh) * 2009-11-28 2010-05-19 大连化工研究设计院 一种生产低盐优质重质纯碱的方法
CN102277484A (zh) * 2011-07-28 2011-12-14 内蒙古科技大学 混合稀土精矿碱法冶炼工艺中磷酸钠、氟化钠的分离回收方法

Also Published As

Publication number Publication date
CN104445286A (zh) 2015-03-25
CN104445286B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
AU2013201833B2 (en) Processing of Lithium Containing Ore
CN103553138B (zh) 高盐废水中硫酸锰、硫酸镁、硫酸钙分离、浓缩、提纯的综合利用方法
CN105540619B (zh) 从高镁锂比盐湖卤水中直接制取电池级碳酸锂的方法
US10167531B2 (en) Processing of lithium containing material
WO2022166116A1 (zh) 一种天然碱生产工艺
CN110937612B (zh) 一种利用粗碳酸氢钠制取优质重质纯碱的工艺
CN113105138A (zh) 垃圾焚烧飞灰水洗脱氯和水洗液蒸发分质结晶的处理方法及系统
CN103979730A (zh) 净化青霉素生产废液并回收硫酸钠的方法
CN101885498A (zh) 一种高纯硫酸镁的制备方法
CN104743581A (zh) 一种高纯氯化钾的制备工艺
CN103058235B (zh) 一种硫酸镁除钙的方法及高纯硫酸镁
CN105439184A (zh) 一种纯碱生产蒸氨废液资源化利用方法及制备系统
WO2014194791A1 (zh) 一种处理焦炉煤气脱硫副产品硫膏的方法
CN111792653A (zh) 一种利用机械热压缩技术单效蒸发制球形盐的生产方法
CN105366701B (zh) 一种连续生产铯铷矾和钾明矾的工艺
CN109906200B (zh) 从氯化钾和硫酸生产硫酸钾的方法
WO2016090742A1 (zh) 一种含氟天然碱去氟生产重质纯碱的方法
CN108455636B (zh) 一种高盐高硫卤水生产氯化钠和一水硫酸镁的方法
CN102826520B (zh) 一种提纯水合肼实现adc发泡剂废水联产硫酸铵的方法
CN107364879B (zh) 从硫酸镁溶液中回收镁元素和钙元素的方法
CN105152186A (zh) 高盐废水单质分盐并联产硫化碱的工艺方法
CN108394947A (zh) 一种白炭黑洗涤水零排放处理方法
CN104445285B (zh) 一种以含碱天然湖水生产重质纯碱的方法
RU91530U1 (ru) Установка для получения каустической соды из электролитической щелочи
CN111533143A (zh) 一种工业级元明粉制备装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15866418

Country of ref document: EP

Kind code of ref document: A1