WO2014194791A1 - 一种处理焦炉煤气脱硫副产品硫膏的方法 - Google Patents
一种处理焦炉煤气脱硫副产品硫膏的方法 Download PDFInfo
- Publication number
- WO2014194791A1 WO2014194791A1 PCT/CN2014/078861 CN2014078861W WO2014194791A1 WO 2014194791 A1 WO2014194791 A1 WO 2014194791A1 CN 2014078861 W CN2014078861 W CN 2014078861W WO 2014194791 A1 WO2014194791 A1 WO 2014194791A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filtrate
- ammonium
- sulfur
- filter cake
- product
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/64—Thiosulfates; Dithionites; Polythionates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/0216—Solidification or cooling of liquid sulfur
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/02—Preparation of sulfur; Purification
- C01B17/0232—Purification, e.g. degassing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C3/00—Cyanogen; Compounds thereof
- C01C3/20—Thiocyanic acid; Salts thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/46—Sulfates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the invention belongs to the technical field of waste treatment in the coking industry. Specifically, the invention relates to a method for treating sulfur by-product of coke oven gas desulfurization by-product, that is, a further purification of sulfur paste generated from a coking plant HPF method or a PDS desulfurization production process, and a purification process of the purified sulfur-containing waste liquid. .
- the coke oven gas produced in the coal coking process contains 5 to 8 g/m 3 of hydrogen sulfide (H 2 S) and 1 to 1.5 g/m 3 of hydrogen cyanide (HCN), and the sulfur oxides formed after combustion and Nitrogen oxides seriously pollute the environment, and the above two gases are toxic substances. Therefore, domestic coking enterprises are equipped with coke oven gas desulfurization and de-cyanide equipment, and the desulfurization and de-cyanide process for equipment should be divided into oxidation and absorption methods.
- H 2 S hydrogen sulfide
- HCN hydrogen cyanide
- the HPF method is based on the ammonia contained in the coke oven gas as the alkali source, and the wet phase liquid phase catalytic oxidation of HPF (hydroquinone, PDS-phthalocyanine sulfonate, FeSO ⁇ I composite catalyst) as a catalyst. Desulfurization and de-cyanide process.
- HPF hydroquinone, PDS-phthalocyanine sulfonate, FeSO ⁇ I composite catalyst
- the HPF method has the advantages of using coke oven gas's own ammonia as an alkali source, relatively economical operation cost, low equipment investment, simple process, etc., and has become the most widely used desulfurization and de-cyanide process in coking enterprises in China.
- the sulfur paste produced by the desulfurization and de-cyanation process has a low sulfur content (30 to 50%), and its composition.
- Complex (30 ⁇ 40% water, 12 ⁇ 15% sulfur salt, 1 ⁇ 3% coal tar, catalyst, coal ash and other impurities) and become a waste of sales difficulties.
- the first one is to use the principle of co-saturated multi-system phase diagram to concentrate multiple times and step crystallization to thiocyanate. Separation and purification of ammonium and ammonium thiosulfate (CN201110180361. 5, CN200810128357. 2), because the solubility difference between ammonium thiocyanate and ammonium thiosulfate is not large, the method is cumbersome, and the crystallization concentration and temperature control requirements are high.
- the copper salt becomes a new source of pollution, and there are more industrial wastewater discharges; the third is to convert all ammonium salts in the wastewater into ammonium sulfate under high temperature and high pressure and under the action of a catalyst (Japanese Patent Special Publication No. 57-7852)
- the method has high requirements on equipment conditions, high running cost, and low economic value of ammonium sulfate obtained by oxidation, and the general enterprise cannot use the method.
- the present invention adopts a new environmental protection technology process route to completely solve the treatment and utilization and environmental protection problems of the coke oven gas desulfurization by-product sulfur paste.
- the object of the present invention is to provide a method for treating by-product sulfur paste and waste water produced by the HPF process de-cyanide desulfurization process in view of the deficiencies of the prior art.
- the method thoroughly treats different levels of sulfur paste and the treated waste liquid through relatively simple and easy-to-control process routes and process conditions, thereby avoiding environmental pollution caused by sulfur paste accumulation and waste liquid discharge, and At the same time, high-purity important chemical raw materials such as sulfur, ammonium thiocyanate and ammonium thiosulfate are recovered.
- the purity and yield of the recovered products sulfur and salt are higher than the prior art, resulting in considerable economic benefits.
- the entire production process is non-polluting, and the final treatment products can be utilized and discharged without pollution to the environment, achieving the effect of getting more and more with less.
- a method for treating a coke oven gas desulfurization by-product sulfur paste comprising a sulfur paste treatment and a waste liquid treatment, characterized in that:
- Step 1 Dissolve sulfur to remove impurities: Sulfur paste and solvent tetrachloroethylene by weight ratio 1: 4 ⁇ 1 : 15 After stirring and mixing in the dissolution kettle, the temperature is raised to 90 ⁇ 110 ° C, and the temperature is maintained for 30 to 60 minutes.
- the water separating device separates the upper salt water phase of the tetrachloroethylene into the waste liquid treatment step; the remaining organic phase is subjected to hot filtration operation to obtain a sulfur-containing tetrachloroethylene filtrate and a small amount of fly ash filter containing fly ash and inorganic impurities.
- the sulphuric acid sulphuric acid solution is added to the sulphuric acid in the sulphur. 0.
- Step 3 Cooling and crystallization: The step 2 sulphur tetrachloroethylene filtrate is transferred into the crystallization tank and slowly cooled to 20 ⁇ 30 ° C. The cooling rate is controlled at 30 ⁇ 40 ° C / h. As the temperature decreases, a large amount of sulphur is precipitated. After centrifugation, sulfur crystals and tetrachloroethylene filtrate containing a small amount of sulfur are obtained, and the tetrachloroethylene filtrate containing a small amount of sulfur is returned to step 1. Ring use;
- Step 4 Drying the product: Step 3 sulfur crystals are dried by hot air at normal pressure, temperature 80 ⁇ 100 ° C, time l ⁇ 2h, to obtain purity > 99% sulfur product; solvent brought by hot air enters the condensing unit after condensation through the pipeline Return to step 1 for recycling;
- Step 1 Decolorization and decontamination: Sulfur paste treatment step 1 is added to the brine-containing phase. 0. l ⁇ l% (w/w) activated carbon is kept at 80 ⁇ 100 °C for 30 ⁇ 60 minutes, and then filtered. After decolorization, the salt filtrate and the activated carbon filter cake are sent to the professional recycling enterprise for regeneration treatment;
- Step 2 Stop the concentration of the salt-containing filtrate at a concentration of 1.18 ⁇ 1. 26 (g/ml) when the concentration of the salt-containing filtrate is concentrated at 60-80 ° C under a vacuum of 70-90 mmHg. Obtaining a concentrated salty filtrate having a water content of 10 to 30% (w/w), transferring the concentrated salt-containing filtrate to a crystallizing kettle under the state of being kept warm, and discharging the ammoniated aqueous solution in the concentration process for use in subsequent steps and replenishing to the coke Furnace gas desulfurization system;
- Step 3 Ammonium thiocyanate separation: According to the ratio of 4 ⁇ 10L/kg, add 95% ethanol and concentrated salty filtrate to the crystallizing kettle, mix and stir, cool to 10 ⁇ 30 °C, and then centrifuge to obtain sulfur. An ammonium cyanate ethanol filtrate and a filter cake containing a mixed salt of ammonium thiosulfate and ammonium sulfate;
- Step 2 The ammonium thiocyanate ethanol filtrate is concentrated and crystallized:
- Step 3 The ammonium thiocyanate ethanol filtrate is distilled off under normal pressure to remove the aqueous ethanol to a specific gravity of 1. 2 ⁇ 1. 25 (g/ml), the concentration is stopped, and the concentration is lowered. After centrifugation at 10 ⁇ 30 °C, the ammonium thiocyanate crystal and ammonium thiocyanate ethanol saturated filtrate are obtained, and the ammonium thiocyanate ethanol saturated filtrate is returned to the step 3 for recycling, and the distilled ethanol is separated by the fine sputum device.
