JP2954868B2 - Method for improving antibacterial properties of Cu-containing stainless steel - Google Patents
Method for improving antibacterial properties of Cu-containing stainless steelInfo
- Publication number
- JP2954868B2 JP2954868B2 JP30072795A JP30072795A JP2954868B2 JP 2954868 B2 JP2954868 B2 JP 2954868B2 JP 30072795 A JP30072795 A JP 30072795A JP 30072795 A JP30072795 A JP 30072795A JP 2954868 B2 JP2954868 B2 JP 2954868B2
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- stainless steel
- weight
- antibacterial
- acidic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種衛生用機器,医療
機器,食品関連の機器や機材等として使用されるステン
レス鋼の抗菌性を改善する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the antibacterial properties of stainless steel used as various sanitary equipment, medical equipment, food-related equipment and equipment, and the like.
【0002】[0002]
【従来の技術】ステンレス鋼は、優れた耐食性を活用し
て各種衛生用機器,医療機器,食品関連の機器や機材等
に広く使用されている。従来では、耐食性,強度等とい
った材料的な特性を重視して材質が選択されているが、
雑菌の繁殖による汚染や悪臭,ぬめり等が人体,動物,
製品等に与える悪影響を懸念する傾向が強くなってきて
いる近年では、従来の特性に加えて抗菌性が要求され
る。特に、清潔さが要求される医療用器具,医療機関,
多数の人が集まる建造物等では、雑菌に対して抵抗力の
ある材料の開発が望まれている。この種の要求に応える
ため、抗菌剤を配合した樹脂をステンレス鋼の表面に塗
布積層する方法,マトリックス中に抗菌剤成分を含むめ
っきを施す方法等が特開平5−228202号公報,特
開平6−10191号公報等で紹介されている。2. Description of the Related Art Stainless steel has been widely used in various sanitary equipment, medical equipment, food-related equipment and equipment, etc., utilizing its excellent corrosion resistance. Conventionally, materials are selected with emphasis on material properties such as corrosion resistance and strength.
Contamination, bad smell, slimming, etc. caused by propagation of various bacteria
In recent years, where there is a growing tendency to be concerned about adverse effects on products and the like, antibacterial properties are required in addition to conventional properties. In particular, medical equipment, medical institutions,
In buildings and the like where a large number of people gather, it is desired to develop a material that is resistant to various bacteria. In order to meet this kind of demand, a method of coating and laminating a resin containing an antimicrobial agent on the surface of stainless steel, a method of plating an antimicrobial component in a matrix, and the like are disclosed in JP-A-5-228202 and JP-A-5-228202. -10191 publication.
【0003】抗菌剤を配合した樹脂をステンレス鋼の表
面に塗布積層すると、ステンレス鋼本来の優れた金属光
沢が損なわれ、商品価値を低下させる。しかも、抗菌性
被覆は、加工時や使用中に割れて欠損,摩耗等の損傷を
受け易く、また湿潤雰囲気に曝されると抗菌性成分が溶
出する。その結果、外観が劣化するばかりでなく、本来
の抗菌作用も損なわれる。しかも、抗菌剤が枯渇する
と、残った皮膜が雑菌の栄養分となり、却って雑菌の繁
殖を促進させることにもなる。抗菌剤成分を混入した複
合めっきを施したものでは、めっき層の密着性が十分で
なく、加工性を低下させる欠点がある。また、皮膜の溶
解,摩耗,欠損等に起因して外観が低下すると共に、抗
菌作用が低下する場合もある。何れの方法においても、
抗菌剤を使用していることから、溶出した抗菌剤が人体
や環境に悪影響を及ぼす虞れがある。そこで、抗菌剤成
分を被覆する方法に代え、ステンレス鋼自体に抗菌性を
付与することが望まれている。When a resin containing an antibacterial agent is applied and laminated on the surface of stainless steel, the excellent metallic luster inherent to stainless steel is impaired, and the commercial value is reduced. Moreover, the antibacterial coating is liable to be damaged during processing or use, such as breakage or abrasion, and the antibacterial component elutes when exposed to a humid atmosphere. As a result, not only the appearance deteriorates, but also the original antibacterial action is impaired. In addition, when the antibacterial agent is depleted, the remaining film becomes a nutrient for various bacteria, which in turn promotes the propagation of various bacteria. In the case of applying a composite plating mixed with an antibacterial agent component, the adhesion of the plating layer is not sufficient, and there is a drawback that the workability is reduced. In addition, the appearance may be deteriorated due to the dissolution, abrasion, chipping or the like of the film, and the antibacterial action may be reduced. In either method,
Since the antibacterial agent is used, the eluted antibacterial agent may have an adverse effect on the human body and the environment. Therefore, it is desired to provide the stainless steel itself with antibacterial properties instead of the method of coating the antibacterial component.
【0004】[0004]
【発明が解決しようとする課題】本発明者等は、このよ
うな要求特性を満足するステンレス鋼を調査・研究し
た。その結果、ステンレス鋼にCuを含ませるとき、長
期にわたって優れた抗菌性を維持するステンレス鋼が得
られることを解明し、特開平8−193218号,特開
平8−193219号等で提案した。Cu含有ステンレ
ス鋼は、Cuリッチの表層部を形成し、この表層部から
溶出するCuイオンによって抗菌性を発現する。しか
し、ステンレス鋼を製品に加工する工程で各種研磨や機
械加工を施す場合が多く、研磨や機械加工の条件によっ
ては表層部が変質し、本来の優れた抗菌性が発現しない
場合がある。本発明は、このような問題を解消すべく案
出されたものであり、先願で提案したステンレス鋼の抗
菌性がCu含有によって改善されることをベースとし、
研磨や機械加工によって変質したステンレス鋼の表層部
を除去し、Cu濃度の高い表面を露出させることによ
り、ステンレス鋼特有の美麗な外観や加工性等の諸特性
を損なうことなく、比較的安価な製造コストでしかも簡
便に安定した抗菌性を回復させることを目的とする。The present inventors have investigated and studied stainless steel satisfying such required characteristics. As a result, it has been clarified that when Cu is contained in stainless steel, a stainless steel which maintains excellent antibacterial properties over a long period of time can be obtained, and has been proposed in Japanese Patent Application Laid-Open Nos. 8-193218 and 8-193219. Cu-containing stainless steel forms a Cu-rich surface layer, and exhibits antibacterial properties by Cu ions eluted from the surface layer. However, in the process of processing stainless steel into products, various types of polishing and mechanical processing are often performed, and depending on the conditions of polishing and mechanical processing, the surface layer may be degraded and the original excellent antibacterial properties may not be exhibited. The present invention has been devised to solve such a problem, and based on the fact that the antibacterial property of stainless steel proposed in the earlier application is improved by Cu content,
By removing the surface layer of stainless steel that has been deteriorated by polishing and machining, and exposing the surface with a high Cu concentration, it is relatively inexpensive without impairing the various properties such as beautiful appearance and workability peculiar to stainless steel. An object of the present invention is to easily and stably recover stable antibacterial properties at a production cost.
【0005】[0005]
【課題を解決するための手段】本発明の抗菌性改善方法
は、その目的を達成するため、Cuを0.3重量%以上
含むステンレス鋼又はその加工品を0.1〜30.0重
量%のH2 SO4 及び50〜5000ppmのCuイオ
ンを含む酸性溶液に浸漬し、表層部のCu濃度を0.1
0原子%以上に上昇させることを特徴とする。使用する
酸洗液は、0.1〜30.0重量%のH2 SO4 溶液に
50〜5000ppmのCuイオンを加えている。添加
したCuイオンは、ステンレス鋼をH2 SO4 酸洗液に
浸漬する場合に比較して、酸洗後の表面品質を安定化さ
せる作用を呈する。この酸液浸漬によって研磨や加工に
よって生じた表面変質層が除去され、抗菌性に有効なC
u濃度0.10原子%以上の表層部が形成される。According to the present invention, there is provided a method for improving antibacterial properties, which comprises at least 0.1 to 30.0% by weight of stainless steel containing 0.3% by weight or more of Cu or a processed product thereof. Immersion in an acidic solution containing H 2 SO 4 and Cu ions of 50 to 5000 ppm to reduce the Cu concentration of the surface layer to 0.1
It is characterized by increasing to 0 atomic% or more. The pickling solution to be used is added Cu ions 50~5000ppm to 0.1 to 30.0 wt% solution of H 2 SO 4. The added Cu ions exhibit an effect of stabilizing the surface quality after pickling, as compared with a case where stainless steel is immersed in an H 2 SO 4 pickling solution. By this acid immersion, the surface altered layer generated by polishing or processing is removed, and C effective for antibacterial property is removed.
A surface portion having a u concentration of 0.10 atomic% or more is formed.
【0006】[0006]
【作用】本発明者等の調査・研究によるとき、前掲した
先願明細書でも説明しているように、ステンレス鋼の素
材表面にCu濃度の高い表層部を形成するとき、優れた
抗菌性が発現され、そのためには素材鋼中に0.3重量
%以上のCuを含ませる必要があることが判った。ステ
ンレス鋼にCuを含ませると、ステンレス鋼表面にある
不動態皮膜中においてCuの濃化やCu系酸化物の生成
が生じる。濃化したCuやCu系酸化物は、細菌が繁殖
し易い湿潤環境で、ステンレス鋼表面に付着している僅
かな水分によって極微量のCuイオンとしてイオン化す
る。イオン化したCuは、細胞の呼吸,代謝酵素と反応
し、細胞や代謝酵素を不活性化させる。その結果、細菌
や雑菌を死滅させる。鋼中のCu含有量が0.3重量%
以上になると、表面に濃化するCu濃度が急激に高くな
り、このような抗菌効果が顕著になる。しかし、ステン
レス鋼を製品等に加工する工程では、機械研磨,電解研
磨等の研磨加工がステンレス鋼に施される場合がある。
抗菌性に有効なCuリッチの表層部は、この研磨加工に
よって変質し、製品段階で十分な抗菌性を呈さないこと
もある。また、抗菌性は、曲げ加工,絞り加工等の加工
条件によっては消失する場合もある。According to the investigation and research conducted by the present inventors, as described in the above-mentioned prior application specification, when a surface layer having a high Cu concentration is formed on the surface of a stainless steel material, excellent antibacterial properties are obtained. It was found that it was necessary to include 0.3% by weight or more of Cu in the base steel. When Cu is contained in the stainless steel, Cu is concentrated and a Cu-based oxide is generated in the passive film on the stainless steel surface. The concentrated Cu or Cu-based oxide is ionized as a very small amount of Cu ions by a small amount of water adhering to the surface of the stainless steel in a humid environment where bacteria can easily propagate. The ionized Cu reacts with the cell's respiratory and metabolic enzymes to inactivate the cells and metabolic enzymes. As a result, bacteria and germs are killed. Cu content of 0.3% by weight in steel
Above, the concentration of Cu concentrated on the surface rapidly increases, and such an antibacterial effect becomes remarkable. However, in a process of processing stainless steel into a product or the like, there is a case where a polishing process such as mechanical polishing or electrolytic polishing is performed on the stainless steel.
The Cu-rich surface layer, which is effective for antibacterial properties, is deteriorated by this polishing, and may not exhibit sufficient antibacterial properties at the product stage. Further, the antibacterial property may be lost depending on processing conditions such as bending and drawing.
【0007】そこで、本発明者等は、抗菌性が消失した
ステンレス鋼を更に調査・研究した結果、0.1〜3
0.0重量%のH2 SO4 及び50〜5000ppm濃
度のCuイオンを含む酸性溶液中にステンレス鋼を浸漬
するとき、ステンレス鋼表面のCu濃度が0.10原子
%以上に増加し、優れた抗菌性が回復されることを見い
出した。本発明が対象とするステンレス鋼は、0.3重
量%以上のCuを含有している。Cuは、優れた抗菌性
を付与する上で不可欠な合金元素である。0.3重量%
に満たないCu含有量では、たとえ酸性溶液中にステン
レス鋼を浸漬しても、不動態皮膜中にCuが十分に濃化
せず、優れた抗菌性が得られない。この点、有効な抗菌
性を得るために、0.3重量%以上のCu含有が必要で
ある。しかし、過剰にCuを含有させても、抗菌性改善
効果が飽和し、却って熱間加工性,靭性等の材料特性が
劣化する。したがって、本発明が対象とするステンレス
鋼では、好ましくは0.3〜5.0重量%,更に好まし
くは0.3〜4.0重量%の範囲にCu含有量を調整す
る。Therefore, the present inventors have further investigated and studied the stainless steel having lost the antibacterial property, and
When immersing stainless steel in an acidic solution containing 0.0% by weight of H 2 SO 4 and Cu ions at a concentration of 50 to 5000 ppm, the Cu concentration on the surface of the stainless steel was increased to 0.10 atomic% or more, and excellent. It has been found that the antibacterial properties are restored. The stainless steel targeted by the present invention contains 0.3% by weight or more of Cu. Cu is an alloy element indispensable for imparting excellent antibacterial properties. 0.3% by weight
When the Cu content is less than 3, even if stainless steel is immersed in an acidic solution, Cu is not sufficiently concentrated in the passive film, and excellent antibacterial properties cannot be obtained. In this respect, in order to obtain effective antibacterial properties, Cu content of 0.3% by weight or more is required. However, even if Cu is excessively contained, the antibacterial property improving effect is saturated, and material properties such as hot workability and toughness are rather deteriorated. Therefore, in the stainless steel targeted by the present invention, the Cu content is preferably adjusted to a range of 0.3 to 5.0% by weight, more preferably 0.3 to 4.0% by weight.
【0008】Cu以外の合金成分としては、ステンレス
鋼に通常含まれるCr,Ni,C,Si,Mn等があ
る。これらの合金元素の含有量は、鋼種によって異なる
が、C:0.005〜0.50重量%,Si:0.1〜
3.0重量%,Mn:0.1〜4.0重量%,Ni:
0.1〜15.0重量%,Cr:10.0〜25.0重
量%に調整される。また、性質改善元素として、耐食性
向上に有効なMo:0.05〜4.0重量%,炭窒化物
形成元素であるTi,Nb,V,Zrをそれぞれ0.0
01〜0.5重量%,熱間加工性の向上に有効なB,C
a,希土類金属をそれぞれ0.0005〜0.02重量
%含ませることもできる。[0008] As alloy components other than Cu, there are Cr, Ni, C, Si, Mn and the like usually contained in stainless steel. The content of these alloy elements differs depending on the steel type, but C: 0.005 to 0.50% by weight, Si: 0.1 to
3.0% by weight, Mn: 0.1 to 4.0% by weight, Ni:
It is adjusted to 0.1 to 15.0% by weight and Cr to 10.0 to 25.0% by weight. As the property improving element, Mo: 0.05 to 4.0% by weight which is effective for improving the corrosion resistance, and each of Ti, Nb, V, and Zr, which are carbonitride forming elements, are 0.0
01-0.5% by weight, B, C effective for improving hot workability
a, rare earth metal may be contained in each of 0.0005 to 0.02% by weight.
【0009】酸性溶液中のH2 SO4 濃度は、抗菌性を
発揮するのに十分な表面Cu濃度を確保する上から0.
1重量%以上が必要である。H2 SO4 濃度の上昇に従
って、抗菌性を発揮するのに十分な表面Cu濃度を得る
時間が短縮される。しかし、30.0重量%を超える高
H2 SO4 濃度では、同時に表面品質が劣化し、工業的
に安定した操業ができなくなる。また、作業性,経済性
の面からも、30.0重量%以下のH2 SO4 濃度が好
ましい。H2 SO4 含有酸性溶液中への浸漬によってス
テンレス鋼の抗菌性が回復するメカニズムは定かでない
が、一つの可能性として次の理由が考えられる。酸性溶
液にCuを含むステンレス鋼を浸漬すると、不動態皮膜
が破壊されて母材の極表層が溶出し、この状態で比較的
多量のCuを含む不動態皮膜が再形成される。その結
果、表層部のCu濃度が高くなるものと推察される。[0009] The concentration of H 2 SO 4 in the acidic solution is set at 0.1 from the viewpoint of ensuring a sufficient surface Cu concentration to exhibit antibacterial properties.
1% by weight or more is required. As the H 2 SO 4 concentration increases, the time to obtain a sufficient surface Cu concentration to exhibit antibacterial properties is shortened. However, at a high H 2 SO 4 concentration exceeding 30.0% by weight, the surface quality deteriorates at the same time, and industrially stable operation cannot be performed. Further, from the viewpoints of workability and economy, an H 2 SO 4 concentration of 30.0% by weight or less is preferable. The mechanism by which the antimicrobial properties of stainless steel are restored by immersion in an H 2 SO 4 -containing acidic solution is not clear, but one possibility is considered as follows. When the stainless steel containing Cu is immersed in the acidic solution, the passivation film is destroyed and the extreme surface layer of the base material is eluted, and in this state, the passivation film containing a relatively large amount of Cu is reformed. As a result, it is inferred that the Cu concentration in the surface layer increases.
【0010】このとき、酸性溶液に50〜5000pp
mのCuイオンを添加しておくと、表面肌荒れのない高
品質の表面が安定して形成される。すなわち、H2 SO
4 を含む酸性溶液にステンレス鋼を浸漬すると、活性態
領域で不動態皮膜が破壊された後、母材の表層部が溶出
する。この活性態領域に長時間曝されたり、高濃度の酸
性溶液中に浸漬されると、ステンレス鋼の溶出量が多く
なり、表面肌が荒れ、表面品質が低下する。一方,Cu
イオンが酸性液中に存在すると、電位が不動態域近傍ま
で上昇するため、母材の溶出が急激に生じることなく、
表面肌荒れが抑制される。H2 SO4 濃度0.1〜3
0.0重量%の範囲では、50ppm未満のCuイオン
添加量では表面品質を改善する効果が小さく、逆に50
00ppmを超えてCuイオンを添加しても表面品質を
改善する作用が飽和する。酸性液中への浸漬時間は、工
業的に安定操業する上で10秒以上が望ましく、経済的
観点から1時間以内であることが望ましい。また、酸性
溶液の温度は、作業性を考慮すると常温以上で80℃以
下が好ましい。At this time, 50 to 5000 pp is added to the acidic solution.
By adding m Cu ions, a high quality surface without surface roughness is formed stably. That is, H 2 SO
When stainless steel is immersed in an acidic solution containing 4 , the passivation film is destroyed in the active region, and then the surface layer of the base material is eluted. When exposed to the active region for a long time or immersed in a high-concentration acidic solution, the elution amount of the stainless steel increases, the surface skin becomes rough, and the surface quality deteriorates. On the other hand, Cu
When ions are present in the acidic solution, the potential rises to the vicinity of the passive region, so that elution of the base material does not occur rapidly,
Surface roughness is suppressed. H 2 SO 4 concentration 0.1-3
In the range of 0.0% by weight, the effect of improving the surface quality is small when the addition amount of Cu ions is less than 50 ppm.
Even if Cu ions are added in excess of 00 ppm, the effect of improving the surface quality is saturated. The immersion time in the acidic liquid is preferably 10 seconds or more for stable industrial operation, and is preferably 1 hour or less from an economic viewpoint. The temperature of the acidic solution is preferably from room temperature to 80 ° C. in consideration of workability.
【0011】このような酸性溶液に、Cu濃度が0.1
0原子%以上の表層部が形成される条件下でステンレス
鋼を浸漬する。表層部のCu濃度が0.10原子%以
上,好ましくは0.20原子%以上になるとき、優れた
抗菌性がステンレス鋼に付与される。これにより、通常
の環境下でも12時間程度の時間で十分な抗菌性が得ら
れる。以上のように、製品を生産・加工する際や製品使
用中の状況に応じて濃度,浸漬時間,温度等が適正に調
整された条件下で酸性溶液にステンレス鋼を浸漬するこ
とにより、Cu濃度が0.10原子%以上に高められた
表層部が形成される。そのため、抗菌性が消失した材料
であっても、ステンレス鋼本来の外観を損なうことな
く、比較的簡便に且つ安価に抗菌性を回復させることが
可能になる。In such an acidic solution, a Cu concentration of 0.1
The stainless steel is immersed under the condition that a surface portion of 0 atomic% or more is formed. When the Cu concentration in the surface layer is 0.10 atomic% or more, preferably 0.20 atomic% or more, excellent antibacterial properties are imparted to stainless steel. Thereby, sufficient antibacterial properties can be obtained in about 12 hours under a normal environment. As described above, by immersing stainless steel in an acidic solution under conditions where the concentration, immersion time, temperature, etc. are appropriately adjusted according to the situation during production and processing of the product or during use of the product, the Cu concentration is reduced. Is increased to 0.10 atomic% or more. Therefore, even if the material has lost its antibacterial properties, it is possible to relatively easily and inexpensively recover the antibacterial properties without impairing the original appearance of stainless steel.
【0012】[0012]
実施例1:成分を表1に示した各種ステンレス鋼を高周
波真空溶解炉で12kg溶製した。表1における鋼種番
号1〜4は、オーステナイト系ステンレス鋼であり、C
u含有量を0.2〜2.0重量%の範囲で変化させた鋼
である。鋼種番号5,6は、Cu含有量をそれぞれ0.
2重量%及び0.4重量%に調整したフェライト系ステ
ンレス鋼である。鋼種番号7,8は、Cu含有量をそれ
ぞれ0.2重量%及び0.5重量%に調整したマルテン
サイト系ステンレス鋼である。Example 1: 12 kg of various stainless steels whose components are shown in Table 1 were melted in a high-frequency vacuum melting furnace. Steel type numbers 1 to 4 in Table 1 are austenitic stainless steels,
It is a steel whose u content is changed in the range of 0.2 to 2.0% by weight. Steel type numbers 5 and 6 each have a Cu content of 0.1.
Ferritic stainless steel adjusted to 2% by weight and 0.4% by weight. Steel Nos. 7 and 8 are martensitic stainless steels whose Cu content was adjusted to 0.2% by weight and 0.5% by weight, respectively.
【0013】 [0013]
【0014】鋼種番号1〜4のステンレス鋼について
は、熱間圧延で板厚3.8mmの熱延板とし、熱延板に
1150℃×均熱1分の焼鈍を施した後、冷間圧延によ
って板厚1mmの冷延板を製造し、1050℃×均熱1
分の仕上げ焼鈍を施した。焼鈍板から切り出された各試
験片の表面を#400エメリー紙で約20μm研磨する
湿式研磨を施し、供試材を得た。鋼種番号4,5のステ
ンレス鋼については、熱間圧延で板厚3.6mmの熱延
板とし、860℃×均熱6時間のバッチ焼鈍を施した
後、冷間圧延により板厚1mmの冷延板を製造し、87
0℃×均熱1分の仕上げ焼鈍を施した。焼鈍板から切り
出された各試験片の表面を#400エメリー紙で約20
μm研磨する湿式研磨を施し、供試材を得た。鋼種番号
7,8のステンレス鋼については、熱間圧延で板厚3.
6mmの熱延板とし、860℃×均熱6時間のバッチ焼
鈍を施した後、冷間圧延により板厚1mmの冷延板を製
造し、780℃×均熱1分の仕上げ焼鈍を施した。焼鈍
板から切り出された各試験片の表面を#400エメリー
紙で約20μm研磨する湿式研磨を施し、供試材を得
た。As for stainless steels of steel types Nos. 1-4, a hot-rolled sheet having a thickness of 3.8 mm is formed by hot rolling, the hot-rolled sheet is annealed at 1150 ° C. × soak for 1 minute, and then cold-rolled. To produce a cold-rolled sheet having a thickness of 1 mm.
Minutes of finish annealing. The surface of each test piece cut out from the annealed plate was subjected to wet polishing using # 400 emery paper to polish it by about 20 μm to obtain a test material. For stainless steels of steel types Nos. 4 and 5, a hot-rolled sheet having a thickness of 3.6 mm was formed by hot rolling, batch-annealed at 860 ° C. × soaking for 6 hours, and then cold-rolled into a cold-rolled sheet having a thickness of 1 mm. Rolled plates are manufactured and 87
Finish annealing was performed at 0 ° C. × soaking for 1 minute. The surface of each test piece cut out from the annealed plate was made approximately # 20 with # 400 emery paper.
A wet polishing was performed to polish μm to obtain a test material. For stainless steels of steel types Nos. 7 and 8, the sheet thickness was 3.
A 6 mm hot-rolled sheet was subjected to batch annealing at 860 ° C. × soaking for 6 hours, then a cold-rolled sheet having a thickness of 1 mm was produced by cold rolling, and subjected to finish annealing at 780 ° C. × soaking for 1 minute. . The surface of each test piece cut out from the annealed plate was subjected to wet polishing using # 400 emery paper to polish it by about 20 μm to obtain a test material.
【0015】研磨されたままの各ステンレス鋼それぞれ
について、表面Cu濃度を測定すると共に抗菌性及び表
面品質を調査した。なお、表面品質は、目視観察で判定
した。表面Cu濃度は、X線電子分光分析装置を使用
し、脱脂後の試料表面にMgkαX線を照射し、各ピー
クの積分強度から相対感度指数を用いて算出した。抗菌
性試験には、Staphylococcus aure
us(黄色ブドウ球菌)及びPseudomonas
aeruginosa(緑膿菌)それぞれについて普通
ブイヨン培地で35℃,16〜20時間振盪培養し、培
養液を用意した。培養液を滅菌リン酸緩衝溶液で20,
000倍に希釈することにより、菌液を調整した。各ス
テンレス鋼の研磨材表面に菌液1mlを滴下し、25℃
で24時間保存した。保存後、SCDLP(Soybe
an Casein Digest Broth wi
th Lecithin and Polysorba
te 80,日本製薬株式会社製)培地で洗い出し、得
られた液について標準寒天培地を用いた混釈培養法(3
5℃,2日間培養)により生菌数をカウントした。ま
た、試験に異常のないことを確認するため、対照として
滅菌したガラス製シャーレに菌液を直接滴下し、同様に
生菌数をカウントした。With respect to each of the polished stainless steels, the surface Cu concentration was measured, and the antibacterial property and the surface quality were investigated. The surface quality was determined by visual observation. The surface Cu concentration was calculated using a relative sensitivity index from the integrated intensity of each peak by irradiating the sample surface after degreasing with Mgkα X-ray using an X-ray electron spectrometer. For antibacterial tests, Staphylococcus aure
us (Staphylococcus aureus) and Pseudomonas
aeruginosa (Pseudomonas aeruginosa) was cultured with shaking in a normal broth medium at 35 ° C for 16 to 20 hours to prepare a culture solution. The culture was sterilized with phosphate buffer solution for 20 years.
The bacterial solution was prepared by diluting 000-fold. 1 ml of the bacterial solution is dropped on the surface of the abrasive of each stainless steel, and the temperature is 25 ° C.
For 24 hours. After saving, SCDLP (Soybe
an Casein Digest Broth wi
the Lecithin and Polysorba
te 80, manufactured by Nippon Pharmaceutical Co., Ltd.), and the resulting solution was subjected to a pour culture method (3) using a standard agar medium.
(Cultivation at 5 ° C for 2 days). Further, in order to confirm that there was no abnormality in the test, a bacterial solution was directly dropped on a sterilized glass petri dish as a control, and the number of viable bacteria was similarly counted.
【0016】この試験法では、対照となる生菌数に大き
な増減がないとき、試験結果が信頼性の高いものと評価
できる。そして、試験開始前の生菌数より24時間後の
生菌数が減少しているほど、抗菌性に優れた材料である
といえる。抗菌性の指標としては、次式で算出される滅
菌率95%以上を抗菌性ありとして評価した。 滅菌率(%)=[試験開始時の生菌数×(1−対照の変
化率/100)−24時間後の生菌数]/試験開始時の
生菌数×(1−対照の変化率/100)×100 対照の変化率(%)=(試験開始時の生菌数−24時間
後の生菌数)/試験開始時の生菌数×100In this test method, when there is no significant change in the number of viable bacteria serving as a control, the test result can be evaluated as having high reliability. And, it can be said that the more the viable count after 24 hours is smaller than the viable count before the start of the test, the more excellent the antibacterial property. As an antibacterial index, a sterilization rate of 95% or more calculated by the following equation was evaluated as antibacterial. Sterilization rate (%) = [viable cell count at start of test × (1−change rate of control / 100) −viable count at 24 hours] / viable count at start of test × (1−change rate of control) / 100) × 100 Rate of change (%) of control = (viable cell count at start of test−viable cell count after 24 hours) / viable cell count at start of test × 100
【0017】 [0017]
【0018】調査結果を示す表2にみられるように、研
磨ままの材料では、Cu含有量の如何によらず、滅菌率
が95%を下回っており、抗菌性がないものと判定され
た。なお、研磨したままの材料では、何れの試験片にお
いても表面Cu濃度は0.10原子%以下であった。そ
こで、同じステンレス鋼の研磨材を、温度50℃に保持
したH2 SO4 濃度30%,Cuイオン濃度5000p
pmの酸性溶液に1時間浸漬した。浸漬処理後の各試験
片について、同様に表面Cu濃度,抗菌性及び表面品質
を調査した。As shown in Table 2 showing the results of the investigation, the as-polished material had a sterilization rate of less than 95%, regardless of the Cu content, and was determined to have no antibacterial properties. In addition, in the as-polished material, the surface Cu concentration was 0.10 atomic% or less in any of the test pieces. Therefore, the same stainless steel abrasive was kept at a temperature of 50 ° C. with a H 2 SO 4 concentration of 30% and a Cu ion concentration of 5000 p.
immersion in an acidic solution of pm for 1 hour. The surface Cu concentration, antibacterial property and surface quality of each test piece after the immersion treatment were similarly examined.
【0019】 [0019]
【0020】調査結果を示す表3にみられるように、素
材のCu含有量が0.3重量%未満の鋼種番号1,5,
7では、酸性溶液に浸漬しても表面Cu濃度が0.10
原子%より低く、黄色ブドウ球菌及び緑膿菌による抗菌
性試験でも滅菌率が低い値を示した。他方、素材のCu
含有量が0.3重量%以上である鋼種番号2〜4,6,
8は、研磨状態で表2にみられるように表層Cu含有量
が低く抗菌性を呈していなかったが、酸性溶液中への浸
漬処理によって表層Cu含有量が0.10原子%以上と
なった。その結果、表3に示すように滅菌率が90%以
上の優れた抗菌性が示された。また、浸漬処理後のステ
ンレス鋼表面も、良好な品質に維持されていた。以上の
結果から、素材のCu含有量が0.3重量%以上である
と、H2 SO4及びCuイオンを含む酸性溶液中に浸漬
することにより、抗菌性が改善されることが確認され
た。H2 SO4 濃度及びCuイオン濃度を種々変化させ
た酸性溶液に、鋼種番号2(Cu含有量が0.3重量
%)のステンレス鋼を短時間浸漬し、表面Cu濃度,抗
菌性及び表面品質に及ぼすH2 SO4 濃度及びCuイオ
ン濃度の影響を調査した。調査結果を、研磨まま材と比
較して表4及び表5に示す。As can be seen from Table 3 showing the results of the investigation, the steel types No. 1,5 and Cu having a Cu content of less than 0.3% by weight were used.
In No. 7, the surface Cu concentration was 0.10 even when immersed in an acidic solution.
Atomic%, the antibacterial test with Staphylococcus aureus and Pseudomonas aeruginosa showed a low sterilization rate. On the other hand, the material Cu
Steel grade numbers 2 to 4,6, whose content is 0.3% by weight or more
In No. 8, the surface layer Cu content was low and did not exhibit antibacterial properties as shown in Table 2 in the polished state, but the surface layer Cu content became 0.10 atomic% or more by immersion treatment in an acidic solution. . As a result, as shown in Table 3, excellent antibacterial properties with a sterilization rate of 90% or more were exhibited. Also, the surface of the stainless steel after the immersion treatment was maintained at a good quality. From the above results, it was confirmed that when the Cu content of the material was 0.3% by weight or more, the antibacterial property was improved by immersion in an acidic solution containing H 2 SO 4 and Cu ions. . A stainless steel of steel type number 2 (Cu content: 0.3% by weight) is immersed for a short time in an acidic solution in which the H 2 SO 4 concentration and the Cu ion concentration are variously varied, and the surface Cu concentration, antibacterial property and surface quality are immersed. The effect of the concentration of H 2 SO 4 and the concentration of Cu ions on the concentration was investigated. The examination results are shown in Tables 4 and 5 in comparison with the as-polished material.
【0021】 [0021]
【0022】 [0022]
【0023】研磨まま材では、表4(試験番号1)に示
されているように表層Cu濃度が低く、抗菌性が示され
なかった。この研磨材をH2 SO4 濃度0.1重量%未
満で種々のCuイオン濃度の酸性溶液に浸漬したもの
(試験番号2,8,14,20)では、表層Cu濃度が
0.06〜0.08原子%と低いことから滅菌率も59
%以下の低い値が示され、抗菌性が改善されているもの
とはいえない。他方、H2 SO4 濃度0.1重量%以上
の酸性溶液に浸漬処理したもの(試験番号3〜7,9〜
13,15〜19,21〜25)では、Cuイオン濃度
に拘らず表層Cu濃度が0.14〜0.21原子%と高
く、滅菌率97〜100%の優れた抗菌性を呈した。し
かし、Cuイオン濃度が30ppmと低いもの(試験番
号3〜7)では、著しく荒れた表面肌になり、製品化で
きなかった。H2 SO4 濃度及びCuイオン濃度を種々
変化させた酸性溶液に、鋼種番号2(Cu含有量が0.
3重量%)のステンレス鋼を比較的長時間浸漬し、表面
Cu濃度,抗菌性及び表面品質に及ぼすH2 SO4 濃度
及びCuイオン濃度の影響を調査した。調査結果を、研
磨まま材と比較して表6及び表7に示す。As shown in Table 4 (Test No. 1), the as-polished material had a low surface Cu concentration and did not exhibit antibacterial properties. When this abrasive was immersed in acidic solutions of various Cu ion concentrations at an H 2 SO 4 concentration of less than 0.1% by weight (test numbers 2, 8, 14, 20), the surface layer had a Cu concentration of 0.06 to 0. The sterilization rate is also 59 because it is as low as 0.08 atomic%.
% Or less, indicating that the antibacterial properties have not been improved. On the other hand, those immersed in an acidic solution having a H 2 SO 4 concentration of 0.1% by weight or more (test numbers 3 to 7, 9 to
13, 15, 19, 21 to 25), the surface layer Cu concentration was as high as 0.14 to 0.21 atomic% regardless of the Cu ion concentration, and exhibited excellent antibacterial properties with a sterilization rate of 97 to 100%. However, when the Cu ion concentration was as low as 30 ppm (Test Nos. 3 to 7), the surface became extremely rough and could not be commercialized. In an acidic solution in which the H 2 SO 4 concentration and the Cu ion concentration were variously changed, steel type No. 2 (Cu content was 0.1%) was added.
(3% by weight) stainless steel was immersed for a relatively long time, and the effects of the H 2 SO 4 concentration and the Cu ion concentration on the surface Cu concentration, antibacterial property and surface quality were investigated. The examination results are shown in Tables 6 and 7 in comparison with the as-polished material.
【0024】 [0024]
【0025】 [0025]
【0026】研磨まま材では、表6(試験番号31)に
示されているように表層Cu濃度が低く、抗菌性が示さ
れなかった。この研磨材をH2 SO4 濃度0.1重量%
未満で種々のCuイオン濃度の酸性溶液に浸漬したもの
(試験番号32,38,44,50)では、表層Cu濃
度が0.05〜0.09原子%と低いことから滅菌率も
25%以下の低い値が示され、抗菌性が改善されている
ものといえない。他方、H2 SO4 濃度0.1重量%以
上の酸性溶液に浸漬処理したもの(試験番号33〜3
7,39〜43,45〜49,51〜55)では、Cu
イオン濃度に拘らず表層Cu濃度が0.13〜0.22
原子%と高く、滅菌率96〜100%の優れた抗菌性を
呈した。しかし、Cuイオン濃度が30ppmと低いも
の(試験番号33〜37)では、著しく荒れた表面肌に
なり、製品化できなかった。As shown in Table 6 (Test No. 31), the as-polished material had a low surface Cu concentration and did not show antibacterial properties. This abrasive is used at an H 2 SO 4 concentration of 0.1% by weight.
In the samples immersed in acidic solutions having various Cu ion concentrations of less than (test numbers 32, 38, 44, and 50), the sterilization rate was 25% or less because the surface Cu concentration was as low as 0.05 to 0.09 atomic%. , Indicating that the antibacterial property has not been improved. On the other hand, those immersed in an acidic solution having a H 2 SO 4 concentration of 0.1% by weight or more (Test Nos. 33 to 3)
7, 39-43, 45-49, 51-55)
The surface Cu concentration is 0.13 to 0.22 regardless of the ion concentration.
Atomic% was high and exhibited excellent antibacterial properties with a sterilization rate of 96 to 100%. However, when the Cu ion concentration was as low as 30 ppm (Test Nos. 33 to 37), the surface became extremely rough and could not be commercialized.
【0027】また、試験番号43にみられるように、H
2 SO4 濃度が40重量%で50ppmのCuイオンを
含む酸性溶液では、製品化が可能であるものの表面肌荒
れが部分的に発生した。他方、試験番号49,55にみ
られるように、H2 SO4 濃度が40重量%で高濃度の
Cuイオンを含む酸性溶液では、表面肌荒れの発生がな
く、少なくともCuイオンを50ppm含有させること
で表面品質が安定することが判った。以上の結果から、
0.3重量%以上のCuを含むステンレス鋼又はその加
工品を0.10〜30.0重量%のH2 SO4 及び50
〜5000ppmのCuイオンを含む酸性溶液に浸漬す
ると、研磨や加工によって生じた表面変質層が除去さ
れ、抗菌性に有効なCu濃度0.10原子%以上の表層
部が形成されることが確認された。その結果、表面品質
を損なうことなく、抗菌性が回復されることが判る。As can be seen from test number 43,
In the case of an acidic solution containing 2 ppm of Cu ions at a concentration of 40 wt% and containing 50 ppm of 2 SO 4 , it was possible to commercialize the product, but surface roughness was partially generated. On the other hand, as shown in Test Nos. 49 and 55, in an acidic solution containing H 2 SO 4 at a concentration of 40% by weight and containing a high concentration of Cu ions, surface roughening does not occur and at least 50 ppm of Cu ions are contained. The surface quality was found to be stable. From the above results,
A stainless steel containing 0.3% by weight or more of Cu or a processed product thereof is mixed with 0.10 to 30.0% by weight of H 2 SO 4 and 50%.
When immersed in an acidic solution containing up to 5000 ppm of Cu ions, it is confirmed that the surface altered layer generated by polishing and processing is removed, and a surface layer having a Cu concentration of 0.10 atomic% or more effective for antibacterial properties is formed. Was. As a result, it is found that the antibacterial property is restored without impairing the surface quality.
【0028】実施例2:表8に示す成分をもつ各種ステ
ンレス鋼を高周波真空溶解炉で12kg溶製した。鋼種
記号A〜Gは、Cu含有量を0.3〜3.4重量%の範
囲で変化させたオーステナイトステンレス鋼である。各
鋼塊を熱間圧延により板厚3.8mmの熱延板とした
後、1150℃×均熱1分の熱延板焼鈍を施した。次い
で、冷間圧延により板厚1mmの冷延板を製造し、10
50℃×均熱1分の仕上げ焼鈍を行った。焼鈍後の各ス
テンレス鋼板から試験片を切り出し、#400エメリー
紙で約20μm研磨する湿式研磨を施して供試材とし
た。鋼種記号H,Iは、Cu含有量がそれぞれ0.4重
量%及び0.5重量%のフェライトステンレス鋼であ
る。各鋼塊を熱間圧延により板厚3.6mmの熱延板と
し、860℃×均熱6時間のバッチ式焼鈍を施した後、
冷間圧延により板厚1mmの冷延板を製造し、870℃
×均熱1分の仕上げ焼鈍を行った。焼鈍後の各ステンレ
ス鋼板から試験片を切り出し、#400エメリー紙で約
20μm研磨する湿式研磨を施して供試材とした。Example 2: 12 kg of various stainless steels having the components shown in Table 8 were melted in a high-frequency vacuum melting furnace. Steel type symbols A to G are austenitic stainless steels in which the Cu content is changed in the range of 0.3 to 3.4% by weight. Each ingot was hot-rolled into a hot-rolled sheet having a thickness of 3.8 mm, and then subjected to hot-rolled sheet annealing at 1150 ° C and soaking for 1 minute. Next, a cold-rolled sheet having a thickness of 1 mm was manufactured by cold rolling,
Finish annealing was performed at 50 ° C. × soaking for 1 minute. A test piece was cut out from each of the annealed stainless steel plates, and wet-polished using # 400 emery paper to polish it by about 20 μm to obtain a test material. The steel symbols H and I are ferritic stainless steels having Cu contents of 0.4% by weight and 0.5% by weight, respectively. Each ingot was hot rolled into a hot-rolled sheet having a thickness of 3.6 mm by hot rolling, and subjected to batch annealing at 860 ° C. × soaking for 6 hours.
A cold-rolled sheet having a thickness of 1 mm is manufactured by cold rolling, and 870 ° C.
× Finish annealing with soaking for 1 minute. A test piece was cut out from each of the annealed stainless steel plates, and wet-polished using # 400 emery paper to polish it by about 20 μm to obtain a test material.
【0029】鋼種記号J〜Lは、Cu含有量がそれぞれ
0.6重量%,2.1重量%及び0.7重量%のマルテ
ンサイトステンレス鋼である。各鋼塊を熱間圧延により
板厚3.6mmの熱延板とし、860℃×均熱6時間の
バッチ式焼鈍を施した後、冷間圧延により板厚1mmの
冷延板を製造し、780℃×均熱1分の仕上げ焼鈍を行
った。焼鈍後の各ステンレス鋼板から試験片を切り出
し、#400エメリー紙で約20μm研磨する湿式研磨
を施して供試材とした。比較例の鋼種記号M,Nはオー
ステナイトステンレス鋼、鋼種記号Oはフェライトステ
ンレス鋼、鋼種記号P,Qはマルテンサイトステンレス
鋼であり、何れもCu含有量が0.3重量%未満であ
る。The steel symbols J to L are martensitic stainless steels having a Cu content of 0.6% by weight, 2.1% by weight and 0.7% by weight, respectively. Each ingot was hot-rolled into a hot-rolled sheet having a thickness of 3.6 mm by hot rolling, and subjected to batch annealing at 860 ° C. × soaking for 6 hours, and then cold-rolled to produce a cold-rolled sheet having a thickness of 1 mm. Finish annealing was performed at 780 ° C. × 1 minute soaking. A test piece was cut out from each of the annealed stainless steel plates, and wet-polished using # 400 emery paper to polish it by about 20 μm to obtain a test material. In the comparative examples, the steel symbols M and N are austenitic stainless steel, the steel symbol O is a ferritic stainless steel, and the steel symbols P and Q are martensitic stainless steels, each having a Cu content of less than 0.3% by weight.
【0030】 [0030]
【0031】研磨されたままの各ステンレス鋼及び酸性
溶液で処理した各ステンレス鋼について、実施例1と同
様に表層Cu濃度を測定すると共に、抗菌性及び表面品
質を調査した。本発明に従ったH2 SO4 濃度及びCu
イオン濃度の酸性溶液にステンレス鋼を浸漬した場合、
表9,10に示すような表層Cu濃度,抗菌性及び表面
品質が得られた。試験番号1〜6は、オーステナイトス
テンレス鋼の研磨材を使用し、H2 SO4 を0.15〜
25.0重量%,Cuイオン濃度を60〜5000pp
mの範囲で変化させた酸性溶液に短時間浸漬した例であ
る。浸漬によって表層Cu濃度が0.26〜1.57原
子%となっており、滅菌率97〜100%の非常に優れ
た抗菌性が得られた。また、浸漬処理後の表面も、肌荒
れのない良好な品質であった。試験番号7〜14は、オ
ーステナイトステンレス鋼の研磨材を使用し、H2 SO
4 を0.2〜20.0重量%,Cuイオン濃度を50〜
3000ppmの範囲で変化させた酸性溶液に長時間浸
漬した例である。浸漬によって表層Cu濃度が0.13
〜1.58原子%となっており、滅菌率98〜100%
の非常に優れた抗菌性が得られた。また、浸漬処理後の
表面も、肌荒れのない良好な品質であった。For each of the polished stainless steel and each of the stainless steels treated with the acidic solution, the Cu concentration of the surface layer was measured in the same manner as in Example 1, and the antibacterial properties and the surface quality were investigated. H 2 SO 4 concentration and Cu according to the invention
When stainless steel is immersed in an acidic solution of ion concentration,
The surface layer Cu concentration, antibacterial property and surface quality as shown in Tables 9 and 10 were obtained. Test Nos. 1 to 6 used an austenitic stainless steel abrasive, and H 2 SO 4 was 0.15 to 0.15.
25.0% by weight, Cu ion concentration 60-5000pp
This is an example of immersion for a short time in an acidic solution changed in the range of m. The immersion resulted in a surface layer Cu concentration of 0.26 to 1.57 atomic%, and a very excellent antibacterial property with a sterilization rate of 97 to 100% was obtained. Also, the surface after the immersion treatment was of good quality without rough skin. Test numbers 7-14 use austenitic stainless steel abrasives and H 2 SO
4 0.2 to 20.0% by weight, Cu ion concentration 50 to
This is an example of immersion in an acidic solution changed in a range of 3000 ppm for a long time. By immersion, the surface Cu concentration is 0.13
1.58 atomic%, sterilization rate 98-100%
Very good antibacterial properties were obtained. Also, the surface after the immersion treatment was of good quality without rough skin.
【0032】試験番号15〜18は、フェライトステン
レス鋼の研磨材を使用し、H2 SO4 を0.1〜25.
0重量%,Cuイオン濃度を50〜5000ppmの範
囲で変化させた酸性溶液に長時間浸漬した例である。浸
漬によって表層Cu濃度が0.21〜0.38原子%と
なっており、滅菌率98〜100%の非常に優れた抗菌
性が得られた。また、浸漬処理後の表面も、肌荒れのな
い良好な品質であった。試験番号19〜24は、マルテ
ンサイトステンレス鋼の研磨材を使用し、H2SO4 を
0.1〜25.0重量%,Cuイオン濃度を50〜45
00ppmの範囲で変化させた酸性溶液に長時間浸漬し
た例である。浸漬によって表層Cu濃度が0.19〜
1.45原子%となっており、滅菌率97〜100%の
非常に優れた抗菌性が得られた。また、浸漬処理後の表
面も、肌荒れのない良好な品質であった。Test Nos. 15 to 18 use a ferrite stainless steel abrasive and adjust H 2 SO 4 to 0.1 to 25.
This is an example of immersion for a long time in an acidic solution in which the concentration of Cu ion is changed in the range of 50 to 5000 ppm at 0% by weight. By immersion, the surface layer Cu concentration became 0.21 to 0.38 atomic%, and a very excellent antibacterial property with a sterilization rate of 98 to 100% was obtained. Also, the surface after the immersion treatment was of good quality without rough skin. Test Nos. 19 to 24 used martensitic stainless steel abrasives, H 2 SO 4 of 0.1 to 25.0% by weight, and Cu ion concentration of 50 to 45.
This is an example of immersing in an acidic solution changed in the range of 00 ppm for a long time. Surface Cu concentration by immersion is 0.19 ~
It was 1.45 atomic%, and a very excellent antibacterial property with a sterilization rate of 97 to 100% was obtained. Also, the surface after the immersion treatment was of good quality without rough skin.
【0033】 [0033]
【0034】 [0034]
【0035】比較試験として、Cu含有量が0.3重量
%未満の鋼M〜Qを本発明に従ったH2 SO4 濃度及び
Cuイオン濃度の酸性溶液に浸漬処理した場合、Cu含
有量が0.3重量%以上で酸性溶液のH2 SO4 濃度又
はCuイオン濃度の何れかが本発明で規定した範囲を外
れる場合について、酸洗処理後の表層Cu濃度,抗菌性
及び表面品質を表11,表12に示す。試験番号31〜
40は、Cu含有量が0.3重量%未満のステンレス鋼
M〜Qの研磨材を使用し、H2 SO4 濃度を2.5〜3
0.0重量%,Cuイオン濃度300〜4500ppm
の範囲で変化させた酸性溶液に100〜3600秒浸漬
処理した例である。この場合、比較的長時間浸漬しても
表層Cu濃度は0.01〜0.09原子%に止まり、0
〜91%の滅菌率を示した。このことから、抗菌性の改
善には、0.3重量%以上のCu含有量が必要であるこ
とが判る。試験番号41,44〜46,49〜51は、
0.10重量%未満の低いH2 SO4 濃度の酸性溶液を
使用したことから、浸漬処理後の表層Cu濃度が0.0
3〜0.09原子%と低く、十分な抗菌性が得られなか
った。試験番号42,43,47及び48は、H2 SO
4 濃度を5.0重量%又は40.0重量%とし、Cuイ
オン濃度を10ppmに調整した酸性溶液にCu含有量
0.3重量%以上のステンレス鋼を浸漬した例である。
この場合、抗菌性の改善は十分であるが、表面の肌荒れ
が著しく、ステンレス鋼特有の表面を活かした製品とし
て使用できなかった。As a comparative test, when steels M to Q having a Cu content of less than 0.3% by weight were immersed in an acidic solution having an H 2 SO 4 concentration and a Cu ion concentration according to the present invention, the Cu content was reduced. When the concentration of H 2 SO 4 or the concentration of Cu ions in the acidic solution is out of the range specified in the present invention at 0.3% by weight or more, the surface Cu concentration, antibacterial property and surface quality after the pickling treatment are shown. 11 and Table 12. Test numbers 31 to
No. 40 uses an abrasive of stainless steel M to Q having a Cu content of less than 0.3% by weight, and has an H 2 SO 4 concentration of 2.5 to 3%.
0.0% by weight, Cu ion concentration 300 ~ 4500ppm
This is an example of immersion treatment for 100 to 3600 seconds in an acidic solution changed in the range of (1) to (3). In this case, even if immersed for a relatively long time, the Cu concentration in the surface layer is limited to 0.01 to 0.09 atomic%,
It showed a sterilization rate of 9191%. This indicates that a Cu content of 0.3% by weight or more is necessary for improving the antibacterial property. Test numbers 41, 44-46, 49-51
Since an acidic solution having a low H 2 SO 4 concentration of less than 0.10% by weight was used, the surface Cu concentration after the immersion treatment was 0.0%.
