WO2016088750A1 - 表面処理鋼板および表面処理鋼板の製造方法 - Google Patents

表面処理鋼板および表面処理鋼板の製造方法 Download PDF

Info

Publication number
WO2016088750A1
WO2016088750A1 PCT/JP2015/083731 JP2015083731W WO2016088750A1 WO 2016088750 A1 WO2016088750 A1 WO 2016088750A1 JP 2015083731 W JP2015083731 W JP 2015083731W WO 2016088750 A1 WO2016088750 A1 WO 2016088750A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
crystal
steel sheet
composite
amount
Prior art date
Application number
PCT/JP2015/083731
Other languages
English (en)
French (fr)
Inventor
伊達 博充
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016528920A priority Critical patent/JP6008068B1/ja
Publication of WO2016088750A1 publication Critical patent/WO2016088750A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a surface-treated steel sheet and a method for producing the surface-treated steel sheet.
  • This application claims priority on December 1, 2014 based on Japanese Patent Application No. 2014-243298 for which it applied to Japan, and uses the content here.
  • Sn-plated steel sheets are mainly used as steel sheets for cans.
  • chromate treatment has been used as a chemical conversion treatment applied to the surface of the Sn-plated steel sheet.
  • chemical conversion treatment using chemical species other than Cr, particularly oxidized Zr (IV) has been studied for the purpose of avoiding the use of Cr (VI).
  • Patent Document 4 discloses a method for producing the above-described steel plate for containers by performing once on the steel plate or the plated steel plate by cathodic electrolysis using an acidic solution containing Zr ions and phosphate ions. ing.
  • Japanese Unexamined Patent Publication No. 2009-1851 Japanese Unexamined Patent Publication No. 2009-1853 Japanese Unexamined Patent Publication No. 2012-62519 Japanese Unexamined Patent Publication No. 2009-120919
  • the steel plate for the container and the coating are compared with the case where the surface of the steel plate for the container is smooth. Since the contact area with the agent is increased, the adhesion with the coating agent is improved to some extent.
  • the coating agent does not flow under the oxidized Zr (IV) or phosphoric acid Zr (IV). The coating agent does not physically adhere. In such a case, since the adhesiveness between the steel plate for containers and the coating agent depends on the affinity between the two, the required adhesiveness cannot be obtained.
  • the present invention adopts the following means in order to solve the above problems and achieve the object.
  • a surface-treated steel sheet includes a substrate that is a steel plate or a plated steel plate, an oxide Zr (IV) crystal that is formed on the surface of the substrate and has a plate shape or a needle shape, A Zr composite containing Zr (IV) phosphate covering the surface of the oxide Zr (IV) crystal with a coating thickness of 0.5 nm to 2.0 nm, and contacting the substrate with the Zr composite
  • the average length of the line segment connecting one end and the other end is 50 nm to 500 nm, and the average angle formed by the Zr composite and the surface of the substrate is 20 ° to 65 °.
  • the projected area when the Zr composite is projected perpendicularly to the surface of the substrate is 90% or more with respect to the area of the surface of the substrate.
  • the adhesion amount of the Zr complex may be 5mg / m 2 ⁇ 100mg / m 2 in terms of metal Zr content.
  • the surface-treated steel sheet according to the amount deposited of the phosphate Zr (IV) is, in terms of P content 0.1mg / m 2 ⁇ 4.5mg / m 2 It may be.
  • the adhesion amount of the Zr composite is Z1 [mg / m 2 ] in terms of metal Zr amount
  • the adhesion amount of phosphoric acid Zr (IV) is P1 [mg / m 2 ] in terms of P amount
  • the ratio Z1 / P1 obtained by dividing Z1 by P1 is 10-100. Also good.
  • a method for producing a surface-treated steel sheet according to one aspect of the present invention comprises ZrF 6 2- at a concentration of 0.15 mol / L to 2.0 mol / L, and a temperature of 35 ° C. to 50 ° C.
  • Cathodic electrolysis treatment step of performing a cathodic electrolysis treatment on a substrate that is a steel plate After the cathodic electrolysis treatment step, a water washing treatment step of performing a water washing treatment on the substrate subjected to the cathodic electrolysis treatment, after the water washing treatment step, The substrate that has been subjected to the water washing treatment is immersed in an aqueous solution for immersion treatment containing 2 to 30 g / l of phosphate ions in terms of PO 4 3 ⁇ and having a pH of 3.7 to 6.5 for 2 seconds to 4 seconds. Dipping process step of dipping for a second.
  • FIG. 6 is a cross-sectional view showing a cross section taken along line EE of FIG. 5.
  • the surface-treated steel sheet of this embodiment includes a substrate 1 that is a steel plate or a plated steel plate, an oxide Zr (IV) crystal 2 formed on the surface of the substrate 1, and phosphoric acid that covers the surface of the oxide Zr (IV) crystal 2 Zr (IV) 5.
  • a substrate 1 that is a steel plate or a plated steel plate
  • an oxide Zr (IV) crystal 2 formed on the surface of the substrate 1
  • phosphoric acid that covers the surface of the oxide Zr (IV) crystal 2 Zr (IV) 5.
  • each of the substrate 1, the oxide Zr (IV) crystal 2 and the phosphoric acid Zr (IV) 5 will be described in detail.
  • the oxidized Zr (IV) crystal 2 whose surface is coated with phosphoric acid Zr (IV) 5 is referred to as a Zr complex 10.
  • the kind of steel plate or plated steel plate used as the substrate 1 in this embodiment is not particularly limited.
  • the steel plate plain steel such as aluminum killed steel, plates and steel strips such as IF steel and high-tensile steel can be used.
  • the plated steel plate a steel plate with a plated layer such as Zn, Zn alloy or Sn, or a stainless steel plate can be used.
  • FIGS. 5 to 7 are schematic views of the oxide Zr (IV) crystal 2 deposited on the substrate 1.
  • FIG. 5 and 6 show the case where the oxidized Zr (IV) crystal 2 is a plate-like crystal
  • FIG. 7 shows the case where the oxidized Zr (IV) crystal 2 is a needle-like crystal.
  • FIG. 5 shows a case where the shape of the oxidized Zr (IV) crystal 2 is a substantially parallelogram
  • FIG. 6 shows a case where the shape of the oxide Zr (IV) crystal 2 is a quadrangle that is not a substantially parallelogram. .
  • an oxide Zr (IV) crystal 2 is formed on the surface of the substrate 1.
  • the oxide Zr (IV) crystal 2 of the present embodiment is a plate-like crystal or a needle-like crystal, and may be only a plate-like crystal, may be only a needle-like crystal, or a plate-like crystal and a needle.
  • the crystal may be mixed.
  • the shape of the oxidized Zr (IV) crystal 2 and the shape of the Zr composite 10 are substantially the same. Can be considered identical.
  • the coating agent can go around the lower side of the Zr composite 10. .
  • the adhesion strength between the substrate 1 and the coating agent can be dramatically improved.
  • the technique for forming the oxidized Zr (IV) crystal 2 having the above-described form on the surface of the substrate 1 is a finding newly found by the present invention.
  • crystal length of Zr composite 10 In the plurality of Zr composites 10, the average length of the line segment connecting the one end 3 in contact with the substrate 1 and the farthest other end 4 (hereinafter referred to as crystal length) is 50 nm to 500 nm.
  • the crystal length of the Zr composite 10 can be measured by observing a sample having a cross-section exposed by resin embedding polishing or CP processing with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the magnification at the time of observation by SEM is preferably 10,000 times or more, and more preferably 30000 times or more.
  • the length of the line segment connecting the one end 3 and the other end 4 is unique. Is not determined.
  • the point at which the vertical distance from the one end 3 (the surface of the substrate 1) is the farthest is determined. Then, the vertical distance from the determined point to one end 3 is defined as the crystal length of the oxide Zr (IV) crystal 2.
  • the point A is at the most separated position.
  • the length of the line segment AH is defined as the crystal length of the Zr composite 10 when the perpendicular line (vertical point) drawn from the point A toward the one end 3 is defined as a point H.
  • the length of the line segment connecting the one end 3 and the other end 4 is not uniquely determined. Also in such a case, as in the case shown in FIG. 6, first, among the points of the Zr composite 10, the point where the vertical distance from the one end 3 (the surface of the substrate 1) is farthest is determined. . The vertical distance from the determined point to one end 3 is defined as the crystal length of the Zr composite 10. In the case shown in FIG. 7, when the vertical distances from the one end 3 at each point of the Zr composite 10 are compared, the point A is at the most separated position. The length of the line segment AH is defined as the crystal length of the Zr composite 10, where the perpendicular leg (vertical point) drawn from the point A toward the extension line of the one end 3 is defined as a point H.
  • the coating agent When the crystal length is less than 50 nm, the coating agent is not physically fixed to the Zr composite 10, and thus adhesion to a suitable coating agent cannot be obtained. On the other hand, when the crystal length of the Zr composite 10 exceeds 500 nm, the Zr composite 10 is easily cracked, and the adhesion with the coating agent is deteriorated.
  • the average length of the line segment connecting one end 3 in contact with the substrate 1 and the farthest other end 4 is more preferably 60 nm to 300 nm.
  • Deposition angle of Zr composite 10 In the plurality of Zr composites 10, an angle formed by the Zr composite 10 and the surface of the substrate 1 (hereinafter referred to as a deposition angle) is 20 ° to 65 ° on average.
  • the precipitation angle of the Zr composite 10 is a comparison between the angle of the base angle formed by the Zr composite 10 and the surface of the substrate 1 and the angle of the external angle related to the base angle. Refers to a smaller angle.
  • the smaller angle is 20 ° to 65 °.
  • the base angles formed by the Zr composite 10 and the surface of the substrate 1 are ⁇ 1 and ⁇ 2.
  • the outer angle of ⁇ 1 is ⁇ 1
  • the outer angle of ⁇ 2 is ⁇ 2.
  • the angle of ⁇ 1 having a smaller angle is 20 ° to 65 °.
  • FIG. 5 shows the case where one end 3 (line segment BC) and the other end 4 (line segment AD) are parallel, so that ⁇ 1 and ⁇ 2 are the same angle, and ⁇ 1 and ⁇ 2 are the same. Is an angle.
  • the angle of ⁇ 1 having a smaller angle is 20 ° to 65 °.
  • the angle of ⁇ 2 having a smaller angle is 20 ° to 65 °.
  • the deposition angle of the Zr composite 10 can be measured by observing a sample with a cross-section exposed by resin embedding polishing or CP processing, using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the magnification at the time of observation by SEM is preferably 10,000 times or more, and more preferably 30000 times or more.
  • the angle obtained by measuring and averaging the deposition angles of a plurality of Zr composites 10 formed on the surface of the substrate 1 is defined as the deposition angle of the Zr composites 10.
  • the deposition angle is less than 20 °, it is difficult for the coating agent to penetrate between the substrate 1 and the Zr composite 10. Therefore, the coating agent is not physically fixed to the Zr composite 10 and suitable adhesion cannot be obtained.
  • the deposition angle is more than 65 °, the coating agent can enter the lower side of the Zr composite 10, but the coating agent is easily peeled from the substrate 1. More preferably, the deposition angle is 45 ° to 65 ° on average.
  • FIG. 8 is a cross-sectional view showing a cross section taken along line EE of FIG. As shown in FIG. 8, the phosphoric acid Zr (IV) 5 covers the surface of the oxide Zr (IV) crystal 2 with a coating thickness of 0.5 nm to 2.0 nm.
  • the coating thickness of the phosphoric acid Zr (IV) 5 can be measured by performing a depth direction analysis of P using an Auger electron spectrometer (AES).
  • AES Auger electron spectrometer
  • Phosphoric acid Zr (IV) 5 is excellent in adhesion to the coating agent, but when the coating thickness is large, it tends to cause cracking and peeling.
  • both ensuring strength by the oxidized Zr (IV) crystal 2 and ensuring adhesion to the coating agent by the outermost surface phosphoric acid Zr (IV) 5 are achieved.
  • the coating thickness of the phosphoric acid Zr (IV) 5 is more preferably 1.5 nm to 2.0 nm.
  • the projection area When the Zr composite 10 is projected perpendicularly onto the surface of the substrate 1, the projection area is 90% or more with respect to the surface area of the substrate 1. When the above ratio is less than 90%, the effect of improving the adhesion due to the coating agent being physically fixed to the Zr composite 10 is reduced, which is not preferable.
  • the above projected area and surface area can be measured by imaging the surface of the substrate 1 having the Zr composite 10 formed on the surface with an SEM and using image analysis software.
  • the SEM magnification is preferably about 10,000 times.
  • [Zr amount] Adhesion amount of Zr complex 10 (total adhesion amount of oxide Zr (IV) crystal 2 and phosphate Zr (IV) crystal 5), it in terms of metal Zr content is 10mg / m 2 ⁇ 100mg / m 2 Is preferred.
  • the adhesion amount of the Zr composite 10 is less than 10 mg / m 2 in terms of the amount of metal Zr, the Zr composite 10 is insufficient in size, so that suitable adhesion to the coating agent is obtained. Is difficult.
  • Adhesion amount of Zr complex 10 is more preferably in terms of metal Zr content 20mg / m 2 ⁇ 100mg / m 2.
  • Deposition amount of phosphate Zr (IV) 5 is preferably in terms of P content is 0.1mg / m 2 ⁇ 4.5mg / m 2.
  • the surface-treated steel sheet according to the present embodiment has a suitable strength due to the oxidized Zr (IV) crystal 2 and a suitable adhesion due to the phosphoric acid Zr (IV) 5.
  • Deposition amount of phosphate Zr (IV) 5 is in terms of P content, and more preferably 0.25mg / m 2 ⁇ 2.1mg / m 2.
  • the adhesion amount of the Zr composite 10 is converted to the metal Zr amount to Z1 [mg / m 2 ], and the adhesion amount of the phosphoric acid Zr (IV) 5 is converted to the P amount.
  • P1 [mg / m 2 ] the ratio Z1 / P1 obtained by dividing Z1 by P1 is preferably 10 to 100. If the ratio between the amount of metal Zr and the amount of P in the surface-treated steel sheet is within the above range, the ratio between the amount of deposited Zr (IV) oxide 2 and the amount of deposited Zr (IV) phosphate is suitable. .
  • the ratio between the amount of metal Zr and the amount of P in the surface-treated steel sheet is within the above range, a suitable strength resulting from the oxidized Zr (IV) crystal 2 and a preferred result resulting from the Zr (IV) phosphate 5 are preferred. High adhesion can be obtained.
  • the ratio Z1 / P1 is more preferably 20 to 40.
  • Pretreatment process If dirt such as oil or fat is attached to the surface of the substrate 1, the attachment of the oxide Zr (IV) crystal 2 is hindered. Therefore, when necessary, it is desirable to perform pretreatment such as degreasing on the surface of the substrate 1.
  • a method for degreasing the surface of the substrate a method of electrolytically treating the substrate 1 in an aqueous sodium hydroxide solution can be mentioned.
  • the electrolytic treatment of the substrate either the cathodic electrolytic treatment or the anodic electrolytic treatment may be performed, or both the cathodic electrolytic treatment and the anodic electrolytic treatment may be performed.
  • oxide Zr (IV) crystals 2 are deposited on the surface of the substrate 1 by cathodic electrolysis using an aqueous solution containing ZrF 6 2 ⁇ (hereinafter referred to as cathodic electrolysis aqueous solution).
  • ZrF 6 2- source include ammonium hexafluorozirconium (IV) acid, potassium hexafluorozirconium (IV) acid, sodium hexafluorozirconium (IV) acid, and the like.
  • the reaction in which the oxidized Zr (IV) crystal 2 is precipitated on the surface of the substrate 1 by the cathodic electrolysis using an aqueous cathodic electrolysis solution containing ZrF 6 2 ⁇ can be explained as follows. First, hydrogen ions are reduced to hydrogen gas on the surface of the substrate 1 as a cathode as shown in the following formula (1), so that the hydrogen ion concentration in the vicinity of the surface is lowered and the pH is raised.
  • ZrF 6 2 ⁇ in the vicinity of the substrate 1 whose pH has increased reacts as shown in the following formula (2), and becomes Zr (IV) hydroxide and precipitates on the surface of the substrate 1, and further as shown in the following formula (3).
  • Zr (IV) oxide To Zr (IV) oxide.
  • a high pH layer is formed in the vicinity of the surface of the substrate 1 serving as the cathode, and a precipitated film of ZrF 6 2 ⁇ is deposited from ZrF 6 2 ⁇ in the high pH layer. Therefore, a ZrF 6 2 ⁇ depletion layer is formed very close to the substrate 1. Since the ZrF 6 2 ⁇ reaction does not occur in the ZrF 6 2 ⁇ depleted layer, the reaction field of the above formula (2) gradually moves away from the vicinity of the substrate 1. As a result of the reaction as described above, the oxidized Zr (IV) crystal 2 does not spread out in the surface direction of the substrate 1 but precipitates at an angle of 20 ° to 65 ° with respect to the surface of the substrate 1. The reason why crystals are precipitated in an oblique direction, not in a direction perpendicular to the surface of the substrate 1 is not clear, but it is considered that the crystals are stabilized by precipitating in the above-mentioned direction.
  • the concentration of ZrF 6 2 ⁇ in the cathodic electrolysis aqueous solution is preferably 0.15 mol / L to 2.0 mol / L.
  • concentration of ZrF 6 2 ⁇ in the aqueous solution for cathodic electrolysis is lower than 0.15 mol / L, most of the high pH layer generated in the vicinity of the substrate 1 serving as the cathode becomes a ZrF 6 2 ⁇ deficient layer.
  • the shape of the crystal 2 is not formed regularly. That is, the oxide Zr (IV) crystal 2 is formed in a granular shape, not a plate shape or a needle shape.
  • a more preferable concentration of ZrF 6 2 ⁇ in the aqueous solution for cathodic electrolysis is 0.5 mol / L to 1.5 mol / L.
  • the temperature of the cathodic electrolysis aqueous solution is preferably 35 ° C. to 50 ° C. If it is less than 35 ° C., the precipitation angle of the oxidized Zr (IV) crystal 2 is large, which is not preferable. On the other hand, when the temperature of the cathodic electrolytic treatment aqueous solution exceeds 50 ° C., the deposition angle of the oxidized Zr (IV) crystal 2 is small, which is not preferable.
  • the pH of the aqueous solution for cathodic electrolysis is preferably 3.5 to 4.5.
  • the pH in the vicinity of the surface of the substrate 1 serving as the cathode does not rise sufficiently and precipitation of Zr (IV) hydroxide does not occur.
  • the amount of precipitation of the oxidized Zr (IV) crystal 2 decreases, which is not preferable.
  • the pH of the aqueous solution for cathodic electrolysis exceeds 4.5, the reaction of the above formula (1) hardly occurs on the surface of the substrate 1, whereas the reaction of the above formula (2) easily occurs. That is, since the oxidized Zr (IV) crystal 2 extends in various directions, the oxidized Zr (IV) crystal 2 having no regular shape is formed, which is not preferable.
  • the current density (cathode current density) in cathodic electrolysis is preferably 2 A / dm 2 to 20 A / dm 2 . If the current density is less than 2 A / dm 2 , the reaction of the above formula (1) is suppressed, and the pH increase in the vicinity of the substrate 1 becomes insufficient, so that the reaction of the above formula (2) progresses slowly. As a result, the oxide Zr (IV) crystal 2 hardly precipitates, which is not preferable. On the other hand, when the current density exceeds 20 A / dm 2 , the reaction of the above formula (1) is promoted, and the pH rapidly increases in the vicinity of the substrate 1. As a result, the reaction of the above formula (2) is promoted and it is difficult to form the oxidized Zr (IV) crystal 2 in a plate shape or a needle shape.
  • the amount of electricity in the cathodic electrolysis treatment is preferably 1 C / dm 2 to 20 C / dm 2 . If the amount of electricity is less than 1 C / dm 2 , the amount of precipitated Zr (IV) oxide 2 is insufficient, and suitable adhesion to the coating agent cannot be obtained. On the other hand, if the amount of electricity exceeds 20 C / dm 2 , the amount of precipitated Zr (IV) oxide crystal 2 becomes excessive and the abrasion resistance deteriorates, which is not preferable.
  • a water washing treatment After precipitation of the oxidized Zr (IV) crystal 2 by the cathodic electrolysis treatment, a water washing treatment is performed.
  • conditions for the water washing treatment pure water or purified water is used, and a dipping method or a showering or spraying method can be used.
  • Substrate, pretreatment, plating As the substrate 1, an Sn-plated steel plate having an Sn plated layer formed on the surface of the steel plate was used. Specifically, an SPB steel strip having a thickness of 0.18 mm and a tempering degree of T-5 CA obtained by continuous annealing and temper rolling of a low carbon cold-rolled steel strip was used as a steel plate. As a pretreatment, the SPB steel strip was subjected to cathodic electrolytic degreasing in a 10 mass% sodium hydroxide solution, and then the SPB steel strip was pickled with 5 mass% dilute sulfuric acid. Next, electric Sn plating was applied to the steel strip using a ferrostan bath.
  • Cathodic electrolysis treatment was performed at a cathode current density of 20 A / dm 2 in a plating solution at 43 ° C. containing 20 g / L of Sn ions, 75 g / L of phenolsulfonic acid ions, and 6 g / L of surfactant. Titanium plated with about 1 ⁇ m of platinum was used for the anode.
  • the steel strip was dipped in a 10-fold diluted Sn plating solution, drained with a rubber roll, and then dried with cold air. The temperature was raised to 260 ° C. in 10 seconds by electric heating to reflow Sn, and immediately quenched with 75 ° C. water.
  • the total Sn amount measured by the electrolytic stripping method using 1 mol / L dilute hydrochloric acid is 2.8 g / m 2
  • the amount of Sn—Fe alloy layer FeSn 2 is 1.0 to 1.1 g / m 2 as the Sn amount. 2 .
  • Example 1 to 26 and Comparative Examples 1 to 16 the Sn-plated steel sheets formed as described above were subjected to the chemical conversion treatment described below.
  • Comparative Examples 17 to 21 were subjected to Ni plating using a Watt bath prior to the Sn plating described above.
  • an immersion treatment aqueous solution was prepared. Specifically, the aqueous phosphoric acid solution was adjusted to pH 3.7 to 6.5 with sodium hydroxide. The Sn-plated steel sheet after the cathodic electrolytic treatment was immersed in the above aqueous solution for 2 to 4 seconds. The total concentration of phosphoric acid species (phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion) in this aqueous solution was 10 g / l in terms of PO 4 3 ⁇ and the temperature was 40 ° C. In some comparative examples, for comparison, immersion treatment was performed under conditions that deviated from the above-described treatment conditions. After the immersion treatment, the liquid was squeezed with a rubber roll, quickly washed with water and dried. In Comparative Examples 17 to 21, no immersion treatment was performed.
  • the adhesion amount of Zr and P was calculated from the fluorescent X-ray intensity using a calibration curve prepared in advance.
  • the Sn adhesion amount was determined by an electrolytic stripping method using a Sn-plated steel sheet as an anode in 1 mol / L dilute hydrochloric acid.
  • the crystal length of the Zr composite was determined by measuring the surface of the Sn-plated steel sheet using a 30000-fold image obtained by scanning a CP-processed cross section with a field emission scanning electron microscope (FE-SEM, JSM-6500F). Thirty crystals present in the range of 1 ⁇ m were selected, and the length of the line segment connecting one end in contact with the Sn-plated steel plate and the other end farthest away was measured, and the average value was calculated.
  • FE-SEM field emission scanning electron microscope
  • the angle formed between the Zr composite and the surface of the Sn-plated steel sheet is smaller when the angle of the base angle formed by the Zr composite and the surface of the Sn-plated steel sheet is compared with the angle of the outer angle related to the base angle.
  • the ratio of the projected area when the Zr composite was projected perpendicularly to the surface of the Sn-plated steel sheet and the area of the Sn-plated steel sheet surface was determined by the field emission scanning electron microscope (FE-SEM, JEOL JSM-6500F). The image obtained by 10000) was taken into a computer and calculated using image analysis software.
  • the distribution of Zr (IV) phosphate was measured by analyzing the depth direction of P, O, and Zr on the outermost surface of the Zr complex using an Auger electron spectrometer (AES, ULVAC-PHI MODEL 680). .
  • a sample having a vertical length of 5 mm and a horizontal length of 100 mm was cut out from the painted plate after baking and additional baking.
  • Two samples cut out from the same evaluation material were sandwiched with a film-like nylon adhesive having a thickness of 100 ⁇ m in between so that the coated surfaces face each other. This was left pre-heated at 200 ° C. for 60 seconds with a hot press, leaving a grip portion, and then pressed at 2.9 ⁇ 10 5 Pa for 50 seconds at 200 ° C. to obtain a tensile test piece.
  • Each of the grip portions was bent at a 90 ° angle to form a T shape, which was gripped and pulled with a chuck of a tensile tester, and the peel strength was measured to evaluate the primary adhesion of the paint.
  • a test piece having a peel strength per 5 mm width of 59 N or more is “Very Good”, a test piece of 39 N or more and less than 59 N is “Good”, a test piece of 19 N or more and less than 39 N is “Poor”, and a test piece of less than 19 N is “ Bad ".
  • Test pieces with a peel strength per 5 mm width of 42 N or more are “Very Good”, test pieces of 29 N or more and less than 42 N are “Good”, test pieces of 15 N or more and less than 29 N are “Poor”, and test pieces of less than 15 N are “ Bad ".
  • a crosscut was made on the surface of the sample with a cutter until it reached the core, and the end surface and back surface of the sample were sealed with paint. Thereafter, the sample was immersed in a test solution at 55 ° C. containing 1.5% citric acid and 1.5% sodium chloride for 96 hours under the open atmosphere.
  • the sample after being immersed in the test solution for 96 hours is washed with water and dried, and then the scratch part and the flat part are quickly peeled off with tape, and the corrosion state in the vicinity of the cross cut part, the pitting corrosion of the cross cut part and the flat part
  • the coating film peeling state was observed to evaluate the corrosion resistance.
  • “Very Good” refers to a test piece in which neither tape peeling nor corrosion was found, and a test piece in which at least one of tape peeling and invisible corrosion occurring within a range of less than 0.2 mm from the scratch portion was found.
  • “Good” is a specimen in which at least one of tape peeling occurring in a range of 0.2 mm to 0.5 mm from the scratch portion and small visible corrosion is found, “Poor”, and tape peeling exceeding 0.5 mm The discovered test piece was evaluated as “Bad”.
  • the lowest evaluation result in the performance evaluation of the above three items is regarded as a comprehensive evaluation, and is classified into four stages of “Very Good”, “Good”, “Poor”, and “Bad”, and “Very Good” and “Good” are determined to be passed. evaluated.
  • Table 1 shows the conditions of the cathodic electrolysis treatment and immersion treatment of Examples 1 to 26
  • Table 2 shows the conditions of the cathodic electrolysis treatment and immersion treatment of Comparative Examples 1 to 16, and the results regarding the Zr composites of Examples 1 to 26 are shown.
  • Table 3 shows the results of the Zr composites of Comparative Examples 1 to 16
  • Table 4 shows the results of the characteristic evaluation of Examples 1 to 26,
  • Table 6 shows the results of the characteristic evaluation of Comparative Examples 1 to 16. It was.
  • Comparative Examples 17 to 21 the conditions for plating and cathodic electrolysis were shown in Table 7, the results relating to the oxidized Zr (IV) crystal were shown in Table 8, and the results of the characteristic evaluation were shown in Table 9.
  • Comparative Example 1 is an example in which the concentration of ZrF 6 2- in the cathodic electrolysis solution is low. Since the Zr composite was not formed into a plate shape or a needle shape and became a granular precipitate, the paint adhesion was insufficient and the corrosion resistance was also inferior.
  • Comparative Example 2 is an example in which the concentration of ZrF 6 2- in the cathodic electrolysis solution is high. Crystals of hydroxylated Zr (IV) grew, the Zr complex was not formed into a plate or needle shape, and the paint adhesion was insufficient.
  • Comparative Example 3 is an example in which the temperature of the cathodic electrolysis solution is low. The deposition angle of the Zr composite was increased, and the paint adhesion was insufficient. Comparative Example 4 is an example where the temperature of the cathodic electrolysis solution is high. The deposition angle of the Zr composite was reduced, and the paint adhesion was insufficient.
  • Comparative Example 5 is an example in which the pH of the cathodic electrolysis solution is low. Since the precipitation amount of the Zr composite was small and the surface of the Sn-plated steel sheet was not sufficiently covered, the paint adhesion was insufficient and the corrosion resistance was also inferior. Comparative Example 6 is an example in which the pH of the cathodic electrolysis solution is high. Since amorphous hydroxide Zr (IV) crystals were precipitated, the paint adhesion was insufficient and the corrosion resistance was poor.
  • Comparative Example 9 is an example in which the amount of electricity in cathodic electrolysis is low. The amount of deposited Zr (IV) oxide crystals was insufficient, the paint adhesion was insufficient, and the corrosion resistance was poor. Comparative Example 10 is an example in which the amount of electricity in cathodic electrolysis is high. Since the precipitation amount of the oxide Zr (IV) crystal was excessive, there was a tendency that peeling due to cracking of the oxide Zr (IV) crystal was likely to occur.
  • Comparative Example 13 is an example in which the immersion treatment time is short. Phosphorylation of the oxidized Zr (IV) crystal surface did not occur sufficiently, and the paint secondary adhesion was insufficient. Comparative Example 14 is an example in which the immersion treatment time is long. Since the phosphor was phosphorylated to the inside of the oxidized Zr (IV) crystal, the strength was weakened, and peeling due to cracking tended to occur.
  • Comparative Example 15 is an example in which cathodic electrolysis was carried out under conditions of low current density and high electric quantity, and the oxide Zr (IV) crystals grew large, so that cracking was likely to occur and paint adhesion was improved. It became insufficient.
  • Comparative Example 16 is an example in which the amount of electricity in cathodic electrolysis is low, the size of the oxidized Zr (IV) crystal is small, the physical fixing effect of the oxidized Zr (IV) crystal on the paint is not sufficient, and the paint adhesion Was insufficient.
  • Comparative Examples 17 to 21 are examples in which the oxidized Zr (IV) crystal and the phosphoric acid Zr (IV) were simultaneously precipitated using the chemical conversion treatment solution described in Patent Document 3, all of which are smooth. Since the surface or precipitated crystals were granular, paint adhesion and corrosion resistance were insufficient.
  • a surface-treated steel sheet and a method for producing the surface-treated steel sheet that are excellent in adhesion to paints and films and corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 この表面処理鋼板は、鋼板またはめっき鋼板である基板と、前記基板の表面に形成され、形状が板状または針状である酸化Zr(IV)結晶と、前記酸化Zr(IV)結晶の表面を0.5nm~2.0nmの被覆厚さで被覆するりん酸Zr(IV)とを含むZr複合体とを有し、前記Zr複合体で、前記基板と接する一端と、他端とを結ぶ線分の長さの平均が、50nm~500nmであり、前記Zr複合体と前記基板の前記表面とにより形成される角度の平均が、20°~65°であり、前記Zr複合体を前記基板の前記表面に垂直に投射した場合の投射面積は、前記基板の前記表面の面積に対して、90%以上である。

Description

表面処理鋼板および表面処理鋼板の製造方法
 本発明は、表面処理鋼板および表面処理鋼板の製造方法に関する。
 本願は、2014年12月1日に、日本に出願された特願2014-243298号に基づき優先権を主張し、その内容をここに援用する。
 Snめっき鋼板は、主に缶用鋼板として使用されている。Snめっき鋼板の表面に施される化成処理としては、従来よりクロメート処理が使用されてきた。しかしながら、近年はCr(VI)の使用を回避する目的で、Cr以外の化学種、特に酸化Zr(IV)を利用する化成処理が検討されている。
 特許文献1~3の容器用鋼板には、鋼板表面に、Zr皮膜、りん酸化合物皮膜およびフェノール樹脂皮膜から選択された少なくとも二種以上の皮膜が形成されている。
 特許文献4の容器用鋼板には、鋼板表面に、酸化Zr(IV)とりん酸Zr(IV)との混合物を含む化成処理皮膜層が形成されている。特許文献4の化成処理皮膜層では、化成処理皮膜層の表面から40%以内の部分にりん酸Zr(IV)、化成処理皮膜層の表面から40~100%の部分に酸化Zr(IV)が偏在している。
 また、特許文献4には、鋼板またはめっき鋼板に対して、Zrイオンおよびりん酸イオンを含む酸性溶液を用いた陰極電解処理を1回行うことにより、上記容器用鋼板を製造する方法が開示されている。
日本国特開2009-1851号公報 日本国特開2009-1853号公報 日本国特開2012-62519号公報 日本国特開2009-120919号公報
 上記特許文献1~4に開示されている容器用鋼板では、容器用鋼板の表面に塗料やフィルム(以下、コーティング剤という)を被覆した場合に、容器用鋼板とコーティング剤との間の密着性が十分ではない場合があった。
 特許文献1~4の容器用鋼板において、酸化Zr(IV)やりん酸Zr(IV)から成る化成処理皮膜の表面は、平滑であるか、または表面に粒状もしくは無定形の酸化Zr(IV)やりん酸Zr(IV)が析出している。粒状または無定形の酸化Zr(IV)やりん酸Zr(IV)が鋼板またはめっき鋼板表面に析出している場合は、容器用鋼板の表面が平滑である場合と比べて、容器用鋼板とコーティング剤との間の接触面積が増加するため、コーティング剤との間の密着性がある程度向上する。
 しかしながら、酸化Zr(IV)やりん酸Zr(IV)が粒状または無定形の場合には、コーティング剤が酸化Zr(IV)やりん酸Zr(IV)の下に回り込まないため、容器用鋼板とコーティング剤とが物理的に密着しない。このような場合には、容器用鋼板とコーティング剤との密着性は両者の親和力に依存するため、必要な密着性が得られない。
 特許文献1~4に記載されている容器用鋼板とコーティング剤との密着性を向上させるには、コーティング剤に対する親和性の高いりん酸Zr(IV)を多く容器用鋼板に付着させることが必要である。しかしながら、特許文献4に記載されている通り、りん酸Zr(IV)を多く付着させると、化成処理皮膜の割れが起こりやすくなるため、コーティング剤との密着性が低下する。そのため、特許文献1~4に記載されている容器用鋼板では、コーティング剤に対する密着性を向上するのが困難であった。
 また、特許文献1~4の容器用鋼板では、耐食性の更なる向上が求められていた。
 本発明は、上記の事情に鑑みてなされたものであり、塗料またはフィルムに対する密着性および耐食性に優れた表面処理鋼板およびその製造方法を提供することを目的とする。
 本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。
 (1)本発明の一態様に係る表面処理鋼板は、鋼板またはめっき鋼板である基板と、前記基板の表面に形成され、形状が板状または針状である酸化Zr(IV)結晶と、前記酸化Zr(IV)結晶の表面を0.5nm~2.0nmの被覆厚さで被覆するりん酸Zr(IV)とを含むZr複合体とを有し、前記Zr複合体で、前記基板と接する一端と、他端とを結ぶ線分の長さの平均が、50nm~500nmであり、前記Zr複合体と前記基板の前記表面とにより形成される角度の平均が、20°~65°であり、前記Zr複合体を前記基板の前記表面に垂直に投射した場合の投射面積は、前記基板の前記表面の面積に対して、90%以上である。
 (2)上記(1)に記載の表面処理鋼板において、前記Zr複合体の付着量が、金属Zr量に換算して5mg/m~100mg/mであってもよい。
 (3)上記(1)または(2)に記載の表面処理鋼板において、前記りん酸Zr(IV)の付着量が、P量に換算して0.1mg/m~4.5mg/mであってもよい。
 (4)上記(1)~(3)の何れか一態様に記載の表面処理鋼板において、前記Zr複合体の付着量が金属Zr量に換算してZ1[mg/m]であり、前記りん酸Zr(IV)の付着量がP量に換算してP1[mg/m]である場合に、前記Z1を前記P1で除算して得られる比率Z1/P1が10~100であってもよい。
 (5)本発明の一態様に係る表面処理鋼板の製造方法は、ZrF 2-を0.15mol/L~2.0mol/Lの濃度で含有し、温度が35℃~50℃であり、pHが3.5~4.5の陰極電解処理水溶液を用い、電流密度が2A/dm~20A/dm、電気量が1C/dm~20C/dmの条件下で、鋼板またはめっき鋼板である基板に陰極電解処理を施す陰極電解処理工程と、前記陰極電解処理工程後、前記陰極電解処理が施された前記基板に水洗処理を施す水洗処理工程と、前記水洗処理工程後、前記水洗処理が施された前記基板を、PO 3-換算で2g/l~30g/lのりん酸イオンを含有し、pHが3.7~6.5である浸漬処理水溶液に2秒~4秒浸漬する浸漬処理工程と、を有する。
 上記各態様によれば、塗料またはフィルムに対する密着性および耐食性に優れた表面処理鋼板およびその製造方法を提供することができる。
走査型電子顕微鏡(SEM)により取得した、本実施形態に係る表面処理鋼板の表面画像である。 SEMにより取得した、従来技術に係る表面処理鋼板の表面画像である。 SEMにより取得した、従来技術に係る表面処理鋼板の表面画像である。 SEMにより取得した、従来技術に係る表面処理鋼板の表面画像である。 基板上に析出した酸化Zr(IV)結晶の模式図である。 基板上に析出した酸化Zr(IV)結晶の模式図である。 基板上に析出した酸化Zr(IV)結晶の模式図である。 図5のE-E線での断面を示した断面図である。
 以下、実施形態に係る表面処理鋼板及びその製造方法を、図面を参照して説明する。
 (表面処理鋼板)
 本実施形態の表面処理鋼板は、鋼板またはめっき鋼板である基板1と、基板1の表面に形成された酸化Zr(IV)結晶2と、酸化Zr(IV)結晶2の表面を被覆するりん酸Zr(IV)5を有する。以下では、基板1、酸化Zr(IV)結晶2及びりん酸Zr(IV)5のそれぞれについて、詳細に説明する。
 なお、本実施形態では、表面をりん酸Zr(IV)5で被覆された酸化Zr(IV)結晶2をZr複合体10と呼称する。
 [基板1]
 本実施形態で基板1として用いられる鋼板またはめっき鋼板の種類は、特に限定されない。鋼板としては、アルミキルド鋼などの普通鋼、IF鋼や高張力鋼などの板および鋼帯を用いることができる。めっき鋼板としては、上記鋼板の表面に、Zn、Zn合金またはSnなどのめっき層を形成したものや、ステンレス鋼板を用いることができる。
 [酸化Zr(IV)結晶2]
 本実施形態に係る酸化Zr(IV)結晶2について説明する。
 図5~図7は、基板1上に析出した酸化Zr(IV)結晶2の模式図である。図5及び図6は酸化Zr(IV)結晶2が板状結晶の場合を表し、図7は酸化Zr(IV)結晶2が針状結晶の場合を表す。また、図5は酸化Zr(IV)結晶2の形状が略平行四辺形である場合を表し、図6は酸化Zr(IV)結晶2の形状が略平行四辺形ではない四角形である場合を表す。
 図5~図7に示すように、本実施形態において、基板1の表面には、酸化Zr(IV)結晶2が形成されている。本実施形態の酸化Zr(IV)結晶2は、板状結晶または針状結晶であり、板状結晶のみであってもよいし、針状結晶のみであってもよいし、板状結晶と針状結晶とが混在していてもよい。
 なお、本実施形態では、酸化Zr(IV)結晶2のごく表面をりん酸Zr(IV)が被覆しているため、酸化Zr(IV)結晶2の形状とZr複合体10の形状とは略同一と見なすことができる。
 図5~図7に示すように、Zr複合体10は、基板1の表面に直交する方向から傾いた方向に形成されているため、コーティング剤がZr複合体10の下側に回り込むことができる。これにより、コーティング剤がZr複合体10によって物理的に固定されるため、基板1とコーティング剤との間の密着強度を飛躍的に向上させることができる。
 なお、基板1の表面に、上述の形態を有する酸化Zr(IV)結晶2を形成する技術は、本発明により新たに見出された知見である。
 [Zr複合体10の結晶長]
 複数のZr複合体10における、基板1と接する一端3と、その最も離れた他端4とを結ぶ線分の長さ(以下、結晶長という)の平均は、50nm~500nmである。
 Zr複合体10の結晶長は、樹脂埋め込み研磨またはCP加工などで断面を露出した試料を走査型電子顕微鏡(SEM)によって観察することで測定することができる。SEMにより観察する際の倍率は、10000倍以上が好ましく、30000倍以上がより好ましい。
 なお、図5に示すように、Zr複合体10の一端3と他端4とが平行である場合には、一端3と他端4とを結ぶ線分の長さ(図5の線分AHの長さ)は一定であるため、Zr複合体10の結晶長としてはその値を用いる。
 図6に示すように、Zr複合体10が板状であって、一端3と他端4とが平行ではない場合には、一端3と他端4とを結ぶ線分の長さが一意には定まらない。このような場合には、まず、酸化Zr(IV)結晶2の各点のうち、一端3(基板1の表面)からの垂直距離が最も離間している点を決定する。そして、決定された点から一端3までの垂直距離を、酸化Zr(IV)結晶2の結晶長とする。
 図6に示す場合に、Zr複合体10の各点における一端3からの垂直距離を比較すると、点Aが最も離間した位置にある。点Aから一端3に向けて引いた垂線の足(垂点)を点Hとしたとき、線分AHの長さをZr複合体10の結晶長とする。
 図7に示すように、Zr複合体10が針状である場合にも、一端3と他端4とを結ぶ線分の長さが一意には定まらない。このような場合にも、図6に示す場合と同様に、まず、Zr複合体10の各点のうち、一端3(基板1の表面)からの垂直距離が最も離間している点を決定する。そして、決定された点から一端3までの垂直距離を、Zr複合体10の結晶長とする。
 図7に示す場合に、Zr複合体10の各点における一端3からの垂直距離を比較すると、点Aが最も離間した位置にある。点Aから一端3の延長線に向けて引いた垂線の足(垂点)を点Hとしたとき、線分AHの長さをZr複合体10の結晶長とする。
 結晶長が50nm未満では、コーティング剤がZr複合体10に物理的に固定されないため、好適なコーティング剤に対する密着性が得られない。一方、Zr複合体10は、結晶長が500nmを超えると割れやすくなり、コーティング剤との密着性が悪くなる。
 複数のZr複合体10において、基板1と接する一端3と、その最も離れた他端4とを結ぶ線分の長さの平均は、より好ましくは、60nm~300nmである。
 [Zr複合体10の析出角度]
 複数のZr複合体10において、Zr複合体10と基板1の表面とにより形成される角度(以下、析出角度という)は、平均で20°~65°である。なお、本実施形態において、Zr複合体10の析出角度とは、Zr複合体10と基板1の表面とにより形成される底角の角度と、その底角に関する外角の角度とを比較したとき、より小さい角度を指す。
 また、本実施形態において、Zr複合体10と基板1の表面とにおいて、底角と外角とは2対存在するが、いずれの底角と外角との対においても、底角の角度とその底角に関する外角の角度とを比較したとき、より小さい角度が20°~65°である。
 図5を例にして説明すると、Zr複合体10と基板1の表面とにより形成される底角はθ1及びθ2である。また、θ1の外角はφ1であり、θ2の外角はφ2である。底角θ1と外角φ1とを比較した場合に、より小さい角度を有するφ1の角度が20°~65°である。なお、図5は、一端3(線分BC)と他端4(線分AD)とが平行である場合を表しているので、θ1とφ2とは同じ角度であり、φ1とθ2とは同じ角度である。
 図6及び図7に示す場合は、図5の場合と同様に、底角θ1と外角φ1とを比較した場合に、より小さい角度を有するφ1の角度が20°~65°である。また、底角θ2と外角φ2とを比較した場合に、より小さい角度を有するθ2の角度が20°~65°である。
 Zr複合体10の析出角度は、樹脂埋め込み研磨またはCP加工などで断面を露出した試料を、走査型電子顕微鏡(SEM)によって観察することで測定することができる。SEMにより観察する際の倍率は、10000倍以上が好ましく、30000倍以上がより好ましい。
 なお、基板1の表面に形成された複数個のZr複合体10について析出角度を測定し、平均化することにより得られた角度を、Zr複合体10の析出角度とする。
 析出角度が20°未満の場合には、コーティング剤が、基板1とZr複合体10との間に浸入することが難しい。そのため、コーティング剤がZr複合体10に物理的に固定されず、好適な密着性が得られない。
 一方、析出角度が65°超の場合には、コーティング剤がZr複合体10の下側に侵入することが可能だが、コーティング剤が基板1から剥離しやすくなる。
 析出角度は、より好ましくは平均で45°~65°である。
 [りん酸Zr(IV)5]
 図8は、図5のE-E線での断面を示した断面図である。
 図8に示すように、りん酸Zr(IV)5は、0.5nm~2.0nmの被覆厚さで、酸化Zr(IV)結晶2の表面を被覆している。
 りん酸Zr(IV)5の被覆厚さは、オージェ電子分光装置(AES)を用いて、Pの深さ方向分析を行うことで測定できる。りん酸Zr(IV)5はコーティング剤との密着性に優れる一方、被覆厚さが大きい場合には、割れや剥離を引き起こしやすい。本実施形態の表面処理鋼板では、酸化Zr(IV)結晶2による強度の確保と、最表面のりん酸Zr(IV)5によるコーティング剤に対する密着性の確保とを両立させている。
 りん酸Zr(IV)5の被覆厚さは、より好ましくは1.5nm~2.0nmである。
 [投射面積]
 Zr複合体10を、基板1の表面に垂直に投射した場合の投射面積は、基板1の表面積に対して、90%以上である。上記の比率が90%未満の場合には、コーティング剤がZr複合体10に物理的に固定されることによる密着性の向上効果が低減するため、好ましくない。
 上記の投射面積および表面積は、表面にZr複合体10が形成された基板1の表面をSEMで撮像し、画像解析ソフトを用いることにより測定することができる。SEMの倍率は、10000倍程度が好ましい。
 [Zr量]
 Zr複合体10の付着量(酸化Zr(IV)結晶2及びりん酸Zr(IV)結晶5の合計付着量)は、金属Zr量に換算して10mg/m~100mg/mであることが好ましい。
 Zr複合体10の付着量が、金属Zr量に換算して10mg/m未満の場合には、Zr複合体10の大きさが不十分であるため、コーティング剤に対する好適な密着性を得ることが難しい。
 Zr複合体10の付着量が金属Zr量に換算して100mg/mを超えると、Zr複合体10に割れが生じやすくなる。そのため、コーティング剤に対する好適な密着性を得るのが難しい。
 Zr複合体10の付着量は、より好ましくは、金属Zr量に換算して20mg/m~100mg/mである。
 [P量]
 りん酸Zr(IV)5の付着量は、P量に換算して、0.1mg/m~4.5mg/mであることが好ましい。P量が上述の範囲であることにより、本実施形態に係る表面処理鋼板は、酸化Zr(IV)結晶2に起因する好適な強度と、りん酸Zr(IV)5に起因する好適な密着性とを得ることができる。
 りん酸Zr(IV)5の付着量は、P量に換算して、0.25mg/m~2.1mg/mであることがより好ましい。
 [金属Zr量とP量との比率]
 本実施形態に係る表面処理鋼板において、Zr複合体10の付着量を金属Zr量に換算してZ1[mg/m]とし、りん酸Zr(IV)5の付着量をP量に換算してP1[mg/m]とした場合に、Z1をP1で除算して得られる比率Z1/P1が10~100であることが好ましい。
 表面処理鋼板における金属Zr量とP量との比率が上述の範囲内であれば、酸化Zr(IV)結晶2の付着量とりん酸Zr(IV)5の付着量との比率が好適である。そのため、表面処理鋼板における金属Zr量とP量との比率が上述の範囲内であれば、酸化Zr(IV)結晶2に起因する好適な強度と、りん酸Zr(IV)5に起因する好適な密着性とを得ることができる。
 比率Z1/P1は、より好ましくは20~40である。
 (表面処理鋼板の製造方法)
 次に、本実施形態の表面処理鋼板の製造方法について述べる。
 [前処理工程]
 基板1の表面に、油脂等の汚れが付着していると、酸化Zr(IV)結晶2の付着が妨げられる。そのため、必要がある場合には、基板1の表面に脱脂等の前処理を行うことが望ましい。基板1表面の脱脂方法としては、水酸化ナトリウム水溶液中で基板1を電解処理する方法が挙げられる。基板1の電解処理としては、陰極電解処理と陽極電解処理とのどちらか一方でもよいし、陰極電解処理と陽極電解処理との両方を行ってもよい。
 [陰極電解処理工程]
 次に、ZrF 2-を含有する水溶液(以下、陰極電解処理水溶液という)を用いた陰極電解処理によって、基板1の表面に、酸化Zr(IV)結晶2を析出させる。ZrF 2-源としてはヘキサフルオロジルコニウム(IV)酸アンモニウム、ヘキサフルオロジルコニウム(IV)酸カリウム、ヘキサフルオロジルコニウム(IV)酸ナトリウム等が挙げられる。
 ZrF 2-を含有する陰極電解処理水溶液を用いた陰極電解処理によって、基板1の表面に酸化Zr(IV)結晶2が析出する反応は、次のように説明できる。まず、陰極である基板1表面で、下式(1)のように水素イオンが還元されて水素ガスとなることで、表面近傍の水素イオン濃度が低下し、pHが上昇する。
Figure JPOXMLDOC01-appb-M000001
 pHが上昇した基板1近傍のZrF 2-が、下式(2)のように反応して、水酸化Zr(IV)となって基板1表面に沈殿し、さらに下式(3)のように脱水して酸化Zr(IV)となる。
Figure JPOXMLDOC01-appb-M000002
 陰極である基板1の表面近傍に高pH層が形成され、その高pH層においてZrF 2-から水酸化Zr(IV)の沈殿皮膜が形成される。そのため、基板1のごく近傍では、ZrF 2-の欠乏層が生じる。ZrF 2-の欠乏層ではZrF 2-の反応が起こらないので、上式(2)の反応の場は、基板1の近傍から次第に離れる。
 上述のように反応する結果、酸化Zr(IV)結晶2は、基板1の面方向に広がって析出するのではなく、基板1の表面に対して20°~65°の角度で析出する。基板1の表面に直交する方向ではなく、斜め方向に結晶が析出する理由は明確ではないが、上述の方向に析出することで結晶が安定化するためであると考えられる。
 [ZrF 2-濃度]
 陰極電解処理水溶液中のZrF 2-の濃度は、好ましくは0.15mol/L~2.0mol/Lである。
 陰極電解処理水溶液中のZrF 2-の濃度が0.15mol/Lより低いと、陰極である基板1の近傍に生じる高pH層の大部分がZrF 2-欠乏層となるため、酸化Zr(IV)結晶2の形状が規則的に形成されない。つまり、酸化Zr(IV)結晶2が板状または針状ではなく、粒状に形成される。
 一方、陰極電解処理水溶液中のZrF 2-の濃度が2.0mol/Lを超える場合には、上式(2)の反応が促進され、酸化Zr(IV)が短時間で析出するため、結晶形態を制御することが難しい。
 より好ましい陰極電解処理水溶液中のZrF 2-の濃度は、0.5mol/L~1.5mol/Lである。
 [陰極電解処理水溶液の温度]
 陰極電解処理水溶液の温度は、好ましくは35℃~50℃である。
 35℃未満では、酸化Zr(IV)結晶2の析出角度が大きいため好ましくない。一方、陰極電解処理水溶液の温度が50℃を超えると、酸化Zr(IV)結晶2の析出角度が小さいため好ましくない。
 [陰極電解処理水溶液のpH]
 陰極電解処理水溶液のpHは、好ましくは3.5~4.5である。
 陰極電解処理水溶液のpHが3.5未満では、陰極である基板1の表面近傍のpHが十分に上がらず、水酸化Zr(IV)の沈殿が生じない。その結果、酸化Zr(IV)結晶2の析出量が少なくなるため好ましくない。
 一方、陰極電解処理水溶液のpHが4.5超の場合には、基板1の表面で上式(1)の反応が起こりにくくなる一方、上式(2)の反応は起こりやすくなる。つまり、酸化Zr(IV)結晶2が様々な方向に伸長するため、規則的な形状を持たない酸化Zr(IV)結晶2が形成されるため好ましくない。
 [電流密度]
 陰極電解処理の電流密度(陰極電流密度)は、好ましくは2A/dm~20A/dmである。
 電流密度が2A/dm未満では、上式(1)の反応が抑制され、基板1の近傍におけるpH上昇が不十分となるため、上式(2)の反応の進行が遅くなる。その結果、酸化Zr(IV)結晶2がほとんど析出しないため好ましくない。
 一方、電流密度が20A/dmを超えると、上式(1)の反応が促進され、基板1の近傍においてpHが急激に上昇する。その結果、上式(2)の反応が促進され、酸化Zr(IV)結晶2を板状または針状に形成することが難しいため好ましくない。
 [電気量]
 陰極電解処理の電気量は、好ましくは1C/dm~20C/dmである。
 電気量が1C/dm未満では、酸化Zr(IV)結晶2の析出量が不足し、コーティング剤に対する好適な密着性が得られないため好ましくない。一方、電気量が20C/dmを超えると、酸化Zr(IV)結晶2の析出量が過剰になり、耐アブレージョン性が劣化するため好ましくない。
 [水洗処理工程]
 陰極電解処理による酸化Zr(IV)結晶2の析出後、水洗処理を行う。水洗処理の条件としては、純水または浄水を用い、浸漬法またはシャワー状もしくはスプレー状にかける方法が挙げられる。
 [浸漬処理工程]
 水洗処理後、PO 3-換算で2~30g/lのりん酸イオンを含有し、pHが3.7~6.5の水溶液(以下、浸漬処理水溶液という)を用いた浸漬処理を2~4秒行う。これにより、酸化Zr(IV)結晶2の先端部をりん酸化し、りん酸Zr(IV)5を形成する。なお、上述のりん酸イオンには、りん酸イオン、りん酸水素イオン及びりん酸二水素イオンを含む。
 浸漬処理水溶液のpHが3.7未満では、酸化Zr(IV)結晶2の溶解が進行するため好ましくない。一方、浸漬処理水溶液のpHが6.5を超えると、りん酸イオンと酸化Zr(IV)結晶2との反応性が低く、酸化Zr(IV)結晶2の表面のりん酸化が十分に起こらないため好ましくない。
 浸漬処理時間が2秒未満では、酸化Zr(IV)結晶2表面のりん酸化が十分に起こらず、コーティング剤に対する好適な密着性が得られないため好ましくない。一方、浸漬処理時間が4秒を超えると、酸化Zr(IV)結晶2の内部までりん酸化が進み、強度が弱くなってしまうため好ましくない。
 特許文献1~4では、酸化Zr(IV)とりん酸Zr(IV)とを共に含む化成処理液を用いて、基板1の表面を化成処理する方法が開示されている。この方法では、酸化Zr(IV)結晶2の形成とりん酸Zr(IV)5の形成とを独立に制御することは難しい。
 一方、本実施形態に係る表面処理鋼板は、酸化Zr(IV)結晶2の形成とりん酸Zr(IV)5の形成とを別の行程で行うことにより、それぞれを独立に制御することが可能である。本実施形態では、りん酸Zr(IV)5の付着量を少なくすることにより、コーティング剤との密着性が好適である。これは、従来技術では、りん酸Zr(IV)5の付着量が多かったため、コーティング剤との密着性が好ましくなかったものと考えられる。
 以下、実施例によって、本発明をさらに詳細に説明する。以下に示す実施例は、本実施形態に係る表面処理鋼板及び表面処理鋼板の製造方法の一例にすぎず、本実施形態に係る表面処理鋼板及び表面処理鋼板の製造方法は、以下に示す実施例に限定されない。
 [基板、前処理、めっき処理]
 基板1として、鋼板の表面にSnめっき層が形成されたSnめっき鋼板を用いた。具体的には、低炭素冷延鋼帯を連続焼鈍および調質圧延することにより得た板厚0.18mm、調質度T-5CAのSPB鋼帯を鋼板として使用した。前処理として、10mass%水酸化ナトリウム溶液中でSPB鋼帯に対して陰極電解脱脂を行った後、5mass%希硫酸でSPB鋼帯を酸洗した。
 次いで、フェロスタン浴を用いて、鋼帯に電気Snめっきを施した。Snイオンを20g/L、フェノールスルホン酸イオンを75g/L、界面活性剤を6g/L含む43℃のめっき液中で、陰極電流密度20A/dmで陰極電解処理した。陽極には、白金を約1μmめっきしたチタンを用いた。
 Snめっき後は、Snめっき液を10倍希釈した溶液に鋼帯を浸漬し、ゴムロールで液切りをした後、冷風で乾燥した。通電加熱によって10秒間で260℃まで昇温させてSnをリフローし、直ちに75℃の水でクエンチした。
 1mol/Lの希塩酸を用いた電解剥離法により測定された全Sn量は2.8g/mであり、Sn-Fe合金層FeSnの量はSn量として1.0~1.1g/mであった。
 実施例1~26および比較例1~16は、上述のように形成されたSnめっき鋼板に対して、以下に記載する化成処理を施した。
 一方、比較例17~21は、上述のSnめっきに先立って、ワット浴を用いたNiめっきを施した。
 [陰極電解処理]
 次に、陰極電解処理を施した。前述のSnめっき鋼板に、ヘキサフルオロジルコニウム(IV)酸アンモニウムを0.15mol/L~2.0mol/Lの濃度で含有し、温度が35℃~50℃、pH3.5~4.5の(NHZrF水溶液中で、2A/dm~20A/dmの陰極電流密度で、電気量0.2C/dm~20C/dmの陰極電解処理を施した後、水洗した。なお、一部の比較例では、比較のため、上述の処理条件から外れる条件の下、陰極電解処理を実施した。
 比較例17~21は、特許文献3に記載されている化成処理液を用いて陰極電解処理を行った。
 [浸漬処理]
 まず、浸漬処理水溶液を調整した。具体的には、りん酸水溶液を、水酸化ナトリウムでpH3.7~6.5に調整した。上述の水溶液に、陰極電解処理後のSnめっき鋼板を、2~4秒浸漬した。この水溶液のりん酸化学種のイオン(りん酸イオン、りん酸水素イオン、りん酸二水素イオン)の全濃度を(PO 3-換算で10g/l)、温度を40℃とした。
 なお、一部の比較例では、比較のため、上述の処理条件から外れる条件の下、浸漬処理を実施した。
 浸漬処理後、ゴムロールで液を絞り、速やかに水洗、乾燥した。
 比較例17~21では、浸漬処理を行わなかった。
 Zr及びPの付着量は、蛍光X線強度から、予め作成した検量線を使って算出した。Sn付着量は、1mol/Lの希塩酸中でSnめっき鋼板を陽極とする電解剥離法により求めた。
 Zr複合体の結晶長は、CP加工した断面を電界放出形走査型電子顕微鏡(FE-SEM、日本電子株式会社JSM-6500F)で得られた30000倍の画像を用い、Snめっき鋼板の表面方向1μmの範囲に存在する結晶を30個選び、Snめっき鋼板と接する一端と、最も離れた他端とを結ぶ線分の長さを測定して、平均値を算出した。
 Zr複合体とSnめっき鋼板の表面とがなす角度は、Zr複合体とSnめっき鋼板の表面とにより形成される底角の角度とその底角に関する外角の角度とを比較したとき、より小さい角度を測定して、結晶30個の平均値を算出した。
 Zr複合体をSnめっき鋼板の表面に垂直に投射した場合の投射面積と、Snめっき鋼板表面の面積との比率は、電界放出形走査型電子顕微鏡(FE-SEM、日本電子株式会社JSM-6500F)で得られた10000倍の画像をコンピューターに取り込み、画像解析ソフトを用いて算出することにより求めた。
 Zr複合体の最表面を、オージェ電子分光装置(AES、ULVAC-PHI MODEL680)を用いて、P,O,Zrの深さ方向分析を行うことで、りん酸Zr(IV)の分布を測定した。
 上述のように、Snめっき鋼板上にZr複合体が形成された表面処理鋼板を評価材として用い、以下に示す(A)~(D)の各項目について評価試験を実施した。
 (A)塗料一次密着性
 評価材に、コーティング剤としてエポキシ・フェノール系塗料を60mg/dm塗布した。以下では、エポキシ・フェノール系塗料を塗布した評価材を、塗装板という。塗装板に対して、210℃で10分間の焼き付けを行い、さらに、190℃で15分間、230℃で90秒間の追い焼きを行った。
 焼き付け及び追い焼きを施した塗装板から、縦の長さ5mm、横の長さ100mmの大きさの試料を切り出した。同じ評価材から切り出した2枚の試料を、塗装面が向かい合うようにして、間に厚さ100μmのフィルム状のナイロン接着剤を挟んだ。これを、つかみ部を残して、ホットプレスで、200℃で60秒間予熱した後、2.9×10Paの圧力をかけて200℃で50秒間圧着し、引張試験片とした。
 つかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張り、剥離強度を測定して、塗料一次密着性を評価した。
 幅5mm当たりの剥離強度が、59N以上の試験片を「Very Good」、39N以上59N未満の試験片を「Good」、19N以上39N未満の試験片を「Poor」、19N未満の試験片を「Bad」と評価した。
 (B)塗料二次密着性
 (A)と同様の方法で引張試験片を作製した。
 引張試験片をオートクレーブ中で125℃の水蒸気雰囲気に30分間曝し、90℃まで降温した後、引張試験片をオートクレーブから取り出した。引張試験片をオートクレーブから取り出した直後に、引張試験片のつかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張った。その際の剥離強度を測定して、塗料二次密着性を評価した。
 幅5mm当たりの剥離強度が、42N以上の試験片を「Very Good」、29N以上42N未満の試験片を「Good」、15N以上29N未満の試験片を「Poor」、15N未満の試験片を「Bad」と評価した。
 (C)耐食性
 塩化物イオンを含む酸性溶液を貯蔵するための容器用鋼板として各評価材を用いた場合の耐食性を評価するため、UCC(アンダーカッティング・コロージョン)試験を行った。
 評価材に、エポキシ・フェノール系塗料を50mg/dm塗布した。以下では、エポキシ・フェノール系塗料を塗布した評価材を塗装板という。塗装板に対して、205℃で10分間の焼き付けを行い、さらに、180℃で10分間の追い焼きを行った。
 焼き付け及び追い焼きを施した塗装板から、縦の長さ50mm、横の長さ50mmの大きさの試料を切り出した。試料の表面にカッターで地鉄に達するまでクロスカットを入れ、試料の端面と裏面とを塗料でシールした。その後、大気開放下で、試料を1.5%クエン酸と1.5%塩化ナトリウムとを含有する55℃の試験液中に96時間浸漬した。
 試験液中に96時間浸漬した後の試料を水洗および乾燥した後、速やかにスクラッチ部及び平面部をテープで剥離して、クロスカット部近傍の腐食状況、クロスカット部のピッティング腐食及び平面部の塗膜剥離状況を観察して、耐食性を評価した。
 テープによる剥離及び腐食の両方が発見されなかった試験片を「Very Good」、スクラッチ部から0.2mm未満の範囲で生じたテープ剥離と目視不能な腐食との少なくとも一方が発見された試験片を「Good」、スクラッチ部から0.2mm~0.5mmの範囲で生じたテープ剥離と目視可能な小さい腐食との少なくとも一方が発見された試験片を「Poor」、0.5mmを超えるテープ剥離が発見された試験片を「Bad」と評価した。
 上記3項目の性能評価で最も低い評価結果を総合評価とし、「Very Good」、「Good」、「Poor」、「Bad」の4段階に分類し、「Very Good」および「Good」を合格と評価した。
 実施例1~26の陰極電解処理及び浸漬処理の条件を表1に、比較例1~16の陰極電解処理及び浸漬処理の条件を表2に、実施例1~26のZr複合体に関する結果を表3に、比較例1~16のZr複合体に関する結果を表4に、実施例1~26の特性評価の結果を表5に、比較例1~16の特性評価の結果を表6に示した。
 比較例17~21については、めっきおよび陰極電解処理の条件を表7に、酸化Zr(IV)結晶に関する結果を表8に、特性評価の結果を表9に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[規則26に基づく補充 13.01.2016] 
Figure WO-DOC-TABLE-3
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本発明の実施例1~26は、いずれも総合評価が「Very Good」または「Good」であった。
 比較例1は、陰極電解処理液のZrF 2-の濃度が低い例である。Zr複合体が板状または針状に形成されず、粒状の析出物となってしまったため、塗料密着性が不十分で、耐食性も劣っていた。
 比較例2は、陰極電解処理液のZrF 2-の濃度が高い例である。水酸化Zr(IV)の結晶が成長し、Zr複合体が板状または針状に形成されず、塗料密着性が不十分であった。
 比較例3は、陰極電解処理液の温度が低い例である。Zr複合体の析出角度が大きくなり、塗料密着性が不十分であった。
 比較例4は、陰極電解処理液の温度が高い例である。Zr複合体の析出角度が小さくなり、塗料密着性が不十分であった。
 比較例5は、陰極電解処理液のpHが低い例である。Zr複合体の析出量が少なく、Snめっき鋼板表面を十分に被覆していないため、塗料密着性が不十分で、耐食性も劣っていた。
 比較例6は、陰極電解処理液のpHが高い例である。不定形の水酸化Zr(IV)結晶が析出したため、塗料密着性が不十分で、耐食性も劣っていた。
 比較例7は、陰極電解処理の陰極電流密度が低い例である。酸化Zr(IV)結晶がほとんど析出しなかったため、塗料密着性が不十分で、耐食性も劣っていた。
 比較例8は、陰極電解処理の陰極電流密度が高い例である。酸化Zr(IV)結晶が板状または針状に成長しにくく、不定形で疎な析出形態となったため、塗料密着性が不十分で、耐食性も劣っていた。
 比較例9は、陰極電解処理の電気量が低い例である。酸化Zr(IV)結晶の析出量が不足し、塗料密着性が不十分で、耐食性も劣っていた。
 比較例10は、陰極電解処理の電気量が高い例である。酸化Zr(IV)結晶の析出量が過剰であるため、酸化Zr(IV)結晶の割れによる剥離が生じやすくなる傾向があった。
 比較例11は、浸漬処理水溶液のpHが低い例である。酸化Zr(IV)結晶が溶解したため、酸化Zr(IV)結晶の量が少なくなり、塗料密着性が不十分であった。
 比較例12は、浸漬処理水溶液のpHが高い例である。酸化Zr(IV)結晶表面のりん酸化が十分に起こらなかったため、塗料二次密着性が不十分であった。
 比較例13は、浸漬処理時間が短い例である。酸化Zr(IV)結晶表面のりん酸化が十分に起こらず、塗料二次密着性が不十分であった。
 比較例14は、浸漬処理時間が長い例である。酸化Zr(IV)結晶の内部までりん酸化されたため、強度が弱くなり、割れによる剥離が生じやすくなる傾向があった。
 比較例15は、陰極電解処理を低い電流密度かつ高い電気量の条件下で実施した例であり、酸化Zr(IV)結晶が大きく成長してしまったため、割れが生じやすくなり、塗料密着性が不十分となった。
 比較例16は、陰極電解処理の電気量が低い例であり、酸化Zr(IV)結晶のサイズが小さく、塗料に対する酸化Zr(IV)結晶の物理的な固定効果が十分ではなく、塗料密着性が不十分であった。
 比較例17~21は、特許文献3に記載されている化成処理液を用いて、酸化Zr(IV)結晶とりん酸Zr(IV)とを同時に析出させた例であるが、いずれも平滑な表面かまたは析出した結晶が粒状であったため、塗料密着性および耐食性が不十分であった。
 なお、詳細な結果は示さないが、特許文献4に記載されている化成処理液を用いて化成処理皮膜を作製したところ、特許文献4の表2の条件B1の化成処理液で作製した化成処理皮膜は平滑表面となった。また、特許文献4の表2の条件B2の化成処理液で作製した化成処理皮膜は粒状析出物となり、条件B3の化成処理液で作製した化成処理皮膜は無定形の析出物となった。
 また、同様に詳細な結果は示さないが、特許文献1~3に記載されている化成処理液を用いた場合も、特許文献4の場合と同様の結果が得られた。
 このように、特許文献1~4に記載されている化成処理液を用いた場合には、塗料またはフィルムとの密着性が十分ではないことが示された。
 上記一実施形態によれば、塗料やフィルムとの密着性および耐食性に優れた表面処理鋼板及び表面処理鋼板の製造方法を提供することができる。
 1  基板
 2  酸化Zr(IV)結晶
 3  酸化Zr(IV)結晶が基板と接する一端
 4  酸化Zr(IV)結晶が基板と接する他端
 5  りん酸Zr(IV)
 10 Zr複合体

Claims (5)

  1.  鋼板またはめっき鋼板である基板と;
     前記基板の表面に形成され、形状が板状または針状である酸化Zr(IV)結晶と、前記酸化Zr(IV)結晶の表面を0.5nm~2.0nmの被覆厚さで被覆するりん酸Zr(IV)とを含むZr複合体と;
    を有し、
     前記Zr複合体で、前記基板と接する一端と、他端とを結ぶ線分の長さの平均が、50nm~500nmであり、
     前記Zr複合体と前記基板の前記表面とにより形成される角度の平均が、20°~65°であり、
     前記Zr複合体を前記基板の前記表面に垂直に投射した場合の投射面積は、前記基板の前記表面の面積に対して、90%以上である
    ことを特徴とする、表面処理鋼板。
  2.  前記Zr複合体の付着量が、金属Zr量に換算して5mg/m~100mg/mである
    ことを特徴とする、請求項1に記載の表面処理鋼板。
  3.  前記りん酸Zr(IV)の付着量が、P量に換算して0.1mg/m~4.5mg/mである
    ことを特徴とする、請求項1または2に記載の表面処理鋼板。
  4.  前記Zr複合体の付着量が金属Zr量に換算してZ1[mg/m]であり、前記りん酸Zr(IV)の付着量がP量に換算してP1[mg/m]である場合に、前記Z1を前記P1で除算して得られる比率Z1/P1が10~100である
    ことを特徴とする、請求項1~3の何れか一項に記載の表面処理鋼板。
  5.  ZrF 2-を0.15mol/L~2.0mol/Lの濃度で含有し、温度が35℃~50℃であり、pHが3.5~4.5の陰極電解処理水溶液を用い、電流密度が2A/dm~20A/dm、電気量が1C/dm~20C/dmの条件下で、鋼板またはめっき鋼板である基板に陰極電解処理を施す陰極電解処理工程と;
     前記陰極電解処理工程後、前記陰極電解処理が施された前記基板に水洗処理を施す水洗処理工程と;
     前記水洗処理工程後、前記水洗処理が施された前記基板を、PO 3-換算で2g/l~30g/lのりん酸イオンを含有しpHが3.7~6.5である浸漬処理水溶液に2秒~4秒浸漬する浸漬処理工程と;
    を有することを特徴とする、表面処理鋼板の製造方法。
PCT/JP2015/083731 2014-12-01 2015-12-01 表面処理鋼板および表面処理鋼板の製造方法 WO2016088750A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016528920A JP6008068B1 (ja) 2014-12-01 2015-12-01 表面処理鋼板および表面処理鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-243298 2014-12-01
JP2014243298 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016088750A1 true WO2016088750A1 (ja) 2016-06-09

Family

ID=56091692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083731 WO2016088750A1 (ja) 2014-12-01 2015-12-01 表面処理鋼板および表面処理鋼板の製造方法

Country Status (3)

Country Link
JP (1) JP6008068B1 (ja)
TW (1) TW201627510A (ja)
WO (1) WO2016088750A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123744A (ja) * 2020-02-04 2021-08-30 日本製鉄株式会社 Sn系めっき鋼板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309879A (ja) * 1999-04-26 2000-11-07 Nippon Steel Corp 表面処理金属板
JP2009256726A (ja) * 2008-04-16 2009-11-05 Nippon Steel Corp 缶用めっき鋼板及びその製造方法
JP2012062577A (ja) * 2010-09-14 2012-03-29 Yuken Industry Co Ltd 化成皮膜の仕上げ剤およびその製造方法
JP2012062519A (ja) * 2010-09-15 2012-03-29 Jfe Steel Corp 容器用鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309879A (ja) * 1999-04-26 2000-11-07 Nippon Steel Corp 表面処理金属板
JP2009256726A (ja) * 2008-04-16 2009-11-05 Nippon Steel Corp 缶用めっき鋼板及びその製造方法
JP2012062577A (ja) * 2010-09-14 2012-03-29 Yuken Industry Co Ltd 化成皮膜の仕上げ剤およびその製造方法
JP2012062519A (ja) * 2010-09-15 2012-03-29 Jfe Steel Corp 容器用鋼板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123744A (ja) * 2020-02-04 2021-08-30 日本製鉄株式会社 Sn系めっき鋼板
JP7410386B2 (ja) 2020-02-04 2024-01-10 日本製鉄株式会社 Sn系めっき鋼板

Also Published As

Publication number Publication date
JPWO2016088750A1 (ja) 2017-04-27
JP6008068B1 (ja) 2016-10-19
TW201627510A (zh) 2016-08-01

Similar Documents

Publication Publication Date Title
JP5015239B2 (ja) 缶用めっき鋼板及びその製造方法
KR100779334B1 (ko) 표면 처리 주석 도금 강판 및 화성 처리액
JP6806151B2 (ja) Snめっき鋼板
KR101232963B1 (ko) 캔용 도금 강판 및 그 제조 방법
WO2017204266A1 (ja) Sn系合金めっき鋼板
EP2859138A1 (en) Method for producing a metal coating
JPWO2018190412A1 (ja) Snめっき鋼板及びSnめっき鋼板の製造方法
JP6146541B2 (ja) めっき鋼板およびその製造方法
JP2010242182A (ja) 缶用めっき鋼板
JP6008068B1 (ja) 表面処理鋼板および表面処理鋼板の製造方法
JP6119925B2 (ja) 表面処理鋼板
JP7410386B2 (ja) Sn系めっき鋼板
JP5505085B2 (ja) 錫めっき鋼板の製造方法
JP7295486B2 (ja) Sn系めっき鋼板
JP6146402B2 (ja) 容器用鋼板
TW202227671A (zh) 表面處理鋼板及其製造方法
JP6135650B2 (ja) 容器用鋼板
JP6048441B2 (ja) 容器用鋼板
JP6052305B2 (ja) 容器用鋼板
JP5678817B2 (ja) 錫めっき鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016528920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866079

Country of ref document: EP

Kind code of ref document: A1