- Step 5 The ammonium thiocyanate product is dried: The ammonium thiocyanate crystal obtained in the step 4 is dried by hot air, the temperature is 80-100 ° C, and the time is l ⁇ 2 h, and the purity is >99%. Ammonium thiocyanate product;
- Step 6 Separation of ammonium sulfate: According to the ratio of 3 ⁇ 5L/kg, the aqueous ammonia solution distilled in step 2 and the filter cake containing the mixed salt of ammonium thiosulfate and ammonium sulfate in step 3 are mixed into the reaction kettle, and then The molar ratio of calcium hydroxide/ammonium sulfate is 1:1 ⁇ 1.
- the ratio of 2:1 is added to the calcium hydroxide powder; stirring is continued for 30 to 60 minutes, and centrifugal filtration is performed to obtain a filtrate containing ammonium thiosulfate and a calcium sulfate filter cake;
- the calcium sulfate filter cake has a purity of 98% calcium sulfate after drying for 1 to 2 hours at 100 to 12 (TC);
- Step 2 The thiosulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate
- Step 8 Drying of the ammonium thiosulfate product: Step 7 The ammonium thiosulfate filter cake is dried by hot air at a normal pressure of 50 to 80 ° C. 1 ⁇
- the purification process route of the present invention has no similar report at present, and the purification process has no waste gas waste slag generation, and the organic solvent used for sulfur purification is recycled, and the production process can be ensured under the condition that the production equipment is sealed safely and without leakage. Clean manufacturing.
- the conventional concentrated desulfurization by-product sulfur paste and its waste liquid purification process use a gradient concentration crystallization method to produce a large amount of mixed salt, which is likely to cause secondary pollution.
- the sulfur paste and the waste liquid thereof are treated, the product has high recovery rate, no mixed salt and waste water discharge, and the evaporated condensed water can be returned to the coking desulfurization process, and the high-purity sulfur and sulfur are recovered compared with the prior art treatment process.
- Ammonium cyanate, ammonium thiosulfate and calcium sulfate products no three wastes, clean and environmentally friendly.
- the application of the invention is not limited by the components in the sulfur paste, and the sulfur paste treatment waste liquid is introduced into the self-innovated desulfurization waste liquid salt extraction process while extracting sulfur, thereby avoiding the waste water. Further pollution of the environment.
- the traditional gradient crystallization method has a large dependence on the concentration of SCN-, SO/-, S 2 0 3 2 - several ions in the waste liquid, and the quality of the recovered product is difficult to guarantee. The effect is not stable enough.
- the present invention utilizes the difference in solubility of different salts in an organic solvent/water to completely separate the three main ammonium salts, thereby avoiding the use of mixed salt of no use value and avoiding secondary pollution.
- the process operating conditions can be adjusted, the process flexibility is large, the adaptability is strong, and the comprehensive economic benefit is high.
- the invention adopts a unique new process to realize the comprehensive utilization of the whole component of the ammonium salt in the desulfurization waste liquid, especially the extraction method of the high added value ammonium thiosulfate.
- the recovery rate of elemental sulfur in the sulfur paste is over 98%.
- the sulfuric acid is further extracted from the desulfurization wastewater, another main component of the sulfur paste.
- the waste liquid extracts more salt, and the three ammonium salts are completely separated to avoid mixed salt production.
- High purity > 98%), which can be further used in other fine chemical industries, so the resource utilization rate is high and the recovery rate is high.
- Figure 1 is a flow chart of the process for treating the desulfurization sulfur paste of the present invention
- 2 is a flow chart of the process for treating the desulfurization sulfur paste waste liquid of the present invention.
- coke oven gas desulfurization and de-cyanide by-product sulfur paste 1000kg (tested to be about 42% sulfur, sulfur salt (ammonium thiosulfate, ammonium thiocyanate, ammonium sulfate) 13%, coal ash and other solids impurities 3%, 40% water, 0.02% desulfurization catalyst, a small amount of tar and naphthalene component 300ppm, NH 3 1. 2%)
- Step 1 Dissolve sulfur and remove impurities: 1000kg of desulfurization sulfur paste and 8000kg of tetrachloroethylene in a weight ratio of 1: 8 after stirring and mixing in the dissolution tank, heat up to 110 ° C, maintain this temperature for 1 hour, then dichloride through the water separator
- the upper layer of ethylene contains brine and is introduced into the desulfurization waste liquid to extract salt.
- the remaining organic phase is subjected to thermal insulation and hot filtration to obtain sulfur-containing tetrachloroethylene filtrate and a small amount of fly ash filter cake.
- Step 2 Decolorization and decontamination: The sulfur-containing tetrachloroethylene solution of step 1 is added to a decolorization kettle and kept at 110 ° C for 4 kg of activated carbon (0.05%). After decolorization for 30 minutes, it is subjected to thermal insulation and thermal filtration to obtain decolorization. Sulfur tetrachloroethylene filtrate and activated carbon filter cake (activated activated carbon filter cake for professional recycling enterprises).
- Step 3 Cooling and crystallization: Transfer the filtrate from step 2 to the crystallization tank and slowly cool to 20 °C (the cooling rate is controlled at 30 °C).
- Step 4 Drying the product: Step 3
- the sulfur product is dried by hot air at normal pressure (80 °C hot air) lh, the hot air takes out the solvent and is recovered by a condensing device.
- the sulfur is dried and weighed 340kg, purity > 99%.
- coke oven gas desulfurization and de-cyanide by-product sulfur paste 1000kg (sulfur 39%, sulfur salt (ammonium thiosulfate, ammonium thiocyanate, ammonium sulfate) 14%, coal ash and other solid impurities 2%, moisture 43% , desulfurization catalyst 0. 03%, naphthalene and other small coal tar components 400ppm, NH 3 1. 5%)
- Step 1 Dissolve sulfur and remove impurities: 1000kg desulfurization sulfur paste and 8000kg of tetrachloroethylene in a weight ratio of 1: 8 after stirring and mixing in the dissolution tank, heat up to 100 ° C, maintain this temperature for 1 hour, then dichloride through the water separator
- the upper layer of ethylene contains brine and is introduced into the desulfurization waste liquid to extract salt.
- the remaining organic phase is subjected to thermal insulation and hot filtration to obtain sulfur-containing tetrachloroethylene filtrate and a small amount of fly ash filter cake.
- Step 2 Decolorization and decontamination: The sulfur-containing tetrachloroethylene solution of step 1 is added to a decolorization kettle and kept at 100 ° C for 3 kg of activated carbon (0.04%). After decolorization for 45 minutes, it is subjected to thermal insulation and filtered to obtain decolorization. Sulfur tetrachloroethylene filtrate and activated carbon filter cake (activated activated carbon filter cake for professional recycling enterprises).
- Step 3 Cooling and crystallization: Transfer the filtrate from step 2 to the crystallization tank and slowly cool to 25 °C (the cooling rate is controlled at 40 °C).
- Step 4 Drying the product: Step 3
- the sulfur product is dried by hot air at normal pressure (100 °C hot air) lh, the hot air takes out the solvent and is recovered by a condensing device. After the sulfur is dried, it weighs 304 kg, and the purity is >99%.
- Step 1 Decolorization and decontamination: Add 0. l% (w/w) activated carbon 1kg at 100 ° C for 30 minutes and then filter to obtain decolorized filtrate and activated carbon filter cake (activated activated carbon filter cake for professional recycling Enterprise regeneration processing).
- Step 2 Concentration of the decolorizing solution under reduced pressure: The filtrate of step 1 is concentrated under reduced pressure at 70 ° C (vacuum 70 mmHg) until the specific gravity of the system is 1.24 (g/ml). The concentration is stopped at 18% (w). /w)), the concentrated system heat is transferred to the crystallizer, and the distilled water solution (containing ammonia water 0.4% (w/w)) is added to the coke oven gas desulfurization system.
- Step 3 Ammonium thiocyanate separation: 2900L of 95% ethanol is mixed and stirred in a crystallizer at a ratio of 8L/kg (concentration in step 2), cooled to 20 ° C, and centrifuged to obtain thiocyanate. An ammonium filtrate and a filter cake containing a mixed salt of ammonium thiosulfate and ammonium sulfate.
- Step 4 Concentration and crystallization of ammonium thiocyanate solution: The filtrate of step 3 is distilled under normal pressure to evaporate aqueous ethanol until the specific gravity of the system is
- the concentration is stopped, and the system is cooled to 20 ° C, and then centrifuged to obtain ammonium thiocyanate crystal and ammonium thiocyanate saturated filtrate.
- the saturated ammonium thiocyanate filtrate is returned to step 3 for recycling.
