WO2016086894A1 - 制造光缆的方法 - Google Patents

制造光缆的方法 Download PDF

Info

Publication number
WO2016086894A1
WO2016086894A1 PCT/CN2015/096435 CN2015096435W WO2016086894A1 WO 2016086894 A1 WO2016086894 A1 WO 2016086894A1 CN 2015096435 W CN2015096435 W CN 2015096435W WO 2016086894 A1 WO2016086894 A1 WO 2016086894A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
extruder
outer sheath
optical fiber
optical
Prior art date
Application number
PCT/CN2015/096435
Other languages
English (en)
French (fr)
Inventor
董敏
田鑫
伏威
蔡赵辉
贾子骏
Original Assignee
泰科电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰科电子(上海)有限公司 filed Critical 泰科电子(上海)有限公司
Publication of WO2016086894A1 publication Critical patent/WO2016086894A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present invention relates to a method of manufacturing an optical cable.
  • FIG. 1 For fiber optic cables that require overhead laying, for example, referring to FIG. 1, it generally includes an optical fiber 100, a stiffener 200, and a cable outer sheath 300 that is wrapped over the optical fiber 100 and the stiffener 200.
  • the reinforcement member 200 is used to support the entire optical cable and the optical cable connection box for connecting the optical fibers.
  • the outer sheath 300 of the cable needs to be stripped to expose the inner fiber 100.
  • FIG. 1 In order to facilitate the rapid and convenient stripping of the outer sheath 300 of the optical cable in the field, in the technical solution proposed by the applicant of the present application, please refer to FIG.
  • the outer sheath A V-groove 310 is pre-extruded on each side of the 300.
  • the depth of the V-shaped groove 310 is as deep as possible, that is, it is desirable that the distance G1 between the tip end of the V-shaped groove 310 and the optical fiber 100 becomes as small as possible.
  • the optical cable may be susceptible to cracking under the influence of the external environment, for example, a change in temperature, a change in humidity, a change in acidity and alkalinity, and the like.
  • the internal optical fiber 100 is exposed, and sewage and impurities may enter the gap between the outer sheath 300 and the optical fiber 100, which seriously affects the service life and optical transmission performance of the optical fiber.
  • a method of manufacturing an optical cable comprising the steps of:
  • the fiber optic cable is a single core fiber optic cable having a single fiber.
  • the optical cable is a multi-core optical cable having a plurality of optical fibers, and corresponding to the plurality of optical fibers respectively formed on both sides of the outer sheath of the optical cable a plurality of said V-shaped grooves.
  • the optical cable is an opto-electric hybrid cable having at least one optical fiber and at least one conductor.
  • the optical cable includes a reinforcing member on at least one side of the optical fiber; and in the step S100, molten material is extruded on the optical fiber and the reinforcing member Upper to form a cable outer sheath encasing the optical fiber and the reinforcement.
  • the predetermined time is in the range of 0.5 seconds to 100 seconds.
  • the predetermined time is in the range of 1 second to 10 seconds.
  • the predetermined time is in the range of 1.5 seconds to 5 seconds.
  • the predetermined time is in the range of 1.8 seconds to 4 seconds.
  • a bottom pitch G1 is formed between a bottom of the V-shaped groove and the optical fiber; after the formation of the fusion layer, the V The bottom of the groove has a second pitch G2 between the fibers; and the second pitch G2 is 1.5 to 10 times the first pitch G1.
  • the second pitch G2 is 2 to 5 times the first pitch G1.
  • the second pitch G2 is 3 to 4 times the first pitch G1.
  • the cable outer sheath has a generally oblong cross-section with a reinforcing member on each side of the optical fiber.
  • the cable outer jacket has a generally figure-eight cross-section with a reinforcing member on each side of the fiber.
  • the top end of the V-groove is biased toward one side of the optical fiber.
  • the top end of the V-groove is directed toward the optical fiber.
  • the top end of the V-groove is directed towards the center of the fiber.
  • the cooling device is a cooling water tank, and the outer sheath of the cable extruded from the extruder directly enters the cooling water tank after traveling for a predetermined time in the air. Cool down.
  • the extruder has an extrusion speed V in the range of 10 m/min to 50 m/min; and the extruder head of the extruder and the cooling water tank The distance D between them is in the range of 10 cm to 1000 cm.
  • the distance D between the extruder head of the extruder and the cooling water tank is in the range of 20 cm to 100 cm.
  • the distance D between the extruder head of the extruder and the cooling water tank is in the range of 30 cm to 100 cm.
  • the distance D between the extruder head of the extruder and the cooling water tank is in the range of 40 cm to 100 cm.
  • the outer sheath of the cable extruded from the extruder is left in the air for a predetermined time such that the opposite side walls of the V-groove on the outer sheath of the cable They are thermally welded to each other to form a weld layer of a predetermined thickness on the side wall surface of the V-groove, thereby increasing the pitch (thickness) between the tip end of the V-groove and the optical fiber.
  • the weld layer can be easily torn apart so as not to affect the tearability of the outer sheath of the cable.
  • the fusion layer is also resistant to changes in the external environment without cracking, thereby improving the weather resistance of the outer sheath of the cable.
  • FIG. 1 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a first exemplary embodiment of the present invention
  • FIG. 2 shows a cross-sectional view of a fiber optic cable extruded from an extruder after staying in air for a predetermined time in accordance with a first exemplary embodiment of the present invention
  • Figure 3 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a second exemplary embodiment of the present invention
  • FIG. 4 shows a cross-sectional view of a fiber optic cable extruded from an extruder after staying in air for a predetermined time in accordance with a second exemplary embodiment of the present invention
  • Figure 5 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a third exemplary embodiment of the present invention
  • Figure 6 shows a cross-sectional view of a fiber optic cable extruded from an extruder after staying in air for a predetermined time in accordance with a third exemplary embodiment of the present invention.
  • a method of manufacturing an optical cable comprising the steps of: extruding a molten material onto an optical fiber with an extruder to form an outer sheath of the optical cable encasing the optical fiber, wherein Forming a V-shaped groove for tearing the outer sheath of the cable, respectively, on both sides of the outer sheath of the extruded cable of the extruder; the outer sheath of the cable extruded from the extruder stays in the air a predetermined time such that opposite side wall surfaces of the V-shaped grooves on the outer sheath of the cable are thermally welded to each other to form a welded layer on the side wall surface of the V-shaped groove; and the outer sheath of the cable is After a predetermined period of time in the air, the outer sheath of the cable is placed in a cooling device to cool the outer jacket of the cable.
  • FIG. 1 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a first exemplary embodiment of the present invention
  • FIG. 2 shows an extrusion from an extruder in accordance with a first exemplary embodiment of the present invention.
  • the optical cable includes an optical fiber 100, two reinforcing members 200 on both sides of the optical fiber, and cladding on the optical fiber 100 and the reinforcing member 200. Cable outer sheath 300.
  • the cable outer sheath 300 may be formed from a polymer material having good thermoplastic properties.
  • the extruder is extruded on each side of the cable outer jacket 300 to form a V-groove 310, and the cable is just extruded from the extruder.
  • the depth of the V-groove 310 on the sleeve 300 is relatively deep, that is, the distance (thickness) G1 between the bottom of the V-groove 310 on the outer sheath 300 of the cable that has just been extruded from the extruder and the optical fiber is relatively small, This is to ensure that the cable outer sheath 300 can be easily torn open.
  • the cable outer sheath 300 that has just been extruded from the extruder is not immediately placed into the cooling water for cooling, and Waiting for a predetermined time in the air, so that the opposite side wall surfaces of the V-grooves 310 on the outer sheath 300 of the cable are thermally welded to each other, thereby forming a weld layer 320 of a predetermined thickness on the side wall surface of the V-groove 310, such as Figure 2 shows.
  • the fusion layer 320 can be easily torn apart so as not to affect the outer sheath of the cable.
  • the fusion layer 320 is also resistant to changes in the external environment without cracking, thereby improving the weatherability of the outer sheath 300 of the cable.
  • a method for manufacturing an optical cable according to an embodiment of the present invention will be described below, which mainly includes the following steps:
  • a molten material (for example, a molten polymer material) is extruded on the optical fiber 100 and the reinforcing member 200 by an extruder (not shown) to form an outer cable sheath 300 for wrapping the optical fiber 100 and the reinforcing member 200, wherein Forming a V-shaped groove 310 for tearing the outer sheath 300 of the cable, respectively, on both sides of the outer sheath 300 of the cable extruded from the extruder, as shown in FIG. 1;
  • the cable outer sheath 300 extruded from the extruder is left in the air for a predetermined time such that the opposite side wall surfaces of the V-grooves 310 on the outer cable sheath 300 are thermally welded to each other so as to be on the side of the V-groove 310 Forming a predetermined thickness of the weld layer 320 on the wall surface;
  • the cable outer sheath 300 After the cable outer sheath 300 is left in the air for a predetermined time, the cable outer sheath 300 is placed in a cooling device to cool the outer cable sheath 300.
  • the predetermined time that the cable outer sheath 300 extruded from the extruder stays in the air may range from 0.5 seconds to 100 seconds. Inside.
  • the predetermined time that the cable outer sheath 300 extruded from the extruder stays in the air may range from 1 second to 10 seconds.
  • the predetermined time for the cable outer sheath 300 extruded from the extruder to stay in the air may be in the range of 1.5 seconds to 5 seconds.
  • the predetermined time that the cable outer sheath 300 extruded from the extruder stays in the air may range from 1.8 seconds to 4 seconds.
  • first pitch first thickness
  • the cable outer sheath 300 is shown after the formation of the weld layer 320 (i.e., after the cable outer sheath 300 extruded from the extruder is left in the air for a predetermined time).
  • the bottom of the V-groove 310 has a second pitch (second thickness) G2 with the optical fiber 100.
  • the second pitch G2 may be 1.5 to 10 times the first pitch G1.
  • the second pitch G2 may be 2 to 5 times the first pitch G1.
  • the second pitch G2 may be 3 to 4 times the first pitch G1.
  • the cable outer sheath 300 has a generally oblong cross-section and a reinforcing member 200 on each side of the optical fiber 100.
  • the top ends of the two V-shaped grooves 310 are respectively biased toward both sides of the optical fiber 100, and are not opposed to the optical fiber 100.
  • the cable outer sheath 300 extruded from the extruder enters the cooling water tank for cooling after traveling for a predetermined time in the air.
  • the distance D between the extruder head of the extruder and the cooling water bath can be calculated according to the following formula:
  • V is the extrusion speed of the extruder, that is, the speed at which the extruder extrudes the molten material
  • T is the time that the outer sheath of the cable extruded from the extruder stays in the air.
  • the extruder has an extrusion speed V in the range of 10 m/min to 50 m/min.
  • the distance D between the extruder head of the extruder and the cooling water tank can be controlled in the range of 10 cm to 1000 cm.
  • the distance D between the extruder head of the extruder and the cooling water tank can be controlled in the range of 20 cm to 100 cm.
  • the distance D between the extruder head of the extruder and the cooling water tank may be controlled in the range of 40 cm to 100 cm.
  • Figure 3 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a second exemplary embodiment of the present invention
  • Figure 4 shows a squeeze from an extruder in accordance with a second exemplary embodiment of the present invention.
  • the second embodiment shown in Figures 3 and 4 differs from the first embodiment shown in Figures 1 and 2 only in the orientation of the V-grooves on the outer jacket of the cable.
  • the fiber optic cable includes an optical fiber 100', two reinforcing members 200' on both sides of the optical fiber 100', and cladding on the optical fiber 100' and the reinforcing member 200'.
  • Cable outer sheath 300' The top end of the V-groove 310' on the outer cable jacket 300' is directed toward the optical fiber 100'.
  • the top end of the V-groove 310' on the cable outer jacket 300' is directed toward the center of the fiber 100'.
  • Figure 5 shows a cross-sectional view of a fiber optic cable just extruded from an extruder in accordance with a third exemplary embodiment of the present invention
  • Figure 6 shows a slave extruder in accordance with a third exemplary embodiment of the present invention.
  • the third embodiment shown in Figs. 5 and 6 differs from the second embodiment shown in Figs. 3 and 4 only in that the cross-sectional shape of the outer sheath of the cable is different.
  • the cable outer jacket 300" has a generally eight-shaped cross section.
  • the fiber optic cable includes an optical fiber 100", two reinforcing members 200" on both sides of the optical fiber 100" and coated on the optical fiber 100" and the reinforcing member 200" Cable outer sheath 300".
  • the top end of the V-groove 310" on the outer cable jacket 300" is directed toward the center of the optical fiber 100".
  • a method for fabricating a single core fiber optic cable having a single fiber is shown.
  • the method of the present invention is not only suitable for manufacturing a single-core optical cable, but also for manufacturing a multi-core optical cable having a plurality of optical fibers.
  • it is required to form separately on both sides of the outer sheath of the optical cable.
  • the method of the invention is also suitable for the manufacture of opto-electric hybrid cables having at least one optical fiber and at least one conductor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

一种制造光缆的方法,包括步骤:用挤出机将熔融物料挤压在光纤(100)和加强件(200)上,以便形成包裹光纤(100)和加强件(200)的光缆外护套(300),其中,从挤出机挤出的光缆外护套(300)的两侧上分别形成有一个用于撕裂光缆外护套(300)的V型槽(310),将从挤出机挤出的光缆外护套(300)在空气中停留预定时间,使得光缆外护套(300)上的V型槽(310)的相对的侧壁表面相互热熔接,从而在V型槽(310)的侧壁表面上形成预定厚度的熔接层(320)和将光缆外护套(300)放入冷却装置中,该熔接层(320)能够抵御外部环境的变化。

Description

制造光缆的方法
本申请要求于2014年12月5日递交中国专利局的、申请号为201410740037.8的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及一种制造光缆的方法。
背景技术
对于需要架空铺设的光缆,例如,参见图1,其一般包括光纤100、加强件200和包覆在光纤100和加强件200上的光缆外护套300。加强件200用于支撑整个光缆以及用于接续光纤的光缆连接盒。在接续光纤时,需要剥开光缆的外护套300,露出内部的光纤100。为了便于在现场快速且方便地剥开光缆的外护套300,在本申请的申请人之前提出的技术方案中,请参见图1,在通过挤出机形成外护套300时,在外护套300的每侧上预先挤压形成一个V型槽310。为了能够容易地撕裂光缆的外护套300,希望V型槽310的深度越深越好,即,希望V型槽310的顶端与光纤100之间间距G1变得越小越好。
但是,当V型槽310的顶端与光纤100之间的间距G1过小时,光缆在外部环境的影响下会,例如,温度的变化、湿度的变化、酸碱性的变化等,容易出现开裂,导致内部的光纤100外露,污水和杂质等会进入到外护套300与光纤100之间的间隙中,严重影响光纤的使用寿命和光学传输性能。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
本发明的一个目的在于提供一种制造光缆的方法,通过该方法制造出的光缆的外护套能够容易地撕开,并且能够避免内部的光纤在外部环境的变化下外露。
根据本发明的一个方面,提供一种制造光缆的方法,包括以下步骤:
S100:用挤出机将熔融物料挤压在光纤上,以便形成包裹所述光纤的光缆外护套,其中,从所述挤出机挤出的光缆外护套的两侧上分别形成有一个用于撕裂光缆外护套的V型槽;
S200:将从所述挤出机挤出的光缆外护套在空气中停留预定时间,使得所述光缆外护套上的V型槽的相对的侧壁表面相互热熔接,从而在所述V型槽的侧壁表面上形成熔接层;和
S300:在所述光缆外护套在空气中停留预定时间之后,将所述光缆外护套放入冷却装置中,对所述光缆外护套进行冷却。
根据本发明的一个实例性的实施例,所述光缆是具有单根光纤的单芯光缆。
根据本发明的另一个实例性的实施例,所述光缆是具有多根光纤的多芯光缆,并且在所述光缆外护套的两侧上分别形成有与所述多根光纤分别对应的的多个所述V型槽。
根据本发明的另一个实例性的实施例,所述光缆是具有至少一根光纤和至少一根导体的光电混合型线缆。
根据本发明的另一个实例性的实施例,所述光缆包括位于所述光纤的至少一侧的加强件;并且在所述步骤S100中,熔融物料被挤压在所述光纤和所述加强件上,以便形成包裹所述光纤和所述加强件的光缆外护套。
根据本发明的另一个实例性的实施例,所述预定时间在0.5秒至100秒的范围内。
根据本发明的另一个实例性的实施例,所述预定时间在1秒至10秒的范围内。
根据本发明的另一个实例性的实施例,所述预定时间在1.5秒至5秒的范围内。
根据本发明的另一个实例性的实施例,所述预定时间在1.8秒至4秒的范围内。
根据本发明的另一个实例性的实施例,在形成所述熔接层之前,所述V型槽的底部与所述光纤之间具有第一间距G1;在形成所述熔接层之后,所述V型槽的底部与所述光纤之间具有第二间距G2;并且所述第二间距G2为所述第一间距G1的1.5倍至10倍。
根据本发明的另一个实例性的实施例,所述第二间距G2为所述第一间距G1的2倍至5倍。
根据本发明的另一个实例性的实施例,所述第二间距G2为所述第一间距G1的3倍至4倍。
根据本发明的另一个实例性的实施例,所述光缆外护套具有大致长椭圆形的截面,所述光纤的两侧各有一个加强件。
根据本发明的另一个实例性的实施例,所述光缆外护套具有大致8字形的截面,所述光纤的两侧各有一个加强件。
根据本发明的另一个实例性的实施例,所述V型槽的顶端偏向所述光纤的一侧。
根据本发明的另一个实例性的实施例,所述V型槽的顶端指向所述光纤。
根据本发明的另一个实例性的实施例,所述V型槽的顶端指向所述光纤的中心。
根据本发明的另一个实例性的实施例,所述冷却装置为一冷却水槽,从所述挤出机挤出的光缆外护套在空气中行进所述预定时间后直接进入所述冷却水槽中进行冷却。
根据本发明的另一个实例性的实施例,所述挤出机的挤出机头与所述冷却水槽之间的距离D根据下面的公式计算:D=V*T(1),其中V为所述挤出机的挤出速度;T为从所述挤出机挤出的光缆外护套在空气中停留的时间。
根据本发明的另一个实例性的实施例,所述挤出机的挤出速度V在10m/min至50m/min的范围内;并且所述挤出机的挤出机头与所述冷却水槽之间的距离D在10cm至1000cm的范围内。
根据本发明的另一个实例性的实施例,所述挤出机的挤出机头与所述冷却水槽之间的距离D在20cm至100cm的范围内。
根据本发明的另一个实例性的实施例,所述挤出机的挤出机头与所述冷却水槽之间的距离D在30cm至100cm的范围内。
根据本发明的另一个实例性的实施例,所述挤出机的挤出机头与所述冷却水槽之间的距离D在40cm至100cm的范围内。
在根据本发明的各个实施例的制造光缆的方法中,将从挤出机挤出的光缆外护套在空气中停留预定时间,使得光缆外护套上的V型槽的相对的侧壁表面相互热熔接,从而在V型槽的侧壁表面上形成预定厚度的熔接层,从而增加了V型槽的顶端与光纤之间的间距(厚度)。该熔接层能够被容易地撕裂开,从而不会影响光缆的外护套的易撕裂性。此外,该熔接层还能够抵御外部环境的变化,不会发生开裂,从而提高了光缆的外护套耐气候性的能力。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的第一实例性的实施例的刚从挤出机中挤出的光缆的截面图;
图2显示根据本发明的第一实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图;
图3显示根据本发明的第二实例性的实施例的刚从挤出机中挤出的光缆的截面图;
图4显示根据本发明的第二实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图;
图5显示根据本发明的第三实例性的实施例的刚从挤出机中挤出的光缆的截面图;和
图6显示根据本发明的第三实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个总体技术构思,提供一种制造光缆的方法,包括以下步骤:用挤出机将熔融物料挤压在光纤上,以便形成包裹所述光纤的光缆外护套,其中,从所述挤出机挤出的光缆外护套的两侧上分别形成有一个用于撕裂光缆外护套的V型槽;将从所述挤出机挤出的光缆外护套在空气中停留预定时间,使得所述光缆外护套上的V型槽的相对的侧壁表面相互热熔接,从而在所述V型槽的侧壁表面上形成熔接层;和在所述光缆外护套在空气中停留预定时间之后,将所述光缆外护套放入冷却装置中,对所述光缆外护套进行冷却。
图1显示根据本发明的第一实例性的实施例的刚从挤出机中挤出的光缆的截面图;图2显示根据本发明的第一实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图。
如图1和图2所示,在本发明的一个实例性的实施例中,光缆包括一个光纤100,位于光纤的两侧的两个加强件200和包覆在光纤100和加强件200上的光缆外护套300。
在本发明的一个实例性的实施例中,光缆外护套300可以由具有良好热塑性的聚合物材料形成。
如图1所示,在图示的实施例中,挤出机在光缆外护套300的每侧上挤压形成有一个V型槽310,并且刚从挤出机中挤出的光缆外护套300上的V型槽310的深度比较深,即,刚从挤出机中挤出的光缆外护套300上的V型槽310的底部与光纤之间的间距(厚度)G1比较小,这是为了保证光缆外护套300能够被容易地撕裂开。
为了提高光缆外护套300抵御气候变化的能力,在本发明的一个实例性的实施例中,刚从挤出机中挤出的光缆外护套300不立刻被放置到冷却水中进行冷却,而是在空气中停留预定时间,使得光缆外护套300上的V型槽310的相对的侧壁表面相互热熔接,从而在V型槽310的侧壁表面上形成预定厚度的熔接层320,如图2所示。在图2所示的实施例中,该熔接层320能够被容易地撕裂开,从而不会影响光缆的外护 套的易撕裂性。此外,该熔接层320还能够抵御外部环境的变化,不会发生开裂,从而提高了光缆的外护套300的耐气候性的能力。
下面将说明根据本发明的一个实施例的用于制造光缆的方法,该方法主要包括以下步骤:
用挤出机(未图示)将熔融物料(例如,熔融的聚合物材料)挤压在光纤100和加强件200上,以便形成包裹光纤100和加强件200的光缆外护套300,其中,从挤出机挤出的光缆外护套300的两侧上分别形成有一个用于撕裂光缆外护套300的V型槽310,如图1所示;
将从挤出机挤出的光缆外护套300在空气中停留预定时间,使得光缆外护套300上的V型槽310的相对的侧壁表面相互热熔接,从而在V型槽310的侧壁表面上形成预定厚度的熔接层320;和
在光缆外护套300在空气中停留预定时间之后,将光缆外护套300放入冷却装置中,对光缆外护套300进行冷却。
为了能够获得一定厚度的熔接层320,在本发明的一个实例性的实施例中,从挤出机挤出的光缆外护套300在空气中停留的预定时间可以在0.5秒至100秒的范围内。
优选地,在本发明的另一个实例性的实施例中,从挤出机挤出的光缆外护套300在空气中停留的预定时间可以在1秒至10秒的范围内。
优选地,在本发明的另一个实例性的实施例中,从挤出机挤出的光缆外护套300在空气中停留的预定时间可以在1.5秒至5秒的范围内。
优选地,在本发明的另一个实例性的实施例中,从挤出机挤出的光缆外护套300在空气中停留的预定时间可以在1.8秒至4秒的范围内。
如图1所示,在图示的实施例中,在形成熔接层320之前(即,刚从挤出机挤出)的光缆外护套300上的V型槽310的底部与光纤100之间具有第一间距(第一厚度)G1。
如图2所示,在图示的实施例中,在形成熔接层320之后(即,从挤出机挤出的光缆外护套300在空气中停留预定时间之后)的光缆外护套300上的V型槽310的底部与光纤100之间具有第二间距(第二厚度)G2。
在本发明的一个实例性的实施例中,第二间距G2可以为第一间距G1的1.5倍至10倍。
优选地,在本发明的另一个实例性的实施例中,第二间距G2可以为第一间距G1的2倍至5倍。
优选地,在本发明的另一个实例性的实施例中,第二间距G2可以为第一间距G1的3倍至4倍。
在图1和图2所示的实施例中,光缆外护套300具有大致长椭圆形的截面,并且在光纤100的两侧各有一个加强件200。
在图1和图2所示的实施例中,两个V型槽310的顶端分别偏向光纤100的两侧,不与光纤100相对。
尽管未图示,在本发明的一个实例性的实施例中,从挤出机挤出的光缆外护套300在空气中行进预定时间后进入冷却水槽中进行冷却。为了保证从挤出机挤出的光缆外护套300能够在空气中行进预定时间时,就需要控制挤出机的挤出机头与冷却水槽之间的距离D,以确保光缆外护套300能够在空气中停留预定时间。
在本发明的一个实例性的实施例中,挤出机的挤出机头与冷却水槽之间的距离D可以根据下面的公式计算:
D=V*T      (1),其中
V为挤出机的挤出速度,即,挤出机挤出熔融物料的速度;
T为从挤出机挤出的光缆外护套在空气中停留的时间。
在本发明的一个实例性的实施例中,挤出机的挤出速度V在10m/min至50m/min的范围内。此时,挤出机的挤出机头与冷却水槽之间的距离D可以控制在10cm至1000cm的范围内。
优选地,在本发明的另一个实例性的实施例中,挤出机的挤出机头与冷却水槽之间的距离D可以控制在20cm至100cm的范围内。
更优选地,在本发明的另一个实例性的实施例中,挤出机的挤出机头与冷却水槽之间的距离D可以控制在40cm至100cm的范围内。
图3显示根据本发明的第二实例性的实施例的刚从挤出机中挤出的光缆的截面图;图4显示根据本发明的第二实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图。
图3和图4所示的第二实施例与图1和图2所示的第一实施例的不同之处仅在于光缆外护套上的V型槽的方位不同。
在图3和图4所示的第二实施例中,光缆包括一个光纤100’,位于光纤100’的两侧的两个加强件200’和包覆在光纤100’和加强件200’上的光缆外护套300’。光缆外护套300’上的V型槽310’的顶端指向光纤100’。
如图3和图4所示,在图示的实施例中,光缆外护套300’上的V型槽310’的顶端指向光纤100’的中心。
图5显示根据本发明的第三实例性的实施例的刚从挤出机中挤出的光缆的截面图;和图6显示根据本发明的第三实例性的实施例的从挤出机中挤出的光缆在空气中停留预定时间之后的截面图。
图5和图6所示的第三实施例与图3和图4所示的第二实施例的不同之处仅在于光缆外护套的截面形状不同。
如图5和图6所示,在图示的实施例中,光缆外护套300”具有大致8字形的截面。
在图5和图6所示的第二实施例中,光缆包括一个光纤100”,位于光纤100”的两侧的两个加强件200”和包覆在光纤100”和加强件200”上的光缆外护套300”。光缆外护套300”上的V型槽310”的顶端指向光纤100”的中心。
在图1至图6的实施例中,显示了用于制造具有单根光纤的单芯光缆的方法。但是,请注意,本发明的方法不仅适用于制造单芯光缆,而且还适用于制造具有多根光纤的多芯光缆,在制造多芯光缆时,需要在光缆外护套的两侧上分别形成有与多根光纤分别对应的的多个V型槽。此外,本发明的方法还适用于制造具有至少一根光纤和至少一根导体的光电混合型线缆。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (23)

  1. 一种制造光缆的方法,包括以下步骤:
    Si00:用挤出机将熔融物料挤压在光纤(100)上,以便形成包裹所述光纤(100)的光缆外护套(300),其中,从所述挤出机挤出的光缆外护套(300)的两侧上分别形成有一个用于撕裂光缆外护套(300)的V型槽(310);
    S200:将从所述挤出机挤出的光缆外护套(300)在空气中停留预定时间,使得所述光缆外护套(300)上的V型槽(310)的相对的侧壁表面相互热熔接,从而在所述V型槽(310)的侧壁表面上形成熔接层(320);和
    S300:在所述光缆外护套(300)在空气中停留预定时间之后,将所述光缆外护套(300)放入冷却装置中,对所述光缆外护套(300)进行冷却。
  2. 根据权利要求1所述的方法,其特征在于:所述光缆是具有单根光纤(100)的单芯光缆。
  3. 根据权利要求1所述的方法,其特征在于:
    所述光缆是具有多根光纤的多芯光缆,并且在所述光缆外护套的两侧上分别形成有与所述多根光纤分别对应的多个所述V型槽。
  4. 根据权利要求1所述的方法,其特征在于:
    所述光缆是具有至少一根光纤和至少一根导体的光电混合型线缆。
  5. 根据权利要求2所述的方法,其特征在于,所述光缆包括位于所述光纤(100)的至少一侧的加强件(200),
    在所述步骤S100中,熔融物料被挤压在所述光纤(100)和所述加强件(200)上,以便形成包裹所述光纤(100)和所述加强件(200)的光缆外护套(300)。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述预定时间在0.5秒至100秒的范围内。
  7. 根据权利要求6所述的方法,其特征在于,所述预定时间在1秒至10秒的范围内。
  8. 根据权利要求7所述的方法,其特征在于,所述预定时间在1.5秒至5秒的范围内。
  9. 根据权利要求8所述的方法,其特征在于,所述预定时间在1.8秒至4秒的范围内。
  10. 根据权利要求1-5中任一项所述的方法,其特征在于,
    在形成所述熔接层(320)之前,所述V型槽(310)的底部与所述光纤(100)之间具有第一间距G1;
    在形成所述熔接层(320)之后,所述V型槽(310)的底部与所述光纤(100)之间具有第二间距G2;并且
    所述第二间距G2为所述第一间距G1的1.5倍至10倍。
  11. 根据权利要求10所述的方法,其特征在于,所述第二间距G2为所述第一间距G1的2倍至5倍。
  12. 根据权利要求11所述的方法,其特征在于,所述第二间距G2为所述第一间距G1的3倍至4倍。
  13. 根据权利要求5所述的方法,其特征在于,所述光缆外护套(300)具有大致长椭圆形的截面,所述光纤的两侧各有一个加强件。
  14. 根据权利要求5所述的方法,其特征在于,所述光缆外护套(300”)具有大致8字形的截面,所述光纤的两侧各有一个加强件。
  15. 根据权利要求1-5中任一项所述的方法,其特征在于,所述V型槽(310)的顶端偏向所述光纤(100)的一侧。
  16. 根据权利要求1-5中任一项所述的方法,其特征在于,所述V型槽(310’)的顶端指向所述光纤(100)。
  17. 根据权利要求16所述的方法,其特征在于,所述V型槽(310’)的顶端指向所述光纤(100)的中心。
  18. 根据权利要求1-5中任一项所述的方法,其特征在于,
    所述冷却装置为一冷却水槽,从所述挤出机挤出的光缆外护套(300)在空气中行进所述预定时间后直接进入所述冷却水槽中进行冷却。
  19. 根据权利要求18所述的方法,其特征在于,
    所述挤出机的挤出机头与所述冷却水槽之间的距离D根据下面的公式计算:
    D=V*T     (1),其中
    V为所述挤出机的挤出速度;
    T为从所述挤出机挤出的光缆外护套在空气中停留的时间。
  20. 根据权利要求19所述的方法,其特征在于,
    所述挤出机的挤出速度V在10m/min至50m/min的范围内;并且
    所述挤出机的挤出机头与所述冷却水槽之间的距离D在10cm至1000cm的范围内。
  21. 根据权利要求20所述的方法,其特征在于,
    所述挤出机的挤出机头与所述冷却水槽之间的距离D在20cm至100cm的范围内。
  22. 根据权利要求21所述的方法,其特征在于,
    所述挤出机的挤出机头与所述冷却水槽之间的距离D在30cm至100cm的范围内。
  23. 根据权利要求22所述的方法,其特征在于,
    所述挤出机的挤出机头与所述冷却水槽之间的距离D在40cm至100cm的范围内。
PCT/CN2015/096435 2014-12-05 2015-12-04 制造光缆的方法 WO2016086894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410740037.8A CN105717592A (zh) 2014-12-05 2014-12-05 制造光缆的方法
CN201410740037.8 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016086894A1 true WO2016086894A1 (zh) 2016-06-09

Family

ID=56091047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096435 WO2016086894A1 (zh) 2014-12-05 2015-12-04 制造光缆的方法

Country Status (2)

Country Link
CN (1) CN105717592A (zh)
WO (1) WO2016086894A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772854A (zh) * 2016-12-28 2017-05-31 德阳汇川科技有限公司 一种物理防鼠蝶型引入光缆及其制造方法
USD826867S1 (en) 2017-04-13 2018-08-28 Commscope Technologies Llc Fiber optic cable
US10649165B2 (en) 2017-04-13 2020-05-12 Commscope Technologies Llc Flat drop cable with features for enhanced gel retention and stripability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253407B (zh) * 2021-04-30 2023-01-10 安徽光纤光缆传输技术研究所(中国电子科技集团公司第八研究所) 舱外耐辐照集束光缆的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894630A (zh) * 2010-07-19 2010-11-24 江苏中天科技股份有限公司 光纤到塔顶用光电复合缆
CN201837747U (zh) * 2010-09-14 2011-05-18 南京华脉科技有限公司 超柔耐弯高强度ftth蝶形光缆
CN202339427U (zh) * 2011-08-03 2012-07-18 江苏中天科技股份有限公司 集束蝶形光缆
CN102608718A (zh) * 2012-03-06 2012-07-25 南通科鼎复合材料科技有限公司 热塑性gfrp蝶形光缆用加强件及其生产工艺
CN102681118A (zh) * 2012-04-28 2012-09-19 成都亨通光通信有限公司 一种光缆护套管及其制备方法
CN203930153U (zh) * 2014-06-06 2014-11-05 浙江万马天屹通信线缆有限公司 自承式接入网用防蝉异形光缆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2816836Y (zh) * 2005-08-17 2006-09-13 长飞光纤光缆(上海)有限公司 一种扁平状接入网用光缆
CN101611336A (zh) * 2007-01-24 2009-12-23 古河电气工业株式会社 光缆
JP2008191374A (ja) * 2007-02-05 2008-08-21 Swcc Showa Cable Systems Co Ltd 光ファイバケーブル
CN105824087A (zh) * 2010-11-23 2016-08-03 康宁光缆系统有限责任公司 具有接入特征结构的光纤电缆
CN102313945B (zh) * 2011-08-03 2013-01-30 江苏中天科技股份有限公司 圆形皮线光缆及其制作方法
CN107843960B (zh) * 2011-10-13 2020-02-14 康宁光电通信有限责任公司 制造及接入具有接入特征结构的电缆的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894630A (zh) * 2010-07-19 2010-11-24 江苏中天科技股份有限公司 光纤到塔顶用光电复合缆
CN201837747U (zh) * 2010-09-14 2011-05-18 南京华脉科技有限公司 超柔耐弯高强度ftth蝶形光缆
CN202339427U (zh) * 2011-08-03 2012-07-18 江苏中天科技股份有限公司 集束蝶形光缆
CN102608718A (zh) * 2012-03-06 2012-07-25 南通科鼎复合材料科技有限公司 热塑性gfrp蝶形光缆用加强件及其生产工艺
CN102681118A (zh) * 2012-04-28 2012-09-19 成都亨通光通信有限公司 一种光缆护套管及其制备方法
CN203930153U (zh) * 2014-06-06 2014-11-05 浙江万马天屹通信线缆有限公司 自承式接入网用防蝉异形光缆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772854A (zh) * 2016-12-28 2017-05-31 德阳汇川科技有限公司 一种物理防鼠蝶型引入光缆及其制造方法
USD826867S1 (en) 2017-04-13 2018-08-28 Commscope Technologies Llc Fiber optic cable
US10649165B2 (en) 2017-04-13 2020-05-12 Commscope Technologies Llc Flat drop cable with features for enhanced gel retention and stripability

Also Published As

Publication number Publication date
CN105717592A (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016086894A1 (zh) 制造光缆的方法
US6363192B1 (en) Composite cable units
JP2006505006A (ja) 優先引裂き部分を有する剥離可能なバッファ層及びその製造方法
CA1194714A (en) Composite overhead transmission line
RU173143U1 (ru) Волоконно-оптический кабель с трубчатой изоляцией
WO2017084517A1 (zh) 用于极微型气吹光缆的双层共挤方法及极微型气吹光缆
US9778434B2 (en) Buffered fibers with access features
CN105511036A (zh) 一种非金属层绞式光缆
WO2020107960A1 (zh) 一种护套嵌入式掏接光缆及生产方法
EP3657226A1 (en) Ultra-fine anti-ant air-blowing optical cable and manufacturing method therefor
CN206038975U (zh) 一种全干式束管式光缆
CA2937453C (en) Flat drop cable with features for enhancing stripability
CN106646796A (zh) 一种三角形截面引入光缆及其制造方法
CN115826167A (zh) 蝶形光缆及蝶形光缆制造方法
CN203881980U (zh) 一种全介质高密集型引入光纤光缆
CN116027505A (zh) 一种光缆及其制造设备
CN105204133A (zh) 扁平形自承式引入光纤带光缆的制备方法以及光缆
CN203311064U (zh) 紧套8字微型光缆及模具
CN105204131A (zh) 中心管ftth加强型引入光缆的制造方法以及光缆
KR100638963B1 (ko) 공기압 포설용 튜브 및 이를 이용한 튜브케이블
JP2007065595A (ja) 光ファイバケーブル
CN210348010U (zh) 一种新型结构的气吹光缆
CN207249200U (zh) 微束管型蝶型光缆
CN219302731U (zh) 一种光缆及其制造设备
JP2004354448A (ja) 光ファイバケーブル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15864597

Country of ref document: EP

Kind code of ref document: A1