WO2016088348A1 - Iii族窒化物半導体エピタキシャル基板およびその製造方法 - Google Patents

Iii族窒化物半導体エピタキシャル基板およびその製造方法 Download PDF

Info

Publication number
WO2016088348A1
WO2016088348A1 PCT/JP2015/005940 JP2015005940W WO2016088348A1 WO 2016088348 A1 WO2016088348 A1 WO 2016088348A1 JP 2015005940 W JP2015005940 W JP 2015005940W WO 2016088348 A1 WO2016088348 A1 WO 2016088348A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
substrate
silicon substrate
iii nitride
group iii
Prior art date
Application number
PCT/JP2015/005940
Other languages
English (en)
French (fr)
Inventor
哲也 生田
優太 小鹿
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Publication of WO2016088348A1 publication Critical patent/WO2016088348A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/32Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Definitions

  • the present invention relates to a group III nitride semiconductor epitaxial substrate and a method for manufacturing the same, and more particularly to a group III nitride semiconductor epitaxial substrate capable of suppressing adhesion of particles to the main surface of the group III nitride semiconductor epitaxial substrate and the manufacturing thereof. It is about the method.
  • a group III nitride semiconductor element composed of a group III nitride semiconductor composed of a compound of Al, Ga, and the like and N is widely used as a light emitting element or an electronic device element.
  • Such a group III nitride semiconductor is generally formed by MOCVD on a crystal growth substrate made of a different substrate such as silicon or sapphire.
  • a high electron mobility transistor which is a high-speed field effect transistor (FET: Field Effect Transistor) is used.
  • FET Field Effect Transistor
  • a field effect transistor for example, as schematically shown in FIG. 1, a channel layer 3 and an electron supply layer 4 are stacked on a heterogeneous substrate 2, and a source electrode 5 a is formed on the surface of the electron supply layer 4.
  • the drain electrode 5b and the gate electrode 5c are provided.
  • electrons move in the order of the source electrode 5a, the electron supply layer 4, the channel layer 3, the electron supply layer 4 and the drain electrode 5b, and the horizontal direction becomes the main current conduction direction.
  • This lateral movement of electrons is controlled by the voltage applied to the gate electrode 5c.
  • electrons generated at the junction interface between the electron supply layer 4 and the channel layer 3 having different band gaps can move at a higher speed than in a normal semiconductor.
  • Patent Document 1 a step of forming an impurity diffusion suppression layer on one surface of a high-resistance Si single crystal substrate and a buffer as an insulating layer are formed on the other surface of the high-resistance Si single crystal substrate A step of epitaxially growing a plurality of Group III nitride layers on the buffer to form a main laminate to produce an epitaxial substrate, and measuring the resistance of the main laminate of the epitaxial substrate in a non-contact manner.
  • the present applicant has previously proposed a method for manufacturing an epitaxial substrate for an electronic device in which the lateral direction including the step of performing the current conducting direction is the current conduction direction.
  • the epitaxial substrate for electronic devices manufactured by the manufacturing method described in Patent Document 1 is formed with an impurity diffusion layer such as a silicon oxide film on the back surface of the high-resistance Si single crystal substrate, the group III nitride layer is epitaxially grown. At this time, contamination of the group III element on the back surface of the substrate can be suppressed.
  • Patent Document 2 As another technique for providing a silicon oxide film on the back surface of a Si single crystal substrate, the applicant of the present application also disclosed in Patent Document 2 that a Si single crystal substrate having a B concentration of 2 ⁇ 10 18 / cm 3 or more, and the Si single crystal substrate, A Si single crystal layer formed on the main surface of the crystal substrate, wherein the B concentration of the surface of the Si single crystal layer is smaller than the B concentration of the Si single crystal substrate; A Si single crystal substrate for group III nitride semiconductor growth, which has an impurity diffusion suppression layer containing silicon oxide on the opposite back surface, has been proposed.
  • the Si single crystal substrate for group III nitride semiconductor growth described in Patent Document 2 can reduce the pit defects on the epi surface and further suppress the impurity diffusion to the back surface.
  • Patent Document 3 discloses a substrate, a first active layer preferably made of GaN, and a second active layer on the first active layer, which has a higher band gap than the first active layer.
  • a two-dimensional electron gas layer between the first active layer and the second active layer, an electron donor element on the second active layer, and A semiconductor device is disclosed that includes a passivation layer comprising nitrogen, preferably comprising SiN, and direct source and drain contacts on the passivation layer.
  • Patent Document 3 the ohmic contact of the source and drain contacts is not disturbed by the presence of the SiN layer, but rather improved, and the epitaxial substrate is protected very well by the SiN passivation layer.
  • Patent Document 4 discloses a substrate, a nitride semiconductor layer formed on the substrate and including a channel layer and an electron supply layer, and a source electrode, a gate electrode, and a drain provided on the nitride semiconductor layer.
  • Patent Document 5 includes a compound semiconductor region and a protective insulating film that covers at least a part of the surface of the compound semiconductor region, and the protective insulating film has a chemical activity that is the same as that of the surface of the compound semiconductor substrate.
  • a two-layer structure comprising a first insulating film formed in a high state and a second insulating film laminated on the first insulating film and having a lower chemical activity than the first insulating film. It is disclosed that a silicon nitride film is used for one or both of the first and second insulating films in the semiconductor device having the semiconductor device. As disclosed in Patent Documents 3 to 5, a silicon nitride film is formed on the electron supply layer.
  • the present inventors previously provided a silicon oxide film on the back surface of the silicon substrate, as described in Patent Documents 1 and 2, We investigated the formation of a silicon nitride film on the surface of the main laminate on the main surface side of the silicon substrate.
  • the silicon oxide film on the back side is usually removed before the device process is introduced. This is because the silicon oxide films described in Patent Documents 1 and 2 are intended to prevent contamination of the back surface before the device formation process is entered. Therefore, assuming the device formation, when the silicon oxide film on the back side is removed by etching, particles are generated mainly because silicon oxide and silicon nitride partially remain on the back side of the group III nitride semiconductor epitaxial substrate. It has been found that the product may adhere to the surface and cannot be commercialized.
  • the present invention relates to a group III nitride semiconductor epitaxial substrate in which particle adhesion to the main surface of the group III nitride semiconductor epitaxial substrate is suppressed, a group III nitride semiconductor epitaxial substrate capable of suppressing particle adhesion, and production thereof. It aims to provide a method.
  • FIG. 2A is a schematic diagram when the back surface of a general silicon substrate 20 is viewed in plan
  • FIG. 2B is an enlarged schematic diagram of the II cross section in FIG.
  • the circular cutout portion 23 shown in the lower part of FIG. 2A is an orientation flat (sometimes abbreviated as “orientation flat”).
  • the peripheral portion of the silicon substrate 20 is generally chamfered as shown in FIG.
  • an inclined surface (referred to as “bevel”, whose bevel width is usually within 1 mm) is formed between the end surface of the substrate 20 and the flat surface of the substrate 20.
  • the back surface of the silicon substrate 20 is partitioned into a region 21 and an outer peripheral portion 22 according to the following definition. That is, the region (including the bevel) between the end surface of the silicon substrate 20 and the inner line arbitrarily set within a range of about 1 to 5 mm from the end surface is defined as the outer peripheral portion 22 and the region excluding the outer peripheral portion 22 (that is, A region at the center of the back side is defined as a region 21. Note that FIG. 2 is exaggerated from the actual ratio of the region 21 and the outer peripheral portion 22. Hereinafter, these terms are used in the same meaning.
  • a silicon oxide layer 10 is provided on the entire back surface of the silicon substrate 20, and a main laminate 30 and a silicon nitride film 40 are provided in this order on the main surface side of the silicon substrate 10.
  • a substrate 100 ' is schematically shown in FIG. However, the periphery of the silicon substrate 20 in FIG. 3 is simplified.
  • the present inventors consider the cause of the above-mentioned particle adhesion as follows. That is, when the silicon oxide layer 10 is provided on the entire back surface of the silicon substrate 20, if an additional silicon nitride film that covers the main laminate 30 is provided, the silicon substrate 20 is nitrided to the outer peripheral portion 22 on the back surface side.
  • the present inventor diligently studied how to solve the above problems.
  • the silicon nitride film 40 that covers the main laminate 30 it is difficult to avoid the silicon nitride from reaching the back surface side of the silicon substrate 20 and the silicon nitride being deposited.
  • the silicon oxide in the outer peripheral portion 22 is removed in advance and the silicon oxide layer 10 is formed only on the surface of the region 21 excluding the outer peripheral portion 22, the silicon nitride film 40 is formed.
  • the present inventors have found that the problem of adhesion of particles to the main surface of the group III nitride semiconductor epitaxial substrate 100 ′ does not occur when the silicon oxide layer 10 is removed. The invention has been completed.
  • the gist configuration of the present invention is as follows. (1) A silicon substrate, a main laminate formed by epitaxially growing a plurality of group III nitride layers on the main surface of the silicon substrate, and a silicon nitride film covering the main laminate and the silicon substrate And a group III nitride semiconductor epitaxial substrate having a silicon nitride film directly covering only the outer peripheral portion of the silicon substrate on the back side of the silicon substrate, and the outer peripheral portion on the back side. A group III nitride semiconductor epitaxial substrate, wherein the silicon substrate is exposed in a region other than the region.
  • a silicon substrate a main laminate formed by epitaxially growing a plurality of group III nitride layers on the main surface of the silicon substrate, and a silicon nitride film covering the main laminate and the silicon substrate And on the back side of the silicon substrate, the silicon nitride film directly covers only the outer peripheral part of the silicon substrate, and the surface excluding the outer peripheral part on the back side A group III nitride semiconductor epitaxial substrate, wherein a silicon oxide layer is further provided.
  • a first step of forming a silicon oxide layer on the surface of the silicon substrate excluding the outer peripheral portion, and a main laminated body is formed by epitaxially growing a plurality of group III nitride layers on the main surface of the silicon substrate.
  • a resist is applied to the outer peripheral portion on the back surface side of the silicon substrate, and then a silicon oxide film is formed on the back surface side of the silicon substrate. Thereafter, the resist is removed and the oxidation is performed.
  • a silicon oxide film is formed on the entire back surface side of the silicon substrate, and then the silicon oxide film in a portion covering the outer peripheral portion is etched to form the silicon oxide layer.
  • the group III nitride semiconductor epitaxial substrate since the silicon nitride film does not cover the silicon oxide layer, the group III nitride semiconductor epitaxial substrate in which the particle adhesion to the main surface of the group III nitride semiconductor epitaxial substrate is suppressed and the particle adhesion are prevented. It is possible to provide a group III nitride semiconductor epitaxial substrate that can be suppressed and a method for manufacturing the same.
  • FIG. 1 It is a typical sectional view showing a general high electron mobility transistor. It is a schematic diagram explaining a general silicon substrate, (A) is a top view of the back surface of a silicon substrate, (B) is II sectional drawing in (A). It is a schematic diagram explaining the group III nitride semiconductor epitaxial substrate which concerns on a comparative example. It is a flowchart explaining the manufacturing method of the group III nitride semiconductor epitaxial substrate according to this invention. 4 is a flowchart illustrating an embodiment of a method for manufacturing a silicon oxide layer formed on the back surface of a silicon substrate in the method for manufacturing a group III nitride semiconductor epitaxial substrate according to the present invention.
  • FIG. 6 is a flowchart illustrating another embodiment of a method for manufacturing a silicon oxide layer formed on the back surface of a silicon substrate in the method for manufacturing a group III nitride semiconductor epitaxial substrate according to the present invention. It is a schematic diagram explaining the group III nitride semiconductor epitaxial substrate for electronic devices which makes the horizontal direction the electric current conduction direction which concerns on other embodiment of this invention.
  • it is the photograph which image
  • A is a photograph of Example 1
  • (B) is a photograph of the comparative example 1.
  • FIGS. 2 and 3 and FIGS. 4 to 7 described later for convenience of explanation, the vertical and horizontal ratios of layers, films, and substrates are exaggerated from the actual ratios.
  • FIGS. 4 to 7 the peripheral portion of the silicon substrate 20 is shown in a simplified manner for simplification of the drawings.
  • First embodiment Group III nitride semiconductor epitaxial substrate manufacturing method
  • the manufacturing method of the group III nitride semiconductor epitaxial substrate 100 according to the first embodiment of the present invention is performed in the region 21 excluding the outer peripheral portion 22 on the back surface side of the silicon substrate 20.
  • a first step of forming the silicon oxide layer 10 on the surface (FIGS. 4A and 4B), and a plurality of group III nitride layers are epitaxially grown on the main surface of the silicon substrate 20 to form the main laminate 30.
  • a silicon nitride film 40 that covers the main laminate 30 and the silicon substrate 20 and that directly covers only the outer peripheral portion 22 is formed on the back surface side of the silicon substrate 20.
  • the group III nitride semiconductor epitaxial substrate 100 manufactured through this process can suppress adhesion of particles to the main surface of the group III nitride semiconductor epitaxial substrate 100 when removing the silicon oxide film 10 on the back surface side. it can.
  • a portion of the silicon nitride film 40 in the outer peripheral portion 22 on the back surface side of the silicon substrate 20 is referred to as a portion 40 a of the silicon nitride film 40.
  • the portion 40 a of the silicon nitride film 40 does not cover the silicon oxide layer 10 and does not overlap.
  • a silicon substrate 20 is first prepared as shown in FIG.
  • the plane orientation of the silicon substrate 20 is not particularly specified, and any plane orientation such as (111), (100), (110) plane can be used.
  • any plane orientation such as (111), (100), (110) plane can be used.
  • the (111) plane In order to grow the (0001) plane of group III nitride with good surface flatness, it is preferable to use the (111) plane.
  • the conductivity of the silicon substrate 20 it can be appropriately used depending on the application, from a high specific resistance substrate having a high insulation property of 10,000 ⁇ ⁇ cm or more to a low specific resistance substrate having a resistivity of about 0.001 ⁇ ⁇ cm.
  • the silicon substrate 20 may be either p-type or n-type conductivity type.
  • the silicon substrate 20 As a method for manufacturing the silicon substrate 20, various methods such as a CZ method and an FZ method can be used.
  • a substrate obtained by epitaxially growing Si, SiC, or the like on the main surface of the substrate other than a bulk silicon single crystal substrate may be used.
  • a natural oxide film may be formed on the front and back surfaces of the silicon substrate 20, but in this case, at least the natural oxide film on the outer peripheral portion 22 on the back surface side is removed before performing the third step described later. deep.
  • Other specifications such as the thickness and width of the silicon substrate 20 may be appropriately designed according to the use of the group III nitride semiconductor epitaxial substrate 100.
  • the specific resistance of the silicon substrate 20 is preferably set to 1000 ⁇ ⁇ cm or more.
  • Such a substrate can be manufactured by the FZ method in which Si crystal can be easily purified.
  • the silicon oxide layer 10 is formed on the surface in the region 21 excluding the outer peripheral portion 22 on the back surface side of the silicon substrate 20.
  • a method for forming the silicon oxide layer 10 will be described later.
  • the description of “silicon oxide” including a silicon oxide film described later is not intended to limit the stoichiometry to SiO 2 , and silicon oxide (SiO x ) normally formed on the silicon substrate 20. Means.
  • the silicon oxide layer 10 can protect the back surface of the silicon substrate 20, and further, a group III element that wraps around the back surface of the silicon substrate and becomes a p-type carrier diffuses into the substrate. It can also prevent the conductivity from increasing.
  • the concentration of the group III element may be 1 ⁇ 10 16 atoms / cm 3 or less in the range from the surface of the region 21 excluding the outer peripheral portion 22 on the back side of the silicon substrate 20 to a depth position of 1 ⁇ m. it can. That is, the silicon oxide layer 10 also functions as an impurity diffusion suppression layer. Even if silicon oxide is not formed on the outer peripheral portion 22 on the back surface of the silicon substrate 20, the outer peripheral portion is not used as a device.
  • an electromagnetic induction method or the like that may be performed when the group III nitride semiconductor epitaxial substrate 100 is used as an electronic device epitaxial substrate. Does not affect non-contact type sheet resistance measurement.
  • the main surface and the back surface of the silicon substrate 20 are both divided into the region 21 and the outer peripheral portion 22 as described above, and the outer peripheral portion 22 is about 1 to 5 mm from the end surface of the silicon substrate 20 and the end surface. It is divided between the inner line arbitrarily set in the range of. Although details of the silicon nitride film 40 will be described later, it is important that the silicon nitride film 40 and the silicon oxide layer 10 do not overlap with each other on the back surface of the silicon substrate 20. A gap may be provided between the silicon oxide layer 10 and the silicon oxide layer 10.
  • the oxide layer 10 is formed so as not to provide a gap in consideration of the formation conditions of the silicon nitride film 40 in the third step described later.
  • the outer peripheral portion 22 is preferably in the range of 5 mm from the end face of the silicon substrate 20, and more preferably in the range of 2 mm.
  • the method for forming the silicon oxide layer 10 is not limited. For example, as shown in FIG. 5, a resist R is applied to the outer peripheral portion 22 on the back surface of the silicon substrate 20, and then a silicon oxide film 10 'is formed on the back surface of the silicon substrate 20. Then, the silicon oxide layer 10 can be formed on the surface of the region 21 by removing the resist R.
  • the silicon oxide film 10 ' can be formed according to a conventional method such as a chemical vapor deposition (CVD) method or a thermal oxidation method.
  • CVD chemical vapor deposition
  • thermal oxidation method since the silicon oxide film is formed on the entire surface of the silicon substrate 20, the silicon oxide films on the main surface side and the side surface may be removed.
  • the thickness of the silicon oxide film 10 ′ is not particularly limited, but can be, for example, 10 nm to 10 ⁇ m in the central portion of the substrate. In order to function as the impurity diffusion suppressing layer, the thickness is more preferably 100 nm or more.
  • the resist R a positive type or the like can be used in addition to the negative type.
  • the silicon oxide film 10 ′ on the resist R is lifted off, and the silicon oxide layer 10 is formed only on the center of the back surface. At the time of lift-off, even if a natural oxide film is previously formed on the silicon substrate 20, the natural oxide film on the outer peripheral portion 22 is removed.
  • the silicon oxide film 10 ′ may be formed on the entire back surface of the silicon substrate 20, and then the outer peripheral portion 22 may be etched to form the silicon oxide layer 10. That is, as shown in FIGS. 6A to 6C, first, a silicon oxide film 10 ′ is formed on the entire back surface of the silicon substrate 20. Thereafter, the silicon oxide film 10 ′ in the portion formed on the outer peripheral portion 22 is etched.
  • etching for example, a mask is formed above the region 21 of the silicon oxide film 10 ′, the silicon oxide film 10 ′ in the outer peripheral portion 22 where the mask is not formed is removed by an etching solution, and finally the mask is removed.
  • the silicon oxide layer 10 is formed (not shown).
  • buffered hydrofluoric acid (BHF), hydrofluoric acid (HF), or the like can be used as an etchant for the silicon oxide film 10 '.
  • a plurality of group III nitride layers are epitaxially grown on the main surface of the silicon substrate 20 on which the silicon oxide layer 10 is formed in the region 21 on the back surface side.
  • the main laminate 30 is formed.
  • the main laminate 30 can be formed by epitaxial growth using chemical vapor deposition, and it is preferable to use metal organic chemical vapor deposition (MOCVD: Metal-Organic-Chemical-Vapor-Deposition).
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • group III material in the MOCVD method TMA (trimethylaluminum), TMG (trimethylgallium) or the like can be used.
  • TMA trimethylaluminum
  • TMG trimethylgallium
  • ammonia or the like can be used.
  • As the carrier gas hydrogen, nitrogen gas, or the like can be used.
  • the main stacked body 30 is It is preferable that a buffer, a channel layer, and an electron supply layer are included in this order from the silicon substrate 20.
  • a buffer, a channel layer, and an electron supply layer are included in this order from the silicon substrate 20.
  • the main laminate 30 of the group III nitride semiconductor epitaxial substrate 200 described later is not shown here.
  • the silicon nitride film 40 which covers the main laminate 30 and the silicon substrate 20 and directly covers only the outer peripheral portion 22 on the back surface side of the silicon substrate 20.
  • the silicon nitride film covers the end surface of the silicon substrate 20 and the side surface including the bevel.
  • the silicon oxide layer 10 does not overlap the portion 40 a of the silicon nitride film 40, and the silicon nitride film portion 40 a is formed only in the outer peripheral portion 22. It is essential in the invention.
  • silicon nitride is not intended to limit the stoichiometry to Si 3 N 4 , but means normally formed silicon nitride (SiN x ).
  • the silicon nitride in the outer peripheral portion 22 can be confirmed by detecting the presence or absence of Si and N peaks by energy dispersive X-ray spectroscopy (EDS).
  • the silicon nitride film 40 can be formed by MOCVD method, plasma CVD method, electron beam (EB) evaporation method or the like. As described above, when the silicon nitride film 40 that covers the silicon substrate 20 and the main laminate 30 is formed as shown in FIG. 4D, the silicon nitride wraps around the region 21 on the back surface of the substrate. The present inventors have found out. Note that the thickness of the silicon nitride film 40 is not particularly limited and can be appropriately determined depending on the application. Although not intended to be limited, the thickness of the silicon nitride film 40 can be set to, for example, 10 nm to 1 ⁇ m in the central portion of the upper surface of the main laminate.
  • the thickness of the portion 40a of the film 40 can be set to, for example, 10 nm to 1 ⁇ m.
  • the deposition region on the back surface side of silicon nitride can be adjusted in the range of 1.0 mm to 2.0 mm from the end surface of the silicon substrate 20.
  • the range of the precipitation region on the back surface side increases.
  • the deposition region on the back surface side of silicon nitride may extend from the end surface of the silicon substrate 20 to 1.0 to 3.0 mm.
  • the precipitation region on the back side near the orientation flat becomes larger. Therefore, when it is desired to increase the thickness of the silicon nitride film in the central portion of the upper surface of the main laminate, it is preferable to reduce the warpage of the substrate.
  • the group III nitride semiconductor epitaxial substrate 100 obtained as described above differs from the group III nitride semiconductor epitaxial substrate 100 ′ shown in FIG. 3 on the back side of the silicon substrate 20. There is no portion overlapping the portion 40 a of the silicon nitride film 40. Therefore, when the silicon oxide layer 10 is removed by etching or the like, a part of the silicon oxide layer remains after the removal, or a part of the silicon nitride layer bonded to the substrate through the silicon oxide layer becomes a silicon oxide layer. As a result of the removal, it can be prevented that the substrate is separated from the substrate and becomes a floating substance.
  • the silicon nitride film 40a located on the outer peripheral portion 22 on the back surface side of the silicon substrate 20 is directly attached to the back surface of the silicon substrate 20, particle adhesion to the main surface of the group III nitride semiconductor epitaxial substrate 100 can be suppressed. .
  • the first step is performed first, and then the second step is performed.
  • this order may be changed.
  • the fourth step of removing the silicon oxide layer 10 after the first to third steps in the first embodiment already described is preferable to further include a step.
  • the first step of forming silicon oxide layer 10 on the surface of region 21 excluding outer peripheral portion 22 on the back surface side of silicon substrate 20. (FIGS. 4A and 4B), and a second step (FIG. 4C) of forming a main laminate 30 by epitaxially growing a plurality of group III nitride layers on the main surface of the silicon substrate 20.
  • a fourth step (FIG. 4E) for removing the silicon oxide layer 10 is further included.
  • the silicon substrate 20 is exposed in the region 21 on the back surface side of the silicon substrate 20.
  • the first to third steps are the same as those in the first embodiment described above, and redundant description is omitted.
  • the removal of the silicon oxide layer 10 can be performed according to a conventional method, and buffered hydrofluoric acid (BHF), hydrofluoric acid (HF), or the like can be used as an etchant.
  • BHF buffered hydrofluoric acid
  • HF hydrofluoric acid
  • group III nitride semiconductor epitaxial substrate 200 manufactured through this process particle adhesion to the main surface of the group III nitride semiconductor epitaxial substrate is suppressed.
  • a group III nitride semiconductor epitaxial substrate 200 includes a silicon substrate 20 and a main laminate 30 formed by epitaxially growing a plurality of group III nitride layers on the main surface of the silicon substrate 20. And a silicon nitride film 40 that covers the main laminate 30 and the silicon substrate 20.
  • the silicon nitride film 40 directly covers only the outer peripheral portion 22 of the silicon substrate 20 on the back surface side of the silicon substrate 20, and the silicon substrate 20 is exposed in the region 21 excluding the outer peripheral portion 22 on the back surface side. This is a feature of the embodiment.
  • Group III nitride semiconductor epitaxial substrate 200 according to this embodiment can suppress adhesion of particles to the main surface of the group III nitride semiconductor epitaxial substrate.
  • the group III nitride semiconductor epitaxial substrate 200 is preferably used as an epitaxial substrate for an electronic device in which the lateral direction of HEMT or the like is a current conduction direction.
  • the main stacked body 30 is made of silicon. It is preferable to include the buffer 31, the channel layer 32, and the electron supply layer 33 in order from the substrate 20 (FIG. 7).
  • the buffer 31 preferably has a superlattice structure or a gradient composition structure.
  • the superlattice structure means that the first layer 32c and the second layer 32d are stacked so as to include periodically.
  • a layer other than the first layer 32c and the second layer 32d (for example, a composition transition layer) may be included.
  • the graded composition structure means that the specific group III element content is inclined in the film thickness direction.
  • the buffer 31 preferably includes an initial growth layer 31a in contact with the silicon substrate 20 and a superlattice laminate 31b having a superlattice laminate structure on the initial growth layer 31a.
  • the initial growth layer 31a can be made of, for example, an AlN material.
  • AlN an AlN material.
  • the reaction with the silicon substrate 20 is suppressed, and the vertical breakdown voltage in the HEMT can be improved. This is because when the initial growth layer 31a is formed of a group III nitride material containing Ga and In, Ga and In react with Si of the substrate to generate defects and induce through defects in the epitaxial layer. The purpose is to suppress the decrease in the longitudinal breakdown voltage.
  • the AlN material here may contain a trace impurity of 1% or less.
  • impurities such as Ga, In, Si, H, O, C, B, Mg, As, P, etc.can be included.
  • the C concentration of the buffer 31 is preferably 1 ⁇ 10 18 atoms / cm 3 or more. The vertical breakdown voltage can be improved.
  • both layers may be composed of a single composition or a plurality of compositions.
  • the aforementioned buffer, channel layer, and electron supply layer can be formed according to a conventional method. Further, as described above, the HEMT can be formed by forming the source electrode, the gate electrode, and the drain electrode on the silicon nitride film 40 of the group III nitride semiconductor epitaxial substrate.
  • the group III nitride semiconductor epitaxial substrate shown in FIG. 7 shows an embodiment according to the present invention, and the present invention is not limited to this embodiment.
  • an intermediate layer or other superlattice layer that does not adversely affect the effect of the present invention can be inserted between the layers, or the composition can be inclined.
  • a group III nitride semiconductor epitaxial substrate 100 includes a silicon substrate 20 and a main laminate in which a plurality of group III nitride layers are epitaxially grown on the main surface of the silicon substrate 20. 30 and a silicon nitride film 40 covering the main laminate 30 and the silicon substrate 20.
  • the silicon nitride film 40 directly covers only the outer peripheral portion 22 of the silicon substrate 20, and the surface of the region 21 excluding the outer peripheral portion 22 on the back surface side of the silicon substrate 20 has silicon oxide.
  • the layer 10 is provided. As described above, the same components are denoted by the same reference numerals in principle, and description thereof is omitted.
  • the group III nitride semiconductor epitaxial substrate 100 according to the present embodiment can suppress adhesion of particles to the main surface of the group III nitride semiconductor epitaxial substrate when the silicon oxide layer 10 on the back surface of the silicon substrate 20 is removed.
  • the manufacturing method according to the first embodiment and the second embodiment is only one embodiment of the manufacturing method of group III nitride semiconductor epitaxial substrates 100 and 200 according to the present invention, and according to the present invention by another manufacturing method.
  • the group III nitride semiconductor epitaxial substrates 100 and 200 may be manufactured.
  • Example 1 A group III nitride semiconductor epitaxial substrate according to Example 1 was fabricated according to the flowcharts shown in FIGS. That is, first, a (111) plane, 3-inch silicon single crystal substrate (thickness: 600 ⁇ m, specific resistance: 6 ⁇ 10 3 ⁇ ⁇ cm) was prepared. Next, a resist (AZ5218E, thickness: 2.0 ⁇ m) was applied to the outer peripheral portion of the back surface of the silicon single crystal substrate (range from the end surface of the silicon substrate to 3 mm). In this embodiment, the outer peripheral portion is a region between the end face of the silicon single crystal substrate and a line 3 mm inside from the end face.
  • a silicon oxide film was formed on both surfaces of the substrate by plasma CVD, and the silicon oxide film on the main surface side was removed, and a silicon oxide film (thickness: 0.3 ⁇ m) was formed only on the back surface.
  • the resist was dissolved and removed using acetone and lifted off.
  • a silicon oxide layer was formed only on the surface of the region excluding the outer peripheral portion on the back surface.
  • epiready processing was performed on the surface of the silicon substrate.
  • an initial growth layer AlN material, thickness: 100 nm
  • a superlattice laminate AlN, thickness: 4 nm and Al 0.10 Ga 0.90 N, thickness: 25 nm, A total of 75 layers
  • AlN initial growth layer
  • a superlattice laminate AlN, thickness: 4 nm and Al 0.10 Ga 0.90 N, thickness: 25 nm, A total of 75 layers
  • a channel layer GaN, thickness: 0.75 ⁇ m
  • an electron supply layer Al 0.15 Ga 0.85 N, thickness
  • 40 nm was epitaxially grown by MOCVD to form a main laminate.
  • TMA trimethylaluminum
  • TMG trimethylgallium
  • a silicon nitride film covering the main laminate was formed by MOCVD In-Situ (in situ) growth. SiH 4 and NH 3 were used as source gases. The thickness of the silicon nitride film in the central portion on the upper surface of the main laminate is 150 nm. At this time, the source gas wraps around the back surface outer periphery of the silicon single crystal substrate, and a silicon nitride film is also formed on the back surface outer periphery. On the back side, the fact that the silicon nitride film was formed in a range of up to 2 mm from the end face of the silicon single crystal substrate was observed by elemental mapping by SEM-EDS (energy dispersive X-ray spectroscopy).
  • SEM-EDS energy dispersive X-ray spectroscopy
  • the silicon oxide film formed on the back surface of the silicon substrate was removed with BHF to produce a group III nitride semiconductor epitaxial substrate according to Example 1.
  • the impurities on the very shallow surface layer on the back surface of the silicon substrate were measured by TXRF (total reflection fluorescent X-ray analysis)
  • the constituent elements of the main laminate such as Ga and Al were measured over the entire measured range.
  • the detected impurity concentration of Fe, Cr, Ni or the like was 1 ⁇ 10 11 atoms / cm 2 or less.
  • Example 1 A Group III nitride semiconductor epitaxial substrate according to Comparative Example 1 was produced in the same manner as in Example 1 except that the resist coating and the resist removal in Example 1 were not performed. That is, the group III nitride semiconductor epitaxial substrate according to Comparative Example 1 was prepared by removing the silicon oxide after forming the group III nitride semiconductor epitaxial substrate having silicon oxide formed on the entire back surface shown in FIG. It is. On the back surface side, the fact that the silicon nitride film was formed in a range of up to 2 mm from the end face of the silicon single crystal substrate was observed by element mapping by SEM-EDS. In addition, the color of the outer peripheral part differed compared with the Example. This is presumably because the silicon nitride film was formed so as to cover the silicon oxide at the outer peripheral portion.
  • FIG. 8A there was no film residue on the back surface of the silicon substrate, and in Example 1, it was confirmed that the silicon surface was exposed.
  • FIG. 8B since fogging was observed in FIG. 8B, it was confirmed that the oxide layer partially remained in Comparative Example 1.
  • the oxide layer covered with the silicon nitride film remained on the outer peripheral portion (particularly in the orientation flat portion) without melting. Therefore, in Comparative Example 1, when the epitaxial substrate is used for device fabrication, it is necessary to completely remove the oxide layer. Therefore, this oxide layer and silicon on the outer periphery when the oxide layer is to be completely removed are used. Part of the silicon nitride film lacking adhesion to the substrate causes particle adhesion.
  • Example 1 it turns out that the cause of the particle adhesion to the main surface can be suppressed. Therefore, it has been found that by forming a silicon nitride film on the back surface of the silicon substrate so that the silicon oxide layer is not covered, adhesion of particles to the main surface can be prevented when the silicon oxide layer is removed.
  • a group III nitride semiconductor epitaxial substrate in which particle adhesion to the main surface of the group III nitride semiconductor epitaxial substrate is suppressed a group III nitride semiconductor epitaxial substrate capable of suppressing particle adhesion, and production thereof A method can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着を抑制することが可能なIII族窒化物半導体エピタキシャル基板およびその製造方法を提供する。 本発明のIII族窒化物半導体エピタキシャル基板は、シリコン基板と、シリコン基板20の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体30と、主積層体30およびシリコン基板20を被覆する窒化シリコン膜40と、を有し、シリコン基板20の裏面側では、窒化シリコン膜40がシリコン基板20の外周部22のみを直接被覆し、かつ、前記裏面側の外周部22を除く領域21でシリコン基板20が露出することを特徴とする。

Description

III族窒化物半導体エピタキシャル基板およびその製造方法
 本発明は、III族窒化物半導体エピタキシャル基板およびその製造方法に関し、特に、III族窒化物半導体エピタキシャル基板の主面へのパーティクルの付着を抑制することのできるIII族窒化物半導体エピタキシャル基板およびその製造方法に関するものである。
 Al、GaなどとNとの化合物からなるIII族窒化物半導体で構成されるIII族窒化物半導体素子は、発光素子または電子デバイス用素子として広く用いられている。このようなIII族窒化物半導体は、例えばシリコンやサファイアなどの異種基板からなる結晶成長基板上に、MOCVD法により形成されるのが一般的である。
 このようなIII族窒化物半導体エピタキシャル基板を用いたIII族窒化物半導体素子の一つとして、高速の電界効果トランジスタ(FET:Field Effect Transistor)である高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)が広く用いられるようになっている。このような電界効果型のトランジスタは、例えば図1に模式的に示されるように、異種基板2上にチャネル層3および電子供給層4を積層し、この電子供給層4の表面にソース電極5a、ドレイン電極5bおよびゲート電極5cを配設することにより形成される。デバイスの動作時には、ソース電極5a、電子供給層4、チャネル層3、電子供給層4およびドレイン電極5bの順に電子が移動して、横方向が主な電流導通方向となる。なお、この横方向の電子の移動は、ゲート電極5cに印加される電圧により制御される。HEMTにおいて、バンドギャップの異なる電子供給層4およびチャネル層3の接合界面に生じる電子は、通常の半導体内と比較して高速で移動することができる。
 例えば特許文献1において、高抵抗Si単結晶基板の一方の面上に、不純物拡散抑制層を形成する工程と、前記高抵抗Si単結晶基板の他方の面上に、絶縁層としてのバッファを形成する工程と、該バッファ上に、複数層のIII族窒化物層をエピタキシャル成長させて主積層体を形成してエピタキシャル基板を作製する工程と、該エピタキシャル基板の主積層体の抵抗を非接触で測定する工程とを具える横方向を電流導通方向とする電子デバイス用エピタキシャル基板の製造方法を、本願出願人は先に提案している。
 特許文献1に記載の製造方法によって製造された電子デバイス用エピタキシャル基板は、高抵抗Si単結晶基板の裏面に酸化シリコン膜などの不純物拡散層を形成されるため、III族窒化物層をエピタキシャル成長させる際に、基板裏面におけるIII族元素の汚染を抑制することができる。
 Si単結晶基板の裏面に酸化シリコン膜を設ける技術として、本願出願人は他にも、特許文献2において、B濃度が2×1018/cm以上であるSi単結晶基板と、前記Si単結晶基板の主面上に形成されたSi単結晶層を有し、前記Si単結晶層の表面のB濃度がSi単結晶基板のB濃度よりも小さく、前記Si単結晶基板の主面とは反対側の裏面に、酸化シリコンを含む不純物拡散抑制層を有する、III族窒化物半導体成長用Si単結晶基板を提案している。
 特許文献2に記載されたIII族窒化物半導体成長用Si単結晶基板は、エピ表面のピット欠陥を低減させ、さらに、裏面への不純物拡散抑制も可能とすることができるのである。
 また、例えば2DEGの電流密度向上によるクラック発生を防止するため等の目的で、HEMTの電子供給層の上に窒化シリコン膜を形成し、該窒化シリコン膜上に電極を形成したHEMT構造が知られている。例えば、特許文献3には、基板と、好ましくはGaNで形成される第1活性層と、前記第1活性層上の第2活性層であって、前記第1活性層より高いバンドギャップを有し、好ましくはAlGaNまたはAlGaInNで形成されているものと、前記第1活性層と前記第2活性層との間の二次元電子ガス層と、前記第2活性層上の、電子供与体元素および窒素を含み、好ましくはSiNを含む不動態化層と、前記不動態化層上に直接的なソース接点およびドレイン接点とを含む半導体装置が開示されている。
 特許文献3によると、ソースおよびドレイン接点のオーミック接触が、SiN層の存在により妨害されず、むしろ改良され、エピタキシャル基板がSiN不動態化層により非常に良好に保護される、というものである。
 また、特許文献4には、基板と、前記基板上に形成され、チャネル層及び電子供給層を含む窒化物半導体層と、前記窒化物半導体層上に設けられたソース電極、ゲート電極、及びドレイン電極と、少なくとも前記ゲート電極、及び前記ゲート電極と前記ドレイン電極との間の前記窒化物半導体層の表面を覆う窒化シリコンからなる絶縁膜と、前記窒化物半導体層上であって、前記ゲート電極と前記ドレイン電極との間に設けられたフィールドプレートと、を具備する半導体装置が開示されている。
 さらに、特許文献5には、化合物半導体領域と、前記化合物半導体領域の表面の少なくとも一部を覆う保護絶縁膜とを含み、前記保護絶縁膜は、前記化合物半導体基板の表面と化学的活性度の高い状態に形成された第1の絶縁膜と、前記第1の絶縁膜上に積層され、前記第1の絶縁膜よりも化学的活性度の低い第2の絶縁膜とからなる2層構造を有する半導体装置において、前記第1および第2の絶縁膜のいずれか一方または両方に、シリコン窒化膜を用いることが開示されている。特許文献3~5に開示されているように、電子供給層上に窒化シリコン膜を形成することが行われている。
特開2011-23664号公報 特開2014-22698号公報 特開2006-24927号公報 特開2012-253181号公報 特開2008-205392号公報
 本発明者らは、異種基板としてシリコン基板を用いたIII族窒化物半導体エピタキシャル基板において、特許文献1,2に記載されているように、シリコン基板の裏面に酸化シリコン膜を予め設け、その後、シリコン基板の主面側の主積層体表面に窒化シリコン膜を形成することを検討した。
 ここで、III族窒化物半導体エピタキシャル基板が電子デバイス用途に用いられる場合、裏面側の酸化シリコン膜はデバイス工程投入前までに除去されるのが通常である。これは、特許文献1,2に記載の酸化シリコン膜は、デバイス形成工程投入前までの裏面の汚染を防ぐことを目的とするものであるからである。そこで、デバイス形成を想定して、裏面側の酸化シリコン膜をエッチングによって除去したところ、III族窒化物半導体エピタキシャル基板の裏面に酸化シリコンおよび窒化シリコンが部分的に残ることでパーティクルが発生して主面に付着してしまい、製品化できなくなってしまう場合があることが判明した。
 そこで本発明は、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着が抑制されたIII族窒化物半導体エピタキシャル基板およびパーティクル付着を抑制することのできるIII族窒化物半導体エピタキシャル基板ならびにそれらの製造方法を提供することを目的とする。
 ここで、図2(A),(B)を用いて、一般的なシリコン基板20について予め説明する。本明細書において、シリコン基板20のうち、III族窒化物半導体層を形成する側の面を主面と称し、主面と反対側の面を裏面と称する。図2(A)は、一般的なシリコン基板20の裏面を平面視したときの模式図であり、図2(B)は、図2(A)におけるI-I断面の拡大模式図である。なお、図2(A)下部に示す円形の切り欠き部分23はオリエンテーションフラット(「オリフラ」と略称されることがある。)である。シリコン基板20を搬送するときの割れや欠けを防ぐため、図2(B)に示すように、シリコン基板20の周縁部は一般的に面取加工される。シリコン基板20の仕様によっても異なるが、基板20の端面と、基板20の平坦面との間に傾斜面(「ベベル」と呼ばれ、ベベルの幅は通常1mm以内である。)が形成される。ここで、本明細書において、シリコン基板20の裏面を以下の定義に従い、領域21と、外周部22とに区画する。すなわち、シリコン基板20の端面と、端面から1~5mm程度の範囲で任意に設定される内側の線との間の領域(ベベルを含む)を外周部22とし、外周部22を除く領域(すなわち裏面側中央部の領域)を領域21とする。なお、図2は、領域21および外周部22の実際の比率から誇張して図示している。以下、同様の意味でこれらの用語を用いる。
 さて、本発明者らは、前述のパーティクル付着の原因を詳細に検討した。シリコン基板20の裏面全体に酸化シリコン層10が設けられ、シリコン基板10の主面側には、主積層体30および窒化シリコン膜40がこの順に設けられた比較例に係るIII族窒化物半導体エピタキシャル基板100′を図3に模式的に示す。但し、図3におけるシリコン基板20の周縁部を簡略化している。本発明者らは、前述のパーティクル付着の原因を以下のように考えている。すなわち、シリコン基板20の裏面全体に酸化シリコン層10が設けられている場合、主積層体30を被覆する窒化シリコン膜を更に設けようとすると、シリコン基板20の裏面側の外周部22にまで窒化シリコンが回り込む。その結果、外周部22において窒化シリコン膜40の一部分40aが酸化シリコン層10を部分的に被覆することとなる。この窒化シリコン膜の一部分40aおよび重なった部分の酸化シリコン層10は、エッチング等によって酸化シリコン層10を除去した後でも部分的に残存したり、浮遊物となったりする。このことが、III族窒化物半導体エピタキシャル基板100′の主面へのパーティクル付着源となると考えられる。
 そこで本発明者は、上記諸課題を解決する方途について鋭意検討した。主積層体30を被覆する窒化シリコン膜40を形成する場合、シリコン基板20の裏面側にまで窒化シリコンが回り込み、窒化シリコンが析出することは避け難い。しかしながら、窒化シリコン膜40の形成に先立ち、予め外周部22における酸化シリコンを除去しておき、外周部22を除く領域21表面のみに酸化シリコン層10を形成しておけば、窒化シリコン膜40が酸化シリコン層10を被覆することがないため、酸化シリコン層10の除去時にIII族窒化物半導体エピタキシャル基板100′の主面へのパーティクル付着問題が生じないことを本発明者らは知見し、本発明を完成するに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
(1)シリコン基板と、前記シリコン基板の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体と、前記主積層体および前記シリコン基板を被覆する窒化シリコン膜と、を有するIII族窒化物半導体エピタキシャル基板であって、前記シリコン基板の裏面側では、前記窒化シリコン膜が前記シリコン基板の外周部のみを直接被覆し、かつ、前記裏面側の前記外周部を除く領域で前記シリコン基板が露出することを特徴とする、III族窒化物半導体エピタキシャル基板。
(2)シリコン基板と、前記シリコン基板の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体と、前記主積層体および前記シリコン基板を被覆する窒化シリコン膜と、を有するIII族窒化物半導体エピタキシャル基板であって、前記シリコン基板の裏面側では、前記窒化シリコン膜が前記シリコン基板の外周部のみを直接被覆し、前記裏面側の前記外周部を除く表面には酸化シリコン層が更に設けられることを特徴とする、III族窒化物半導体エピタキシャル基板。
(3)シリコン基板の裏面側の外周部を除く表面に酸化シリコン層を形成する第1工程と、前記シリコン基板の主面に複数層のIII族窒化物層をエピタキシャル成長させて主積層体を形成する第2工程と、前記主積層体および前記シリコン基板を被覆し、かつ、前記シリコン基板の裏面側では、前記外周部のみを直接被覆する窒化シリコン膜を形成する第3工程と、を含むことを特徴とする、III族窒化物半導体エピタキシャル基板の製造方法。
(4)前記第3工程の後、前記酸化シリコン層を除去する第4工程を更に含む、上記(3)に記載の製造方法。
(5)前記第1工程において、前記シリコン基板の裏面側の前記外周部にレジストを塗布し、次いで前記シリコン基板の裏面側に酸化シリコン膜を形成し、その後、前記レジストを除去して前記酸化シリコン層を形成する、上記(3)または(4)に記載の製造方法。
(6)前記第1工程において、前記シリコン基板の裏面側全体に酸化シリコン膜を形成し、その後、前記外周部を被覆する部分の酸化シリコン膜をエッチングして前記酸化シリコン層を形成する、上記(3)または(4)に記載の製造方法。
 本発明によれば、窒化シリコン膜が酸化シリコン層を被覆することがないので、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着が抑制されたIII族窒化物半導体エピタキシャル基板およびパーティクル付着を抑制することのできるIII族窒化物半導体エピタキシャル基板ならびにその製造方法を提供することができる。
一般的な高電子移動度トランジスタを示す模式的断面図である。 一般的なシリコン基板を説明する模式図であり、(A)はシリコン基板の裏面の平面図であり、(B)は(A)におけるI-I断面図である。 比較例に係るIII族窒化物半導体エピタキシャル基板を説明する模式図である。 本発明に従うIII族窒化物半導体エピタキシャル基板の製造方法を説明するフローチャートである。 本発明に従うIII族窒化物半導体エピタキシャル基板の製造方法において、シリコン基板裏面に形成する酸化シリコン層の製造方法の一実施形態を説明するフローチャートである。 本発明に従うIII族窒化物半導体エピタキシャル基板の製造方法において、シリコン基板裏面に形成する酸化シリコン層の製造方法の別の実施形態を説明するフローチャートである。 本発明の他の実施形態に係る横方向を電流導通方向とする電子デバイス用のIII族窒化物半導体エピタキシャル基板を説明する模式図である。 実施例において、III族窒化物半導体エピタキシャル基板の裏面を撮影した写真であり、(A)は実施例1の写真であり、(B)は比較例1の写真である。
 以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。また、既述の図2,3および後述の図4~図7において、説明の便宜上、各層、各膜および基板等の縦横の比率を実際の比率から誇張して図示している。但し、図4~図7では、図面の簡略化のためにシリコン基板20の周縁部を簡略化して図示している。
(第1実施形態:III族窒化物半導体エピタキシャル基板の製造方法)
 図4(A)~(D)に示すように、本発明の第1実施形態に従うIII族窒化物半導体エピタキシャル基板100の製造方法は、シリコン基板20の裏面側の外周部22を除く領域21の表面に酸化シリコン層10を形成する第1工程(図4(A),(B))と、シリコン基板20の主面に複数層のIII族窒化物層をエピタキシャル成長させて主積層体30を形成する第2工程(図4(C))と、主積層体30およびシリコン基板20を被覆し、かつ、シリコン基板20の裏面側では、外周部22のみを直接被覆する窒化シリコン膜40を形成する第3工程(図4(D))と、を含むことを特徴とする。かかる行程を経て製造されたIII族窒化物半導体エピタキシャル基板100は、裏面側の酸化シリコン膜10を除去する際に、III族窒化物半導体エピタキシャル基板100の主面へのパーティクル付着を抑制することができる。なお、窒化シリコン膜40のうち、シリコン基板20の裏面側の外周部22における部分を窒化シリコン膜40の一部分40aと表記する。本実施形態において、窒化シリコン膜40の一部分40aは、酸化シリコン層10を被覆せず、重なることがない。以下、各工程の詳細を順に説明する。
 第1工程では、図4(A)に示すように、まずシリコン基板20を用意する。シリコン基板20の面方位は特に指定されず、(111),(100),(110)面等の任意の面方位を使用することができる。III族窒化物の(0001)面を表面平坦性よく成長させるためには、(111)面を使用することが好ましい。シリコン基板20の導電性については、10000Ω・cm以上の絶縁性の高い高比抵抗基板から、0.001Ω・cm程度までの低比抵抗基板まで、用途に応じて適宜使用することができる。なお、シリコン基板20は、p型、n型いずれの伝導型としてもよい。このシリコン基板20の製法としては、CZ法、FZ法等各種方法を用いることができる。シリコン基板20としては、バルクのシリコン単結晶基板以外にも基板の主面に、Si,SiC等をエピタキシャル成長させた基板を用いてもよい。なお、シリコン基板20の基板表裏面に自然酸化膜が形成されていてもよいが、この場合、後述の第3工程を行うまでに、少なくとも裏面側の外周部22における自然酸化膜を除去しておく。シリコン基板20の厚さおよび幅等のその他の仕様は、III族窒化物半導体エピタキシャル基板100の用途に応じて、適宜設計すればよい。
 特に、III族窒化物半導体エピタキシャル基板100を高周波特性に優れた電子デバイス用エピタキシャル基板として作製するためには、シリコン基板20の比抵抗を、1000Ω・cm以上とすることが好ましい。このような基板は、Si結晶の高純度化が容易なFZ法により作製することができる。
 次に、図4(B)に示すように、シリコン基板20の裏面側の外周部22を除く領域21における表面に酸化シリコン層10を形成する。酸化シリコン層10の形成方法は後述する。なお、後述の酸化シリコン膜を含めて、「酸化シリコン」の記載が、化学量論としてのSiOへの限定を意図するものではなく、シリコン基板20に通常形成される酸化シリコン(SiO)を意味する。
 ここで、酸化シリコン層10は、シリコン基板20の裏面を保護することができ、さらに、シリコン基板裏面に回りこんでp型のキャリアとなるIII族元素が基板中に拡散し、シリコン基板20の導電性が大きくなってしまうことを防ぐこともできる。その結果、シリコン基板20の裏面側の外周部22を除く領域21の表面から1μmの深さ位置までの範囲において、III族元素の濃度を、1×1016atoms/cm以下とすることができる。すなわち、酸化シリコン層10は不純物拡散抑制層としても機能する。シリコン基板20の裏面の外周部22に酸化シリコンが形成されていなくとも、外周部はデバイスとして用いられることがない。そのため、酸化シリコン層10がシリコン基板20の裏面全体に設けられていなくても、III族窒化物半導体エピタキシャル基板100を電子デバイス用エピタキシャル基板として用いた場合に行われることのある、電磁誘導方式などで測定する非接触式のシート抵抗測定に影響しない。
 なお、シリコン基板20の主面および裏面は、いずれも領域21および外周部22に区画されるのは前述のとおりであり、外周部22は、シリコン基板20の端面と、端面から1~5mm程度の範囲で任意に設定される内側の線との間で区画される。窒化シリコン膜40については詳細を後述するが、シリコン基板20の裏面において、窒化シリコン膜40と酸化シリコン層10とが重ならないことが肝要であり、シリコン基板20の裏面上で窒化シリコン膜40と酸化シリコン層10との間に間隙が設けられて離隔していてもよい。但し、不純物汚染を抑制する観点では、後述の第3工程における窒化シリコン膜40の形成条件を踏まえて、間隙を設けないように酸化層10を形成することが好ましい。この場合、外周部22を、シリコン基板20の端面から5mmまでの範囲とすることが好ましく、2mmまでの範囲とすることがより好ましい。
 酸化シリコン層10の形成方法は限定されないが、例えば図5に示すように、シリコン基板20の裏面の外周部22にレジストRを塗布し、次いでシリコン基板20裏面に酸化シリコン膜10′を形成し、その後、レジストRを除去することで、酸化シリコン層10を領域21の表面に形成することができる。
 ここで、酸化シリコン膜10′は、化学気相成長(CVD: chemical vapor deposition)法および熱酸化法などの常法に従い形成することができる。熱酸化法の場合、シリコン基板20表面全体に酸化シリコン膜が形成されるので、主面側および側面の酸化シリコン膜については除去すればよい。酸化シリコン膜10′の厚みは特に限定されないが、基板中央部分において例えば10nm~10μmとすることができる。上記の不純物拡散抑制層として機能させるには100nm以上とすることがより好ましい。
 また、レジストRとしては、ネガ型の他、ポジ型などを用いることができる。アセトンなどを用いてレジストRを溶解することにより、レジストR上の酸化シリコン膜10′がリフトオフされ、裏面中央部上のみに酸化シリコン層10が形成される。このリフトオフの際に、シリコン基板20に自然酸化膜が予め形成されている場合でも、外周部22における自然酸化膜は除去される。
 他にも、シリコン基板20の裏面全体に酸化シリコン膜10′を形成し、その後、外周部22をエッチングして酸化シリコン層10を形成してもよい。すなわち、図6(A)~(C)に示すように、まず、シリコン基板20の裏面全体に酸化シリコン膜10′を形成する。その後、外周部22に形成された部分の酸化シリコン膜10′をエッチングする。
 エッチングとしては、例えば酸化シリコン膜10′の領域21上方にマスクを形成し、エッチング液によりマスクの形成されていない外周部22にある部分の酸化シリコン膜10′を除去し、最後にマスクを除去すれば、酸化シリコン層10が形成される(図示せず)。なお、酸化シリコン膜10′のエッチング液としてはバッファードフッ酸(BHF)、フッ酸(HF)などを用いることができる。このエッチングの際に、シリコン基板20に自然酸化膜が形成されている場合でも、外周部22における自然酸化膜は除去される。
 次の第2工程では、図4(C)に示すように、裏面側の領域21に酸化シリコン層10が形成されたシリコン基板20の主面に、複数層のIII族窒化物層をエピタキシャル成長させて主積層体30を形成する。
 この主積層体30は、化学気相成長法を用いてエピタキシャル成長させることにより形成することができ、有機金属気相成長(MOCVD: Metal Organic Chemical Vapor Deposition)法を用いることが好ましい。MOCVD法におけるIII族原料としては、TMA(トリメチルアルミニウム)・TMG(トリメチルガリウム)等、V族原料としてはアンモニア等を用い、キャリアガスとして、水素および窒素ガス等を用いることができる。詳細を後述するが、本実施形態により製造されたIII族窒化物半導体エピタキシャル基板100を、HEMTなどの横方向を電流導通方向とする電子デバイス用エピタキシャル基板として用いる場合には、主積層体30は、シリコン基板20から順に、バッファ、チャネル層および電子供給層を含むことが好ましい。後述のIII族窒化物半導体エピタキシャル基板200の主積層体30についでも同様である。なお、図面の簡略化のために、主積層体30の複数層構造については、ここでは図示しない。
 続く第3工程では、図4(D)に示すように、主積層体30およびシリコン基板20を被覆し、かつ、シリコン基板20の裏面側では、外周部22のみを直接被覆する窒化シリコン膜40を形成する。なお、窒化シリコン膜はシリコン基板20の端面およびベベルを含む側面部を被覆する。ここで、シリコン基板20の裏面側において、酸化シリコン層10と、窒化シリコン膜40の一部分40aとが重なることなく、外周部22のみにおいて、窒化シリコン膜の一部分40aが形成されることが、本発明において肝要である。なお、「窒化シリコン」の記載が、化学量論としてのSiへの限定を意図するものではなく、通常形成される窒化シリコン(SiN)を意味する。外周部22における窒化シリコンは、エネルギー分散X線分光法(EDS; Energy Dispersive X-ray Spectrometry)によりSiおよびNのピークの有無を検出して確認することができる。
 窒化シリコン膜40は、MOCVD法、プラズマCVD法または電子ビーム(EB)蒸着法等によって形成することができる。既述のとおり、図4(D)に図示するようにシリコン基板20および主積層体30を被覆する窒化シリコン膜40を形成する際には、窒化シリコンが基板裏面の領域21にも回り込むことを本発明者らは知見した。なお、窒化シリコン膜40の厚みは特に限定されず、用途に応じて適宜定めることができ、限定を意図しないものの、主積層体上面の中央部分において例えば10nm~1μmとすることができ、窒化シリコン膜40の一部分40aの厚みを例えば10nm~1μmとすることができる。MOCVD法の場合、例えば成長時間を調整することで、窒化シリコンの裏面側での析出領域をシリコン基板20の端面から1.0mm~2.0mmまでの範囲で調整することができる。なお、成長中の基板が下凸に反るほど、裏面側での析出領域の範囲が広がる。そのため、下凸の反りがあれば、窒化シリコンの裏面側での析出領域がシリコン基板20の端面から1.0~3.0mmまで及ぶ場合がある。とくにオリフラ付近の裏面側での析出領域が大きくなる。そのため、主積層体上面の中央部分における窒化シリコン膜を厚くしたい場合には、基板の反りを小さくすることが好ましい。
 以上のとおりにして得られたIII族窒化物半導体エピタキシャル基板100は、図3に示したIII族窒化物半導体エピタキシャル基板100′とは異なり、シリコン基板20の裏面側において、酸化シリコン層10と、窒化シリコン膜40の一部分40aとで重なる部分がない。したがって、酸化シリコン層10をエッチング等によって除去する際に、除去後に酸化シリコン層一部が残存したり、酸化シリコン層を介して基板と接合していた窒化シリコン層の一部が、酸化シリコン層が除去されたことによって基板と離間して浮遊物となったりすることを防止することができる。シリコン基板20の裏面側の外周部22に位置する窒化シリコン膜40aはシリコン基板20の裏面に直接着いているため、III族窒化物半導体エピタキシャル基板100主面へのパーティクル付着を抑制することができる。
 なお、上記実施形態では第1工程を先に行い、次いで第2工程を行っているが、この順序を入れ替えても構わない。ただし、基板成長面を入れ替える際の汚染を避けるために上記実施形態と同様に第1工程、第2工程の順に行うことが通常であり、好ましい。
(第2実施形態)
 また、本発明に従う第2実施形態に係るIII族窒化物半導体エピタキシャル基板200の製造方法は、既述の第1実施形態における第1~第3工程の後、酸化シリコン層10を除去する第4工程を更に含むことが好ましい。
 すなわち、本発明の第2実施形態に従うIII族窒化物半導体エピタキシャル基板200の製造方法は、シリコン基板20の裏面側の外周部22を除く領域21の表面に酸化シリコン層10を形成する第1工程(図4(A),(B))と、シリコン基板20の主面に複数層のIII族窒化物層をエピタキシャル成長させて主積層体30を形成する第2工程(図4(C))と、主積層体30およびシリコン基板20を被覆し、かつ、シリコン基板20の裏面側では、外周部22のみを直接被覆する窒化シリコン膜40を形成する第3工程(図4(D))と、を含み、酸化シリコン層10を除去する第4工程(図4(E))を更に含むことを特徴とする。この場合、シリコン基板20の裏面側の領域21では、シリコン基板20が露出することとなる。
 第1~第3工程は前述の第1実施形態と同様であり、重複する説明を省略する。酸化シリコン層10の除去は、常法に従い行うことができ、エッチング液としてはバッファードフッ酸(BHF)、フッ酸(HF)などを用いることができる。
 かかる行程を経て製造されたIII族窒化物半導体エピタキシャル基板200は、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着が抑制される。
(第3実施形態:III族窒化物半導体エピタキシャル基板)
 本発明の一実施形態に従うIII族窒化物半導体エピタキシャル基板200は、シリコン基板20と、シリコン基板20の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体30と、主積層体30およびシリコン基板20を被覆する窒化シリコン膜40と、を有する。ここで、シリコン基板20の裏面側では窒化シリコン膜40がシリコン基板20の外周部22のみを直接被覆し、かつ、裏面側の外周部22を除く領域21でシリコン基板20が露出することが本実施形態の特徴である。本実施形態に従うIII族窒化物半導体エピタキシャル基板200は、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着を抑制することができる。
 ここで、前述のとおり、III族窒化物半導体エピタキシャル基板200をHEMTなどの横方向を電流導通方向とする電子デバイス用エピタキシャル基板として用いることが好適であり、この場合、主積層体30は、シリコン基板20から順に、バッファ31、チャネル層32および電子供給層33を含むことが好ましい(図7)。
 この場合、バッファ31は、超格子構造または傾斜組成構造を有することも好ましい。超格子構造とは、図7に示すように、第1層32cと第2層32dを周期的に含むように積層することを意味する。第1層32cと第2層32d以外の層(たとえば組成遷移層)を含んでもよい。なお、傾斜組成構造とは、特定のIII族元素含有量を膜厚方向に傾斜させることを意味する。
 さらに、バッファ31は、図7に示すように、シリコン基板20と接する初期成長層31aおよび初期成長層31a上の超格子積層構造からなる超格子積層体31bを有することも好ましい。初期成長層31aは例えばAlN材料からなることができ、初期成長層31aをAlNで形成することにより、シリコン基板20との反応を抑制し、HEMTにおける縦方向耐圧の向上を可能とする。これは、初期成長層31aをGa,Inを含むIII族窒化物材料で形成した場合、Ga,Inが基板のSiと反応して欠陥を発生させ、エピタキシャル層内に貫通欠陥を誘起することによる、縦方向耐圧の低下の抑制を目的としている。ただし、ここでいうAlN材料は、1%以下の微量不純物を含んでいてもよく、例えば、上記Ga,Inをはじめとして、Si,H,O,C,B,Mg,As,Pなどの不純物を含むことができる。なお、バッファ31のC濃度を1×1018atoms/cm以上とすることも好ましい。縦方向耐圧を向上することができる。
 チャネル層32は、Ba1Alb1Gac1Ind1N(0≦a≦1,0≦b≦1,0≦c≦1,0≦d≦1,a+b+c+d=1)とすることができ、電子供給層33は、チャネル層32よりバンドギャップの大きな、Ba2Alb2Gac2Ind2N(0≦a≦1,0≦b≦1,0≦c≦1,0≦d≦1,a+b+c+d=1)とすることができる。この際、両層とも単一もしくは複数の組成から構成してもよい。合金散乱をさけ、電流導通部分の比抵抗を下げるためには、チャネル層の少なくとも電子供給層と接する部分をGaN(a=0,b=0,c=1,d=0)とすることが好ましい。チャネル層全体をGaNとしてもよい。
 前述のバッファ、チャネル層および電子供給層は常法に従い形成することができる。また、既述のように、III族窒化物半導体エピタキシャル基板の窒化シリコン膜40上にソース電極、ゲート電極およびドレイン電極を形成することにより、HEMTとすることができる。
 なお、図7に示したIII族窒化物半導体エピタキシャル基板は、本発明に従う一実施形態を示したものであって、本発明はこの実施形態に限定されるものではない。たとえば、各層の間に本発明の効果に悪影響を与えない程度の中間層や他の超格子層を挿入したり、組成に傾斜をつけたりすることもできる。
(第4実施形態:III族窒化物半導体エピタキシャル基板)
 本発明の別の実施形態に従うIII族窒化物半導体エピタキシャル基板100は、シリコン基板20と、シリコン基板20の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体30と、主積層体30およびシリコン基板20を被覆する窒化シリコン膜40と、を有する。ここで、シリコン基板20の裏面側では、窒化シリコン膜40がシリコン基板20の外周部22のみを直接被覆し、シリコン基板20の裏面側の外周部22を除く領域21の表面には、酸化シリコン層10が設けられることが本実施形態の特徴である。既述のとおり、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。
 本実施形態に従うIII族窒化物半導体エピタキシャル基板100は、シリコン基板20裏面の酸化シリコン層10を除去する際に、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着を抑制することができる。
 なお、第1実施形態および第2実施形態に係る製造方法は、本発明に従うIII族窒化物半導体エピタキシャル基板100,200の製造方法の一実施形態に過ぎず、他の製造方法により、本発明に従うIII族窒化物半導体エピタキシャル基板100,200を製造してもよいことはもちろんである。
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
(実施例1)
 図4,5に示すフローチャートに従い、実施例1に係るIII族窒化物半導体エピタキシャル基板を作製した。すなわち、まず、(111)面、3インチのシリコン単結晶基板(厚さ:600μm,比抵抗:6×10Ω・cm)を用意した。次に、シリコン単結晶基板の裏面外周部(シリコン基板の端面から3mmまでの範囲)にレジスト(AZ5218E、厚さ:2.0μm)を塗布した。なお、本実施例において、外周部は、シリコン単結晶基板の端面と端面から3mm内側の線との間の領域である。その後、プラズマCVD法により、基板の両面に酸化シリコン膜を形成し、さらに主面側の酸化シリコン膜を除去し、裏面のみに酸化シリコン膜(厚さ:0.3μm)を形成した。次いで、アセトンを用いてレジストを溶解除去して、リフトオフした。こうして、裏面外周部を除く領域の表面のみに酸化シリコン層を形成した。その後、シリコン基板の表面にエピレディ処理をおこなった。
 次いで、シリコン基板の主面上に、初期成長層(AlN材料,厚さ:100nm)および超格子積層体(AlN,厚さ:4nmおよびAl0.10Ga0.90N,厚さ:25nm、合計75層)を成長させてバッファを形成し、さらにこの超格子積層体上にチャネル層(GaN,厚さ:0.75μm)および電子供給層(Al0.15Ga0.85N,厚さ:40nm)をMOCVD法によりエピタキシャル成長させて主積層体を形成した。III族原料としては、TMA(トリメチルアルミニウム)・TMG(トリメチルガリウム)、V族原料としてはアンモニアを用い、キャリアガスとして、水素および窒素ガスを用いた。
 さらに、主積層体を被覆する窒化シリコン膜をMOCVD法In-Situ(その場)成長により形成した。原料ガスとしては、SiHおよびNHを用いた。主積層体上面の中央部分の窒化シリコン膜の厚さは150nmである。このとき、原料ガスがシリコン単結晶基板の裏面外周部にまで回り込み、裏面側の外周部にも窒化シリコン膜が形成された。裏面側において、窒化シリコン膜は、シリコン単結晶基板の端面から最大で2mmまでの範囲に形成されていることを、SEM-EDS(エネルギー分散型X線分光分析)による元素マッピングにより観察した。最後に、シリコン基板裏面に形成した酸化シリコン膜をBHFで除去し、実施例1に係るIII族窒化物半導体エピタキシャル基板を作製した。なお、TXRF(全反射蛍光X線分析)にてシリコン基板裏面(ウェハ中心部)のごく浅い表層の不純物を測定したところ、測定した全範囲で、Ga、Al等の主積層体の構成元素が検出され、Fe、Cr、Niなどの不純物濃度は、1×1011atoms/cm以下であった。
(比較例1)
 実施例1におけるレジスト塗布およびレジスト除去を行わなかった以外は、実施例1と同様にして、比較例1に係るIII族窒化物半導体エピタキシャル基板を作製した。すなわち、比較例1に係るIII族窒化物半導体エピタキシャル基板は、図2に示す裏面全体に酸化シリコンを形成したIII族窒化物半導体エピタキシャル基板を形成した後に、この酸化シリコンを除去して作製したものである。裏面側において、窒化シリコン膜は、シリコン単結晶基板の端面から最大で2mmまでの範囲に形成されていることを、SEM-EDSによる元素マッピングにより観察した。なお、実施例と比較すると外周部の色が異なった。これは、外周部において酸化シリコンを被覆するように窒化シリコン膜が形成されたからだと考えられる。
(評価)
 裏面側の酸化シリコン層を除去した後の、実施例1および比較例1に係るIII族窒化物半導体エピタキシャル基板の裏面のオリエンテーションフラット近傍を蛍光灯下においてデジタルカメラにてそれぞれ撮影した。結果を図8(A),(B)に示す。また、表1に、酸化シリコン除去後のパーティクル付着の有無を示す。
Figure JPOXMLDOC01-appb-T000001

 
 図8(A)ではシリコン基板の裏面に膜残りがなく、実施例1ではシリコン表面が露出していることが確認できた。一方、図8(B)では曇りが観察されることから、比較例1では部分的に酸化層が残っていることが確認できた。また、比較例1では外周部に(とくにオリフラ部において顕著に)窒化シリコン膜に被覆された酸化層が溶けずに残存していた。従って、比較例1において、エピタキシャル基板をデバイス作製に供する際には、酸化層を完全に除去する必要があるので、この酸化層と、酸化層を完全に除去しようとした際の外周部のシリコン基板との密着性を欠いた部分の窒化シリコン膜がパーティクル付着の原因となる。これに対して、実施例1では、主面へのパーティクル付着の原因を抑制できていることがわかる。したがって、シリコン基板の裏面において、酸化シリコン層が被覆されないように窒化シリコン膜を形成することで、酸化シリコン層を除去したときに、主面へのパーティクル付着を防止できることがわかった。
 本発明によれば、III族窒化物半導体エピタキシャル基板の主面へのパーティクル付着が抑制されたIII族窒化物半導体エピタキシャル基板およびパーティクル付着を抑制することのできるIII族窒化物半導体エピタキシャル基板ならびにその製造方法を提供することができる。
 1   電子デバイス用エピタキシャル基板(HEMT)
 2   異種基板
 3   チャネル層
 4   電子供給層
 5a  ソース電極
 5b  ドレイン電極
 5c  ゲート電極
 10  酸化シリコン層
 10′ 酸化シリコン膜
 20  シリコン基板
 21  領域
 22  外周部
 23  オリエンテーションフラット
 30  主積層体
 31  チャネル層
 32  電子供給層
 40  窒化シリコン膜
 40a 窒化シリコン膜の一部分
 100,200 III族窒化物半導体エピタキシャル基板
 R   レジスト
 

Claims (6)

  1.  シリコン基板と、
     前記シリコン基板の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体と、
     前記主積層体および前記シリコン基板を被覆する窒化シリコン膜と、を有するIII族窒化物半導体エピタキシャル基板であって、
     前記シリコン基板の裏面側では、前記窒化シリコン膜が前記シリコン基板の外周部のみを直接被覆し、かつ、前記裏面側の前記外周部を除く領域で前記シリコン基板が露出することを特徴とする、III族窒化物半導体エピタキシャル基板。
  2.  シリコン基板と、
     前記シリコン基板の主面上に、複数層のIII族窒化物層がエピタキシャル成長して形成された主積層体と、
     前記主積層体および前記シリコン基板を被覆する窒化シリコン膜と、を有するIII族窒化物半導体エピタキシャル基板であって、
     前記シリコン基板の裏面側では、前記窒化シリコン膜が前記シリコン基板の外周部のみを直接被覆し、
     前記裏面側の前記外周部を除く表面には酸化シリコン層が更に設けられることを特徴とする、III族窒化物半導体エピタキシャル基板。
  3.  シリコン基板の裏面側の外周部を除く表面に酸化シリコン層を形成する第1工程と、
     前記シリコン基板の主面に複数層のIII族窒化物層をエピタキシャル成長させて主積層体を形成する第2工程と、
     前記主積層体および前記シリコン基板を被覆し、かつ、前記シリコン基板の裏面側では、前記外周部のみを直接被覆する窒化シリコン膜を形成する第3工程と、
    を含むことを特徴とする、III族窒化物半導体エピタキシャル基板の製造方法。
  4.  前記第3工程の後、前記酸化シリコン層を除去する第4工程を更に含む、請求項3に記載の製造方法。
  5.  前記第1工程において、前記シリコン基板の裏面側の前記外周部にレジストを塗布し、次いで前記シリコン基板の裏面側に酸化シリコン膜を形成し、その後、前記レジストを除去して前記酸化シリコン層を形成する、請求項3または4に記載の製造方法。
  6.  前記第1工程において、前記シリコン基板の裏面側全体に酸化シリコン膜を形成し、その後、前記外周部を被覆する部分の酸化シリコン膜をエッチングして前記酸化シリコン層を形成する、請求項3または4に記載の製造方法。
PCT/JP2015/005940 2014-12-04 2015-11-30 Iii族窒化物半導体エピタキシャル基板およびその製造方法 WO2016088348A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246061 2014-12-04
JP2014246061A JP5941523B2 (ja) 2014-12-04 2014-12-04 Iii族窒化物半導体エピタキシャル基板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2016088348A1 true WO2016088348A1 (ja) 2016-06-09

Family

ID=56091311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005940 WO2016088348A1 (ja) 2014-12-04 2015-11-30 Iii族窒化物半導体エピタキシャル基板およびその製造方法

Country Status (2)

Country Link
JP (1) JP5941523B2 (ja)
WO (1) WO2016088348A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763347B2 (ja) * 2017-06-07 2020-09-30 株式会社Sumco 窒化物半導体基板の製造方法および窒化物半導体基板
JP2020098839A (ja) * 2018-12-17 2020-06-25 信越半導体株式会社 窒化物半導体ウェーハの製造方法および窒化物半導体ウェーハ

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306848A (ja) * 1996-05-16 1997-11-28 Nec Corp 半導体結晶性膜の成長方法
WO2005088666A1 (ja) * 2004-03-12 2005-09-22 Hamamatsu Photonics K.K. 層状部材の製造方法、及び層状部材
JP2010258352A (ja) * 2009-04-28 2010-11-11 Oki Data Corp 半導体薄膜素子の製造方法並びに半導体ウエハ、及び、半導体薄膜素子
JP2011023664A (ja) * 2009-07-17 2011-02-03 Dowa Electronics Materials Co Ltd 横方向を電流導通方向とする電子デバイス用エピタキシャル基板およびその製造方法
JP2011155057A (ja) * 2010-01-26 2011-08-11 Mitsubishi Electric Corp 半導体デバイスの製造方法および半導体基板
JP2013062409A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 窒化物半導体積層構造体の製造方法
JP2014022698A (ja) * 2012-07-24 2014-02-03 Dowa Holdings Co Ltd 窒化物半導体成長用Si基板およびそれを用いた電子デバイス用エピタキシャル基板およびそれらの製造方法
US20140264368A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Semiconductor Wafer and a Process of Forming the Same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306848A (ja) * 1996-05-16 1997-11-28 Nec Corp 半導体結晶性膜の成長方法
WO2005088666A1 (ja) * 2004-03-12 2005-09-22 Hamamatsu Photonics K.K. 層状部材の製造方法、及び層状部材
JP2010258352A (ja) * 2009-04-28 2010-11-11 Oki Data Corp 半導体薄膜素子の製造方法並びに半導体ウエハ、及び、半導体薄膜素子
JP2011023664A (ja) * 2009-07-17 2011-02-03 Dowa Electronics Materials Co Ltd 横方向を電流導通方向とする電子デバイス用エピタキシャル基板およびその製造方法
JP2011155057A (ja) * 2010-01-26 2011-08-11 Mitsubishi Electric Corp 半導体デバイスの製造方法および半導体基板
JP2013062409A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 窒化物半導体積層構造体の製造方法
JP2014022698A (ja) * 2012-07-24 2014-02-03 Dowa Holdings Co Ltd 窒化物半導体成長用Si基板およびそれを用いた電子デバイス用エピタキシャル基板およびそれらの製造方法
US20140264368A1 (en) * 2013-03-15 2014-09-18 Semiconductor Components Industries, Llc Semiconductor Wafer and a Process of Forming the Same

Also Published As

Publication number Publication date
JP5941523B2 (ja) 2016-06-29
JP2016111138A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
WO2011161975A1 (ja) エピタキシャル成長基板及び半導体装置、エピタキシャル成長方法
US8710489B2 (en) Epitaxial substrate for electronic device, in which current flows in lateral direction and method of producing the same
TWI525827B (zh) 半導體結構及其形成方法、化合物半導體結構
US8921893B2 (en) Circuit structure having islands between source and drain
US8247796B2 (en) Semiconductor device
US8946863B2 (en) Epitaxial substrate for electronic device comprising a high resistance single crystal substrate on a low resistance single crystal substrate, and method of manufacturing
US20150028457A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
US20150349064A1 (en) Nucleation and buffer layers for group iii-nitride based semiconductor devices
US20150084163A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
JP5684043B2 (ja) 半導体装置とその製造方法
US10332975B2 (en) Epitaxial substrate for semiconductor device and method for manufacturing same
US20150021666A1 (en) Transistor having partially or wholly replaced substrate and method of making the same
TW201901750A (zh) 半導體裝置之製造方法及半導體裝置
TW201611268A (zh) 半導體裝置
JP5941523B2 (ja) Iii族窒化物半導体エピタキシャル基板およびその製造方法
JP5417211B2 (ja) エピタキシャル成長基板及び半導体装置、エピタキシャル成長方法
JP2015106627A (ja) 半導体積層基板
JP5546301B2 (ja) 電子デバイス用エピタキシャル基板およびその製造方法
TWM508782U (zh) 半導體裝置
JP2018137432A (ja) 窒化物半導体基板およびその製造方法
JPWO2017221532A1 (ja) ヘテロ接合電界効果型トランジスタおよびその製造方法
JP6534993B2 (ja) 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
JP7220647B2 (ja) 窒化物半導体基板及びその製造方法
JP2021061385A (ja) 窒化物半導体基板および窒化物半導体装置
WO2016047534A1 (ja) SiC層を備えた半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866065

Country of ref document: EP

Kind code of ref document: A1