- the ethanol is distilled off, and the ethanol is separated by a fine boring device, and then added to the step 3 for recycling.
- Step 5 Drying of the ammonium thiocyanate product: The ammonium thiocyanate product obtained in the step 4 is dried by hot air at 80 ° C for 1 hour to obtain 105 kg of an ammonium thiocyanate product having a purity of > 99%.
- Step 6 separation of ammonium sulfate: the step 3 filter cake and 850 kg of the aqueous solution distilled in step 2 (containing ammonia water 0.4% (w / w)) in a ratio of 5 L / kg in the reaction tank was mixed and then added 44 kg of hydroxide Calcium powder (addition ratio of calcium hydroxide / ammonium sulfate in a molar ratio of 1: 1. 1), stirring for 30 minutes, centrifugal filtration to obtain ammonium thiosulfate filter Liquid and calcium sulfate filter cake. The calcium sulfate was dried at 100 ° C for 2 hours to obtain 70 kg, and the purity was > 98%.
- Step 7 Concentration and crystallization of ammonium thiosulfate filtrate:
- the filtrate of step 6 is concentrated under reduced pressure at 70 ° C (vacuum degree 70 mmHg) until the specific gravity of the system is 1.22 (g/ml), and the concentration is concentrated.
- the system was transferred to a crystallizing kettle, cooled to 10 ° C, and centrifuged to obtain a filter cake containing ammonium thiosulfate and a saturated filtrate containing ammonium thiosulfate.
- the distilled water solution (containing ammonia water 0.4% (w/w)) is added to the coke oven gas desulfurization system.
- the saturated filtrate containing ammonium thiosulfate is again added to the filtrate in step 6 for recycling.
- Step 8 Drying of the ammonium thiosulfate product: The step 7 ammonium thiosulfate filter cake is dried by hot air at a normal pressure of 60 ° C for 2 hours to obtain 76 kg of ammonium thiosulfate product having a purity of > 98%.
- Example 4 Referring to Fig. 2, 1000 kg of waste liquid from coke oven gas desulfurization and deacetyl cyanide paste (15% ammonium thiocyanate, 6% ammonium thiosulfate content, and 9% ammonium sulfate content).
- Step 1 Decolorization and decontamination: Add 0.5% (w/w) activated carbon 5kg at 80 ° C for 45 minutes, then filter to obtain decolorized filtrate and activated carbon filter cake (activated activated carbon filter cake for professional recycling) Enterprise regeneration processing).
- Step 2 Concentration of the decolorizing solution under reduced pressure: The filtrate of step 1 is concentrated under reduced pressure at 80 ° C (vacuum degree: 90 mmHg) until the specific gravity of the system is 1.22 (g/ml), and the concentration is stopped (water content is 20% (w) /w)), the concentrated system is transferred to the crystallizing kettle, and the distilled aqueous solution (containing ammonia water 0.4%) is added to the coke oven gas desulfurization system.
- Step 3 Ammonium thiocyanate separation: 3750L of 95% ethanol is mixed with 10L/kg (concentration in step 2) in a crystallizer, cooled to 30 ° C, and then centrifuged to obtain thiocyanate. An ammonium filtrate and a filter cake containing a mixed salt of ammonium thiosulfate and ammonium sulfate.
- Step 4 Concentration and crystallization of ammonium thiocyanate solution: The filtrate of step 3 is distilled under normal pressure to evaporate aqueous ethanol until the specific gravity of the system is
- the concentration is stopped. After the system is cooled to 20 ° C, centrifugation is carried out to obtain ammonium thiocyanate crystals and saturated ammonium thiocyanate filtrate. The saturated ammonium thiocyanate filtrate is returned to step 3 for recycling. The ethanol is distilled off, and the ethanol is separated by a fine boring device, and then added to the step 3 for recycling.
- Step 5 Drying of the ammonium thiocyanate product: The ammonium thiocyanate product obtained in the step 4 is dried by hot air at 80 ° C for 1 hour to obtain 125 kg of an ammonium thiocyanate product having a purity of > 99%.
- Step 6 separation of ammonium sulfate: the step 3 filter cake and 600 kg of the aqueous solution distilled in step 2 (containing ammonia water 0.4% (w / w)) in a ratio of 3 L / kg in the reaction tank was mixed and then added 49 kg of hydroxide Calcium powder (added in a molar ratio of calcium hydroxide/ammonium sulfate of 1:1), stirring was continued for 45 minutes, and then centrifugally filtered to obtain a filtrate containing ammonium thiosulfate and a calcium sulfate filter cake. The calcium sulfate was dried at 120 ° C for 2 hours to obtain 75 kg, and the purity was > 98%.
- Step 7 Concentration and crystallization of ammonium thiosulfate filtrate:
- the filtrate of step 6 is concentrated under reduced pressure at 80 ° C (vacuum degree: 90 mmHg) until the specific gravity of the system is 1.23 (g/ml), and the concentration is concentrated.
- the system is transferred to the crystallizer, After cooling to 20 ° C, centrifugation was carried out to obtain a filter cake containing ammonium thiosulfate and a saturated filtrate containing ammonium thiosulfate.
- the distilled water solution (containing ammonia water 0.4% (w/w)) is added to the coke oven gas desulfurization system.
- the saturated filtrate containing ammonium thiosulfate is again added to the filtrate in step 6 for recycling.
- Step 8 Drying of the ammonium thiosulfate product: The step 7 ammonium thiosulfate filter cake is dried by hot air at 80 ° C for 2 hours to obtain 48 kg of ammonium thiosulfate acid product having a purity of > 98%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Physical Water Treatments (AREA)
- Industrial Gases (AREA)
Abstract
一种处理焦炉煤气脱硫副产品硫膏的方法,其特征在于,硫膏处理包括溶硫除杂质、脱色除杂、降温析晶、产品干燥等步骤,废液处理包括脱色除杂、含盐滤液减压浓缩、硫氰酸铵分离、硫氰酸铵乙醇滤液浓缩析晶、硫氰酸铵产品干燥、硫酸铵分离、硫代硫酸铵滤液浓缩析晶、硫代硫酸铵产品干燥等。本发明对硫膏及含硫废液处理彻底,产品回收利用率高,无混盐和废水排放无二次污染,工艺清洁环保。同时还具有适应能力强,生产弹性大,资源利用率高等显著特点。
Description
一种处理焦炉煤气脱硫副产品硫膏的方法 技术领域
本发明属于焦化行业废物处理技术领域。 具体涉及一种焦炉煤气脱硫副产品硫膏处理方 法, 即一种从焦化厂 HPF法或 PDS法脱硫生产过程中产生的硫膏进一步提纯和将提纯后的含 硫废液进行无害化处理工艺。
背景技术
在煤焦化过程产生的焦炉煤气中含有 5〜8g/m3的硫化氢 (H2S)和 1〜1. 5g/m3氰化氢 (HCN), 其燃烧后生成的硫氧化物及氮氧化物严重的污染环境, 并且上述两种气体属于有毒物质。 因 此目前国内焦化企业均装备焦炉煤气脱硫脱氰设备, 对应该设备使用的脱硫脱氰工艺可分为 氧化法和吸收法两大类。 其中, HPF法是以焦炉煤气中所含氨为碱源, HPF (对苯二酚、 PDS— 酞菁钴磺酸盐、 FeSO^I成的复合型催化剂)为催化剂的湿式液相催化氧化脱硫脱氰工艺。 HPF 法具有利用焦炉煤气自身的氨为碱源, 运行成本比较经济, 并且设备投资低, 工艺简单等优 点而成为目前我国焦化企业中应用最广泛的脱硫脱氰工艺。
但是, 随着目前以氨为碱源的 HFP法脱硫脱氰工艺在煤焦化行业的大规模运行, 其脱硫 脱氰工艺生产所产生的硫膏因其硫磺含量低 (30〜50%), 成分复杂 (30〜40%水, 12〜15%硫 盐, 1〜3%煤焦油、 催化剂、 煤灰等杂质) 而成为销售困难的废弃物。
硫膏中硫磺的提纯及提纯后的废液中所含的硫氰酸铵、 硫代硫酸铵的提取是一个较难解 决的问题, 因此大量文献及专利对此给予了各种不同解决方案的报道。 目前, 对于硫磺的提 纯大致分为两类: (一) 熔硫釜提纯法 ( CN200910153102. 6, CN200910150565. 7 , CN200410020529. 6, CN00256049. 6 ); (二) 有机溶剂提纯法 ( CN200310114627. 1, CN200810229462. 5 ), 尽管上述专利均称可获得高纯度的硫磺, 但是从环保、 能源、 经济角度 综合分析, 上述工艺均存在能耗高, 提纯过程污染大且提取率低, 特别是, 硫膏提纯后的废 液所含有害物质 (主要是硫氰酸铵、 硫代硫酸铵) 及其它杂质不能无害化处理, 这样硫膏提 纯后的废液仍然造成环境污染等缺点。
脱硫副产品硫膏提纯后的废液以及 HPF脱硫废液, 目前主要的处理方法有三种: 第一种 是利用共饱和的多元体系相图的原理多次浓缩, 分步结晶的方式将硫氰酸铵和硫代硫酸铵分 离提纯(CN201110180361. 5, CN200810128357. 2 ), 由于硫氰酸铵与硫代硫酸铵的溶解度差异 不大, 因此该方法工艺繁琐, 结晶浓度及温度控制要求高, 得到的盐纯度低, 经济效益差,
并且不适用于硫酸铵含量高的废水溶液; 第二种是通过催化剂将脱硫液中的硫代硫酸铵氧化 成硫酸铵后分步结晶提纯硫氰酸铵和硫酸铵(CN201210147582. 7, CN2007101395747, 日本专 利特公昭 55-126531 ), 这种方法的缺点在于使用铜盐提纯硫氰酸铵时需要高温再生铜盐, 无 法提纯经济价值高的硫代硫酸铵, 经济效益差, 其提纯过程中损失的铜盐成为新的污染源, 而且有更多的工业废水排放; 第三种是高温高压下并在催化剂作用下将废水中的铵盐全部转 化成硫酸铵回收 (日本专利特公昭 57-7852), 该方法对于设备条件要求高, 运行成本大, 并 且氧化得到的硫酸铵经济价值低, 一般企业无法使用该方法。
基于上述情况, 本发明采用一种新型的环保技术工艺路线, 彻底解决焦炉煤气脱硫副产 品硫膏这一废弃物的处理利用和环保问题。
发明内容
本发明的目的是针对现有技术的不足, 提供一种处理 HPF法脱氰脱硫工艺所产生的副产 品硫膏及废水的方法。 该方法通过较简单、 易于控制的工艺路线和工艺条件, 对不同含量的 硫膏及其处理后的废液进行彻底的处理,不但避免了硫膏堆积及废液排放对环境造成的污染, 而且同时回收了高纯度的重要化工原料硫磺、 硫氰酸铵和硫代硫酸铵。 回收产品硫磺及盐的 纯度和收率均高于现有技术, 带来可观的经济效益。 并且整个生产过程无污染, 最终处理产 品均可利用和排放后对环境无污染, 达到了一举多得、 事半功倍的效果。
本发明的目的是这样实现的: 一种处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理 和废液处理, 其特征在于:
硫膏处理:
步骤 1 : 溶硫除杂质: 硫膏与溶剂四氯乙烯按重量比 1 : 4〜1 : 15在溶解釜内搅拌混合后, 升温至 90〜110°C,保持此温度 30〜60分钟后通过分水装置将四氯乙烯上层含盐 水相分出, 进入废液处理步骤; 将剩余有机相进行热过滤操作得含硫的四氯乙烯 滤液和少量含有粉煤灰和无机杂质的粉煤灰滤饼; 粉煤灰滤饼用于掺入煤中燃 ψ¾暑 步骤 2: 脱色除杂: 将步骤 1的含硫四氯乙烯溶液置于脱色釜中保温 100〜110°C下加入 0. 02〜0. l% (w/w)的活性炭脱色 30〜60分钟后, 进行热过滤得脱色后含硫四氯乙 烯滤液和活性炭滤饼; 活性炭滤饼送专业回收企业再生处理;
步骤 3: 降温析晶: 将步骤 2含硫四氯乙烯滤液转入结晶釜中缓慢降温至 20〜30°C, 降 温速度控制在 30〜40°C/h,随温度降低, 硫磺大量析出, 进行离心操作后得硫磺 晶体和含少量硫磺的四氯乙烯滤液, 含少量硫磺的四氯乙烯滤液返回至步骤 1循
环使用;
步骤 4: 产品干燥: 将步骤 3硫磺晶体于常压下热风干燥, 温度 80〜100°C, 时间 l〜2h, 得纯度 > 99%硫磺产品; 热风带出的溶剂通过管道进入冷凝装置冷凝后返回至步 骤 1循环使用;
废液处理:
步骤 1 : 脱色除杂: 硫膏处理步骤 1分出的含盐水相中加入 0. l〜l% (w/w)活性炭于 80〜 100°C下保温 30〜60分钟, 然后进行过滤操作得脱色后含盐滤液和活性炭滤饼, 活性炭滤饼送专业回收企业再生处理;
步骤 2: 含盐滤液减压浓缩: 将步骤 1含盐滤液于 60〜80°C, 真空度 70〜90mmHg下减压 浓缩至比重为 1. 18〜1. 26 (g/ml)时停止浓缩, 获得含水量为 10〜30% (w/w) 的 浓缩含盐滤液, 将浓缩含盐滤液保温状态下转至析晶釜, 浓缩过程蒸出的含氨水 溶液留待后续步骤使用和补充至焦炉煤气脱硫系统中;
步骤 3: 硫氰酸铵分离: 按照 4〜10L/kg比例, 将 95%乙醇与浓缩含盐滤液加入析晶釜中 混合搅拌后冷却至 10〜30°C, 然后进行离心操作, 得含硫氰酸铵乙醇滤液和含硫 代硫酸铵与硫酸铵混合盐的滤饼;
步骤 4: 硫氰酸铵乙醇滤液浓缩析晶: 将步骤 3硫氰酸铵乙醇滤液于常压下蒸出含水乙醇 至比重为 1. 2〜1. 25 (g/ml)时停止浓缩, 降至 10〜30°C后进行离心操作, 得硫氰 酸铵晶体和硫氰酸铵乙醇饱和滤液,硫氰酸铵乙醇饱和滤液返回至步骤 3 中循环 利用, 蒸出含水乙醇经精熘装置分离出乙醇后返回步骤 3中循环使用; 步骤 5: 硫氰酸铵产品干燥: 将步骤 4所得硫氰酸铵晶体热风干燥, 温度 80〜100°C, 时 间 l〜2h, 得纯度 > 99%的硫氰酸铵产品;
步骤 6: 硫酸铵分离: 按照 3〜5L/kg的比例, 将步骤 2中蒸出的含氨水溶液与步骤 3含 硫代硫酸铵与硫酸铵混合盐的滤饼加入反应釜中混合, 然后按照氢氧化钙 /硫酸 铵的摩尔比为 1 : 1〜1. 2: 1 的比例加入氢氧化钙粉末; 继续搅拌 30〜60分钟, 离心过滤, 得含硫代硫酸铵滤液和硫酸钙滤饼; 硫酸钙滤饼在 100〜12(TC下干燥 1〜2小时后得纯度 > 98%的硫酸钙产品;
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6硫代硫酸铵滤液于 60〜80°C, 真空度 70〜 90mmHg下减压浓缩至比重为 1. 2〜1. 24 (g/ml)时停止浓缩, 保温转移至析晶釜, 冷却至 10〜30°C后进行离心操作,得含硫代硫酸铵的滤饼和含硫代硫酸铵的饱和 滤液; 浓缩过程蒸出的含氨水溶液补充至焦炉煤气脱硫系统中; 含硫代硫酸铵的
饱和滤液返回步骤 6滤液中继续浓缩析晶;
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 50〜80°C下热风干燥 1〜
2小时得纯度 > 98%的硫代硫酸酸铵产品。
与现有技术相比, 本发明的有益效果是:
( 1 ) 处理彻底, 无二次污染, 工艺清洁环保
本发明的提纯工艺路线目前尚无公开的报道与之相同, 该提纯过程无废水废气废渣 的产生,硫磺提纯所用有机溶剂循环使用, 在确保生产设备密封安全无泄漏的条件 下, 可确保生产环节清洁生产。传统的脱硫副产品硫膏及其废液提纯工艺所使用的 梯度浓缩结晶法产生混盐量大,容易造成二次污染。本发明在处理硫膏及其废液时, 产品回收利用率高, 无混盐和废水排放, 蒸发冷凝水可返回至焦化脱硫工序, 相对 现有技术处理工艺,既回收了高纯度硫磺、硫氰酸铵、硫代硫酸酸铵和硫酸钙产品, 也无三废排放, 清洁环保。
( 2 ) 适应能力强, 生产弹性大:
相比现有技术的硫磺提纯技术, 本发明的应用不受硫磺膏中成分的限制, 在提取硫 磺的同时将硫膏处理废液引入自主创新的脱硫废液提盐工艺中, 从而避免了废水对 环境的进一步污染。而对于脱硫废液的提盐工艺,传统的梯度结晶法对废液中 SCN―, SO/—, S203 2—几种离子的浓度关系依赖性大, 回收产品的品质难以保证, 处理效果不 够稳定。 另一方面, 传统方法在处理大量脱硫废液时, 由于产品质量不高, 附加值 有限, 导致综合经济效益较低, 产品收益难以弥补处理成本。 本发明首次利用不同 盐在有机溶剂 /水中溶解度差异, 将三种主要铵盐完全分开, 避免无使用价值的混 盐产生, 避免了二次污染。 同时可随时根据废水成分变化, 对工艺操作条件进行调 整, 处理工艺弹性大, 适应性强, 综合经济效益高。
( 3 ) 资源利用率高:
本发明采用独创的新工艺实现了将脱硫废液中铵盐全组分的综合利用, 尤其是高 附加值硫代硫酸铵的提取方法。硫膏中单质硫回收率达到 98%以上,硫膏中另一主 要成分一脱硫废水进一步提取硫盐, 废液提盐产出产品多, 三种铵盐完全分离, 避免混盐产生, 回收产品纯度高 ( > 98%), 可进一步用于其它精细化工行业, 因 此资源利用率高, 回收率高。
附图说明
附图 1是本发明脱硫硫膏处理工艺流程图
附图 2是本发明脱硫硫膏废液处理工艺流程图
具体实施方式
以下结合附图 1、 附图 2和具体实施例详细介绍本发明的实施过程和技术效果, 以便清 楚地理解本发明的技术内容和发明实质, 但不构成对本发明权利保护范围的任何限定。
实施例 1 :
参照图 1, 焦炉煤气脱硫脱氰副产硫膏 1000kg (经检测其成分含量约为硫磺 42%, 硫盐 (硫代硫酸铵、 硫氰酸铵、 硫酸铵) 13%,煤灰等固体杂质 3%,水分 40%,脱硫催化剂 0. 02%,萘 等少量煤焦油成分 300ppm , NH31. 2%)
硫膏处理步骤:
步骤 1 : 溶硫除杂质: 1000kg脱硫硫膏与 8000kg四氯乙烯按重量比 1 : 8在溶解釜内搅拌 混合后, 升温至 110°C, 保持此温度 1小时后通过分水装置将四氯乙烯上层含盐 水相分出导入脱硫废液提盐工艺流程, 将剩余有机相进行保温热过滤操作得含硫 的四氯乙烯滤液及少量粉煤灰滤饼。
步骤 2:脱色除杂:将步骤 1的含硫四氯乙烯溶液加入置于脱色釜中保温 110°C下加入 4kg 活性炭 (0. 05%) 脱色 30分钟后, 进行保温热过滤得脱色后含硫四氯乙烯滤液及 活性炭滤饼 (活性炭滤饼送专业回收企业再生处理)。
步骤 3: 降温析晶: 将步骤 2滤液转入结晶釜中缓慢降温至 20°C (降温速度控制在 30°C
A) ,随温度降低, 硫磺大量析出, 将体系进行离心操作得高纯硫磺晶体及含少 量硫磺四氯乙烯滤液, 滤液再次返回至步骤 1循环使用。
步骤 4: 产品干燥: 将步骤 3硫磺产品于常压下热风干燥 (80°C热风) lh,热风带出溶剂 通过冷凝装置进行回收, 硫磺干燥后称重 340kg,纯度 > 99%。
实施例 2:
参照图 1,焦炉煤气脱硫脱氰副产硫膏 1000kg (硫磺 39%, 硫盐(硫代硫酸铵、硫氰酸铵、 硫酸铵) 14%,煤灰等固体杂质 2%,水分 43%,脱硫催化剂 0. 03%,萘等少量煤焦油成 分 400ppm , NH31. 5%)
硫膏处理步骤:
步骤 1 : 溶硫除杂质: 1000kg脱硫硫膏与 8000kg四氯乙烯按重量比 1 : 8在溶解釜内搅拌 混合后, 升温至 100°C, 保持此温度 1小时后通过分水装置将四氯乙烯上层含盐 水相分出导入脱硫废液提盐工艺流程, 将剩余有机相进行保温热过滤操作得含硫 的四氯乙烯滤液及少量粉煤灰滤饼。
步骤 2:脱色除杂:将步骤 1的含硫四氯乙烯溶液加入置于脱色釜中保温 100°C下加入 3kg 活性炭 (0. 04%) 脱色 45分钟后, 进行保温热过滤得脱色后含硫四氯乙烯滤液及 活性炭滤饼 (活性炭滤饼送专业回收企业再生处理)。
步骤 3: 降温析晶: 将步骤 2滤液转入结晶釜中缓慢降温至 25°C (降温速度控制在 40°C
A) ,随温度降低, 硫磺大量析出, 将体系进行离心操作得高纯硫磺晶体及含少 量硫磺四氯乙烯滤液, 滤液再次返回至步骤 1循环使用。
步骤 4: 产品干燥: 将步骤 3硫磺产品于常压下热风干燥(100°C热风) lh,热风带出溶剂 通过冷凝装置进行回收, 硫磺干燥后称重 304kg,纯度 > 99%。
实施例 3: 参照图 2 废液处理:
来自焦炉煤气脱硫脱氰硫膏中废液 1000kg (硫氰酸铵含量 13%, 硫代硫酸铵含量 9%, 酸铵含量 8%)
步骤 1 : 脱色除杂: 脱硫废液中加入 0. l% (w/w)活性炭 1kg于 100°C下保温 30分钟后进行 过滤操作得脱色后滤液及活性炭滤饼 (活性炭滤饼送专业回收企业再生处理)。 步骤 2: 脱色液减压浓缩: 将步骤 1滤液于 70°C (真空度 70mmHg) 下减压浓缩至体系体 系比重为 1. 24 (g/ml)时停止浓缩 (含水量为 18% (w/w) ), 将浓缩后体系保温转 移至析晶釜, 蒸出水溶液 (含氨水 0. 4% (w/w) ) 补充至焦炉煤气脱硫系统中。 步骤 3: 硫氰酸铵分离: 将 2900L的 95%乙醇按照 8L/kg (步骤 2中浓缩液) 的比例于析 晶釜中混合搅拌后冷却至 20°C后进行离心操作得含硫氰酸铵的滤液及含硫代硫 酸铵与硫酸铵混合盐的滤饼。
步骤 4: 硫氰酸铵乙醇溶液浓缩析晶: 将步骤 3滤液于常压下蒸出含水乙醇至体系比重为
1. 22 (g/ml)时停止浓缩,体系降至 20°C后进行离心操作得硫氰酸铵晶体及硫氰酸 铵饱和滤液,硫氰酸铵饱和滤液再次返回至步骤 3 中循环利用, 蒸出含水乙醇经 精熘装置分离出乙醇后再次加入步骤 3中循环使用。
步骤 5: 硫氰酸铵产品干燥: 将步骤 4所得硫氰酸铵产品于 80°C热风干燥 lh得 105kg纯 度> 99%的硫氰酸铵产品。
步骤 6:硫酸铵分离:将步骤 3滤饼与 850kg步骤 2中蒸出的水溶液(含氨水 0. 4% (w/w) ) 按照 5L/kg的比例于反应釜中混合后加入 44kg氢氧化钙粉末 (加入比例为氢氧 化钙 /硫酸铵的摩尔比为 1 : 1. 1 ),继续搅拌 30分钟后离心过滤得含硫代硫酸铵滤
液及硫酸钙滤饼。 硫酸钙 100°C下干燥 2小时得 70kg,纯度 > 98%。
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6滤液于 70°C (真空度 70mmHg) 下减压浓缩 至体系至体系比重为 1. 22 (g/ml)时停止浓缩, 将浓缩后体系保温转移至析晶釜, 冷却至 10°C后进行离心操作得含硫代硫酸铵的滤饼及含硫代硫酸铵的饱和滤液。 蒸出水溶液 (含氨水 0. 4% (w/w) ) 补充至焦炉煤气脱硫系统中。 含硫代硫酸铵的 饱和滤液再次加入至步骤 6滤液中循环利用。
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 60°C下热风干燥 2小时 得 76kg,纯度 > 98%的硫代硫酸酸铵产品。
实施例 4: 参照图 2, 来自焦炉煤气脱硫脱氰硫膏中废液 1000kg (硫氰酸铵含量 15%, 硫代硫酸铵含量 6%, 硫酸铵含量 9%)。
步骤 1 : 脱色除杂: 脱硫废液中加入 0. 5% (w/w)活性炭 5kg于 80°C下保温 45分钟后进行 过滤操作得脱色后滤液及活性炭滤饼 (活性炭滤饼送专业回收企业再生处理)。 步骤 2: 脱色液减压浓缩: 将步骤 1滤液于 80°C (真空度 90mmHg) 下减压浓缩至体系体 系比重为 1. 22 (g/ml)时停止浓缩 (含水量为 20% (w/w) ), 将浓缩后体系保温转 移至析晶釜, 蒸出水溶液 (含氨水 0. 4%) 补充至焦炉煤气脱硫系统中。
步骤 3: 硫氰酸铵分离: 将 3750L的 95%乙醇按照 10L/kg (步骤 2中浓缩液) 的比例于析 晶釜中混合搅拌后冷却至 30°C后进行离心操作得含硫氰酸铵的滤液及含硫代硫 酸铵与硫酸铵混合盐的滤饼。
步骤 4: 硫氰酸铵乙醇溶液浓缩析晶: 将步骤 3滤液于常压下蒸出含水乙醇至体系比重为
1. 24 (g/ml)时停止浓缩,体系降至 20°C后进行离心操作得硫氰酸铵晶体及硫氰酸 铵饱和滤液,硫氰酸铵饱和滤液再次返回至步骤 3 中循环利用, 蒸出含水乙醇经 精熘装置分离出乙醇后再次加入步骤 3中循环使用。
步骤 5: 硫氰酸铵产品干燥: 将步骤 4所得硫氰酸铵产品于 80°C热风干燥 lh得 125kg纯 度> 99%的硫氰酸铵产品。
步骤 6:硫酸铵分离:将步骤 3滤饼与 600kg步骤 2中蒸出的水溶液(含氨水 0. 4% (w/w) ) 按照 3L/kg的比例于反应釜中混合后加入 49kg氢氧化钙粉末 (加入比例为氢氧 化钙 /硫酸铵的摩尔比为 1 : 1 ),继续搅拌 45分钟后离心过滤得含硫代硫酸铵滤液 及硫酸钙滤饼。 硫酸钙 120°C下干燥 2小时得 75kg,纯度 > 98%。
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6滤液于 80°C (真空度 90mmHg) 下减压浓缩 至体系至体系比重为 1. 23 (g/ml)时停止浓缩, 将浓缩后体系保温转移至析晶釜,
冷却至 20°C后进行离心操作得含硫代硫酸铵的滤饼及含硫代硫酸铵的饱和滤液。 蒸出水溶液 (含氨水 0. 4% (w/w) ) 补充至焦炉煤气脱硫系统中。 含硫代硫酸铵的 饱和滤液再次加入至步骤 6滤液中循环利用。
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 80°C下热风干燥 2小时 得 48kg,纯度 > 98%的硫代硫酸酸铵产品。
Claims
1. 一种处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理和废液处理, 其特征在于: 硫膏处理:
步骤 1 : 溶硫除杂质: 硫膏与溶剂四氯乙烯按重量比 1 : 4〜1 : 15在溶解釜内搅拌混合后, 升温至 90〜110°C,保持此温度 30〜60分钟后通过分水装置将四氯乙烯上层含盐 水相分出, 进入废液处理步骤; 将剩余有机相进行热过滤操作得含硫的四氯乙烯 滤液和少量含有粉煤灰和无机杂质的粉煤灰滤饼; 粉煤灰滤饼用于掺入煤中燃 ψ¾暑 步骤 2: 脱色除杂: 将步骤 1的含硫四氯乙烯溶液置于脱色釜中保温 100〜110°C下加入 0. 02〜0. l% (w/w)的活性炭脱色 30〜60分钟后, 进行热过滤得脱色后含硫四氯乙 烯滤液和活性炭滤饼; 活性炭滤饼送专业回收企业再生处理;
步骤 3: 降温析晶: 将步骤 2含硫四氯乙烯滤液转入结晶釜中缓慢降温至 20〜30°C, 降 温速度控制在 30〜40°C/h,随温度降低, 硫磺大量析出, 进行离心操作后得硫磺 晶体和含少量硫磺的四氯乙烯滤液, 含少量硫磺的四氯乙烯滤液返回至步骤 1循 环使用;
步骤 4: 产品干燥: 将步骤 3硫磺晶体于常压下热风干燥, 温度 80〜100°C, 时间 l〜2h, 得纯度 > 99%硫磺产品; 热风带出的溶剂通过管道进入冷凝装置冷凝后返回至步 骤 1循环使用;
废液处理:
步骤 1 : 脱色除杂: 硫膏处理步骤 1分出的含盐水相中加入 0. l〜l% (w/w)活性炭于 80〜
100°C下保温 30〜60分钟, 然后进行过滤操作得脱色后含盐滤液和活性炭滤饼, 活性炭滤饼送专业回收企业再生处理;
步骤 2: 含盐滤液减压浓缩: 将步骤 1含盐滤液于 60〜80°C, 真空度 70〜90mmHg下减压 浓缩至比重为 1. 18〜1. 26 (g/ml)时停止浓缩, 获得含水量为 10〜30% (w/w) 的 浓缩含盐滤液, 将浓缩含盐滤液保温状态下转至析晶釜, 浓缩过程蒸出的含氨水 溶液留待后续步骤使用和补充至焦炉煤气脱硫系统中;
步骤 3: 硫氰酸铵分离: 按照 4〜10L/kg比例, 将 95%乙醇与浓缩含盐滤液加入析晶釜中 混合搅拌后冷却至 10〜30°C, 然后进行离心操作, 得含硫氰酸铵乙醇滤液和含硫 代硫酸铵与硫酸铵混合盐的滤饼;
步骤 4: 硫氰酸铵乙醇滤液浓缩析晶: 将步骤 3硫氰酸铵乙醇滤液于常压下蒸出含水乙醇 至比重为 1. 2〜1. 25 (g/ml)时停止浓缩, 降至 10〜30°C后进行离心操作, 得硫氰
酸铵晶体和硫氰酸铵乙醇饱和滤液,硫氰酸铵乙醇饱和滤液返回至步骤 3 中循环 利用, 蒸出含水乙醇经精熘装置分离出乙醇后返回步骤 3中循环使用; 步骤 5: 硫氰酸铵产品干燥: 将步骤 4所得硫氰酸铵晶体热风干燥, 温度 80〜100°C, 时 间 l〜2h, 得纯度 > 99%的硫氰酸铵产品;
步骤 6: 硫酸铵分离: 按照 3〜5L/kg的比例, 将步骤 2中蒸出的含氨水溶液与步骤 3含 硫代硫酸铵与硫酸铵混合盐的滤饼加入反应釜中混合, 然后按照氢氧化钙 /硫酸 铵的摩尔比为 1 : 1〜1. 2: 1 的比例加入氢氧化钙粉末; 继续搅拌 30〜60分钟, 离心过滤, 得含硫代硫酸铵滤液和硫酸钙滤饼; 硫酸钙滤饼在 100〜12(TC下干燥 1〜2小时后得纯度 > 98%的硫酸钙产品;
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6硫代硫酸铵滤液于 60〜80°C, 真空度 70〜 90mmHg下减压浓缩至比重为 1. 2〜1. 24 (g/ml)时停止浓缩, 保温转移至析晶釜, 冷却至 10〜30°C后进行离心操作,得含硫代硫酸铵的滤饼和含硫代硫酸铵的饱和 滤液; 浓缩过程蒸出的含氨水溶液补充至焦炉煤气脱硫系统中; 含硫代硫酸铵的 饱和滤液返回步骤 6滤液中继续浓缩析晶;
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 50〜80°C下热风干燥 1〜 2小时得纯度 > 98%的硫代硫酸酸铵产品。
2.根据权利要求 1 所述的处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理和废液处 理, 其特征在于:
硫膏处理:
步骤 1 : 溶硫除杂质: 硫膏与溶剂四氯乙烯按重量比 1 : 8在溶解釜内搅拌混合后, 升温至
110°C, 保持此温度 60分钟后通过分水装置将四氯乙烯上层含盐水相分出, 进入 废液处理步骤; 将剩余有机相进行热过滤操作得含硫的四氯乙烯滤液和少量含有 粉煤灰和无机杂质的粉煤灰滤饼; 粉煤灰滤饼用于掺入煤中燃烧;
步骤 2 : 脱色除杂: 将步骤 1 的含硫四氯乙烯溶液置于脱色釜中保温 110 °C下加入 0. 05% (w/w)的活性炭脱色 30 分钟后, 进行热过滤得脱色后含硫四氯乙烯滤液和 活性炭滤饼; 活性炭滤饼送专业回收企业再生处理;
步骤 3: 降温析晶: 将步骤 2含硫四氯乙烯滤液转入结晶釜中缓慢降温至 20°C, 降温速 度控制在 30°C/h,随温度降低, 硫磺大量析出, 进行离心操作后得硫磺晶体和含 少量硫磺的四氯乙烯滤液, 含少量硫磺的四氯乙烯滤液返回至步骤 1循环使用; 步骤 4: 产品干燥: 将步骤 3硫磺晶体于常压下热风干燥, 温度 80°C, 时间 lh,得纯度>
99%硫磺产品; 热风带出的溶剂通过管道进入冷凝装置冷凝后返回至步骤 1 循环 使用。
3. 根据权利要求 1所述的处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理和废液处 理, 其特征在于:
硫膏处理:
步骤 1 : 溶硫除杂质: 硫膏与溶剂四氯乙烯按重量比 1 : 8在溶解釜内搅拌混合后, 升温至
110°C, 保持此温度 60分钟后通过分水装置将四氯乙烯上层含盐水相分出, 进入 废液处理步骤; 将剩余有机相进行热过滤操作得含硫的四氯乙烯滤液和少量含有 粉煤灰和无机杂质的粉煤灰滤饼; 粉煤灰滤饼用于掺入煤中燃烧;
步骤 2 : 脱色除杂: 将步骤 1 的含硫四氯乙烯溶液置于脱色釜中保温 100 °C下加入 0. 04% (w/w)的活性炭脱色 45 分钟后, 进行热过滤得脱色后含硫四氯乙烯滤液和 活性炭滤饼; 活性炭滤饼送专业回收企业再生处理;
步骤 3: 降温析晶: 将步骤 2含硫四氯乙烯滤液转入结晶釜中缓慢降温至 25°C, 降温速 度控制在 40°C/h,随温度降低, 硫磺大量析出, 进行离心操作后得硫磺晶体和含 少量硫磺的四氯乙烯滤液, 含少量硫磺的四氯乙烯滤液返回至步骤 1循环使用; 步骤 4: 产品干燥: 将步骤 3硫磺晶体于常压下热风干燥, 温度 100°C, 时间 lh,得纯度
> 99¾¾¾磺产品; 热风带出的溶剂通过管道进入冷凝装置冷凝后返回至步骤 1 循 环使用。
4. 根据权利要求 1所述的处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理和废液处 理, 其特征在于:
废液处理:
步骤 1 : 脱色除杂: 硫膏处理步骤 1分出的含盐水相中加入 0. l% (w/w)活性炭于 100°C下 保温 30分钟, 然后进行过滤操作得脱色后含盐滤液和活性炭滤饼, 活性炭滤饼 送专业回收企业再生处理;
步骤 2: 含盐滤液减压浓缩: 将步骤 1含盐滤液于 70°C, 真空度 70mmHg下减压浓缩至比 重为 1. 24 (g/ml)时停止浓缩, 获得含水量为 18% (w/w) 的浓缩含盐滤液, 将浓 缩含盐滤液保温状态下转至析晶釜, 浓缩过程蒸出的含氨水 0. 4% (w/w)的水溶液 留待后续步骤使用和补充至焦炉煤气脱硫系统中;
步骤 3: 硫氰酸铵分离: 按照 8L/kg比例, 将 95%乙醇与浓缩含盐滤液加入析晶釜中混合 搅拌后冷却至 20°C, 然后进行离心操作, 得含硫氰酸铵乙醇滤液和含硫代硫酸铵
与硫酸铵混合盐的滤饼;
步骤 4: 硫氰酸铵乙醇滤液浓缩析晶: 将步骤 3硫氰酸铵乙醇滤液于常压下蒸出含水乙醇 至比重为 1. 22 (g/ml)时停止浓缩, 降至 20°C后进行离心操作, 得硫氰酸铵晶体 和硫氰酸铵乙醇饱和滤液,硫氰酸铵乙醇饱和滤液返回至步骤 3 中循环利用, 蒸 出含水乙醇经精熘装置分离出乙醇后返回步骤 3中循环使用;
步骤 5: 硫氰酸铵产品干燥:将步骤 4所得硫氰酸铵晶体热风干燥, 温度 80°C, 时间 lh, 得纯度 > 99%的硫氰酸铵产品;
步骤 6: 硫酸铵分离: 按照 5L/kg的比例, 将步骤 2中蒸出的含氨水 0. 4% (w/w)的水溶液 与步骤 3含硫代硫酸铵与硫酸铵混合盐的滤饼加入反应釜中混合, 然后按照氢氧 化钙 /硫酸铵的摩尔比为 1. 2 : 1的比例加入氢氧化钙粉末; 继续搅拌 30分钟, 离 心过滤, 得含硫代硫酸铵滤液和硫酸钙滤饼; 硫酸钙滤饼在 100°C下干燥 2小时 后得纯度 > 98%的硫酸钙产品;
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6硫代硫酸铵滤液于 70°C, 真空度 70mmHg下 减压浓缩至比重为 1. 22 (g/ml)时停止浓缩, 保温转移至析晶釜, 冷却至 10°C后 进行离心操作, 得含硫代硫酸铵的滤饼和含硫代硫酸铵的饱和滤液; 浓缩过程蒸 出的含氨水 0. 4% (w/w)的水溶液补充至焦炉煤气脱硫系统中; 含硫代硫酸铵的饱 和滤液返回步骤 6滤液中继续浓缩析晶;
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 60°C下热风干燥 2小时 得纯度 > 98%的硫代硫酸酸铵产品。
5. 根据权利要求 1所述的处理焦炉煤气脱硫副产品硫膏的方法, 包括硫膏处理和废液处 理, 其特征在于:
废液处理:
步骤 1 : 脱色除杂: 硫膏处理步骤 1分出的含盐水相中加入 0. 5% (w/w)活性炭于 80°C下保 温 45分钟, 然后进行过滤操作得脱色后含盐滤液和活性炭滤饼, 活性炭滤饼送 专业回收企业再生处理;
步骤 2: 含盐滤液减压浓缩: 将步骤 1含盐滤液于 80°C, 真空度 90mmHg下减压浓缩至比 重为 1. 22 (g/ml)时停止浓缩, 获得含水量为 20% (w/w) 的浓缩含盐滤液, 将浓 缩含盐滤液保温状态下转至析晶釜, 浓缩过程蒸出的含氨水 0. 4% (w/w) 的水溶 液留待后续步骤使用和补充至焦炉煤气脱硫系统中;
步骤 3: 硫氰酸铵分离: 按照 10L/kg比例, 将 95%乙醇与浓缩含盐滤液加入析晶釜中混
合搅拌后冷却至 30°C, 然后进行离心操作, 得含硫氰酸铵乙醇滤液和含硫代硫酸 铵与硫酸铵混合盐的滤饼;
步骤 4: 硫氰酸铵乙醇滤液浓缩析晶: 将步骤 3硫氰酸铵乙醇滤液于常压下蒸出含水乙醇 至比重为 1. 24 (g/ml)时停止浓缩, 降至 20°C后进行离心操作, 得硫氰酸铵晶体 和硫氰酸铵乙醇饱和滤液,硫氰酸铵乙醇饱和滤液返回至步骤 3 中循环利用, 蒸 出含水乙醇经精熘装置分离出乙醇后返回步骤 3中循环使用;
步骤 5: 硫氰酸铵产品干燥:将步骤 4所得硫氰酸铵晶体热风干燥, 温度 80°C, 时间 lh, 得纯度 > 99%的硫氰酸铵产品;
步骤 6: 硫酸铵分离: 按照 3L/kg的比例, 将步骤 2中蒸出的含氨水 0. 4% (w/w)的水溶液 与步骤 3含硫代硫酸铵与硫酸铵混合盐的滤饼加入反应釜中混合, 然后按照氢氧 化钙 /硫酸铵的摩尔比为 1 : 1的比例加入氢氧化钙粉末; 继续搅拌 45分钟, 离心 过滤, 得含硫代硫酸铵滤液和硫酸钙滤饼; 硫酸钙滤饼在 120°C下干燥 2小时后 得纯度 > 98%的硫酸钙产品;
步骤 7: 硫代硫酸铵滤液浓缩析晶: 将步骤 6硫代硫酸铵滤液于 80°C, 真空度 90mmHg下 减压浓缩至比重为 1. 23 (g/ml)时停止浓缩, 保温转移至析晶釜, 冷却至 20°C后 进行离心操作, 得含硫代硫酸铵的滤饼和含硫代硫酸铵的饱和滤液; 浓缩过程蒸 出的含氨水 0. 4% (w/w)的水溶液补充至焦炉煤气脱硫系统中; 含硫代硫酸铵的饱 和滤液返回步骤 6滤液中继续浓缩析晶;
步骤 8: 硫代硫酸铵产品干燥: 将步骤 7硫代硫酸铵滤饼于常压 80°C下热风干燥 2小时 得纯度 > 98%的硫代硫酸酸铵产品。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310217192.7 | 2013-06-04 | ||
CN201310217192.7A CN103264991B (zh) | 2013-06-04 | 2013-06-04 | 一种处理焦炉煤气脱硫副产品硫膏的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014194791A1 true WO2014194791A1 (zh) | 2014-12-11 |
Family
ID=49008671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/078861 WO2014194791A1 (zh) | 2013-06-04 | 2014-05-30 | 一种处理焦炉煤气脱硫副产品硫膏的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103264991B (zh) |
WO (1) | WO2014194791A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103264991B (zh) * | 2013-06-04 | 2014-10-08 | 枣庄德信环保技术有限公司 | 一种处理焦炉煤气脱硫副产品硫膏的方法 |
CN103832981B (zh) * | 2014-03-24 | 2016-08-17 | 武汉理工大学 | 一种粗硫磺的提纯方法 |
CN106006569B (zh) * | 2016-05-16 | 2017-11-10 | 太原理工大学 | 一种氨法湿式脱硫工艺副产物硫膏的提纯工艺 |
CN108423691A (zh) * | 2018-06-07 | 2018-08-21 | 江苏燎原环保科技股份有限公司 | 一种从hpf脱硫废液中提取硫氰酸钠的方法 |
CN112441609B (zh) * | 2020-12-16 | 2022-10-21 | 湘潭大学 | 一种焦化脱硫废杂盐资源化处置的方法 |
CN114655933A (zh) * | 2022-03-04 | 2022-06-24 | 宁波钢铁有限公司 | 一种炼焦废液的处理工艺及处理系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB858056A (en) * | 1957-03-05 | 1961-01-04 | American Sulphur And Refining | Solvent extraction of sulphur |
CN101306885A (zh) * | 2008-06-30 | 2008-11-19 | 南京工业大学 | 一种焦化含硫废水的资源化处理方法 |
CN101457162A (zh) * | 2007-12-12 | 2009-06-17 | 鞍山立信焦耐工程技术有限公司 | 以氨为碱源的湿式吸收法焦炉煤气脱硫脱氰工艺 |
CN102267778A (zh) * | 2010-06-04 | 2011-12-07 | 中国科学院过程工程研究所 | 一种焦炉煤气脱硫脱氰废液的资源化方法 |
CN103264991A (zh) * | 2013-06-04 | 2013-08-28 | 枣庄德信环保技术有限公司 | 一种处理焦炉煤气脱硫副产品硫膏的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4104131A (en) * | 1976-07-08 | 1978-08-01 | United States Steel Corporation | Process for separating ammonia and acid gases from waste waters containing fixed ammonia salts |
CN102424401B (zh) * | 2011-08-22 | 2013-06-12 | 宜兴市燎原化工有限公司 | 一种利用焦炉煤气脱硫脱氰废水回收硫氰酸盐的方法 |
CN102976361A (zh) * | 2012-12-10 | 2013-03-20 | 北京旭阳化工技术研究院有限公司 | 一种从焦化脱硫脱氰废液中提取高纯度硫氰酸铵和硫酸铵的方法 |
CN102976357B (zh) * | 2012-12-28 | 2014-08-13 | 安徽工业大学 | 一种氧化法从氨法脱硫废液中提取硫酸铵的方法 |
-
2013
- 2013-06-04 CN CN201310217192.7A patent/CN103264991B/zh active Active
-
2014
- 2014-05-30 WO PCT/CN2014/078861 patent/WO2014194791A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB858056A (en) * | 1957-03-05 | 1961-01-04 | American Sulphur And Refining | Solvent extraction of sulphur |
CN101457162A (zh) * | 2007-12-12 | 2009-06-17 | 鞍山立信焦耐工程技术有限公司 | 以氨为碱源的湿式吸收法焦炉煤气脱硫脱氰工艺 |
CN101306885A (zh) * | 2008-06-30 | 2008-11-19 | 南京工业大学 | 一种焦化含硫废水的资源化处理方法 |
CN102267778A (zh) * | 2010-06-04 | 2011-12-07 | 中国科学院过程工程研究所 | 一种焦炉煤气脱硫脱氰废液的资源化方法 |
CN103264991A (zh) * | 2013-06-04 | 2013-08-28 | 枣庄德信环保技术有限公司 | 一种处理焦炉煤气脱硫副产品硫膏的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103264991A (zh) | 2013-08-28 |
CN103264991B (zh) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7258093B2 (ja) | ケイ酸塩鉱物からのリチウムの回収 | |
WO2014194790A1 (zh) | 一种从焦炉煤气脱硫含盐废液中提取两种副盐的方法 | |
CN102161541B (zh) | 一种从焦化脱硫废液中提盐的方法及其专用装置 | |
WO2014194791A1 (zh) | 一种处理焦炉煤气脱硫副产品硫膏的方法 | |
CN113105138B (zh) | 垃圾焚烧飞灰水洗脱氯和水洗液蒸发分质结晶的处理方法及系统 | |
JP5800436B2 (ja) | ホウ酸の回収方法および回収装置 | |
CN112919499A (zh) | 一种碳酸氢钠干法脱硫灰资源化处理的方法 | |
CN101885498A (zh) | 一种高纯硫酸镁的制备方法 | |
CN101481091A (zh) | 一种从烟气生物脱硫污泥中回收和提纯单质硫的方法 | |
CN113979411A (zh) | 焦化脱硫废盐及粗硫磺制酸的工艺 | |
CN215391554U (zh) | 一种废盐资源化处理系统 | |
CN103936047A (zh) | 一种无水氯化铝的制备方法 | |
CN116375055A (zh) | 一种以工业废盐生产小苏打和氯化铵的方法 | |
CN113754167B (zh) | 一种从焦化废水中回收氨的方法 | |
CN214693342U (zh) | 一种含有机物的工业盐混盐处理系统 | |
CN110642707B (zh) | 一种低成本环保级水杨酸钠的提纯生产方法 | |
CN113510140A (zh) | 一种废盐资源化处理系统及方法 | |
CN1740128A (zh) | 一种用二氧化硫酸化法生产粗酚、联产无水亚硫酸钠的方法 | |
CN114772612A (zh) | 一种灰飞资源化利用处理工艺 | |
CN102351149A (zh) | 氯化氢中氯气的去除和回收系统 | |
CN202089844U (zh) | 一种从焦化脱硫废液中提盐的方法的专用装置 | |
CN217459268U (zh) | 垃圾焚烧飞灰水洗脱氯和水洗液蒸发分质结晶的处理系统 | |
CN112079366B (zh) | 从低温烟气氧化法脱硝吸收液分离回收硝酸钠和硫酸钠的方法 | |
CN114887467B (zh) | 气相二氧化硫尾气处理系统及处理方法 | |
CN221965296U (zh) | 一种工业含钠危废杂盐处置系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14807550 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14807550 Country of ref document: EP Kind code of ref document: A1 |