WO2016085203A1 - High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor - Google Patents

High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor Download PDF

Info

Publication number
WO2016085203A1
WO2016085203A1 PCT/KR2015/012531 KR2015012531W WO2016085203A1 WO 2016085203 A1 WO2016085203 A1 WO 2016085203A1 KR 2015012531 W KR2015012531 W KR 2015012531W WO 2016085203 A1 WO2016085203 A1 WO 2016085203A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
martensitic stainless
cracking process
heat treatment
high hardness
Prior art date
Application number
PCT/KR2015/012531
Other languages
French (fr)
Korean (ko)
Inventor
이재화
조규진
채동철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US15/529,737 priority Critical patent/US20170327916A1/en
Priority to JP2017527884A priority patent/JP6488012B2/en
Priority to CN201580063078.0A priority patent/CN107002211B/en
Publication of WO2016085203A1 publication Critical patent/WO2016085203A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high hardness martensitic stainless steel excellent in antibacterial properties and a method for producing the same.
  • Ag is known to exhibit superior antimicrobial properties compared to Cu, but the material is very expensive and not only causes deterioration of corrosion resistance, but also uniformly disperses / distributes in the base due to the characteristics of the element having a small capacity and relatively high specific gravity. The disadvantage is that it is difficult.
  • the Cu element present in the surface layer is ionized by a small amount of water on the steel surface to activate Cu 2+ ions.
  • Activated Cu2 + ions can slow down the activity of SH group enzymes required for normal reaction of bacteria such as Escherichia coli and Staphylococcus aureus, thereby killing the bacteria and enhancing hygiene.
  • the antimicrobial properties are inferior, and the duration of the antimicrobial activity is inevitably shortened.
  • Cu 2+ ion elution is activated from the e-Cu precipitated phase protruding to some surface layer portions by special heat treatment, thereby improving stable antibacterial property for a long time.
  • Shaking flask method and film adhesion method are the most widely used methods for evaluating antimicrobial properties.
  • Shake flask method is mainly used for waterproof / water repellent material, severe surface relief material and good absorbent material.
  • Film adhesion method is mainly used for materials that are smooth and the product itself is not absorbent.
  • the antimicrobial properties are mainly evaluated using the film adhesion method, and the JIS Z 2801 standard is generally applied.
  • JIS Z 2801 bacteria are cultured for 24 hours using an inoculum containing 0.5 to 0.85% NaCl. Phenomenon occurs.
  • the present invention proposes a high hardness martensitic stainless steel and a method of manufacturing the same having excellent antimicrobial properties that do not occur in the material after antimicrobial evaluation while chromium carbide is uniformly distributed in the microstructure.
  • C 0.45-0.65%
  • N 0.02-0.06%
  • Si 0.1-0.6%
  • Mn 0.3-1.0%
  • Ni 0.1-0.4%
  • Cr Hardness martensite system having excellent antimicrobial properties, containing 13-14.5%
  • Mo 0.4-0.6%
  • W 0.8-1.2%
  • Cu 1.5-2.0%
  • the rest contains Fe and unavoidable impurities Stainless steel is provided.
  • the annealing heat treatment may be performed such that the elongation of the martensitic stainless steel is 18% or more.
  • the annealing heat treatment may be performed such that at least 90/100 ⁇ m 2 chromium carbide is distributed in the martensitic stainless steel structure.
  • the martensitic stainless steel satisfies the following PREN, and surface alteration does not occur when antimicrobial evaluation is performed using an inoculum containing NaCl, and may exhibit a bacterial reduction rate of 99% or more.
  • the annealing heat treatment is a first cracking process for uniformly distributing Cu precipitates in the structure of the martensitic stainless steel, a second cracking process for uniformly distributing chromium carbide in the structure of the martensitic stainless steel, and the chromium carbide And a third cracking process for spheroidizing the fine particles of.
  • the first cracking process may be performed at 500 to 600 ° C
  • the second cracking process may be performed at 800 to 900 ° C
  • the third cracking process may be performed at 600 to 750 ° C.
  • the first cracking process may last for 5 to 15 hours
  • the second cracking process may last for 15 to 25 hours
  • the third cracking process may last for 5 to 15 hours.
  • the annealing heat treatment is, after the first cracking process up to the second cracking process to increase the temperature at a rate of 40 ⁇ 200 °C / h, after the second cracking process to the third cracking process
  • a cooling process for cooling at a rate of 10 ° C./h or more, and an air cooling process after the third cracking process may be further included.
  • a high hardness martensitic stainless steel manufacturing method having excellent antimicrobial properties comprising: hot-rolling the cast steel to produce a hot-rolled steel sheet; Performing annealing of the hot rolled steel sheet by annealing heat treatment; And a cold rolled steel sheet manufacturing step of cold rolling the annealed steel sheet in which the soft nitridation is completed, wherein the anneal heat treatment includes a first cracking process for uniformly distributing Cu precipitates in the tissue of the hot rolled steel sheet, within the tissue of the hot rolled steel sheet.
  • a high hardness martensitic stainless steel manufacturing method having excellent antimicrobial properties including a second cracking process for uniformly distributing chromium carbide and a third cracking process for spheroidizing the fine particles of chromium carbide.
  • fine chromium carbide and e-Cu precipitated phases are uniformly distributed in the microstructure of the upper annealing material of Cu-added high carbon martensitic stainless steel, and martensitic stainless steel for coating having excellent hardness, high corrosion resistance and antibacterial properties. There is an advantage to manufacturing steel.
  • FIG. 1 is a view showing an annealing heat treatment process according to an embodiment of the present invention.
  • FIG. 2 is a view showing a microstructure photograph of Cu precipitates in the tissue according to the Cu content in the first cracking process according to an embodiment of the present invention.
  • FIG 3 is a view showing a picture of observing the surface of the material after the antimicrobial evaluation, according to an embodiment of the present invention.
  • C 0.45-0.65%
  • N 0.02-0.06%
  • Si 0.1-0.6%
  • Mn 0.3-1.0%
  • Ni 0.1-0.4%
  • Cr Hardness martensite system having excellent antimicrobial properties, containing 13-14.5%
  • Mo 0.4-0.6%
  • W 0.8-1.2%
  • Cu 1.5-2.0%
  • the rest contains Fe and unavoidable impurities Stainless steel is provided.
  • ceramic materials such as esophagus, scissors, razor, and scalpel, which are widely used for medical devices, require high hardness to maintain cutting and abrasion resistance, and require excellent corrosion resistance because they are easily contacted with moisture or stored in a humid atmosphere.
  • martensitic stainless steel to which high carbon is added is mainly used as a raw material for ceramics.
  • steels containing 0.45 to 0.70% carbon by weight, up to 1.0% manganese, up to 1.0% silicon, and 12.0 to 15.0% chromium are widely used for the material.
  • the raw material is manufactured by including an annealing process.
  • the material reacts with carbon and chromium in the ferrite matrix to disperse and precipitate fine particles in the form of chromium carbide, and it is easy to apply stainless steel manufacturing processes such as rolling and pickling as the dissolved carbon content in the substrate is lowered. Do.
  • the fine chromium carbide uniformly distributed in the ferrite matrix allows the rapid re-application of chromium and carbon to the high temperature austenite phase in the reinforcement heat treatment process performed by the ceramics manufacturer. And important factors for improving corrosion resistance.
  • the metal material may be a rust phenomenon when the antimicrobial evaluation
  • the high-carbon martensite steel for ceramics may also cause a problem that the reliability of the antimicrobial evaluation results deteriorate.
  • Patents related to antimicrobial martensitic stainless steels include Japanese Patent Application Laid-Open No. 9-195016, Japanese Patent Laid-Open Publication No. 9-195016 regarding martensitic stainless steel having excellent antimicrobial property by uniformly distributing an e-Cu precipitated phase. 9-256116, etc., but there was no information about the factors that are expected to have a significant effect on the antimicrobial and bacterial reduction rate, such as the rust of the material when the antimicrobial evaluation.
  • the present invention relates to a high-strength martensitic stainless steel having excellent antimicrobial properties and a method for manufacturing the same, in weight%, C: 0.45 to 0.65%, N: 0.02 to 0.06%, Si: 0.1 to 0.6%, and Mn: 0.3 Alloy containing 1.0%, Ni: 0.1-0.4%, Cr: 13-14.5%, Mo: 0.4-0.6%, W: 0.8-1.2% and Cu: 1.5-2.0%, the remainder being Fe and inevitable impurities It is characterized by producing martensitic stainless steel having a component and exhibiting a bacterial reduction rate of 99.9% or more by JIS Z 2801 antimicrobial evaluation method.
  • the content of C is low, the hardness of the martensitic stainless steel is reduced after hardness, so that cutting and abrasion resistance cannot be secured. Therefore, 0.45% or more of C is added.
  • the content is excessively high, the corrosion resistance of the material itself is lowered due to excessive formation of chromium carbide, and the upper limit is limited to 0.65% because there is a fear of formation of coarse carbide in the annealing structure due to carbon segregation.
  • N is an element added to improve the corrosion resistance and hardness at the same time, even if added instead of C does not cause local fine segregation has the advantage of not forming coarse precipitate in the product. To achieve this effect add at least 0.02%. However, if excessively added, pore due to nitrogen may occur during casting, so the upper limit is limited to 0.06%.
  • Si is an essential element for deoxidation, 0.1% or more is added. However, the addition of a high content of Si lowers the pickling property and increases the brittleness of the material, so the upper limit thereof is limited to 0.6%.
  • Mn is an essential element for deoxidation
  • 0.3% or more is added.
  • the upper limit is limited to 1.0% because it inhibits the surface quality of the steel and suppresses the securing of high hardness properties through residual austenite formation of the final heat treatment material.
  • Ni is an element that is inevitably carried from scrap metal in the steelmaking process, and 0.1% or more is added. However, when a high content of Ni is formed, it is difficult to obtain high hardness properties by forming residual austenite of the final heat treatment material. Therefore, the upper limit is 0.4%.
  • Mo has an excellent effect on improving the corrosion resistance, so 0.4% or more is added. However, excessive addition results in an increase in the manufacturing cost and limits the upper limit to 0.6%.
  • W has an effect of improving the corrosion resistance and increasing the heat treatment hardness, so 0.8% or more is added. However, excessive addition inhibits the increase in manufacturing cost and processability, so the upper limit is limited to 1.2%.
  • Cu is the most important alloy element in the stainless steel of the present invention, and e-Cu is formed by ordinary annealing, thereby securing antibacterial properties.
  • the higher the content the greater the amount of e-Cu precipitates, and the higher the elution amount of Cu2 +, which improves the antibacterial properties. do.
  • Martensitic stainless steel according to an embodiment of the present invention having the composition as described above is produced by hot-rolling and hot-rolled steel sheet after manufacturing the cast by continuous casting or ingot casting.
  • the hot rolled steel sheet manufactured is subjected to soft nitriding operation through annealing heat treatment in order to secure good workability before proceeding such as precision rolling to a thickness usable for coating.
  • the annealing heat treatment according to an embodiment of the present invention is a first cracking process to uniformly distribute the spherical Cu precipitates preferentially in the structure of martensitic stainless steel, and the chromium in the structure of the hot rolled steel sheet A second cracking step of uniformly distributing the carbide, and a third cracking step of spheroidizing the fine particles of the chromium carbide.
  • the temperature rising process for increasing the temperature of the hot-rolled steel sheet from the first cracking process to the second cracking process, and the cooling process of lowering the temperature of the hot-rolled steel sheet from the second cracking process to the third cracking process And, after the third cracking process is further performed an air cooling process for cooling the hot-rolled steel sheet.
  • the first cracking process is a process of uniformly distributing Cu precipitates in the structure of the hot rolled steel sheet, and uniformly heating the hot rolled steel sheet for 5 to 15 hours in a constant temperature of 500 to 600 ° C. It is a process.
  • the fine Cu precipitate is uniformly distributed in the tissue as shown in FIG.
  • These Cu precipitates generally act as precipitation starting points of chromium carbides, which are well known to precipitate first at grain boundaries, thereby inducing uniform deposition of chromium carbides in the second cracking process.
  • the cracking temperature is lower than 500 ° C, no Cu precipitates are formed. If the cracking temperature is higher than 600 ° C, chromium carbides are precipitated at the same time as the Cu precipitates. Uniform distribution of carbides cannot be ensured.
  • the first cracking process is preferably cracked for 5 to 15 hours in a constant temperature atmosphere of 500 ⁇ 600 °C.
  • the temperature raising process is a process of increasing the temperature of the hot-rolled steel sheet at a rate of 40 ⁇ 200 °C / h from the first cracking process to the second cracking process.
  • the temperature increase rate is 40 ° C / h or less during the temperature increase process
  • the time passing through the temperature range where the chromium carbide is coarse, for example, 700 ⁇ 750 ° C increases, the size of the chromium carbide is coarse and the chromium distributed in the microstructure
  • the density of carbides can be reduced.
  • the temperature increase rate is 200 ° C./h or more
  • the transit time in the temperature section where the chromium carbide is coarsened is reduced to secure fine chromium carbides, but the carbide diffusion time is reduced, resulting in unbalanced distribution of chromium carbides.
  • the temperature increase rate in the temperature increase process is more than 40 °C / h, it is preferable to adjust the range to less than 200 °C / h.
  • the second cracking process is a process of uniformly distributing chromium carbide in the structure of the hot-rolled steel sheet after the temperature raising process, and the hot-rolled steel sheet in a constant temperature atmosphere of 800 to 900 ° C. It is the process of heating uniformly for 25 hours. In this process, chromium carbide is uniformly distributed in the tissue.
  • agglomerates may be formed due to chromium carbide locally precipitated at the grain boundary during the cracking process, and when it is 900 ° C. or more, coarse chromium carbides are formed near the grain boundaries. And coarse chromium carbide causes local material imbalance of the material, making it difficult to secure ductility and causing material quality degradation during final heat treatment.
  • the cracking time in the second cracking process is 15 hours or less, it is advantageous to form fine chromium carbides, but the chromium carbides are not uniformly distributed, but may be clustered and distributed. As a result of coalescence and coarsening of localized chromium carbides, process efficiency decreases due to an increase in heat treatment time and manufacturing costs increase.
  • the second cracking process is preferably cracked for 15 to 25 hours in a constant temperature atmosphere of 800 ⁇ 900 °C.
  • the cooling process according to an embodiment of the present invention is a process of cooling the hot rolled steel sheet at 600 to 750 ° C. from the second crack process to the third crack process, cooling the hot rolled steel sheet at a rate exceeding 10 ° C./h. It is desirable to. If the cooling rate is 10 ° C./h or less, the time through the temperature range in which the size of the chromium carbide microstructure is coarsened is increased, which causes the chromium carbide microstructure in the microstructure to coarsen, resulting in enhanced heat treatment. It becomes difficult to secure corrosion resistance and high hardness.
  • the third cracking process is a process of forming a fine particle of chromium carbide in the hot rolled steel sheet at low temperature by proceeding after the cooling process, and heating the hot rolled coil at a constant temperature for 5 to 15 hours at 600 to 750 ° C. It is the process of maintaining and heating uniformly.
  • the minimum temperature condition for spheroidizing chromium carbide is 600 ° C., and if it exceeds 750 ° C., the spheroidized chromium carbide grows excessively, reducing the number of chromium carbides and reducing ductility.
  • the constant temperature holding time of the third cracking process is 5 hours or less, the progress of spheroidization of chromium carbide is insufficient, and if it is 15 hours or more, the spheroidized carbides grow excessively to form coarse microstructures.
  • the third cracking process is preferably cracked for 5 to 15 hours in a constant temperature of 600 ⁇ 750 °C.
  • the hot-rolled steel sheet is air-cooled in air to complete the annealing heat treatment process.
  • a cold rolled steel sheet manufacturing step of cold rolling an annealing steel sheet is performed, and a step of reinforcing heat treatment is performed using the cold rolled steel sheet processed to a desired thickness and shape.
  • Reinforcement heat treatment is carried out in three stages.
  • the first stage is an austenizing ⁇ quenching heat treatment step of reusing carbides uniformly distributed by annealing.
  • the heat treatment is performed for 10 seconds to 5 minutes at 1000 °C to 1150 °C.
  • the heat treatment temperature is less than 1000 °C can not obtain the hardness required for the blade steel, and if the heat treatment temperature exceeds 1150 °C, the problem of hardness decrease due to excessive formation of residual austenite due to the increase of inventory capacity Can be.
  • the heat treatment time is less than 10 seconds, the hardness required for the blade steel also can not be obtained, and even when the heat treatment time exceeds 5 minutes, grain (growth) may grow and residual austenite may be generated.
  • some residual austenite is subjected to a subzero heat treatment for 10 seconds to 5 minutes at a temperature of about ⁇ 70 ° C. to phase transform the martensite. Then, to secure the ductility of the manufactured martensitic steel, a tempering treatment of about 400 to 600 ° C. is performed for 30 minutes to 2 hours, followed by air cooling to complete the strengthening heat treatment process.
  • the high carbon martensitic stainless steel slab for coatings having the composition shown in Table 1 was prepared, and hot rolled steel sheet (thickness 3 mm) was manufactured through hot rolling, and at the same time, the edge quality of the hot rolled material was confirmed.
  • the cold rolled steel sheet (thickness 1.5mm) was manufactured through cold rolling, and the edge quality of the cold rolled material was confirmed.
  • Tempering / Sintering 30 minutes at 500 °C
  • the Cu content should be limited to 2% or less in order to secure good hot workability.
  • the content of C should be limited to 0.65% or less in order to secure good cold workability.
  • the amount of Cu added should be added at least 1.5%. However, considering the processability of the material, the amount of added Cu should be limited to 1.5 to 2.0% or less. .
  • the antimicrobial evaluation according to the Cu addition amount and the surface rusting phenomenon of the evaluation material were observed for the material to which Mo and W of Comparative Examples 1 to 6 were not added. As a result, it was confirmed that it exhibits a high antibacterial property of 99.9% regardless of the amount of Cu added.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high-hardness martensitic stainless steel with excellent antibacterial property and a preparation method therefor are disclosed. The disclosed high-hardness martensitic stainless steel with excellent antibacterial property comprises: 0.45-0.65 wt% of C; 0.02-0.06 wt% of N; 0.1-0.6 wt% of Si; 0.3-1.0 wt% of Mn; 0.1-0.4 wt% of Ni; 13-14.5 wt% of Cr; 0.4-0.6 wt% of Mo; 0.8-1.2 wt% of W; 1.5-2.0 wt% of Cu; and the balance of Fe and inevitable impurities. According to the present invention, there is an advantage enabling the preparation of the martensitic stainless steel for knives, the martensitic stainless steel having high hardness, high corrosion resistance and excellent antibacterial property, by uniformly distributing fine chromium carbide and e-Cu precipitates in the microstructure of a batch annealed material of a high-carbon martensitic stainless steel containing Cu. In addition, according to the present invention, there is an advantage of causing no rust formation on a material after an antibacterial evaluation.

Description

항균성이 우수한 고경도 마르텐사이트계 스테인리스강 및 이의 제조방법High hardness martensitic stainless steel with excellent antimicrobial properties and preparation method thereof
본 발명은 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 및 이의 제조방법에 관한 것이다.The present invention relates to a high hardness martensitic stainless steel excellent in antibacterial properties and a method for producing the same.
최근 생활수준 향상에 따라 사용자의 위생, 안전에 대한 관심이 높아지고 있으며, 그로 인하여 스테인리스의 가장 중요한 특징인 녹발생 억제뿐만 아니라 대장균 및 황색포도상구균과 같은 세균의 번식을 억제시킬 수 있는 위생성이 강화된 기능성 항균 스테인리스강의 개발이 요구되고 있다. With the recent improvement in living standards, the user's interest in hygiene and safety is increasing, and as a result, the hygienicity that can suppress the reproduction of bacteria such as Escherichia coli and Staphylococcus aureus is enhanced, as well as the most important feature of stainless steel. The development of functional antibacterial stainless steel is required.
스테인리스강에 항균기능을 부여하는 방법으로는, Ag, Cu와 같은 금속원소를 스테인리스강에 첨가하여 항균성을 발현시키는 방법이 가장 일반적인 방법으로 알려져 있다. As a method for imparting antibacterial function to stainless steel, a method of expressing antibacterial property by adding metal elements such as Ag and Cu to stainless steel is known as the most common method.
Ag의 경우 Cu 대비 우수한 항균특성을 나타낸다고 알려져 있으나, 소재가 워낙 고가이며 내식성의 열화를 유발할 뿐만 아니라 스테인리스 기지로의 고용량이 작고 비중이 상대적으로 큰 원소의 특성으로 인하여 기지내에 균일하게 분산/분포시키기 어렵다는 단점이 있다. Ag is known to exhibit superior antimicrobial properties compared to Cu, but the material is very expensive and not only causes deterioration of corrosion resistance, but also uniformly disperses / distributes in the base due to the characteristics of the element having a small capacity and relatively high specific gravity. The disadvantage is that it is difficult.
Cu의 경우 Ag 대비 저가이며 항균성분으로도 우수한 특성을 나타냄에 따라 일정량 이상의 Cu를 스테인리스강에 첨가시킬 경우 우수한 항균특성을 나타낸다는 보고가 있다.Since Cu is inexpensive compared to Ag and exhibits excellent properties as an antimicrobial component, it is reported that when a certain amount of Cu is added to stainless steel, it exhibits excellent antibacterial properties.
Cu가 첨가된 스테인리스강의 항균작용 기구를 요약하면 다음과 같다. The antimicrobial mechanism of Cu-added stainless steel is summarized as follows.
일정량의 Cu가 첨가된 스테인리스강의 경우 표층부에 존재하는 Cu원소가 강표면의 수분에 의해 미량 이온화되어 Cu2+ 이온을 활성화시킨다. 활성화된 Cu2+ 이온은 대장균 및 황색포도상구균과 같은 세균의 정상반응시 필요한 SH기 효소의 활성을 둔화시켜 결국 세균을 사멸시켜 위생성을 강화시킬 수 있다. In the case of stainless steel to which a certain amount of Cu is added, the Cu element present in the surface layer is ionized by a small amount of water on the steel surface to activate Cu 2+ ions. Activated Cu2 + ions can slow down the activity of SH group enzymes required for normal reaction of bacteria such as Escherichia coli and Staphylococcus aureus, thereby killing the bacteria and enhancing hygiene.
한편, STS강의 경우 표면에 밀도가 높은 부동태 피막이 형성되어 있기 때문에 고용된 Cu원자를 통하여 수분과의 접촉을 통해 이온의 형태로 용출될 수 있는 Cu2+이온의 양은 극히 제한적일 수밖에 없다. On the other hand, in the case of STS steel, since a high-density passivation film is formed on the surface, the amount of Cu 2+ ions that can be eluted in the form of ions through contact with moisture through the dissolved Cu atoms is inevitably limited.
이에 항균특성이 열위할 뿐만 아니라 항균성의 지속 기간 또한 짧아질 수 밖에 없다. In addition, the antimicrobial properties are inferior, and the duration of the antimicrobial activity is inevitably shortened.
이러한 문제를 해결하기 위하여 최근에는 제조된 강판을 적정한 온도범위에서 일정시간 동안 특수열처리하여 Cu-rich 석출상(e-Cu)를 미세하게 석출시키는 방법이 제안되었다. In order to solve this problem, recently, a method of finely depositing a Cu-rich precipitated phase (e-Cu) by special heat treatment for a predetermined time in an appropriate temperature range has been proposed.
이 경우 특수열처리에 의해 일부 표층부로 돌출된 e-Cu 석출상으로부터 Cu2+이온 용출이 활성화되며 그로 인하여 개선된 항균성을 장시간 동안 안정하게 유지시킬 수 있기 때문이다.In this case, Cu 2+ ion elution is activated from the e-Cu precipitated phase protruding to some surface layer portions by special heat treatment, thereby improving stable antibacterial property for a long time.
항균성을 평가하는 방법으로 진탕플라스크법과 필름밀착법이 가장 폭넓게 사용되고 있다. Shaking flask method and film adhesion method are the most widely used methods for evaluating antimicrobial properties.
진탕플라스크법은 방수/발수 소재 및 표면기복이 심한 소재 그리고 흡수성이 좋은 소재에 주로 사용되는 방법이며, 필름밀착법은 소재가 평활하며, 제품자체가 흡수성이 없는 소재에 주로 사용된다. Shake flask method is mainly used for waterproof / water repellent material, severe surface relief material and good absorbent material. Film adhesion method is mainly used for materials that are smooth and the product itself is not absorbent.
금속소재의 경우 필름밀착법을 이용하여 주로 항균성을 평가하며, JIS Z 2801 규격을 준용하여 평가하는 것이 일반적이다. JIS Z 2801 준용하여 항균성 평가를 진행할 경우, 0.5~0.85% NaCl이 함유된 접종원을 이용하여 24시간 동안 세균을 배양하게 되는데, 이러한 조건으로 시험을 진행할 경우 내식성이 열위한 소재에서는 녹발생과 같은 발청현상이 발생한다. In the case of metal materials, the antimicrobial properties are mainly evaluated using the film adhesion method, and the JIS Z 2801 standard is generally applied. When the antimicrobial evaluation is conducted according to JIS Z 2801, bacteria are cultured for 24 hours using an inoculum containing 0.5 to 0.85% NaCl. Phenomenon occurs.
발청현상이 발생할 경우 소재의 항균성 평가 결과의 신뢰도가 저하하는 문제가 발생하게 된다. When rusting occurs, the reliability of the antimicrobial evaluation results of the material is deteriorated.
이에 항균성평가시 세균배양 이후에 발청현상이 관찰되지 않을 정도의 내식성의 확보가 필수적이라고 할 수 있다.Therefore, it can be said that it is essential to secure corrosion resistance so that no anti-rusting phenomenon can be observed after bacterial culture.
본 발명에서는 크롬탄화물을 미세조직내 균일하게 분포시키면서 항균성 평가 이후 소재에 발청현상이 발생하지 않는 항균특성이 우수한 고경도 마르텐사이트계 스테인리스강 및 이의 제조방법을 제안하고자 한다.The present invention proposes a high hardness martensitic stainless steel and a method of manufacturing the same having excellent antimicrobial properties that do not occur in the material after antimicrobial evaluation while chromium carbide is uniformly distributed in the microstructure.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.Other objects of the present invention may be derived by those skilled in the art through the following examples.
본 발명의 바람직한 일 실시예에 따르면, 중량 %로, C: 0.45~0.65%, N: 0.02~0.06%, Si: 0.1~0.6%, Mn: 0.3~1.0%, Ni: 0.1~0.4%, Cr: 13~14.5%, Mo: 0.4~0.6%, W: 0.8~1.2% 및 Cu: 1.5~2.0%를 함유하고 나머지는 Fe 및 불가피한 불순물을 포함하는 것을 특징으로 하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강이 제공된다. According to a preferred embodiment of the present invention, in weight%, C: 0.45-0.65%, N: 0.02-0.06%, Si: 0.1-0.6%, Mn: 0.3-1.0%, Ni: 0.1-0.4%, Cr : Hardness martensite system having excellent antimicrobial properties, containing 13-14.5%, Mo: 0.4-0.6%, W: 0.8-1.2% and Cu: 1.5-2.0%, and the rest contains Fe and unavoidable impurities Stainless steel is provided.
상기 마르텐사이트계 스테인리스강의 연신율이 18% 이상이 되도록 상소둔 열처리가 수행될 수 있다. The annealing heat treatment may be performed such that the elongation of the martensitic stainless steel is 18% or more.
상기 마르텐사이트계 스테인리스강 조직 내에 90개/100㎛2 이상의 크롬탄화물이 분포되도록 상소둔 열처리가 수행될 수 있다. The annealing heat treatment may be performed such that at least 90/100 μm 2 chromium carbide is distributed in the martensitic stainless steel structure.
상기 마르텐사이트계 스테인리스강은 하기의 내공식지수(PREN)를 만족하고, NaCl이 함유된 접종원을 이용한 항균성 평가시 표면 변질이 일어나지 않으며, 99% 이상의 세균감소율을 나타낼 수 있다. The martensitic stainless steel satisfies the following PREN, and surface alteration does not occur when antimicrobial evaluation is performed using an inoculum containing NaCl, and may exhibit a bacterial reduction rate of 99% or more.
내공식지수(PREN) Cr+3.0(Mo+1/2 W)+16N ≥ 17 PREN Cr + 3.0 (Mo + 1/2 W) + 16N ≥ 17
상기 상소둔 열처리는, 상기 마르텐사이트계 스테인리스강의 조직내에 Cu석출물을 균일하게 분포시키는 제1 균열과정, 상기 마르텐사이트계 스테인리스강의 조직내에 크롬탄화물을 균일하게 분포시키는 제2 균열과정, 및 상기 크롬탄화물의 미세 입자를 구상화시키는 제3 균열과정을 포함할 수 있다. The annealing heat treatment is a first cracking process for uniformly distributing Cu precipitates in the structure of the martensitic stainless steel, a second cracking process for uniformly distributing chromium carbide in the structure of the martensitic stainless steel, and the chromium carbide And a third cracking process for spheroidizing the fine particles of.
상기 제1 균열과정은 500 ~ 600℃에서 진행되고, 상기 제2 균열과정은 800 ~ 900℃에서 진행되며, 상기 제3 균열과정은 600 ~ 750℃에서 진행될 수 있다. The first cracking process may be performed at 500 to 600 ° C, the second cracking process may be performed at 800 to 900 ° C, and the third cracking process may be performed at 600 to 750 ° C.
상기 제1 균열과정은 5 ~ 15시간 동안 지속되고, 상기 제2 균열과정은 15 ~ 25시간 동안 지속되며, 상기 제3 균열과정은 5 ~ 15시간 동안 지속될 수 있다. The first cracking process may last for 5 to 15 hours, the second cracking process may last for 15 to 25 hours, and the third cracking process may last for 5 to 15 hours.
상기 상소둔 열처리는, 상기 제1 균열과정 이후에 상기 제2 균열과정에 이르기까지 40 ~ 200℃/h의 속도로 승온시키는 승온과정, 상기 제2 균열과정 이후에 상기 제3 균열과정에 이르기까지 10℃/h 이상의 속도로 냉각시키는 냉각과정과, 상기 제3 균열과정 이후에 공냉과정을 더 포함할 수 있다. The annealing heat treatment is, after the first cracking process up to the second cracking process to increase the temperature at a rate of 40 ~ 200 ℃ / h, after the second cracking process to the third cracking process A cooling process for cooling at a rate of 10 ° C./h or more, and an air cooling process after the third cracking process may be further included.
또한, 본 발명의 바람직한 일 실시예에 따르면, 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법으로서, 주편을 열간압연 처리하여 열연강판으로 제조하는 단계; 상기 열연강판을 상소둔 열처리하여 연질화 작업을 수행하는 단계; 및 상기 연질화가 완료된 소둔강판을 냉간압연하는 냉연강판 제조단계;를 포함하되, 상기 상소둔 열처리는, 상기 열연강판의 조직내에 Cu석출물을 균일하게 분포시키는 제1 균열과정, 상기 열연강판의 조직내에 크롬탄화물을 균일하게 분포시키는 제2 균열과정, 및 상기 크롬탄화물의 미세 입자를 구상화시키는 제3 균열과정을 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법이 제공된다. In addition, according to a preferred embodiment of the present invention, a high hardness martensitic stainless steel manufacturing method having excellent antimicrobial properties, comprising: hot-rolling the cast steel to produce a hot-rolled steel sheet; Performing annealing of the hot rolled steel sheet by annealing heat treatment; And a cold rolled steel sheet manufacturing step of cold rolling the annealed steel sheet in which the soft nitridation is completed, wherein the anneal heat treatment includes a first cracking process for uniformly distributing Cu precipitates in the tissue of the hot rolled steel sheet, within the tissue of the hot rolled steel sheet. Provided is a high hardness martensitic stainless steel manufacturing method having excellent antimicrobial properties including a second cracking process for uniformly distributing chromium carbide and a third cracking process for spheroidizing the fine particles of chromium carbide.
본 발명에 따르면, Cu가 첨가된 고탄소 마르텐사이트계 스테인리스강의 상소둔재 미세조직내에 미세한 크롬탄화물 및 e-Cu석출상을 균일 분포시켜 고경도, 고내식 및 항균특성이 우수한 도물용 마르텐사이트계 스테인리스강을 제조할 수 있는 장점이 있다. According to the present invention, fine chromium carbide and e-Cu precipitated phases are uniformly distributed in the microstructure of the upper annealing material of Cu-added high carbon martensitic stainless steel, and martensitic stainless steel for coating having excellent hardness, high corrosion resistance and antibacterial properties. There is an advantage to manufacturing steel.
또한, 본 발명에 따르면, 항균성 평가 이후 소재에 발청현상이 발생하지 않는 장점이 있다. In addition, according to the present invention, there is an advantage that does not occur rust phenomenon in the material after the antimicrobial evaluation.
도 1은 본 발명의 일 실시예에 따른 상소둔 열처리 과정을 도시하는 도면이다. 1 is a view showing an annealing heat treatment process according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 제1 균열과정에서 Cu함량에 따른 조직내 Cu석출물 미세조직 사진을 도시하는 도면이다. 2 is a view showing a microstructure photograph of Cu precipitates in the tissue according to the Cu content in the first cracking process according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라, 항균성 평가 이후 소재 표면을 관찰한 사진을 도시하는 도면이다.3 is a view showing a picture of observing the surface of the material after the antimicrobial evaluation, according to an embodiment of the present invention.
본 발명의 바람직한 일 실시예에 따르면, 중량 %로, C: 0.45~0.65%, N: 0.02~0.06%, Si: 0.1~0.6%, Mn: 0.3~1.0%, Ni: 0.1~0.4%, Cr: 13~14.5%, Mo: 0.4~0.6%, W: 0.8~1.2% 및 Cu: 1.5~2.0%를 함유하고 나머지는 Fe 및 불가피한 불순물을 포함하는 것을 특징으로 하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강이 제공된다. According to a preferred embodiment of the present invention, in weight%, C: 0.45-0.65%, N: 0.02-0.06%, Si: 0.1-0.6%, Mn: 0.3-1.0%, Ni: 0.1-0.4%, Cr : Hardness martensite system having excellent antimicrobial properties, containing 13-14.5%, Mo: 0.4-0.6%, W: 0.8-1.2% and Cu: 1.5-2.0%, and the rest contains Fe and unavoidable impurities Stainless steel is provided.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
일반적으로 널리 사용되는 식도, 가위, 면도칼 및 의료용 기구인 메스와 같은 도물용 소재는 절삭성 및 내마모성 유지를 위하여 고경도가 요구되고, 수분과 쉽게 접촉하거나 습한 분위기에서 보관되기 때문에 우수한 내식성이 요구된다. In general, ceramic materials such as esophagus, scissors, razor, and scalpel, which are widely used for medical devices, require high hardness to maintain cutting and abrasion resistance, and require excellent corrosion resistance because they are easily contacted with moisture or stored in a humid atmosphere.
이에 따라, 도물용 소재로는 고탄소가 첨가된 마르텐사이트계 스테인리스강이 주로 사용된다. Therefore, martensitic stainless steel to which high carbon is added is mainly used as a raw material for ceramics.
도물용 고탄소 마르텐사이트강의 경우, 중량 백분율로 0.45~0.70%탄소, 최대 1.0%망간, 최대 1.0% 실리콘, 그리고 12.0~15.0%의 크롬을 함유한 강이 도물용 소재로 널리 사용되고 있다.In the case of high carbon martensitic steels for ceramics, steels containing 0.45 to 0.70% carbon by weight, up to 1.0% manganese, up to 1.0% silicon, and 12.0 to 15.0% chromium are widely used for the material.
이러한 도물용 고탄소 마르텐사이트계 스테인리스강의 경우, 소재 제조시 상소둔 공정을 포함하여 제조하게 된다. In the case of such high-carbon martensitic stainless steel for ceramics, the raw material is manufactured by including an annealing process.
상소둔을 진행하는 동안 소재는 페라이트 기지내에 탄소와 크롬이 반응하여 크롬 카바이드 형태의 미세한 입자들이 분산 석출되게 되며, 기지내 고용 탄소함량이 낮아짐에 따라 압연 및 산세와 같은 스테인리스강 제조프로세스 적용이 용이하다. During the annealing, the material reacts with carbon and chromium in the ferrite matrix to disperse and precipitate fine particles in the form of chromium carbide, and it is easy to apply stainless steel manufacturing processes such as rolling and pickling as the dissolved carbon content in the substrate is lowered. Do.
뿐만 아니라, 페라이트 기지 조직내에 균일하게 분포된 미세한 크롬탄화물은 분포는 도물류 제조사에서 행해지는 강화열처리 공정에서 고온의 오스테나이트상으로 크롬 및 탄소의 빠른 재고용을 가능케 하여, 급랭 후 마르텐사이트 조직의 경도 및 내식성을 향상시키는 중요 인자이다. In addition, the fine chromium carbide uniformly distributed in the ferrite matrix allows the rapid re-application of chromium and carbon to the high temperature austenite phase in the reinforcement heat treatment process performed by the ceramics manufacturer. And important factors for improving corrosion resistance.
이에 경도, 내식성이 우수한 도물용 고탄소 마르텐사이트강을 확보하기 위해서는 미세한 크롬탄화물을 미세조직내 균일하게 분포시키는 것이 필수적이다.Accordingly, in order to secure high carbon martensitic steel for coatings having excellent hardness and corrosion resistance, it is essential to distribute the fine chromium carbide uniformly in the microstructure.
한편, 앞서 살펴본 바와 같이, 금속소재의 경우 항균성 평가시 발청현상이 발생할 수 있으므로, 도물용 고탄소 마르텐사이트강의 경우에도 항균성 평가 결과의 신뢰도가 저하되는 문제가 발생할 수 있다. On the other hand, as described above, in the case of the metal material may be a rust phenomenon when the antimicrobial evaluation, the high-carbon martensite steel for ceramics may also cause a problem that the reliability of the antimicrobial evaluation results deteriorate.
항균 마르텐사이트계 스테인리스강과 관련된 특허로는, e-Cu 석출상을 균일 분포시킨 항균성이 우수한 마르텐사이트계 스테인리스강 및 그 제조 방법에 관한 일본특허공개 (평) 9-195016, 일본특허공개(평)9-256116 등이 있으나, 항균성 평가시 소재의 녹발생과 같은 항균성 및 세균감소율에 큰 영향을 미칠 것으로 판단되는 인자에 대해서는 어떠한 정보도 없는 것으로 확인되었다.Patents related to antimicrobial martensitic stainless steels include Japanese Patent Application Laid-Open No. 9-195016, Japanese Patent Laid-Open Publication No. 9-195016 regarding martensitic stainless steel having excellent antimicrobial property by uniformly distributing an e-Cu precipitated phase. 9-256116, etc., but there was no information about the factors that are expected to have a significant effect on the antimicrobial and bacterial reduction rate, such as the rust of the material when the antimicrobial evaluation.
따라서, 항균특성이 우수한 고경도 마르텐사이트계 스테인리스강을 개발하기 위해서는 크롬탄화물을 미세조직내 균일하게 분포시키면서 항균성 평가 이후 소재에 발청현상이 발생하지 않는 내식성의 확보가 필수적이다.Therefore, in order to develop high hardness martensitic stainless steel having excellent antimicrobial properties, it is essential to secure chromium carbide uniformly in the microstructure and to prevent corrosion resistance of the material after antimicrobial evaluation.
본 발명은 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 및 그 제조방법에 관한 것으로써, 중량%로, C: 0.45~0.65%, N: 0.02~0.06%, Si: 0.1~0.6%, Mn: 0.3~1.0%, Ni: 0.1~0.4%, Cr: 13~14.5%, Mo: 0.4~0.6%, W: 0.8~1.2% 및 Cu: 1.5~2.0%를 함유하고 나머지는 Fe 및 불가피한 불순물로 이루어진 합금성분을 갖고, JIS Z 2801 항균성 평가법으로 세균감소율이 99.9% 이상을 나타내는 마르텐사이트계 스테인리스강을 제조 하는 것을 특징으로 한다.The present invention relates to a high-strength martensitic stainless steel having excellent antimicrobial properties and a method for manufacturing the same, in weight%, C: 0.45 to 0.65%, N: 0.02 to 0.06%, Si: 0.1 to 0.6%, and Mn: 0.3 Alloy containing 1.0%, Ni: 0.1-0.4%, Cr: 13-14.5%, Mo: 0.4-0.6%, W: 0.8-1.2% and Cu: 1.5-2.0%, the remainder being Fe and inevitable impurities It is characterized by producing martensitic stainless steel having a component and exhibiting a bacterial reduction rate of 99.9% or more by JIS Z 2801 antimicrobial evaluation method.
본 발명의 도물용 고탄소 마르텐사이트계 스테인리스강을 구성하는 합금 원소의 함량에 대하여 설명한다. Content of the alloying element which comprises the high carbon martensitic stainless steel for ceramics of this invention is demonstrated.
C는 함량이 낮을 경우 마르텐사이트계 스테인리스강의 강화열처리후 경도가 저하되어 절삭성 및 내마모성 확보가 불가능하므로 0.45% 이상을 첨가한다. 반면, 그 함량이 과도하게 많아지면 크롬탄화물 과도한 형성에 기인하여 소재 자체의 내식성이 저하될 뿐만 아니라 탄소 편석에 기인한 소둔조직내 조대탄화물 형성 우려가 있으므로 상한을 0.65%로 제한한다.If the content of C is low, the hardness of the martensitic stainless steel is reduced after hardness, so that cutting and abrasion resistance cannot be secured. Therefore, 0.45% or more of C is added. On the other hand, if the content is excessively high, the corrosion resistance of the material itself is lowered due to excessive formation of chromium carbide, and the upper limit is limited to 0.65% because there is a fear of formation of coarse carbide in the annealing structure due to carbon segregation.
N는 내식성과 경도를 동시에 개선하기 위해 첨가되는 원소로써, C 대신 첨가하더라도 국부적인 미세 편석을 유발하지 않아 제품에 조대한 석출물을 형성시키지 않는 장점이 있다. 이러한 효과를 구현하기 위해 0.02% 이상을 첨가한다. 하지만 과도하게 첨가될 경우 주조시 질소에 의한 포어(pore)가 발생할 우려가 있으므로 상한을 0.06%로 제한한다.N is an element added to improve the corrosion resistance and hardness at the same time, even if added instead of C does not cause local fine segregation has the advantage of not forming coarse precipitate in the product. To achieve this effect add at least 0.02%. However, if excessively added, pore due to nitrogen may occur during casting, so the upper limit is limited to 0.06%.
Si은 탈산을 위해 필수적으로 첨가되는 원소이므로, 0.1% 이상을 첨가한다. 그러나, 높은 함량의Si첨가는 산세성을 저하시켜 소재의 취성을 높이므로 그 상한을 0.6%로 제한한다.Since Si is an essential element for deoxidation, 0.1% or more is added. However, the addition of a high content of Si lowers the pickling property and increases the brittleness of the material, so the upper limit thereof is limited to 0.6%.
Mn은 탈산을 위해 필수적으로 첨가되는 원소이므로 0.3% 이상을 첨가한다. 그러나 과도한게 첨가될 경우 강의 표면품질을 저해하고 최종 열처리재의 잔류 오스테나이트 형성을 통해 고경도 물성확보를 억제하므로 상한을 1.0%로 제한한다.Since Mn is an essential element for deoxidation, 0.3% or more is added. However, when excessively added, the upper limit is limited to 1.0% because it inhibits the surface quality of the steel and suppresses the securing of high hardness properties through residual austenite formation of the final heat treatment material.
Ni은 제강공정에서 고철로부터 불가피하게 반입되는 원소로써, 0.1% 이상을 첨가한다. 그러나, 높은 함량의 Ni을 함유할 경우 최종 열처리재의 잔류 오스테나이트를 형성시켜 고경도 물성확보가 어렵다. 이에 상한을 0.4%로 제한한다.Ni is an element that is inevitably carried from scrap metal in the steelmaking process, and 0.1% or more is added. However, when a high content of Ni is formed, it is difficult to obtain high hardness properties by forming residual austenite of the final heat treatment material. Therefore, the upper limit is 0.4%.
Cr은 내식성을 확보하는 기본 원소이므로 13% 이상을 첨가한다. 그러나, 과도한 첨가 시 제조비용이 상승하며, 조직내 크롬 성분의 미세 편석이 증가하여 국부적으로 크롬탄화물의 조대화를 유발시켜 강화열처리재의 내식성 및 경도를 저하시킬 수 있기 때문에 상한을 14.5%로 제한한다.Since Cr is a basic element ensuring corrosion resistance, 13% or more is added. However, excessive addition increases the manufacturing cost, and increases the fine segregation of chromium components in the tissue, causing localization of chromium carbide, thereby lowering the corrosion resistance and hardness of the reinforcement heat treatment, so the upper limit is limited to 14.5%. .
Mo은 내식성 향상에 우수한 효과가 있으므로 0.4% 이상을 첨가한다. 그러나, 과도한 첨가는 제조비용의 상승과 을 초래하기 때문에 상한을 0.6%로 제한한다.Mo has an excellent effect on improving the corrosion resistance, so 0.4% or more is added. However, excessive addition results in an increase in the manufacturing cost and limits the upper limit to 0.6%.
W은 내식성 향상 및 열처리경도를 상승시키는 효과가 있으므로 0.8% 이상을 첨가한다. 그러나, 과도한 첨가 시 제조비용의 상승과 가공성을 저해하므로 상한을 1.2%로 제한한다. W has an effect of improving the corrosion resistance and increasing the heat treatment hardness, so 0.8% or more is added. However, excessive addition inhibits the increase in manufacturing cost and processability, so the upper limit is limited to 1.2%.
Cu는 본 발명의 스테인리스강에 가장 중요한 합금원소로써, 상소둔에 의해 e-Cu를 형성시켜 항균성 확보가 가능해진다. 또한 그 함량이 많을수록 e-Cu의 석출량이 많아져 Cu2+의 용출량이 증가하여 항균특성이 향상되나, 과도하게 첨가될 경우 제조성, 가공성, 내식성이 저하할 수 있는 우려가 있으므로 상한을 2.0%로 제한한다.Cu is the most important alloy element in the stainless steel of the present invention, and e-Cu is formed by ordinary annealing, thereby securing antibacterial properties. In addition, the higher the content, the greater the amount of e-Cu precipitates, and the higher the elution amount of Cu2 +, which improves the antibacterial properties. do.
상기와 같은 조성을 갖는 본 발명의 일 실시예에 따른 마르텐사이트계 스테인리스강은 연속주조 또는 강괴주조에 의해 주편을 제작한 다음, 열간압연 처리하여 가공처리가 가능한 열연강판으로 제조한다. Martensitic stainless steel according to an embodiment of the present invention having the composition as described above is produced by hot-rolling and hot-rolled steel sheet after manufacturing the cast by continuous casting or ingot casting.
이후 제조된 열연강판은 도물용으로 사용가능한 두께로 정밀압연과 같은 가공을 진행하기 전에 양호한 가공성 확보를 위하여 상소둔 열처리를 통한 연질화 작업을 실시한다.After that, the hot rolled steel sheet manufactured is subjected to soft nitriding operation through annealing heat treatment in order to secure good workability before proceeding such as precision rolling to a thickness usable for coating.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 상소둔 열처리는 마르텐사이트계 스테인리스강의 조직내에 우선적으로 구형의 Cu석출물을 균일하게 분포시키는 제1 균열과정과, 열연강판의 조직내에 크롬탄화물을 균일하게 분포시키는 제2 균열과정, 및 크롬탄화물의 미세 입자를 구상화시키는 제3 균열과정을 포함한다. As shown in Figure 1, the annealing heat treatment according to an embodiment of the present invention is a first cracking process to uniformly distribute the spherical Cu precipitates preferentially in the structure of martensitic stainless steel, and the chromium in the structure of the hot rolled steel sheet A second cracking step of uniformly distributing the carbide, and a third cracking step of spheroidizing the fine particles of the chromium carbide.
그리고, 제1 균열과정 이후에 상기 제2 균열과정에 이르기까지 열연강판의 온도를 상승시키는 승온과정과, 제2 균열과정 이후에 상기 제3 균열과정에 이르기까지 열연강판의 온도를 하강시키는 냉각과정과, 제3 균열과정 이후에 열연강판을 냉각시키는 공냉과정이 더 이루어진다.And, the temperature rising process for increasing the temperature of the hot-rolled steel sheet from the first cracking process to the second cracking process, and the cooling process of lowering the temperature of the hot-rolled steel sheet from the second cracking process to the third cracking process And, after the third cracking process is further performed an air cooling process for cooling the hot-rolled steel sheet.
먼저, 본 발명의 일 실시예에 따른 제1 균열과정은 열연강판의 조직내에 Cu석출물을 균일하게 분포시키는 과정으로서, 열연강판을 500 ~ 600℃의 항온 분위기에서 5 ~ 15시간 동안 균일하게 가열하는 과정이다. First, the first cracking process according to an embodiment of the present invention is a process of uniformly distributing Cu precipitates in the structure of the hot rolled steel sheet, and uniformly heating the hot rolled steel sheet for 5 to 15 hours in a constant temperature of 500 to 600 ° C. It is a process.
이 과정에서 미세한 Cu석출물은 도 2의 (b)와 같이 조직 내에서 균일하게 분포하며 수십 nm크기로 존재하게 된다. 이러한 Cu석출물은 일반적으로 입계에서 우선 석출하는 것으로 잘 알려진 크롬탄화물의 석출기점으로 작용하여 이후 제2 균열과정에서 균일한 크롬탄화물의 석출을 유도한다. In this process, the fine Cu precipitate is uniformly distributed in the tissue as shown in FIG. These Cu precipitates generally act as precipitation starting points of chromium carbides, which are well known to precipitate first at grain boundaries, thereby inducing uniform deposition of chromium carbides in the second cracking process.
제1 균열과정에서 균열온도가 500℃ 미만일 경우 Cu석출물이 형성되지 않으며, 600℃ 초과의 경우 Cu석출물과 동시에 크롬탄화물이 동시 석출됨에 따라 Cu석출물과 무관하게 크롬탄화물이 입계에 우선적으로 석출하여 미세한 탄화물의 균일 분포를 확보할 수 없다. In the first cracking process, if the cracking temperature is lower than 500 ° C, no Cu precipitates are formed. If the cracking temperature is higher than 600 ° C, chromium carbides are precipitated at the same time as the Cu precipitates. Uniform distribution of carbides cannot be ensured.
또한, 제1 균열과정에서 균열시간이 5시간 미만인 경우 Cu석출이 발생하지 않아 크롬탄화물의 균일 분포의 확보가 불가능하며, 15시간을 초과할 경우 Cu석출물의 크기는 증가하는 반면 개수가 감소하여 국부적으로 Cu석출물이 분포하는 문제점이 발생하며 결과적으로 크롬탄화물의 균일 분포 확보가 어려워진다. In addition, when the cracking time is less than 5 hours in the first cracking process, Cu deposition does not occur and thus it is impossible to secure a uniform distribution of chromium carbides. If the cracking time exceeds 15 hours, the size of the Cu precipitates increases while the number decreases. As a result, the Cu precipitates are distributed, and as a result, it becomes difficult to secure a uniform distribution of chromium carbides.
이에 제1 균열과정은 500 ~ 600℃의 항온 분위기에서 5 ~ 15시간동안 균열처리하는 것이 바람직하다.Therefore, the first cracking process is preferably cracked for 5 to 15 hours in a constant temperature atmosphere of 500 ~ 600 ℃.
다음으로, 본 발명의 일 실시예에 따른 승온과정은 제1 균열과정 이후 제2 균열과정까지 열연강판을 40 ~ 200℃/h 의 속도로 승온시키는 과정이다. Next, the temperature raising process according to an embodiment of the present invention is a process of increasing the temperature of the hot-rolled steel sheet at a rate of 40 ~ 200 ℃ / h from the first cracking process to the second cracking process.
승온과정에서 승온 속도가 40℃/h 이하인 경우에는 크롬 탄화물이 조대해지는 온도 구간, 예를 들어 700 ~ 750℃를 경유하는 시간이 증가하는바, 크롬 탄화물의 크기가 조대해져 미세 조직 내에 분포하는 크롬 탄화물의 밀도가 감소될 수 있다. When the temperature increase rate is 40 ° C / h or less during the temperature increase process, the time passing through the temperature range where the chromium carbide is coarse, for example, 700 ~ 750 ° C increases, the size of the chromium carbide is coarse and the chromium distributed in the microstructure The density of carbides can be reduced.
반면, 승온 속도가 200℃/h 이상이면, 크롬 탄화물이 조대화되는 온도 구간의 경유 시간이 감소되어 미세한 크롬 탄화물을 확보할 수 있는 장점은 있지만, 탄화물 확산 시간이 감소되어 크롬 탄화물이 분포 불균형이 초래되는 단점이 존재한다. On the other hand, if the temperature increase rate is 200 ° C./h or more, the transit time in the temperature section where the chromium carbide is coarsened is reduced to secure fine chromium carbides, but the carbide diffusion time is reduced, resulting in unbalanced distribution of chromium carbides. There are disadvantages that result.
따라서, 승온과정에서의 승온 속도는 40℃/h를 초과하고, 200℃/h 미만 범위로 조절하는 것이 바람직하다.Therefore, the temperature increase rate in the temperature increase process is more than 40 ℃ / h, it is preferable to adjust the range to less than 200 ℃ / h.
계속하여, 본 발명의 일 실시예에 따른 제2 균열과정은 승온과정에 이어서 진행되어 열연강판의 조직내에 크롬탄화물을 균일하게 분포시키는 과정으로서, 열연강판을 800 ~ 900℃의 항온 분위기에서 15 ~ 25 시간동안 균일하게 가열하는 과정이다. 이 과정에서 크롬탄화물은 조직 내에서 균일하게 분포된다. Subsequently, the second cracking process according to an embodiment of the present invention is a process of uniformly distributing chromium carbide in the structure of the hot-rolled steel sheet after the temperature raising process, and the hot-rolled steel sheet in a constant temperature atmosphere of 800 to 900 ° C. It is the process of heating uniformly for 25 hours. In this process, chromium carbide is uniformly distributed in the tissue.
균열 온도가 800℃ 이하이면 균열 처리시에 입계에서 국부적으로 석출되는 크롬 탄화물로 인하여 응집부가 형성될 수 있으며, 900℃ 이상하면 결정 입계 부근에 조대한 크롬 탄화물이 형성되는바, 이러한 크롬 탄화물 응집부 및 조대한 크롬 탄화물은 소재의 국부적인 재질 불균형을 초래하여 연성 확보를 곤란하게 하며, 최종 열처리시 소재 품질 저하를 유발한다.When the cracking temperature is 800 ° C. or less, agglomerates may be formed due to chromium carbide locally precipitated at the grain boundary during the cracking process, and when it is 900 ° C. or more, coarse chromium carbides are formed near the grain boundaries. And coarse chromium carbide causes local material imbalance of the material, making it difficult to secure ductility and causing material quality degradation during final heat treatment.
또한, 제2 균열과정에서의 균열 시간이 15시간 이하이면, 미세한 크롬 탄화물 형성에는 유리하지만 크롬 탄화물이 균일하게 분포되지 않고, 군집되어 분포될 수 있으며, 25시간 이상이면 과소둔에 의해 이웃한 크롬 탄화물이 합체, 국부적 크롬 탄화물 조대화가 진행되는 것은 물론, 열처리 시간 증가로 공정 효율이 감소하고, 제조비용이 증가하는 단점이 있다. In addition, if the cracking time in the second cracking process is 15 hours or less, it is advantageous to form fine chromium carbides, but the chromium carbides are not uniformly distributed, but may be clustered and distributed. As a result of coalescence and coarsening of localized chromium carbides, process efficiency decreases due to an increase in heat treatment time and manufacturing costs increase.
따라서, 제2 균열과정은 800 ~ 900℃의 항온 분위기에서 15 ~ 25시간 동안 균열처리하는 것이 바람직하다.Therefore, the second cracking process is preferably cracked for 15 to 25 hours in a constant temperature atmosphere of 800 ~ 900 ℃.
다음으로, 본 발명의 일 실시예에 따른 냉각과정은 제2 균열과정 이후 제3 균열과정까지 열연강판을 600 ~ 750℃로 냉각하는 과정으로서, 10℃/h를 초과하는 속도로 열연강판을 냉각하는 것이 바람직하다. 냉각 속도가 10℃/h 이하이면, 크롬 탄화물 미세 조직의 크기가 조대화되는 온도 범위를 경유하는 시간이 증가되는바, 이로 인해 미세 조직 내에서의 크롬 탄화물 미세 조직이 조대화되어, 강화 열처리시 내식성 및 고경도 확보가 곤란해진다.Next, the cooling process according to an embodiment of the present invention is a process of cooling the hot rolled steel sheet at 600 to 750 ° C. from the second crack process to the third crack process, cooling the hot rolled steel sheet at a rate exceeding 10 ° C./h. It is desirable to. If the cooling rate is 10 ° C./h or less, the time through the temperature range in which the size of the chromium carbide microstructure is coarsened is increased, which causes the chromium carbide microstructure in the microstructure to coarsen, resulting in enhanced heat treatment. It becomes difficult to secure corrosion resistance and high hardness.
본 발명의 일 실시예에 따른 제3 균열과정은 냉각과정 이어서 진행되어 열연강판 조직 내 크롬탄화물의 미세 입자를 저온으로 구상화시키는 과정으로서, 600 ~ 750℃에서 열연 코일을 5 ~ 15시간 동안 항온으로 유지, 균일하게 가열하는 과정이다. According to an embodiment of the present invention, the third cracking process is a process of forming a fine particle of chromium carbide in the hot rolled steel sheet at low temperature by proceeding after the cooling process, and heating the hot rolled coil at a constant temperature for 5 to 15 hours at 600 to 750 ° C. It is the process of maintaining and heating uniformly.
크롬탄화물이 구상화하기 위한 최소 온도 조건이 600℃이며, 750℃를 초과하면 구상화된 크롬 탄화물이 과도하게 성장하여 크롬 탄화물 개수가 감소하고 연성이 저하된다.The minimum temperature condition for spheroidizing chromium carbide is 600 ° C., and if it exceeds 750 ° C., the spheroidized chromium carbide grows excessively, reducing the number of chromium carbides and reducing ductility.
또한, 제3 균열과정의 항온 유지 시간이 5시간 이하이면 크롬 탄화물의 구상화 진행이 미흡하며, 15시간 이상이면 구상화 탄화물이 과도하게 성장하여 조대한 미세 조직을 형성하게 된다. In addition, if the constant temperature holding time of the third cracking process is 5 hours or less, the progress of spheroidization of chromium carbide is insufficient, and if it is 15 hours or more, the spheroidized carbides grow excessively to form coarse microstructures.
따라서 제3 균열과정은 600 ~ 750℃의 항온 분위기에서 5 ~ 15시간 동안 균열처리하는 것이 바람직하다.Therefore, the third cracking process is preferably cracked for 5 to 15 hours in a constant temperature of 600 ~ 750 ℃.
제3 균열과정 이후에 열연강판을 대기 중에서 공냉시켜 상소둔 열처리 과정을 완료한다.After the third cracking process, the hot-rolled steel sheet is air-cooled in air to complete the annealing heat treatment process.
상기의 상소둔 열처리를 통한 연질화가 완료된 이후 소둔강판을 냉간압연하는 냉연강판 제조단계가 진행되며, 원하는 두께 및 형태로 가공이 완료된 상기 냉연강판을 이용하여 강화열처리하는 단계가 진행된다. After the soft nitriding through the annealing heat treatment is completed, a cold rolled steel sheet manufacturing step of cold rolling an annealing steel sheet is performed, and a step of reinforcing heat treatment is performed using the cold rolled steel sheet processed to a desired thickness and shape.
강화열처리는 총 세단계로 진행되는데, 첫번째 단계는 상소둔에 의해 균일하게 분포시킨 탄화물을 재고용시키는 오스테나이징→퀜칭 열처리 단계이다. Reinforcement heat treatment is carried out in three stages. The first stage is an austenizing → quenching heat treatment step of reusing carbides uniformly distributed by annealing.
이 열처리 단계에서는 1000℃ 내지 1150℃에서 10초 내지 5분 동안 열처리한다. 여기서, 열처리 온도가 1000℃ 미만인 경우 면도날용 강재가 요구하는 경도를 얻을 수 없으며, 열처리 온도가 1150℃를 초과하는 경우, 탄화물이 재고용량 증가에 따른 잔류 오스테나이트 과다 형성으로 경도저하의 문제가 발생될 수 있다. In this heat treatment step, the heat treatment is performed for 10 seconds to 5 minutes at 1000 ℃ to 1150 ℃. Here, if the heat treatment temperature is less than 1000 ℃ can not obtain the hardness required for the blade steel, and if the heat treatment temperature exceeds 1150 ℃, the problem of hardness decrease due to excessive formation of residual austenite due to the increase of inventory capacity Can be.
또한, 열처리 시간이 10초 미만인 경우 역시 면도날용 강재가 요구하는 경도를 얻을 수 없으며, 열처리 시간이 5분을 초과하는 경우에도, 그레인(grain)이 성장하며 잔류 오스테나이트가 발생될 수 있다. In addition, when the heat treatment time is less than 10 seconds, the hardness required for the blade steel also can not be obtained, and even when the heat treatment time exceeds 5 minutes, grain (growth) may grow and residual austenite may be generated.
퀜칭 열처리가 완료된 이후 일부 잔류 오스테나이트를 마르텐사이트로 상변태시키기 위해서 약 -70℃의 온도에서 10초 내지 5분 동안 써브제로 열처리를 실시한다. 이후 제조된 마르텐사이트강의 연성 확보를 위하여 약 400~600℃ 템퍼링 처리를 30분~2시간 실시하고 공냉시켜 강화열처리 과정을 완료한다.After completion of the quenching heat treatment, some residual austenite is subjected to a subzero heat treatment for 10 seconds to 5 minutes at a temperature of about −70 ° C. to phase transform the martensite. Then, to secure the ductility of the manufactured martensitic steel, a tempering treatment of about 400 to 600 ° C. is performed for 30 minutes to 2 hours, followed by air cooling to complete the strengthening heat treatment process.
이하에서는 본 발명의 실시예를 통하여 본 발명을 설명한다. 그러나, 하기 실시예들은 본 발명의 바람직한 실시예이며, 본 발명의 권리범위가 하기 실시예들에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described through embodiments of the present invention. However, the following examples are preferred embodiments of the present invention, and the scope of the present invention is not limited by the following examples.
먼저, 하기의 표 1과 같은 조성을 함유하고 나머지는 철(Fe)와 불가피한 불순물을 함유(중량%)하는 실시예 및 비교예에 따른 열연강판을 제조하였다. 참고사항으로 스테인리스강의 내식성을 평가하는 지표 중 한 가지 방법인 내공식지수(PREN, 수식 1)을 첨부하여 제조강종간의 내식성을 수치화하였다.First, a hot rolled steel sheet according to Examples and Comparative Examples containing the composition shown in Table 1 below and the remainder containing iron (Fe) and unavoidable impurities (wt%) was prepared. For reference, the corrosion resistance between steel grades was quantified by attaching the PREN (Equation 1), which is one of the indicators to evaluate the corrosion resistance of stainless steel.
수식 1) PREN=Cr+3.0(Mo+1/2 W)+16NEquation 1) PREN = Cr + 3.0 (Mo + 1/2 W) + 16N
강종Steel grade CC SiSi MnMn CrCr NiNi MoMo WW CuCu NN PRENPREN
비교예 1Comparative Example 1 0.6830.683 0.4080.408 0.6930.693 13.2113.21 0.3080.308 00 00 00 0.030.03 13.6913.69
비교예 2Comparative Example 2 0.6870.687 0.4020.402 0.7300.730 13.2413.24 0.2960.296 00 00 0.510.51 0.040.04 13.8813.88
비교예 3Comparative Example 3 0.6510.651 0.40.4 0.6880.688 13.313.3 0.2990.299 00 00 1.021.02 0.060.06 14.2614.26
비교예 4Comparative Example 4 0.7000.700 0.3800.380 0.6380.638 12.7612.76 0.3100.310 00 00 1.461.46 0.030.03 13.2413.24
비교예 5Comparative Example 5 0.6920.692 0.4240.424 0.7220.722 13.5513.55 0.3020.302 00 00 1.981.98 0.050.05 14.3514.35
비교예 6Comparative Example 6 0.6950.695 0.3910.391 0.7010.701 13.1613.16 0.30.3 00 00 2.522.52 0.040.04 13.813.8
비교예 7Comparative Example 7 0.490.49 0.3050.305 0.5170.517 13.9813.98 0.3070.307 0.510.51 1.051.05 00 0.0310.031 17.6917.69
비교예 8Comparative Example 8 0.560.56 0.3130.313 0.4720.472 13.8113.81 0.2950.295 0.490.49 1.011.01 00 0.0290.029 17.3617.36
비교예 9Comparative Example 9 0.620.62 0.2980.298 0.5050.505 14.0114.01 0.3080.308 0.510.51 1.031.03 00 0.030.03 17.6717.67
비교예 10Comparative Example 10 0.660.66 0.3120.312 0.5280.528 13.9213.92 0.3100.310 0.480.48 1.021.02 1.501.50 0.0280.028 17.4417.44
실시예 1Example 1 0.450.45 0.2970.297 0.4890.489 13.9113.91 0.2870.287 0.480.48 0.990.99 1.521.52 0.0290.029 17.4017.40
실시예 2Example 2 0.50.5 0.2990.299 0.5060.506 14.1414.14 0.3020.302 0.490.49 0.950.95 1.51.5 0.030.03 17.6117.61
실시예 3Example 3 0.560.56 0.2980.298 0.5090.509 1414 0.3010.301 0.50.5 1One 1.521.52 0.030.03 17.5817.58
실시예 4Example 4 0.60.6 0.2910.291 0.5030.503 13.9513.95 0.3050.305 0.490.49 0.980.98 1.51.5 0.030.03 17.4717.47
상기의 표 1에 기재된 조성을 갖는 도물용 고탄소 마르텐사이트계 스테인리스강 주편을 제조하고, 열간압연을 통하여 열연강판(두께 3mm)을 제조하였으며, 동시에 열연소재의 에지 품질을 확인하였다. The high carbon martensitic stainless steel slab for coatings having the composition shown in Table 1 was prepared, and hot rolled steel sheet (thickness 3 mm) was manufactured through hot rolling, and at the same time, the edge quality of the hot rolled material was confirmed.
이후, 제조된 열연강판을 이용하여 하기의 상소둔 조건을 이용하여 열처리를 행한 후 미세조직 관찰 및 연신율 평가를 진행하였다. Subsequently, after the heat treatment was performed using the manufactured hot-rolled steel sheet using the following annealing conditions, microstructure observation and elongation evaluation were performed.
[상소둔 열처리 조건][Annealing Heat Treatment Condition]
- 제1 균열과정: 500℃에서 10시간-First cracking process: 10 hours at 500 ℃
- 승온과정: 승온속도 100℃/hr-Temperature rise process: temperature increase rate 100 ℃ / hr
- 제2 균열과정: 850℃에서 20시간2nd crack process: 20 hours at 850 degreeC
- 냉각과정: 온도하강속도 10℃/hr-Cooling process: temperature drop rate 10 ℃ / hr
- 제3 균열과정: 650℃에서 7시간3rd crack process: 7 hours at 650 degreeC
이후, 냉간압연을 통하여 냉연강판(두께 1.5mm)를 제조하였으며, 냉연소재의 에지 품질을 확인하였다. Then, the cold rolled steel sheet (thickness 1.5mm) was manufactured through cold rolling, and the edge quality of the cold rolled material was confirmed.
또한, 하기의 조건으로 강화열처리를 행한 후 JIS Z 2801에 준용하여 1종의 균주(대장균)를 이용하여 항균성 평가를 실시하였다. In addition, the heat-treatment was performed under the following conditions, and the antimicrobial evaluation was performed using one strain (E. coli) according to JIS Z 2801.
[강화열처리 조건][Reinforced heat treatment condition]
- Austenitizing: 1100℃에서 5분Austenitizing: 5 minutes at 1100 ℃
- Quenching: 상온으로 오일퀜칭-Quenching: Oil quenching at room temperature
- Deep freezing: -70℃에서 5분Deep freezing: 5 minutes at -70 ℃
- Tempering/Sintering: 500℃에서 30분Tempering / Sintering: 30 minutes at 500 ℃
또한, 평가 완료재에 대하여 발청현상을 유/무를 확인하기 위하여 표면 관찰을 실시하였다. 그 결과를 표 2에 나타내었다.In addition, surface observation was performed to confirm the presence / absence of the rusting phenomenon about the evaluated material. The results are shown in Table 2.
강종Steel grade 열연에지품질Hot rolled edge quality 상소둔재 재질Upper Annealing Material 냉연에지품질Cold Rolled Edge Quality 강화열처리재Reinforced heat treatment material
연신율(%)Elongation (%) 석출물 균일성Precipitate uniformity 표면발청Surface finish 세균감소율(%)Bacterial Reduction (%)
Cr탄화물Cr carbide Cu석출상Cu precipitation phase
비교예 1Comparative Example 1 양호Good 21.121.1 열위Inferior 열위Inferior 양호Good U 99.999.9
비교예 2Comparative Example 2 양호Good 20.820.8 열위Inferior 열위Inferior 양호Good U 99.999.9
비교예 3Comparative Example 3 양호Good 19.319.3 열위Inferior 열위Inferior 양호Good U 99.999.9
비교예 4Comparative Example 4 양호Good 19.219.2 양호Good 양호Good 양호Good U 99.999.9
비교예 5Comparative Example 5 양호Good 19.219.2 양호Good 양호Good 양호Good U 99.999.9
비교예 6Comparative Example 6 열위Inferior 17.517.5 양호Good 양호Good 열위Inferior U 99.999.9
비교예 7Comparative Example 7 양호Good 21.421.4 양호Good 양호Good 양호Good radish 92.592.5
비교예 8Comparative Example 8 양호Good 21.121.1 양호Good 양호Good 양호Good radish 94.194.1
비교예 9Comparative Example 9 양호Good 20.420.4 양호Good 양호Good 양호Good radish 94.494.4
비교예 10Comparative Example 10 양호Good 17.317.3 양호Good 양호Good 열위Inferior radish 99.999.9
실시예 1Example 1 양호Good 21.621.6 양호Good 양호Good 양호Good radish 99.999.9
실시예 2Example 2 양호Good 20.120.1 양호Good 양호Good 양호Good radish 99.999.9
실시예 3Example 3 양호Good 19.819.8 양호Good 양호Good 양호Good radish 99.999.9
실시예 4Example 4 양호Good 19.419.4 양호Good 양호Good 양호Good radish 99.999.9
관찰되는 반면, Cu함량이 2.5% 이상인 경우(비교예 6) 열간압연후 소재의 에지부에 다량의 크랙이 발생되는 것이 확인되며, 이는 다량의 Cu첨가에 따른 열간 가공성 열위에 기인하는 것으로 판단된다. 뿐만 아니라 상소둔 이후에도 연신율이 18% 미만으로 평가되었다. On the other hand, when the Cu content is 2.5% or more (Comparative Example 6), it is confirmed that a large amount of cracks are generated at the edge of the material after hot rolling, which is attributed to the hot workability inferiority due to the addition of a large amount of Cu. . In addition, the elongation was estimated to be less than 18% after the annealing.
이상의 결과를 바탕으로 양호한 열간 가공성 확보를 위해서는 Cu함량이 2% 이하로 제한되어야 하는 것을 알 수 있다.Based on the above results, it can be seen that the Cu content should be limited to 2% or less in order to secure good hot workability.
한편, 내식성의 개선을 위하여 Mo, W등을 첨가시킨 경우(비교예 7~10, 실시예 1~4)의 경우 0.45~0.70%의 C 첨가량에 관계없이 양호한 열간압연성을 나타내는 반면, 상소둔 후 냉간압연 진행시 C함량이 0.65%를 초과할 경우 냉연강판의 에지부에 다량의 크랙이 발생되는 것이 확인되며, 뿐만 아니라 상소둔 이후 연신율이 18% 미만으로 낮게 관찰되는 것이 확인되었다. 이는 다량의 C첨가에 기인한 조대탄화물의 형성뿐만 아니라 W, Cu등 첨가원소의 석출물 형성에 기인하는 것으로 판단된다. On the other hand, in the case of adding Mo, W, etc. to improve the corrosion resistance (Comparative Examples 7 to 10, Examples 1 to 4), while showing good hot rolling property regardless of the amount of 0.45 to 0.70% of C added, After the cold rolling progress, when the C content exceeds 0.65%, it is confirmed that a large amount of cracks are generated at the edge portion of the cold rolled steel sheet, and the elongation after the annealing is observed to be lower than 18%. This is believed to be attributable not only to the formation of coarse carbides due to the large amount of C, but also to the formation of precipitates of additive elements such as W and Cu.
이상의 결과를 바탕으로 양호한 냉간 가공성 확보를 위해서는 C의 함량이 0.65% 이하로 제한되어야 하는 것을 알 수 있다.Based on the above results, it can be seen that the content of C should be limited to 0.65% or less in order to secure good cold workability.
또한, 상소둔재의 미세조직 관찰을 통한 크롬탄화물 및 Cu석출상을 확인하였다. In addition, the chromium carbide and Cu precipitated phases were observed through observation of the microstructure of the annealing material.
우선 비교예 1~6의 경우 일정한 C함유량에서 Cu의 함량이 0에서 2.5%로 증가함에 따라 크롬탄화물의 균일성이 증가하는 것이 확인되었으며, 특히 Cu함량이 1.5% 이상으로 첨가될 경우 기지내에 90개/100㎛2 이상의 탄화물 밀도 확보가 가능하여 고객사 강화열처리 후 높은 경도와 우수한 내식성의 확보가 가능할 것으로 판단된다. First, in Comparative Examples 1 to 6, it was confirmed that the uniformity of the chromium carbide increased as the Cu content increased from 0 to 2.5% at a constant C content, especially when the Cu content was added at 1.5% or more. Carbide density of more than / 100㎛ 2 can be secured, so it is possible to secure high hardness and excellent corrosion resistance after reinforcing heat treatment.
한편, 첨가되는 Cu함량이 1.5% 이상 증가할 경우 소둔조직내 분포하는 Cu석출상이 도 2(b)에 나타난 바와 같이 균일하게 분포하는 것이 확인되었다. On the other hand, when the added Cu content is increased by more than 1.5%, it was confirmed that the Cu precipitated phase distributed in the annealing structure is uniformly distributed as shown in Figure 2 (b).
보다 상세하게, 도 2(a)와 같이 Cu 함량이 1.5% 미만으로 첨가될 경우 불균일한 Cu석출상의 형성으로 항균성의 열위를 야기할 수 있다. 반면 1.5% 이상 첨가시킨 도 2(b)의 경우 Cu 석출상이 기지내에 균일하게 분포하며 이를 통하여 우수한 항균성 발현이 가능할 것으로 판단된다. In more detail, when the Cu content is added to less than 1.5% as shown in Figure 2 (a) can form a non-uniform Cu precipitated phase may cause an antimicrobial inferiority. On the other hand, in the case of FIG. 2 (b) added more than 1.5%, the Cu precipitated phase is uniformly distributed in the matrix, and thus, excellent antimicrobial expression may be possible.
이상의 결과를 바탕으로 고경도의 우수한 내식성 및 항균성을 확보하기 위해서는 Cu의 첨가량이 1.5% 이상 첨가되어야 하나, 소재의 가공성 등을 고려할 시 Cu 첨가량을 1.5 ~ 2.0% 이하로 제한되어야 하는 것을 알 수 있다.Based on the above results, in order to secure excellent corrosion resistance and antimicrobial properties of high hardness, the amount of Cu added should be added at least 1.5%. However, considering the processability of the material, the amount of added Cu should be limited to 1.5 to 2.0% or less. .
이후 열연강판을 이용하여 강화열처리 완료 후 항균성 평가 실시 및 이후 소재의 표면 발청현상 유무를 확인하였다. After the completion of the reinforcement heat treatment using the hot-rolled steel sheet was carried out to evaluate the antimicrobial and confirmed the surface rust phenomenon of the material.
먼저, 비교예 1~6의 Mo, W이 첨가되지 않은 소재에 대해서 Cu첨가량에 따른 항균성 평가 및 평가재의 표면 발청현상을 관찰하였다. 그 결과 Cu의 첨가량과 무관하게 99.9%의 높은 항균특성을 나타내는 것으로 확인되었다. First, the antimicrobial evaluation according to the Cu addition amount and the surface rusting phenomenon of the evaluation material were observed for the material to which Mo and W of Comparative Examples 1 to 6 were not added. As a result, it was confirmed that it exhibits a high antibacterial property of 99.9% regardless of the amount of Cu added.
그러나, 평가가 완료된 소재의 표층부를 관찰한 결과, 도 3(a)와 같이 내식성 열위에 따른 표면 발청현상이 심화된 것을 확인하였다. 이에, 항균성 발현 원인이 소재 자체에 함유된 Cu의 영향에 의한 것인지 아니면, 발청과 같은 녹발생으로부터 용출되는 Fe이온의 영향에 기인한 것인지 확인할 길이 불명확하게 된다. However, as a result of observing the surface layer part of the evaluation material, it was confirmed that the surface rust phenomenon according to the corrosion resistance inferior as shown in Fig. 3 (a). Thus, it is unclear whether the cause of antimicrobial expression is due to the influence of Cu contained in the material itself or the effect of Fe ions eluted from rust generation such as rust.
따라서, 신뢰성 있는 정량적 평가 결과 확보를 위해서는, 항균성 평가시 소재의 발청현상 억제와 같은 표층부 변질을 야기시키지 않는 소재의 내식성 개선이 요구된다. Therefore, in order to secure a reliable quantitative evaluation result, it is required to improve the corrosion resistance of the material that does not cause surface layer deterioration, such as suppressing the corrosion of the material during the antimicrobial evaluation.
반면, 내식성 개선을 위하여 Mo, W을 일정량 이상 첨가시킨 강판의 경우(비교예 7~10 및 실시예 1~4)의 경우 도 3(b)와 같이 항균성 평가 이후 소재에 발청현상과 같은 표층부 변질이 형성되지 않는 것을 확인하였다. 즉 Cr, Mo, W, N 등의 성분을 상기의 수식 1)에 표기한 내공식지수(PREN) 값이 17 이상이 되도록 설정하여 용해한 강판의 경우 항균성 평가시 발청현상이 관찰되지 않는 것이 확인되었다. On the other hand, in the case of the steel sheet to which a certain amount of Mo, W is added to improve the corrosion resistance (Comparative Examples 7 to 10 and Examples 1 to 4), as shown in FIG. It was confirmed that this was not formed. In other words, it was confirmed that the corrosion resistance was not observed in the evaluation of the antimicrobial properties of the steel sheet melted by setting Cr, Mo, W, N, etc. so that the PREN value expressed in Equation 1) was 17 or more. .
이러한 내식성을 개선시킨 소재에 대한 항균성 평가 결과 Cu가 첨가되지 않은 강판의 경우(비교예 7~9) 95% 미만의 열위한 세균감소율을 나타내는 반면 Cu의 함량이 1.5% 이상 첨가된 강판의 경우(비교예 10 및 실시예 1~4) 99.9%의 우수한 항균특성이 발현되는 것이 확인되었다. As a result of antimicrobial evaluation on the material having improved corrosion resistance, steel sheets without Cu (Comparative Examples 7-9) exhibited a thermally-reduced bacterial reduction rate of less than 95%, whereas steel sheets containing 1.5% or more of Cu content ( Comparative Example 10 and Examples 1 to 4) It was confirmed that excellent antibacterial properties of 99.9% were expressed.
이상의 결과를 바탕으로 우수한 항균특성의 확보를 위해서는 Mo, W과 같은 소재의 내식성을 개선시키는 원소를 첨가하여 PREN값을 17이상으로 설정하고 1.5% 이상의 Cu를 첨가할 경우 우수한 항균특성이 확보 가능할 뿐만 아니라, 항균성 평가 후 발청현상이 억제되어 신뢰도 높은 항균성 평가 결과를 확보할 수 있다는 것을 알 수 있다.Based on the above results, in order to secure excellent antimicrobial properties, it is possible to add an element that improves the corrosion resistance of materials such as Mo and W to set the PREN value to 17 or more and add more than 1.5% Cu to ensure excellent antibacterial properties. In addition, it can be seen that after the antimicrobial evaluation, the anti-rusting phenomenon can be suppressed to obtain a reliable antimicrobial evaluation result.
이상의 결과로부터 본 발명에 따른 중량 %로, C: 0.45~0.65%, N: 0.02~0.06%, Si: 0.1~0.6%, Mn: 0.3~1.0%, Ni: 0.1~0.4%, Cr: 13~14.5%, Mo: 0.4~0.6%, W: 0.8~1.2% 및 Cu: 1.5~2.0%를 함유하고 나머지는 Fe 및 불가피한 불순물을 포함하는 마르텐사이트계 스테인리스강에 대하여 본 발명에서 제시한 조건의 상소둔 및 강화열처리를 적용시킬 경우 JIS Z 2801 준용 항균성 평가시 발청현상이 일어나지 않으며 세균감소율이 99.9% 이상의 우수한 항균성을 나타내는 고경도 마르텐사이트계 스테인리스강의 제조가 가능함을 알 수 있다. From the above results, in terms of weight% according to the present invention, C: 0.45 to 0.65%, N: 0.02 to 0.06%, Si: 0.1 to 0.6%, Mn: 0.3 to 1.0%, Ni: 0.1 to 0.4%, Cr: 13 to Applicability of the conditions set forth in the present invention for martensitic stainless steels containing 14.5%, Mo: 0.4-0.6%, W: 0.8-1.2% and Cu: 1.5-2.0%, the remainder containing Fe and unavoidable impurities When the dull and reinforced heat treatments are applied, it can be seen that the corrosion resistance does not occur when evaluating the antimicrobial activity of JIS Z 2801, and that it is possible to manufacture high hardness martensitic stainless steels having excellent antimicrobial resistance of 99.9% or more.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations are possible from these descriptions. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (12)

  1. 중량 %로, C: 0.45~0.65%, N: 0.02~0.06%, Si: 0.1~0.6%, Mn: 0.3~1.0%, Ni: 0.1~0.4%, Cr: 13~14.5%, Mo: 0.4~0.6%, W: 0.8~1.2% 및 Cu: 1.5~2.0%를 함유하고 나머지는 Fe 및 불가피한 불순물을 포함하는 것을 특징으로 하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강. By weight%, C: 0.45-0.65%, N: 0.02-0.06%, Si: 0.1-0.6%, Mn: 0.3-1.0%, Ni: 0.1-0.4%, Cr: 13-14.5%, Mo: 0.4- A high hardness martensitic stainless steel having excellent antimicrobial characteristics, comprising 0.6%, W: 0.8-1.2%, and Cu: 1.5-2.0%, and the rest containing Fe and unavoidable impurities.
  2. 제1항에 있어서, The method of claim 1,
    상기 마르텐사이트계 스테인리스강의 연신율이 18% 이상인 것을 특징으로 하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강. A high hardness martensitic stainless steel having excellent antibacterial property, characterized in that the elongation of the martensitic stainless steel is 18% or more.
  3. 제2항에 있어서, The method of claim 2,
    상기 마르텐사이트계 스테인리스강 조직 내에 90개/100㎛2 이상의 크롬탄화물이 분포된 것을 특징으로 하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강. High hardness martensitic stainless steel having excellent antimicrobial characteristics, characterized in that more than 90 / 100㎛ 2 chromium carbide is distributed in the martensitic stainless steel structure.
  4. 제3항에 있어서, The method of claim 3,
    상기 마르텐사이트계 스테인리스강은 하기의 내공식지수(PREN)를 만족하고, NaCl이 함유된 접종원을 이용한 항균성 평가시 표면 변질이 일어나지 않으며, 99% 이상의 세균감소율을 나타내는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강. The martensitic stainless steel satisfies the following PREN and has no surface change when evaluating antimicrobial activity using an inoculum containing NaCl, and exhibits a high hardness martensite system having an antimicrobial effect of 99% or more. Stainless steel.
    내공식지수(PREN) Cr+3.0(Mo+1/2 W)+16N ≥ 17 PREN Cr + 3.0 (Mo + 1/2 W) + 16N ≥ 17
  5. 제2항 내지 제4항 중 어느 한 항에 있어서, The method according to any one of claims 2 to 4,
    상기 마르텐사이트계 스테인리스강 제조를 위한 상소둔 열처리는, 상기 마르텐사이트계 스테인리스강의 조직내에 Cu석출물을 균일하게 분포시키는 제1 균열과정, 상기 마르텐사이트계 스테인리스강의 조직내에 크롬탄화물을 균일하게 분포시키는 제2 균열과정, 및 상기 크롬탄화물의 미세 입자를 구상화시키는 제3 균열과정을 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강. In the annealing heat treatment for producing the martensitic stainless steel, the first cracking process for uniformly distributing the Cu precipitates in the structure of the martensitic stainless steel, the agent for uniformly distributing the chromium carbide in the structure of the martensitic stainless steel A high hardness martensitic stainless steel having excellent antimicrobial properties, including a cracking process and a third cracking process for spheroidizing the fine particles of the chromium carbide.
  6. 제5항에 있어서, The method of claim 5,
    상기 제1 균열과정은 500 ~ 600℃에서 진행되고, 상기 제2 균열과정은 800 ~ 900℃에서 진행되며, 상기 제3 균열과정은 600 ~ 750℃에서 진행되는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강.The first cracking process is carried out at 500 ~ 600 ℃, the second cracking process is carried out at 800 ~ 900 ℃, the third cracking process is a high hardness martensitic stainless steel having excellent antibacterial activity at 600 ~ 750 ℃ River.
  7. 제6항에 있어서, The method of claim 6,
    상기 제1 균열과정은 5 ~ 15시간 동안 지속되고, 상기 제2 균열과정은 15 ~ 25시간 동안 지속되며, 상기 제3 균열과정은 5 ~ 15시간 동안 지속되는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강.The first crack process lasts for 5 to 15 hours, the second crack process lasts for 15 to 25 hours, and the third crack process lasts for 5 to 15 hours. River.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 상소둔 열처리는, 상기 제1 균열과정 이후에 상기 제2 균열과정에 이르기까지 40 ~ 200℃/h의 속도로 승온시키는 승온과정, 상기 제2 균열과정 이후에 상기 제3 균열과정에 이르기까지 10℃/h 이상의 속도로 냉각시키는 냉각과정과, 상기 제3 균열과정 이후에 공냉과정을 더 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강.The annealing heat treatment is, after the first cracking process up to the second cracking process to increase the temperature at a rate of 40 ~ 200 ℃ / h, after the second cracking process to the third cracking process A high hardness martensitic stainless steel having excellent antibacterial activity, further comprising a cooling process of cooling at a rate of 10 ° C./h or more and an air cooling process after the third cracking process.
  9. 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법으로서, As a method of manufacturing high hardness martensitic stainless steel with excellent antibacterial properties,
    주편을 열간압연 처리하여 열연강판으로 제조하는 단계; Hot-rolling the cast steel to produce a hot-rolled steel sheet;
    상기 열연강판을 상소둔 열처리하여 연질화 작업을 수행하는 단계; 및Performing annealing of the hot rolled steel sheet by annealing heat treatment; And
    상기 연질화가 완료된 소둔강판을 냉간압연하는 냉연강판 제조단계;를 포함하되, Cold rolled steel sheet manufacturing step of cold rolling the annealed steel sheet is completed;
    상기 상소둔 열처리는, 상기 열연강판의 조직내에 Cu석출물을 균일하게 분포시키는 제1 균열과정, 상기 열연강판의 조직내에 크롬탄화물을 균일하게 분포시키는 제2 균열과정, 및 상기 크롬탄화물의 미세 입자를 구상화시키는 제3 균열과정을 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법.The annealing heat treatment may include a first cracking step of uniformly distributing Cu precipitates in the structure of the hot-rolled steel sheet, a second cracking step of uniformly distributing chromium carbide in the structure of the hot-rolled steel sheet, and fine particles of the chromium carbide. A high hardness martensitic stainless steel manufacturing method having excellent antimicrobial properties, including a spherical third cracking process.
  10. 제9항에 있어서, The method of claim 9,
    상기 제1 균열과정은 500 ~ 600℃에서 5 ~ 15시간 동안 진행되고, 상기 제2 균열과정은 800 ~ 900℃에서 15 ~ 25시간 동안 진행되며, 상기 제3 균열과정은 600 ~ 750℃에서 5 ~ 15시간 동안 진행되는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법.The first cracking process is carried out for 5 to 15 hours at 500 ~ 600 ℃, the second cracking process is carried out for 15 to 25 hours at 800 ~ 900 ℃, the third cracking process is carried out at 600 ~ 750 ℃ 5 High hardness martensitic stainless steel manufacturing method with excellent antibacterial activity for ~ 15 hours.
  11. 제10항에 있어서, The method of claim 10,
    상기 상소둔 열처리는, 상기 제1 균열과정 이후에 상기 제2 균열과정에 이르기까지 40 ~ 200℃/h의 속도로 승온시키는 승온과정, 상기 제2 균열과정 이후에 상기 제3 균열과정에 이르기까지 10℃/h 이상의 속도로 냉각시키는 냉각과정과, 상기 제3 균열과정 이후에 공냉과정을 더 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법.The annealing heat treatment is, after the first cracking process up to the second cracking process to increase the temperature at a rate of 40 ~ 200 ℃ / h, after the second cracking process to the third cracking process A high hardness martensitic stainless steel manufacturing method having excellent antibacterial activity, further comprising a cooling process of cooling at a rate of 10 ° C./h or more and an air cooling process after the third cracking process.
  12. 제11항에 있어서, The method of claim 11,
    상기 냉연강판에 강화열처리를 수행하는 단계;를 더 포함하되, Performing a strengthening heat treatment to the cold rolled steel sheet; further comprising,
    상기 강화열처리는, 상기 균일하게 분포시킨 크롬탄화물을 재고용시키기 위하여 1000℃ 내지 1150℃에서 10초 내지 5분 동안 오스테나이징 처리하는 단계, 상온으로 퀜칭하는 단계, 잔류 오스테나이트를 마르텐사이트로 상변태시키기 위하여 -70℃의 온도에서 10초 내지 5분 동안 써브제로 처리하는 단계, 400~600℃에서 30분~2시간 동안 템퍼링하는 단계를 포함하는 항균성이 우수한 고경도 마르텐사이트계 스테인리스강 제조방법.The reinforcement heat treatment is a step of austenizing treatment at 1000 ℃ to 1150 ℃ for 10 seconds to 5 minutes in order to re-distribute the uniformly distributed chromium carbide, quenching at room temperature, phase transformation of the residual austenite to martensite In order to prepare a high-strength martensitic stainless steel having excellent antimicrobial activity comprising the step of treating with a sub agent for 10 seconds to 5 minutes at a temperature of -70 ℃, tempering for 30 minutes to 2 hours at 400 ~ 600 ℃.
PCT/KR2015/012531 2014-11-26 2015-11-20 High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor WO2016085203A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/529,737 US20170327916A1 (en) 2014-11-26 2015-11-20 High-Hardness Martensitic Stainless Steel with Excellent Antibacterial Property and Preparation Method Therefor
JP2017527884A JP6488012B2 (en) 2014-11-26 2015-11-20 High hardness martensitic stainless steel with excellent antibacterial properties and method for producing the same
CN201580063078.0A CN107002211B (en) 2014-11-26 2015-11-20 High hardness martensitic stainless steel with excellent antibacterial and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140166409A KR101648271B1 (en) 2014-11-26 2014-11-26 High-hardness martensitic stainless steel with excellent antibiosis and manufacturing the same
KR10-2014-0166409 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016085203A1 true WO2016085203A1 (en) 2016-06-02

Family

ID=56074671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012531 WO2016085203A1 (en) 2014-11-26 2015-11-20 High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor

Country Status (5)

Country Link
US (1) US20170327916A1 (en)
JP (1) JP6488012B2 (en)
KR (1) KR101648271B1 (en)
CN (1) CN107002211B (en)
WO (1) WO2016085203A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180135144A1 (en) * 2016-03-18 2018-05-17 Hitachi Metals, Ltd. Cold working tool material and cold working tool manufacturing method
JPWO2018212155A1 (en) * 2017-05-18 2020-03-26 日立金属株式会社 Method of manufacturing steel strip for blade and steel strip for blade
CN113846275A (en) * 2020-06-28 2021-12-28 中国科学院金属研究所 Antibacterial stainless steel material with ultrahigh strength and high toughness and preparation method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699815B (en) * 2017-11-27 2019-08-30 上海大学 High hardness high toughness cutlery stainless steel and preparation method thereof
CN108441783B (en) * 2018-03-07 2020-10-27 兴华(沈阳)特种合金科技有限公司 Food-grade high-wear-resistance martensitic stainless steel material and preparation method thereof
JP7049142B2 (en) * 2018-03-15 2022-04-06 日鉄ステンレス株式会社 Martensitic stainless steel sheet and its manufacturing method and spring members
KR20220016835A (en) * 2019-06-05 2022-02-10 에이비 산드빅 매터리얼즈 테크놀로지 Martensitic stainless steel alloy
KR102326693B1 (en) * 2020-03-20 2021-11-17 주식회사 포스코 Martensitic stainless steel with excellent corrosion resistance and manufacturing method thereof
CN112442639A (en) * 2020-11-05 2021-03-05 安福锦湖(湖南)气门有限公司 Rocker arm for automobile engine intake valve and manufacturing process
CN112941406B (en) * 2021-01-26 2023-01-17 安泰科技股份有限公司 Stainless steel for knife and scissors
CN114507820A (en) * 2022-02-10 2022-05-17 京泰控股集团有限公司 Steel product for laboratory medical furniture and medical furniture
CN115287416B (en) * 2022-10-08 2022-12-20 太原科技大学 Copper-containing stainless steel and surface modification method thereof
CN115896591A (en) * 2022-10-28 2023-04-04 中国科学院金属研究所 Method for improving corrosion resistance and comprehensive mechanical property of low-carbon martensitic stainless steel
CN115852123B (en) * 2023-02-28 2023-05-05 北京为康环保科技有限公司 Treatment method of antibacterial stainless steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
JPH1192884A (en) * 1997-09-18 1999-04-06 Aichi Steel Works Ltd Antibacterial martensitic stainless steel and its production
JP2000160294A (en) * 1998-11-24 2000-06-13 Nisshin Steel Co Ltd High hardness antibacterial steel material and its manufacture
JP2005082838A (en) * 2003-09-05 2005-03-31 Jfe Steel Kk Method for manufacturing high-carbon hot-rolled stainless steel plate
KR20130000841A (en) * 2011-06-24 2013-01-03 주식회사 포스코 Martensitic stainless steel and method of manufacturing it

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273973B1 (en) * 1986-03-04 1992-06-24 Kawasaki Steel Corporation Martensitic stainless steel plate excellent in oxidation resistance, workability, and corrosion resistance, and process for its production
JP3354163B2 (en) * 1991-08-05 2002-12-09 日立金属株式会社 Stainless steel for razor and method for producing the same
JP2954868B2 (en) * 1995-10-25 1999-09-27 日新製鋼株式会社 Method for improving antibacterial properties of Cu-containing stainless steel
JP3281526B2 (en) * 1996-01-12 2002-05-13 日新製鋼株式会社 Martensitic stainless steel excellent in antibacterial property and method for producing the same
JP4302285B2 (en) 2000-03-31 2009-07-22 日新製鋼株式会社 Martensitic stainless steel sheet and manufacturing method thereof
JP4200473B2 (en) * 2000-11-20 2008-12-24 日立金属株式会社 High strength precipitation hardening martensitic stainless steel with excellent corrosion resistance
JP4952888B2 (en) * 2006-04-07 2012-06-13 大同特殊鋼株式会社 Martensite steel
CN101376949A (en) * 2007-08-28 2009-03-04 宝山钢铁股份有限公司 Martensite antibacterial stainless steel and manufacturing method thereof
JP2010229474A (en) * 2009-03-26 2010-10-14 Nisshin Steel Co Ltd Quench hardened martensitic stainless steel excellent in corrosion resistance
KR101268800B1 (en) * 2009-12-21 2013-05-28 주식회사 포스코 Martensitic stainless steels containing high carbon content and method of manufacturing the same
KR101239589B1 (en) * 2010-12-27 2013-03-05 주식회사 포스코 High corrosion resistance martensite stainless steel and method of manufacturing the same
CN102168226B (en) * 2011-04-02 2013-04-10 裘德鑫 Martensite antibacterial stainless steel and manufacturing method thereof
EP2889393B1 (en) * 2013-03-25 2017-12-13 Hitachi Metals, Ltd. Intermediate material for stainless steel for knives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256116A (en) * 1996-03-19 1997-09-30 Nisshin Steel Co Ltd High strength martensitic stainless steel excellent in antibacterial characteristic
JPH1192884A (en) * 1997-09-18 1999-04-06 Aichi Steel Works Ltd Antibacterial martensitic stainless steel and its production
JP2000160294A (en) * 1998-11-24 2000-06-13 Nisshin Steel Co Ltd High hardness antibacterial steel material and its manufacture
JP2005082838A (en) * 2003-09-05 2005-03-31 Jfe Steel Kk Method for manufacturing high-carbon hot-rolled stainless steel plate
KR20130000841A (en) * 2011-06-24 2013-01-03 주식회사 포스코 Martensitic stainless steel and method of manufacturing it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180135144A1 (en) * 2016-03-18 2018-05-17 Hitachi Metals, Ltd. Cold working tool material and cold working tool manufacturing method
US10407747B2 (en) * 2016-03-18 2019-09-10 Hitachi Metals, Ltd. Cold working tool material and cold working tool manufacturing method
JPWO2018212155A1 (en) * 2017-05-18 2020-03-26 日立金属株式会社 Method of manufacturing steel strip for blade and steel strip for blade
JP7196837B2 (en) 2017-05-18 2022-12-27 日立金属株式会社 Method for manufacturing steel strip for cutlery and steel strip for cutlery
CN113846275A (en) * 2020-06-28 2021-12-28 中国科学院金属研究所 Antibacterial stainless steel material with ultrahigh strength and high toughness and preparation method thereof
CN113846275B (en) * 2020-06-28 2023-06-13 中国科学院金属研究所 Antibacterial ultra-high strength high toughness stainless steel material and preparation method thereof

Also Published As

Publication number Publication date
CN107002211B (en) 2018-10-30
CN107002211A (en) 2017-08-01
JP2018500460A (en) 2018-01-11
KR101648271B1 (en) 2016-08-12
US20170327916A1 (en) 2017-11-16
JP6488012B2 (en) 2019-03-20
KR20160062988A (en) 2016-06-03

Similar Documents

Publication Publication Date Title
WO2016085203A1 (en) High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor
WO2013069937A1 (en) Steel sheet for hot press forming, hot press forming member, and manufacturing method thereof
KR100796819B1 (en) High strength steel strip or steel sheet and method for the production thereof
WO2017222159A1 (en) High-strength cold-rolled steel sheet with excellent workability and manufacturing method therefor
KR102289525B1 (en) Method for manufacturing hot stamping product and hot stamping product manufactured using the same
WO2018030715A1 (en) High strength steel sheet having excellent formability and manufacturing method thereof
WO2015099223A1 (en) Lightweight steel sheet having excellent strength and ductility and method for manufacturing same
WO2021187706A1 (en) Highly anticorrosive martensitic stainless steel, and manufacturing method therefor
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
KR101065781B1 (en) Ultrahigh strength hot-rolled steel and method of producing bands
KR101834996B1 (en) High hardness martensitic stainless steel with excellent hardenability and method of manufacturing the same
JP6048382B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2020040388A1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2022139214A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
WO2018106016A1 (en) Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
KR101322972B1 (en) Martensitic stainless steel and method for manufacturing the same
KR20210014811A (en) Ferritic stainless steel, martensitic stainless steel with high corrosion resistance and high hardness using the same, and manufacturing method thereof
KR101849760B1 (en) High carbon steel sheet and the method for manufacturing the same
WO2014157823A1 (en) Steel sheet and manufacturing method therefor
WO2023210912A1 (en) Hot-stamped part and method for manufacturing same
KR102606996B1 (en) High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same
WO2023210911A1 (en) Hot stamping component and manufacturing method therefor
KR101467055B1 (en) Cold-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15529737

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15863804

Country of ref document: EP

Kind code of ref document: A1