WO2018106016A1 - Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof - Google Patents

Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof Download PDF

Info

Publication number
WO2018106016A1
WO2018106016A1 PCT/KR2017/014232 KR2017014232W WO2018106016A1 WO 2018106016 A1 WO2018106016 A1 WO 2018106016A1 KR 2017014232 W KR2017014232 W KR 2017014232W WO 2018106016 A1 WO2018106016 A1 WO 2018106016A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
wire
less
steel wire
resistance
Prior art date
Application number
PCT/KR2017/014232
Other languages
French (fr)
Korean (ko)
Inventor
김관호
김한휘
정회영
이병갑
전영수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201780075012.2A priority Critical patent/CN110036131B/en
Priority to US16/466,984 priority patent/US20200063228A1/en
Priority to EP17877467.5A priority patent/EP3553198A4/en
Priority to JP2019526575A priority patent/JP7018444B2/en
Publication of WO2018106016A1 publication Critical patent/WO2018106016A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a high-strength, corrosion-resistant wire rod, steel wire and a manufacturing method thereof that can be preferably applied to suspension springs, torsion bars, stabilizers and the like for automobiles.
  • the steel for spring is made of hot wire by hot rolling, and in the case of hot forming spring, it is heated and then molded and then quenched and tempered. In the case of cold formed spring, after tempering, quenched and tempered Molding
  • Suspension corrosion of suspension spring is when the surface of the spring is peeled off by gravel or other foreign material on the road surface, the material of this part is exposed to the outside, causing pitting corrosion reaction, and the generated corrosion pit grows gradually and starts the pit.
  • the cracks are generated and propagated, and at some point, hydrogen introduced from the outside concentrates on the cracks, and the spring is broken due to hydrogen embrittlement.
  • Patent Document 1 Conventional techniques for improving the resistance to corrosion fatigue of the spring include a method of increasing the type and amount of alloying elements.
  • the Ni content was increased to 0.55% by weight to increase corrosion fatigue life by improving corrosion resistance
  • Patent Document 2 the Si content was increased to refine corrosion carbide by tempering carbide precipitated during tempering. Improved strength.
  • Patent Document 3 was able to improve the life of the spring corrosion fatigue by improving the hydrogen delayed fracture resistance by appropriate combination of Ti precipitates, which are strong hydrogen trapping sites, and (V, Nb, Zr, Hf), which are weak hydrogen trapping sites.
  • Ni is a very expensive element, and when a large amount is added, it causes a problem of material cost increase.
  • Si is a representative element that promotes decarburization, and it may cause a considerable risk in increasing the amount of addition, and precipitates such as Ti, V, and Nb Forming elements are at risk of degrading the life of corrosion fatigue by crystallizing coarse carbonitride from the liquid phase during material solidification.
  • the prior art for increasing the strength of the spring is a method of adding an alloying element and a method of lowering the tempering temperature.
  • a method of increasing the strength by adding alloying elements there is basically a method of increasing the quenching hardness using C, Si, Mn, Cr, etc., and quenching using expensive alloying elements Mo, Ni, V, Ti, Nb, etc.
  • the strength of steel materials is raised by tempering heat treatment.
  • such a technique has a problem of rising cost.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2008-190042
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2011-074431
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2005-023404
  • One aspect of the present invention is to control the combination of Cr, Cu, Ni content to an appropriate level, the maximum depth of the corrosion pit to a certain level or less, high-strength and corrosion-resistant fatigue resistance by a certain level of fine carbide containing Mo To provide this excellent spring wire rod, steel wire and their manufacturing method.
  • One aspect of the invention is by weight, C: 0.40-0.70%, Si: 1.30-2.30%, Mn: 0.20-0.80%, Cr: 0.20-0.80%, Cu: 0.01-0.40%, Ni: 0.10-0.60% %, Mo: 0.01-0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, satisfying the following relational formula 1,
  • the microstructure is composed of up to 50 area% ferrite and the remaining pearlite,
  • the present invention relates to a spring wire rod having excellent corrosion fatigue resistance including Mo-based carbides of 8.0 ⁇ 10 4 particles / mm 2 or more.
  • Another aspect of the present invention is by weight, C: 0.40 to 0.70%, Si: 1.30 to 2.30%, Mn: 0.20 to 0.80%, Cr: 0.20 to 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01-0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, and the billets satisfying the following relation 1, 900 ⁇ 1100 °C Heating to;
  • the cooling time so that the holding time in the temperature range of 600 ⁇ 700 °C 31 seconds or more; relates to a method for producing a wire rod for excellent corrosion resistance comprising a.
  • each element symbol is a value representing each element content in weight%.
  • another aspect of the present invention relates to a steel wire manufactured using the wire and the method of manufacturing the same.
  • 1 is a graph showing the relative corrosion fatigue life according to the maximum depth of corrosion pit of embodiments of the present invention.
  • Figure 2 is a graph showing the relative corrosion fatigue life according to the number of Mo-based carbide of the embodiments of the present invention.
  • the present inventors examine various influence factors on the corrosion resistance of the steel for spring, and at the same time, the corrosion fatigue of the spring is generated by the peeling of the surface of the spring, and the corrosion pits are generated.
  • the following findings were obtained from the fact that the cracks are generated and propagated to the starting point, and hydrogen introduced from the outside is concentrated in the cracks and the springs are broken.
  • the corrosion resistance of the spring steel decreases as the maximum depth of the corrosion pit formed on the surface of the material during the corrosion reaction.
  • the narrower the shape and the deeper the corrosion pit the lower the corrosion fatigue characteristics. Therefore, it is necessary to control the maximum depth of the corrosion pit below a certain level in order to improve the corrosion resistance of the spring steel.
  • the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo. It is a carbide mainly containing alloying elements, such as these. Particularly, Mo-based carbides precipitate very finely at a temperature of 700 ° C. or below in nano size, and have a great hydrogen trap effect. Carbides including V, Ti, Nb, etc. as well as Mo also have a hydrogen trap effect when they contain Mo. outstanding.
  • the combination of Cr, Cu, and Ni content is controlled to an appropriate level, the maximum depth of the corrosion pit is below a certain level, and the fine carbide containing Mo is above a certain level, thereby providing high strength and corrosion resistance. It was confirmed that the wire rod, the steel wire, and their manufacturing method can be provided, and the present invention has been completed.
  • the microstructure is composed of ferrite of 50 area% or less and the remaining pearlite, and contains Mo-based carbide of 8.0 ⁇ 10 4 / mm 2 or more.
  • alloy composition of the present invention will be described in detail.
  • the unit of each element content hereafter means weight% unless there is particular notice.
  • alloy composition of the present invention is equally applied to the production method of the wire rod, steel wire and steel wire production method to be described below.
  • C is an essential element added to secure the strength of the spring. In order to exhibit the effect effectively, it is preferable to contain 0.40% or more. On the other hand, if the C content is more than 0.70%, the twin type martensite structure is formed during quenching and tempering heat treatment, resulting in material cracking. However, the fracture stress can be significantly reduced. Therefore, it is preferable that C content is 0.40 to 0.70%.
  • the lower limit of the C content may be more preferably 0.45%, and the upper limit may be 0.65%.
  • Si is dissolved in ferrite and has the effect of strengthening the base material strength and improving the deformation resistance.
  • the lower limit of Si is preferably 1.30%, and the lower limit may be 1.45% because Si is insufficiently effective in solidifying the ferrite to strengthen the base material strength and improving the deformation resistance.
  • the Si content is more than 2.30%, the effect of improving the deformation resistance is saturated, and the effect of additional addition is not obtained, and the surface decarburization is promoted during the heat treatment. Therefore, it is preferable that the upper limit of Si is 2.30%, and a more preferable upper limit may be 2.25%.
  • Mn is an element useful for securing strength by improving the hardenability of steel when present in steel.
  • the Mn content is less than 0.20%, it is difficult to obtain sufficient strength and hardenability required as a material for high strength springs. On the contrary, if the Mn content is higher than 0.80%, the hardenability is excessively increased and martensite hard tissues are likely to occur during cooling after hot rolling. In addition, the formation of MnS inclusions increases, rather there is a fear that the corrosion resistance fatigue resistance. Therefore, the Mn content is preferably 0.20 to 0.80%.
  • the lower limit of the Mn content may be 0.30%, more preferably 0.40%.
  • the more preferred upper limit of the Mn content may be 0.75%, and the more preferable upper limit may be 0.70%.
  • Cr is an element useful for securing oxidation resistance, temper softening, surface decarburization prevention and quenching.
  • the Cr content is less than 0.20%, it is difficult to secure sufficient oxidation resistance, temper softening, surface decarburization and quenching effects. On the other hand, when the Cr content is more than 0.80%, the deformation resistance may be lowered, which may lead to a decrease in strength. Therefore, the Cr content is preferably 0.20 to 0.80%.
  • the lower limit of the Cr content may be 0.22%, and the upper limit may be 0.75%.
  • Copper (Cu) is an element added to improve the corrosion resistance. If the content is less than 0.01%, the effect of improving the corrosion resistance is insufficient, whereas if it is more than 0.40%, the brittleness during hot rolling causes a problem such as cracking. May cause Therefore, the Cu content is preferably 0.01 to 0.40%. More preferably, the Cu content may be 0.05 to 0.30%.
  • Nickel (Ni) is an element added to improve the hardenability and toughness. If the content is less than 0.10%, the effect of the hardenability and toughness is not sufficient, whereas if the content is higher than 0.60%, the amount of retained austenite This increases the fatigue life, and the expensive Ni properties cause a sharp rise in manufacturing costs. Therefore, the Ni content is preferably 0.10 to 0.60%.
  • Mo is an element which forms carbon or nitrogen and carbonitrides, contributes to the refinement of the structure, and acts as a trap site for hydrogen, and in order to effectively exhibit such an effect
  • the content is preferably 0.01% or more.
  • the Mo content is excessive, the martensite hard structure is likely to occur during hot rolling after cooling, and the upper limit of the Mo content is preferably 0.40% because coarse carbonitride is formed and the ductility of the steel is reduced.
  • P is an impurity, and it is preferable to limit the upper limit to 0.02% because of a problem of segregation at grain boundaries and deterioration of toughness.
  • S is an impurity, and it is preferable to limit the upper limit to 0.015% because it not only lowers the toughness by grain boundary segregation with low melting elements but also forms a large amount of MnS, which adversely affects the corrosion resistance of the spring.
  • Nitrogen (N) is easy to form BN by reacting with boron (B), and should be controlled as low as possible because it is an element that reduces the quenching effect, but considering the process load, it is preferable to limit it to 0.01% or less.
  • the remaining component of the present invention is iron (Fe).
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
  • each element symbol is a value representing each element content in weight%.
  • Cr is generally known as a corrosion resistance improving element, but corrosion resistance decreases with increasing Cr content in spring steel. This is because Cr lowers the pH of the pit base (bottom) during the corrosion reaction, making the inside of the pit a strong acid atmosphere, thereby increasing the maximum depth of the pit. That is, Cr plays a role of lowering corrosion resistance as the content increases.
  • alloy composition described above it may further include at least one selected from V: 0.01 to 0.20%, Ti: 0.01 to 0.15%, and Nb: 0.01 to 0.10% by weight.
  • V is not only an element that contributes to strength improvement and grain refinement, but also forms a carbon nitride with carbon (C) or nitrogen (N) and acts as a trap site for hydrogen infiltrating into steel, thereby inhibiting hydrogen intrusion inside steel materials. It is an element that serves to reduce the occurrence of corrosion.
  • the upper limit of the V content is preferably 0.20%.
  • Ti is an element that improves the spring characteristics by forming a carbonitride to cause precipitation hardening, and improves strength and toughness through particle refinement and precipitation strengthening. In addition, Ti acts as a trap site for hydrogen infiltrating into steel, thereby inhibiting hydrogen ingress and reducing corrosion.
  • the Ti content is less than 0.01%, the precipitation reinforcement and the frequency of precipitates acting as hydrogen trapsites are not effective. If the Ti content is more than 0.15%, the manufacturing cost increases rapidly, and the effect of improving the spring properties by the precipitates is saturated and austenite Coarse alloy carbides that are not dissolved in the base material during heat treatment are increased to act as non-metallic inclusions, thereby reducing fatigue characteristics and precipitation strengthening effects.
  • the amount of addition is preferably 0.01% or more in order to effectively exhibit the effect.
  • the upper limit of the added amount is preferably 0.10%.
  • the microstructure of the wire rod according to the present invention consists of ferrite of 50 area% or less and the remaining pearlite.
  • the area fraction here means the measurement except for the precipitate.
  • the strength of the material is so low that the desired level of strength cannot be achieved after the final heat treatment.
  • the remainder except for ferrite is pearlite. If there are hard tissues such as martensite in addition to ferrite and pearlite, there is a possibility that the wire will be disconnected at the stage of wire drawing.
  • the wire rod according to the present invention contains Mo-based carbide at least 8.0 ⁇ 10 4 / mm 2.
  • the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo, etc.
  • Carbide is composed mainly of alloying elements.
  • carbides containing Mo as the main component are very finely precipitated at a nano size in the temperature range of 600 to 700 ° C., so that the hydrogen trap effect is very large, and carbides containing V, Ti, and Nb as the main component also contain Mo. Hydrogen trap effect is excellent.
  • the Mo-based carbide is preferably included 8.0 ⁇ 10 4 / mm 2 or more, more preferably 8.5 ⁇ 10 4 / mm 2 or more.
  • the Mo-based carbide may be a carbide containing 5% by weight or more based on the carbide.
  • carbides containing V, Ti, Nb, etc. as a main component also have an excellent hydrogen trap effect when they contain Mo.
  • Another aspect of the present invention provides a method for producing a spring wire rod excellent corrosion resistance step of heating a billet satisfying the above-described alloy composition to 900 ⁇ 1100 °C; Hot-rolling the heated billet to 800 to 1000 ° C. to obtain a wire rod; And after winding the wire rod, cooling the holding time in a temperature range of 600 to 700 ° C. to 31 seconds or more.
  • Billets satisfying the above-described alloy composition is heated to 900 ⁇ 1100 °C.
  • the heating temperature of the billet is above 900 ° C to dissolve all coarse carbides that may be produced during casting so that the alloying elements are uniformly distributed in the austenite.
  • the heating temperature of the billet is more than 1100 °C, it is heated more than necessary, the heat consumption is high, there is a fear that the decarburization becomes severe as the time is long.
  • the heated billet is hot rolled to finish at 800 to 1000 ° C. to obtain a wire rod.
  • the finishing rolling temperature is 800 ° C. or higher to promote precipitation of fine carbides. If the finish rolling temperature is less than 800 °C, the load of the rolling roll is large, when the finish rolling temperature is greater than 1000 °C grain size is large, toughness is lowered, the transformation is delayed during cooling, martensite hard structure may occur.
  • the wire After winding the wire, it is cooled so that the holding time in the temperature range of 600 to 700 ° C is 31 seconds or more.
  • Controlling the holding time in the temperature range of 600 to 700 ° C to be 31 seconds or more is to ensure sufficient time for the pearlite transformation to be completed without martensite hard structure being formed upon cooling. This is to allow the carbide to precipitate sufficiently.
  • the spring steel wire having excellent corrosion fatigue resistance satisfies the alloy composition described above, and the microstructure is a tempered martensite single phase and includes Mo-based carbide of 8.0 ⁇ 10 4 / mm 2 or more.
  • Corrosion fatigue resistance can be improved by making a microstructure a tempered martensite single phase and including Mo-type carbide 8.0 * 10 ⁇ 4> / mm ⁇ 2> or more.
  • Tempered martensite single phase means composed of tempered martensite except for some unavoidable impurities.
  • the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo, etc.
  • Carbide is composed mainly of alloying elements.
  • carbides containing Mo as the main component are very finely precipitated at a nano size in the temperature range of 600 to 700 ° C., so that the hydrogen trap effect is very large, and carbides containing V, Ti, and Nb as the main component also contain Mo. Hydrogen trap effect is excellent. Therefore, the Mo-based carbide is preferably included at least 8.0 ⁇ 10 4 / mm 2, more preferably 8.5 ⁇ 10 4 / mm 2 or more. On the other hand, Mo-based carbide is produced during the production of the wire rod, and does not significantly change even after heating and cooling according to steel wire manufacturing, but may be slightly reduced.
  • the steel wire of the present invention may have a maximum depth of the corrosion pit 120 ⁇ m or less.
  • the maximum depth measurement of the corrosion pit is put the test piece of the steel wire in the salt spray tester sprayed 5% brine for 4 hours in a 35 °C atmosphere, dried for 4 hours in a temperature 25 °C, 50% humidity, 40 °C atmosphere
  • the cycle of moistening for 16 hours to 100% humidity was repeated 14 cycles and then measured. This is to set the harshest conditions in consideration of the use environment of the spring steel, it can ensure excellent corrosion fatigue resistance when the maximum depth of the corrosion pit is 120 ⁇ m or less under these conditions.
  • the steel wire of the present invention may have a tensile strength of 1800 MPa or more.
  • Another aspect of the present invention is a method for producing a spring steel wire having excellent resistance to corrosion fatigue step of obtaining a steel wire by drawing a wire produced by the method for producing a wire according to the present invention; An austenitization step of maintaining the steel wire at 850 to 1000 ° C. for at least 1 minute; And tempering at 350-500 ° C. after cooling the austenitic wire at 25-80 ° C.
  • the holding time after heating is less than 1 minute, the ferrite and pearlite structures may not be sufficiently heated and may not be transformed into austenite, so the heating time is preferably 1 minute or more.
  • oil-cooling temperature is normal conditions, it does not specifically limit.
  • tempering temperature is less than 350 °C, the toughness is not secured, there is a risk of damage in the molding and product state, while if the temperature exceeds 500 °C tempering temperature is preferably 350 ⁇ 500 °C.
  • the billet having the composition shown in Table 1 was heated to 1000 °C and then rolled to finish rolling at 900 °C, the winding after cooling to maintain a temperature range of 600 ⁇ 700 °C during the holding time shown in Table 2 to prepare a wire rod. .
  • the microstructure of the wire rod was observed and listed in Table 2 below.
  • Tensile strength was measured by performing a tensile test after taking the tensile specimen in accordance with the ASTM E 8 standard.
  • Mo-based carbides were cross sectioned and then fine carbides were extracted by replica method and analyzed using Transmission Electron Microscope and Energy Dispersive X-ray Spectroscopy. Table 2 shows the number of carbides containing 5% or more.
  • the specimen was placed in a salt spray tester and sprayed with 5% brine for 4 hours in a 35 ° C atmosphere, dried for 4 hours in a temperature of 25 ° C and a humidity of 50%, and wetted for 16 hours to be 100% humidity in a 40 ° C atmosphere ( cycle) after 14 cycles. Corrosion pit maximum depth and relative corrosion fatigue life were measured.
  • Corrosion pit maximum depth was measured with a Confocal Laser Microscope.
  • the relative corrosion fatigue life was tested by rotational bending fatigue test, the fatigue test speed was 3,000rpm, and the load applied to the specimen was 40% of the tensile strength. The fatigue life was averaged to give the corrosion fatigue life of the specimen. Table 2 shows the relative corrosion fatigue life of the remaining specimens when the corrosion fatigue life of Comparative Example 1 is 1.
  • relation 1 represents a value of 0.70 [Cr]-0.76 [Cu]-0.24 [Ni].
  • F means ferrite
  • P means pearlite
  • M means martensite
  • the tensile strength of 1800 MPa or more can be secured in the comparative examples, it can be seen that the relative corrosion fatigue life is inferior because the alloy composition or the manufacturing conditions presented in the present invention are not satisfied.
  • the maximum depths of the corrosion pits were all 128 ⁇ m or more, and the number of Mo-based carbides was all observed to be less than 8 ⁇ 10 4 pieces / mm 2.
  • 1 is a graph showing the relative corrosion fatigue life according to the maximum depth of corrosion pit of embodiments of the present invention. The smaller the maximum depth of the corrosion pit, the greater the relative corrosion fatigue life. When the maximum depth of the corrosion pit was greater than 120 ⁇ m, the relative corrosion fatigue life was greatly reduced.
  • Figure 2 is a graph showing the relative corrosion fatigue life according to the number of Mo-based carbide of the embodiments of the present invention. The more the number of fatigue Mo system carbides is relatively corrosion life was increased significantly, 8.0 ⁇ 10 4 number / relative to the mm2 If the Mo-based carbide smaller than this decreased significantly relative corrosion fatigue life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

One aspect of the present invention relates to a wire rod for springs with high strength and excellent corrosion fatigue resistance, in which a combination of Cr, Cu, and Ni content is controlled to an appropriate level, the maximum depth of corrosion pits is set to be below a certain level, and fine carbides containing Mo are set to be at a certain level or greater.

Description

부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법Wire rod, steel wire and method for manufacturing them excellent in corrosion fatigue resistance
본 발명은 자동차용 현가 스프링, 토션 바, 스태빌라이저 등에 바람직하게 적용될 수 있는 고강도이면서도 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법에 관한 것이다. The present invention relates to a high-strength, corrosion-resistant wire rod, steel wire and a manufacturing method thereof that can be preferably applied to suspension springs, torsion bars, stabilizers and the like for automobiles.
최근 자동차 연비 향상을 목적으로 자동차용 소재의 경량화가 크게 요구되고 있고, 특히 현가 스프링의 경우 경량화 요구에 대응하기 위해 담금질 뜨임 후의 강도가 1800 MPa 이상이 되는 고강도 소재를 이용한 스프링 설계가 적용되고 있다. Recently, in order to improve the fuel efficiency of automobiles, the weight reduction of automotive materials has been greatly demanded. In particular, in the case of suspension springs, spring designs using high-strength materials having a strength of 1800 MPa or more after quenching and tempering have been applied in order to respond to the demand for lightweighting.
스프링용 강은 열간압연으로 소정의 선재를 제조한 후, 열간성형 스프링의 경우에는 가열한 다음 성형하고 나서 담금질 뜨임 처리를 실시하고, 냉간성형 스프링의 경우는 인발 가공 후 담금질 뜨임 처리를 실시한 다음 스프링으로 성형한다. The steel for spring is made of hot wire by hot rolling, and in the case of hot forming spring, it is heated and then molded and then quenched and tempered. In the case of cold formed spring, after tempering, quenched and tempered Molding
일반적으로 소재의 고강도화가 이루어지면 입계취화 등으로 인한 인성 저하와 함께 균열 감수성도 증가하게 된다. 따라서 고강도는 이루었으나 소재의 내부식성이 뒤떨어지게 되면 자동차 현가 스프링과 같이 외부에 노출되어 있는 부품은 도장이 벗겨진 곳에 부식 피트가 형성되어 이 부식 피트를 기점으로 하는 피로 균열의 전파에 의해 부품이 조기 파손될 우려가 있다.In general, when the strength of the material is increased, the crack susceptibility is increased along with the decrease in toughness due to grain embrittlement. Therefore, high strength is achieved, but if the corrosion resistance of the material is inferior, parts exposed to the outside, such as automobile suspension springs, are formed with corrosion pits where the paint is peeled off, and the parts are premature due to the propagation of fatigue cracks starting from the corrosion pits. It may be damaged.
특히, 최근에는 겨울철 노면의 동결 방지를 위해 제설제 살포가 많아 현가 스프링의 부식환경은 더욱더 가혹화되고 있기 때문에 고강도이면서도 내부식 피로특성이 우수한 스프링용 강에 대한 요구는 날로 강해지고 있다.In particular, in recent years, there is a lot of spraying snow remover to prevent the freezing of the road surface in winter, so the corrosion environment of the suspension spring is more severe, so the demand for spring steel having high strength and excellent corrosion resistance is increasing day by day.
현가 스프링의 부식피로는 노면의 자갈이나 다른 이물질에 의해 스프링 표면의 도장이 벗겨지면 이 부분의 소재가 외부로 노출되어 피팅(pitting) 부식반응이 일어나고, 생성된 부식 피트가 점점 성장하면서 피트를 기점으로 크랙이 발생 및 전파되다가 어느 순간 외부로부터 유입된 수소가 크랙부에 집중되어 수소취성으로 스프링이 절손되는 현상이다.Suspension corrosion of suspension spring is when the surface of the spring is peeled off by gravel or other foreign material on the road surface, the material of this part is exposed to the outside, causing pitting corrosion reaction, and the generated corrosion pit grows gradually and starts the pit. The cracks are generated and propagated, and at some point, hydrogen introduced from the outside concentrates on the cracks, and the spring is broken due to hydrogen embrittlement.
스프링의 부식피로 저항성을 향상시키는 종래기술로는 합금원소의 종류와 첨가량을 증가시키는 방법을 들 수 있다. 특허문헌 1에서는 Ni 함량을 0.55 중량%로 증가시켜 내부식성을 향상시킴으로써 부식피로수명을 증가시키는 효과를 얻었고, 특허문헌 2에서는 Si 함량을 증가시켜 템퍼링(tempering)시 석출하는 탄화물을 미세화함으로써 부식피로강도를 향상시켰다. 또한, 특허문헌 3에서는 강한 수소 trapping site인 Ti 석출물과 약한 수소 trapping site인 (V, Nb, Zr, Hf) 석출물의 적절한 조화로 수소지연파괴 저항성을 향상시킴으로써 스프링 부식피로수명을 향상할 수 있었다. Conventional techniques for improving the resistance to corrosion fatigue of the spring include a method of increasing the type and amount of alloying elements. In Patent Document 1, the Ni content was increased to 0.55% by weight to increase corrosion fatigue life by improving corrosion resistance, and in Patent Document 2, the Si content was increased to refine corrosion carbide by tempering carbide precipitated during tempering. Improved strength. In addition, Patent Document 3 was able to improve the life of the spring corrosion fatigue by improving the hydrogen delayed fracture resistance by appropriate combination of Ti precipitates, which are strong hydrogen trapping sites, and (V, Nb, Zr, Hf), which are weak hydrogen trapping sites.
그러나 Ni은 매우 고가의 원소로서 다량 첨가할 경우 소재 원가 상승이라는 문제를 야기하며, Si은 탈탄을 조장하는 대표적인 원소이기 때문에 첨가량 증가에 상당한 위험성을 야기할 수 있고, Ti, V, Nb 등의 석출물 형성원소들은 소재 응고시 액상으로부터 조대한 탄질화물을 정출시켜 오히려 부식피로수명을 저하시킬 수 있는 위험이 있다.However, Ni is a very expensive element, and when a large amount is added, it causes a problem of material cost increase.Si is a representative element that promotes decarburization, and it may cause a considerable risk in increasing the amount of addition, and precipitates such as Ti, V, and Nb Forming elements are at risk of degrading the life of corrosion fatigue by crystallizing coarse carbonitride from the liquid phase during material solidification.
한편, 스프링의 고강도화를 위한 종래기술로는 합금원소를 첨가시키는 방법과 템퍼링 온도를 낮추는 방법이 있다. 합금원소를 첨가시켜 고강도화하는 방법에는 기본적으로 C, Si, Mn, Cr 등을 이용하여 소입 경도를 높이는 방법이 있고, 고가의 합금원소인 Mo, Ni, V, Ti, Nb 등을 이용하여 급냉 및 템퍼링 열처리에 의해 강재의 강도를 높이고 있다. 그러나 이러한 기술은 원가비용이 상승하는 문제가 있다.On the other hand, the prior art for increasing the strength of the spring is a method of adding an alloying element and a method of lowering the tempering temperature. As a method of increasing the strength by adding alloying elements, there is basically a method of increasing the quenching hardness using C, Si, Mn, Cr, etc., and quenching using expensive alloying elements Mo, Ni, V, Ti, Nb, etc. The strength of steel materials is raised by tempering heat treatment. However, such a technique has a problem of rising cost.
또한, 합금성분의 변화 없이 기존의 성분계에서 열처리 조건을 변경시켜 강재의 강도를 증가시키는 방법이 있다. 즉, 템퍼링 온도를 저온에서 실시하게 되면 소재의 강도가 상승하게 된다. 그렇지만 템퍼링 온도가 낮아지면 소재의 단면감소율이 낮아지므로 인성이 저하되는 문제가 발생되고 스프링 성형 및 사용 중에 조기 파단 등의 문제점이 발생한다. In addition, there is a method of increasing the strength of the steel by changing the heat treatment conditions in the existing component system without changing the alloy composition. In other words, when the tempering temperature is performed at a low temperature, the strength of the material increases. However, when the tempering temperature is lowered, the cross-sectional reduction rate of the material is lowered, which causes a problem of deterioration of toughness and problems such as premature failure during spring forming and use.
따라서 고강도이면서도 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법에 대한 개발이 요구되고 있는 실정이다.Therefore, the development of high-strength and corrosion resistant spring wire rod, steel wire and their manufacturing method is required.
(선행기술문헌)(Prior art document)
(특허문헌 1) 일본 공개특허공보 2008-190042호(Patent Document 1) Japanese Unexamined Patent Publication No. 2008-190042
(특허문헌 2) 일본 공개특허공보 2011-074431호(Patent Document 2) Japanese Unexamined Patent Publication No. 2011-074431
(특허문헌 3) 일본 공개특허공보 2005-023404호(Patent Document 3) Japanese Unexamined Patent Publication No. 2005-023404
본 발명의 일 측면은 Cr 및 Cu, Ni 함량의 조합을 적정 수준으로 제어하고, 부식 피트의 최대 깊이를 일정 수준 이하로 하며, Mo를 함유하는 미세 탄화물을 일정 수준 이상으로 함으로써 고강도이면서도 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법을 제공하기 위함이다.One aspect of the present invention is to control the combination of Cr, Cu, Ni content to an appropriate level, the maximum depth of the corrosion pit to a certain level or less, high-strength and corrosion-resistant fatigue resistance by a certain level of fine carbide containing Mo To provide this excellent spring wire rod, steel wire and their manufacturing method.
한편, 본 발명의 과제는 상술한 내용에 한정하지 않는다. 본 발명의 과제는 본 명세서의 내용 전반으로부터 이해될 수 있을 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 부가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.In addition, the subject of this invention is not limited to the content mentioned above. The problem of the present invention will be understood from the general contents of the present specification, those skilled in the art will have no difficulty understanding the additional problem of the present invention.
본 발명의 일 측면은 중량%로, C: 0.40~0.70%, Si: 1.30~2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하고, One aspect of the invention is by weight, C: 0.40-0.70%, Si: 1.30-2.30%, Mn: 0.20-0.80%, Cr: 0.20-0.80%, Cu: 0.01-0.40%, Ni: 0.10-0.60% %, Mo: 0.01-0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, satisfying the following relational formula 1,
미세조직은 50면적% 이하의 페라이트와 나머지 펄라이트로 이루어지고, The microstructure is composed of up to 50 area% ferrite and the remaining pearlite,
Mo계 탄화물을 8.0×104 개/㎟ 이상 포함하는 부식피로 저항성이 우수한 스프링용 선재에 관한 것이다.The present invention relates to a spring wire rod having excellent corrosion fatigue resistance including Mo-based carbides of 8.0 × 10 4 particles / mm 2 or more.
본 발명의 다른 일 측면은 중량%로, C: 0.40~0.70%, Si: 1.30~2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하는 빌렛을 900~1100℃로 가열하는 단계; Another aspect of the present invention is by weight, C: 0.40 to 0.70%, Si: 1.30 to 2.30%, Mn: 0.20 to 0.80%, Cr: 0.20 to 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01-0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, and the billets satisfying the following relation 1, 900 ~ 1100 ℃ Heating to;
상기 가열된 빌렛을 800~1000℃로 마무리 열간압연하여 선재를 얻는 단계; 및 Hot-rolling the heated billet to 800 to 1000 ° C. to obtain a wire rod; And
상기 선재를 권취한 후, 600~700℃의 온도범위에서의 유지시간이 31초 이상이 되도록 냉각하는 단계;를 포함하는 부식피로 저항성이 우수한 스프링용 선재의 제조방법에 관한 것이다.After winding the wire, the cooling time so that the holding time in the temperature range of 600 ~ 700 ℃ 31 seconds or more; relates to a method for producing a wire rod for excellent corrosion resistance comprising a.
관계식 1: -0.14 ≤ 0.70[Cr] - 0.76[Cu] - 0.24[Ni] ≤ 0.47Relationship 1: -0.14 ≤ 0.70 [Cr]-0.76 [Cu]-0.24 [Ni] ≤ 0.47
(상기 관계식 1에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.)(In the relation 1, each element symbol is a value representing each element content in weight%.)
또한, 본 발명의 또 다른 일 측면은 상기 선재를 이용하여 제조된 강선 및 그 제조방법에 관한 것이다. In addition, another aspect of the present invention relates to a steel wire manufactured using the wire and the method of manufacturing the same.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있다. In addition, the solution of the said subject does not enumerate all the characteristics of this invention. Various features of the present invention and the advantages and effects thereof can be understood in more detail with reference to the following specific embodiments.
본 발명에 의하면, 고강도이면서도 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법을 제공할 수 있는 효과가 있다.According to the present invention, there is an effect that can provide a high-strength, excellent corrosion resistance to the wire rod, steel wire and their manufacturing method.
도 1은 본 발명의 실시예들의 부식 피트 최대깊이에 따른 상대적 부식피로수명을 나타낸 그래프이다.1 is a graph showing the relative corrosion fatigue life according to the maximum depth of corrosion pit of embodiments of the present invention.
도 2는 본 발명의 실시예들의 Mo계 탄화물 개수에 따른 상대적 부식피로수명을 나타낸 그래프이다.Figure 2 is a graph showing the relative corrosion fatigue life according to the number of Mo-based carbide of the embodiments of the present invention.
이하, 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명자들은 상술한 종래기술들의 문제점을 해결하기 위하여 스프링용 강의 내부식성에 미치는 다양한 영향 인자들을 검토함과 동시에, 스프링의 부식피로는 스프링 표면의 도장이 벗겨지면서 부식 피트가 발생하고 이 부식 피트를 기점으로 크랙이 발생 및 전파하다가 외부로부터 유입된 수소가 크랙부에 집중되어 스프링이 절손되는 현상이라는 점에 착안하여 다음과 같은 지견을 얻을 수 있었다. In order to solve the problems of the prior arts described above, the present inventors examine various influence factors on the corrosion resistance of the steel for spring, and at the same time, the corrosion fatigue of the spring is generated by the peeling of the surface of the spring, and the corrosion pits are generated. The following findings were obtained from the fact that the cracks are generated and propagated to the starting point, and hydrogen introduced from the outside is concentrated in the cracks and the springs are broken.
첫째, 합금원소 중 Cr은 일반적으로 내식성 향상 원소로서 알려져 있지만 염수분무 시험결과 Cr 함량이 증가함에 따라 오히려 내부식 피로특성이 저하한다는 것을 알았다. 또한 Cu와 Ni은 부식반응시 소재 표면에 형성되는 부식 녹을 비정질화하여 부식 속도를 늦추는 효과가 있었다. 따라서 스프링용 강의 내부식 피로특성을 향상시키기 위해서는 Cr 및 Cu, Ni 함량의 조합을 적정 수준으로 맞추는 것이 대단히 중요하다. First, although Cr is generally known as an element for improving corrosion resistance, the salt spray test shows that corrosion resistance decreases as Cr content increases. In addition, Cu and Ni had an effect of slowing down the corrosion rate by amorphizing the corrosion rust formed on the surface of the material during the corrosion reaction. Therefore, it is very important to adjust the combination of Cr, Cu and Ni content to an appropriate level in order to improve the corrosion resistance of the spring steel.
둘째, 부식반응시 소재 표면에 생성된 부식 피트(pit)의 최대깊이가 클수록 스프링용 강의 내부식 피로특성이 저하한다는 것을 알았다. 특히나 부식 피트는 그 형상이 폭이 좁고 깊이가 깊을수록 내부식 피로특성을 크게 저하시킨다. 따라서 스프링용 강의 내부식 피로특성을 향상시키기 위해서는 부식 피트의 최대깊이를 일정 수준 이하로 제어해야 할 필요가 있다. Second, it was found that the corrosion resistance of the spring steel decreases as the maximum depth of the corrosion pit formed on the surface of the material during the corrosion reaction. In particular, the narrower the shape and the deeper the corrosion pit, the lower the corrosion fatigue characteristics. Therefore, it is necessary to control the maximum depth of the corrosion pit below a certain level in order to improve the corrosion resistance of the spring steel.
셋째, 외부로부터 유입된 수소가 크랙부에 집중되는 것을 막기 위해서는 미세 탄화물로 수소를 트랩(trap)할 필요가 있고, 이 때 활용될 수 있는 미세 탄화물은 세멘타이트가 아닌 V, Ti, Nb, Mo 등의 합금원소를 주성분으로 하는 탄화물이다. 특히 Mo계 탄화물은 700 ℃ 이하의 온도에서 나노 크기로 매우 미세하게 석출하여 수소 트랩 효과가 상당히 크고, Mo 외에 V, Ti, Nb 등을 주성분으로 하는 탄화물들도 Mo를 함유할 경우 수소 트랩 효과가 뛰어나다. Third, it is necessary to trap hydrogen with fine carbides in order to prevent the hydrogen introduced from the outside from concentrating on the crack portion, and the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo. It is a carbide mainly containing alloying elements, such as these. Particularly, Mo-based carbides precipitate very finely at a temperature of 700 ° C. or below in nano size, and have a great hydrogen trap effect. Carbides including V, Ti, Nb, etc. as well as Mo also have a hydrogen trap effect when they contain Mo. outstanding.
이상의 지견으로부터 Cr 및 Cu, Ni 함량의 조합을 적정 수준으로 제어하고, 부식 피트의 최대깊이를 일정 수준 이하로 하며, Mo를 함유하는 미세 탄화물을 일정 수준 이상으로 함으로써 고강도이면서도 부식피로 저항성이 우수한 스프링용 선재, 강선 및 그들의 제조방법을 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다. From the above findings, the combination of Cr, Cu, and Ni content is controlled to an appropriate level, the maximum depth of the corrosion pit is below a certain level, and the fine carbide containing Mo is above a certain level, thereby providing high strength and corrosion resistance. It was confirmed that the wire rod, the steel wire, and their manufacturing method can be provided, and the present invention has been completed.
부식피로 저항성이 우수한 스프링용 선재Wire rod for spring excellent in corrosion fatigue
이하, 본 발명의 일 측면에 따른 부식피로 저항성이 우수한 스프링용 선재에 대하여 상세히 설명한다. Hereinafter, a wire rod for spring excellent in corrosion fatigue resistance according to an aspect of the present invention will be described in detail.
본 발명의 일 측면에 따른 부식피로 저항성이 우수한 스프링용 선재는 중량%로, C: 0.40~0.70%, Si: 1.30~2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하고, 미세조직은 미세조직은 50면적% 이하의 페라이트와 나머지 펄라이트로 이루어지고, Mo계 탄화물을 8.0×104 개/㎟ 이상 포함한다. Spring wire for excellent corrosion fatigue resistance according to an aspect of the present invention in weight%, C: 0.40 ~ 0.70%, Si: 1.30 ~ 2.30%, Mn: 0.20 ~ 0.80%, Cr: 0.20 ~ 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01 to 0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, and the following relation 1 To satisfy the microstructure, the microstructure is composed of ferrite of 50 area% or less and the remaining pearlite, and contains Mo-based carbide of 8.0 × 10 4 / mm 2 or more.
먼저, 본 발명의 합금조성에 대하여 상세히 설명한다. 이하 각 원소 함량의 단위는 특별한 언급이 없는 한 중량%를 의미한다. 또한, 본 발명의 합금조성은 하기 설명할 선재의 제조방법, 강선 및 강선의 제조방법에도 동일하게 적용된다. First, the alloy composition of the present invention will be described in detail. The unit of each element content hereafter means weight% unless there is particular notice. In addition, the alloy composition of the present invention is equally applied to the production method of the wire rod, steel wire and steel wire production method to be described below.
C: 0.40~0.70%C: 0.40 to 0.70%
C는 스프링의 강도를 확보하기 위하여 첨가되는 필수적인 원소이다. 그 효과를 유효하게 발휘시키기 위해서는 0.40% 이상 함유시키는 것이 바람직하다. 반면에 C 함량이 0.70% 초과인 경우에는 담금질 뜨임 열처리시 쌍정(twin)형 마르텐사이트 조직이 형성되어 소재 균열이 발생하기 때문에 피로수명이 현저히 떨어질 뿐만 아니라 결함 감수성이 높아지고 부식피트가 생길 때 피로수명이나 파괴응력이 현저하게 저하될 수 있다. 따라서, C 함량은 0.40~0.70%인 것이 바람직하다. C is an essential element added to secure the strength of the spring. In order to exhibit the effect effectively, it is preferable to contain 0.40% or more. On the other hand, if the C content is more than 0.70%, the twin type martensite structure is formed during quenching and tempering heat treatment, resulting in material cracking. However, the fracture stress can be significantly reduced. Therefore, it is preferable that C content is 0.40 to 0.70%.
또한, C 함량의 보다 바람직한 하한은 0.45%일 수 있으며, 보다 바람직한 상한은 0.65%일 수 있다. In addition, the lower limit of the C content may be more preferably 0.45%, and the upper limit may be 0.65%.
Si: 1.30~2.30%Si: 1.30-2.30%
Si는 페라이트 내에 고용되어 모재강도를 강화시키고 변형저항성을 개선하는 효과를 가진다. Si is dissolved in ferrite and has the effect of strengthening the base material strength and improving the deformation resistance.
Si 함량이 1.30% 미만인 경우에는 Si이 페라이트 내에 고용되어 모재강도를 강화시키고 변형저항성을 개선하는 효과가 불충분하기 때문에 Si의 하한은 1.30%인 것이 바람직하며, 보다 바람직한 하한은 1.45%일 수 있다. 반면에 Si 함량이 2.30% 초과인 경우에는 변형저항성의 개선효과가 포화되어 추가 첨가의 효과를 얻을 수 없을 뿐만 아니라, 열처리시 표면탈탄을 조장한다. 따라서, Si의 상한은 2.30%인 것이 바람직하며, 보다 바람직한 상한은 2.25%일 수 있다. When the Si content is less than 1.30%, the lower limit of Si is preferably 1.30%, and the lower limit may be 1.45% because Si is insufficiently effective in solidifying the ferrite to strengthen the base material strength and improving the deformation resistance. On the other hand, when the Si content is more than 2.30%, the effect of improving the deformation resistance is saturated, and the effect of additional addition is not obtained, and the surface decarburization is promoted during the heat treatment. Therefore, it is preferable that the upper limit of Si is 2.30%, and a more preferable upper limit may be 2.25%.
Mn: 0.20~0.80%Mn: 0.20 ~ 0.80%
Mn은 강재 내에 존재할 경우 강재의 소입성을 향상시켜 강도를 확보하는데 유익한 원소이다. Mn is an element useful for securing strength by improving the hardenability of steel when present in steel.
Mn 함량이 0.20% 미만인 경우에는 고강도 스프링용 소재로서 요구되는 충분한 강도 및 소입성을 얻기 어렵고, 반대로 0.80% 초과인 경우에는 소입성이 과도하게 증가하여 열간압연 후 냉각시 마르텐사이트 경조직이 발생하기 쉬울 뿐만 아니라 MnS 개재물의 생성이 증가하여 오히려 내부식 피로특성이 저하할 우려가 있다. 따라서 Mn 함량은 0.20~0.80%인 것이 바람직하다. If the Mn content is less than 0.20%, it is difficult to obtain sufficient strength and hardenability required as a material for high strength springs. On the contrary, if the Mn content is higher than 0.80%, the hardenability is excessively increased and martensite hard tissues are likely to occur during cooling after hot rolling. In addition, the formation of MnS inclusions increases, rather there is a fear that the corrosion resistance fatigue resistance. Therefore, the Mn content is preferably 0.20 to 0.80%.
또한, Mn 함량의 보다 바람직한 하한은 0.30%일 수 있으며, 보다 더 바람직하게는 0.40%일 수 있다. 또한, Mn 함량의 보다 바람직한 상한은 0.75%일 수 있으며, 보다 더 바람직한 상한은 0.70%일 수 있다. In addition, the lower limit of the Mn content may be 0.30%, more preferably 0.40%. In addition, the more preferred upper limit of the Mn content may be 0.75%, and the more preferable upper limit may be 0.70%.
Cr: 0.20~0.80%Cr: 0.20 ~ 0.80%
Cr은 내산화성, 템퍼 연화성, 표면탈탄 방지 및 소입성을 확보하는데 유용한 원소이다. Cr is an element useful for securing oxidation resistance, temper softening, surface decarburization prevention and quenching.
Cr 함량이 0.20% 미만인 경우에는 충분한 내산화성, 템퍼 연화성, 표면 탈탄 및 소입성 효과 등을 확보하기 어렵다. 반면에 Cr 함량이 0.80% 초과인 경우에는 변형저항성의 저하를 초래하여 오히려 강도 저하로 이어질 수 있다. 따라서 Cr 함량은 0.20~0.80%인 것이 바람직하다.If the Cr content is less than 0.20%, it is difficult to secure sufficient oxidation resistance, temper softening, surface decarburization and quenching effects. On the other hand, when the Cr content is more than 0.80%, the deformation resistance may be lowered, which may lead to a decrease in strength. Therefore, the Cr content is preferably 0.20 to 0.80%.
또한, Cr 함량의 보다 바람직한 하한은 0.22%일 수 있으며, 보다 바람직한 상한은 0.75%일 수 있다. In addition, the lower limit of the Cr content may be 0.22%, and the upper limit may be 0.75%.
Cu: 0.01~0.40%Cu: 0.01 ~ 0.40%
구리(Cu)는 내식성을 향상시키고자 첨가되는 원소로서, 그 함량이 0.01% 미만인 경우에는 내식성 향상 효과가 불충분하고, 반면 0.40% 초과인 경우에는 열간압연 중 취성 저하를 유발하여 균열 발생 등의 문제를 일으킬 수 있다. 따라서 Cu 함량은 0.01~0.40%인 것이 바람직하다. 보다 바람직하게는 Cu 함량은 0.05~0.30%일 수 있다. Copper (Cu) is an element added to improve the corrosion resistance. If the content is less than 0.01%, the effect of improving the corrosion resistance is insufficient, whereas if it is more than 0.40%, the brittleness during hot rolling causes a problem such as cracking. May cause Therefore, the Cu content is preferably 0.01 to 0.40%. More preferably, the Cu content may be 0.05 to 0.30%.
Ni: 0.10~0.60%Ni: 0.10-0.60%
니켈(Ni)은 소입성 및 인성을 개선하기 위하여 첨가되는 원소로서, 그 함량이 0.10% 미만인 경우에는 소입성 및 인성 개선의 효과가 충분하지 못하고, 반면 0.60% 초과인 경우에는 잔류 오스테나이트 양이 증가하여 피로수명을 감소시키고, 고가인 Ni 특성으로 인해 급격한 제조 단가의 상승을 유발한다. 따라서 Ni 함량은 0.10~0.60%인 것이 바람직하다. Nickel (Ni) is an element added to improve the hardenability and toughness. If the content is less than 0.10%, the effect of the hardenability and toughness is not sufficient, whereas if the content is higher than 0.60%, the amount of retained austenite This increases the fatigue life, and the expensive Ni properties cause a sharp rise in manufacturing costs. Therefore, the Ni content is preferably 0.10 to 0.60%.
Mo: 0.01~0.40%Mo: 0.01 ~ 0.40%
Mo은 탄소나 질소와 탄질화물을 형성하여 조직 미세화에 기여하고 수소의 트랩사이트로 작용하는 원소로서, 이러한 효과를 유효하게 발휘시키기 위해서는 그 함량이 0.01% 이상인 것이 바람직하다. 그러나 Mo 함량이 과도하면 열간압연 후 냉각시 마르텐사이트 경조직이 발생할 가능성이 클 뿐만 아니라 조대 탄질화물이 형성되어 강재의 연성이 저하되기 때문에 Mo 함량의 상한은 0.40%인 것이 바람직하다. Mo is an element which forms carbon or nitrogen and carbonitrides, contributes to the refinement of the structure, and acts as a trap site for hydrogen, and in order to effectively exhibit such an effect, the content is preferably 0.01% or more. However, if the Mo content is excessive, the martensite hard structure is likely to occur during hot rolling after cooling, and the upper limit of the Mo content is preferably 0.40% because coarse carbonitride is formed and the ductility of the steel is reduced.
P: 0.02% 이하P: 0.02% or less
P는 불순물로서, 결정립계에 편석하여 인성을 저하시키는 문제가 있으므로 그 상한을 0.02%로 제한함이 바람직하다.P is an impurity, and it is preferable to limit the upper limit to 0.02% because of a problem of segregation at grain boundaries and deterioration of toughness.
S: 0.015% 이하S: 0.015% or less
S는 불순물로서, 저융점 원소로 입계 편석하여 인성을 저하시킬 뿐만 아니라 MnS를 다량 형성시켜 스프링의 내부식 특성에 유해한 영향을 미치기 때문에 그 상한을 0.015%로 제한하는 것이 바람직하다.S is an impurity, and it is preferable to limit the upper limit to 0.015% because it not only lowers the toughness by grain boundary segregation with low melting elements but also forms a large amount of MnS, which adversely affects the corrosion resistance of the spring.
N: 0.01% 이하N: 0.01% or less
질소(N)는 보론(B)와 반응하여 BN을 형성시키기 쉬우며, 소입 효과를 감소시키는 원소이므로 가급적이면 낮게 제어하여야 하나, 공정부하를 고려할 경우 0.01% 이하로 제한하는 것이 바람직하다. Nitrogen (N) is easy to form BN by reacting with boron (B), and should be controlled as low as possible because it is an element that reduces the quenching effect, but considering the process load, it is preferable to limit it to 0.01% or less.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다. The remaining component of the present invention is iron (Fe). However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
관계식 1: -0.14 ≤ 0.70[Cr] - 0.76[Cu] - 0.24[Ni] ≤ 0.47Relationship 1: -0.14 ≤ 0.70 [Cr]-0.76 [Cu]-0.24 [Ni] ≤ 0.47
(상기 관계식 1에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.)(In the relation 1, each element symbol is a value representing each element content in weight%.)
Cr, Cu 및 Ni는 상술한 각 원소함량을 만족할 뿐만 아니라, 상기 관계식 1을 만족하여야 한다. Cr, Cu, and Ni not only satisfy the above-described respective element contents, but also satisfy the above relational expression (1).
Cr은 일반적으로 내식성 향상 원소로서 알려져 있지만 스프링용 강에서는 Cr 함량이 증가함에 따라 오히려 내부식 피로특성이 저하한다. 그 이유는 Cr이 부식반응시 피트 기저(바닥부)의 pH를 낮춰 피트 내부를 강산성 분위기로 만들어 피트의 최대 깊이를 크게 하는 역할을 하기 때문이다. 즉, Cr은 함량이 증가함에 따라 내부식 피로특성을 저하시키는 역할을 한다. Cr is generally known as a corrosion resistance improving element, but corrosion resistance decreases with increasing Cr content in spring steel. This is because Cr lowers the pH of the pit base (bottom) during the corrosion reaction, making the inside of the pit a strong acid atmosphere, thereby increasing the maximum depth of the pit. That is, Cr plays a role of lowering corrosion resistance as the content increases.
반면에 Cu와 Ni은 부식반응시 소재 표면에 형성되는 부식 녹을 비정질화하여 부식 속도를 늦추는 효과가 있다. 이에 본 발명자들은 Cr, Cu, Ni 함량이 스프링용 강의 내부식 피로특성의 저하에 미치는 상관관계를 연구한 결과, 그 영향도가 각각 Cr의 경우 0.70, Cu는 -0.76, Ni은 -0.24임을 알아내었으며, 이들의 상관관계를 상기 관계식 1을 만족하도록 제어함으로써 부식피로 저항성을 향상시킬 수 있다. On the other hand, Cu and Ni have an effect of slowing down the corrosion rate by amorphizing the corrosion rust formed on the material surface during the corrosion reaction. Therefore, the present inventors have studied the correlation between Cr, Cu, and Ni content on the deterioration of the corrosion resistance of the steel for spring, and found that the influence is 0.70 for Cr, -0.76 for Cu, and -0.24 for Ni, respectively. The corrosion fatigue resistance can be improved by controlling their correlation to satisfy the above Equation 1.
이때, 상술한 합금조성 외에 중량%로, V: 0.01~0.20%, Ti: 0.01~0.15% 및 Nb: 0.01~0.10% 중에서 선택된 1종 이상을 추가로 포함할 수 있다. In this case, in addition to the alloy composition described above, it may further include at least one selected from V: 0.01 to 0.20%, Ti: 0.01 to 0.15%, and Nb: 0.01 to 0.10% by weight.
V: 0.01~0.20%V: 0.01 ~ 0.20%
V는 강도 향상 및 결정립 미세화에 기여하는 원소일 뿐만 아니라, 탄소(C)나 질소(N)와 탄질화물을 형성하여 강철 중에 침입한 수소의 트랩사이트로서 작용하게 되어 강재 내부에서의 수소 침입을 억제하고 부식 발생을 감소시키는 역할을 하는 원소이다. V is not only an element that contributes to strength improvement and grain refinement, but also forms a carbon nitride with carbon (C) or nitrogen (N) and acts as a trap site for hydrogen infiltrating into steel, thereby inhibiting hydrogen intrusion inside steel materials. It is an element that serves to reduce the occurrence of corrosion.
V 함량이 0.01% 미만인 경우에는 상술한 효과가 불충분하다. 반면에 V 함량이 과도한 경우에는 제조원가가 상승하므로 V 함량의 상한은 0.20%인 것이 바람직하다. When the V content is less than 0.01%, the above effects are insufficient. On the other hand, when the V content is excessive, the manufacturing cost increases, so the upper limit of the V content is preferably 0.20%.
Ti: 0.01~0.15%Ti: 0.01 ~ 0.15%
Ti는 탄질화물을 형성하여 석출경화 작용을 일으킴으로써 스프링 특성을 개선하는 원소이며, 입자 미세화 및 석출강화를 통해 강도와 인성을 향상시킨다. 또한, Ti는 강철 중에 침입한 수소의 트랩사이트로서 작용하게 되어 강재 내부에서의 수소 침입을 억제하고 부식 발생을 감소시키는 역할도 한다. Ti is an element that improves the spring characteristics by forming a carbonitride to cause precipitation hardening, and improves strength and toughness through particle refinement and precipitation strengthening. In addition, Ti acts as a trap site for hydrogen infiltrating into steel, thereby inhibiting hydrogen ingress and reducing corrosion.
Ti 함량이 0.01 % 미만인 경우에는 석출강화 및 수소트랩사이트로 작용한 석출물의 빈도수가 작아서 효과적이지 못하며, 0.15% 초과인 경우에는 제조 단가가 급격히 상승하고 석출물에 의한 스프링 특성 개선효과가 포화하며 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물량이 증가하게 되어 비금속개재물과 같은 작용을 하기 때문에 피로특성 및 석출강화 효과가 저하하게 된다. If the Ti content is less than 0.01%, the precipitation reinforcement and the frequency of precipitates acting as hydrogen trapsites are not effective.If the Ti content is more than 0.15%, the manufacturing cost increases rapidly, and the effect of improving the spring properties by the precipitates is saturated and austenite Coarse alloy carbides that are not dissolved in the base material during heat treatment are increased to act as non-metallic inclusions, thereby reducing fatigue characteristics and precipitation strengthening effects.
Nb: 0.01~0.10%Nb: 0.01 ~ 0.10%
Nb는 탄소나 질소와 탄질화물을 형성하여 주로 조직 미세화에 기여하고 수소의 트랩사이트로 작용하는 원소이기 때문에 그 효과를 유효하게 발휘시키기 위해서는 첨가량을 0.01% 이상으로 하는 것이 바람직하다. 그러나 Nb 함량이 과다하면 조대 탄질화물이 형성되어 강재의 연성이 저하되기 때문에 첨가량의 상한은 0.10%인 것이 바람직하다. Since Nb is an element that forms carbon or nitrogen and carbonitrides, and mainly contributes to the refinement of the structure and acts as a trap site for hydrogen, the amount of addition is preferably 0.01% or more in order to effectively exhibit the effect. However, when the Nb content is excessive, coarse carbonitride is formed and the ductility of the steel is lowered, so the upper limit of the added amount is preferably 0.10%.
본 발명에 따른 선재의 미세조직은 50면적% 이하의 페라이트와 나머지 펄라이트로 이루어진다. 다만 여기서 면적분율은 석출물을 제외하고 측정한 것을 의미한다. The microstructure of the wire rod according to the present invention consists of ferrite of 50 area% or less and the remaining pearlite. However, the area fraction here means the measurement except for the precipitate.
페라이트가 50면적% 초과인 경우에는 소재의 강도가 너무 낮아져, 최종 열처리 후 원하는 수준의 강도를 구현할 수 없게 된다. If the ferrite is more than 50 area%, the strength of the material is so low that the desired level of strength cannot be achieved after the final heat treatment.
또한, 페라이트를 제외한 나머지는 펄라이트이다. 페라이트와 펄라이트 외에 마르텐사이트 같은 경조직이 존재하는 경우에는 선재를 신선하는 단계에서 단선될 가능성이 커질 우려가 있다. In addition, the remainder except for ferrite is pearlite. If there are hard tissues such as martensite in addition to ferrite and pearlite, there is a possibility that the wire will be disconnected at the stage of wire drawing.
또한, 본 발명에 따른 선재는 Mo계 탄화물을 8.0×104 개/㎟ 이상 포함한다. Further, the wire rod according to the present invention contains Mo-based carbide at least 8.0 × 10 4 / mm 2.
외부로부터 유입된 수소가 크랙부에 집중되는 것을 막기 위해서는 미세 탄화물로 수소를 트랩(trap)할 필요가 있고, 이 때 활용될 수 있는 미세 탄화물은 세멘타이트가 아닌 V, Ti, Nb, Mo 등의 합금원소를 주성분으로 하는 탄화물이다. 특히, Mo를 주성분으로 하는 탄화물은 600~700℃의 온도범위에서 나노 크기로 매우 미세하게 석출하여 수소 트랩 효과가 상당히 크고, V, Ti, Nb 등을 주성분으로 하는 탄화물들도 Mo를 함유할 경우 수소 트랩 효과가 뛰어나다. It is necessary to trap hydrogen with fine carbides in order to prevent the hydrogen introduced from the outside from concentrating on the crack part, and the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo, etc. Carbide is composed mainly of alloying elements. In particular, carbides containing Mo as the main component are very finely precipitated at a nano size in the temperature range of 600 to 700 ° C., so that the hydrogen trap effect is very large, and carbides containing V, Ti, and Nb as the main component also contain Mo. Hydrogen trap effect is excellent.
따라서 Mo계 탄화물을 8.0×104 개/㎟ 이상 포함하는 것이 바람직하며, 보다 바람직하게는 8.5×104 개/㎟ 이상 포함할 수 있다. Therefore, the Mo-based carbide is preferably included 8.0 × 10 4 / mm 2 or more, more preferably 8.5 × 10 4 / mm 2 or more.
또한, 강선 제조시 Mo계 탄화물의 개수가 크게 변동되지는 않으나, 약간 줄어들 수 있으므로 선재 상태에서 Mo계 탄화물을 9.0×104 개/㎟ 이상 확보해 두는 것이 보다 더 바람직할 수 있다. In addition, but not the number of the Mo-based carbide in the manufacture steel wire changes significantly, it may be more desirable than placing it may slightly reduce securing Mo system carbides in a pre-existing condition 9.0 × 10 4 gae / ㎟ above.
이때, 상기 Mo계 탄화물은 탄화물을 기준으로 Mo가 5중량% 이상 포함된 탄화물일 수 있다. 상술한 바와 같이 V, Ti, Nb 등을 주성분으로 하는 탄화물들도 Mo를 함유할 경우 수소 트랩 효과가 뛰어나기 때문이다. In this case, the Mo-based carbide may be a carbide containing 5% by weight or more based on the carbide. As described above, carbides containing V, Ti, Nb, etc. as a main component also have an excellent hydrogen trap effect when they contain Mo.
부식피로 저항성이 우수한 스프링용 선재의 제조방법Manufacturing method of spring wire rod excellent in corrosion fatigue
이하, 본 발명의 다른 일 측면인 부식피로 저항성이 우수한 스프링용 선재의 제조방법에 대하여 상세히 설명한다. Hereinafter, another aspect of the present invention will be described in detail a method for producing a spring wire rod excellent in corrosion fatigue resistance.
본 발명의 다른 일 측면인 부식피로 저항성이 우수한 스프링용 선재의 제조방법은 상술한 합금조성을 만족하는 빌렛을 900~1100℃로 가열하는 단계; 상기 가열된 빌렛을 800~1000℃로 마무리 열간압연하여 선재를 얻는 단계; 및 상기 선재를 권취한 후, 600~700℃의 온도범위에서의 유지시간이 31초 이상이 되도록 냉각하는 단계;를 포함한다. Another aspect of the present invention provides a method for producing a spring wire rod excellent corrosion resistance step of heating a billet satisfying the above-described alloy composition to 900 ~ 1100 ℃; Hot-rolling the heated billet to 800 to 1000 ° C. to obtain a wire rod; And after winding the wire rod, cooling the holding time in a temperature range of 600 to 700 ° C. to 31 seconds or more.
빌렛 가열 단계Billet heating stage
상술한 합금조성을 만족하는 빌렛을 900~1100℃로 가열한다. Billets satisfying the above-described alloy composition is heated to 900 ~ 1100 ℃.
빌렛의 가열온도를 900℃ 이상으로 하는 것은 주조시 생성될 수 있는 조대 탄화물들을 전부 녹여 합금원소가 오스테나이트 내에 균일하게 분포되도록 하기 위함이다. 반면에 빌렛의 가열온도가 1100℃ 초과인 경우에는 필요 이상으로 가열되어 열 소모량이 많고 시간도 길어져 탈탄이 심해질 우려가 있다. The heating temperature of the billet is above 900 ° C to dissolve all coarse carbides that may be produced during casting so that the alloying elements are uniformly distributed in the austenite. On the other hand, if the heating temperature of the billet is more than 1100 ℃, it is heated more than necessary, the heat consumption is high, there is a fear that the decarburization becomes severe as the time is long.
열간압연 단계Hot rolling stage
상기 가열된 빌렛을 800~1000℃로 마무리 열간압연하여 선재를 얻는다. The heated billet is hot rolled to finish at 800 to 1000 ° C. to obtain a wire rod.
마무리 압연온도를 800℃ 이상으로 하는 것은 미세 탄화물의 석출을 촉진시키기 위함이다. 마무리 압연온도가 800℃ 미만인 경우에는 압연롤의 부하가 커지며, 1000℃ 초과인 경우에는 결정립 크기가 커져 인성이 저하되고 냉각시 변태가 지연되어 마르텐사이트 경조직이 발생할 우려가 있다. The finishing rolling temperature is 800 ° C. or higher to promote precipitation of fine carbides. If the finish rolling temperature is less than 800 ℃, the load of the rolling roll is large, when the finish rolling temperature is greater than 1000 ℃ grain size is large, toughness is lowered, the transformation is delayed during cooling, martensite hard structure may occur.
권취 및 냉각 단계Winding and cooling stage
상기 선재를 권취한 후, 600~700℃의 온도범위에서의 유지시간이 31초 이상이 되도록 냉각한다. After winding the wire, it is cooled so that the holding time in the temperature range of 600 to 700 ° C is 31 seconds or more.
600~700℃의 온도범위에서의 유지시간이 31초 이상이 되도록 제어하는 것은 냉각시 마르텐사이트 경조직이 생성되지 않고 펄라이트 변태가 완료될 수 있는 충분한 시간을 확보하기 위함이며, Mo를 주성분으로 하는 미세 탄화물이 충분히 석출되도록 하기 위함이다. Controlling the holding time in the temperature range of 600 to 700 ° C to be 31 seconds or more is to ensure sufficient time for the pearlite transformation to be completed without martensite hard structure being formed upon cooling. This is to allow the carbide to precipitate sufficiently.
부식피로 저항성이 우수한 스프링용 강선Steel wire for spring with excellent corrosion fatigue
본 발명의 또 다른 일 측면인 부식피로 저항성이 우수한 스프링용 강선은 상술한 합금조성을 만족하며, 미세조직은 템퍼드 마르텐사이트 단상이고, Mo계 탄화물을 8.0×104 개/㎟ 이상 포함한다. 미세조직을 템퍼드 마르텐사이트 단상으로 하고, Mo계 탄화물을 8.0×104 개/㎟ 이상 포함함으로써 부식피로 저항성을 향상시킬 수 있다. 템퍼드 마르텐사이트 단상이란 일부 불가피한 불순 조직을 제외하고는 템퍼드 마르텐사이트로 이루어진 것을 의미한다. Another aspect of the present invention, the spring steel wire having excellent corrosion fatigue resistance satisfies the alloy composition described above, and the microstructure is a tempered martensite single phase and includes Mo-based carbide of 8.0 × 10 4 / mm 2 or more. Corrosion fatigue resistance can be improved by making a microstructure a tempered martensite single phase and including Mo-type carbide 8.0 * 10 <4> / mm <2> or more. Tempered martensite single phase means composed of tempered martensite except for some unavoidable impurities.
외부로부터 유입된 수소가 크랙부에 집중되는 것을 막기 위해서는 미세 탄화물로 수소를 트랩(trap)할 필요가 있고, 이 때 활용될 수 있는 미세 탄화물은 세멘타이트가 아닌 V, Ti, Nb, Mo 등의 합금원소를 주성분으로 하는 탄화물이다. 특히, Mo를 주성분으로 하는 탄화물은 600~700℃의 온도범위에서 나노 크기로 매우 미세하게 석출하여 수소 트랩 효과가 상당히 크고, V, Ti, Nb 등을 주성분으로 하는 탄화물들도 Mo를 함유할 경우 수소 트랩 효과가 뛰어나다. 따라서 Mo계 탄화물을 8.0×104 개/㎟ 이상 포함하는 것이 바람직하며, 보다 바람직하게는 8.5×104 개/㎟ 이상일 수 있다. 한편, Mo계 탄화물은 선재 제조시 생성되고 이후 강선 제조에 따른 가열 및 냉각에서도 크게 변동되지는 않으나, 약간 줄어들 수 있다. It is necessary to trap hydrogen with fine carbides in order to prevent the hydrogen introduced from the outside from concentrating on the crack part, and the fine carbides that can be utilized are not cementite but V, Ti, Nb, Mo, etc. Carbide is composed mainly of alloying elements. In particular, carbides containing Mo as the main component are very finely precipitated at a nano size in the temperature range of 600 to 700 ° C., so that the hydrogen trap effect is very large, and carbides containing V, Ti, and Nb as the main component also contain Mo. Hydrogen trap effect is excellent. Therefore, the Mo-based carbide is preferably included at least 8.0 × 10 4 / mm 2, more preferably 8.5 × 10 4 / mm 2 or more. On the other hand, Mo-based carbide is produced during the production of the wire rod, and does not significantly change even after heating and cooling according to steel wire manufacturing, but may be slightly reduced.
이때, 본 발명의 강선은 부식 피트의 최대 깊이가 120㎛ 이하일 수 있다. At this time, the steel wire of the present invention may have a maximum depth of the corrosion pit 120㎛ or less.
부식반응시 소재 표면에 생성된 부식 피트(pit)의 최대 깊이가 클수록 스프링용 강의 내부식 피로특성이 저하하기 때문이다. 특히 부식 피트는 그 형상이 폭이 좁고 깊이가 깊을수록 피트에 가해지는 응력이 심화돼 내부식 피로특성을 크게 저하시킨다. This is because the corrosion resistance of the spring steel decreases as the maximum depth of the corrosion pit formed on the surface of the material during the corrosion reaction decreases. In particular, the narrower the shape and the deeper the corrosion pit, the deeper the stress applied to the pit, thereby greatly reducing the corrosion resistance.
이때, 상기 부식 피트의 최대 깊이 측정은 강선의 시험편을 염수분무시험기에 넣어 35℃ 분위기에서 5% 염수를 4시간 분무하고, 온도 25℃, 습도 50% 분위기에서 4 시간 건조한 후, 40℃ 분위기에서 습도 100%가 되도록 16시간 동안 습윤하는 사이클(cycle)을 14 사이클 반복한 다음 측정한 것이다. 이는 스프링용 강의 사용환경을 고려하여 가장 가혹한 조건을 설정한 것으로 이러한 조건에서 부식 피트의 최대 깊이가 120㎛ 이하인 경우 우수한 부식피로 저항성을 보증할 수 있다. At this time, the maximum depth measurement of the corrosion pit is put the test piece of the steel wire in the salt spray tester sprayed 5% brine for 4 hours in a 35 ℃ atmosphere, dried for 4 hours in a temperature 25 ℃, 50% humidity, 40 ℃ atmosphere The cycle of moistening for 16 hours to 100% humidity was repeated 14 cycles and then measured. This is to set the harshest conditions in consideration of the use environment of the spring steel, it can ensure excellent corrosion fatigue resistance when the maximum depth of the corrosion pit is 120㎛ or less under these conditions.
또한, 본 발명의 강선은 인장강도가 1800MPa 이상일 수 있다. In addition, the steel wire of the present invention may have a tensile strength of 1800 MPa or more.
부식피로 저항성이 우수한 스프링용 강선의 제조방법Manufacturing method of spring steel wire with excellent corrosion fatigue resistance
본 발명의 또 다른 일 측면인 부식피로 저항성이 우수한 스프링용 강선의 제조방법은 상술한 본 발명에 따른 선재의 제조방법에 의해 제조된 선재를 신선하여 강선을 얻는 단계; 상기 강선을 850~1000℃로 가열한 후 1분 이상 유지하는 오스테나이트화 단계; 및 상기 오스테나이트화된 선재를 25~80℃로 유냉한 후, 350~500℃에서 템퍼링하는 단계;를 포함한다. Another aspect of the present invention is a method for producing a spring steel wire having excellent resistance to corrosion fatigue step of obtaining a steel wire by drawing a wire produced by the method for producing a wire according to the present invention; An austenitization step of maintaining the steel wire at 850 to 1000 ° C. for at least 1 minute; And tempering at 350-500 ° C. after cooling the austenitic wire at 25-80 ° C.
가열 후 유지시간이 1 분 미만인 경우에는 페라이트와 펄라이트 조직이 충분히 가열되지 않아 오스테나이트로 변태되지 않을 수 있으므로 가열시간을 1분 이상인 것이 바람직하다. 또한, 유냉 온도는 통상의 조건이므로 특별히 한정하지 않는다. If the holding time after heating is less than 1 minute, the ferrite and pearlite structures may not be sufficiently heated and may not be transformed into austenite, so the heating time is preferably 1 minute or more. In addition, since oil-cooling temperature is normal conditions, it does not specifically limit.
템퍼링 온도가 350℃ 미만인 경우에는 인성이 확보되지 않아 성형 및 제품상태에서 파손될 위험이 있으며, 반면 500℃를 초과하게 되면 강도가 저하될 위험이 있으므로 템퍼링온도는 350~500℃인 것이 바람직하다.If the tempering temperature is less than 350 ℃, the toughness is not secured, there is a risk of damage in the molding and product state, while if the temperature exceeds 500 ℃ tempering temperature is preferably 350 ~ 500 ℃.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it is necessary to note that the following examples are only for illustrating the present invention in more detail, and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
하기 표 1의 조성을 갖는 빌렛을 1000 ℃로 가열한 후 900℃에서 마무리압연한 후 권취하였고, 권취 후 냉각시에 600 ~ 700 ℃ 온도구간을 하기 표 2에 기재된 유지시간 동안 유지하여 선재를 제조하였다. 상기 선재의 미세조직을 관찰하여 하기 표 2에 기재하였다. The billet having the composition shown in Table 1 was heated to 1000 ℃ and then rolled to finish rolling at 900 ℃, the winding after cooling to maintain a temperature range of 600 ~ 700 ℃ during the holding time shown in Table 2 to prepare a wire rod. . The microstructure of the wire rod was observed and listed in Table 2 below.
상기 선재를 신선한 후, 975 ℃에서 15 분 가열한 다음 70 ℃ 기름에 담궈 급냉시키고 이후 390 ℃에서 30 분동안 유지하여 강선을 제조하였다. After the wire was fresh, it was heated at 975 ° C. for 15 minutes, quenched in 70 ° C. oil, and then held at 390 ° C. for 30 minutes to prepare a steel wire.
상기 강선의 인장강도, 부식 pit 최대깊이, Mo계 탄화물, 상대적 부식피로수명을 측정하여 하기 표 2에 기재하였다. 미세조직은 모두 마르텐사이트 단상이었다. Tensile strength, maximum depth of corrosion pit, Mo-based carbide, and relative corrosion fatigue life of the steel wire were measured and described in Table 2 below. The microstructure was all martensite single phase.
인장강도는 상기 강선을 ASTM E 8 규격에 맞게 인장시편을 채취한 후 인장시험을 실시하여 측정하였다. Tensile strength was measured by performing a tensile test after taking the tensile specimen in accordance with the ASTM E 8 standard.
Mo계 탄화물은 시편을 횡단면 절단한 다음 레플리카법으로 미세 탄화물을 추출하여 투과전자현미경(Transmission Electron Microscope)과 에너지분산형 분광분석법(Energy Dispersive X-ray Spectroscopy)을 사용하여 분석하였고, 그 결과 중 Mo를 5% 이상 함유하는 탄화물의 개수를 하기 표 2에 기재하였다. Mo-based carbides were cross sectioned and then fine carbides were extracted by replica method and analyzed using Transmission Electron Microscope and Energy Dispersive X-ray Spectroscopy. Table 2 shows the number of carbides containing 5% or more.
또한, 시편을 염수분무시험기에 넣어 35 ℃ 분위기에서 5 % 염수를 4 시간 분무하고 온도 25 ℃, 습도 50 % 분위기에서 4 시간 건조하며 40 ℃ 분위기에서 습도 100 %가 되도록 16 시간동안 습윤하는 사이클(cycle)을 14 사이클 반복한 후. 부식 피트 최대 깊이 및 상대적 부식피로수명을 측정하였다. In addition, the specimen was placed in a salt spray tester and sprayed with 5% brine for 4 hours in a 35 ° C atmosphere, dried for 4 hours in a temperature of 25 ° C and a humidity of 50%, and wetted for 16 hours to be 100% humidity in a 40 ° C atmosphere ( cycle) after 14 cycles. Corrosion pit maximum depth and relative corrosion fatigue life were measured.
부식 피트 최대 깊이는 공초점레이져현미경(Confocal Laser Microscope)으로 측정하였다. Corrosion pit maximum depth was measured with a Confocal Laser Microscope.
상대적 부식피로수명은 회전굽힘피로시험을 실시하였으며, 피로시험 속도는 3,000rpm이었고 시편에 가해진 하중은 인장강도의 40%이었으며, 각각 10 개씩 시험하여 피로수명이 가장 큰 것과 가장 작은 것을 뺀 나머지 8 개의 피로수명을 평균하여 그 시편의 부식피로수명으로 하였다. 표 2에 비교예 1의 부식피로수명을 1로 하였을 때 나머지 시편의 상대적 부식피로수명을 나타내었다. The relative corrosion fatigue life was tested by rotational bending fatigue test, the fatigue test speed was 3,000rpm, and the load applied to the specimen was 40% of the tensile strength. The fatigue life was averaged to give the corrosion fatigue life of the specimen. Table 2 shows the relative corrosion fatigue life of the remaining specimens when the corrosion fatigue life of Comparative Example 1 is 1.
강종Steel grade 합금조성 (중량%)Alloy composition (% by weight) 관계식1Relationship 1
CC SiSi MnMn CrCr CuCu NiNi MoMo PP SS NN VV TiTi Nb Nb
비교강1Comparative Steel 1 0.530.53 1.531.53 0.680.68 0.730.73 -- -- -- 0.0160.016 0.0080.008 0.00490.0049 0.510.51
비교강2 Comparative Steel 2 0.500.50 1.491.49 0.510.51 0.110.11 0.220.22 0.250.25 -- 0.0090.009 0.0050.005 0.00520.0052 0.110.11 -0.15-0.15
비교강3 Comparative Steel 3 0.630.63 1.621.62 0.400.40 0.260.26 0.280.28 0.620.62 0.160.16 0.0100.010 0.0100.010 0.00420.0042 0.020.02 -0.18-0.18
비교강4 Comparative Steel 4 0.550.55 1.851.85 0.610.61 0.860.86 0.100.10 0.190.19 0.140.14 0.0110.011 0.0070.007 0.00510.0051 0.100.10 0.030.03 0.480.48
비교강5 Comparative Steel 5 0.480.48 2.262.26 0.590.59 0.280.28 0.340.34 0.580.58 0.220.22 0.0080.008 0.0070.007 0.00460.0046 0.080.08 0.030.03 -0.20-0.20
발명강1 Inventive Steel 1 0.520.52 1.511.51 0.680.68 0.720.72 0.140.14 0.210.21 0.030.03 0.0120.012 0.0080.008 0.00450.0045 0.350.35
발명강2 Inventive Steel 2 0.490.49 1.451.45 0.480.48 0.230.23 0.220.22 0.520.52 0.130.13 0.0080.008 0.0060.006 0.00570.0057 -0.13-0.13
발명강3 Invention Steel 3 0.600.60 1.521.52 0.430.43 0.280.28 0.150.15 0.560.56 0.160.16 0.0100.010 0.0040.004 0.00440.0044 0.180.18 0.020.02 -0.05-0.05
발명강4 Inventive Steel 4 0.530.53 1.681.68 0.410.41 0.330.33 0.210.21 0.250.25 0.360.36 0.0130.013 0.0060.006 0.00540.0054 0.140.14 0.010.01
발명강5 Inventive Steel 5 0.490.49 2.172.17 0.640.64 0.710.71 0.060.06 0.100.10 0.250.25 0.0090.009 0.0070.007 0.00470.0047 0.120.12 0.050.05 0.430.43
상기 표 1에서 관계식1은 0.70[Cr] - 0.76[Cu] - 0.24[Ni]의 값을 의미한다. In Table 1, relation 1 represents a value of 0.70 [Cr]-0.76 [Cu]-0.24 [Ni].
구분division 강종Steel grade 선재미세조직(면적%)Wire Rod Microstructure (Area%) 600~700℃유지시간(sec)600 ~ 700 ℃ holding time (sec) 강선인장강도(MPa)Tensile Tensile Strength (MPa) 부식피트최대깊이 (㎛)Maximum depth of corrosion feet (㎛) Mo계 탄화물(×104 개/㎟)Mo-based carbide (× 10 4 pieces / mm2) 상대적부식피로수명Relative Corrosion Fatigue Life
비교예1Comparative Example 1 비교강1Comparative Steel 1 F: 24, P: 76F: 24, P: 76 1818 1,8521,852 241241 00 1.001.00
비교예2Comparative Example 2 비교강2Comparative Steel 2 F: 36, P: 64F: 36, P: 64 2323 1,9141,914 187187 00 1.071.07
비교예3Comparative Example 3 비교강3Comparative Steel 3 F: 19, P: 49, M: 10 F: 19, P: 49, M: 10 2727 2,0752,075 145145 2.182.18 1.161.16
비교예4Comparative Example 4 비교강4Comparative Steel 4 F: 17, P: 54, M: 12 F: 17, P: 54, M: 12 2929 2,0382,038 238238 5.455.45 1.041.04
비교예5Comparative Example 5 비교강5Comparative Steel 5 F: 2, P: 53, M: 19 F: 2, P: 53, M: 19 3030 1,9861,986 132132 7.967.96 1.281.28
발명예1Inventive Example 1 발명강1Inventive Steel 1 F: 14, P: 86F: 14, P: 86 3232 1,8721,872 117117 8.558.55 3.233.23
발명예2Inventive Example 2 발명강2Inventive Steel 2 F: 34, P: 66F: 34, P: 66 4646 1,8831,883 6363 12.3712.37 5.745.74
발명예3Inventive Example 3 발명강3Invention Steel 3 F: 4, P: 96F: 4, P: 96 9292 2,0512,051 7878 74.3674.36 6.376.37
발명예4Inventive Example 4 발명강4Inventive Steel 4 F: 25, P: 75F: 25, P: 75 6868 2,0642,064 103103 30.5430.54 5.865.86
발명예5Inventive Example 5 발명강5Inventive Steel 5 F: 37, P: 63F: 37, P: 63 115115 2,0082,008 112112 132.05132.05 8.218.21
비교예6Comparative Example 6 비교강1Comparative Steel 1 F: 32, P: 68F: 32, P: 68 7676 1,8661,866 128128 00 0.970.97
비교예7Comparative Example 7 비교강2Comparative Steel 2 F: 31, P: 69F: 31, P: 69 5151 1,9201,920 141141 00 1.021.02
비교예8Comparative Example 8 발명강1Inventive Steel 1 F: 6, P: 85, M: 9 F: 6, P: 85, M: 9 3030 1,9041,904 176176 2.042.04 1.011.01
비교예9Comparative Example 9 발명강2Inventive Steel 2 F: 8, P: 76, M: 16 F: 8, P: 76, M: 16 2828 1,9231,923 214214 4.754.75 1.161.16
상기 표 2에서 F는 페라이트, P는 펄라이트, M은 마르텐사이트를 의미한다. In Table 2, F means ferrite, P means pearlite, and M means martensite.
본 발명에서 제시한 합금조성 및 제조조건을 모두 만족하는 경우인 발명예 1 내지 5는 인장강도 및 상대적 부식피로수명이 우수한 것을 확인할 수 있다. 비교예들의 경우 상대적 부식피로수명이 0.97~1.28 수준이었으나, 발명예들의 경우 상대적 부식피로수명이 3.23~8.21로 크게 증가한 것을 확인할 수 있다. Inventive Examples 1 to 5, which satisfy all of the alloy composition and manufacturing conditions presented in the present invention, can be confirmed that the tensile strength and the relative corrosion fatigue life are excellent. In the comparative examples, the relative corrosion fatigue life was 0.97 to 1.28, but in the case of the inventive examples, the relative corrosion fatigue life was greatly increased to 3.23 to 8.21.
비교예들의 경우에도 1800MPa 이상의 인장강도는 확보 가능하였으나, 본 발명에서 제시한 합금조성 또는 제조조건을 만족하지 못하여 상대적 부식피로수명이 열위한 것을 알 수 있다. Although the tensile strength of 1800 MPa or more can be secured in the comparative examples, it can be seen that the relative corrosion fatigue life is inferior because the alloy composition or the manufacturing conditions presented in the present invention are not satisfied.
비교예들의 경우 부식 피트의 최대깊이가 모두 128 ㎛ 이상이었으며, Mo계 탄화물의 개수가 모두 8 x 104 개/㎟ 미만으로 관찰되었다. In the comparative examples, the maximum depths of the corrosion pits were all 128 µm or more, and the number of Mo-based carbides was all observed to be less than 8 × 10 4 pieces / mm 2.
비교예 6 및 7과 같이, 본 발명 합금조성을 만족하지 않는 경우에는 본 발명에서 제시한 제조조건을 만족하여도 상대적 부식피로수명이 낮은 것을 확인할 수 있다. 또한, 비교예 8 및 9와 같이 본 발명에서 제시한 합금조성을 만족하더라도 600~700℃ 유지시간을 만족하지 않는 경우에는 상대적 부식피로수명이 낮은 것을 확인할 수 있다.As in Comparative Examples 6 and 7, if the alloy composition of the present invention is not satisfied, it can be confirmed that the relative corrosion fatigue life is low even if the manufacturing conditions presented in the present invention are satisfied. In addition, it can be seen that the relative corrosion fatigue life is low when the alloy composition presented in the present invention as described in Comparative Examples 8 and 9 does not satisfy the 600 ~ 700 ℃ holding time.
또한, 비교예 3~5, 8 및 9와 같이 선재 상태에서 마르텐사이트 경조직이 형성되어 있는 경우에는, 신선시 파단이 자주 발생하여 강선으로 제조하기 어려웠다. In addition, when the martensitic hard tissue was formed in the wire rod state as in Comparative Examples 3 to 5, 8, and 9, fracture occurred frequently during the wire drawing, and it was difficult to manufacture the steel wire.
도 1은 본 발명의 실시예들의 부식 피트 최대깊이에 따른 상대적 부식피로수명을 나타낸 그래프이다. 부식 피트의 최대깊이가 작을수록 상대적 부식피로수명이 큼을 알 수 있고, 120 ㎛를 기준으로 부식 피트의 최대깊이가 이보다 큰 경우에는 상대적 부식피로수명이 크게 저하되었다. 1 is a graph showing the relative corrosion fatigue life according to the maximum depth of corrosion pit of embodiments of the present invention. The smaller the maximum depth of the corrosion pit, the greater the relative corrosion fatigue life. When the maximum depth of the corrosion pit was greater than 120 μm, the relative corrosion fatigue life was greatly reduced.
도 2는 본 발명의 실시예들의 Mo계 탄화물 개수에 따른 상대적 부식피로수명을 나타낸 그래프이다. Mo계 탄화물의 개수가 많을수록 상대적 부식피로수명은 크게 증가하였고, 8.0×104 개/㎟를 기준으로 Mo계 탄화물이 이보다 작은 경우에는 상대적 부식피로수명이 크게 저하되었다. Figure 2 is a graph showing the relative corrosion fatigue life according to the number of Mo-based carbide of the embodiments of the present invention. The more the number of fatigue Mo system carbides is relatively corrosion life was increased significantly, 8.0 × 10 4 number / relative to the ㎟ If the Mo-based carbide smaller than this decreased significantly relative corrosion fatigue life.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described with reference to the embodiments above, those skilled in the art will understand that the present invention can be variously modified and changed without departing from the spirit and scope of the invention as set forth in the claims below. Could be.

Claims (11)

  1. 중량%로, C: 0.40~0.70%, Si: 1.30 ~ 2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하고, By weight%, C: 0.40 to 0.70%, Si: 1.30 to 2.30%, Mn: 0.20 to 0.80%, Cr: 0.20 to 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01 to 0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, satisfying the following Equation 1,
    미세조직은 50면적% 이하의 페라이트와 나머지 펄라이트로 이루어지고, The microstructure is composed of up to 50 area% ferrite and the remaining pearlite,
    Mo계 탄화물을 8.0×104 개/㎟ 이상 포함하는 부식피로 저항성이 우수한 스프링용 선재. Spring wire rod with excellent corrosion fatigue resistance containing Mo x carbide at least 8.0 × 10 4 / mm2.
    관계식 1: -0.14 ≤ 0.70[Cr] - 0.76[Cu] - 0.24[Ni] ≤ 0.47Relationship 1: -0.14 ≤ 0.70 [Cr]-0.76 [Cu]-0.24 [Ni] ≤ 0.47
    (상기 관계식 1에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.)(In the relation 1, each element symbol is a value representing each element content in weight%.)
  2. 제1항에 있어서, The method of claim 1,
    상기 선재는 중량%로, V: 0.01~0.20%, Ti: 0.01~0.15% 및 Nb: 0.01~0.10% 중에서 선택된 1종 이상을 추가로 포함하는 부식피로 저항성이 우수한 스프링용 선재. The wire is a weight%, V: 0.01 ~ 0.20%, Ti: 0.01 ~ 0.15% and Nb: 0.01 ~ 0.10% of the wire rod for excellent corrosion resistance further comprising the fatigue fatigue resistance.
  3. 제1항에 있어서, The method of claim 1,
    상기 Mo계 탄화물은 탄화물을 기준으로 Mo가 5중량% 이상 포함된 탄화물인 부식피로 저항성이 우수한 스프링용 선재. The Mo-based carbide is a spring wire rod excellent in corrosion fatigue resistance is a carbide containing Mo 5 wt% or more based on the carbide.
  4. 중량%로, C: 0.40~0.70%, Si: 1.30 ~ 2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하는 빌렛을 900~1100℃로 가열하는 단계; By weight%, C: 0.40 to 0.70%, Si: 1.30 to 2.30%, Mn: 0.20 to 0.80%, Cr: 0.20 to 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01 to Heating a billet comprising 0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, and satisfying the following Formula 1 to 900 to 1100 ° C;
    상기 가열된 빌렛을 800~1000℃로 마무리 열간압연하여 선재를 얻는 단계; 및 Hot-rolling the heated billet to 800 to 1000 ° C. to obtain a wire rod; And
    상기 선재를 권취한 후, 600~700℃의 온도범위에서의 유지시간이 31초 이상이 되도록 냉각하는 단계;를 포함하는 부식피로 저항성이 우수한 스프링용 선재의 제조방법. After winding the wire, the cooling time so that the holding time in the temperature range of 600 ~ 700 ℃ 31 seconds or more; comprising a good corrosion resistance wire resistance for the spring.
    관계식 1: -0.14 ≤ 0.70[Cr] - 0.76[Cu] - 0.24[Ni] ≤ 0.47Relationship 1: -0.14 ≤ 0.70 [Cr]-0.76 [Cu]-0.24 [Ni] ≤ 0.47
    (상기 관계식 1에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.)(In the relation 1, each element symbol is a value representing each element content in weight%.)
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 빌렛은 중량%로, V: 0.01~0.20%, Ti: 0.01~0.15% 및 Nb: 0.01~0.10% 중에서 선택된 1종 이상을 추가로 포함하는 부식피로 저항성이 우수한 스프링용 선재의 제조방법. The billet is a weight%, V: 0.01 ~ 0.20%, Ti: 0.01 ~ 0.15% and Nb: 0.01 ~ 0.10% The method for producing a wire rod for excellent corrosion resistance further comprising corrosion resistance.
  6. 중량%로, C: 0.40~0.70%, Si: 1.30 ~ 2.30%, Mn: 0.20~0.80%, Cr: 0.20~0.80%, Cu: 0.01~0.40%, Ni: 0.10~0.60%, Mo: 0.01~0.40%, P: 0.02% 이하, S: 0.015% 이하, N: 0.01% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함하며, 하기 관계식 1을 만족하고, By weight%, C: 0.40 to 0.70%, Si: 1.30 to 2.30%, Mn: 0.20 to 0.80%, Cr: 0.20 to 0.80%, Cu: 0.01 to 0.40%, Ni: 0.10 to 0.60%, Mo: 0.01 to 0.40%, P: 0.02% or less, S: 0.015% or less, N: 0.01% or less, remaining Fe and other unavoidable impurities, satisfying the following Equation 1,
    미세조직은 템퍼드 마르텐사이트이고, The microstructure is tempered martensite,
    Mo계 탄화물을 8.0×104 개/㎟ 이상 포함하는 부식피로 저항성이 우수한 스프링용 강선. Steel wire for springs with excellent corrosion fatigue, containing Mo x carbides of 8.0 × 10 4 / mm2 or more.
    관계식 1: -0.14 ≤ 0.70[Cr] - 0.76[Cu] - 0.24[Ni] ≤ 0.47Relationship 1: -0.14 ≤ 0.70 [Cr]-0.76 [Cu]-0.24 [Ni] ≤ 0.47
    (상기 관계식 1에서 각 원소 기호는 각 원소 함량을 중량%로 나타낸 값이다.)(In the relation 1, each element symbol is a value representing each element content in weight%.)
  7. 제6항에 있어서, The method of claim 6,
    상기 강선은 중량%로, V: 0.01~0.20%, Ti: 0.01~0.15% 및 Nb: 0.01~0.10% 중에서 선택된 1종 이상을 추가로 포함하는 부식피로 저항성이 우수한 스프링용 강선. The steel wire is a spring steel wire excellent in corrosion fatigue resistance further comprising at least one selected from the weight%, V: 0.01 ~ 0.20%, Ti: 0.01 ~ 0.15% and Nb: 0.01 ~ 0.10%.
  8. 제6항에 있어서, The method of claim 6,
    상기 Mo계 탄화물은 탄화물을 기준으로 Mo가 5중량% 이상 포함된 탄화물인 부식피로 저항성이 우수한 스프링용 강선. The Mo-based carbide is a spring steel wire with excellent corrosion fatigue resistance is a carbide containing Mo 5 wt% or more based on the carbide.
  9. 제6항에 있어서, The method of claim 6,
    상기 강선은 부식 피트의 최대 깊이가 120㎛ 이하인 부식피로 저항성이 우수한 스프링용 강선. The steel wire is a spring steel wire with excellent corrosion fatigue resistance of the maximum depth of the corrosion pit 120㎛ or less.
  10. 제6항에 있어서, The method of claim 6,
    상기 강선은 인장강도가 1800MPa 이상인 부식피로 저항성이 우수한 스프링용 강선. The steel wire is a spring steel wire with excellent resistance to corrosion fatigue tensile strength of 1800MPa or more.
  11. 제4항 또는 제5항에 의해 제조된 선재를 신선하여 강선을 얻는 단계; Drawing a wire rod prepared according to claim 4 or 5 to obtain a steel wire;
    상기 강선을 850~1000℃로 가열한 후 1분 이상 유지하는 오스테나이트화 단계; 및 An austenitization step of maintaining the steel wire at 850 to 1000 ° C. for at least 1 minute; And
    상기 오스테나이트화된 선재를 25~80℃로 유냉한 후, 350~500℃에서 템퍼링하는 단계;를 포함하는 부식피로 저항성이 우수한 스프링용 강선의 제조방법. After cooling the austenitic wire to 25 ~ 80 ℃, tempering at 350 ~ 500 ℃; The method for producing a steel wire for excellent corrosion resistance comprising a.
PCT/KR2017/014232 2016-12-06 2017-12-06 Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof WO2018106016A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780075012.2A CN110036131B (en) 2016-12-06 2017-12-06 Wire rod and steel wire for spring having excellent anti-corrosion fatigue property, and method for manufacturing same
US16/466,984 US20200063228A1 (en) 2016-12-06 2017-12-06 Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
EP17877467.5A EP3553198A4 (en) 2016-12-06 2017-12-06 Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
JP2019526575A JP7018444B2 (en) 2016-12-06 2017-12-06 Wires and steel wires for springs with excellent corrosion fatigue resistance and their manufacturing methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160165185A KR101867709B1 (en) 2016-12-06 2016-12-06 Wire rod and steel wire for spring having excellent corrosion fatigue resistance and method for manufacturing the same
KR10-2016-0165185 2016-12-06

Publications (1)

Publication Number Publication Date
WO2018106016A1 true WO2018106016A1 (en) 2018-06-14

Family

ID=62491576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014232 WO2018106016A1 (en) 2016-12-06 2017-12-06 Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20200063228A1 (en)
EP (1) EP3553198A4 (en)
JP (1) JP7018444B2 (en)
KR (1) KR101867709B1 (en)
CN (1) CN110036131B (en)
WO (1) WO2018106016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735771A (en) * 2019-03-19 2019-05-10 马鞍山钢铁股份有限公司 A kind of high-strength spring steel and its production method with excellent fatigue behaviour and corrosion resisting property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075509A1 (en) * 2019-10-16 2021-04-22 日本製鉄株式会社 Steel wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173577A (en) * 1993-11-04 1995-07-11 Kobe Steel Ltd High corrosion resistant steel for high strength spring
JP2005023404A (en) 2003-07-01 2005-01-27 Kobe Steel Ltd Steel for spring excellent in corrosion fatigue resistance
KR20060107915A (en) * 2005-04-11 2006-10-16 가부시키가이샤 고베 세이코쇼 Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP2008190042A (en) 2008-02-22 2008-08-21 Chuo Spring Co Ltd Cold-formed spring having high fatigue strength and high corrosion fatigue strength
JP2011074431A (en) 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength
KR20130035274A (en) * 2010-08-30 2013-04-08 가부시키가이샤 고베 세이코쇼 Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring
JP2014122393A (en) * 2012-12-21 2014-07-03 Kobe Steel Ltd Steel wire material for high-strength spring having excellent hydrogen embrittlement resistance, production method thereof and high-strength spring
KR20140120935A (en) * 2012-03-07 2014-10-14 가부시키가이샤 고베 세이코쇼 Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474373B2 (en) * 1995-10-27 2003-12-08 株式会社神戸製鋼所 Spring steel with excellent hydrogen embrittlement resistance and fatigue properties
JP3577411B2 (en) * 1997-05-12 2004-10-13 新日本製鐵株式会社 High toughness spring steel
JP2003105496A (en) * 2001-09-26 2003-04-09 Daido Steel Co Ltd Spring steel having low decarburization and excellent delayed fracture resistance
JP4476846B2 (en) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 High strength spring steel with excellent cold workability and quality stability
JP4423254B2 (en) * 2005-12-02 2010-03-03 株式会社神戸製鋼所 High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP2007327084A (en) * 2006-06-06 2007-12-20 Kobe Steel Ltd Wire rod having excellent wire drawability and its production method
JP5824443B2 (en) * 2012-11-22 2015-11-25 株式会社神戸製鋼所 Method of manufacturing steel wire for spring
KR20140122784A (en) * 2013-04-11 2014-10-21 주식회사 포스코 Steel wire having high corrosion resistance, spring for the same and method for manufacturing thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173577A (en) * 1993-11-04 1995-07-11 Kobe Steel Ltd High corrosion resistant steel for high strength spring
JP2005023404A (en) 2003-07-01 2005-01-27 Kobe Steel Ltd Steel for spring excellent in corrosion fatigue resistance
KR20060107915A (en) * 2005-04-11 2006-10-16 가부시키가이샤 고베 세이코쇼 Steel wire for cold-formed spring excellent in corrosion resistance and method for producing the same
JP2008190042A (en) 2008-02-22 2008-08-21 Chuo Spring Co Ltd Cold-formed spring having high fatigue strength and high corrosion fatigue strength
JP2011074431A (en) 2009-09-29 2011-04-14 Chuo Spring Co Ltd Spring steel and spring having superior corrosion fatigue strength
KR20130035274A (en) * 2010-08-30 2013-04-08 가부시키가이샤 고베 세이코쇼 Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring
KR20140120935A (en) * 2012-03-07 2014-10-14 가부시키가이샤 고베 세이코쇼 Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring
JP2014122393A (en) * 2012-12-21 2014-07-03 Kobe Steel Ltd Steel wire material for high-strength spring having excellent hydrogen embrittlement resistance, production method thereof and high-strength spring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553198A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735771A (en) * 2019-03-19 2019-05-10 马鞍山钢铁股份有限公司 A kind of high-strength spring steel and its production method with excellent fatigue behaviour and corrosion resisting property

Also Published As

Publication number Publication date
EP3553198A4 (en) 2019-11-13
CN110036131B (en) 2021-07-06
US20200063228A1 (en) 2020-02-27
JP7018444B2 (en) 2022-02-10
CN110036131A (en) 2019-07-19
EP3553198A1 (en) 2019-10-16
KR101867709B1 (en) 2018-06-14
JP2020509158A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
WO2018117481A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017111456A1 (en) Vehicle part having high strength and excellent durability, and manufacturing method therefor
WO2018009041A1 (en) Hot forming member having excellent crack propagation resistance and ductility, and method for producing same
WO2015099382A1 (en) Steel sheet for hot press formed product having superior bendability and ultra-high strength, hot press formed product using same, and method for manufacturing same
WO2019066328A1 (en) Wire rod and steel wire for springs having excellent corrosion fatigue resistance properties, and method for producing same
WO2018117544A1 (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation, and manufacturing method therefor
WO2021125621A1 (en) High hardness wear-resistant steel having excellent low-temperature impact toughness, and manufacturing method therefor
WO2018117482A1 (en) High-hardness wear-resistant steel and method for manufacturing same
WO2017105025A1 (en) Ultra-high strength steel sheet having excellent chemical conversion treatability and bending processability and method for manufacturing same
WO2017188654A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor
WO2018088761A1 (en) Pressure vessel steel having excellent hydrogen induced cracking resistance, and manufacturing method therefor
WO2017111398A1 (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
WO2018106016A1 (en) Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
WO2021112488A1 (en) Thick composite-phase steel having excellent durability and manufacturing method therefor
WO2020226301A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
WO2020111639A1 (en) Ultra-high strength hot rolled steel sheet having excellent shape quality and bendability, and method for manufacturing same
WO2019124793A1 (en) High strength steel sheet and manufacturing method therefor
WO2018117539A1 (en) High-strength hot-rolled steel plate having excellent weldability and ductility and method for manufacturing same
WO2022139214A1 (en) Martensitic stainless steel with improved strength and corrosion resistance, and manufacturing method therefor
WO2017086745A1 (en) High-strength cold rolled steel sheet having excellent shear processability, and manufacturing method therefor
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2020130677A1 (en) High strength cold rolled steel sheet and galvannealed steel sheet having excellent burring property, and manufacturing method therefor
WO2021020787A1 (en) High-strength steel sheet and manufacturing method therefor
WO2019093650A1 (en) Ultrahigh-strength and high-ductility steel sheet having excellent cold formability, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017877467

Country of ref document: EP

Effective date: 20190708