As low as 3 to 0.09 atomic%, sufficient antibacterial properties could not be obtained. Test numbers 42, 43, 47 and 48 are H 2 SO
4 This is an example in which stainless steel having a Cu content of 0.3% by weight or more was immersed in an acidic solution having a concentration of 5.0% by weight or 40.0% by weight and a Cu ion concentration adjusted to 10 ppm.
In this case, the antibacterial property was sufficiently improved, but the surface roughness was remarkable, and the product could not be used as a product utilizing the surface unique to stainless steel.
【0036】 [0036]
【0037】 [0037]
【0038】[0038]
【発明の効果】以上に説明したように、本発明において
は、使用するステンレス鋼のCu含有量と酸性溶液のH
2 SO4 濃度及びCuイオン濃度との特定された組み合
わせによって、酸性溶液で処理した後のステンレス鋼を
肌荒れを起こすことなく、抗菌性に有効な表層Cu濃度
0.10原子%以上に高めている。そのため、研磨,加
工,製品としての使用等によって本来の抗菌性が消失し
た後でも、材料特性,外観等を損なうことなく優れた抗
菌性を付与することが可能となる。このようにして得ら
れたステンレス鋼は、長期にわたり優れた抗菌性を示す
人体,環境等に安全な材料として、刃物,洋食器,厨房
器具,各種調度品,医療用機器,サニタリー用品,各種
食品の製造・運搬容器,浴槽,洗濯機,貯湯槽,ドアノ
ブ,パイプ等として広範な分野に使用される。As described above, in the present invention, the Cu content of the stainless steel used and the H content of the acidic solution are used.
The specified combination of the 2 SO 4 concentration and the Cu ion concentration raises the surface Cu concentration of the effective antibacterial property to 0.10 atomic% or more without causing roughening of the stainless steel after the treatment with the acidic solution. . Therefore, even after the original antibacterial property is lost by polishing, processing, use as a product, or the like, it is possible to impart excellent antibacterial property without impairing the material properties and appearance. The stainless steel obtained in this way can be used as a material that exhibits excellent antibacterial properties over a long period of time and is safe for the human body and the environment, such as cutlery, western tableware, kitchen appliances, various furnishings, medical equipment, sanitary goods, and various foods. Used in a wide range of fields such as manufacturing and transport containers, bathtubs, washing machines, hot water tanks, doorknobs, pipes, etc.
フロントページの続き (72)発明者 菊地 理志 山口県新南陽市野村南町4976番地 日新 製鋼株式会社 技術研究所内 (72)発明者 豊暉原 智瑞 山口県新南陽市野村南町4976番地 日新 製鋼株式会社 技術研究所内 (56)参考文献 特開 昭63−143267(JP,A) 特開 昭63−235482(JP,A) 特開 平3−79773(JP,A) 特公 昭51−2054(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C23C 22/00 A61L 2/16 C22C 38/00 302 C22C 38/16 Continued on the front page (72) Inventor Rishi Kikuchi 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Nisshin Steel Engineering Co., Ltd. (72) Inventor Tomoaki Toyohara 4976 Nomuraminamicho, Shinnanyo-shi, Yamaguchi Nisshin (56) References JP-A-63-143267 (JP, A) JP-A-63-235482 (JP, A) JP-A-3-79773 (JP, A) JP-B-51-2054 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 22/00 A61L 2/16 C22C 38/00 302 C22C 38/16
Claims (1)
鋼又はその加工品を0.1〜30.0重量%のH2 SO
4 及び50〜5000ppmのCuイオンを含む酸性溶
液に浸漬し、表層部のCu濃度を0.10原子%以上に
上昇させることを特徴とするCu含有ステンレス鋼の抗
菌性改善方法。1. A stainless steel containing 0.3% by weight or more of Cu or a processed product thereof containing 0.1 to 30.0% by weight of H 2 SO.
A method for improving the antibacterial property of a Cu-containing stainless steel, comprising immersing in an acidic solution containing 4 and 50 to 5000 ppm of Cu ions to increase the Cu concentration in the surface layer to 0.10 atomic% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30072795A JP2954868B2 (en) | 1995-10-25 | 1995-10-25 | Method for improving antibacterial properties of Cu-containing stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30072795A JP2954868B2 (en) | 1995-10-25 | 1995-10-25 | Method for improving antibacterial properties of Cu-containing stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09118987A JPH09118987A (en) | 1997-05-06 |
JP2954868B2 true JP2954868B2 (en) | 1999-09-27 |
Family
ID=17888381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30072795A Expired - Fee Related JP2954868B2 (en) | 1995-10-25 | 1995-10-25 | Method for improving antibacterial properties of Cu-containing stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2954868B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101648271B1 (en) * | 2014-11-26 | 2016-08-12 | 주식회사 포스코 | High-hardness martensitic stainless steel with excellent antibiosis and manufacturing the same |
CN105316669B (en) * | 2015-11-24 | 2017-11-03 | 东莞市佳乾新材料科技有限公司 | A kind of stainless steel antibacterial passivating solution and preparation method thereof |
-
1995
- 1995-10-25 JP JP30072795A patent/JP2954868B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09118987A (en) | 1997-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1018564B1 (en) | Stainless steel product having excellent antimicrobial activity and method for production thereof | |
US6391253B1 (en) | Stainless steel having excellent antibacterial property and method for producing the same | |
JP2017206725A (en) | Ferritic stainless steel and manufacturing method therefor | |
JP2954868B2 (en) | Method for improving antibacterial properties of Cu-containing stainless steel | |
JP3309769B2 (en) | Cu-containing stainless steel sheet and method for producing the same | |
JP3471470B2 (en) | Method for improving antibacterial properties of Cu-containing stainless steel | |
JP3819064B2 (en) | Method for producing Cu-containing stainless steel with improved antibacterial properties | |
JP3894678B2 (en) | Stainless steel material with excellent antibacterial properties and method for producing the same | |
JPH11343540A (en) | Martensitic stainless steel excellent in antibacterial property | |
KR100516260B1 (en) | Stainless steel material with excellent antibacterial property and process for producing the same | |
JPH09256116A (en) | High strength martensitic stainless steel excellent in antibacterial characteristic | |
JPH08225895A (en) | Martensitic stainless steel excellent in antifungal property | |
JP3227418B2 (en) | Ferritic stainless steel with excellent antibacterial and ridging resistance | |
JPH09310188A (en) | Improvement of antibacterial property of cu-containing stainless steel or worked article thereof | |
JP3229577B2 (en) | Austenitic stainless steel with excellent antibacterial properties | |
JPH09195016A (en) | Martensitic stainless steel excellent in antibacterial property and its production | |
JP3934244B2 (en) | Stainless steel product with excellent antibacterial properties and method for producing the same | |
JPH09310182A (en) | Production of stainless steel or worked article thereof excellent in antibacterial property | |
JPH08104952A (en) | Martensitic stainless steel having antibacterial property | |
JP3165422B2 (en) | Stainless steel material excellent in antibacterial property and method for producing the same | |
JPH11256239A (en) | Stainless steel sheet excellent in antibacterial property and its production | |
JPH11269615A (en) | Ni-containing stainless steel excellent in antibacterial property and its production | |
JP2000054082A (en) | Stainless steel material excellent in antibacterial characteristic, and its production | |
JPH11172459A (en) | Production of antimicrobial stainless steel or titanium material | |
JPH0860302A (en) | Austenitic stainless steel having antibacterial characteristic and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990706 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |