WO2016088830A1 - 弾性波装置の製造方法及び弾性波装置 - Google Patents

弾性波装置の製造方法及び弾性波装置 Download PDF

Info

Publication number
WO2016088830A1
WO2016088830A1 PCT/JP2015/083998 JP2015083998W WO2016088830A1 WO 2016088830 A1 WO2016088830 A1 WO 2016088830A1 JP 2015083998 W JP2015083998 W JP 2015083998W WO 2016088830 A1 WO2016088830 A1 WO 2016088830A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
main surface
dissipation film
wave device
piezoelectric substrate
Prior art date
Application number
PCT/JP2015/083998
Other languages
English (en)
French (fr)
Inventor
大輔 関家
拓 菊知
大志 田中
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201590001126.9U priority Critical patent/CN206790453U/zh
Priority to KR1020177014262A priority patent/KR101987712B1/ko
Publication of WO2016088830A1 publication Critical patent/WO2016088830A1/ja
Priority to US15/586,315 priority patent/US10601389B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • H03H3/10Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02834Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/058Holders; Supports for surface acoustic wave devices
    • H03H9/059Holders; Supports for surface acoustic wave devices consisting of mounting pads or bumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/88Mounts; Supports; Enclosures; Casings
    • H10N30/883Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings

Definitions

  • the present invention relates to a method for manufacturing an elastic wave device and an elastic wave device.
  • the mother substrate is separated into piezoelectric substrates for individual electronic components.
  • Patent Document 1 first, a metal film is formed on the entire upper surface of the mother substrate. Next, the mother substrate on which the metal film is formed is separated into individual piezoelectric substrates.
  • Patent Documents 2 and 3 a metal film or a conductor film is formed not only on the upper surface of the piezoelectric substrate but also on the side surface. Accordingly, in Patent Document 2, charging of the resin member in the surface acoustic wave chip is prevented. Moreover, in patent document 3, the electromagnetic wave shielding effect of an electronic component is improved.
  • the metal film may come into contact with other current-carrying parts or other electronic components, which may cause a short circuit failure.
  • An object of the present invention is to provide an elastic wave device manufacturing method and an elastic wave device that can suppress contact between the heat dissipation film and other parts or other parts by devising the shape of the heat dissipation film. It is in.
  • the method of manufacturing an acoustic wave device includes a step of providing an IDT electrode on the first main surface of a piezoelectric substrate having first and second main surfaces facing each other, and the second of the piezoelectric substrate.
  • Forming a heat dissipation film having a pair of opposing main surfaces and a side surface connecting the pair of main surfaces, and in the step of forming the heat dissipation film, the heat dissipation film includes: In any cross section along the direction connecting the pair of main surfaces, at least a part of the side surface of the heat dissipation film is located on the inner side of the outer periphery of the second main surface of the piezoelectric substrate. A heat dissipation film is formed.
  • the step of forming the heat dissipation film, of the pair of main surfaces of the heat dissipation film, the second main surface of the piezoelectric substrate in the step of forming the heat dissipation film, of the pair of main surfaces of the heat dissipation film, the second main surface of the piezoelectric substrate.
  • the heat dissipation film is formed so that the outer peripheral edge of the main surface on the far side is located inside the outer periphery of the second main surface. In this case, contact with other parts of the heat dissipation film and other components can be more effectively suppressed.
  • the outer periphery of the heat dissipation film is the second shape when viewed in plan from the second main surface side.
  • the heat dissipation film is formed so as to be located inside the outer periphery of the main surface. In this case, contact with other parts of the heat dissipation film and other parts can be more effectively suppressed.
  • the method further includes the step of obtaining a plurality of the piezoelectric substrates by dividing the mother substrate into pieces, and in the step of forming the heat dissipation film, After separating the mother substrate into pieces, the heat dissipation film is formed on the second main surface of the piezoelectric substrate.
  • the heat dissipation film is formed on the second main surface of the piezoelectric substrate.
  • the mother substrate or the second main surface of the singulated piezoelectric substrate is backed up. Grinding is performed, and the heat dissipation film is formed on the second main surface of the piezoelectric substrate after the backgrinding.
  • the heat dissipation film can be formed while performing the back grinding process.
  • the heat dissipation film is formed using a mask or a film resist.
  • a mask or a film resist By using a mask or a film resist, a heat radiation film having an arbitrary planar shape can be easily formed.
  • the area of the heat dissipation film is reduced as the distance from the second main surface of the piezoelectric substrate increases.
  • the taper is given to the heat dissipation film. In this case, the contact probability between the heat radiation film and other parts or other parts can be further reduced.
  • an elastic wave device having a WLP structure can be provided.
  • the acoustic wave device includes a piezoelectric substrate having first and second main surfaces facing each other, an IDT electrode provided on the first main surface of the piezoelectric substrate, and the piezoelectric substrate.
  • a direction of connecting the pair of main surfaces of the heat dissipation film, provided on the second main surface, including a heat dissipation film having a pair of opposing main surfaces and a side surface connecting the pair of main surfaces In an arbitrary cross section along, at least a part of the side surface of the heat dissipation film is located inside the outer periphery of the second main surface of the piezoelectric substrate.
  • an outer peripheral edge of a main surface far from the second main surface of the piezoelectric substrate is the first peripheral surface. It is located inside the outer periphery of the main surface of 2. In this case, contact with other parts and other parts can be more effectively suppressed.
  • the outer periphery of the heat dissipation film is located inside the outer periphery of the second main surface when viewed in plan from the second main surface side. Yes. In this case, contact with other parts of the heat dissipation film and other parts can be more effectively suppressed.
  • the second main surface of the piezoelectric substrate is back-grinded.
  • the acoustic wave device can be thinned.
  • the heat radiating film is tapered so that the area of the heat radiating film decreases as the distance from the second main surface of the piezoelectric substrate increases. . In this case, the contact probability between the heat radiation film and other parts or other parts can be further reduced.
  • the heat dissipation film is a dielectric film that does not include a metal film. In this case, there is no fear of a short circuit with other parts or other parts.
  • the support is made of resin and is provided so as to surround the IDT electrode;
  • a lid body made of a resin is further provided on the support so as to seal an opening surrounding the IDT electrode.
  • an elastic wave device having a WLP structure can be provided.
  • a position overlapping the IDT electrode provided on the first main surface is set.
  • the heat dissipation film is provided so as to include. In this case, the heat generated by the IDT electrode can be more effectively dissipated through the piezoelectric substrate and the heat dissipation film.
  • the acoustic wave device further includes an external terminal disposed on the first main surface of the piezoelectric substrate, and the second main surface side of the piezoelectric substrate.
  • the heat dissipation film is provided so as to include a position overlapping the external terminal. In this case, heat can be quickly dissipated from the external terminal to the heat dissipation film via the piezoelectric substrate.
  • a protective film provided to cover at least a part of the heat dissipation film is further provided. In this case, corrosion and oxidation of the heat dissipation film can be suppressed.
  • an adhesion layer provided between the heat dissipation film and the second main surface of the piezoelectric substrate is further provided. In this case, peeling of the heat dissipation film can be suppressed.
  • the method for manufacturing an acoustic wave device and the acoustic wave device according to the present invention since the shape of the heat dissipation film is devised, it is difficult for the heat dissipation film to contact other parts or other parts. Therefore, physical destruction and short circuit failure due to contact can be effectively suppressed.
  • FIG. 1A and FIG. 1B are a plan view and a schematic front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing an electrode structure on the piezoelectric substrate in the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view of the acoustic wave device according to the first embodiment of the present invention as seen from the first main surface side of the piezoelectric substrate.
  • 4 (a) to 4 (d) are schematic front sectional views for explaining a method of manufacturing the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 1A and FIG. 1B are a plan view and a schematic front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing an electrode structure on the piezoelectric substrate in the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is
  • FIG. 5 is a front cross-sectional view for explaining a step of forming a heat dissipation film in the method of manufacturing an acoustic wave device according to the first embodiment of the present invention.
  • FIG. 6A and FIG. 6B are a schematic plan view and a schematic front sectional view of an acoustic wave device according to the second embodiment of the present invention.
  • FIG. 7 is a schematic front sectional view of an acoustic wave device according to a third embodiment of the present invention.
  • FIG. 8 is a schematic front sectional view of an acoustic wave device according to a fourth embodiment of the present invention.
  • FIG. 9 is a schematic front sectional view of an acoustic wave device according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic front sectional view of an acoustic wave device according to a sixth embodiment of the present invention.
  • FIG. 11 is a schematic front sectional view of an acoustic wave device according to a
  • FIG. 1A and FIG. 1B are a plan view and a schematic front sectional view of an acoustic wave device according to a first embodiment of the present invention.
  • the elastic wave device 1 is not particularly limited, but is a surface acoustic wave device having a WLP (Wafer-level packing) structure. More specifically, the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 .
  • the piezoelectric substrate 2 may be made of a piezoelectric ceramic.
  • the piezoelectric substrate 2 has a first main surface 2a and a second main surface 2b facing each other.
  • the IDT electrode 3 is provided as an excitation electrode on the first main surface 2a.
  • a support 4 made of resin is provided so as to surround a region where the IDT electrode 3 is provided.
  • the support 4 is provided so as to have an opening from which the IDT electrode 3 is exposed.
  • an external terminal 5 is provided on the first main surface 2a.
  • the external terminal 5 is electrically connected to the IDT electrode 3.
  • the external terminal 5 is provided to electrically connect the IDT electrode 3 to the outside.
  • the IDT electrode 3 and the external terminal 5 are made of an appropriate metal or alloy.
  • a lid 6 made of resin is provided so as to seal the opening of the support 4.
  • the lid 6 has a plate shape.
  • the resin which comprises the support body 4 and the cover body 6 is not specifically limited.
  • thermosetting polyimide or epoxy resin can be used.
  • the through-hole is provided so that the support body 4 and the cover body 6 may be penetrated.
  • An under bump metal layer 7 is provided in the through hole.
  • the under bump metal layer 7 is made of an appropriate metal or alloy.
  • Metal bumps 8 are provided on the under bump metal layer 7.
  • the metal bump 8 is made of an appropriate metal or alloy such as Au or solder.
  • the heat dissipation film 9 is provided on the second main surface 2 b of the piezoelectric substrate 2.
  • the planar shape of the heat dissipation film 9 is not particularly limited, but is rectangular.
  • the heat dissipation film 9 is made of metal.
  • membrane 9 is not specifically limited, You may use materials other than a metal. That is, the heat dissipation film 9 can be formed from an appropriate material having a higher thermal conductivity than the piezoelectric substrate 2. Therefore, a dielectric film that does not contain metal may be used as the heat dissipation film 9. In that case, short circuit failure due to contact with other parts or other parts can be reliably suppressed.
  • dielectric film not containing metal examples include insulating ceramics such as alumina or plastics.
  • the characteristic of the elastic wave device 1 is that the outer periphery of the heat dissipation film 9 is located inside the outer periphery of the second main surface 2b. Accordingly, as shown in FIG. 1A, when the elastic wave device 1 is viewed in plan, a part of the second main surface 2 b exists outside the outer peripheral edge of the heat dissipation film 9. In other words, the outer peripheral edge of the heat dissipation film 9 is located with a space from the outer peripheral edge 2b1 of the second main surface 2b.
  • the heat dissipation film 9 is made of metal and has high thermal conductivity.
  • a voltage is applied to the IDT electrode 3 to excite the surface acoustic wave. Accordingly, heat is generated at the IDT electrode 3. This heat is dissipated from the heat dissipation film 9 via the piezoelectric substrate 2.
  • the heat dissipation film 9 is made of metal, but the outer peripheral edge is located inside the outer peripheral edge 2b1 of the second main surface 2b. Accordingly, when the elastic wave device 1 is handled, the heat dissipation film 9 is unlikely to come into contact with other parts or other parts. Therefore, the heat radiating film 9 is not easily broken, and even if the heat radiating film 9 is a metal having conductivity, a short circuit failure is unlikely to occur.
  • the outer peripheral edge of the heat dissipation film 9 does not necessarily need to be located inside the outer peripheral edge 2b1 of the second main surface 2b.
  • the outer peripheral edge of the heat dissipation film 9 does not necessarily need to be located inside the outer peripheral edge 2b1 of the second main surface 2b.
  • at least part of the side surface of the heat dissipation film in any cross section connecting a pair of opposing main surfaces in the heat dissipation film, at least part of the side surface of the heat dissipation film.
  • what is necessary is just to be located inside the outer periphery 2b1 of the 2nd main surface 2b of the piezoelectric substrate 2.
  • the IDT electrode 3 is sealed in a space surrounded by the piezoelectric substrate 2, the support 4, and the lid 6. Therefore, the heat generated in the IDT electrode 3 is difficult to dissipate.
  • it is strongly required to improve heat dissipation. According to this embodiment, such heat can be effectively dissipated using the heat dissipation film 9. Therefore, the present invention is more effective in the elastic wave device 1 having the WLP structure.
  • FIG. 2 is a schematic plan view showing an electrode structure on the first main surface 2a of the piezoelectric substrate 2.
  • a plurality of IDT electrodes are provided on the first main surface 2a.
  • the symbols in which X is enclosed by a rectangular frame indicate structures in which an IDT electrode and reflectors are provided on both sides of the IDT electrode, respectively. That is, the 1-port surface acoustic wave resonator 11 is formed in each of X and a region indicated by a rectangular frame surrounding X.
  • the plurality of 1-port surface acoustic wave resonators 11 are electrically connected to form a ladder type filter.
  • a plurality of external terminals 5 are provided to electrically connect the 1-port surface acoustic wave resonator 11 and the like of FIG. 2 to the outside.
  • FIG. 3 is a bottom view of the elastic wave device 1. This schematically shows only a portion constituting the 1-port surface acoustic wave resonator 11 with a broken line.
  • the alternate long and short dash line in FIG. 3 indicates the outer peripheral edge of the heat dissipation film 9 provided on the second main surface 2 b side of the piezoelectric substrate 2.
  • the heat dissipation film 9 is positioned so as to overlap the region where the 1-port surface acoustic wave resonator 11 is provided. It is provided to include.
  • the surface acoustic wave resonator first generates heat in the IDT electrode 3. This heat is quickly dissipated through the piezoelectric substrate 2 to the heat radiation film 9 side overlapping the IDT electrode 3. Therefore, heat dissipation can be improved more effectively.
  • the external terminal 5 shown in FIG. 1B is electrically connected to the IDT electrode 3. Therefore, heat is also quickly transmitted to the external terminal 5.
  • the heat dissipation film 9 is provided so as to include a position overlapping the external terminal 5 via the piezoelectric substrate 2. Therefore, the heat generated in the IDT electrode 3 can be dissipated from the heat dissipation film 9 more effectively.
  • the piezoelectric substrate 2 is subjected to a back grinding process (a process for polishing the back surface of the wafer), as will be apparent from the manufacturing method described later. More specifically, the main surface opposite to the first main surface 2a side is back-grinded to obtain the second main surface 2b, whereby the thickness of the piezoelectric substrate 2 is reduced. . Therefore, the acoustic wave device 1 can be thinned.
  • a method for manufacturing the acoustic wave device 1 will be described with reference to FIGS.
  • a mother substrate 2A is prepared.
  • the mother substrate 2A is separated into pieces by a dicing process or the like.
  • a plurality of piezoelectric substrates 2B are obtained.
  • the mother substrate 2A is attached to, for example, a dicing tape, and dicing or the like is performed in that state.
  • a plurality of piezoelectric substrates 2B are prepared in a state of being affixed to a dicing tape. If necessary, after dicing, a dicing tape may be spread to widen the interval between the piezoelectric substrates 2B.
  • the piezoelectric substrate 2B is polished. More specifically, the surface opposite to the surface attached to the dicing tape, that is, the surface that finally becomes the second main surface 2b side is polished. This polishing process is the aforementioned back grinding process.
  • the polishing method for the back grinding process is not particularly limited, and a polishing foil or the like can be used.
  • the heat dissipation film 9 is formed on the second main surface 2b of the piezoelectric substrate 2 as shown in FIG. 4 (d) while being held by the dicing tape.
  • the method for forming the heat dissipation film 9 is not particularly limited.
  • the back grind processing is performed after the separation. Therefore, it is possible to reduce chipping on the back surface, such as chipping and scratches, which occurs when dicing into individual pieces. Further, it is not necessary to handle the mother substrate 2A (wafer) in a thin state. Therefore, the possibility of breakage or the like is reduced.
  • the following first or second method may be used.
  • the back grinding process is performed before dividing into individual pieces.
  • the mother substrate 2A is back-ground in the state shown in FIG.
  • the heat dissipation film 9 is formed.
  • the entire piezoelectric substrate is back-ground in the state of FIG. 4A, it is easy to make the polishing amount uniform for each chip.
  • the second method is called a DBG (Dicing Before Grinding) method and will be described in a fifth embodiment to be described later.
  • the mask 12 As a method of determining the shape of the heat dissipation film 9, it is desirable to use a mask 12 having an opening 12a as shown in FIG. As the mask 12, it is desirable to use a metal mask. Thereby, it is possible to prevent the heat radiation film 9 from adhering to the side surface of the piezoelectric substrate 2 formed by singulation, and to form the heat radiation film 9 with high accuracy.
  • the mask 12 may be formed of other materials.
  • the planar shape of the opening 12a of the mask 12 is the same as the planar shape of the heat dissipation film 9 to be formed.
  • the opening 12a has a rectangular shape.
  • the mask 12 is disposed on the second main surface 2b of the piezoelectric substrate 2 or above the second main surface 2b, and a heat radiation film forming material is deposited as indicated by arrows. Thereby, the heat dissipation film 9 can be formed.
  • the heat radiation film 9 having various planar shapes can be easily formed by changing the shape of the opening 12a.
  • a film resist may be used, and the heat dissipation film 9 may be formed by photolithography.
  • the heat dissipation film 9 can be formed on the piezoelectric substrate 2.
  • the heat radiating film 9 is formed after being separated into pieces, there is no problem that the material for forming the heat radiating film is spread during the separation. Therefore, contact with the heat dissipation film 9 and other parts such as other parts and other electronic parts is less likely to occur.
  • the heat dissipation film 9 may be formed before the separation. Even in such a case, by positioning the outer peripheral edge of the heat dissipation film 9 on the inner side of the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2, the contact between the heat dissipation film 9 and other parts or other components is achieved. Is unlikely to occur.
  • the acoustic wave device 1 can be manufactured in the order of individualization by dicing, back grinding, and formation of the heat dissipation film 9. Therefore, as described above, by applying the conventional dicing method using a dicing tape, the back grinding process and the heat dissipation film 9 forming process can be easily performed after the dicing process.
  • the metal bumps 8 may be provided on the under bump metal layer 7.
  • the step of forming the electrode structure, the step of forming the support 4, and the step of laminating the lid 6 may be performed after the heat dissipation film 9 is formed.
  • FIG. 6A and FIG. 6B are a schematic plan view and a schematic front sectional view of an acoustic wave device according to the second embodiment.
  • the elastic wave device 21 of the second embodiment is the same as the elastic wave device 1 of the first embodiment, except that the heat dissipation film 22 is provided with a taper. Therefore, the same reference numerals are assigned to the same parts, and the description of the first embodiment is incorporated. Similarly, in the following third to fifth embodiments, the same parts as those of the elastic wave device 1 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • a heat dissipation film 22 is provided instead of the heat dissipation film 9.
  • the heat dissipation film 22 has a lower surface 22a as a pair of opposing main surfaces and an upper surface 22c.
  • the lower surface 22 a is in contact with the second main surface 2 b of the piezoelectric substrate 2.
  • a side surface 22b connects the lower surface 22a and the upper surface 22c.
  • the heat dissipation film 22 is tapered so that the area of the heat dissipation film 22 decreases from the lower surface 22a to the upper surface 22c. In other words, the side surface 22b is inclined so as to approach the center side as it goes upward.
  • the heat radiation film 22 is more unlikely to come into contact with other parts or other parts. Therefore, in the acoustic wave device 21, physical destruction or short circuit failure of the heat dissipation film 22 is less likely to occur.
  • the heat dissipation film 22 with such a taper can be easily formed by the method using the mask or film resist described above.
  • a protective film 32 is provided so as to cover the upper surface 22 c and the side surface 22 b of the heat dissipation film 22.
  • the protective film 32 can be formed of an appropriate material such as an inorganic dielectric such as SiO 2 or a synthetic resin. Formation of the protective film 32 can prevent corrosion and oxidation of the heat dissipation film 22.
  • the shape of the heat dissipation film is not limited to the tapered shape as indicated by the heat dissipation film 22, but may be any of the various shapes shown in FIGS. 1B, 6B, 10, and 11. It may be taken.
  • the protective film is formed so as to protect all or part of the heat dissipation film.
  • the protection film is formed so as to cover the upper surface and side surfaces of the heat dissipation film.
  • the protective film may be formed so as to cover either the upper surface or the side surface of the heat dissipation film, or a part of the upper surface or a part of the side surface.
  • the adhesion layer 42 is provided on the second main surface 2 b of the piezoelectric substrate 2.
  • the heat dissipation film 22 is laminated.
  • the adhesion layer 42 is made of a material having better adhesion to the piezoelectric substrate 2 than the heat dissipation film 22.
  • a material when the piezoelectric substrate 2 is made of a piezoelectric single crystal and the heat dissipation film 22 is made of a metal such as Al, it can be formed of Ti, NiCr, or the like.
  • the shape of the heat dissipation film is not only the tapered shape as indicated by the heat dissipation film 22, but is also shown in FIGS. 1B, 6B, 10, and 11. It may take various shapes. Therefore, the shape of the adhesion layer can also be changed according to the shape of the heat dissipation film.
  • the second main surface 2b of the piezoelectric substrate 2C is a surface formed by back grinding by the DBG method.
  • the DBG method is to cut a part of the piezoelectric substrate by dicing when dividing the piezoelectric substrate into pieces, and backgrind the back surface of the piezoelectric substrate (the main surface opposite to the surface with the cut).
  • the second main surface 2b is formed by performing the back grinding process by the DBG method. For this reason, the thickness of the piezoelectric substrate 2C is reduced.
  • the DBG method since back grinding is performed after being separated into pieces, it is possible to reduce the back surface chipping (debris and scratches) that occurs when the pieces are separated by dicing. Further, there is an advantage that it is not necessary to handle the mother substrate 2A (wafer) in a thin state, and the possibility of breakage or the like is reduced. Further, since the DBG method is a method of separating into pieces while performing back grinding, there is an advantage that it is easy to make the polishing amount uniform for each chip.
  • the elastic wave device 51 is the same as the elastic wave device 41.
  • the elastic wave device 52 of the sixth embodiment shown in FIG. 10 is a modification of the elastic wave device 21 of the second embodiment shown in FIG. More specifically, the heat dissipation film 22 ⁇ / b> A is used instead of the heat dissipation film 22.
  • the heat dissipation film 22A has a taper opposite to that of the heat dissipation film 22. That is, in the heat radiation film 22A, a reverse taper is provided so that the area of the heat radiation film 22A decreases from the upper surface 22c toward the lower surface 22a. Therefore, the side surface 22b is located further inside than the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2 from the upper surface 22c to the lower surface 22a.
  • the outer peripheral edge of the upper surface 22c may be present at a position overlapping the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2. Even in that case, the remaining portion excluding the upper end of the side surface 22b is located on the inner side of the outer peripheral edge of the piezoelectric substrate 2 in an arbitrary cross section along the direction connecting the lower surface 22a and the upper surface 22c. It will be. Accordingly, even in that case, contact with other parts of the heat dissipation film 22A and other parts can be suppressed.
  • the elastic wave device 53 according to the seventh embodiment shown in FIG. 11 also corresponds to a modification of the elastic wave device 21 of the second embodiment.
  • the difference is that a heat dissipation film 22 ⁇ / b> B is provided instead of the heat dissipation film 22.
  • the heat dissipation film 22B is tapered so that the area decreases from the lower surface 22a to the upper surface 22c.
  • the outer peripheral edge of the lower surface 22a is in a position overlapping the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2.
  • the portion excluding the lower end of the side surface 22b is located inside the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2. It becomes. Therefore, contact with other parts and other parts can be suppressed also in heat dissipation film 22B.
  • a part of the heat dissipation film may be present at a position overlapping the outer peripheral edge of the second main surface 2b of the piezoelectric substrate 2.
  • the side surface 22b is located on the inner side of the outer peripheral edge of the piezoelectric substrate 2 in an arbitrary cross section connecting a pair of opposing main surfaces, that is, the upper surface 22c and the lower surface 22a, the heat dissipation film Contact with other parts and other parts of the film 22B can be suppressed.
  • the elastic wave devices 52 and 53 of the sixth and seventh embodiments are the same as the elastic wave device 21 of the second embodiment in other structures.
  • the elastic wave devices 21, 31, 41, 51, 52, and 53 of the second to seventh embodiments described above have the same configuration as the elastic wave device 1 of the first embodiment. Similar to the device 1, heat generated in the IDT electrode 3 from the heat radiation films 22, 22A, 22B can be effectively dissipated. Further, since it is difficult for the heat radiation films 22, 22A, and 22B to come into contact with other parts and other parts, the heat radiation films 22, 22A, and 22B are less likely to be broken or short-circuited.
  • the heat radiation film 22 is formed so as to include a position overlapping the IDT electrode 3 and / or including a position overlapping the external terminal 5. It is preferable to do. Thereby, the heat dissipation can be further effectively improved.
  • the elastic wave device of the present invention is widely used in various electronic devices and communication devices.
  • Examples of the electronic device include a sensor.
  • Examples of the communication device include a duplexer including the elastic wave device of the present invention, a communication module device including the elastic wave device of the present invention and PA (Power Amplifier) and / or LNA (Low Noise Amplifier), and the communication module device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 放熱膜の他の部位や他の部品との接触を抑制することができる、弾性波装置の製造方法及び弾性波装置を提供する。 圧電基板2の第1の主面2a上にIDT電極3が設けられており、第2の主面2b上に、対向し合う一対の主面と、一対の主面を結ぶ側面とを有する放熱膜9が設けられており、放熱膜9の一対の主面を結ぶ方向に沿う任意の断面において、放熱膜9の側面の少なくとも一部が、圧電基板2の第2の主面2bの外周よりも内側に位置している、弾性波装置1。

Description

弾性波装置の製造方法及び弾性波装置
 本発明は、弾性波装置の製造方法及び弾性波装置に関する。
 弾性表面波装置の製造に際しては、マザー基板を個々の電子部品単位の圧電基板に個片化している。下記の特許文献1では、先ず、マザー基板上面の全面に、金属膜を形成する。次に、金属膜が形成されたマザー基板を個々の圧電基板に個片化している。
 下記の特許文献2及び3では、圧電基板の上面だけでなく、側面に至るように金属膜や導体膜を形成している。それによって、特許文献2では、弾性表面波チップにおける樹脂部材の帯電を防止している。また、特許文献3では、電子部品の電磁波シールド効果を高めている。
WO08/018452 特開2006-80921号公報 WO13/035819
 特許文献1に記載の製造方法では、金属膜形成後に個片化が行なわれている。この場合、金属の延性や展性が高いため、個片化に際し、金属膜が伸びるおそれがあった。そのため、金属膜が個片化された圧電基板の端縁から側方にはみ出たり、側面の一部に至るおそれがあった。
 他方、特許文献2や特許文献3に記載の製造方法では、導体膜や金属膜が、圧電基板の上面の全面だけでなく側面にも至っている。
 従って、特許文献1~3に記載の製造方法により得られた弾性波装置では、金属膜が他の通電部分や他の電子部品と接触し、短絡破壊が生じるおそれがあった。他方、近年、放熱性を高めるために、圧電基板の一方主面に放熱膜として金属膜を設けることが試みられている。このような放熱膜を設けた構造においても、放熱膜と他の部位との接触や他の電子部品などの通電部分との接触を防止することが求められている。
 本発明の目的は、放熱膜の形状を工夫することによって、放熱膜と他の部位や他の部品との接触を抑制することができる、弾性波装置の製造方法及び弾性波装置を提供することにある。
 本発明に係る弾性波装置の製造方法は、対向し合う第1及び第2の主面を有する圧電基板の前記第1の主面上にIDT電極を設ける工程と、前記圧電基板の前記第2の主面上に、対向し合う一対の主面と、前記一対の主面を結ぶ側面とを有する放熱膜を形成する工程とを備え、前記放熱膜を形成する工程において、前記放熱膜の前記一対の主面を結ぶ方向に沿う任意の断面において、前記放熱膜の前記側面の少なくとも一部が、前記圧電基板の前記第2の主面の外周よりも内側に位置しているように、前記放熱膜を形成する。
 本発明に係る弾性波装置の製造方法のある特定の局面では、前記放熱膜を形成する工程において、前記放熱膜の前記一対の主面のうち、前記圧電基板の前記第2の主面とは遠い側の主面の外周縁が、前記第2の主面の外周よりも内側に位置するように、前記放熱膜を形成する。この場合には、放熱膜の他の部位や他の部品との接触をより効果的に抑制することができる。
 本発明に係る弾性波装置の製造方法の他の特定の局面では、前記放熱膜を形成する工程において、前記第2の主面側から平面視した場合に、前記放熱膜の外周が前記第2の主面の外周よりも内側に位置するように、前記放熱膜を形成する。この場合には、放熱膜の他の部位や他の部品との接触をさらに効果的に抑制することができる。
 本発明に係る弾性波装置の製造方法の別の特定の局面では、マザー基板を個片化し、複数の前記圧電基板を得る工程がさらに備えられており、前記放熱膜を形成する工程において、前記マザー基板を個片化した後に、前記圧電基板の前記第2の主面上に前記放熱膜を形成する。この場合には、個片化の際に、放熱膜が材料の延性や展性などにより伸びることを抑制することができる。従って、他の部位や他の部品との接触確率をより一層低めることができる。
 本発明に係る弾性波装置の製造方法の他の特定の局面では、前記放熱膜を形成する工程において、前記マザー基板、又は個片化された前記圧電基板の前記第2の主面を、バックグラインド処理し、前記バックグラインド処理の後に、前記圧電基板の前記第2の主面上に前記放熱膜を形成する。この場合には、バックグラインド処理をしつつ、放熱膜を形成することができる。
 本発明に係る弾性波装置の製造方法の他の特定の局面では、マスクまたはフィルムレジストを用いて、前記放熱膜を形成する。マスクまたはフィルムレジストを用いることにより、任意の平面形状の放熱膜を容易に形成することができる。
 本発明に係る弾性波装置の製造方法の別の特定の局面では、前記放熱膜を形成する工程において、前記放熱膜の面積が前記圧電基板の前記第2の主面から遠ざかるにつれて小さくなるように、前記放熱膜にテーパを付与する。この場合には、放熱膜と他の部位や他の部品との接触確率をより一層低めることができる。
 本発明に係る弾性波装置の製造方法の別の特定の局面では、前記圧電基板の前記第1の主面上において、前記IDT電極を囲むように、樹脂からなる支持体を設ける工程と、前記IDT電極を囲んでいる開口部を封止するように、前記支持体上に、樹脂からなる蓋体を設ける工程がさらに備えられている。この場合には、WLP構造の弾性波装置を提供することができる。
 本発明に係る弾性波装置は、対向し合う第1及び第2の主面を有する圧電基板と、前記圧電基板の前記第1の主面上に設けられたIDT電極と、前記圧電基板の前記第2の主面上に設けられており、対向し合う一対の主面と、前記一対の主面を結ぶ側面とを有する放熱膜とを備え、前記放熱膜の前記一対の主面を結ぶ方向に沿う任意の断面において、前記放熱膜の前記側面の少なくとも一部が、前記圧電基板の前記第2の主面の外周よりも内側に位置している。
 本発明に係る弾性波装置のある特定の局面では、前記放熱膜の前記一対の主面のうち、前記圧電基板の前記第2の主面とは遠い側の主面の外周縁が、前記第2の主面の外周よりも内側に位置している。この場合には、他の部位や他の部品との接触をより効果的に抑制することができる。
 本発明に係る弾性波装置の他の特定の局面では、前記第2の主面側から平面視した場合に、前記放熱膜の外周が前記第2の主面の外周よりも内側に位置している。この場合には、放熱膜の他の部位や他の部品との接触をさらに効果的に抑制することができる。
 本発明に係る弾性波装置の他の特定の局面では、前記圧電基板の前記第2の主面がバックグラインド処理されている。この場合には、弾性波装置の薄型化を図ることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記放熱膜の面積が、前記圧電基板の前記第2の主面から遠ざかるにつれて小さくなるように、前記放熱膜にテーパが設けられている。この場合には、放熱膜と、他の部位や他の部品との接触確率をより一層低めることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記放熱膜が、金属膜を含まない誘電体膜である。この場合には、他の部位や他の部品との短絡のおそれがない。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記圧電基板の前記第1の主面上において、前記IDT電極を囲むように設けられており、かつ樹脂からなる支持体と、前記IDT電極を囲んでいる開口部を封止するように、前記支持体上に設けられており、樹脂からなる蓋体とがさらに備えられている。この場合には、WLP構造の弾性波装置を提供することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電基板の前記第2の主面側から平面視した場合、前記第1の主面上に設けられた前記IDT電極と重なる位置を含むように、前記放熱膜が設けられている。この場合には、IDT電極により生じた熱を圧電基板及び放熱膜を介して、より効果的に放散させることができる。
 本発明に係る弾性波装置の他の特定の局面では、前記圧電基板の前記第1の主面上に配置された外部端子がさらに備えられており、前記圧電基板の前記第2の主面側から平面視した場合に、前記外部端子と重なる位置を含むように、前記放熱膜が設けられている。この場合には、外部端子から、圧電基板を介して放熱膜に熱を速やかに放散させることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記放熱膜の少なくとも一部を覆うように設けられた保護膜がさらに備えられている。この場合には、放熱膜の腐食や酸化を抑制することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記放熱膜と前記圧電基板の前記第2の主面との間に設けられた密着層がさらに備えられている。この場合には、放熱膜の剥がれを抑制することができる。
 本発明に係る弾性波装置の製造方法及び弾性波装置によれば、放熱膜の形状を工夫しているので、放熱膜と、他の部位や他の部品との接触が生じ難い。従って、接触による、物理的破壊や短絡不良を効果的に抑制することができる。
図1(a)及び図1(b)は、本発明の第1の実施形態に係る弾性波装置の平面図及び模式的正面断面図である。 図2は、本発明の第1の実施形態の弾性波装置における圧電基板上の電極構造を模式的に示す平面図である。 図3は、本発明の第1の実施形態の弾性波装置の圧電基板の第1の主面側からみた底面図である。 図4(a)~図4(d)は、本発明の第1の実施形態の弾性波装置の製造方法を説明するための各略図的正面断面図である。 図5は、本発明の第1の実施形態の弾性波装置の製造方法において、放熱膜を形成する工程を説明するための正面断面図である。 図6(a)及び図6(b)は、本発明の第2の実施形態に係る弾性波装置の模式的平面図及び模式的正面断面図である。 図7は、本発明の第3の実施形態に係る弾性波装置の模式的正面断面図である。 図8は、本発明の第4の実施形態に係る弾性波装置の模式的正面断面図である。 図9は、本発明の第5の実施形態に係る弾性波装置の模式的正面断面図である。 図10は、本発明の第6の実施形態に係る弾性波装置の模式的正面断面図である。 図11は、本発明の第7の実施形態に係る弾性波装置の模式的正面断面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1(a)及び図1(b)は、本発明の第1の実施形態に係る弾性波装置の平面図及び模式的正面断面図である。
 弾性波装置1は、特に限定されないが、WLP(Wafer-level packaging)構造の弾性表面波装置である。より具体的には、弾性波装置1は、圧電基板2を有する。圧電基板2は、LiTaOやLiNbOなどの圧電単結晶からなる。圧電基板2は、圧電セラミクッスからなっていてもよい。
 圧電基板2は、対向し合う第1の主面2aと第2の主面2bとを有する。
 第1の主面2a上に、励振電極としてIDT電極3が設けられている。
 IDT電極3が設けられている領域を囲むように、樹脂からなる支持体4が設けられている。支持体4は、IDT電極3が露出している開口部を有するように設けられている。
 また、第1の主面2a上には、外部端子5が設けられている。外部端子5は、IDT電極3に電気的に接続されている。外部端子5は、IDT電極3を外部と電気的に接続するために設けられている。
 IDT電極3及び外部端子5は、適宜の金属もしくは合金からなる。
 上記支持体4の開口部を封止するように、樹脂からなる蓋体6が設けられている。上記蓋体6は、板状の形状を有している。支持体4及び蓋体6を構成する樹脂は特に限定されない。例えば、熱硬化性ポリイミドやエポキシ樹脂などを用いることができる。
 支持体4及び蓋体6を貫通するように貫通孔が設けられている。この貫通孔内にアンダーバンプメタル層7が設けられている。アンダーバンプメタル層7は、適宜の金属もしくは合金からなる。アンダーバンプメタル層7上に金属バンプ8が設けられている。金属バンプ8は、Auやはんだなどの適宜の金属もしくは合金からなる。
 弾性波装置1では、圧電基板2の第2の主面2b上に、放熱膜9が設けられている。放熱膜9の平面形状は、特に限定されないが、矩形とされている。放熱膜9は、本実施形態では、金属からなる。もっとも、放熱膜9の材料は特に限定されず、金属以外の材料を用いてもよい。すなわち、圧電基板2よりも熱伝導率が高い適宜の材料により、放熱膜9を形成することができる。従って、放熱膜9としては、金属を含まない誘電体膜を用いてもよい。その場合には、他の部位や他の部品との接触による短絡不良を確実に抑制することができる。
 金属を含まない誘電体膜としては、アルミナなどの絶縁性セラミックス、あるいはプラスチックスなどを挙げることができる。
 弾性波装置1の特徴は、放熱膜9の外周が、第2の主面2bの外周よりも内側に位置していることにある。従って、図1(a)に示すように、弾性波装置1を平面視した場合に、放熱膜9の外周縁の外側に、第2の主面2bの一部が存在している。言い換えれば、放熱膜9の外周縁は、第2の主面2bの外周縁2b1とスペースを隔てて位置している。
 弾性波装置1では、放熱膜9は金属からなり、熱伝導率が高い。他方、弾性波装置1においては、IDT電極3に電圧を印加して弾性表面波を励振させる。従って、IDT電極3において発熱する。この熱が、圧電基板2を経由し、放熱膜9から放散される。
 加えて、放熱膜9は、金属からなるが、外周縁が、第2の主面2bの外周縁2b1よりも内側に位置している。従って、弾性波装置1の取り扱いに際し、放熱膜9が他の部位や他の部品と接触し難い。よって、放熱膜9における破壊が生じ難く、放熱膜9が導電性を有する金属である場合であっても、短絡不良が生じ難い。
 なお、放熱膜9の外周縁は、第2の主面2bの外周縁2b1よりも必ずしも内側に位置している必要はない。後述する第2~第7の実施形態を参照して説明するように、本発明においては、放熱膜において、対向し合う一対の主面を結ぶ任意の断面において、放熱膜の側面の少なくとも一部が、圧電基板2の第2の主面2bの外周縁2b1よりも内側に位置しておればよい。
 弾性波装置1では、IDT電極3が、圧電基板2と、支持体4と、蓋体6とで囲まれた空間に封止されている。従って、IDT電極3で生じた熱が放散し難い。このようなWLP構造の弾性波装置では、放熱性を改善することが強く求められている。本実施形態によれば、上記放熱膜9を利用して、このような熱を効果的に放散させることができる。従って、本発明は、WLP構造の弾性波装置1においてより効果的である。
 図2は、上記圧電基板2の第1の主面2a上の電極構造を示す模式的平面図である。より詳細には、第1の主面2a上において、複数のIDT電極が設けられている。図2中のXを矩形の枠で囲んだ記号は、それぞれ、IDT電極と、IDT電極の両側に反射器が設けられている構造を示す。すなわち、Xと、Xを囲む矩形の枠で示されている領域に、それぞれ、1ポート型弾性表面波共振子11が構成されている。この複数の1ポート型弾性表面波共振子11が電気的に接続されて、ラダー型フィルタが構成されている。
 また、図2の1ポート型弾性表面波共振子11等を外部と電気的に接続するために、複数の外部端子5が設けられている。
 図3は、上記弾性波装置1の底面図である。これは、1ポート型弾性表面波共振子11を構成している部分のみを破線で略図的に示す。
 また、図3の一点鎖線は、圧電基板2の第2の主面2b側に設けられている放熱膜9の外周縁を示す。図3から明らかなように、弾性波装置1を第2の主面2b側から平面視した場合、放熱膜9は、1ポート型弾性表面波共振子11が設けられている領域と重なる位置を含むように設けられている。前述したように、弾性表面波共振子では、先ずIDT電極3において発熱する。この熱が、圧電基板2を介して、IDT電極3と重なり合っている放熱膜9側に速やかに放散される。よって、放熱性をより一層効果的に高めることができる。
 また、前述した図1(b)に示した外部端子5は、IDT電極3と電気的に接続されている。従って、外部端子5にも、熱が速やかに伝わる。そして、本実施形態では、弾性波装置を第2の主面2b側から平面視した場合、放熱膜9は、圧電基板2を介して外部端子5と重なる位置を含むように設けられている。よって、それによっても、IDT電極3で生じた熱をより効果的に放熱膜9から放散させることができる。
 また、本実施形態の弾性波装置1では、後述する製造方法から明らかなように、圧電基板2がバックグラインド処理(ウエハの裏面を研磨する処理)されている。より具体的には、第1の主面2a側とは反対側の主面をバックグラインド処理することにより、第2の主面2bが得られ、それによって圧電基板2の厚みが薄くされている。よって、弾性波装置1では、薄型化を図ることが可能とされている。
 次に、図4及び図5を参照して、弾性波装置1の製造方法を説明する。図4(a)に示すように、マザー基板2Aを用意する。次に、マザー基板2Aをダイシング処理などにより個片化する。それによって、図4(b)に示すように、複数の圧電基板2Bを得る。
 上記個片化に際しては、マザー基板2Aを、例えばダイシングテープに貼り付け、その状態でダイシング等を行なう。それによって、複数の圧電基板2Bがダイシングテープに貼り付けられた状態で用意される。必要に応じて、ダイシング後に、ダイシングテープを展延し、圧電基板2B間の間隔を広げてもよい。
 次に、圧電基板2Bを研磨する。より具体的には、ダイシングテープに貼り付けられている面とは反対側の面、すなわち最終的に第2の主面2b側となる面を研磨する。この研磨処理が前述のバックグラインド処理である。
 それによって、図4(c)に示すように、厚みの薄い複数の圧電基板2を得ることができる。上記バックグラインド処理の研磨方法は特に限定されず、研磨ホイルなどを用いることができる。
 次に、ダイシングテープに保持された状態で、図4(d)に示すように、放熱膜9を圧電基板2の第2の主面2b上に形成する。この放熱膜9の形成方法は、特に限定されない。
 図4(a)~図4(d)に示した方法では、個片化した後にバックグラインド処理を行う。従って、ダイシングによる個片化で発生する、カケやキズなどの裏面におけるチッピングを減らすことができる。また、薄くした状態でマザー基板2A(ウエハ)を取り扱う必要がない。従って、破損等の可能性が低くなる。
 なお、図4(a)~図4(d)に示されている方法として、例えば以下の第1または第2の方法を用いてもよい。第1の方法では、個片化する前にバックグラインド処理する。この方法では、図4(a)の状態でマザー基板2Aをバックグラインド処理し、その後に個片化する。最後に、図4(d)に示したように、放熱膜9を形成する。この方法では、図4(a)の状態で圧電基板全体をバックグラインド処理するので、研磨量を各チップで均一にすることが容易である。
 第2の方法は、DBG(Dicing Before Grinding)工法と呼ばれるもので、後述する第5の実施形態で説明することとする。
 また、放熱膜9の形状を決定する方法としては、図5に示すように、開口部12aを有するマスク12を用いることが望ましい。マスク12としては、メタルマスクを用いることが望ましい。それによって、個片化により形成された圧電基板2の側面に放熱膜9が付着することを防ぎ、放熱膜9の形状を精度良く形成することができる。もっとも、マスク12は他の材料で形成されていてもよい。マスク12の開口部12aの平面形状は、形成される放熱膜9の平面形状と同一とされている。マスク12の形状を工夫することにより、図1(b)、図6(b)、図10及び図11で示されているように、放熱膜9の形状を様々な形状とすることができる。
 なお、本実施形態では、開口部12aは矩形の形状を有する。
 上記マスク12を圧電基板2の第2の主面2b上に、あるいは第2の主面2bの上方に配置し、矢印で示すように放熱膜形成用材料を堆積させる。それによって、放熱膜9を形成することができる。マスク12を用いた場合、開口部12aの形状を変更することにより、様々な平面形状の放熱膜9を容易に形成することができる。
 上記マスク12に代えて、フィルムレジストを用い、フォトリソグラフィー法により放熱膜9を形成してもよい。
 上記のようにして、圧電基板2に放熱膜9を形成することができる。
 この製造方法によれば、個片化した後に放熱膜9を形成しているため、個片化に際し、放熱膜形成用材料が展延するという問題が生じない。そのため、放熱膜9と、他の部位や他の電子部品などの他の部品と接触がより一層生じ難い。
 なお、マザー基板の一方主面の全面に放熱膜などの金属膜や誘電体膜を形成した場合、マザー基板において反りが生じるという問題があった。本実施形態では、個片化後に放熱膜9が形成されているため、このような圧電基板の反りも生じ難い。
 もっとも、個片化の前に放熱膜9を形成してもよい。その場合であっても、放熱膜9の外周縁を圧電基板2の第2の主面2bの外周縁よりも内側に位置させることにより、他の部位や他の部品と放熱膜9との接触は生じ難い。
 上記のように、ダイシングによる個片化、バックグラインド処理及び放熱膜9の形成の順序で弾性波装置1を製造することができる。従って、上述したように、ダイシングテープを用いた従来のダイシング工法を適用して、ダイシング処理後に、バックグラインド処理及び放熱膜9の形成処理を容易に行なうことができる。
 なお、図1(b)に示したIDT電極3及び外部端子5を含む電極構造を、マザー基板2Aを用意する工程において予め形成しておくことが望ましい。すなわち、金属バンプ8を除く構成を第1の主面2a側において、マザー基板2Aの段階で形成しておくことが望ましい。上記放熱膜9を形成した後に、金属バンプ8をアンダーバンプメタル層7上に設ければよい。
 もっとも、上記電極構造の形成工程、支持体4を形成する工程、蓋体6を積層する工程は、放熱膜9を形成した後に実施してもよい。
 図6(a)及び図6(b)は、第2の実施形態に係る弾性波装置の模式的平面図及び模式的正面断面図である。
 第2の実施形態の弾性波装置21は、テーパが付与された放熱膜22を有することを除いては、第1の実施形態の弾性波装置1と同様である。従って、同一部分については同一の参照番号を付することにより、第1の実施形態の説明を援用することとする。以下の第3~第5の実施形態においても同様に、第1の実施形態の弾性波装置1と同一部分については同一の参照番号を付することにより、その説明を省略することとする。
 第2の実施形態の弾性波装置21では、放熱膜9に代えて、放熱膜22が設けられている。放熱膜22は、対向し合う一対の主面としての下面22aと、上面22cとを有する。下面22aが、圧電基板2の第2の主面2bに接している。下面22aと上面22cとを側面22bが結んでいる。下面22aから上面22cに至るにつれて、放熱膜22の面積が小さくなっていくように、放熱膜22にテーパが付けられている。言い換えれば、側面22bは、上方にいくほど中央側に近づくように傾斜している。
 従って、放熱膜22は、他の部位や他の部品とより一層接触し難い。よって、弾性波装置21では、放熱膜22の物理的な破壊や短絡不良がより一層生じ難い。
 このようなテーパが付けられた放熱膜22は、前述したマスクやフィルムレジストを用いた方法により、容易に形成することができる。
 図7に示す第3の実施形態の弾性波装置31では、放熱膜22の上面22c及び側面22bを覆うように保護膜32が設けられている。保護膜32は、SiOなどの無機誘電体、あるいは合成樹脂などの適宜の材料により形成することができる。保護膜32の形成により、放熱膜22の腐食や酸化を防止することができる。
 ただし、放熱膜の形状は、放熱膜22で示されているようなテーパ形状だけでなく、図1(b)、図6(b)、図10、図11で示されている様々な形状をとってもよい。その場合、保護膜は、放熱膜の全体又は一部を保護する形で形成される。放熱膜の全体を保護する場合には、保護膜は、放熱膜の上面及び側面を覆うように形成される。また、放熱膜の一部を保護する場合には、保護膜は、放熱膜の上面又は側面のどちらか一方、あるいは、上面の一部、側面の一部を覆うように形成されていてもよい。
 図8に示す第4の実施形態の弾性波装置41では、密着層42が圧電基板2の第2の主面2b上に設けられている。この密着層42上に、放熱膜22が積層されている。密着層42は、放熱膜22よりも圧電基板2に対する密着性に優れた材料からなる。このような材料としては、圧電基板2が圧電単結晶からなり、放熱膜22がAlなどの金属からなる場合、TiやNiCrなどにより形成することができる。
 ただし、上述したとおり、放熱膜の形状は、放熱膜22で示されているようなテーパ形状だけでなく、図1(b)、図6(b)、図10、図11で示されている様々な形状をとってもよい。そのため、密着層の形状も、放熱膜の形状に合わせて変化し得る。図9に示す第5の実施形態の弾性波装置51では、圧電基板2Cの第2の主面2bが、DBG工法によりバックグラインド処理され、形成されている面である。DBG工法とは、圧電基板を個片化する際に、圧電基板の途中までダイシングにより切れ目を入れ、圧電基板の裏面(切れ目が入っている面と対向する主面)をバックグラインド処理することで、圧電基板を個片化する方法である。DBG工法によりバックグラインド処理することにより、第2の主面2bが形成されている。そのため、圧電基板2Cは厚みが薄くされている。DBG工法は、個片化した後にバックグラインド処理を行うので、ダイシングによる個片化で発生する、裏面のチッピング(カケやキズ)を減らすことができる。また、薄くした状態でマザー基板2A(ウエハ)を取り扱う必要がなくなり、破損等の可能性が低くなるといったメリットがある。また、DBG工法は、バックグラインド処理しながら個片化する工法であるので、研磨量を各チップ均一にすることが容易であるというメリットもある。その他の点については、弾性波装置51は弾性波装置41と同様である。
 図10に示す第6の実施形態の弾性波装置52は、図6(b)に示した第2の実施形態の弾性波装置21の変形例である。より詳細には、放熱膜22Aが放熱膜22の代わりに用いられている。異なるところは、放熱膜22Aでは、放熱膜22とはテーパが逆とされている。すなわち、放熱膜22Aでは、上面22cから下面22aに向かうにつれて、放熱膜22Aの面積が小さくなるように、逆テーパが付与されている。従って、側面22bは、上面22cから下面22aに至るにつれて、圧電基板2の第2の主面2bの外周縁よりもさらに内側に位置することとなる。この場合においても、上面22cの外周縁が圧電基板2の第2の主面2bの外周縁よりも内側に位置しているため、放熱膜22Aの他の部位や他の部品との接触をより効果的に抑制することができる。
 なお、弾性波装置52において、上面22cの外周縁は、圧電基板2の第2の主面2bの外周縁と重なる位置に存在していてもよい。その場合であっても、側面22bを、下面22aと上面22cとを結ぶ方向に沿う任意の断面において、側面22bの上端を除く残りの部分が、圧電基板2の外周縁よりも内側に位置することとなる。従って、その場合においても、放熱膜22Aの他の部位や他の部品との接触を抑制することができる。
 図11に示す第7の実施形態に係る弾性波装置53もまた、第2の実施形態の弾性波装置21の変形例に相当する。異なるところは、放熱膜22に代えて放熱膜22Bが設けられていることにある。放熱膜22Bには、放熱膜22と同様に下面22aから上面22cに至るにつれて面積が小さくなるようにテーパが付けられている。もっとも、放熱膜22Bでは、下面22aの外周縁が、圧電基板2の第2の主面2bの外周縁と重なる位置にある。
 この場合も、上面22cと、下面22aとを結ぶ方向に沿う任意の断面において、側面22bの下端を除く部分が、圧電基板2の第2の主面2bの外周縁よりも内側に位置することとなる。従って、放熱膜22Bにおいても、他の部位や他の部品との接触を抑制することができる。
 第7の実施形態の弾性波装置53のように、放熱膜の一部が圧電基板2の第2の主面2bの外周縁と重なる位置に存在していてもよい。放熱膜の対向し合う一対の主面、すなわち上面22c及び下面22aを結ぶ任意の断面において、側面22bの少なくとも一部が、圧電基板2の外周縁よりも内側に位置してさえおれば、放熱膜22Bの他の部位や他の部品との接触を抑制することができる。
 なお、第6及び第7の実施形態の弾性波装置52及び53は、その他の構造は、第2の実施形態の弾性波装置21と同様である。
 上述してきた第2~第7の実施形態の弾性波装置21,31,41,51,52,53では、その他の構成は第1の実施形態の弾性波装置1と同様であるため、弾性波装置1と同様に、放熱膜22,22A,22BからIDT電極3で生じた熱を効果的に放散させることができる。また、放熱膜22,22A,22Bの他の部位や他の部品との接触が生じ難いため、放熱膜22,22A,22Bの破壊や短絡不良が生じ難い。
 第2~第5の実施形態においても、第1の実施形態と同様に、放熱膜22を、IDT電極3と重なる位置を含むように、及び/または外部端子5と重なる位置を含むように形成することが好ましい。それによって、放熱性をより一層効果的に高めることができる。
 本発明の弾性波装置は、様々な電子機器や通信機器に広く用いられる。電子機器としては、例えば、センサーがある。通信機器としては、例えば、本発明の弾性波装置を含むデュプレクサ、本発明の弾性波装置とPA(Power Amplifier)及び/またはLNA(Low Noise Amplifier)を含む通信モジュール機器、その通信モジュール機器を含む移動体通信機器やヘルスケア通信機器等がある。移動体通信機器としては、携帯電話、スマートフォン、カーナビ等がある。ヘルスケア機器としては、体重計や体脂肪計等がある。ヘルスケア機器や移動体通信機器は、アンテナ、RFモジュール、LSI、ディスプレイ、入力部、電源等を備えている。
1…弾性波装置
2…圧電基板
2A…マザー基板
2B…圧電基板
2C…圧電基板
2a,2b…第1,第2の主面
2b1…外周縁
3…IDT電極
4…支持体
5…外部端子
6…蓋体
7…アンダーバンプメタル層
8…金属バンプ
9…放熱膜
11…1ポート型弾性表面波共振子
12…マスク
12a…開口部
21,31,41,51,52,53…弾性波装置
22,22A,22B…放熱膜
22a…下面
22b…側面
22c…上面
32…保護膜
42…密着層

Claims (19)

  1.  対向し合う第1及び第2の主面を有する圧電基板の前記第1の主面上にIDT電極を設ける工程と、
     前記圧電基板の前記第2の主面上に、対向し合う一対の主面と、前記一対の主面を結ぶ側面とを有する放熱膜を形成する工程と、
    を備え、
     前記放熱膜を形成する工程において、前記放熱膜の前記一対の主面を結ぶ方向に沿う任意の断面において、前記放熱膜の前記側面の少なくとも一部が、前記圧電基板の前記第2の主面の外周よりも内側に位置しているように、前記放熱膜を形成する、弾性波装置の製造方法。
  2.  前記放熱膜を形成する工程において、前記放熱膜の前記一対の主面のうち、前記圧電基板の前記第2の主面とは遠い側の主面の外周縁が、前記第2の主面の外周よりも内側に位置するように、前記放熱膜を形成する、請求項1に記載の弾性波装置の製造方法。
  3.  前記放熱膜を形成する工程において、前記第2の主面側から平面視した場合に、前記放熱膜の外周が前記第2の主面の外周よりも内側に位置するように、前記放熱膜を形成する、請求項1または2に記載の弾性波装置の製造方法。
  4.  マザー基板を個片化し、複数の前記圧電基板を得る工程をさらに備え、
     前記放熱膜を形成する工程において、
     前記マザー基板を個片化した後に、前記圧電基板の前記第2の主面上に前記放熱膜を形成する、請求項1~3のいずれか1項に記載の弾性波装置の製造方法。
  5.  前記放熱膜を形成する工程において、
     前記マザー基板、又は個片化された前記圧電基板の前記第2の主面を、バックグラインド処理し、
     前記バックグラインド処理の後に、前記圧電基板の前記第2の主面上に前記放熱膜を形成する、請求項4に記載の弾性波装置の製造方法。
  6.  マスクまたはフィルムレジストを用いて、前記放熱膜を形成する、請求項1~5のいずれか1項に記載の弾性波装置の製造方法。
  7.  前記放熱膜を形成する工程において、
     前記放熱膜の面積が前記圧電基板の前記第2の主面から遠ざかるにつれて小さくなるように、前記放熱膜にテーパを付与する、請求項1~6のいずれか1項に記載の弾性波装置の製造方法。
  8.  前記圧電基板の前記第1の主面上において、前記IDT電極を囲むように、樹脂からなる支持体を設ける工程と、
     前記IDT電極を囲んでいる開口部を封止するように、前記支持体上に、樹脂からなる蓋体を設ける工程と、
    をさらに備える、請求項1~7のいずれか1項に記載の弾性波装置の製造方法。
  9.  対向し合う第1及び第2の主面を有する圧電基板と、
     前記圧電基板の前記第1の主面上に設けられたIDT電極と、
     前記圧電基板の前記第2の主面上に設けられており、対向し合う一対の主面と、前記一対の主面を結ぶ側面とを有する放熱膜と、
    を備え、
     前記放熱膜の前記一対の主面を結ぶ方向に沿う任意の断面において、前記放熱膜の前記側面の少なくとも一部が、前記圧電基板の前記第2の主面の外周よりも内側に位置している、弾性波装置。
  10.  前記放熱膜の前記一対の主面のうち、前記圧電基板の前記第2の主面とは遠い側の主面の外周縁が、前記第2の主面の外周よりも内側に位置している、請求項9に記載の弾性波装置。
  11.  前記第2の主面側から平面視した場合に、前記放熱膜の外周が前記第2の主面の外周よりも内側に位置している、請求項9または10に記載の弾性波装置。
  12.  前記圧電基板の前記第2の主面がバックグラインド処理されている、請求項9~11のいずれか1項に記載の弾性波装置。
  13.  前記放熱膜の面積が、前記圧電基板の前記第2の主面から遠ざかるにつれて小さくなるように、前記放熱膜にテーパが設けられている、請求項9~12のいずれか1項に記載の弾性波装置。
  14.  前記放熱膜が、金属膜を含まない誘電体膜である、請求項9~13のいずれか1項に記載の弾性波装置。
  15.  前記圧電基板の前記第1の主面上において、前記IDT電極を囲むように設けられており、かつ樹脂からなる支持体と、
     前記IDT電極を囲んでいる開口部を封止するように、前記支持体上に設けられており、樹脂からなる蓋体と、
    をさらに備える、請求項9~14のいずれか1項に記載の弾性波装置。
  16.  前記圧電基板の前記第2の主面側から平面視した場合、前記第1の主面上に設けられた前記IDT電極と重なる位置を含むように、前記放熱膜が設けられている、請求項9~15のいずれか1項に記載の弾性波装置。
  17.  前記圧電基板の前記第1の主面上に配置された外部端子をさらに備え、
     前記圧電基板の前記第2の主面側から平面視した場合に、前記外部端子と重なる位置を含むように、前記放熱膜が設けられている、請求項9~16のいずれか1項に記載の弾性波装置。
  18.  前記放熱膜の少なくとも一部を覆うように設けられた保護膜をさらに備える、請求項9~17のいずれか1項に記載の弾性波装置。
  19.  前記放熱膜と前記圧電基板の前記第2の主面との間に設けられた密着層をさらに備える、請求項9~18のいずれか1項に記載の弾性波装置。
PCT/JP2015/083998 2014-12-04 2015-12-03 弾性波装置の製造方法及び弾性波装置 WO2016088830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201590001126.9U CN206790453U (zh) 2014-12-04 2015-12-03 一种弹性波装置
KR1020177014262A KR101987712B1 (ko) 2014-12-04 2015-12-03 탄성파 장치의 제조 방법 및 탄성파 장치
US15/586,315 US10601389B2 (en) 2014-12-04 2017-05-04 Elastic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014245794 2014-12-04
JP2014-245794 2014-12-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/586,315 Continuation US10601389B2 (en) 2014-12-04 2017-05-04 Elastic wave device

Publications (1)

Publication Number Publication Date
WO2016088830A1 true WO2016088830A1 (ja) 2016-06-09

Family

ID=56091770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083998 WO2016088830A1 (ja) 2014-12-04 2015-12-03 弾性波装置の製造方法及び弾性波装置

Country Status (4)

Country Link
US (1) US10601389B2 (ja)
KR (1) KR101987712B1 (ja)
CN (1) CN206790453U (ja)
WO (1) WO2016088830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248751A1 (ja) * 2022-06-23 2023-12-28 京セラ株式会社 弾性波装置、弾性波装置の製造方法、および通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101953219B1 (ko) * 2016-11-24 2019-02-28 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP7374658B2 (ja) * 2018-08-22 2023-11-07 スカイワークス ソリューションズ,インコーポレイテッド 無線周波数フィルタ、電子機器モジュール、弾性波デバイス及び電子デバイス
CN111193488B (zh) * 2018-11-14 2024-01-26 天津大学 散热结构、带散热结构的体声波谐振器、滤波器和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183679A (ja) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd 梯子型弾性表面波フィルタ
JP2002076828A (ja) * 2000-08-24 2002-03-15 Toshiba Corp 弾性表面波素子
JP2002255690A (ja) * 2001-02-28 2002-09-11 Kyocera Corp 単結晶ウエハ及びそれを用いた弾性波装置
JP2004253937A (ja) * 2003-02-19 2004-09-09 Toyo Commun Equip Co Ltd 弾性表面波フィルタとその製造方法
JP2004260410A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd Sawデバイス
JP2005217670A (ja) * 2004-01-28 2005-08-11 Kyocera Corp 弾性表面波装置および通信装置
JP2007116628A (ja) * 2005-10-24 2007-05-10 Kyocera Corp 弾性表面波装置及び通信装置
JP2010233122A (ja) * 2009-03-27 2010-10-14 Murata Mfg Co Ltd 弾性表面波素子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3982876B2 (ja) * 1997-06-30 2007-09-26 沖電気工業株式会社 弾性表面波装置
JP4617559B2 (ja) 2000-10-30 2011-01-26 富士電機システムズ株式会社 電力用半導体素子の製造方法
JP4646557B2 (ja) * 2004-06-28 2011-03-09 京セラ株式会社 通信装置
JP4412123B2 (ja) 2004-09-09 2010-02-10 エプソントヨコム株式会社 表面弾性波デバイス
JP4835238B2 (ja) * 2006-04-06 2011-12-14 ソニー株式会社 共振器、共振器の製造方法および通信装置
JP5258566B2 (ja) 2006-08-07 2013-08-07 京セラ株式会社 弾性表面波装置の製造方法
JP4570653B2 (ja) * 2007-12-05 2010-10-27 Okiセミコンダクタ株式会社 弾性表面波フィルタ
CN101946409B (zh) 2008-02-18 2014-08-20 株式会社村田制作所 弹性波装置及其制造方法
JP2010252210A (ja) * 2009-04-20 2010-11-04 Seiko Epson Corp 温度補償型圧電発振器
JP5425005B2 (ja) 2009-08-19 2014-02-26 日本電波工業株式会社 圧電部品及びその製造方法
WO2013035819A1 (ja) 2011-09-08 2013-03-14 株式会社村田製作所 電子部品モジュール及び該電子部品モジュールの製造方法
WO2013146374A1 (ja) * 2012-03-26 2013-10-03 株式会社村田製作所 弾性波装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183679A (ja) * 1998-12-21 2000-06-30 Oki Electric Ind Co Ltd 梯子型弾性表面波フィルタ
JP2002076828A (ja) * 2000-08-24 2002-03-15 Toshiba Corp 弾性表面波素子
JP2002255690A (ja) * 2001-02-28 2002-09-11 Kyocera Corp 単結晶ウエハ及びそれを用いた弾性波装置
JP2004253937A (ja) * 2003-02-19 2004-09-09 Toyo Commun Equip Co Ltd 弾性表面波フィルタとその製造方法
JP2004260410A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Ind Co Ltd Sawデバイス
JP2005217670A (ja) * 2004-01-28 2005-08-11 Kyocera Corp 弾性表面波装置および通信装置
JP2007116628A (ja) * 2005-10-24 2007-05-10 Kyocera Corp 弾性表面波装置及び通信装置
JP2010233122A (ja) * 2009-03-27 2010-10-14 Murata Mfg Co Ltd 弾性表面波素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248751A1 (ja) * 2022-06-23 2023-12-28 京セラ株式会社 弾性波装置、弾性波装置の製造方法、および通信装置

Also Published As

Publication number Publication date
KR20170072326A (ko) 2017-06-26
CN206790453U (zh) 2017-12-22
US10601389B2 (en) 2020-03-24
US20170237406A1 (en) 2017-08-17
KR101987712B1 (ko) 2019-06-11

Similar Documents

Publication Publication Date Title
US10096763B2 (en) Elastic wave device and method for manufacturing same
JP6315716B2 (ja) 弾性波デバイス
US10250222B2 (en) Electronic device
US10200010B2 (en) Elastic wave filter device
US11277114B2 (en) Elastic wave device and manufacturing method therefor
US8004160B2 (en) Acoustic wave device with adhesive layer and method of manufacturing the same
WO2016088830A1 (ja) 弾性波装置の製造方法及び弾性波装置
JP5277971B2 (ja) 弾性表面波デバイス
CN110771037B (zh) 弹性波装置、前端电路以及通信装置
JP2012199833A (ja) 電子部品、電子デバイス、及び電子部品の製造方法
KR20180059353A (ko) 전자 부품 및 그 제조 방법
CN110771038B (zh) 弹性波装置、前端电路以及通信装置
US10637434B2 (en) Elastic wave device, high-frequency front end circuit and communication device
WO2019124127A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US11509289B2 (en) Composite component and mounting structure therefor
WO2020166567A1 (ja) 電子モジュール及び電子モジュールの製造方法
JP2011055315A (ja) 弾性波素子とこれを用いた電子機器
JP2011023929A (ja) 弾性波素子とこれを用いた電子機器
JP2018074051A (ja) 電子部品およびその製造方法
JP5467375B2 (ja) 弾性表面波デバイス
JP2017046330A (ja) 弾性波素子および弾性波装置
JP5773027B2 (ja) 電子部品及び電子機器
JP5905264B2 (ja) 電子デバイスの製造方法
JP2011182468A (ja) 半導体装置、半導体装置の製造方法、電子部品、回路基板及び電子機器
JP2012170025A (ja) 弾性波デバイス、及び弾性波デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014262

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15865770

Country of ref document: EP

Kind code of ref document: A1