WO2016086902A1 - 进气系统的负压进吸气调控方法及装置 - Google Patents

进气系统的负压进吸气调控方法及装置 Download PDF

Info

Publication number
WO2016086902A1
WO2016086902A1 PCT/CN2015/096548 CN2015096548W WO2016086902A1 WO 2016086902 A1 WO2016086902 A1 WO 2016086902A1 CN 2015096548 W CN2015096548 W CN 2015096548W WO 2016086902 A1 WO2016086902 A1 WO 2016086902A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
way
way flap
negative pressure
link
Prior art date
Application number
PCT/CN2015/096548
Other languages
English (en)
French (fr)
Inventor
张俊雄
Original Assignee
雄和崴有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雄和崴有限公司 filed Critical 雄和崴有限公司
Publication of WO2016086902A1 publication Critical patent/WO2016086902A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps

Definitions

  • the invention relates to a method and a device for controlling a negative pressure intake and suction of an air intake system, which is provided with at least one one-way shutter, which is connected with at least one link group, which has at least one different rotation axis and is suitable for a rest force portion. It becomes a one-way valve assembly passively responding to the airflow opening and closing to regulate the suction of the suction system and the suction of the negative pressure source, and is provided for the equipment provided with the intake system and the exhaust system at the same time.
  • Used in the intake pipe for example, an internal combustion engine, a vacuum cleaner, an air extractor, a turbine engine, a tool including a turbojet, a turbofan, a turboshaft, and a turboprop.
  • an internal combustion engine such as a steam locomotive engine
  • a vacuum cleaner, an air extractor, a turbine engine and the like generate a negative pressure by using a negative pressure air intake system and a negative pressure source, and the outside air is sucked into the negative pressure air intake system via an intake pipe.
  • An exhaust system is then used to vent the air.
  • the negative pressure intake system of the internal combustion engine is, for example, a cylinder of a natural intake internal combustion engine, an intake manifold, an intake pipe, etc., a turbocharger intake end and an intake pipe of a supercharged internal combustion engine during boost operation, and supercharging The supercharger intake end of the internal combustion engine and the intake pipe.
  • the pump of the above vacuum cleaner and the air extractor is the negative pressure source of the negative pressure intake system.
  • the turbine engine includes a turbojet, a turbofan, a turboshaft, a turboprop, etc., and the pressurized blade is a vacuum inlet system and a negative pressure source.
  • the patented technology can improve the system negative pressure of the natural intake of the fuel injection turbocharged internal combustion engine and the turbine operation, which can be measured by reading the negative pressure gauge.
  • the Ford Kuga 1.6L turbocharged petrol car with the patented product is the basis for increasing the actual intake negative pressure and allowing the instrument to fail to reach the original design speed.
  • the one-way valve balance opening is formed when the traveling speed of each traveling speed and each speed is equal to the increasing one-way shutter closing torque; if the torsion spring torque is larger, the one-way The closing torque of each valve in the intake process is naturally larger, and the one-way valve balance opening degree in each intake process of the intake pipe.
  • the smaller the effective passage of the airflow formed the better the impact of the engine on the intake airflow in the medium and high speed range and the reduction of the combustion efficiency of the engine, resulting in a reduction in the output amplitude of the medium and high speed range. To solve this problem, improve the above one-way valve.
  • the inventors have actually measured that when the automobile engine maintains the medium-high speed range while traveling, if the one-way shutter closing torque is reflected to the negative pressure value read by the meter, the original negative pressure is appropriately maintained.
  • the setting of the higher value allows the actual output of the terminal to be greatly increased after the engine is burned, and the present invention has been developed.
  • the main object of the present invention is to provide a negative pressure intake and suction control method and device for an intake system, which is provided by adjusting a closing torque of a one-way flap by setting a link group on a one-way shutter to make the one-way flap After opening, the pair of rods are actuated to increase the intake efficiency of the intake air of the intake system.
  • the negative pressure inhalation control method of the intake system includes:
  • the one-way valve assembly includes at least one one-way valve, at least a link group, a restoring force portion and at least one positioning stop member, the one-way flap having a one-way flap rotation axis and at least one one-way flap pivoted on the one-way flap rotation axis,
  • the link set has a link set rotation axis different from the one-axis flap rotation axis, and the link set is pivotally connected between the link set rotation axis and the one-way flap, and the restoring force a portion is disposed between the rotating shaft of the connecting rod group and the connecting rod group, so that a closing torque is formed on the one-way flap by the connecting rod group, and the one-way flap is not fully actuated and fully closed. Resisting the positioning stop member to reduce a relatively increased closing torque of the restoring force portion when the one-way flap opening is larger by the link group;
  • the link set and the restoring force portion are configured and adjusted such that the one-way flap corresponds to the link set and acts on the air flow in the intake pipe.
  • the negative pressure intake and suction control device of the intake system provided by the present invention is disposed in an intake pipe provided in a tool having a negative pressure intake system and an exhaust system, and includes at least one one-way valve assembly, the one-way The valve assembly includes:
  • At least one one-way shutter at least one link set, a restoring force portion (such as a spring), and at least one positioning stop member
  • the one-way shutter includes a one-way flap rotating shaft and is pivoted on the one-way flap At least one one-way flap on the rotating shaft
  • the link set includes a connection with a different axis of the one-way flap a rotating shaft of the rod set, wherein the connecting rod group is pivotally connected between the rotating shaft of the connecting rod group and the one-way flap
  • the restoring force portion is disposed between the rotating shaft of the connecting rod group and the connecting rod group to pass
  • the link set forms a closing torque on the one-way flap, and the positioning stop abuts when the one-way flap is stationary and fully closed, to reduce the rest force by the link set a relatively increased closing torque when the one-way flap opening is greater; wherein the link set and the restoring force are configured to adjust a closing torque of the one-way flap to match the one-way flap
  • the connecting rod group acts in response
  • the one-way shutter closing torque is greater than the last condition, that is, the one-way flap is not actuated, the fully closed state closing torque is greater than the one-way flap full-opening state, and the full-speed range is fully improved.
  • the intake efficiency of a car internal combustion engine There is an intake efficiency of a car internal combustion engine.
  • the one-way shutter closing torque is less than the last condition, that is, the one-way flap is not actuated, the fully closed state closing torque is less than the one-way flap full-opening state for the output orientation.
  • An internal combustion engine that is a medium-high speed domain for example, an electric vehicle that is normally used exclusively for power generation, has a rotational speed of about 3,500 rpm, and requires a higher power output to have a higher engine speed.
  • the one-way shutter closing torque is equal to the beginning and the end, that is, the one-way flap is not actuated, the fully closed state closing torque is almost the same as the closing torque of the one-way flap full-open state, for An internal combustion engine that seeks better energy saving and lowers the output orientation of the medium and high speed domain, for example, an automobile internal combustion engine whose main demand is energy saving.
  • FIG. 1 is an exploded view of an embodiment of a negative pressure intake and suction control device of the intake system of the present invention
  • Figure 2 is a perspective external view of the embodiment of Figure 1;
  • Figure 3 is a cross-sectional view of the embodiment of Figure 1 when the one-way flap is stationary;
  • Figure 4 is a cross-sectional view of the embodiment of Figure 1 with the one-way flap fully open.
  • FIG. 1 and FIG. 2 are a first embodiment of a negative pressure intake and air intake control device for an intake system of the present invention, which is provided for an air intake provided in a tool having a negative pressure intake system and an exhaust system.
  • the inside of the tube includes a one-way shutter assembly including a one-way shutter 1, two link sets (21, 22), and a link set different from the one-axis flap rotation axis 12 a rotary shaft 23, a restoring force portion 3 and two positioning stop members 4, wherein the one-way shutter 1 comprises a fixed tube 11, a unidirectional flap rotation shaft 12 disposed in the fixed tube 11 in a radial direction, and Two unidirectional flaps 13 pivoted on the one-way flap rotation axis 12.
  • Each of the link sets (21, 22) includes a first link (211, 221) and a second link (212, 222), wherein one end of the first link 211 of the link set 21 is connected to the second link
  • One end of the rod 212 is pivotally connected to a connecting rod rotating shaft 213, and the other end of the first connecting rod 211 is pivotally connected to the connecting rod rotating shaft 23, and the other end of the second connecting rod 212 is pivotally connected to
  • the one of the one-way flaps 13 is pivoted between the link set rotation axis 23 and the one-way flap 13 .
  • first link 221 of the other link set 22 and one end of the second link 222 are pivotally connected to a link rotating shaft 223 to be connected to each other, and the other end of the first link 221 is pivotally connected to the other end.
  • the other end of the second link 222 is pivotally connected to the other one-way flap 13 .
  • the restoring force portion 3 is a torsion spring (or any other type of spring having the same function) disposed on the rotating shaft 23 of the link set, and the two ends of the restoring force portion 3 are respectively pivotally connected to the connecting shafts (213, 223), by which the one-way flap 13 is biased by the second link (212, 222) of each link set (21, 22), thereby forming a one-way flap 13
  • the closing torque against the positioning stop member 4 is moved, and the opening force of the restoring force portion 3 in the one-way flap 13 is reduced by the link groups (21, 22).
  • the relatively large closing torque when large.
  • the two positioning stop members 4 are disposed in the fixed tube 11 to limit the positions of the one-way flaps 13 so that the one-way flaps 13 can abut against the positioning when the stationary ones are in a fully closed state. Stop member 4.
  • the one-way flap 13 can be in a fully closed state and a fully open state, and the link sets (21, 22) and the restoring force 3 are configured.
  • the closing torque (shown in FIG. 3) that causes the one-way flaps 13 to be in the unactuated fully closed state is greater than the closing torque of the one-way flaps 13 in the fully open state (as shown in FIG. 4).
  • the unidirectional flaps 13 maintain a minimum clearance and are in contact with the fixed tube 11 and are stationary against the positioning stop 4, wherein the restoring force 3 is biased relative to the linkage axis 23
  • the rotation normal vector size 100 stretches the first link 211 and the second link 212 of the link group 21 to pull the one-way flap 13, and the projection component force 101 of the normal vector 100 is the same as the force magnitude 102.
  • the projected rotation normal vector size 103 of the force magnitude 102 relative to the one-way flap rotation axis 12 is the magnitude of the rotation normal vector at which the one-way flap 13 is closed.
  • the one-way shutters are in a fully open state, wherein the restoring force portion 3 is biased relative to the link group rotation axis 23 by a rotation normal vector size 200 to stretch the link group 21 first link 211 and The two links 212 pull the unidirectional flaps 13, and the projection component urging force 201 of the normal vector 200 is the same as the urging force 202.
  • the projected rotation normal vector size 203 of the force magnitude 202 relative to the one-way flap rotation axis 12 is the magnitude of the rotation normal vector at which the one-way flap 13 is closed.
  • the industrial adjustment of the torsion spring material, the wire diameter, the number of turns, and the outer diameter of the disk circle of the restoring force portion 3 can obtain the initial torque required for the design and the maximum rotational use torque; in FIGS. 3 and 4, when the force is 200 Deliberately arranged with the same force force 100, the maximum opening force 203 of the one-way flap 13 is 15.7% of the static force 103. As can be seen from the figure, the intensity of the restoring force can be adjusted, that is, the adjustment is set.
  • the torque when the torsion spring 3 rotates most open is inevitably larger than the torque ratio of the initial pre-force number, and the intention is to appropriately set the ratio of the actual magnitude of the torsion spring 3 to the magnitude of the applied force 200 and the magnitude of the applied force 100.
  • the adjustable ratio of the force application size 203 to the force application size 103 can be adjusted from 15.7% to more than one point; the maximum opening torque of the one-way valve of the prior patent must be the maximum. And it is inevitably different from the case where the torque at rest is 100% or more.
  • the torsion spring of the one-way flap 13 is the most arbitrarily arranged as shown in Fig. and the restoring force portion 3 (torsion spring) is the same as the force 100;
  • the size 200 is bound to be greater than the torsion spring force of 100.
  • the connecting rod sets (21, 22) and the restoring force portion 3 are configured such that the one-way flaps 13 are stationary and the fully closed state closing torque is greater than the one-way flap 13 is fully open.
  • the closing torque of the state which is installed in the intake pipe of the negative pressure intake system of the automobile (for example, is disposed between the intake port of the intake pipe of the natural intake car and the throttle valve) corresponding to the intake pipe.
  • the air flow is actuated, so that the closing torque of the one-way flaps 13 of various open states can be such that the negative pressure value in the downstream intake manifold is smaller than that of the intake air intake control device.
  • the negative pressure value is higher, which can more effectively gain the intake air, make the combustion efficiency better, and let the engine actually burn the output and then increase the gain. That is to say, urban vehicles frequently take off vehicles and high-speed vehicles, and each control speed domain can respond more quickly, so that the medium and low speeds have higher output torque, and the medium and high speed domains obviously speed up faster. Then, the Ford Kuga 1.6L turbocharged gasoline vehicle installed in the front pipe section of the turbine inlet end of the present embodiment is compared with the 90kph fixed speed of the same load climbing section, and the original turbine output positive pressure is 0.45kg/cm 2 .
  • the turbine output positive pressure is 0.5kg/cm 2
  • the installation sample considers the full-speed range performance of the present invention.
  • the set sample and the turbine output positive pressure are 0.57kg. / cm 2, a 0.45kg / cm 2, 0.5kg / cm 2, 0.57kg / cm 2 clearly show the present invention, i.e., into a ho has better performance improved.
  • the intake and exhaust control device of this embodiment was compared with the product of the existing patent application, in addition to the smoother and faster response of the urban stoppage, the expressway Accelerated reaction and speed increase are also significantly faster; then the actual end speed is compared with the throttle in the end, and the product installed with the existing patent has a gain of 180kph, and the efficiency of the device of this embodiment is better increased to 203kph.
  • the link set and the restoring force portion are configured such that the one-way flap is stationary and the fully closed state closing torque is less than the closing torque when the one-way flap is fully open.
  • This technology is suitable for medium and high speed domains such as generators, such as internal combustion engines of extended range electric vehicles. The demand is mostly for the output of medium and high speed power generation; not only can the same output be achieved at a significantly lower speed than the original speed. In particular, energy saving and exhaust emissions have a superior performance.
  • the initial pre-force is set by comparing the present embodiment of the same specification one-way flap with the same specification torque spring device and the same specification one-way flap of the same specification torque spring device.
  • the closing torques of the one-way flaps of the same, that is, the two are not actuated, are similar or the same, because the angles of the one-way flaps are close or the same, but under the action of the linkage group, the implementation
  • the closing torque when the one-way flap is fully opened can be significantly smaller than the closing torque of the one-way flap of the prior patent, which is obviously superior.
  • the present invention firstly discloses such technical means, and any change in the one-way shutter closing torque which is regenerated according to the description of the present invention to those skilled in the art of the present invention should be disclosed in the present invention as long as it is less than the last condition.
  • the technical scope is
  • the link set and the restoring force portion are configured such that the one-way flap is stationary and the fully closed state closing torque is almost the same as when the one-way flap is fully open.
  • the torque is the same.
  • the present invention firstly discloses such technical means, and any change in the one-way shutter closing torque which is regenerated according to the description of the present invention to those skilled in the art to which the present invention pertains should be disclosed in the present invention as long as it is equivalent.
  • Technical scope
  • the present invention not only provides the same one-way shutter in the negative pressure intake pipe of the intake system, but also forms a one-way valve assembly by connecting at least one set of link sets, thereby achieving an improved effect, and the use efficiency exceeds One-way shutter in the prior patent.
  • the present invention can further grasp that, in various applications, as described above, the one-way shutter closing torque can be separately set to be larger, smaller or equivalent when the vehicle is at rest, and the application is more sophisticated.
  • the rod group and the restoring force portion appropriately adjust the ratio of the change ratio of the opening and closing torque of the one-way shutter, and can make a significantly different change fit for different requirements, which is the most open angle of the existing patent one-way shutter.
  • the invention is also applicable to negative pressure intake manifolds of other types of intake systems, such as the vacuum cleaners, air extractors or turbine engines described above.
  • the aircraft is most afraid of foreign objects such as bird attacks invading the turbine engine.
  • the aircraft manufacturing company has improved the impact resistance of the machine parts, it has not been fenced and guided to the extent that it is undoubtedly the intake pipe fence affects the intake air.
  • the device or method of the present invention is applied, the benefit of a small portion of the gain of the air is sacrificed, and the foreign matter can be forced out of the fence by matching the foreign matter with a proper angle outside the intake nozzle, thereby achieving the effect of the overall intake gain, thereby forcibly isolating Eliminate and significantly reduce the invasion of foreign bodies such as bird attacks It is an irreparable serious damage and greatly improves the safety of aircraft flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Lift Valve (AREA)

Abstract

一种进气系统的负压进吸气调控方法,在具备进气系统和排气系统的机具所设的进气管内,设置至少一单向活门(1)以及与单向活门(1)连结的至少一个不同旋转轴心且具适当回复力的至少一连杆组(21、22),连结成为一根据气流作动开合的单向活门总成,通过单向活门总成而调控进气系统的负压进吸气暨负压源进气。还包括一种进气系统的负压进吸气调控装置。采用该方法和装置可以提升进气效能并节约能源。

Description

进气系统的负压进吸气调控方法及装置 技术领域
本发明涉及一种进气系统的负压进吸气调控方法及装置,设有至少一单向活门,其连结至少一连杆组,其具有至少一个不同旋转轴心且适有回复力部,成为一单向活门总成被动因应气流作动开合,以调控进气系统的负压进吸气暨负压源的吸气,供设置于同时具备进气系统和排气系统的机具所设的进气管内使用,例如,内燃机、吸尘器、抽气机、涡轮发动机、包括涡轮喷射(turbojet)、涡轮风扇(turbofan)、涡轮轴(turboshaft)、以及涡轮螺桨(turboprop)等机具。
背景技术
目前已知内燃机(如汽机车引擎)、吸尘器、抽气机、涡轮发动机等设备利用负压进气系统暨负压源产生负压,经由一进气管将外界空气吸入其负压进气系统后再利用一排气系统将空气排出。上述内燃机的负压进气系统例如:自然进气内燃机的汽缸、进气歧管及进气管等,增压作动时增压内燃机的涡轮增压器进气端及进气管等,及增压内燃机的机械增压器进气端及进气管等。上述吸尘器及抽气机的泵浦即为其负压进气系统的负压源。上述涡轮发动机包含有涡轮喷射(turbojet)、涡轮风扇(turbofan)、涡轮轴(turboshaft)、以及涡轮螺桨(turboprop)等,其加压扇叶即为其负压进气系统暨负压源。
以涡轮增压内燃机为例,汽缸在涡轮未作动时,藉负压原理自然进气,即,当涡轮作动时,涡轮进气端仍属负压吸气,而涡轮输出供气端则以正压对汽缸吹送供气。当涡轮作动时,涡轮进气端的进气管段,依PV=nRT暨相关或该衍生原理,在该进气管段内负压势必上升,所以涡轮进气端会吸入更多空气,且涡轮输出供气端管段内由负压转变成为正压而送出更多空气;此为该类增压器设计诉求。依相同道理,在同时具备进气系统和排气系统的内燃机、吸尘器、抽气机、涡轮发动机就是希望通过负压源以强制负压吸气而吸入更多空气。
提升汽车引擎效益的方法及装置,本发明人曾在先前所申请的美国第 7464694号专利、中国专利ZL200610098538.6、欧洲专利EP2032823、中国台湾专利TWI306133以及其他多国专利(下称现有专利)中讨论。当实施现有专利的技术内容,在具备EGR系统及燃料喷射式内燃机的原厂未改装自然进气汽车的内燃机进气管中设置单向活门时,依PV=nRT暨相关或该衍生原理,会提升进气管内、安装位置下游负压系统吸气的负压,此提升负压不仅增加进气效率促进燃烧更完全,同时也令现今内燃机技术的废气再循环(Exhaust Gas Recircuration,简称EGR)吸入比原来再更多的排气管废气导入进气系统并入汽缸燃烧,引致燃烧更完全的同时又依EGR原理再行降低燃烧温度而自然再行减少NOx的排放。相同的,该专利技术能提升燃料喷射式涡轮增压内燃机自然进气及涡轮作动时的系统负压,这些情况皆可以经由负压表检验读取而测得。由安装该专利产品的Ford Kuga 1.6L涡轮增压汽油车,因提升实际进气负压让仪表未达原厂设计转速即能提早涡轮作动就是实据。
直至目前为止,全世界具备EGR系统内燃机的汽车所产生的废气排放物中,NOx与HC、CO为相互消长的关系。但除了现有专利的技术之外,目前汽车产业界并未见有可同时降低排放废气中NOx、HC及CO这三种废气含量的技术被使用或报导。
上述现有专利因为提升具备燃料喷射式内燃机负压系统的负压,让汽缸于自然进气时为负压吸入或增压作动时为正压均进入更多空气、造成更完全燃烧而让引擎输出更佳,所以与引擎输出相关联的包括马力、扭力、油耗、空调、发电机,效能均一并全面增益提升;同时,当然也让与进气歧管负压相关的部件(如剎车、EGR、碳罐回收等)的效能一并全面增益提升;即引擎效能全面提升。
是以,未来新生产制造的车辆若纳入现有专利的方法技术,必然能轻易大幅增益各式引擎(如汽油柴油引擎的均质燃烧HCCI、缸内直喷、传统各内燃式引擎等)的燃烧效率,而全面提升引擎效能。其所可达到的功效,经由中国襄阳国家汽车质量监督检测中心检测结果验证(请参下表A装置前报告编号:14-WT-JN-01383、表B装置后报告编号:14-WT-JN-01384),表A表B为装置现有专利单向活门产品前后的检验值,该等数据显示排气含量中CO由0.81g/km降为0.54g/km,HC由0.12g/km降为0.08g/km,NOx由0.05g/km降为0.02g/km;证实应用现有专利技术的装置能同时大幅降低NOx、HC及 CO的废气排放,更显示产业应用必可大幅降低现有技术关于内燃机燃烧后处理的各项成本。
表A.装置现有专利单向活门产品前的排废气含量
Figure PCTCN2015096548-appb-000001
表B.装置现有专利单向活门产品后的排废气含量
Figure PCTCN2015096548-appb-000002
又2013年北京环科院证实,霾害成因主要来自汽车排放的NOx与VOCs。汽车废气排放中的VOCs必然与HC及CO排放成正比关系,即燃烧完全时HC及CO排放极低,VOCs排放必然极低。可是至今不仅中国,即便全世界,无法快速有效掌控并改善,对于为数庞大的14亿已出厂汽车,无法快速有效掌控并改善,确实是目前无法解决的事实。而前述中国襄阳国家汽车质量监督检测中心的检测报告,证实现有专利单纯的机械式单向活门,确实在不须软硬件匹配的情况下即能直接提升进气管装设位置下游负压系统吸气的负压,并立即大幅有效降低改善汽车排气管废气NOx与HC、CO的排放。
然而,由于现有自然进气汽车在速度增加的行进间,转速越高时其负压区内的负压会越低(由进气歧管连结负压表即可得知);而上述现有专利的单向活门关闭扭矩只有在静止不作动时最小,据此在汽车速度增加的行进间,该单向活门实际面对进气流量越来越大而相对地负压越来越低,所以、在各进气过程中各行进速度暨各转速的气流与越来越大的单向活门关闭扭矩相当时即形成单向活门平衡开度;若设置的扭簧扭矩越大,则单向活门全程各进气过程中各关闭扭矩自然越大,则进气管中各进气过程中单向活门平衡开度所 形成的气流有效通道就会越小,特别会对引擎在中高转速域时影响进气气流及降低能提升引擎燃烧效率的幅度,导致降低中高转速域能提升输出幅度的现象,是以,仍值得去解决此一问题,改良上述单向活门。
发明内容
有鉴于此,为了改善上述缺点,发明人实测归纳出汽车引擎于行进间维持中高转速域时,若将单向活门关闭扭矩反应至仪表读取的负压值,适当保持在较原来的负压值高一些的设定,即能让引擎燃烧后终端实际输出再大幅增益,遂研发本发明。
本发明的主要目的在提供一种进气系统的负压进吸气调控方法及装置,通过在单向活门上设置连杆组以调整改变单向活叶的关闭扭矩,使该单向活叶于开启后对应该连杆组而作动,进而再提升进气系统负压进气的进气效率。
为达上述的目的,本发明所设的进气系统的负压进吸气调控方法包括:
于具备负压进气系统及排气系统的机具所设的进气管内设置至少一个单向活门总成以调控负压进吸气,其中该单向活门总成包括至少一单向活门、至少一连杆组、一回复力部及至少一定位止档件,该单向活门具有一单向活叶旋转轴及枢设于该单向活叶旋转轴上的至少一单向活叶,该连杆组具有一与该单向活叶旋转轴不同轴心的连杆组旋转轴,且该连杆组枢接于该连杆组旋转轴与该单向活叶之间,而该回复力部设置于该连杆组旋转轴与该连杆组之间,使通过该连杆组在该单向活叶上形成一关闭扭矩,并使该单向活叶静止未作动全闭状态时抵靠于该定位止档件,以藉该连杆组减少该回复力部于该单向活叶打开幅度愈大时所相对增大的关闭扭矩;
配置及调整该连杆组及该回复力部,使该单向活叶对应该连杆组而因应该进气管内的气流作动。
本发明所设的进气系统的负压进吸气调控装置,设于具备负压进气系统及排气系统的机具所设的进气管内,包括至少一个单向活门总成,该单向活门总成包括:
至少一单向活门、至少一连杆组、一回复力部(例如弹簧)及至少一定位止档件,其中该单向活门包含一单向活叶旋转轴及枢设于该单向活叶旋转轴上的至少一单向活叶;该连杆组包含一与该单向活叶旋转轴不同轴心的连 杆组旋转轴,且该连杆组枢接于该连杆组旋转轴与该单向活叶之间;该回复力部设置于该连杆组旋转轴与该连杆组之间,使通过该连杆组在该单向活叶上形成一关闭扭矩,而该定位止档件供该单向活叶静止未作动全闭状态时抵靠,以藉该连杆组减少该回复力部于该单向活叶打开幅度愈大时所相对增大的关闭扭矩;其中该连杆组及该回复力部经配置以调整该单向活叶的关闭扭矩,使该单向活叶对应该连杆组而因应该进气管内的气流作动。
在一实施例中,单向活门关闭扭矩为始大于末情况,即单向活叶静止未作动的全闭状态关闭扭矩大于单向活叶全开状态的关闭扭矩,以全速域全面提升现有汽车内燃机的进气效能。
在又一实施例中,单向活门关闭扭矩为始小于末情况,即单向活叶静止未作动的全闭状态关闭扭矩小于单向活叶全开状态的关闭扭矩,以用于输出取向为中高转速域的内燃机,例如,通常内燃机完全用于发电的电动汽车,其转速约3500rpm,需要更大电力输出时内燃机转速更高。
在另一实施例中,单向活门关闭扭矩为始末相当的情况,即单向活叶静止未作动的全闭状态关闭扭矩几乎与单向活叶全开状态的关闭扭矩相同,以用于诉求更佳节能而降低中高转速域输出取向的内燃机,例如,以节能为主要诉求的汽车内燃机。
为进一步了解本发明,以下举较佳的实施例,配合附图,将本发明的具体构成内容及其所达成的功效详细说明如下。
附图说明
图1为本发明进气系统的负压进吸气调控装置的一实施例的分解图;
图2为图1的实施例的立体外观图;
图3为图1的实施例于单向活叶静止时的剖面图;
图4为图1的实施例于单向活叶全开时的剖面图。
附图标记说明:
1:单向活门;
11:固定管;
12:单向活叶旋转轴;
13:单向活叶;
21、22:连杆组;
211、221:第一连杆;
212、222:第二连杆;
213、223:连杆转轴;
23:连杆组旋转轴;
3:回复力部;
4:定位止档件;
100、102、103、200、201、202、203:施力法向量。
具体实施方式
请参阅图1、图2,其为本发明进气系统的负压进吸气调控装置的第一实施例,其供设置于具备负压进气系统及排气系统的机具所设的进气管内,包括一单向活门总成,该单向活门总成包括一单向活门1、二连杆组(21、22)、一与该单向活叶旋转轴12不同轴心的连杆组旋转轴23、一回复力部3以及二定位止档件4,其中该单向活门1包含一固定管11,一沿径向方向设置于该固定管11内的单向活叶旋转轴12及二枢设于该单向活叶旋转轴12上的单向活叶13。
各连杆组(21、22)包含一第一连杆(211、221)及一第二连杆(212、222),其中一连杆组21的第一连杆211的一端与第二连杆212的一端枢接于一连杆转轴213而彼此连接,而该第一连杆211的另端枢接于该连杆组旋转轴23上,该第二连杆212的另端枢接于其中一单向活叶13上,藉以使该连杆组21枢接于该连杆组旋转轴23与该单向活叶13之间。同样地,另一连杆组22的第一连杆221的一端与第二连杆222的一端枢接于一连杆转轴223而彼此连接,而该第一连杆221的另端枢接于该连杆组旋转轴23上,该第二连杆222的另端枢接于另一单向活叶13上。
该回复力部3为一设置于该连杆组旋转轴23上的扭簧(或具有相同作用的任何其他形式弹簧),且该回复力部3的两端分别枢接于该等连杆转轴(213、223)上,藉以通过各连杆组(21、22)的第二连杆(212、222)而施力其中一单向活叶13,进而形成一可使该单向活叶13朝向定位止档件4移动抵靠的关闭扭矩,并藉该等连杆组(21、22)减少该回复力部3于单向活叶13打开幅度愈 大时所相对增大的关闭扭矩。
该二定位止档件4设置于该固定管11内,以限制该等单向活叶13的位置,使该等单向活叶13于静止未作动全闭状态时可抵靠该等定位止档件4。
在本实施例中,该单向活叶13可处于一静止未作动的全闭状态与一全开状态间开合,该等连杆组(21、22)及该回复力部3经配置使该等单向活叶13静止未作动全闭状态的关闭扭矩(如图3所示)大于该单向活叶13全开状态的关闭扭矩(如图4所示)。在图3中,该等单向活叶13保持最小间隙且不接触该固定管11而呈静止抵靠定位止档件4,其中,回复力部3相对于该连杆组旋转轴23施力旋转法向量大小100展拉连杆组21第一连杆211及第二连杆212以拉动单向活叶13,图中该法向量100的投影分量施力大小101与施力大小102相同。施力大小102相对于单向活叶旋转轴12的投影旋转法向量大小103即为该处单向活叶13关闭的旋转法向量大小。在图4中,该等单向活门呈全开状态,其中,回复力部3相对于该连杆组旋转轴23施力旋转法向量大小200展拉连杆组21第一连杆211及第二连杆212以拉动单向活叶13,图中该法向量200的投影分量施力大小201与施力大小202相同。施力大小202相对于单向活叶旋转轴12的投影旋转法向量大小203即为该处单向活叶13关闭的旋转法向量大小。
产业上调整回复力部3的扭簧材质、线径、圈数及盘圆外径,即可获取设计要求的初始扭矩与最大旋转使用扭矩;在图3及图4中,当施力大小200刻意安排与施力大小100相同、单向活叶13的最开处施力大小203为静止处施力大小103的15.7%;由图示清楚可知,可从调整回复力强度变化、即设置调整扭簧3旋转最开时的扭矩必然大于初始预力圈数时扭矩的比数,用意在实际适当设定令扭簧3反映至施力大小200的实际大小与施力大小100的比数,而可调整决定施力大小203与施力大小103的大小比例,即能由图示的15.7%调整至1点多倍以上;此和现有专利的单向活门最开处使用扭矩必为最大,且必然为静止处扭矩100%以上的情形相比,大不相同。本段阐述为方便说明及比较,单向活叶13最开处的扭簧施力大小200刻意安排如图示与回复力部3(扭簧)施力大小100相同;事实上扭簧施力大小200必然会大于扭簧施力大小100。
由于本实施例中该等连杆组(21、22)及该回复力部3经配置使该等单向活 叶13静止未作动的全闭状态关闭扭矩大于该单向活叶13全开状态的关闭扭矩,其供装设于汽车的负压进气系统的进气管内(例如,设置于自然进气汽车进气管的进气口与节流阀之间)对应该进气管内的进气气流作动,藉以于行进间各转速域时,各种开启状态的单向活叶13的关闭扭矩可使其下游进气歧管中的负压值较未装设该进吸气调控装置时的负压值高一些,能更有效增益进气、让燃烧效率更佳、并让引擎燃烧后终端实际输出再大幅增益。即市区频繁走停用车及高速用车,各对照转速域均能更快速反应,让中低转速有较高输出扭力,而且中高转速域明显提速更快。再由装设本实施例装置于涡轮进气端前管段内的Ford Kuga 1.6L涡轮增压汽油车、相同负荷相同爬坡路段90kph定速比较,原厂涡轮输出正压0.45kg/cm2,安装上考虑要同时兼顾全速域效能的现有专利产品、涡轮输出正压0.5kg/cm2,而安装上考虑要同时兼顾全速域效能的本发明此种设定样品、涡轮输出正压0.57kg/cm2,由0.45kg/cm2、0.5kg/cm2、0.57kg/cm2即能清楚展现本发明进一歩的改良具有更优越的表现。
此外,当2004年Ford Mondeo 2.0L汽油车,装设本实施例的进吸气调控装置与安装应用现有专利的产品相较,除了市区走停更顺畅、更快速反应外,高速公路再加速反应及速度上升亦明显更快;再以油门到底不放方式比较实际末速,安装应用现有专利的产品已增益为180kph,本实施例装置所产生的效率更佳为增加至203kph。再揭、该Mondeo 2.0L车主市区型态用车,每次以平齐加油口的满油至备用油亮灯长时期比较结果,原厂约跑400公里,装置应用现有专利的产品已增益为约跑470公里,而装置本实施例所产生的效率更佳增加至约跑520公里。据此本发明连同现有专利,均实际未更改装置车辆的软件情况下,已能明显超越现有技术而达到让废气排放中的NOx与HC、CO立即大幅降低实属难得。本发明首先公开此种技术手段,凡对于本发明所属技术领域技术人员,依据本发明说明而再产生的单向活门关闭扭矩的变化,只要始大于末情况的,均应属于本发明所公开的技术范围。
在另一实施例中,该连杆组及该回复力部(例如弹簧)经配置使该单向活叶静止未作动的全闭状态关闭扭矩小于该单向活叶全开时的关闭扭矩。此种技术设定适合中高转速域如发电机、如增程电动车的内燃机,需求多为中高转速发电的使用输出情况;不仅可以明显低于原转速即能达到相同输出, 特别是节能及废气排放,更有极优越的表现。再者以实物比较,用相同规格扭矩弹簧装置于相同规格单向活叶的本实施例与相同规格扭矩弹簧装置于相同规格单向活叶的现有专利的产品比较,设置二者初始预力相同、即二者未作动的全闭状态单向活叶的关闭扭矩相近或相同,因二者单向活叶全开的角度相近或相同,但在连杆组的设置作用下,本实施例单向活叶全开时的关闭扭矩,可以明显小于现有专利的产品单向活叶全开时的关闭扭矩,显然更具有优越的效果。本发明首先公开此种技术手段,凡对于本发明所属技术领域技术人员,依据本发明说明而再产生的单向活门关闭扭矩的变化,只要始小于末情况的,亦均应属于本发明所公开的技术范围。
在又一实施例中,该连杆组及该回复力部(例如弹簧)经配置使该单向活叶静止未作动的全闭状态关闭扭矩几乎与该单向活叶全开时的关闭扭矩相同。此种技术设定特别适合主要诉求为节能的一般国民车,即市区频繁走停中低转速能有较高输出扭力,当然又因为节能主诉求,所以必然妥协降低些许中高转速域的高效输出。本发明首先公开此种技术手段,凡对于本发明所属技术领域技术人员,依据本发明说明而再产生的单向活门关闭扭矩的变化,只要始末相当情况的,亦均应属于本发明所公开的技术范围。
因此,本发明不仅只是将同样单向活门设置于进气系统的负压进气管中,而是再通过连结至少一组连杆组构成单向活门总成,达到改良的效果,其使用效益超越现有专利中的单向活门。另本发明更进一步可掌握,在各种应用场合情况,如上所述,可分别设定单向活门关闭扭矩静止时与角度最开时比较为较大、较小或相当,应用更精进的连杆组与回复力部而适当地调整单向活门开合扭矩的始末变化比数,并可针对不同需求作明显不同的改变配合,此又为已公开的现有专利单向活门在角度最开时单向活门关闭扭矩恒为最大的情形所无法达成的。此外,本发明亦可应用于其他类型的进气系统的负压进气管中,例如上述的吸尘器、抽气机或涡轮发动机。
又,航空器最怕鸟袭等异物侵入涡轮发动机,尽管航空器制造公司已提升机具零件耐撞击强度,但至今终究尚未有栅栏先导隔离,无疑应是进气管道栅栏影响进气。如应用本发明装置或方法,牺牲小部分大幅增益的进气效益,而换取可在进气管口外匹配具适当夹角的异物强制脱离栅栏,仍可达到整体进气增益的效果,从而可以强制隔离排除且大幅降低鸟袭等异物侵入造 成无法弥补的严重损害,大幅提高航空器飞行安全。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (14)

  1. 一种进气系统负压进吸气调控方法,其特征在于,包括:
    于具备负压进气系统及排气系统的机具所设的进气管内设置至少一单向活门总成以调控负压进吸气,其中所述单向活门总成包括至少一单向活门、至少一连杆组、一回复力部及至少一定位止档件,所述单向活门具有一单向活叶旋转轴及枢设于所述单向活叶旋转轴上的至少一单向活叶,所述连杆组具有一与所述单向活叶旋转轴不同轴心的连杆组旋转轴,且所述连杆组枢接于所述连杆组旋转轴与所述单向活叶之间,而所述回复力部设置于所述连杆组旋转轴与所述连杆组之间,使通过所述连杆组在所述单向活叶上形成一关闭扭矩,并使所述单向活叶静止未作动全闭状态时抵靠于所述定位止档件,以藉所述连杆组减少所述回复力部于所述单向活叶打开幅度愈大时所相对增大的关闭扭矩;以及
    配置及调整所述连杆组及所述回复力部,使所述单向活叶对应所述连杆组而因应所述进气管内的气流作动。
  2. 根据权利要求1所述的进气系统的负压进吸气调控方法,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩大于所述单向活叶全开状态的关闭扭矩。
  3. 根据权利要求1所述的进气系统的负压进吸气调控方法,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩小于所述单向活叶全开状态的关闭扭矩。
  4. 根据权利要求1所述的进气系统的负压进吸气调控方法,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩几乎与所述单向活叶全开状态的关闭扭矩相同。
  5. 根据权利要求1至4中任一项所述的进气系统的负压进吸气调控方法,其特征在于,所述具备负压进气系统及排气系统的机具指内燃机、吸尘器、抽气机或涡轮发动机。
  6. 根据权利要求1至4中任一项所述的进气系统的负压进吸气调控方法, 其特征在于,所述连杆组包含一第一连杆及一第二连杆,所述第一连杆、所述第二连杆的一端枢接于一连杆转轴以彼此连接,而所述第一连杆、所述第二连杆的另端分别枢接所述连杆组旋转轴及所述单向活叶。
  7. 根据权利要求6所述的进气系统的负压进吸气调控方法,其特征在于,还设有一供所述单向活叶旋转轴及所述连杆组旋转轴固定于其内的固定管。
  8. 一种进气系统的负压进吸气调控装置,其特征在于,设于具备负压进气系统及排气系统的机具所设的进气管内,包括至少一单向活门总成,所述单向活门总成又包括:
    至少一单向活门,其包含一单向活叶旋转轴及枢设于所述单向活叶旋转轴上的至少一单向活叶;
    至少一连杆组,其包含一与所述单向活叶旋转轴不同轴心的连杆组旋转轴,所述连杆组枢接于所述连杆组旋转轴与所述单向活叶之间;
    一回复力部,设置于所述连杆组旋转轴与所述连杆组之间,使通过所述连杆组在所述单向活叶上形成一关闭扭矩,并藉所述连杆组减少所述回复力部于所述单向活叶打开幅度愈大时所相对增大的关闭扭矩;以及
    至少一定位止档件,其供所述单向活叶静止未作动全闭状态时抵靠;
    其中所述连杆组及所述回复力部经配置以调整所述单向活叶的关闭扭矩,使所述单向活叶对应所述连杆组而因应所述进气管内的气流作动。
  9. 根据权利要求8所述的进气系统的负压进吸气调控装置,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩大于所述单向活叶全开状态的关闭扭矩。
  10. 根据权利要求8所述的进气系统的负压进吸气调控装置,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩小于所述单向活叶全开状态的关闭扭矩。
  11. 根据权利要求8所述的进气系统的负压进吸气调控装置,其特征在于,所述单向活叶可处于一静止未作动的全闭状态与一全开状态间开合,且所述连杆组及所述回复力部经配置使所述单向活叶静止未作动全闭状态的关闭扭矩几乎与于所述单向活叶全开状态的关闭扭相同。
  12. 根据权利要求8至11中任一项所述的进气系统的负压进吸气调控装置,其特征在于,所述具备负压进吸气系统及排气系统的机具指内燃机、吸尘器、抽气机或涡轮发动机。
  13. 根据权利要求8至11中任一项所述的进气系统的负压进吸气调控装置,其特征在于,所述连杆组包含一第一连杆及一第二连杆,所述第一连杆、所述第二连杆的一端枢接于一连杆转轴以彼此连接,而所述第一连杆、所述第二连杆的另端分别枢接所述连杆组旋转轴及所述单向活叶。
  14. 根据权利要求13所述的进气系统的负压进吸气调控装置,其特征在于,还设有一供所述单向活叶旋转轴及所述连杆组旋转轴固定于其内的固定管。
PCT/CN2015/096548 2014-12-05 2015-12-07 进气系统的负压进吸气调控方法及装置 WO2016086902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410738104.2 2014-12-05
CN201410738104.2A CN105715385A (zh) 2014-12-05 2014-12-05 进气系统的负压进吸气调控方法及装置

Publications (1)

Publication Number Publication Date
WO2016086902A1 true WO2016086902A1 (zh) 2016-06-09

Family

ID=56091049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096548 WO2016086902A1 (zh) 2014-12-05 2015-12-07 进气系统的负压进吸气调控方法及装置

Country Status (2)

Country Link
CN (1) CN105715385A (zh)
WO (1) WO2016086902A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106194496A (zh) * 2016-08-04 2016-12-07 中国航空工业集团公司沈阳发动机设计研究所 一种调节活门
CN108317013B (zh) * 2018-03-08 2024-01-02 东风商用车有限公司 一种发动机排气制动阀

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413371A (en) * 1921-07-30 1922-04-18 John B Adler Automatic air-supply control for internal-combustion engines
JPS5746040A (en) * 1980-09-03 1982-03-16 Hitachi Ltd Air intake control unit for diesel engine
JPH07174028A (ja) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd 内燃機関の吸気装置
CN2377355Y (zh) * 1999-04-30 2000-05-10 赵济威 汽车节气门自动控制装置
CN1313461A (zh) * 2000-03-10 2001-09-19 赵济威 汽车节气门自动控制装置
JP2006214405A (ja) * 2005-02-07 2006-08-17 Hitachi Ltd 内燃機関の排気ガス還流装置および内燃機関のバルブモジュール
CN200978724Y (zh) * 2006-11-27 2007-11-21 重庆宗申技术开发研究有限公司 一种摩托车发动机可变进气系统
JP4348700B2 (ja) * 2004-08-18 2009-10-21 株式会社ニッキ 電子制御スロットル装置
TWI403640B (zh) * 2011-04-14 2013-08-01 Sanyang Industry Co Ltd Can identify the action of the intake control mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101100960B (zh) * 2006-07-04 2011-08-17 张俊雄 进气口至节气门之间可变控流的方法及装置
CN201050408Y (zh) * 2007-06-13 2008-04-23 张俊雄 进气口至节气阀间可变控流装置
CN103161581B (zh) * 2011-12-09 2015-09-30 光阳工业股份有限公司 引擎的节流阀控制结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1413371A (en) * 1921-07-30 1922-04-18 John B Adler Automatic air-supply control for internal-combustion engines
JPS5746040A (en) * 1980-09-03 1982-03-16 Hitachi Ltd Air intake control unit for diesel engine
JPH07174028A (ja) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd 内燃機関の吸気装置
CN2377355Y (zh) * 1999-04-30 2000-05-10 赵济威 汽车节气门自动控制装置
CN1313461A (zh) * 2000-03-10 2001-09-19 赵济威 汽车节气门自动控制装置
JP4348700B2 (ja) * 2004-08-18 2009-10-21 株式会社ニッキ 電子制御スロットル装置
JP2006214405A (ja) * 2005-02-07 2006-08-17 Hitachi Ltd 内燃機関の排気ガス還流装置および内燃機関のバルブモジュール
CN200978724Y (zh) * 2006-11-27 2007-11-21 重庆宗申技术开发研究有限公司 一种摩托车发动机可变进气系统
TWI403640B (zh) * 2011-04-14 2013-08-01 Sanyang Industry Co Ltd Can identify the action of the intake control mechanism

Also Published As

Publication number Publication date
CN105715385A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
JP4680472B2 (ja) タービン動力制御を備えたモータービークル、特に産業用ビークルのための内燃機関−ターボ過給機のユニット
US9523309B2 (en) Control method of turbocharger
US9109546B2 (en) System and method for operating a high pressure compressor bypass valve in a two stage turbocharger system
CN105370387A (zh) 具有排气涡轮增压器的机械增压内燃发动机及其运转方法
CN101302942A (zh) 控制可变几何涡轮增压器的最小流量的系统和方法
US20140214308A1 (en) Apparatus, system and method for increasing braking power
GB2465473A (en) An inlet system for an engine
WO2016086902A1 (zh) 进气系统的负压进吸气调控方法及装置
CN111206998A (zh) 一种基于增压压力偏差控制发动机瞬态过程方法
JP6565109B2 (ja) 内燃機関の制御方法及び制御装置
CN101344033B (zh) 防漏气的涡轮增压器旁通阀的传动轴和轴套结构
TWI555909B (zh) 進氣系統之負壓進吸氣調控方法及裝置
CN104870777A (zh) 可变枢转中心vtg叶片以及叶片套件组件
US10240518B2 (en) Integrated vane stops for variable-geometry turbocharger mechanism
CN103953478B (zh) 双通道增压进气管
CN204511644U (zh) 一种涡轮增压器的废气旁通阀的控制机构
JP2019015185A (ja) 内燃機関の制御装置
EP3078833A1 (en) Control apparatus for internal combustion engine with supercharger and method for controlling the internal combustion engine
CN103912420B (zh) 双套管结构增压进气管
KR20020031559A (ko) 터보차져의 출력지연 감소장치
JPWO2018069975A1 (ja) ターボ過給機付エンジンの吸気通路構造
US20200011230A1 (en) Method of operating an internal combustion engine, an internal combustion engine and a motor vehicle
JP2007247572A (ja) ディーゼルエンジン
CN105993397A (zh) 采用废气涡轮增压辅助装置的割草机
CN205025562U (zh) 有利于提高发动机的空气增量的安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865020

Country of ref document: EP

Kind code of ref document: A1