JP2005082838A - Method for manufacturing high-carbon hot-rolled stainless steel plate - Google Patents

Method for manufacturing high-carbon hot-rolled stainless steel plate Download PDF

Info

Publication number
JP2005082838A
JP2005082838A JP2003314474A JP2003314474A JP2005082838A JP 2005082838 A JP2005082838 A JP 2005082838A JP 2003314474 A JP2003314474 A JP 2003314474A JP 2003314474 A JP2003314474 A JP 2003314474A JP 2005082838 A JP2005082838 A JP 2005082838A
Authority
JP
Japan
Prior art keywords
stainless steel
slab
carbon stainless
soaking
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003314474A
Other languages
Japanese (ja)
Inventor
Seiji Itoyama
誓司 糸山
Akira Kawarada
昭 川原田
Yuichi Mikawa
雄一 三河
Shoichi Watanabe
正一 渡邉
Junichiro Hirasawa
淳一郎 平澤
Setsuo Kakihara
節雄 柿原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003314474A priority Critical patent/JP2005082838A/en
Publication of JP2005082838A publication Critical patent/JP2005082838A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-carbon hot-rolled stainless steel plate in which large-sized carbides are made finer or vanished. <P>SOLUTION: A method for treating a high-carbon stainless steel slab includes soaking the slab preferably having a composition containing 0.3-1.2% C and 10-20% Cr, at a soaking temperature of T (°C), for such a period of time t(s) as to satisfy t>δ<SP>2</SP>/(4D<SB>Cr</SB>), (wherein t is a soaking period of time (s); δ is the maximum particle size (cm) of segregated particles which contain Cr not less than 1/ke of the representative Cr content, in a segregation part in the central part of the slab in the thickness direction; ke is equilibrium distribution coefficient (=0.85) between the liquid phase and γ-phase of Cr; and D<SB>Cr</SB>is a diffusion coefficient (cm<SP>2</SP>/s) of Cr in the γ-phase at T (°C)), to make the carbides finer. The method for manufacturing the hot-rolled stainless steel plate includes hot-rolling this high-carbon stainless steel slab. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、剃刀などの刃物用、あるいは軸受などの耐摩耗部材用の素材として好適な、高炭素ステンレス熱延鋼板の製造方法に係り、鋳造時の合金元素、とくにCrの偏析に起因する大型炭化物の低減に関する。   The present invention relates to a method for producing a high-carbon stainless steel hot-rolled steel sheet suitable as a material for a blade such as a razor or a wear-resistant member such as a bearing, and a large-size due to segregation of alloy elements during casting, particularly Cr. It relates to the reduction of carbides.

高炭素ステンレス鋼は、一般に、焼入れ硬さが高く耐摩耗性に優れることから、剃刀、高級刃物、ナイフ、カッターなどの各種刃物および軸受、カム、ローラ等の各種耐摩耗部材の素材として使用されている。これら高炭素ステンレス鋼を、造塊法、連続鋳造法といった冷却速度の遅い、一般的な鋳造方法で鋳片に鋳造すると、凝固過程で数μm〜数十μmの巨大な一次炭化物(CrmCn)が生成しやすい。この巨大な一次炭化物は、熱間圧延や焼入れ処理時の加熱によって固溶させることは困難であり、一部未固溶のまま粗大炭化物として残存し、炭化物の微細分布や、炭化物の均一分布を阻害している。このような粗大炭化物が焼入れ処理後の素材中に残存すると、製品への加工段階で表面模様が現出したり、あるいは、刃物類では使用中に刃こぼれが生じたり、あるいは耐摩耗部材では使用中に接触面で剥離が生じるなどの一因となる。 High carbon stainless steel is generally used as a material for various wear-resistant members such as razors, high-grade knives, knives, cutters, and bearings, cams, rollers, etc. because of its high quenching hardness and excellent wear resistance. ing. When these high carbon stainless steels are cast into slabs by a general casting method with a slow cooling rate such as ingot casting or continuous casting, huge primary carbides (Cr m C) of several μm to several tens of μm in the solidification process. n ) is easy to generate. This huge primary carbide is difficult to be dissolved by heating during hot rolling or quenching, and remains partially undissolved as coarse carbide, resulting in a fine distribution of carbide and a uniform distribution of carbide. It is inhibiting. If such coarse carbides remain in the material after quenching treatment, a surface pattern will appear in the processing stage of the product, or blade spillage may occur during use for blades, or it may be used for wear-resistant parts. This causes one cause such as peeling at the contact surface.

このような問題に対し、例えば、特許文献1には、C:0.15〜1.2%、Cr:15〜20%を含有する溶鋼を、液相線から固相線の温度範囲を50℃/s以上の冷却速度で鋳造し、しかるのちに球状化焼鈍する均一微細な炭化物組織を有する高炭素含有ステンレス鋼の製造方法が提案されている。   For such a problem, for example, in Patent Document 1, molten steel containing C: 0.15 to 1.2% and Cr: 15 to 20% is used, and the temperature range from the liquidus to the solidus is 50 ° C./s or more. There has been proposed a method for producing a high carbon content stainless steel having a uniform and fine carbide structure which is cast at a cooling rate of 1 and then spheroidized and annealed.

また、特許文献2には、C:0.15〜1.2%、Cr:15〜20%、N:0.01〜0.30%を含有する溶鋼を、液相線から固相線の温度範囲を50℃/s以上の冷却速度で鋳造し、その後固相線〜500℃の温度範囲を2℃/s以上で冷却したのち、酸洗し、冷間圧延を行い、さらに700〜850℃の温度範囲で10min以上保定する均一微細な炭化物組織を有し衝撃靭性に優れた高炭素含有マルテンサイト系ステンレス鋼帯の製造方法が提案されている。   Patent Document 2 discloses a molten steel containing C: 0.15 to 1.2%, Cr: 15 to 20%, N: 0.01 to 0.30%, and the temperature range from the liquidus to the solidus is 50 ° C./s or more. After cooling at a cooling rate of 2 ° C / s, the temperature range from solidus to 500 ° C is cooled at 2 ° C / s or higher, pickling, cold rolling, and holding for 10 min at 700 ° C to 850 ° C. A method for producing a high carbon-containing martensitic stainless steel strip having a uniform fine carbide structure and excellent impact toughness has been proposed.

また、特許文献3には、造塊法を用いて、断面寸法の最小辺幅が200mm以下となるように鋳込んでインゴットを作製するC:0.6〜1.0%、Cr:10〜14%を含有するステンレス鋼の製造方法が提案されている。   Patent Document 3 contains C: 0.6 to 1.0%, Cr: 10 to 14%, in which an ingot is manufactured by using an ingot casting method so that the minimum side width of a cross-sectional dimension is 200 mm or less. A method for producing stainless steel has been proposed.

また、特許文献4には、特定条件を満足する温度、時間のもとで加熱処理する共晶炭化物の少ないマルテンサイト系ステンレス鋼の鋼片を得る方法が提案されている。
特開平5−209252号公報 特開平6−65639号公報 特開平10−30107号公報 特公平1−14967号公報
Further, Patent Document 4 proposes a method of obtaining a billet of martensitic stainless steel with a small amount of eutectic carbide that is heat-treated under a temperature and time that satisfy specific conditions.
JP-A-5-209252 JP-A-6-65639 Japanese Patent Laid-Open No. 10-30107 Japanese Patent Publication No.1-14967

特許文献1、特許文献2に記載された技術では、凝固過程で、液相線から固相線の温度範囲を50℃/s以上の冷却速度で急冷する必要がある。しかし、ストリップキャスター等の特殊な装置を用いたとしても、溶鋼の液相線から固相線の温度範囲の冷却速度を上記したような速度に調整すること自体が多大の困難を伴ううえ、凝固過程におけるこのような急冷は鋳片の表面割れを助長する危険性があり、鋳片の品質安定性の観点からも問題がある。   In the techniques described in Patent Document 1 and Patent Document 2, it is necessary to rapidly cool the temperature range from the liquidus to the solidus at a cooling rate of 50 ° C./s or more during the solidification process. However, even if a special device such as a strip caster is used, adjusting the cooling rate in the temperature range from the liquidus to the solidus of the molten steel to the above-mentioned speed itself is accompanied by great difficulty and solidification. Such rapid cooling in the process has a risk of promoting surface cracking of the slab, and is problematic from the viewpoint of the quality stability of the slab.

また、特許文献3に記載された技術では、薄型のインゴットを用いることになるが、いわゆる造塊法による鋳造であるため冷却速度が遅く、生産性が低くなるという問題があった。   In the technique described in Patent Document 3, a thin ingot is used. However, since casting is performed by a so-called ingot-making method, there is a problem that a cooling rate is slow and productivity is lowered.

また、高炭素ステンレス鋼は液相線と固相線の間の温度範囲、いわゆる固液共存温度域が広いため、造塊法に比べて冷却速度を大きくできる連続鋳造法を用いて鋳片としたとしても、溶鋼組成や鋳造法によっては、さらにスラブ厚が180 mm以上の場合には鋳片に中心偏析やV偏析が発生しやすく、大型炭化物を晶出しやすくなる。このような大型炭化物は、特許文献4に記載された技術におけるように、1200〜1300℃の高温で10〜22hの均熱処理を行った程度では微細化せず、逆にさらに粗大化する傾向があり、また、熱間圧延や焼入れ処理等の加熱時においても微細化せず、逆に凝集粗大化する。したがって、連続鋳造法で製造された鋳片(スラブ)を用いて製造される高炭素ステンレス熱延鋼板では、炭化物を微細化することができず品質上大きな問題となっていた。   In addition, high carbon stainless steel has a wide temperature range between the liquidus and solidus, the so-called solid-liquid coexistence temperature range. However, depending on the molten steel composition and casting method, when the slab thickness is 180 mm or more, center segregation and V segregation are likely to occur in the slab, and large carbides are easily crystallized. Such a large carbide, as in the technique described in Patent Document 4, is not refined to the extent that the soaking process is performed at a high temperature of 1200 to 1300 ° C. for 10 to 22 hours. In addition, it does not become fine at the time of heating such as hot rolling or quenching, but conversely becomes coarse and coarse. Therefore, in the high carbon stainless hot-rolled steel sheet manufactured using a slab manufactured by a continuous casting method, the carbide cannot be refined, which is a serious problem in quality.

本発明は、このような従来技術の問題を有利に解決し、鋳造段階で生成した大型炭化物が微細化または消失した熱延鋼板を、簡便でかつ確実、しかも安価に製造することが可能な、高炭素ステンレス熱延鋼板の製造方法を提供することを目的とする。なお、本発明で言う「鋼板」には鋼帯をも含むものとする。   The present invention advantageously solves such problems of the prior art, and can produce a hot rolled steel sheet in which large carbides produced in the casting stage have been refined or lost, simply, reliably, and inexpensively. It aims at providing the manufacturing method of a high carbon stainless steel hot-rolled steel plate. In the present invention, the “steel plate” includes a steel strip.

本発明者らは、上記した課題を達成するために、鋳造時に生成した大型炭化物の熱処理中の形状変化について鋭意検討した。その結果、鋳造時に生成した大型炭化物は、当初は熱処理時間の経過とともに成長し続けるが、ある時間経過したのちには成長が停止し、ついには製品において問題とならない程度の大きさにまで減少し、さらに熱処理を続けるとついには消失することを見出した。さらに、本発明者らは、この減少が、偏析が著しく、スラブ厚が大きい場合には、特許文献4に記載されたように、炭素の拡散律速によるものではなくCrの拡散により支配されていることも見い出した。   In order to achieve the above-described problems, the present inventors diligently studied the shape change during the heat treatment of the large carbide generated during casting. As a result, the large carbides produced during casting continue to grow as the heat treatment time elapses, but after a certain period of time the growth stops and finally decreases to a size that does not cause a problem in the product. It was found that it disappeared when heat treatment was continued. Further, the present inventors, when the segregation is significant and the slab thickness is large, are not controlled by the diffusion rate of carbon but controlled by the diffusion of Cr, as described in Patent Document 4. I also found out.

本発明者らが行った基礎的な実験結果を図1に示す。図1は、鋼A(mass%で0.45%C−0.39%Si−0.50%Mn−0.017%P−0.0030%S−14.35%Cr−0.53%Mo−0.117%V−0.49%Ni−0.0359%N、残部鉄よりなる組成のステンレス鋼)、および鋼B(mass%で0.66%C−0.29%Si−0.66%Mn−0.015%P−0.0014%S−13.06%Cr−0.028%V−0.13%Ni−0.0286%N、残部鉄よりなる組成のステンレス鋼)の2種の連続鋳造製高炭素ステンレス鋼スラブ(厚み:200mm)を用いて、1220℃で300hまでの均熱処理を施し、各均熱処理時間を経たスラブについて、厚み中央部に観察される偏析部内の炭化物粒径を測定し、炭化物最大粒径と均熱処理時間の関係で図示したものである。   FIG. 1 shows the results of basic experiments conducted by the present inventors. FIG. 1 shows steel A (mass% 0.45% C-0.39% Si-0.50% Mn-0. 17% P-0.0030% S-14.35% Cr-0.53% Mo-0. 1717% V-0.49% Ni-0.359% N Stainless steel with composition of balance iron) and steel B (mass% 0.66% C-0.29% Si-0.66% Mn-0.015% P-0.0014% S-13.06% Cr-0. 28% V-0. 13% Ni-0.0286 % N, stainless steel with a balance iron composition) was subjected to soaking treatment up to 300h at 1220 ° C using high-carbon stainless steel slabs (thickness: 200mm) made of continuous casting. About the slab, the carbide particle size in the segregation part observed in the thickness center part is measured, and is illustrated in the relationship between the maximum particle diameter of carbide and the soaking time.

図1から、偏析部内の大型炭化物は、70h程度までは均熱処理時間の経過とともに成長し粒径が増大し続けるが、それ以降は、製品において問題とならない2〜3μm程度以下の粒径に減少し、ついには消失することがわかる。   From FIG. 1, the large carbide in the segregation part grows with the lapse of soaking time up to about 70 h and continues to increase in particle size, but after that it decreases to a particle size of about 2 to 3 μm, which is not a problem in the product. It turns out that it disappears at last.

本発明者らは、この炭化物の消失現象の機構についてさらに考究した。その結果、Cr含有量が高い、高炭素ステンレス鋼では、この現象は炭素の拡散ではなく、主にCrの拡散により律速された現象であることを突き止めた。そして、高炭素ステンレス鋼の連続鋳造製スラブに生成した大型炭化物の消失は、均熱処理温度T(℃)におけるCrの拡散係数DCr(cm2/s)、およびスラブ厚み中央部の偏析部における、Crが偏析した偏析粒のうちの最大粒径δ(cm)に依存すると考え、大型炭化物を消失させるためには、均熱処理温度T(℃)で、かつ次(1)式
t>δ/(4DCr) ………(1)
を満足する均熱処理時間t(s)で、均熱処理することが必要であることを見出した。ここで、t:均熱処理時間(s)、δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表(溶鋼)Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、ke:Crのγ相と液相との平衡分配係数(=0.85)、DCr:T(℃)におけるγ相中のCrの拡散係数(cm/s)、である。なお、DCr は、次式
Cr =D exp{−Q/(R(T+273))}、
ここで、D:定数(=−0.0853Cr+1.706)(cm/s)、
Q:Crの拡散の活性化エネルギー(=−406.5Cr+59487)(cal/mol)、
R:気体定数(=1.986cal/mol/K)、
T:均熱処理温度(℃)
Cr:鋼中のCr(クロム)濃度(mass%)
で定義される。
The present inventors further studied the mechanism of the phenomenon of disappearance of this carbide. As a result, we found that in high carbon stainless steel with high Cr content, this phenomenon was not rate of carbon diffusion but a rate-limited phenomenon mainly by Cr diffusion. And the loss | disappearance of the large carbide | carbonized_material produced | generated in the slab made from a continuous casting of high carbon stainless steel is in the segregation part of the diffusion coefficient DCr (cm < 2 > / s) of Cr in soaking temperature T (degreeC), and a slab thickness center part. In order to eliminate large carbides, it is considered that it depends on the maximum grain size δ (cm) of the segregated grains from which Cr has segregated, and the following equation (1):
t> δ 2 / (4D Cr ) (1)
It was found that it is necessary to perform soaking with a soaking time t (s) satisfying Here, t: maximum heat treatment time (s), δ: maximum segregated grain size (cm) having a Cr concentration of 1 / ke or more of the representative (molten steel) Cr concentration in the segregated portion at the center of the slab thickness , Ke: equilibrium distribution coefficient (= 0.85) between the γ phase and liquid phase of Cr , and D Cr : diffusion coefficient (cm 2 / s) of Cr in the γ phase at T (° C.). Note that D Cr is the following formula: D Cr = D 0 exp {−Q / (R (T + 273))},
Here, D 0 : constant (= −0.0853Cr + 1.706) (cm 2 / s),
Q: Activation energy of diffusion of Cr (= −406.5Cr + 59487) (cal / mol),
R: gas constant (= 1.986 cal / mol / K),
T: Soaking temperature (° C)
Cr: Cr (chromium) concentration in steel (mass%)
Defined by

本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
・ 高炭素ステンレス鋼鋳片に、均熱処理温度をT(℃)とし、かつ均熱処理時間を、次(1)式
t>δ/(4DCr) ………(1)
(ここで、t:均熱処理時間(s)、δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、ke:Crのγ相と液相との平衡分配係数(=0.85)、DCr:T(℃)におけるγ相中のCrの拡散係数(cm/s))
を満足する時間t(s)とする均熱処理を施すことを特徴とする高炭素ステンレス鋼鋳片の処理方法。
(2) (1)において、前記高炭素ステンレス鋼鋳片が、mass%で、C:0.3〜1.2%、Cr:10〜20%を含有する組成を有することを特徴とする高炭素ステンレス鋼鋳片の処理方法。
(3) 高炭素ステンレス鋼鋳片に、熱間圧延を施して高炭素ステンレス熱延鋼板とするにあたり、前記熱間圧延に先立ち、前記高炭素ステンレス鋼鋳片に、均熱処理温度をT(℃)とし、かつ均熱処理時間を、次(1)式
t>δ/(4DCr) ………(1)
(ここで、t:均熱処理時間(s)、δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、ke:Crのγ相と液相との平衡分配係数(=0.85)、DCr:T(℃)におけるγ相中のCrの拡散係数(cm/s))
を満足する時間t(s)とする均熱処理を施すことを特徴とする高炭素ステンレス熱延鋼板の製造方法。
(4) (3)において、前記高炭素ステンレス鋼鋳片が、mass%で、C:0.3〜1.2%、Cr:10〜20%を含有する組成を有することを特徴とする高炭素ステンレス熱延鋼板の製造方法。
(5) (3)または(4)において、前記高炭素ステンレス鋼鋳片を、鋳片厚みが180mm以上の連続鋳造製高炭素ステンレス鋼スラブとし、前記(1)式に代えて次(2)式
t> 32126 exp{0.0124(Ts−T)}{(Tl−Ts)/76}1.4 ………(2)
(ここで、t:均熱処理時間(s)、Tl:鋼の代表成分における液相温度(℃)、Ts:鋼の代表成分における固相温度(℃)、T:均熱処理温度(℃) )
を用いることを特徴とする高炭素ステンレス熱延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
・ For high carbon stainless steel slabs, set soaking temperature to T (° C) and set soaking time to the following formula (1)
t> δ 2 / (4D Cr ) (1)
(Where t: soaking time (s), δ: maximum segregated grain size (cm) of the segregated part at the center of the slab thickness with a Cr concentration of 1 / ke or more of the representative Cr concentration, ke : Equilibrium partition coefficient between γ phase and liquid phase of Cr (= 0.85), D Cr : Diffusion coefficient of Cr in γ phase at T (° C) (cm 2 / s))
A method for treating a high-carbon stainless steel slab, characterized by performing soaking for a time t (s) that satisfies the above.
(2) The high carbon stainless steel casting according to (1), wherein the high carbon stainless steel slab has a composition containing mass%, C: 0.3 to 1.2%, and Cr: 10 to 20%. How to handle pieces.
(3) When hot rolling a high carbon stainless steel slab to obtain a high carbon stainless hot rolled steel sheet, prior to the hot rolling, the soaking temperature of the high carbon stainless steel slab is set to T (° C. ) And the soaking time is expressed by the following formula (1)
t> δ 2 / (4D Cr ) (1)
(Where t: soaking time (s), δ: maximum segregated grain size (cm) of the segregated part at the center of the slab thickness with a Cr concentration of 1 / ke or more of the representative Cr concentration, ke : Equilibrium partition coefficient between γ phase and liquid phase of Cr (= 0.85), D Cr : Diffusion coefficient of Cr in γ phase at T (° C) (cm 2 / s))
A method for producing a high-carbon stainless steel hot-rolled steel sheet, characterized by performing soaking for a time t (s) that satisfies the above.
(4) In (3), the high-carbon stainless steel slab has a composition containing mass%, C: 0.3 to 1.2%, and Cr: 10 to 20%. A method of manufacturing a steel sheet.
(5) In (3) or (4), the high-carbon stainless steel slab is a continuous-cast high-carbon stainless steel slab having a slab thickness of 180 mm or more, and the following (2) formula
t> 32126 exp {0.0124 (Ts−T)} {(Tl−Ts) / 76} 1.4 (2)
(Where, t: soaking time (s), Tl: liquid phase temperature (° C.) of representative components of steel, Ts: solid phase temperature (° C.) of representative components of steel, T: soaking temperature (° C.))
The manufacturing method of the high carbon stainless steel hot-rolled steel sheet characterized by using this.

本発明によれば、特別な設備を新たに設置する必要もなく、簡便な方法で、高炭素ステンレス鋼鋳片の大型炭化物を微細化または消失させて、Cr系炭化物が微細化または消失した高品質の高炭素ステンレス熱延鋼板を安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、ストリップキャスター法(薄スラブキャスター)や造塊法に比べて生産性が高いスラブ連鋳機を利用して効率良く製造された高炭素ステンレス鋼スラブを素材として利用することができ、生産性が顕著に向上し、製造コストを低減できるという効果もある。   According to the present invention, there is no need to newly install special equipment, and the large carbides of the high carbon stainless steel slab are refined or eliminated by a simple method, and the Cr-based carbides are refined or eliminated. High-quality high-carbon stainless steel hot-rolled steel sheet can be manufactured at low cost, and it has a remarkable industrial effect. In addition, according to the present invention, a high carbon stainless steel slab manufactured efficiently using a slab continuous casting machine having higher productivity than the strip caster method (thin slab caster) or the ingot casting method is used as a material. In addition, the productivity can be remarkably improved and the manufacturing cost can be reduced.

本発明では、高炭素ステンレス鋼鋳片に熱間圧延を施し高炭素ステンレス熱延鋼板とするにあたり、熱間圧延に先立ち、高炭素ステンレス鋼鋳片に適正な均熱処理を施し、炭化物を微細化する。高炭素ステンレス鋼鋳片に施す適正な均熱処理は、均熱処理温度をT(℃)とし、かつ均熱処理時間を、次(1)式
t>δ/(4DCr) ………(1)
(ここで、t:均熱処理時間(s)、δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、ke:Crのγ相と液相との平衡分配係数(=0.85)、DCr:T(℃)におけるγ相中のCrの拡散係数(cm/s))
を満足する時間t(s)とする処理とする。
In the present invention, when hot rolling a high carbon stainless steel slab to obtain a high carbon stainless hot rolled steel sheet, prior to hot rolling, an appropriate soaking treatment is performed on the high carbon stainless steel slab to refine the carbide. To do. Appropriate soaking treatment for high-carbon stainless steel slabs is performed by setting soaking temperature to T (° C) and soaking time to the following formula (1)
t> δ 2 / (4D Cr ) (1)
(Where t: soaking time (s), δ: maximum segregated grain size (cm) of the segregated part at the center of the slab thickness with a Cr concentration of 1 / ke or more of the representative Cr concentration, ke : Equilibrium partition coefficient between γ phase and liquid phase of Cr (= 0.85), D Cr : Diffusion coefficient of Cr in γ phase at T (° C) (cm 2 / s))
The time t (s) is satisfied.

この(1)式は、前記した図1に示す大型炭化物の形状変化の現象を解析することにより導きだされたものである。図1に示す現象は、つぎのように説明できる。すなわち、均熱処理の当初は、偏析部の濃度とほぼ平衡に達したCr系炭化物粒子が、均熱処理時間の増加とともに、界面エネルギーを駆動力とする溶質原子(C、Cr等)の拡散でオストワルド成長により、平衡状態まで粗大化し、Cr系炭化物粒子の成長が停止する。この状態においても炭化物粒子の周囲には、C、Cr等の溶質元素の偏析が存在する。このため、さらに、均熱処理時間が増加すると、炭化物周囲の、偏析部のCr、Cは、マトリックス側(非偏析部側)へ拡散し続けるためさらにその濃度が低下し、炭化物中のCr、Cもマトリックス中に溶け出し拡散して炭化物粒径がしだいに減少し、ついにはマトリックスの濃度と温度に平衡する炭化物のみしか存在しなくなり、場合によっては消失する。このように、図1に示された炭化物形状の変化現象は、炭化物を構成する元素、とくに本発明が対象とする高炭素ステンレス鋼ではCr含有量が高く、かつ偏析が著しいため主としてCrの拡散と炭化物粒子径により、律速されていると考えられ、(1)式により鋳片中の大型炭化物(Cr炭化物)の消失に必要な処理時間が決定できることになる。   This equation (1) is derived by analyzing the phenomenon of the shape change of the large carbide shown in FIG. The phenomenon shown in FIG. 1 can be explained as follows. That is, at the beginning of soaking, Cr-based carbide particles that have almost reached equilibrium with the segregation part concentration become Ostwald due to diffusion of solute atoms (C, Cr, etc.) with interfacial energy as the driving force as soaking time increases. The growth coarsens to an equilibrium state, and the growth of Cr-based carbide particles stops. Even in this state, segregation of solute elements such as C and Cr exists around the carbide particles. For this reason, when the soaking time is further increased, Cr and C in the segregation part around the carbide continue to diffuse to the matrix side (non-segregation part side), so the concentration further decreases, and Cr and C in the carbide. As a result, the carbide particle size gradually decreases as a result of dissolution and diffusion into the matrix, and finally, only carbides that are in equilibrium with the concentration and temperature of the matrix are present, and in some cases disappear. Thus, the change in the shape of the carbide shown in FIG. 1 is mainly due to the diffusion of Cr because the elements constituting the carbide, particularly the high carbon stainless steel targeted by the present invention, has a high Cr content and is highly segregated. It is considered that the rate is determined by the carbide particle diameter, and the processing time required for the disappearance of the large carbide (Cr carbide) in the slab can be determined by the equation (1).

(1)式の右辺におけるδは、つぎにようにして決定する。鋳片厚み中央部の偏析粒について、X線マイクロアナライザーにより、各偏析粒のCr濃度を測定し、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の粒径をそれぞれ求め、そのうちの最大値を、δとする。δは鋳造条件ごとに予め測定しておき、テーブル化しておくことが好ましい。なお、偏析粒の粒径は、画像解析により求めた各偏析粒の面積から、円相当直径に換算した値とする。また、測定面は、鋳片の鋳造方向に平行する断面とし、測定範囲は、鋳片の厚み中心線を挟んで幅30〜40mm程度、鋳造方向に長さ30〜40mm程度の範囲とすることが好ましい。なお測定面は、バフ研磨面とすることはいうまでもない。また、X線マイクロアナライザーのビーム径は、偏析粒径とも関係するが、50〜200μm程度とすることが好ましい。ここで、keは、Crのγ相と液相との平衡分配係数であり、具体的には0.85である。なお、本発明でいう「代表Cr濃度」とは、連続鋳造法の場合はタンディッシュ内の溶鋼、造塊法の場合は取鍋内の溶鋼の濃度を用いるものとする。   Δ on the right side of equation (1) is determined as follows. For the segregated grains at the center of the slab thickness, the Cr concentration of each segregated grain is measured by an X-ray microanalyzer, and the grain sizes of the segregated grains having a Cr concentration of 1 / ke or more of the representative Cr concentration are obtained. Let the maximum value be δ. It is preferable that δ is measured in advance for each casting condition and tabulated. The particle diameter of the segregated grains is a value converted into an equivalent circle diameter from the area of each segregated grain obtained by image analysis. The measurement surface should be a cross section parallel to the casting direction of the slab, and the measurement range should be about 30 to 40 mm wide across the thickness center line of the slab and about 30 to 40 mm long in the casting direction. Is preferred. Needless to say, the measurement surface is a buffed surface. The beam diameter of the X-ray microanalyzer is related to the segregated particle diameter, but is preferably about 50 to 200 μm. Here, ke is an equilibrium partition coefficient between the γ phase and the liquid phase of Cr, specifically 0.85. The “representative Cr concentration” in the present invention uses the molten steel in the tundish for the continuous casting method, and the molten steel in the ladle for the ingot casting method.

また、(1)式の右辺におけるDCr は、均熱処理温度T(℃)におけるγ相中のCrの拡散係数(cm/s)であり、次式
Cr =D exp{−Q/(R(T+273))}、
ここで、D:定数(=−0.0853Cr+1.706)(cm/s)、
Q:Crの拡散の活性化エネルギー
(=−406.5Cr+59487)(cal/mol)、
R:気体定数(=1.986cal/mol/K)、
Cr:鋼中のCr(クロム)濃度(mass%)
T:均熱処理温度(℃)
で定義される。Dは、鋼種に依存する定数であり、本発明が対象とする高炭素ステンレス鋼では(−0.0853Cr+1.706)cm/sである。したがって、DCr は、均熱処理温度TとCr濃度によって決定できることになる。
Further, D Cr on the right side of the equation (1) is a diffusion coefficient (cm 2 / s) of Cr in the γ phase at the soaking temperature T (° C.), and the following equation: D Cr = D 0 exp {−Q / (R (T + 273))},
Here, D 0 : constant (= −0.0853Cr + 1.706) (cm 2 / s),
Q: Activation energy of Cr diffusion
(= -406.5Cr + 59487) (cal / mol),
R: gas constant (= 1.986 cal / mol / K),
Cr: Cr (chromium) concentration in steel (mass%)
T: Soaking temperature (° C)
Defined by D 0 is a constant depending on the steel type, and is (−0.0853Cr + 1.706) cm 2 / s in the high carbon stainless steel targeted by the present invention. Therefore, D Cr can be determined by the soaking temperature T and the Cr concentration.

本発明では、均熱処理温度Tと(1)式から、(1)式を満足するように均熱処理時間tを決定し、高炭素ステンレス鋼鋳片に均熱処理を行う。   In the present invention, from the soaking temperature T and the formula (1), the soaking time t is determined so as to satisfy the formula (1), and the soaking of the high carbon stainless steel slab is performed.

均熱処理温度Tは操業を乱さない範囲、あるいは炉の最大昇熱温度を考慮して決定されることが好ましい。しかし、均熱時間が100h以上と長すぎるとスラブ表面が脱炭され製品特性に悪影響を与えるため、100h以内となるように均熱処理温度Tを決定することが好ましい。なお、均熱処理後の冷却はスラブ破断防止の観点から炉冷とすることが好ましい。   It is preferable that the soaking temperature T is determined in consideration of a range in which the operation is not disturbed or the maximum heating temperature of the furnace. However, if the soaking time is too long, such as 100 hours or more, the slab surface is decarburized and adversely affects the product characteristics. Therefore, it is preferable to determine the soaking temperature T so that it is within 100 hours. The cooling after soaking is preferably furnace cooling from the viewpoint of preventing slab breakage.

均熱処理時間tが(1)式を満足しない場合には、鋳片中に大型炭化物(Cr炭化物)が消失しないで残存し、その後の熱間圧延、焼入れ処理によっても消失せず、素材としての熱延鋼板中に粗大炭化物が残存することになり、製品の品質不良の原因となる。   When the soaking time t does not satisfy the formula (1), large carbides (Cr carbides) remain in the slab without disappearing, and are not lost by subsequent hot rolling and quenching treatments. Coarse carbides remain in the hot-rolled steel sheet, resulting in poor product quality.

鋼A(mass%で、0.45%C−0.39%Si−0.50%Mn−0.017%P−0.0030%S−14.35%Cr−0.53%Mo−0.117%V−0.49%Ni−0.0359%N、残部鉄よりなる組成のステンレス鋼)、および鋼B(mass%で、0.66%C−0.29%Si−0.66%Mn−0.015%P−0.0014%S−13.06%Cr−0.028%V−0.13%Ni−0.0286%N、残部鉄よりなる組成のステンレス鋼)の2種の連続鋳造製高炭素ステンレス鋼スラブ(厚み:200mm)を用いて、温度、時間を変化して均熱処理を施し、鋳片内の大型炭化物の残存の有無について調査し、均熱処理温度−均熱処理時間の関係で図2に示す。図2中の曲線は、t=δ/(4DCr)を満足する線で、この線を境界として、(1)式を満足する領域では鋳片内の大型炭化物が消失(粒径2μm未満)し、それ以外の領域では残存(粒径2μm以上)することが明瞭に示されている。(1)式が、大型炭化物の消失のための処理時間を決定するのに有効であることがわかる。 Steel A (mass%, 0.45% C-0.39% Si-0.50% Mn-0.017% P-0.0030% S-14.35% Cr-0.53% Mo-0.117% V-0.49% Ni-0.0359% N, balance iron And steel B (mass%, 0.66% C-0.29% Si-0.66% Mn-0.015% P-0.0014% S-13.06% Cr-0.028% V-0.13% Ni-0.0286% N 2 types of continuous cast high carbon stainless steel slabs (thickness: 200 mm) with a uniform temperature treatment at varying temperatures and times, and the large carbide in the slab The presence or absence of the residual is investigated, and the relationship between soaking temperature and soaking time is shown in FIG. The curve in FIG. 2 is a line that satisfies t = δ 2 / (4D Cr ). With this line as a boundary, large carbides in the slab disappear in a region that satisfies the formula (1) (particle size less than 2 μm). It is clearly shown that it remains (particle size of 2 μm or more) in other regions. It can be seen that equation (1) is effective in determining the processing time for the disappearance of large carbides.

連続鋳造法で製造された高炭素ステンレス鋼鋳片(スラブ)の場合には、大型炭化物の消失のための均熱処理時間tは、(1)式に基づき、δのばらつき、偏析粒の生成し易さの鋼種の依存性を考慮して、(1)式に代えて、より簡便な次(2)式
t> 32126 exp{0.0124(Ts−T)}{(Tl−Ts)/76}1.4 ………(2)
(ここで、t:均熱処理時間(s)、Tl:鋼の代表成分における液相温度(℃)、Ts:鋼の代表成分における固相温度(℃)、T:均熱処理温度(℃) )
を用いることができる。なお、Tlは、次式
Tl=1494−(−21C+52C+13Si+8.3Mn+34.4P+38S+3.1Ni+1.5Cr+3.3Mo+9.5Nb+4.0V+72N)
Tsは、次式
Ts=1515−(132.8C+32.2C+40.5Si+3Mn+500P+700S+4.3Ni+2Cr+7.1Mo+50Nb+5.5V+186N)
(ここで、C、Si、Mn、P、S、Ni、Cr、Mo、Nb、V、N:各元素含有量の代表値(mass%))
で定義される値である。本発明では各元素の含有量は代表値は、連続造塊法の場合にはタンディッシュ内の溶鋼、造塊法の場合には取鍋内の溶鋼での値を用いるものとする。なお、上式の計算に当たっては、含有しない元素については零として計算するものとする。
In the case of high carbon stainless steel slabs (slabs) manufactured by the continuous casting method, the soaking time t for the disappearance of large carbides is based on the formula (1), with variations in δ and the generation of segregated grains. Considering the dependence of the steel type on ease, the following equation (2) is simpler instead of equation (1)
t> 32126 exp {0.0124 (Ts−T)} {(Tl−Ts) / 76} 1.4 (2)
(Where, t: soaking time (s), Tl: liquid phase temperature (° C.) of representative components of steel, Ts: solid phase temperature (° C.) of representative components of steel, T: soaking temperature (° C.))
Can be used. Incidentally, Tl has the formula Tl = 1494 - (- 21C + 52C 2 + 13Si + 8.3Mn + 34.4P + 38S + 3.1Ni + 1.5Cr + 3.3Mo + 9.5Nb + 4.0V + 72N)
Ts is the following formula: Ts = 1515− (132.8C + 32.2C 2 + 40.5Si + 3Mn + 500P + 700S + 4.3Ni + 2Cr + 7.1Mo + 50Nb + 5.5V + 186N)
(Here, C, Si, Mn, P, S, Ni, Cr, Mo, Nb, V, N: representative values of each element content (mass%))
It is a value defined by. In the present invention, the content of each element is a typical value using the molten steel in the tundish in the case of the continuous ingot-making method and the molten steel in the ladle in the case of the ingot-making method. In addition, in the calculation of the above formula, the elements not contained are calculated as zero.

本発明でいう「高炭素ステンレス鋼」には、一般に、高炭素マルテンサイト系ステンレス鋼の範疇に分類される鋼種が含まれるが、なかでも0.3mass%以上のCと、10mass%以上のCrを含有し、Cr系炭窒化物を形成する高炭素マルテンサイト系ステンレス鋼が対応する。本発明に適合する高炭素ステンレス鋼鋳片の好ましい組成としては、mass%で、C:0.3〜1.2%、Cr:10〜20%を含み、さらにはSi:0.2〜0.8%、Mn:0.2〜0.8%、あるいはさらにMo:1%以下、V:1%以下、Ni:1%以下のうちの1種以上を含有し、好ましくは残部Feおよび不可避的不純物である。   In the present invention, “high carbon stainless steel” generally includes steel types classified into the category of high carbon martensitic stainless steel. Among them, 0.3 mass% or more of C and 10 mass% or more of Cr are included. High carbon martensitic stainless steel that contains Cr-based carbonitrides is supported. The preferable composition of the high carbon stainless steel slab conforming to the present invention is mass%, including C: 0.3 to 1.2%, Cr: 10 to 20%, Si: 0.2 to 0.8%, Mn: 0.2 to It contains at least one of 0.8%, or Mo: 1% or less, V: 1% or less, Ni: 1% or less, preferably the balance Fe and unavoidable impurities.

つぎに本発明で使用する高炭素ステンレス鋼鋳片の組成限定理由について説明する。以下、組成におけるmass%は単に%と記す。   Next, the reasons for limiting the composition of the high carbon stainless steel cast used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.

C:0.3〜1.2%
Cは、強度、硬さを増加させる元素であり、必要な硬さや耐摩耗性を確保するために本発明では0.3%以上含有することが好ましい。一方、1.2%を超えて含有すると、耐食性、靭性が劣化する。このため、Cは0.3〜1.2%の範囲に限定することが好ましい。
C: 0.3-1.2%
C is an element that increases strength and hardness, and is preferably contained in an amount of 0.3% or more in the present invention in order to ensure necessary hardness and wear resistance. On the other hand, if it exceeds 1.2%, corrosion resistance and toughness deteriorate. For this reason, it is preferable to limit C to 0.3 to 1.2% of range.

Cr:10〜20%
Crは、耐食性を向上させる元素であり、良好な耐食性を保持するために本発明では10%以上含有することが好ましい。一方、20%を超えて含有すると、共晶炭化物の晶出量が増大し、炭化物の粗大化が著しくなるとともに、焼入れ硬さの低下を招く。このため、Crは10〜20%の範囲に限定することが好ましい。
Cr: 10-20%
Cr is an element that improves corrosion resistance, and is preferably contained in an amount of 10% or more in the present invention in order to maintain good corrosion resistance. On the other hand, if the content exceeds 20%, the crystallization amount of the eutectic carbide increases, the coarsening of the carbide becomes remarkable, and the quenching hardness is reduced. For this reason, it is preferable to limit Cr to the range of 10 to 20%.

C、Cr以外には、Si:0.2〜0.8%、Mn:0.2〜0.8%を含有することが好ましい。   In addition to C and Cr, it is preferable to contain Si: 0.2 to 0.8% and Mn: 0.2 to 0.8%.

Si:0.2〜0.8%
Siは、脱酸に有効であり、また強度、硬さを増加させる元素であり、このような効果を得るためには0.2%以上含有することが好ましい。一方、0.8%を超えて含有すると、延性、加工性が低下する。このため、Siは0.2〜0.8%の範囲に限定することが好ましい。
Si: 0.2-0.8%
Si is an element effective for deoxidation and increases strength and hardness. In order to obtain such effects, it is preferably contained in an amount of 0.2% or more. On the other hand, when it contains exceeding 0.8%, ductility and workability will fall. For this reason, it is preferable to limit Si to 0.2 to 0.8% of range.

Mn:0.2〜0.8%
Mnは、脱酸に有効であり、また強度、硬さを増加させる元素であり、このような効果を得るためには0.2%以上含有することが好ましい。一方、0.8%を超えて含有すると、焼入れに際し残留オーステナイトが生成し、逆に焼入れ硬さが低下する。このため、Mnは0.2〜0.8%の範囲に限定することが好ましい。
Mn: 0.2-0.8%
Mn is an element that is effective for deoxidation and increases strength and hardness. In order to obtain such effects, it is preferably contained in an amount of 0.2% or more. On the other hand, if the content exceeds 0.8%, retained austenite is generated during quenching, and the quenching hardness is decreased. For this reason, it is preferable to limit Mn to the range of 0.2 to 0.8%.

上記した組成に加えてさらに、用途に応じてMo、V、Niのうちの1種以上を含有することができる。   In addition to the composition described above, one or more of Mo, V, and Ni can be contained depending on the application.

Mo:1%以下
Moは、耐食性を向上させる元素であり、0.3%以上含有することが好ましいが、1%を超えて含有すると、延性、加工性が低下する。このため、Moは1%以下に限定することが好ましい。
Mo: 1% or less
Mo is an element that improves the corrosion resistance, and is preferably contained in an amount of 0.3% or more. However, if it exceeds 1%, ductility and workability deteriorate. For this reason, it is preferable to limit Mo to 1% or less.

V:1%以下
Vは、焼入れ後の靭性を向上させる元素であり、0.05%以上含有することが好ましいが、1%を超えて含有すると、延性、加工性が低下する。このため、Vは1%以下に限定することが好ましい。
V: 1% or less V is an element that improves the toughness after quenching, and is preferably contained in an amount of 0.05% or more. However, if it exceeds 1%, ductility and workability deteriorate. For this reason, it is preferable to limit V to 1% or less.

Ni:1%以下
Niは耐食性を向上させるとともに、延性、靭性を向上させる元素であり、必要に応じ含有できる。1%を超える含有は延性、加工性を劣化させる。
Ni: 1% or less
Ni is an element that improves corrosion resistance and also improves ductility and toughness, and can be contained if necessary. Inclusion exceeding 1% deteriorates ductility and workability.

上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、P:0.035%以下、S:0.010%以下、N:0.05%以下が許容できる。   The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include P: 0.035% or less, S: 0.010% or less, and N: 0.05% or less.

なお、本発明では、高炭素ステンレス鋼鋳片の製造方法はとくに限定されない。上記した組成の高炭素ステンレス鋼溶鋼を、通常公知の溶製方法で溶製し、造塊−分塊法、連続鋳造法等の通常公知の方法で所定寸法の鋳片とすることができる。   In the present invention, the method for producing the high carbon stainless steel slab is not particularly limited. The high-carbon stainless steel molten steel having the composition described above can be melted by a generally known melting method to obtain a slab having a predetermined size by a generally known method such as an ingot-bundling method or a continuous casting method.

上記した条件で均熱処理を施された鋳片は、ついで再加熱され熱間圧延を施される。本発明では、熱間圧延は、所望の寸法形状の熱延鋼板(鋼帯)とすることができればよく、とくに限定されない。本発明では、公知の高炭素ステンレス鋼の熱間圧延方法がいずれも適用できる。   The slab that has been soaked under the above conditions is then reheated and hot rolled. In the present invention, the hot rolling is not particularly limited as long as it can be a hot rolled steel sheet (steel strip) having a desired size and shape. In the present invention, any known hot rolling method for high carbon stainless steel can be applied.

表1に示す組成(代表成分濃度)の鋳片(厚み:180〜260mm、幅1000〜1200mm)を連続鋳造法で製造した。なお、連続鋳造の際のタンディッシュ内溶鋼過熱度(溶鋼温度−Tl)は20〜60℃とした。得られた連続鋳造製鋳片に、表2に示す条件の均熱処理を施した。   Slabs (thickness: 180-260 mm, width 1000-1200 mm) having the compositions (representative component concentrations) shown in Table 1 were produced by a continuous casting method. In addition, the tundish molten steel superheat degree (molten steel temperature -Tl) in the case of continuous casting was 20-60 degreeC. The obtained continuous cast slab was subjected to soaking treatment under the conditions shown in Table 2.

なお、表2には、(1)式の右辺の値を併記している。得られた連続鋳造製鋳片におけるδは、各鋳片からスラブサンプルを採取して求めた。鋳片厚み中央部の偏析粒について、X線マイクロアナライザー(ビーム径:100μm)により、各偏析粒のCr濃度を測定し、Cr濃度が代表Cr濃度の1/ke(=1.18)以上である偏析粒の粒径をそれぞれ求め、そのうちの最大値をδとした。偏析粒の粒径は、画像解析により求めた各偏析粒の面積から、円相当直径に換算した値とした。測定範囲は、鋳片の厚み中心線を挟んで幅30mm、鋳造方向に長さ30mmの範囲とした。Crのγ相と液相との平衡分配係数であるkeは、0.85を使用した。また、DCr は、次式
Cr =D exp{−Q/(R(T+273))}、
を用いて決定した。ここで、D=−0.0853Cr+1.706cm/s、Q=−406.5Cr+59487 cal/mol、R=1.986cal/mol/Kを用いた。
Table 2 also shows the value on the right side of equation (1). Δ in the obtained continuous cast slab was obtained by collecting a slab sample from each slab. For the segregated grains at the center of the slab thickness, the Cr concentration of each segregated grain is measured by an X-ray microanalyzer (beam diameter: 100 μm), and the segregated grain is 1 / ke (= 1.18) or more of the representative Cr concentration. The grain size of each grain was determined, and the maximum value was taken as δ. The particle diameter of the segregated grains was a value converted to an equivalent circle diameter from the area of each segregated grain determined by image analysis. The measurement range was 30 mm in width and 30 mm in length in the casting direction across the thickness center line of the slab. The ke which is the equilibrium partition coefficient between the γ phase and the liquid phase of Cr was 0.85. Further, D Cr is represented by the following formula: D Cr = D 0 exp {−Q / (R (T + 273))},
Was used to determine. Here, D 0 = −0.0853Cr + 1.706 cm 2 / s, Q = −406.5Cr + 59487 cal / mol, R = 1.986 cal / mol / K were used.

また、表2には(2)式の右辺の値も併記した。Tl、Tsは、前記した各式を用いて算出し表1に併記した。   Table 2 also shows the value on the right side of equation (2). Tl and Ts were calculated using the above-described formulas and listed in Table 1.

表2に示す条件で均熱処理を施された鋳片について、炭化物の消失の有無を調査した。   The slabs subjected to soaking treatment under the conditions shown in Table 2 were examined for the disappearance of carbides.

得られた鋳片の厚み中央部で厚み中心線を挟んで幅30mm、鋳造方向長さ30mmの範囲について、村上試薬を用いてCr系炭化物を着色腐食し、光学顕微鏡(1000倍)で写真撮影し、炭化物粒径を測定した。各鋳片における炭化物粒径の最大値が2μm未満の場合を炭化物消失とし、それ以上の場合を炭化物残存として評価した。得られた結果を表2に示す。   The Cr-based carbide is colored and corroded with Murakami reagent for the range of 30mm width and 30mm length in the casting direction across the thickness center line at the thickness center of the obtained slab, and photographed with an optical microscope (1000x) The carbide particle size was measured. The case where the maximum value of the carbide particle size in each slab was less than 2 μm was evaluated as carbide disappearance, and the case where the maximum value was more than that was evaluated as carbide residue. The obtained results are shown in Table 2.

Figure 2005082838
Figure 2005082838

Figure 2005082838
Figure 2005082838

均熱処理時間tが(1)式、(2)式を満足する本発明例はいずれも、炭化物が消失しているが、本発明の範囲を外れる場合には、炭化物が残存している。   In all of the examples of the present invention in which the soaking time t satisfies the formulas (1) and (2), the carbides disappear, but the carbides remain if they are outside the scope of the present invention.

表2に示す条件で均熱処理を施された鋳片は、ついで熱間圧延を施され熱延鋼帯とした。さらに、これら熱延鋼帯に冷間圧延を施し、1.0mm厚の冷延鋼帯とした。得られた冷延鋼帯の一部を素材としてカミソリ刃を作製し、Cr系炭化物起因の刃先の刃こぼれや、模様欠陥の有無を肉眼で調査した。本発明例はいずれも欠陥の発生は認められなかった。一方、本発明の範囲を外れる比較例では1〜5%の欠陥発生が認められた。   The slab subjected to soaking treatment under the conditions shown in Table 2 was then hot-rolled to form a hot-rolled steel strip. Further, these hot-rolled steel strips were cold-rolled to obtain 1.0 mm-thick cold-rolled steel strips. A razor blade was produced using a part of the obtained cold-rolled steel strip as a raw material, and the presence or absence of spilling of the cutting edge due to Cr carbide and pattern defects was examined with the naked eye. In any of the inventive examples, no occurrence of defects was observed. On the other hand, in the comparative example outside the scope of the present invention, 1 to 5% of defects were observed.

高炭素ステンレス鋼連続鋳造スラブ中の炭化物粒径と均熱処理時間との関係を示すグラフである。It is a graph which shows the relationship between the carbide particle size in the high carbon stainless steel continuous casting slab, and soaking time. 大型炭化物の消失に及ぼす均熱処理時間と均熱処理温度の影響を示すグラフである。It is a graph which shows the influence of soaking time and soaking temperature on disappearance of a large carbide.

Claims (5)

高炭素ステンレス鋼鋳片に、均熱処理温度をT(℃)とし、かつ均熱処理時間を、下記(1)式を満足する時間t(s)とする均熱処理を施すことを特徴とする高炭素ステンレス鋼鋳片の処理方法。

t>δ/(4DCr) ………(1)
ここで、t:均熱処理時間(s)、
δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、
ke:Crのγ相と液相との平衡分配係数(=0.85)、
Cr:T(℃)におけるγ相中のCrの拡散係数(cm/s)
The high carbon stainless steel slab is subjected to soaking treatment with a soaking temperature of T (° C) and a soaking time of t (s) satisfying the following formula (1). Processing method for stainless steel slabs.
Record
t> δ 2 / (4D Cr ) (1)
Where t: soaking time (s),
δ: The maximum particle size (cm) of segregated grains having a Cr concentration of 1 / ke or more of the representative Cr concentration in the segregated portion at the center of the slab thickness,
ke: Equilibrium partition coefficient (= 0.85) between γ phase and liquid phase of Cr,
D Cr : Diffusion coefficient of Cr in γ phase at T (° C) (cm 2 / s)
前記高炭素ステンレス鋼鋳片が、mass%で、C:0.3〜1.2%、Cr:10〜20%を含有する組成を有することを特徴とする請求項1に記載の高炭素ステンレス鋼鋳片の処理方法。 The high-carbon stainless steel slab according to claim 1, wherein the high-carbon stainless steel slab has a composition containing C: 0.3 to 1.2% and Cr: 10 to 20% in mass%. Processing method. 高炭素ステンレス鋼鋳片に、熱間圧延を施して高炭素ステンレス熱延鋼板とするにあたり、前記熱間圧延に先立ち、前記高炭素ステンレス鋼鋳片に、均熱処理温度をT(℃)とし、かつ均熱処理時間を、下記(1)式を満足する時間t(s)とする均熱処理を施すことを特徴とする高炭素ステンレス熱延鋼板の製造方法。

t>δ/(4DCr) ………(1)
ここで、t:均熱処理時間(s)、
δ:鋳片厚み中央部の偏析部のうち、Cr濃度が代表Cr濃度の1/ke以上である偏析粒の最大粒径(cm)、
ke:Crのγ相と液相との平衡分配係数(=0.85)、
Cr:T(℃)におけるγ相中のCrの拡散係数(cm/s)
When hot rolling a high carbon stainless steel slab to obtain a high carbon stainless hot rolled steel sheet, prior to the hot rolling, the soaking temperature of the high carbon stainless steel slab is T (° C.), A method for producing a high-carbon stainless steel hot-rolled steel sheet, characterized in that a soaking treatment is carried out with a soaking treatment time t (s) satisfying the following formula (1).
Record
t> δ 2 / (4D Cr ) (1)
Where t: soaking time (s),
δ: The maximum particle size (cm) of segregated grains having a Cr concentration of 1 / ke or more of the representative Cr concentration in the segregated portion at the center of the slab thickness,
ke: Equilibrium partition coefficient (= 0.85) between γ phase and liquid phase of Cr,
D Cr : Diffusion coefficient of Cr in γ phase at T (° C) (cm 2 / s)
前記高炭素ステンレス鋼鋳片が、mass%で、C:0.3〜1.2%、Cr:10〜20%を含有する組成を有することを特徴とする請求項3に記載の高炭素ステンレス熱延鋼板の製造方法。 The high-carbon stainless steel hot-rolled steel sheet according to claim 3, wherein the high-carbon stainless steel cast slab has a composition containing C: 0.3 to 1.2% and Cr: 10 to 20% in mass%. Production method. 前記高炭素ステンレス鋼鋳片を、鋳造厚みが180mm以上の連続鋳造製高炭素ステンレス鋼スラブとし、前記(1)式に代えて下記(2)式を用いることを特徴とする請求項3または4に記載の高炭素ステンレス熱延鋼板の製造方法。

t> 32126 exp{0.0124(Ts−T)}{(Tl−Ts)/76}1.4 ………(2)
ここで、t:均熱処理時間(s)、
Tl:鋼の代表成分における液相温度(℃)
Ts:鋼の代表成分における固相温度(℃)、
T:均熱処理温度(℃)
5. The high carbon stainless steel slab is a continuous cast high carbon stainless steel slab having a casting thickness of 180 mm or more, and the following formula (2) is used instead of the formula (1). The manufacturing method of the high carbon stainless steel hot-rolled steel plate as described in 2.
Record
t> 32126 exp {0.0124 (Ts−T)} {(Tl−Ts) / 76} 1.4 (2)
Where t: soaking time (s),
Tl: Liquidus temperature (° C) for typical steel components
Ts: solid phase temperature (° C.) of typical components of steel,
T: Soaking temperature (° C)
JP2003314474A 2003-09-05 2003-09-05 Method for manufacturing high-carbon hot-rolled stainless steel plate Pending JP2005082838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314474A JP2005082838A (en) 2003-09-05 2003-09-05 Method for manufacturing high-carbon hot-rolled stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314474A JP2005082838A (en) 2003-09-05 2003-09-05 Method for manufacturing high-carbon hot-rolled stainless steel plate

Publications (1)

Publication Number Publication Date
JP2005082838A true JP2005082838A (en) 2005-03-31

Family

ID=34415063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314474A Pending JP2005082838A (en) 2003-09-05 2003-09-05 Method for manufacturing high-carbon hot-rolled stainless steel plate

Country Status (1)

Country Link
JP (1) JP2005082838A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
WO2016085203A1 (en) * 2014-11-26 2016-06-02 주식회사 포스코 High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor
JP2020509236A (en) * 2017-02-28 2020-03-26 テラパワー, エルエルシー Method of homogenizing steel composition
CN115461481A (en) * 2020-04-30 2022-12-09 杰富意钢铁株式会社 Stainless steel sheet, method for producing same, knife, and tableware
WO2023027129A1 (en) * 2021-08-24 2023-03-02 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
JPH0372021A (en) * 1989-08-10 1991-03-27 Daido Steel Co Ltd Soaking method for bearing steel
JPH0375312A (en) * 1989-08-17 1991-03-29 Daido Steel Co Ltd Method for soaking bearing steel
JPH03111515A (en) * 1989-09-26 1991-05-13 Kobe Steel Ltd Rolling method of alloy tool steel
JP2002155316A (en) * 2000-11-16 2002-05-31 Nisshin Steel Co Ltd Method for producing high carbon martensitic stainless steel sheet
JP2002285243A (en) * 2001-03-26 2002-10-03 Nisshin Steel Co Ltd Method for heat treatment of hot-rolled steel strip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
JPH0372021A (en) * 1989-08-10 1991-03-27 Daido Steel Co Ltd Soaking method for bearing steel
JPH0375312A (en) * 1989-08-17 1991-03-29 Daido Steel Co Ltd Method for soaking bearing steel
JPH03111515A (en) * 1989-09-26 1991-05-13 Kobe Steel Ltd Rolling method of alloy tool steel
JP2002155316A (en) * 2000-11-16 2002-05-31 Nisshin Steel Co Ltd Method for producing high carbon martensitic stainless steel sheet
JP2002285243A (en) * 2001-03-26 2002-10-03 Nisshin Steel Co Ltd Method for heat treatment of hot-rolled steel strip

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007167A (en) * 2008-06-30 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing cold tool steel
WO2016085203A1 (en) * 2014-11-26 2016-06-02 주식회사 포스코 High-hardness martensitic stainless steel with excellent antibacterial property and preparation method therefor
JP2020509236A (en) * 2017-02-28 2020-03-26 テラパワー, エルエルシー Method of homogenizing steel composition
JP7184787B2 (en) 2017-02-28 2022-12-06 テラパワー, エルエルシー Methods for homogenizing steel compositions, methods for producing steel products, methods for homogenizing steel elements, and methods for producing products comprising steel
CN115461481A (en) * 2020-04-30 2022-12-09 杰富意钢铁株式会社 Stainless steel sheet, method for producing same, knife, and tableware
CN115461481B (en) * 2020-04-30 2024-03-12 杰富意钢铁株式会社 Stainless steel plate, method for producing same, cutter, and tableware
WO2023027129A1 (en) * 2021-08-24 2023-03-02 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing same
TWI819763B (en) * 2021-08-24 2023-10-21 日商日鐵不銹鋼股份有限公司 Fat-grained iron-based stainless steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8607941B2 (en) Steel sheet for brake disc, and brake disc
CN102665964B (en) High-carbon martensitic stainless steel and manufacture method thereof
DK2591134T3 (en) Austenitic-ferritic stainless steel with improved machinability
JP5682901B2 (en) Ti-added ferritic stainless steel sheet excellent in spinning workability and manufacturing method thereof
AU2010339154B2 (en) Martensitic stainless steel produced by a twin roll strip casting process and method for manufacturing same
JP5854831B2 (en) Abrasion resistant steel material having excellent fatigue characteristics and method for producing the same
JP6417252B2 (en) Martensitic stainless steel for brake disc and its manufacturing method
EP3015561B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
WO2013047237A1 (en) Stainless steel for cutlery and manufacturing process therefor
JP4802435B2 (en) Non-tempered steel with small material anisotropy and excellent strength, toughness and machinability, and method for producing the same
JP6615039B2 (en) Wear-resistant steel plate with excellent toughness
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP5687944B2 (en) Induction hardening steel excellent in machinability and manufacturing method thereof
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP2005082838A (en) Method for manufacturing high-carbon hot-rolled stainless steel plate
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JP5697218B2 (en) Metal mask
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
EP4306661A1 (en) Martensitic stainless steel sheet having excellent corrosion resistance and method for manufacturing same, and martensitic stainless bladed product
TW202309309A (en) Ferritic stainless steel and method for producing same
JP5316242B2 (en) Steel for heat treatment
JPH09165643A (en) Bearing steel excellent in rolling fatigue characteristic
JPH0665639A (en) Production of high carbon stainless steel strip having uniform fine carbite structure and excellent impact toughness
JPH02166228A (en) Manufacture of high carbon containing stainless steel having uniformly fine carbide structure
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105