JP2005023404A - Steel for spring excellent in corrosion fatigue resistance - Google Patents

Steel for spring excellent in corrosion fatigue resistance Download PDF

Info

Publication number
JP2005023404A
JP2005023404A JP2003270206A JP2003270206A JP2005023404A JP 2005023404 A JP2005023404 A JP 2005023404A JP 2003270206 A JP2003270206 A JP 2003270206A JP 2003270206 A JP2003270206 A JP 2003270206A JP 2005023404 A JP2005023404 A JP 2005023404A
Authority
JP
Japan
Prior art keywords
hydrogen
less
steel
spring steel
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003270206A
Other languages
Japanese (ja)
Other versions
JP4280123B2 (en
Inventor
Takayuki Tsubota
隆之 坪田
Takenori Nakayama
武典 中山
Kazuhisa Kawada
和久 河田
Nobuhiko Ibaraki
信彦 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003270206A priority Critical patent/JP4280123B2/en
Publication of JP2005023404A publication Critical patent/JP2005023404A/en
Application granted granted Critical
Publication of JP4280123B2 publication Critical patent/JP4280123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel for a spring in which embrittlement caused by hydrogen infiltrating therein is securely prevented, and which has improved corrosion fatigue resistance. <P>SOLUTION: The steel for a spring comprising C, Si and Mn has a composition containing, by mass, 0.04 to 0.095% Ti and one or more kinds of metals selected from ≤0.3% (exclusive of 0%) V, ≤0.3% (exclusive of 0%) Nb, ≤0.3% (exclusive of 0%) Zr, ≤0.3% (exclusive of 0%) Hf by 0.05 to 0.6% in total, in which the content of Cr is suppressed to ≤0.3% (inclusive of 0%), and also satisfying the inequality (1): Cr≤0.35×ä1-Exp(-25×A-0.6)}, wherein A=[Ti]×([Ti]+[V]+[Nb]+[Zr]+[Hf])×100, and [ ] denotes the content (mass%) of each element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ばねの素材として有用なばね用鋼に関するものであり、より詳細には、耐腐食疲労性に優れたばね用鋼に関するものである。   The present invention relates to a spring steel useful as a spring material, and more particularly, to a spring steel excellent in corrosion fatigue resistance.

近年、自動車等に代表される輸送機に対して地球環境を保全すべく排ガスや燃費低減の要求が高まっており、このような要求を満足するため輸送機の軽量化が望まれている。その一環として、輸送機に用いられるばねの高強度化が指向されており、焼入れ・焼戻し後の強度が1800MPa以上のばねが求められている。   In recent years, demands for reducing exhaust gas and fuel consumption have been increasing in order to preserve the global environment for transport aircraft represented by automobiles and the like, and weight reduction of transport aircraft is desired in order to satisfy such requirements. As part of this, the strength of springs used in transport aircraft is increasing, and there is a demand for springs with a strength of 1800 MPa or higher after quenching and tempering.

ところがその一方で、一般に鋼を高強度化すると、腐食環境下における疲労特性が著しく低下することが知られている。従って、ばねの高強度化を図る場合は、このような腐食疲労特性の低下を防止する必要がある。   On the other hand, it is generally known that when the strength of steel is increased, the fatigue characteristics in a corrosive environment are significantly reduced. Therefore, in order to increase the strength of the spring, it is necessary to prevent such deterioration of the corrosion fatigue characteristics.

そこで、本出願人らは過酷な使用環境や荷重負荷の下で、近年の要求特性に充分に応え得る耐環境性を発揮するばねを提供するためのばね用鋼として、特許文献1の技術を提案した。この技術では、Cr含量を0.25%以下に抑制しつつばね用鋼の基本成分を適切に調整すると共に、前記Cr含量をCuおよびNiの合計含量との関係で適切な範囲に制御し、且つ所定量のTiを含有させている。しかしこの技術は、主に耐食性の観点から耐環境性向上を狙ったものであり、腐食反応によって鋼中に侵入した水素が応力集中部に集積して起こる水素脆化については殆ど検討されておらず、改善の余地が残されている。   Therefore, the present applicants use the technique of Patent Document 1 as a spring steel for providing a spring exhibiting environmental resistance that can sufficiently meet recent required characteristics under severe use environment and load. Proposed. In this technique, the basic content of the spring steel is appropriately adjusted while suppressing the Cr content to 0.25% or less, the Cr content is controlled within an appropriate range in relation to the total content of Cu and Ni, and A certain amount of Ti is contained. However, this technology is mainly aimed at improving the environmental resistance from the viewpoint of corrosion resistance, and hydrogen embrittlement caused by accumulation of hydrogen that has penetrated into the steel due to the corrosion reaction in the stress-concentrated part has been hardly studied. There is still room for improvement.

ところで、水素脆化に起因する疲労特性を改善した高強度ばね用鋼としては、特許文献2の技術が知られている。この技術では、ばねの使用中に侵入してくる水素を鋼材中の水素トラップサイトに捕捉することによって水素の拡散を防止し、水素を無害化している。しかし、捕捉する水素量には限界があり、根本的な解決にはなっていない。
特開2002-47539号公報([特許請求の範囲]、[0005]、[0008]参照) 特開2001-288539号公報([特許請求の範囲]、[0004]参照)
By the way, the technique of patent document 2 is known as high strength spring steel which improved the fatigue characteristic resulting from hydrogen embrittlement. In this technique, hydrogen that enters during use of the spring is captured at a hydrogen trap site in the steel material, thereby preventing hydrogen from diffusing and detoxifying the hydrogen. However, there is a limit to the amount of hydrogen to be captured, and this is not a fundamental solution.
JP 2002-47539 A (see [Claims], [0005], [0008]) JP 2001-288539 A (refer to [Claims] and [0004])

本発明は、この様な状況に鑑みてなされたものであり、その目的は、鋼中に侵入する水素による脆化をより確実に防止し、腐食疲労性の改善されたばね用鋼を提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a spring steel that more reliably prevents embrittlement due to hydrogen entering the steel and has improved corrosion fatigue. It is in.

上記課題を解決することのできた本発明に係る耐腐食疲労性に優れたばね用鋼とは、C,SiおよびMnを含むばね用鋼において、Ti:0.04〜0.095%を含む他、V:0.3%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)、Hf:0.3%以下(0%を含まない)、のいずれか1種以上を合計で0.05〜0.6%含み、更に、Cr:0.3%以下(0%を含む)に抑制し、且つ、下記(1)式を満足する点に要旨を有する。
[Cr]≦0.35×{1−Exp(−25×A−0.6)} …(1)
なお、式中、A=[Ti]×([Ti]+[V]+[Nb]+[Zr]+[Hf])×100、であり、[ ]は各元素の含有量(質量%)を示す。
The spring steel excellent in corrosion fatigue resistance according to the present invention that has been able to solve the above problems is a spring steel containing C, Si and Mn, in addition to containing Ti: 0.04 to 0.095%, V: 0.3% or less (not including 0%), Nb: 0.3% or less (not including 0%), Zr: 0.3% or less (not including 0%), Hf: 0.3 % Or less (excluding 0%), including 0.05 to 0.6% in total, and Cr: 0.3% or less (including 0%), and The point is that the following expression (1) is satisfied.
[Cr] ≦ 0.35 × {1-Exp (−25 × A−0.6)} (1)
In the formula, A = [Ti] × ([Ti] + [V] + [Nb] + [Zr] + [Hf]) × 100, and [] represents the content (% by mass) of each element. Indicates.

本発明に係る耐腐食疲労性に優れたばね用鋼では、Vを必須的に含むものが好ましい。   In the spring steel excellent in corrosion fatigue resistance according to the present invention, it is preferable to contain V essentially.

また、上記課題は、C,SiおよびMnを含むばね用鋼において、この鋼を用いて直径:10mm,厚み:2mmの円盤状試験片を作製し、得られた試験片を用いて下記に示すサイクル試験を14サイクル行なった後、昇温速度:12℃/minで加熱する水素昇温分析を行ったときに、50〜450℃の温度域で放出される水素量が0.75mass.ppm以下であるばね用鋼によっても解決できる。   In addition, the above-mentioned problem is shown below using a steel specimen for springs containing C, Si and Mn, and producing a disk-shaped specimen having a diameter of 10 mm and a thickness of 2 mm using this steel. After performing the cycle test for 14 cycles, when a hydrogen temperature rising analysis was performed at a heating rate of 12 ° C./min, the amount of hydrogen released in the temperature range of 50 to 450 ° C. was 0.75 mass. It can also be solved by using spring steel that is less than or equal to ppm.

なお、サイクル試験とは、前記試験片に、35℃の環境下で5%NaCl水溶液を8時間噴霧した後、35℃・湿度60%の環境下で16時間恒温恒湿保持して乾燥させるサイクルを1サイクルとする試験である。   The cycle test is a cycle in which a 5% NaCl aqueous solution is sprayed on the test piece for 8 hours in an environment of 35 ° C., and then dried by holding at constant temperature and humidity for 16 hours in an environment of 35 ° C. and humidity 60%. Is a test with one cycle.

前記温度域で放出される水素量のうち、50〜200℃で放出される水素量aと300〜450℃で放出される水素量bの比[b/a]が1以上であるものが特に好ましい。   Among the amounts of hydrogen released in the temperature range, those in which the ratio [b / a] of the amount of hydrogen a released at 50 to 200 ° C. and the amount of hydrogen b released at 300 to 450 ° C. is 1 or more preferable.

本発明のばね用鋼としては、Ti,V,Nb,ZrおよびHfよりなる群から選ばれる少なくとも1種を含む炭化物、窒化物および硫化物、並びにこれらのいずれか2種以上の複合化合物の少なくとも1種が析出物として分散しており、前記析出物のうち粒径が10nm〜0.2μmの数が、60個/100μm2以上であり、且つ、粒径が10nm以上のFe−Cr化合物の数が、20個/100μm2以下であるものが好ましい。 The spring steel of the present invention includes at least one of carbides, nitrides and sulfides containing at least one selected from the group consisting of Ti, V, Nb, Zr and Hf, and any two or more of these composite compounds. One type is dispersed as a precipitate, and the number of particles having a particle size of 10 nm to 0.2 μm is 60/100 μm 2 or more among the precipitates, and the Fe—Cr compound having a particle size of 10 nm or more. The number is preferably 20 pieces / 100 μm 2 or less.

本発明に係るばね用鋼の基本成分としては、C:0.3〜0.7%、Si:1〜2.6%およびMn:0.1〜1.8%、を含むものが好ましく、また必要に応じて、Ni:1.5%以下(0%を含まない)および/またはCu:0.7%以下(0%を含まない)を含むものであってもよい。   As the basic components of the spring steel according to the present invention, those containing C: 0.3 to 0.7%, Si: 1 to 2.6% and Mn: 0.1 to 1.8% are preferable, Further, if necessary, Ni: 1.5% or less (not including 0%) and / or Cu: 0.7% or less (not including 0%) may be included.

本発明によれば、鋼中に侵入する水素による脆化をより確実に防止し、腐食疲労性の改善されたばね用鋼を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, embrittlement by the hydrogen which penetrate | invades in steel can be prevented more reliably, and the steel for springs with improved corrosion fatigue property can be provided.

前述した様に、本出願人らは既に特許文献1の技術を開発し、ある程度の成果を得ている。この技術で効果が得られる理由については、その全てを解明できたわけではないが、次の様に考えている。   As described above, the present applicants have already developed the technique of Patent Document 1 and have obtained some results. The reason why this technology is effective is not fully understood, but I think as follows.

即ち、腐食疲労特性を高めるためには、腐食ピットの形成状況や生成した亀裂先端での溶液の液性(例えば、pHやCl-イオン濃度等)がより重要であると考えられる。そして、鋼材の合金バランスを適切に調整してやれば、腐食ピットの形成状況や生成した亀裂先端での溶液の液性が改善され、鋼の耐食性を高めることができる。また、腐食反応によって鋼中に侵入した水素は応力集中部に集積して水素脆化を助長すると思われるので、水素の発生速度や侵入速度も重要になると考えられる。 That is, in order to enhance the corrosion fatigue characteristics, the liquid of the solution in forming conditions and the resulting crack tip corrosion pits (eg, pH and Cl - ion concentration, etc.) are considered to be more important. And if the alloy balance of steel materials is adjusted appropriately, the liquid state of the solution at the formation state of corrosion pits and the generated crack tip can be improved, and the corrosion resistance of steel can be enhanced. In addition, hydrogen that penetrates into the steel due to the corrosion reaction accumulates in the stress concentration part and promotes hydrogen embrittlement. Therefore, the hydrogen generation rate and penetration rate are considered to be important.

しかし前掲の特許文献1では、水素脆化の抑制に水素の発生速度や侵入速度が重要であるとの方向付けは与えられているものの、具体的な解決策については充分検討されていない。   However, in the above-mentioned patent document 1, although the direction that hydrogen generation rate and penetration rate are important for suppression of hydrogen embrittlement is given, a specific solution has not been sufficiently studied.

そこで、本発明者らは水素脆化を抑制する具体策について様々な角度から検討を重ねてきた。その結果、前記特許文献2に開示している様に、鋼の水素捕捉量を増加させるのではなく、鋼中への水素侵入自体を低減させると共に、水素が鋼中に侵入した場合には、捕捉力の強いトラップサイトによって侵入水素を捕捉してやれば、上記課題が見事解決できることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。   Therefore, the present inventors have repeatedly studied specific measures for suppressing hydrogen embrittlement from various angles. As a result, as disclosed in Patent Document 2, instead of increasing the amount of hydrogen trapped in the steel, while reducing the hydrogen intrusion itself into the steel, and when hydrogen penetrates into the steel, The present invention has been completed by finding that the above problem can be solved by trapping invading hydrogen with a trapping site having a strong trapping power. Hereinafter, the function and effect of the present invention will be described.

本発明のばね用鋼は、基本成分としてC,SiおよびMnを含有するものであるが、これらの含量はばねとしての特性を劣化させない範囲であれば特に限定されない。   The spring steel of the present invention contains C, Si and Mn as basic components, but these contents are not particularly limited as long as the characteristics as a spring are not deteriorated.

一方、本発明のばね用鋼は、Ti:0.04〜0.095%を含む他、V:0.3%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)、Hf:0.3%以下(0%を含まない)、のいずれか1種以上を合計で0.05〜0.6%含み、更に、Cr:0.3%以下(0%を含む)に抑制することが重要である。こうした範囲を規定した理由は、次の通りである。   On the other hand, the spring steel of the present invention contains Ti: 0.04 to 0.095%, V: 0.3% or less (not including 0%), Nb: 0.3% or less (not including 0%), Zr: 0.3% One or more of the following (not including 0%), Hf: not more than 0.3% (not including 0%), 0.05 to 0.6% in total, and Cr: not more than 0.3% (including 0%) It is important to suppress it. The reason for specifying this range is as follows.

Ti:0.04〜0.095%
Tiは、微細な炭化物,窒化物および硫化物、並びにこれらのいずれか2種以上の複合化合物(以下、これらの化合物を総称して「析出物」という場合がある)を形成し、鋼中に侵入した水素をトラップして水素脆化の進行を抑制するのに有効な元素であり、こうした効果を発揮させるには0.04%以上含有させる必要がある。好ましくは0.05%以上含有させるのが良い。しかし0.095%を超えて過剰に含有させると析出物が粗大化し、この析出物が起点となってばね寿命の低下を招くので、Ti含量は0.095%以下に抑制する必要がある。好ましくは0.95%以下とするのがよい。
Ti: 0.04-0.095%
Ti forms fine carbides, nitrides and sulfides, and composite compounds of any two or more of these (hereinafter, these compounds may be collectively referred to as “precipitates”) in steel. It is an element that is effective in trapping invading hydrogen and suppressing the progress of hydrogen embrittlement. In order to exert such an effect, it is necessary to contain 0.04% or more. Preferably it is 0.05% or more. However, if the content exceeds 0.095%, the precipitates become coarse, and the precipitates serve as a starting point, leading to a decrease in spring life. Therefore, the Ti content must be suppressed to 0.095% or less. Preferably it is 0.95% or less.

V:0.3%以下(0%を含まない)、Nb:0.3%以下(0%を含まない)、Zr:0.3%以下(0%を含まない)、Hf:0.3%以下(0%を含まない)、のいずれか1種以上を合計で0.05〜0.6%
V,Nb,ZrおよびHf(以下、「V等」と称する場合がある)も前述したTiと同様に微細な析出物を形成し、その水素トラップ作用によって水素脆化を抑制するのに有効な元素である。こうした作用は前述した如くTiによっても発揮されるが、V等の元素とTiを併用して含有させると相乗効果を得ることができる。こうした観点からV,Nb,ZrおよびHfのいずれか1種または任意に選ばれる2種以上を、合計で0.05%以上含有させる必要がある。好ましくは合計で0.1%以上とするのがよい。
V: 0.3% or less (not including 0%), Nb: 0.3% or less (not including 0%), Zr: 0.3% or less (not including 0%), Hf: 0.3% or less (not including 0%) ), 0.05-0.6% in total of any one or more of
V, Nb, Zr and Hf (hereinafter sometimes referred to as “V etc.”) also form fine precipitates similar to Ti described above, and are effective in suppressing hydrogen embrittlement by their hydrogen trap action. It is an element. As described above, such an action is also exhibited by Ti, but when an element such as V and Ti are used in combination, a synergistic effect can be obtained. From such a viewpoint, it is necessary to contain 0.05% or more in total of any one of V, Nb, Zr and Hf or two or more arbitrarily selected. The total content is preferably 0.1% or more.

なお、こうした相乗効果をより効果的に得るには、各元素について、V:0.075%以上(より好ましくは0.080以上、さらに好ましくは0.1%以上)、Nb:0.01%以上(より好ましくは0.05%以上)、Zr:0.01%以上(より好ましくは0.05%以上)、Hf:0.01%以上(より好ましくは0.05%以上)の範囲で含有させることが好ましい。   In order to obtain such a synergistic effect more effectively, for each element, V: 0.075% or more (more preferably 0.080 or more, more preferably 0.1% or more), Nb: 0.01% or more (more preferably 0.05% or more) ), Zr: 0.01% or more (more preferably 0.05% or more), and Hf: 0.01% or more (more preferably 0.05% or more).

但し、上記(1)式におけるA値を算出する元素の中でも、特にVを含む炭化物等の析出物は、トラップ容量を増加させる作用に優れているため強トラップサイトとなるTiと複合添加することにより腐食疲労特性を向上させることができるので、Vを必須的に含むことが推奨される。   However, among the elements for calculating the A value in the above formula (1), precipitates such as carbides containing V in particular are excellent in the action of increasing the trap capacity, and therefore are added in combination with Ti which becomes a strong trap site. Therefore, it is recommended that V be included essentially.

一方、これらの含量が多くなり過ぎると、析出物が粗大化して疲労寿命を劣化させる等といった悪影響を及ぼすので、V:0.3%以下(好ましくは0.2%以下)、Nb:0.3%以下(好ましくは0.2%以下)、Zr:0.3%以下(好ましくは0.2%以下)、Hf:0.3%以下(好ましくは0.2%以下)の範囲で、V,Nb,ZrおよびHfのいずれか1種または任意に選ばれる2種以上を、合計で0.6%以下に抑制する必要がある。好ましくは合計で0.5%以下とするのがよい。   On the other hand, if these contents are excessively large, the precipitates become coarse and deteriorate the fatigue life. For example, V: 0.3% or less (preferably 0.2% or less), Nb: 0.3% or less (preferably 0.2% or less), Zr: 0.3% or less (preferably 0.2% or less), Hf: 0.3% or less (preferably 0.2% or less), and any one or any of V, Nb, Zr and Hf are selected. It is necessary to suppress two or more types to 0.6% or less in total. Preferably, the total content is 0.5% or less.

Cr:0.3%以下(0%を含む)
Crは、腐食ピット内に存在する溶液のpHを低下させて腐食の進行を促進させる有害な元素であり、できるだけ低減すべきである。こうした観点からCr含量は0.3%以下に抑制する必要がある。好ましくは0.25%以下に抑えるのが望ましい。
Cr: 0.3% or less (including 0%)
Cr is a harmful element that lowers the pH of the solution present in the corrosion pits and promotes the progress of corrosion, and should be reduced as much as possible. From such a viewpoint, it is necessary to suppress the Cr content to 0.3% or less. It is desirable to keep it at 0.25% or less.

但し、Cr含量を低減すると、腐食ピット先端のpH低下が抑制され、発生水素量を低減できるが、侵入した水素による脆化は防止できない。ところが本発明のばね用鋼は、上記の様にTiと共にV等を適量併用して析出物を生成させ、これらを水素のトラップサイトとして作用させることによって、侵入してきた水素による脆化を防止できる。このとき、Cr含量を低減することでFe−Cr化合物の生成を防止すると、その理由は明らかでないがTiやV等の析出物が一段と微細化し、強力な水素トラップサイトになることが判明した。即ち、TiやV等の微細な析出物は、水素トラップ力が強く、鋼材中へ侵入した水素を即座に捕捉すると共に、捕捉された水素を放出し難いのである。   However, if the Cr content is reduced, a decrease in pH at the tip of the corrosion pit can be suppressed and the amount of generated hydrogen can be reduced, but embrittlement due to invading hydrogen cannot be prevented. However, the spring steel of the present invention can prevent embrittlement due to invading hydrogen by generating precipitates by using a suitable amount of V and the like together with Ti as described above and causing these to act as hydrogen trap sites. . At this time, it was found that if the formation of the Fe—Cr compound is prevented by reducing the Cr content, precipitates such as Ti and V are further refined and become strong hydrogen trap sites, although the reason is not clear. That is, fine precipitates such as Ti and V have a strong hydrogen trapping force, so that the hydrogen that has entered the steel material is immediately captured and it is difficult to release the captured hydrogen.

また、本発明のばね用鋼は、上述した如く特定の元素を所定量含有するものであるが、Cr,TiおよびV等の含量が上記(1)式を満足する様に調整することも重要である。即ち、Cr,TiおよびV等のバランスが上記(1)式の関係を満たすものは、水素が鋼材中へ侵入し難くなり、腐食発生が抑制されて耐腐食疲労性が飛躍的に改善されるからである。この理由についてはその全てを解明し得た訳ではないが、本発明者らは上記(1)式の関係を満たせば、強トラップサイトとなるTiと弱トラップサイトとなるV等のバランスが良好になるからと考えている。即ち本発明者らは、水素脆化の抑制にはトラップ力の強いTiとトラップ力の弱いV等のバランスが重要であると考え、この線に沿って鋭意検討を重ねた。その結果、弱トラップサイトを鋼中に数多く分布させることは容易であり、このトラップサイトは侵入してきた水素を素早くトラップし、水素脆化を抑制することが分かった。しかし、このトラップサイトはトラップ力が弱いため、水素の濃度勾配や温度上昇などが駆動力となって水素の拡散が起こり、部材中の水素量や応力状態によってはこの水素が遅れ破壊を引き起こすことが分かった。一方、強トラップサイトを鋼中に数多く分布させることは難しいが、このトラップサイトは一度トラップした水素を通常の使用状態で拡散することは殆どなく、より安定的に水素脆性を防止できることが分かった。そこで、これら強トラップサイトと弱トラップサイトのバランスが良好となれば、耐腐食疲労性が改善されると考え、こうした観点から本発明者らは上記(1)式の関係を規定することに至ったのである。   The spring steel of the present invention contains a predetermined amount of a specific element as described above, but it is also important to adjust the content of Cr, Ti, V, etc. so as to satisfy the above formula (1). It is. That is, when the balance of Cr, Ti, V, etc. satisfies the relationship of the above formula (1), hydrogen does not easily penetrate into the steel material, the occurrence of corrosion is suppressed, and the corrosion fatigue resistance is drastically improved. Because. Although not all of this reason could be clarified, the present inventors have a good balance between Ti, which is a strong trap site, and V, which is a weak trap site, as long as the relationship of the above equation (1) is satisfied. I think it will be. That is, the present inventors considered that the balance between Ti having a strong trapping force and V having a low trapping force is important for suppressing hydrogen embrittlement, and intensively studied along this line. As a result, it was easy to distribute a large number of weak trap sites in the steel, and it was found that the trap sites quickly trap the hydrogen that had entered and suppress hydrogen embrittlement. However, since this trap site has a weak trapping force, the hydrogen concentration gradient and temperature rise cause the hydrogen to diffuse due to the driving force, and this hydrogen can cause delayed fracture depending on the amount of hydrogen in the member and the stress state. I understood. On the other hand, although it is difficult to distribute a large number of strong trap sites in steel, it was found that this trap site hardly diffuses hydrogen once trapped in normal use, and can prevent hydrogen embrittlement more stably. . Therefore, if the balance between these strong trap sites and weak trap sites is improved, it is considered that the corrosion fatigue resistance is improved. From this viewpoint, the present inventors have determined the relationship of the above formula (1). It was.

なお、上記V,Nb,ZrおよびHfのうち、例えばVのみを含む場合は、上記(1)式の代わりに下記(2)式を満足すればよい。
[Cr]≦0.35×{1−Exp(−25×A−0.6)} …(2)
式中、A=[Ti]×([Ti]+[V])×100、であり、[ ]は各元素の含有量(質量%)を示す。
In the case where only V is included among V, Nb, Zr and Hf, for example, the following equation (2) may be satisfied instead of the above equation (1).
[Cr] ≦ 0.35 × {1-Exp (−25 × A−0.6)} (2)
In the formula, A = [Ti] × ([Ti] + [V]) × 100, and [] indicates the content (% by mass) of each element.

本発明のばね用鋼は、C,SiおよびMnを含む鋼であるが、その水素吸蔵・放出特性として、該鋼材を用いて製造される直径:10mm,厚み:2mmの円盤状試験片を、35℃の環境下で5%NaCl水溶液を8時間噴霧した後、35℃・湿度60%の環境下で16時間恒温恒湿保持して乾燥させるサイクルを1サイクルとするサイクル試験を14サイクル行なった後、昇温速度:12℃/minで加熱する水素昇温分析を行ったときに、50〜450℃の温度域で放出される水素量が0.75mass.ppm以下である点にも特徴を有している。   The spring steel of the present invention is a steel containing C, Si and Mn. As its hydrogen storage / release characteristics, a disk-shaped test piece having a diameter of 10 mm and a thickness of 2 mm manufactured using the steel material is used. A 14% cycle test was performed in which a 5% NaCl aqueous solution was sprayed for 8 hours in a 35 ° C environment and then dried by holding at constant temperature and humidity for 16 hours in a 35 ° C, 60% humidity environment. Thereafter, when the hydrogen temperature rising analysis is performed at a heating rate of 12 ° C./min, the amount of hydrogen released in the temperature range of 50 to 450 ° C. is 0.75 mass. It is also characterized in that it is ppm or less.

即ち、サイクル試験を行なった後の試験片を、真空中またはArガス中で昇温速度:12℃/minで加熱して水素昇温分析すると、サイクル試験中に試験片内部へ侵入した水素が放出されるが、このときに450℃まで加熱すると、試験片中のフリー水素のみならず、トラップサイトに捕捉されている水素も全て放出される。従って、50〜450℃の温度域で放出される水素量を0.75mass.ppm以下に抑制することにより、優れた腐食疲労性を得ることができる。   That is, when the test piece after the cycle test is heated in a vacuum or Ar gas at a heating rate of 12 ° C./min and analyzed for hydrogen temperature rise, hydrogen that has penetrated into the test piece during the cycle test is detected. At this time, when heated to 450 ° C., not only free hydrogen in the test piece but also all hydrogen trapped at the trap site is released. Therefore, the amount of hydrogen released in the temperature range of 50 to 450 ° C. is set to 0.75 mass. By suppressing to ppm or less, excellent corrosion fatigue properties can be obtained.

水素量を0.75mass.ppm以下に低減する方法は特に限定されないが、上述した様に、鋼中に含まれる合金組成を適切に調整すると共に、CrやTiとV等の添加バランスを制御すればよい。   The amount of hydrogen is 0.75 mass. Although the method of reducing to ppm or less is not particularly limited, as described above, the alloy composition contained in the steel is appropriately adjusted and the addition balance of Cr, Ti, V, and the like may be controlled.

本発明のばね用鋼は、前記50〜450℃の温度域で放出される水素量のうち、50〜200℃で放出される水素量aと300〜450℃で放出される水素量bの比[b/a]が1以上であるものが好ましい。つまり、50〜200℃で放出される水素量よりも300〜450℃で放出される水素量が多いものは、より強力なトラップサイトに水素が捕捉されていると考えられるからである。即ち、試験片を加熱したときに50〜200℃で放出される水素は、鋼材中に拡散しているフリーな水素であるか、トラップ力の弱いサイトに捕捉されている水素であり、この温度域で放出される水素量が多い場合は、ばね使用時の応力変動や温度上昇によって水素拡散が進行し、結果的に腐食疲労性を劣化させる原因になると考えられる。一方、300〜450℃で放出される水素は、強力なトラップサイトに捕捉されている水素であり、この温度域で放出される水素量が相対的に多いものは、300℃未満の温度であれば、ばね使用時に発熱してもトラップサイトからの水素離脱は起こらず、従って鋼中への水素の拡散が生じないため、腐食疲労性の劣化も生じないと考えられる。この様な観点から、前記50〜200℃で放出される水素量はできるだけ少ない方が好ましく、前記比[b/a]は1.2以上であるものが望ましい。   The spring steel of the present invention is a ratio of the amount of hydrogen a released at 50 to 200 ° C. and the amount of hydrogen b released at 300 to 450 ° C. of the amount of hydrogen released in the temperature range of 50 to 450 ° C. [B / a] is preferably 1 or more. That is, it is considered that hydrogen having a larger amount of hydrogen released at 300 to 450 ° C. than hydrogen released at 50 to 200 ° C. is captured at a stronger trap site. That is, the hydrogen released at 50 to 200 ° C. when the test piece is heated is free hydrogen diffusing in the steel material or trapped at a site with a weak trapping force. When the amount of hydrogen released in the region is large, it is considered that hydrogen diffusion progresses due to stress fluctuation and temperature rise when using the spring, resulting in deterioration of corrosion fatigue. On the other hand, hydrogen released at 300 to 450 ° C is hydrogen trapped at a strong trap site, and a relatively large amount of hydrogen released in this temperature range should be less than 300 ° C. For example, even if heat is generated when the spring is used, hydrogen does not desorb from the trap site, and therefore, hydrogen does not diffuse into the steel. From this point of view, the amount of hydrogen released at 50 to 200 ° C. is preferably as small as possible, and the ratio [b / a] is preferably 1.2 or more.

前記比[b/a]を1以上に調整するには、上述した様に、Cr含量を低減すると共に、TiとV等をバランス良く併用すればよい。   In order to adjust the ratio [b / a] to 1 or more, as described above, the Cr content may be reduced and Ti and V may be used in a well-balanced manner.

本発明のばね用鋼は、Ti,V,Nb,ZrおよびHf(以下、「Ti等」と称する場合がある)よりなる群から選ばれる少なくとも1種を含む炭化物、窒化物および硫化物、並びにこれらのいずれか2種以上の複合化合物の少なくとも1種が析出物として分散しており、前記析出物のうち粒径が10nm〜0.2μmの数が、60個/100μm2以上であり、且つ、粒径が10nm以上のFe−Cr化合物の数が、20個/100μm2以下であるものが好ましい。 The spring steel of the present invention includes carbide, nitride and sulfide containing at least one selected from the group consisting of Ti, V, Nb, Zr and Hf (hereinafter sometimes referred to as “Ti etc.”), and At least one of these two or more composite compounds is dispersed as precipitates, and the number of particles having a particle size of 10 nm to 0.2 μm is 60/100 μm 2 or more among the precipitates, and The number of Fe—Cr compounds having a particle size of 10 nm or more is preferably 20/100 μm 2 or less.

Ti等は、鋼中のCやN,Sと結合して析出物を形成し、鋼中に侵入してきた水素の好適なトラップサイトとして機能する。その結果として、鋼材内部への水素侵入が抑えられ腐食発生を低減できるものと考えられる。   Ti and the like combine with C, N, and S in the steel to form a precipitate, and function as a suitable trap site for hydrogen that has entered the steel. As a result, it is considered that hydrogen intrusion into the steel material can be suppressed and corrosion generation can be reduced.

ここで、析出物とは、Ti,V,Nb,ZrおよびHfの少なくとも1種の元素と、C,NおよびSの少なくとも1種が結合した炭化物や窒化物,硫化物、並びにこれらのいずれか2種以上の複合化合物である。即ち、1つの化合物中に、Ti,V,Nb,ZrおよびHfよりなる群から選ばれる少なくとも1種の元素と、C,NおよびSの少なくとも1種を含むものを指す。従って、例えば1つの化合物中に、Ti,V,Nb,ZrおよびHfよりなる群から選ばれる元素が2種以上含まれる炭化物や窒化物,硫化物並びにこれらのいずれか2種以上の複合化合物であっても構わない。   Here, the precipitate is a carbide, nitride, sulfide, or any of these, in which at least one element of Ti, V, Nb, Zr, and Hf and at least one of C, N, and S are bonded. Two or more complex compounds. That is, one compound contains at least one element selected from the group consisting of Ti, V, Nb, Zr and Hf and at least one of C, N and S in one compound. Therefore, for example, in one compound, a carbide, nitride, sulfide, or a composite compound of any two or more of them containing two or more elements selected from the group consisting of Ti, V, Nb, Zr and Hf. It does not matter.

本発明のばね用鋼では、粒径が10nm〜0.2μmの微細な析出物が、鋼中に多数分散していることが好ましい。微細な析出物は強力な水素トラップサイトとして作用するからである。この様な観点から析出物の数は、観察視野:100μm2当たり60個以上とするのが好ましく、より好ましくは100個以上である。 In the spring steel of the present invention, it is preferable that a large number of fine precipitates having a particle size of 10 nm to 0.2 μm are dispersed in the steel. This is because fine precipitates act as strong hydrogen trap sites. From such a viewpoint, the number of precipitates is preferably 60 or more, more preferably 100 or more per 100 μm 2 observation field.

一方、粒径が10nm以上のFe−Cr化合物の数は、観察視野:100μm2当たり20個以下であるものが好ましい。Fe−Cr化合物も水素のトラップサイトとして作用するものの、そのトラップ力はTi等の析出物と比べると弱いと考えられるからである。なお、Fe−Cr化合物とは、FeとCrを含む複合炭化物であり、具体的には(Fe,Cr)3C等の化合物である。 On the other hand, the number of Fe—Cr compounds having a particle size of 10 nm or more is preferably 20 or less per 100 μm 2 observation field. This is because the Fe—Cr compound also acts as a hydrogen trap site, but its trapping force is considered to be weaker than precipitates such as Ti. The Fe—Cr compound is a composite carbide containing Fe and Cr, and specifically, is a compound such as (Fe, Cr) 3 C.

前記析出物や前記Fe−Cr化合物の数は、抽出レプリカ法で抽出した析出物等を透過型電子顕微鏡(TEM)にて加速電圧:200kV,倍率:10000倍で観察して測定すれば良い。観察視野数は少なくとも5視野とし、夫々の視野について、10μm四方の観察視野(視野面積:100μm2)内に観察される析出物等を、TEMに備えられているエネルギー分散型X線分析(EDX)装置を用いて分析する。Ti,V,Nb,ZrおよびHfの少なくとも1種以上を含む析出物の数は、粒径が0.2μm以下の個数を測定して平均値を算出する。一方、Fe−Cr化合物の数は、粒径に関係なく個数を測定して平均値を算出する。 The number of the precipitates and the Fe—Cr compounds may be measured by observing the precipitates extracted by the extraction replica method with a transmission electron microscope (TEM) at an acceleration voltage of 200 kV and a magnification of 10,000. The number of observation fields is at least five, and for each field, precipitates and the like observed in a 10 μm square observation field (field area: 100 μm 2 ) are analyzed by energy dispersive X-ray analysis (EDX) provided in the TEM. ) Analyze using the instrument. For the number of precipitates containing at least one of Ti, V, Nb, Zr and Hf, the average value is calculated by measuring the number of particles having a particle size of 0.2 μm or less. On the other hand, the number of Fe—Cr compounds is measured regardless of the particle diameter, and the average value is calculated.

次に、本発明のばね用鋼の成分について説明する。   Next, the components of the spring steel of the present invention will be described.

本発明のばね用鋼の基本成分としては、C:0.3〜0.7%、Si:1〜2.6%およびMn:0.1〜1.8%、を含むものが好ましく、また必要に応じて、Ni:1.5%以下(0%を含まない)および/またはCu:0.7%以下(0%を含まない)、更には、Mo:0.01〜0.5%、等を含むものが好ましい。この様な範囲を規定した理由は、次の通りである。   As the basic components of the spring steel of the present invention, those containing C: 0.3 to 0.7%, Si: 1 to 2.6% and Mn: 0.1 to 1.8% are preferable, and if necessary, Ni: 1.5% or less (0% is not included) and / or Cu: 0.7% or less (0% is not included), and further, Mo: 0.01 to 0.5%, etc. are preferable. The reason for specifying such a range is as follows.

C:0.3〜0.7%
Cは、ばね素材を焼入れ硬化させて強度を確保するために必要な元素であり、その効果を有効に発揮させるには0.3%以上含有させることが好ましい。より好ましくは0.35%以上とするのが良い。しかし0.7%を超えて過剰に含有させると欠陥感受性が高くなり、腐食ピットが生じた際等に疲労寿命や破壊応力が著しく低下することになるので、0.7%以下とするのが好ましく、より好ましくは0.6%以下である。
C: 0.3-0.7%
C is an element necessary for quenching and hardening the spring material to ensure strength, and is preferably contained in an amount of 0.3% or more in order to exert its effect effectively. More preferably, it is 0.35% or more. However, if the content exceeds 0.7%, the susceptibility to defects increases, and when fatigue pits occur, the fatigue life and fracture stress will be significantly reduced. Therefore, it is preferably 0.7% or less, more preferably Is 0.6% or less.

Si:1〜2.6%
Siは、鋼材の弾性限を高め、ばねとしての特性を得るのに有効な元素であり、しかも欠陥感受性を低減して腐食ピットが生じた際等に長寿命を保つのに有効な元素である。また、鋼材に生成する錆を緻密化する作用も有しており、腐食ピット自身の抑制効果も発揮する。これらの効果を有効に発揮させるには、1%以上含有させることが好ましいが、その含量が2.6%を超えて過剰になると、それらの効果が飽和するばかりか、熱処理時の脱炭による表面強度の低下により却って寿命が低下することになる。Si含量のより好ましい下限は1.2%程度であり、より好ましい上限は2.5%程度である。
Si: 1 to 2.6%
Si is an element effective for increasing the elastic limit of steel and obtaining the characteristics as a spring, and also effective for maintaining a long life when a corrosion pit is generated by reducing defect sensitivity. . Moreover, it also has the effect | action which densifies the rust produced | generated in steel materials, and also exhibits the inhibitory effect of corrosion pit itself. In order to exert these effects effectively, it is preferable to contain 1% or more. However, if the content exceeds 2.6%, not only the effects are saturated, but also the surface strength by decarburization during heat treatment. On the other hand, the lifespan is reduced due to the decrease in the temperature. A more preferable lower limit of the Si content is about 1.2%, and a more preferable upper limit is about 2.5%.

Mn:0.1〜1.8%
Mnは、鋼材の焼入れ性を高めて所望の強度を得るのに重要な元素である。こうした効果を有効に発揮させるには、0.1%以上含有させることが好ましい。しかし、過剰に含有させると欠陥感受性を高まり腐食ピットが生じた際等に寿命が低下する原因となるので、1.8%以下とするのが好ましい。Mn含量のより好ましい下限は0.2%程度であり、より好ましい上限は1%程度である。
Mn: 0.1-1.8%
Mn is an important element for increasing the hardenability of the steel material and obtaining a desired strength. In order to exhibit such an effect effectively, it is preferable to contain 0.1% or more. However, if it is contained excessively, defect susceptibility is increased and the life is shortened when corrosion pits are formed, so 1.8% or less is preferable. A more preferable lower limit of the Mn content is about 0.2%, and a more preferable upper limit is about 1%.

Ni:1.5%以下(0%を含まない)および/またはCu:0.7%以下(0%を含まない)
NiおよびCuは、鋼材の耐食性を高めるのに有効な元素であり、少量の添加でもその効果を発揮するが、好ましくはNi:0.15%以上(より好ましくは0.25%以上)、好ましくはCu:0.1%以上(より好ましくは0.2%以上)含有させるのがよい。しかし、NiやCuを過剰に含有させるとその効果が飽和するばかりか、残留オーステナイト組織の生成によって高強度を得ることが困難になるので、Ni:1.5%以下(より好ましくは1%以下)、Cu:0.7%以下(より好ましくは0.5%以下)に抑制するのが望ましい。なお、NiとCuは夫々単独で用いてもよいし、併用してもよい。
Ni: 1.5% or less (not including 0%) and / or Cu: 0.7% or less (not including 0%)
Ni and Cu are effective elements for enhancing the corrosion resistance of the steel material, and even when added in a small amount, the effect is exhibited, but preferably Ni: 0.15% or more (more preferably 0.25% or more), preferably Cu: 0.1 % Or more (more preferably 0.2% or more). However, if Ni or Cu is contained excessively, not only the effect is saturated, but it is difficult to obtain high strength by the formation of a retained austenite structure, so Ni: 1.5% or less (more preferably 1% or less), Cu: It is desirable to suppress to 0.7% or less (more preferably 0.5% or less). Ni and Cu may be used alone or in combination.

上記以外の成分としては、Alは、製鋼時の脱酸に有用な元素であり、また結晶粒を微細化して靭性を高める効果も有しているが、過剰に添加すると粗大な窒化物が生じて疲労寿命を低下させるので、0.05%以下に抑制することが好ましい。   As a component other than the above, Al is an element useful for deoxidation during steelmaking, and also has the effect of increasing the toughness by refining crystal grains, but when added in excess, coarse nitrides are produced. Therefore, it is preferable to suppress to 0.05% or less.

本発明のばね用鋼には、上記成分以外にもばね用鋼としての特性を阻害しない範囲で微量成分を含み得るものであり、こうした鋼も本発明の範囲に含まれる。上記微量成分としては、PやAs,Sb,N,S等の不可避不純物が挙げられる。但し、これらの不可避不純物は、粒界偏析を起こして靭性を低下させるので、極力低減することが好ましい。具体的には、P:0.02%以下(より好ましくは0.01%以下),As:0.006%以下,Sb:0.006%以下とするのが良い。   The spring steel of the present invention may contain a trace component in addition to the above components as long as the properties as a spring steel are not impaired. Such steel is also included in the scope of the present invention. Examples of the trace component include inevitable impurities such as P, As, Sb, N, and S. However, these inevitable impurities cause grain boundary segregation and reduce toughness, so it is preferable to reduce them as much as possible. Specifically, P: 0.02% or less (more preferably 0.01% or less), As: 0.006% or less, and Sb: 0.006% or less are preferable.

特にNは、Ti等と反応して析出物を生成し、耐腐食疲労性の向上に寄与する元素であり、こうした効果を有効に発揮させるためには0.002%以上含有させることが好ましい。しかし過剰に含有させると窒化物が粗大化し、疲労寿命を低下させるのでN含量は0.015%以下とするのが良い。一方、SもNと同様に、Ti等と反応して析出物を生成する元素であり、0.02%以下(より好ましくは0.01%以下)に抑制するのが望ましい。なお、本発明のばね用鋼の残部はFeおよび不可避不純物である。   In particular, N is an element that reacts with Ti or the like to produce precipitates and contributes to the improvement of corrosion fatigue resistance, and is preferably contained in an amount of 0.002% or more in order to effectively exhibit such effects. However, if it is excessively contained, the nitride becomes coarse and the fatigue life is reduced, so the N content is preferably 0.015% or less. On the other hand, S, like N, is an element that reacts with Ti or the like to produce precipitates, and is desirably suppressed to 0.02% or less (more preferably 0.01% or less). The balance of the spring steel of the present invention is Fe and inevitable impurities.

本発明のばね用鋼は、その成分組成を調整することが重要であり、その製法は特に限定されず公知の方法を採用できるが、好適に採用することのできる製法について以下に説明する。   It is important to adjust the component composition of the spring steel of the present invention, and its production method is not particularly limited, and a known method can be adopted, but a production method that can be suitably adopted will be described below.

本発明のばね用鋼を製造するに当たっては、上記成分組成の要件を満たす溶鋼を鋳造する際に、1500〜1300℃の温度域の冷却速度を10℃/min以上とするのが好ましい。冷却速度を10℃/min以上とすることによって、析出物が微細化するからである。より好ましくは20℃/min以上、さらに好ましくは30℃/min以上とするのが望ましい。なお、冷却速度の上限は特に限定されないが、冷却速度が大き過ぎると析出物が充分に析出する前に凝固するので、200℃/min以下とするのが好ましい。   In producing the spring steel of the present invention, it is preferable to set the cooling rate in the temperature range of 1500 to 1300 ° C. to 10 ° C./min or more when casting molten steel that satisfies the above-mentioned component composition requirements. This is because the precipitate is refined by setting the cooling rate to 10 ° C./min or more. More preferably, it is 20 ° C./min or more, and further preferably 30 ° C./min or more. The upper limit of the cooling rate is not particularly limited, but if the cooling rate is too high, the precipitate is solidified before it is sufficiently precipitated, so it is preferably set to 200 ° C./min or less.

次に、冷却後の鋼を焼入する。焼入温度は850〜1000℃とし、この範囲にすることによって組織をオーステナイト化し、V等の析出物を再固溶できる。そして、完全に固溶していない元素を核としてTi等の元素が再析出することにより微細な析出物が生成する。焼入温度が850℃未満では、オーステナイト化が不充分になることがあり、1000℃を超えると、オーステナイト結晶粒が粗大化して、靭性が低下する。上記温度範囲に加熱した後、70℃程度で油焼入を行なう。この様な冷却条件とすることで、微細な析出物が生成するからである。   Next, the cooled steel is quenched. The quenching temperature is set to 850 to 1000 ° C., and by making it within this range, the structure is austenitized and precipitates such as V can be re-dissolved. Then, fine precipitates are generated by reprecipitation of elements such as Ti with an element that is not completely dissolved as a nucleus. If the quenching temperature is less than 850 ° C., austenitization may be insufficient, and if it exceeds 1000 ° C., the austenite crystal grains become coarse and the toughness decreases. After heating to the above temperature range, oil quenching is performed at about 70 ° C. This is because fine precipitates are generated under such cooling conditions.

次に、焼入した鋼を、300〜450℃で、1時間程度焼戻す。焼戻し温度をこの範囲にすることによってTi等の析出物が微細化し、さらに強度も向上するからである。但し、焼戻し温度が300℃未満では鋼が硬すぎて靭性が低下し、一方、450℃を超えると充分な強度が得られない。   Next, the quenched steel is tempered at 300 to 450 ° C. for about 1 hour. This is because by setting the tempering temperature within this range, precipitates such as Ti are refined and the strength is further improved. However, if the tempering temperature is less than 300 ° C, the steel is too hard and the toughness is lowered. On the other hand, if it exceeds 450 ° C, sufficient strength cannot be obtained.

本発明のばね用鋼は種々のばね素材として用いることができ、得られるばねの強度は1800MPa以上となる。   The spring steel of the present invention can be used as various spring materials, and the strength of the obtained spring is 1800 MPa or more.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記表1に示す成分組成の鋼材を150kg真空溶解炉にて溶製してインゴットを作製した後、冷却した。このとき1500〜1300℃へ冷却する際の冷却速度は30℃/minとした。次に、得られたインゴットを熱間鍛造して直径:12mmの丸棒を作製した。次に、丸棒の組織をオーステナイト化するため925℃で10分間加熱した後、70℃の温油に投入して焼入れた。その後、引張強度が2000MPa前後となる様に、300〜450℃で1時間焼戻した。   Steel materials having the composition shown in Table 1 below were melted in a 150 kg vacuum melting furnace to produce an ingot, and then cooled. At this time, the cooling rate when cooling to 1500 to 1300 ° C. was 30 ° C./min. Next, the obtained ingot was hot forged to produce a round bar having a diameter of 12 mm. Next, in order to change the structure of the round bar to austenite, it was heated at 925 ° C. for 10 minutes, and then poured into hot oil at 70 ° C. and quenched. Then, it was tempered at 300 to 450 ° C. for 1 hour so that the tensile strength was about 2000 MPa.

焼戻し後の鋼材について、表1に示した成分組成から上記(1)式のA値と右辺の値を算出して下記表2に示す。また、A値とCr含量の関係を図1に示す。なお、図1中、●はNo.1〜7、○はNo.8〜17の結果を夫々示しており、曲線は上記(1)を示している。   For the steel material after tempering, the A value and the right side value of the above formula (1) are calculated from the composition shown in Table 1 and shown in Table 2 below. The relationship between the A value and the Cr content is shown in FIG. In FIG. 1, ● represents the results of Nos. 1 to 7, ○ represents the results of Nos. 8 to 17, and the curve represents the above (1).

次に、焼戻し後の鋼材から、腐食疲労試験用試験片と水素昇温分析用試験片を夫々切り出し、夫々の試験片を用いて腐食疲労試験と水素昇温分析を行なった。また、焼戻し後の鋼材について電子顕微鏡観察を行なった。   Next, a test piece for corrosion fatigue test and a test piece for hydrogen temperature rise analysis were cut out from the steel material after tempering, and a corrosion fatigue test and a hydrogen temperature rise analysis were performed using each test piece. The steel material after tempering was observed with an electron microscope.

[腐食疲労試験]
腐食疲労試験用試験片はダンベル状のもので、長さ:150mm、標線間距離:10mmで、両端のつかみ部は断面が直径:8mmの円形状、中央の薄肉部は断面が直径:4mmの円形状であり、試験片の両端には長さ約15mmのねじ部が形成されている。
[Corrosion fatigue test]
The test piece for corrosion fatigue test is a dumbbell shape, length: 150 mm, distance between marked lines: 10 mm, the grip part at both ends is a circular shape with a cross section of 8 mm in diameter, and the thin part at the center has a cross section of 4 mm in diameter. A thread portion having a length of about 15 mm is formed at both ends of the test piece.

この試験片を用いて[塩水噴霧(35℃,5%NaCl)8時間+乾燥(35℃,湿度:60%)16時間]を1サイクルとするサイクル試験を14サイクルまたは28サイクル行った後、試験片をSSRT試験(Slow Strain Rate Technique:低歪み速度試験)機に装着して引張試験を行い、破断応力(S1)を測定した。このときのクロスヘッド速度は2×10-3mm/minとした。14サイクル後と28サイクル後の破断応力を下記表2に夫々示す。 Using this test piece, after 14 cycles or 28 cycles of a cycle test of [salt spray (35 ° C., 5% NaCl) 8 hours + drying (35 ° C., humidity: 60%) 16 hours] as one cycle, The test piece was mounted on a SSRT test (Slow Strain Rate Technique) machine, a tensile test was performed, and the breaking stress (S1) was measured. The crosshead speed at this time was 2 × 10 −3 mm / min. Table 2 shows the breaking stress after 14 cycles and after 28 cycles.

また、上記サイクル試験を行なっていない試験片をSSRT試験機に装着して大気中で引張試験を行い、引張強度(TS)を測定した。このときのクロスヘッド速度は同じく2×10-3mm/minとした。引張強度を下記表2に示す。 Moreover, the test piece which has not performed the said cycle test was mounted | worn with the SSRT testing machine, the tensile test was done in air | atmosphere, and the tensile strength (TS) was measured. The crosshead speed at this time was also 2 × 10 −3 mm / min. The tensile strength is shown in Table 2 below.

測定されたS1とTSから下記(3)式により腐食疲労特性値を算出し、この値に基づいて下記評価基準で腐食疲労特性を評価した。腐食疲労特性値と評価結果を下記表2に示す。また、各試験片の28サイクル後の腐食疲労特性を図2に、Cr含量と28サイクル後の腐食疲労特性の関係を図3に、A値と28サイクル後の腐食疲労特性の関係を図4に、夫々示す。
腐食疲労特性値=S1/TS …(3)
The corrosion fatigue characteristic value was calculated from the measured S1 and TS by the following equation (3), and the corrosion fatigue characteristic was evaluated according to the following evaluation criteria based on this value. The corrosion fatigue characteristic values and evaluation results are shown in Table 2 below. In addition, the corrosion fatigue characteristics after 28 cycles of each specimen are shown in FIG. 2, the relationship between the Cr content and the corrosion fatigue characteristics after 28 cycles is shown in FIG. 3, and the relationship between the A value and the corrosion fatigue characteristics after 28 cycles is shown in FIG. Respectively.
Corrosion fatigue characteristic value = S1 / TS (3)

<腐食疲労特性の評価基準>
○…腐食疲労特性値が0.75以上であり腐食疲労特性に極めて優れている
△…腐食疲労特性値が0.5以上〜0.75未満であり腐食疲労特性に優れている
×…腐食疲労特性値が0.5未満であり腐食疲労特性に劣る
<Evaluation criteria for corrosion fatigue characteristics>
○… Corrosion fatigue property value is 0.75 or more, and corrosion fatigue property is excellent △… Corrosion fatigue property value is 0.5 or more to less than 0.75, and corrosion fatigue property is excellent ×… Corrosion fatigue property value is less than 0.5 Inferior to corrosion fatigue properties

[水素昇温分析]
水素昇温分析用試験片は、直径:10mm,厚み:2mmの円盤状であり、この試験片に[塩水噴霧(35℃,5%NaCl)8時間+乾燥(35℃,湿度:60%)16時間]を1サイクルとするサイクル試験を14サイクル行った。サイクル試験後の試験片について表面に生成したさびを機械研磨して除去し、TDS(真空質量分析計)を用いて、真空中で、昇温速度:12℃/minで加熱し、50〜450℃の温度域で放出される水素量を測定した。No.1とNo.12の水素放出ピークを図5に示す。なお、図5中、(a)はNo.1の結果を、(b)はNo.12の結果を夫々示している。
[Hydrogen temperature rising analysis]
The test piece for hydrogen temperature rising analysis has a disk shape with a diameter of 10 mm and a thickness of 2 mm, and this test piece [salt water spray (35 ° C, 5% NaCl) 8 hours + drying (35 ° C, humidity: 60%) The cycle test with 16 hours] as one cycle was conducted 14 cycles. The rust generated on the surface of the test piece after the cycle test is removed by mechanical polishing, and heated at a rate of temperature increase of 12 ° C./min in a vacuum using a TDS (vacuum mass spectrometer). The amount of hydrogen released in the temperature range of ° C. was measured. The hydrogen release peaks of No. 1 and No. 12 are shown in FIG. In FIG. 5, (a) shows the result of No. 1, and (b) shows the result of No. 12.

また、50〜200℃で放出される水素量aと、300〜450℃で放出される水素量bを夫々算出し、これらの比[b/a]を計算した。なお、試験回数は各試験片について3回づつとし、得られた水素量を平均したものを全水素量とする。全水素量、各温度域で放出される水素量、および計算によって求めた比[b/a]を夫々下記表3に併せて示す。全水素量と14サイクル後の腐食疲労特性の関係を図6に、比[b/a]と14サイクル後の腐食疲労特性の関係を図7に夫々示す。なお、図6および7中、●はNo.1〜7、○はNo.8〜17の結果を夫々示している。   Further, the hydrogen amount a released at 50 to 200 ° C. and the hydrogen amount b released at 300 to 450 ° C. were calculated, and the ratio [b / a] was calculated. The number of tests shall be 3 times for each test piece, and the average of the obtained hydrogen amounts shall be the total hydrogen amount. The total amount of hydrogen, the amount of hydrogen released at each temperature range, and the ratio [b / a] determined by calculation are shown together in Table 3 below. FIG. 6 shows the relationship between the total amount of hydrogen and the corrosion fatigue properties after 14 cycles, and FIG. 7 shows the relationship between the ratio [b / a] and the corrosion fatigue properties after 14 cycles. 6 and 7, ● represents the results of Nos. 1 to 7, and ○ represents the results of Nos. 8 to 17, respectively.

[電子顕微鏡観察]
前記焼戻し後の鋼材から抽出レプリカ法で析出物を抽出し、透過型電子顕微鏡(TEM)にて加速電圧:200kV,倍率:10000倍で任意の5視野を観察した。5視野の夫々について、10μm四方の観察視野(視野面積:100μm2)内に観察される析出物を、TEMに備えられているエネルギー分散型X線分析(EDX)装置を用いて分析した。Ti,V,Nb,ZrおよびHfよりなる群から選ばれる少なくとも1種を含む析出物の数は、粒径が0.2μm以下の個数を測定して平均値を算出した。一方、Fe−Cr化合物の数は、粒径に関係なく個数を測定して平均値を算出する。結果を下記表3に併せて示す。また、Ti等の析出物の数とFe−Cr化合物の数の関係を図8に示す。また、No.12の電子顕微鏡写真を図面代用写真として図9に示す。なお、図8中、●はNo.1〜7、○はNo.8〜17の結果を夫々示している。また、図9中に示した矢印は、Ti等の析出物を指している。
[Electron microscope observation]
Precipitates were extracted from the tempered steel by an extraction replica method, and arbitrary five fields of view were observed with a transmission electron microscope (TEM) at an acceleration voltage of 200 kV and a magnification of 10,000. For each of the five visual fields, precipitates observed in a 10 μm square observation visual field (visual field area: 100 μm 2 ) were analyzed using an energy dispersive X-ray analysis (EDX) apparatus provided in the TEM. For the number of precipitates containing at least one selected from the group consisting of Ti, V, Nb, Zr and Hf, the average value was calculated by measuring the number of particles having a particle size of 0.2 μm or less. On the other hand, the number of Fe—Cr compounds is measured regardless of the particle diameter, and the average value is calculated. The results are also shown in Table 3 below. FIG. 8 shows the relationship between the number of precipitates such as Ti and the number of Fe—Cr compounds. Moreover, the electron micrograph of No. 12 is shown in FIG. In FIG. 8, ● represents the results of Nos. 1 to 7, and ○ represents the results of Nos. 8 to 17, respectively. Further, the arrows shown in FIG. 9 indicate precipitates such as Ti.

Figure 2005023404
Figure 2005023404

Figure 2005023404
Figure 2005023404

Figure 2005023404
Figure 2005023404

表1〜3および図1〜9から次の様に考察できる。 It can consider as follows from Tables 1-3 and FIGS.

No.1〜7は、本発明で規定するいずれかの要件を満足しない例であり、腐食疲労性に劣るばね用鋼である。   Nos. 1 to 7 are examples that do not satisfy any of the requirements defined in the present invention, and are spring steels that are inferior in corrosion fatigue resistance.

一方、No.8〜17は、本発明で規定する要件を満足する例であり、サイクル試験を28サイクル行なっても、耐腐食疲労性が良好なばね用鋼を達成できる。   On the other hand, Nos. 8 to 17 are examples that satisfy the requirements defined in the present invention, and a spring steel with good corrosion fatigue resistance can be achieved even if the cycle test is performed 28 cycles.

A値とCr含量の関係を示すグラフである。It is a graph which shows the relationship between A value and Cr content. 各試験片の28サイクル後の腐食疲労特性を示すグラフである。It is a graph which shows the corrosion fatigue characteristic after 28 cycles of each test piece. Cr含量と28サイクル後の腐食疲労特性の関係を示すグラフである。It is a graph which shows the relationship between Cr content and the corrosion fatigue property after 28 cycles. A値と28サイクル後の腐食疲労特性の関係を示すグラフである。It is a graph which shows the relationship between A value and the corrosion fatigue characteristic after 28 cycles. 水素昇温分析を行なったときのNo.1とNo.12の水素放出ピークである。The hydrogen release peaks of No. 1 and No. 12 when hydrogen temperature rising analysis was performed. 全水素量と14サイクル後の腐食疲労特性の関係を示すグラフである。It is a graph which shows the relationship between the total hydrogen amount and the corrosion fatigue characteristics after 14 cycles. 比[b/a]と14サイクル後の腐食疲労特性の関係を示すグラフである。It is a graph which shows the relationship between ratio [b / a] and the corrosion fatigue property after 14 cycles. Ti等の析出物の数とFe−Cr化合物の数の関係を示すグラフである。It is a graph which shows the relationship between the number of precipitates, such as Ti, and the number of Fe-Cr compounds. No.12の電子顕微鏡写真(図面代用写真)である。It is an electron micrograph (drawing substitute photograph) of No. 12.

Claims (7)

C,SiおよびMnを含むばね用鋼において、
Ti:0.04〜0.095%(「質量%」の意味。以下同じ)を含む他、
V :0.3%以下(0%を含まない)、
Nb:0.3%以下(0%を含まない)、
Zr:0.3%以下(0%を含まない)、
Hf:0.3%以下(0%を含まない)、
のいずれか1種以上を合計で0.05〜0.6%含み、
更に、Cr:0.3%以下(0%を含む)に抑制し、
且つ、下記(1)式を満足することを特徴とする耐腐食疲労性に優れたばね用鋼。
[Cr]≦0.35×{1−Exp(−25×A−0.6)} …(1)
式中、
A=[Ti]×([Ti]+[V]+[Nb]+[Zr]+[Hf])×100
であり、[ ]は各元素の含有量(質量%)を示す。
In spring steel containing C, Si and Mn,
In addition to Ti: 0.04-0.095% (meaning “mass%”, the same applies hereinafter)
V: 0.3% or less (excluding 0%),
Nb: 0.3% or less (excluding 0%),
Zr: 0.3% or less (excluding 0%),
Hf: 0.3% or less (excluding 0%),
Any one or more of 0.05 to 0.6% in total,
Furthermore, Cr: suppressed to 0.3% or less (including 0%),
And spring steel excellent in corrosion fatigue resistance characterized by satisfying the following formula (1).
[Cr] ≦ 0.35 × {1-Exp (−25 × A−0.6)} (1)
Where
A = [Ti] × ([Ti] + [V] + [Nb] + [Zr] + [Hf]) × 100
[] Indicates the content (% by mass) of each element.
Vを必須的に含むものである請求項1に記載のばね用鋼。   The spring steel according to claim 1, which essentially contains V. C,SiおよびMnを含むばね用鋼において、
この鋼を用いて直径:10mm,厚み:2mmの円盤状試験片を作製し、
得られた試験片を用いて下記に示すサイクル試験を14サイクル行なった後、
昇温速度:12℃/minで加熱する水素昇温分析を行ったときに、
50〜450℃の温度域で放出される水素量が0.75mass.ppm以下であることを特徴とする耐腐食疲労性に優れたばね用鋼。
[サイクル試験とは、前記試験片に、35℃の環境下で5%NaCl水溶液を8時間噴霧した後、35℃・湿度60%の環境下で16時間恒温恒湿保持して乾燥させるサイクルを1サイクルとする試験である。]
In spring steel containing C, Si and Mn,
Using this steel, a disk-shaped test piece having a diameter of 10 mm and a thickness of 2 mm was prepared.
After performing 14 cycles of the cycle test shown below using the obtained test piece,
Temperature rising rate: When performing a hydrogen temperature rising analysis heating at 12 ° C./min,
The amount of hydrogen released in the temperature range of 50 to 450 ° C. is 0.75 mass. Spring steel with excellent corrosion fatigue resistance, characterized by being below ppm.
[Cycle test is a cycle in which a 5% NaCl aqueous solution is sprayed on the test piece for 8 hours in an environment of 35 ° C. and then dried by holding at constant temperature and humidity for 16 hours in an environment of 35 ° C. and humidity 60%. This is a test for one cycle. ]
前記温度域で放出される水素量のうち、50〜200℃で放出される水素量aと300〜450℃で放出される水素量bの比[b/a]が1以上である請求項3に記載のばね用鋼。   The ratio [b / a] of the amount of hydrogen a released at 50 to 200 ° C and the amount of hydrogen b released at 300 to 450 ° C among the amount of hydrogen released in the temperature range is 1 or more. The spring steel described in 1. 請求項1〜4のいずれかに記載の鋼に、Ti,V,Nb,ZrおよびHfよりなる群から選ばれる少なくとも1種を含む炭化物、窒化物および硫化物、並びにこれらのいずれか2種以上の複合化合物の少なくとも1種が析出物として分散しており、
前記析出物のうち粒径が10nm〜0.2μmの数が、60個/100μm2以上であり、且つ、
粒径が10nm以上のFe−Cr化合物の数が、20個/100μm2以下である請求項1〜4のいずれかに記載のばね用鋼。
The steel according to any one of claims 1 to 4, carbide, nitride and sulfide containing at least one selected from the group consisting of Ti, V, Nb, Zr and Hf, and any two or more of these At least one of the composite compounds is dispersed as a precipitate,
Of the precipitates, the number of particles having a particle size of 10 nm to 0.2 μm is 60/100 μm 2 or more, and
The steel for spring according to any one of claims 1 to 4, wherein the number of Fe-Cr compounds having a particle size of 10 nm or more is 20/100 µm 2 or less.
C:0.3〜0.7%、Si:1〜2.6%、Mn:0.1〜1.8%、を夫々含むものである請求項1〜5のいずれかに記載のばね用鋼。   The steel for springs according to any one of claims 1 to 5, which contains C: 0.3 to 0.7%, Si: 1 to 2.6%, and Mn: 0.1 to 1.8%. 更に他の元素として、Ni:1.5%以下(0%を含まない)、および/または、Cu:0.7%以下(0%を含まない)を含む請求項1〜6のいずれかに記載のばね用鋼。

Furthermore, Ni: 1.5% or less (not including 0%) and / or Cu: 0.7% or less (not including 0%) are included as other elements. The spring steel described.

JP2003270206A 2003-07-01 2003-07-01 Spring steel with excellent corrosion fatigue resistance Expired - Fee Related JP4280123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270206A JP4280123B2 (en) 2003-07-01 2003-07-01 Spring steel with excellent corrosion fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270206A JP4280123B2 (en) 2003-07-01 2003-07-01 Spring steel with excellent corrosion fatigue resistance

Publications (2)

Publication Number Publication Date
JP2005023404A true JP2005023404A (en) 2005-01-27
JP4280123B2 JP4280123B2 (en) 2009-06-17

Family

ID=34190231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270206A Expired - Fee Related JP4280123B2 (en) 2003-07-01 2003-07-01 Spring steel with excellent corrosion fatigue resistance

Country Status (1)

Country Link
JP (1) JP4280123B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
JP2006283049A (en) * 2005-03-31 2006-10-19 Sanyo Special Steel Co Ltd Method for producing steel material
EP1783239A1 (en) * 2005-11-02 2007-05-09 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and steel wire and spring obtained from the steel
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
WO2010110041A1 (en) 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
CN102884216A (en) * 2010-03-29 2013-01-16 杰富意钢铁株式会社 Spring steel and method of manufacture for same
WO2015098531A1 (en) * 2013-12-27 2015-07-02 株式会社神戸製鋼所 Rolled steel material for high-strength spring and wire for high-strength spring using same
EP3112491A4 (en) * 2014-02-28 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rolled material for high strength spring, and wire for high strength spring
KR101867709B1 (en) 2016-12-06 2018-06-14 주식회사 포스코 Wire rod and steel wire for spring having excellent corrosion fatigue resistance and method for manufacturing the same
KR20190037680A (en) 2017-09-29 2019-04-08 주식회사 포스코 Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
WO2020040388A1 (en) 2018-08-21 2020-02-27 주식회사 포스코 Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100410410C (en) * 2005-01-28 2008-08-13 株式会社神户制钢所 High strength spring steel having excellent hydrogen embrittlement resistance
US7438770B2 (en) 2005-01-28 2008-10-21 Kobe Steel, Ltd. High strength spring steel having excellent hydrogen embrittlement resistance
EP1686195A1 (en) * 2005-01-28 2006-08-02 Kabushiki Kaisha Kobe Seiko Sho High strength spring steel having excellent hydrogen embrittlement resistance
JP2006283049A (en) * 2005-03-31 2006-10-19 Sanyo Special Steel Co Ltd Method for producing steel material
US8557061B2 (en) 2005-11-02 2013-10-15 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and steel wire and spring obtained from the steel
EP1783239A1 (en) * 2005-11-02 2007-05-09 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and steel wire and spring obtained from the steel
WO2010110041A1 (en) 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
US8926768B2 (en) 2009-03-25 2015-01-06 Nhk Spring Co., Ltd. High-strength and high-ductility steel for spring, method for producing same, and spring
CN102884216B (en) * 2010-03-29 2014-08-06 杰富意钢铁株式会社 Spring steel and method of manufacture for same
US8608874B2 (en) 2010-03-29 2013-12-17 Jfe Steel Corporation Spring steel and method for manufacturing the same
KR101311386B1 (en) * 2010-03-29 2013-09-25 제이에프이 스틸 가부시키가이샤 Spring steel and method for manufacturing the same
CN102884216A (en) * 2010-03-29 2013-01-16 杰富意钢铁株式会社 Spring steel and method of manufacture for same
US9618070B2 (en) 2010-03-29 2017-04-11 Jfe Steel Corporation Spring steel and method for manufacturing the same
WO2015098531A1 (en) * 2013-12-27 2015-07-02 株式会社神戸製鋼所 Rolled steel material for high-strength spring and wire for high-strength spring using same
EP3088551A4 (en) * 2013-12-27 2017-08-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rolled steel material for high-strength spring and wire for high-strength spring using same
EP3112491A4 (en) * 2014-02-28 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rolled material for high strength spring, and wire for high strength spring
KR101867709B1 (en) 2016-12-06 2018-06-14 주식회사 포스코 Wire rod and steel wire for spring having excellent corrosion fatigue resistance and method for manufacturing the same
WO2018106016A1 (en) 2016-12-06 2018-06-14 주식회사 포스코 Wire rod for springs with excellent corrosion fatigue resistance, steel wire, and manufacturing method thereof
KR20190037680A (en) 2017-09-29 2019-04-08 주식회사 포스코 Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
US11761054B2 (en) 2017-09-29 2023-09-19 Posco Co., Ltd Wire rod and steel wire for springs having excellent corrosion fatigue resistance properties, and method for producing same
WO2020040388A1 (en) 2018-08-21 2020-02-27 주식회사 포스코 Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor

Also Published As

Publication number Publication date
JP4280123B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
KR101126151B1 (en) Brake disk excellent in temper softening resistance and toughness
JP6027302B2 (en) High strength tempered spring steel
JP4008391B2 (en) High strength steel with excellent hydrogen embrittlement resistance and method for producing the same
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP2011127182A (en) High fatigue strength plate spring steel and plate spring part
JP4280123B2 (en) Spring steel with excellent corrosion fatigue resistance
WO2020162616A1 (en) Bolt, and steel material for bolts
JP5251633B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
WO2016159391A1 (en) Case-hardened steel article
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
JP2020509158A (en) Spring wire and steel wire excellent in corrosion fatigue resistance, and their manufacturing methods
JP7457234B2 (en) Bolts and bolt manufacturing methods
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JP7464832B2 (en) Bolts and bolt steel
JP4473786B2 (en) High strength steel with excellent delayed fracture resistance
JP7168101B2 (en) High-strength steel member
JP2022128623A (en) Steel for high strength bolt, and production method thereof
KR20210148334A (en) Bolts, and steel for bolts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4280123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees