JPH03111515A - Rolling method of alloy tool steel - Google Patents

Rolling method of alloy tool steel

Info

Publication number
JPH03111515A
JPH03111515A JP25028189A JP25028189A JPH03111515A JP H03111515 A JPH03111515 A JP H03111515A JP 25028189 A JP25028189 A JP 25028189A JP 25028189 A JP25028189 A JP 25028189A JP H03111515 A JPH03111515 A JP H03111515A
Authority
JP
Japan
Prior art keywords
steel
rolling
less
slab
alloy tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25028189A
Other languages
Japanese (ja)
Other versions
JP2885436B2 (en
Inventor
Hiromichi Hirano
平野 宏通
Toshio Yamamoto
寿夫 山本
Atsuo Yano
矢野 篤夫
Takamichi Hamanaka
浜中 孝道
Daizo Hiramatsu
平松 大三
Yasuaki Kurushima
久留島 靖章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Original Assignee
NIPPON KOSHUHA KOGYO KK
Nippon Koshuha Steel Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOSHUHA KOGYO KK, Nippon Koshuha Steel Co Ltd, Kobe Steel Ltd filed Critical NIPPON KOSHUHA KOGYO KK
Priority to JP25028189A priority Critical patent/JP2885436B2/en
Publication of JPH03111515A publication Critical patent/JPH03111515A/en
Application granted granted Critical
Publication of JP2885436B2 publication Critical patent/JP2885436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To roll and alloy tool steel having a good inner quality without developing crack by rolling the specific steel composition of C, Si, Mn, P, S, Cr and Fe under a specific draft rate, temp., and a total rolling reduction ratio after executing a specific soaking. CONSTITUTION:Soaking is executed to a steel ingot or slab composed of 0.75-2.50wt.% C, <=1.50% Si, <=2.00% Mn, <=0.030% P, <=0.020% S, 4.0-14.0% Cr and, if necessary, one or more kinds of <=2.50% Mo, <=1.50% V, <=2.00% W and the balance Fe at 1100-1200 deg.C heating temp. for >=1.5min/mm of the thick of steel ingot or slab thereof. Successively, the steel ingot or slab is rolled so as to become at >=10% draft rate per one pass in >=950 deg.C rolling finish temp. and at >=8 in total the rolling reduction ratio (ingot thickness/product thickness). By this method, the alloy tool steel having high quality is rolled without developing inner defect and crack.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、内部品質が良好で、割れを発生させずに合金
工具鋼を圧延できる方法に関するものである。 (従来の技術及び解決しようとする課題)ゲージ、ダイ
ス、プレス金型などに使用される合金工具鋼は、用途上
、高硬度で耐摩耗性が必要とされることから、その鋼材
は組成上、焼入れ性を高めるCやCrなどの合金元素を
多く含有させた成分系となっている。 このような成分系においては、鋳造時に不可避的に生成
する硬くて脆い巨大Cr炭化物の存在に起因して、圧延
鋼板には内部割れ(超音波欠陥)或いは第1図中のイ、
口、ハに示すような鋼板の表面割れを発生し易い。この
ため、鋼板の製造に際しては、小鋼塊を用い、小ミルで
圧延又は鍛造を実施しているが、生産性と歩留が低く、
更には大きな鋼板を安価に製造できないという工業生産
上の欠点を有していた。 本発明は、上記従来技術の欠点を解消し、内部品質が良
好で、しかも、圧延時に割れを発生させずに合金工具鋼
を圧延できる方法を提供することを目的とするものであ
る。 (課題を解決するための手段) 力いる目的を達成するため、本発明者らは、合金工具鋼
の材料特性並びに熱延条件について鋭意研究を重ねた結
果、ここに本発明をなしたものである。 すなわち、本発明に係る合金工具鋼の圧延方法は、C:
0.75〜2.50%、Si:1.50%以下、Mn:
2.00%以下、P:0.030%以下、Sho。 020%以下及びCr:4.0〜14.0%を含み、必
要に応じて更にMo:2.50%以下、V:1.50%
以下及びW:2.00%以下のうちの1種又は2種以上
を含む、残部がFeからなる鋼塊又はスラブを1100
〜1200℃の加熱温度で鋼塊又はスラブ厚(mo+)
Xl、5分以上均熱した後、1パス当りの圧下率が10
%以下で、圧延終了温度が950℃以上の温度とし、総
圧下比((Ill塊厚)/(製品厚))が8以上となる
ように圧延することを特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) 本発明は、高C−高Cr系合金工具用鋼の製造において
、鋼の所定の成分調整のもとで適正な加熱圧延条件を選
ぶことにより、内部欠陥及び割れを発生させずに鋼板製
品を圧延する方法に関するものである。 従来より、かNる鋼板は、製品圧延後1.焼入れ・焼も
どしにより、高硬度・高強度が得られるところから、プ
レス型やゲージなど耐摩耗性を要求される用途に多数供
されている。しかしながら、このような鋼種は第2図に
示すように熱間加工性が極めて悪い。これは、凝固過程
で生ずる硬くて脆いCr炭化物及びその周囲が加工(圧
延)により割れや空隙を生じ易いためである。 従来、これらの鋼種については、欠陥を生じさせない加
工条件が明確に把握されておらず、経験的に欠陥の発生
の少ない製造方法、例えば、小鋼塊→小型ミル・小型プ
レス鍛造により鋼板を製造していたが、生産性、コスト
、製品サイズ(板幅・板長)の点で欠点があった。 そこで、本発明者らは、本鋼種の材料特性と熱間加工条
件を詳細に調査した結果、(1)加熱条件、(2)加工
温度域、(3)加工率を適正に制御すれば、厳格な熱管
理の困難な大型工場設備(例えば、数千トン級の圧延機
)においても、欠陥を生じることなく該鋼板を製造し得
ることを見い出した。 次に本発明における化学成分並びに製造条件の限定理由
について説明する。 まず、化学成分の限定理由は以下のとおりである。 C: Cは調質にとって重要な元素であり、合金工具鋼として
必要とされるHRC50以上を得るためには、0.75
%以上が必要である。しかし、2゜50%を超えると炭
化物の析出量が多くなり、靭性を劣化させる。したがっ
て、C量は0.75〜2.50%の範囲とする。 Si: SLは鋼板の清浄性を得るために必要な脱酸元素である
。また、焼入れ性も向上させるためにも添加されるが、
1.50%を超える添加は鋼塊の偏析を助長するので、
1.50%以下とする。 Mn: MnもSiと同様の作用を有するが、2.0%を超える
とMnSの生成量が多くなり、清浄度を阻害するので、
2.0%以下とする。 P: Pは粒界に偏析して焼入れ焼もどし後の脆化を助長する
と共に、高温割れの発生原因となるので、できる限り低
減することが望ましいが、工業生産上過度に低減するこ
とは製造コストの高騰を招くので、0.030%以下に
するのが望ましい。 S: SはP以上に高温割れを助長する元素であり、割れ防止
の観点からできる限り低減する必要があるが、工業生産
上大きなコストアップとならない0.020%以下にす
るのが望ましい。 Cr: Crは焼入れ性向上元素として、合金工具用鋼にとって
不可欠なものである。焼入れ性は添加量に比例して増大
するが、14.0%を超えると過剰なCr炭化物の析出
による脆化が顕著となり、また添加コストに見合う硬度
・焼入れ性など品質特性が得られない。また、4.0%
未満の添加では合金工具鋼として必要な硬度を安定して
得がたい。したがって、Cr量は4.0〜14.0%の
範囲とする。 Mo、V、w: Mo、V、Wはいずれも焼入れ性を向上させると共に、
焼戻し軟化抵抗を向上させるので、必要に応じて添加す
ることができる。添加する場合、これらは高価な元素で
あり、過剰な添加は製造コストを高騰させるので、MO
は2.5o%以下、■は1.50%以下、Wは2.00
%以下とすべきである。なお、これらの元素は類似の効
果を有するので、1種又は2種以上を複合して添加して
もその効果に差異はない。 次に本発明の圧延条件について説明する。 川底− 上記組成の鋼塊又はスラブの加熱温度に関しては、巨大
なCr炭化物の分解或いは固溶のためには最低1100
℃以上の加熱が必要である。しかし、1200℃を超え
ると鋼塊又はスラブが溶融するので、1 ’100〜1
.200’Cの範囲に制限する必要がある。 弧然機皿 圧延形状を確保し、かつ割れ発生防止のためには、鋼塊
又はスラブの中心部と表面との温度差がないことが望ま
しいが、工業炉においては鋼塊又はスラブの中心部の実
測が不可能であり、鋳塊又はスラブの表面と中心部の均
一加熱のためには、炉の昇温特性を考慮した炉の雰囲気
温度の条件設定が必要となる。特に本鋼種は鋼塊又はス
ラブの中心部に存在するCr炭化物を分解・固溶させる
ため、中心部を1100℃〜1200℃に昇温させるこ
とか極めて重要である。 そのためには、本発明者らによる測温実験の結果、通常
工業炉の加熱能力では、鋼塊又はスラブ厚(mm)X 
1 、5分以上の加熱が必要であり、これによりCr炭
化物の消失が図られる。なお、加熱目的からみて、この
加熱時間条件は鋼塊並びにスラブの双方について満足す
べき条件である。 ■工員ヱ屓 加熱時に消失したCr炭化物も、圧延途中において微細
ではあるが析出し、延性低下の原因となる。このため、
延性の良好なオーステナイト量の多い高温時に加工を加
えることが欠陥を防止することになる。圧延仕上げ温度
(圧延完了温度)と割れ発生率の関係を調査したところ
、第3図に示すように、950℃以上で圧延を完了させ
なければ、内部欠陥の発生を防止できないことを見い出
した。 したがって、加工温度域条件に関しては、加熱温度から
950℃以上の圧延仕上げ温度までとする。 力り1匿 ■ 1パス当りの圧下量 鋼板の割れに関しては、1パス当りの圧下量が最も大き
な影響を持っている。割れの発生は圧延により鋼板の板
厚・板幅・板長さ方向にそれぞれ引張応力が働くためで
あり、その程度は1パス当りの圧下量に比例する。第4
図は1パス当りの圧下量と鋼板に生ずる割れの関係を示
したものであり、最大圧下量を10%以下に抑える必要
があることを示している。 ■総圧下比 鋼板の割れと内部欠陥はCr炭化物及びその周囲で生ず
るが、マトリックスとの強度・靭性バランスを保てない
ことも発生の間接的要因となる。 したがって、鋳造時に生成した粗大な柱状晶を十分に圧
壊して強度・靭性を向上させねばならない。 そのためには、本鋼種の場合、柱状晶の圧壊に必要な総
圧下比((I塊厚さ)/(製品厚))を8以上とする必
要があることを把握した。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有する鋼を常法により溶解、鋳
造し、第2表に示す条件にて加熱、熱延を行った。 内部欠陥並びに割れについての評価結果を第2表に併記
する。 第2表において、Nα1と&2は加熱温度の効果を比較
したものであり、加熱温度が1250℃と高い比較例&
2では、鋼塊の加熱時に溶融し、分塊圧延は不可能であ
ったが、加熱温度が1150℃の本発明例Nα1では良
好な製品品質が得られた。 また、比較例Nα4は加熱温度が1000℃と低いため
、内部欠陥、割れを生じたが、本発明例Nα3では内部
欠陥も割れもなかった。 Nα5と&6は鋼塊加熱時の在炉時間の差異を示したも
のであり、在炉時間が鋼塊厚(mm) X 1 、5分
=1875分に満たない1720分の比較例Nα6では
内部品質は不良であったが、1950分の本発明例5は
良好であった。 比較例Nα8は、1パス当りの最大圧下量を12%とし
たところ、この1パス終了時に鋼板に割れを生じた。一
方、本発明例Nα7では1パス当りの最大圧下量を7.
5%に制限したため、問題なく圧延を完了した。 圧延仕上げ温度が920℃の比較例10は鋼板の四周囲
に多数の小割れを生じたが、本発明例のNα9は970
℃仕上げのため、全く割れの発生を見なかった。 Nα11とNα12は製品板厚が比較的大きく、総圧下
比{((鋼塊厚さ)/(製品厚))が小さくなる場合で
あるが、比較例N1112は総圧下比{が7.4で不十
分なため、超音波探傷により欠陥を認めたが、総圧下比
{が8.9の本発明例Nα11は欠陥が全く発生しなか
った。
(Industrial Application Field) The present invention relates to a method for rolling alloy tool steel with good internal quality and without cracking. (Prior art and problems to be solved) Alloy tool steel used for gauges, dies, press dies, etc. requires high hardness and wear resistance due to its composition. , it has a composition system containing a large amount of alloying elements such as C and Cr that improve hardenability. In such a composition system, due to the presence of hard and brittle giant Cr carbides that are inevitably generated during casting, the rolled steel sheet may have internal cracks (ultrasonic defects) or
Surface cracking of the steel plate as shown in Figures 1 and 3 is likely to occur. For this reason, when manufacturing steel plates, small steel ingots are used and rolled or forged in small mills, but productivity and yield are low.
Furthermore, it has a drawback in terms of industrial production in that large steel plates cannot be manufactured at low cost. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for rolling alloy tool steel with good internal quality and without cracking during rolling, overcoming the drawbacks of the prior art described above. (Means for Solving the Problems) In order to achieve the stated purpose, the present inventors have conducted intensive research on the material properties and hot rolling conditions of alloy tool steel, and have hereby accomplished the present invention. be. That is, the method for rolling alloy tool steel according to the present invention includes C:
0.75-2.50%, Si: 1.50% or less, Mn:
2.00% or less, P: 0.030% or less, Sho. 020% or less and Cr: 4.0 to 14.0%, and if necessary further Mo: 2.50% or less, V: 1.50%
1100% steel ingot or slab containing one or more of the following and W: 2.00% or less, the balance being Fe.
Steel ingot or slab thickness (mo+) at heating temperature of ~1200℃
Xl, after soaking for more than 5 minutes, the reduction rate per pass is 10
% or less, the rolling end temperature is 950° C. or higher, and the rolling is performed so that the total rolling reduction ratio ((Ill block thickness)/(product thickness)) is 8 or higher. The present invention will be explained in more detail below. (Function) The present invention enables the production of high C-high Cr alloy tool steel by selecting appropriate hot rolling conditions under predetermined composition adjustment of the steel, thereby eliminating internal defects and cracks. The present invention relates to a method for rolling steel sheet products. Traditionally, steel sheets have been processed by 1. after product rolling. Because high hardness and high strength can be obtained through quenching and tempering, it is used in many applications that require wear resistance, such as press molds and gauges. However, as shown in FIG. 2, such steel types have extremely poor hot workability. This is because the hard and brittle Cr carbide produced during the solidification process and its surroundings are susceptible to cracks and voids due to processing (rolling). Conventionally, for these steel types, the processing conditions that do not cause defects have not been clearly understood, and based on experience, manufacturing methods that produce fewer defects, such as small steel ingot → small mill/small press forging, have been used to manufacture steel plates. However, there were drawbacks in terms of productivity, cost, and product size (board width and board length). Therefore, as a result of detailed investigation of the material properties and hot working conditions of this steel type, the present inventors found that if (1) heating conditions, (2) working temperature range, and (3) working rate are appropriately controlled, It has been discovered that the steel plate can be manufactured without defects even in large factory equipment (for example, a several thousand ton rolling mill) where strict heat control is difficult. Next, the reasons for limiting the chemical components and manufacturing conditions in the present invention will be explained. First, the reason for limiting the chemical components is as follows. C: C is an important element for heat refining, and in order to obtain HRC50 or more required for alloy tool steel, 0.75
% or more is required. However, if it exceeds 2.50%, the amount of carbide precipitation will increase and the toughness will deteriorate. Therefore, the amount of C is set in the range of 0.75 to 2.50%. Si: SL is a deoxidizing element necessary to obtain cleanliness of the steel plate. It is also added to improve hardenability.
Addition of more than 1.50% promotes segregation of steel ingots,
1.50% or less. Mn: Mn also has the same effect as Si, but if it exceeds 2.0%, the amount of MnS produced increases and the cleanliness is inhibited.
2.0% or less. P: P segregates at grain boundaries and promotes embrittlement after quenching and tempering, and also causes hot cracking, so it is desirable to reduce it as much as possible, but excessive reduction is not recommended in industrial production. It is desirable to keep the content to 0.030% or less, as this will lead to a rise in costs. S: S is an element that promotes high-temperature cracking more than P, and from the viewpoint of preventing cracking, it must be reduced as much as possible, but it is desirable to reduce it to 0.020% or less so as not to cause a large cost increase in industrial production. Cr: Cr is an element that improves hardenability and is essential for alloy tool steels. Hardenability increases in proportion to the amount added, but if it exceeds 14.0%, embrittlement due to excessive Cr carbide precipitation becomes noticeable, and quality characteristics such as hardness and hardenability that are commensurate with the cost of addition cannot be obtained. Also, 4.0%
If the addition amount is less than that, it is difficult to stably obtain the hardness required for alloy tool steel. Therefore, the Cr content is set in the range of 4.0 to 14.0%. Mo, V, w: Mo, V, and W all improve hardenability and
Since it improves temper softening resistance, it can be added as necessary. When added, these are expensive elements, and excessive addition increases manufacturing costs, so MO
is 2.5o% or less, ■ is 1.50% or less, W is 2.00
% or less. Note that since these elements have similar effects, there is no difference in their effects even if they are added alone or in combination of two or more. Next, the rolling conditions of the present invention will be explained. Riverbed - Regarding the heating temperature of the steel ingot or slab with the above composition, the minimum temperature is 1100℃ for decomposition or solid solution of huge Cr carbides.
Heating above ℃ is required. However, if the temperature exceeds 1200℃, the steel ingot or slab will melt.
.. It is necessary to limit the temperature to a range of 200'C. In order to ensure the shape of the dish-rolled steel ingot or slab and to prevent the occurrence of cracks, it is desirable that there be no temperature difference between the center and the surface of the steel ingot or slab. In order to uniformly heat the surface and center of the ingot or slab, it is necessary to set the furnace atmosphere temperature in consideration of the temperature rise characteristics of the furnace. In particular, for this steel type, in order to decompose and dissolve the Cr carbide present in the center of the steel ingot or slab, it is extremely important to raise the temperature of the center to 1100°C to 1200°C. For this purpose, as a result of temperature measurement experiments conducted by the present inventors, it was found that the heating capacity of a normal industrial furnace is insufficient for steel ingot or slab thickness (mm)
1. Heating for 5 minutes or more is required, and the Cr carbide is thereby eliminated. Note that, from the viewpoint of heating purposes, this heating time condition should be satisfied for both the steel ingot and the slab. (2) The Cr carbide that disappeared during heating by workers also precipitates during rolling, albeit finely, and causes a decrease in ductility. For this reason,
Defects can be prevented by processing at high temperatures when there is a large amount of austenite, which has good ductility. When we investigated the relationship between rolling finishing temperature (rolling completion temperature) and cracking incidence, we found that the occurrence of internal defects could not be prevented unless rolling was completed at 950°C or higher, as shown in Figure 3. Therefore, the working temperature range conditions are from the heating temperature to the finishing rolling temperature of 950° C. or higher. Reduction amount per pass Regarding cracking of steel plates, the amount of reduction per pass has the greatest influence. Cracking occurs because tensile stress is applied to the steel plate in the thickness, width, and length directions of the steel plate during rolling, and the degree of stress is proportional to the amount of reduction per pass. Fourth
The figure shows the relationship between the amount of reduction per pass and the cracks that occur in the steel plate, and shows that it is necessary to suppress the maximum amount of reduction to 10% or less. ■Total reduction ratio Cracks and internal defects in steel sheets occur in and around Cr carbides, but the inability to maintain a balance of strength and toughness with the matrix is also an indirect cause of their occurrence. Therefore, it is necessary to sufficiently crush the coarse columnar crystals generated during casting to improve strength and toughness. To this end, in the case of this steel type, it was found that the total reduction ratio ((I block thickness)/(product thickness)) necessary for crushing columnar crystals must be 8 or more. Next, examples of the present invention will be shown. (Example) Steel having the chemical components shown in Table 1 was melted and cast by a conventional method, and heated and hot rolled under the conditions shown in Table 2. The evaluation results for internal defects and cracks are also listed in Table 2. In Table 2, Nα1 and &2 compare the effects of heating temperature, and the comparative example &2 has a high heating temperature of 1250°C.
In No. 2, the steel ingot melted during heating and blooming was impossible, but in Invention Example Nα1, in which the heating temperature was 1150° C., good product quality was obtained. Moreover, since the heating temperature of Comparative Example Nα4 was as low as 1000° C., internal defects and cracks were generated, whereas inventive example Nα3 had no internal defects or cracks. Nα5 and &6 indicate the difference in the in-furnace time during heating of the steel ingot, and in the comparative example Nα6 of 1720 minutes, which is less than the steel ingot thickness (mm) X 1 , 5 minutes = 1875 minutes, the internal Although the quality was poor, Invention Example 5 of 1950 minutes was good. In Comparative Example Nα8, when the maximum reduction amount per pass was set to 12%, cracks occurred in the steel plate at the end of this one pass. On the other hand, in the present invention example Nα7, the maximum reduction amount per pass was 7.
Since the amount was limited to 5%, rolling was completed without any problems. Comparative Example 10, in which the rolling finishing temperature was 920°C, produced many small cracks around the four peripheries of the steel plate, but the Nα9 of the present invention example was 970.
Because it was finished at ℃, no cracks were observed at all. In Nα11 and Nα12, the product plate thickness is relatively large and the total reduction ratio {((steel ingot thickness)/(product thickness)) is small, but in comparative example N1112, the total reduction ratio {is 7.4. Due to insufficient flaw detection, defects were observed by ultrasonic flaw detection, but no defects occurred in the present invention example Nα11 with a total reduction ratio of 8.9.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、合金工具鋼を所
定の成分調整のもとで適正な製造条件にて加熱、圧延す
るので、内部欠陥も割れも発生せずに圧延することが可
能である。しかも、大型工場設備を使用しても高品質の
合金工具鋼板を製造できるので、経済的であり、その実
用上の効果は顕著である。
(Effects of the Invention) As detailed above, according to the present invention, since alloy tool steel is heated and rolled under appropriate manufacturing conditions with predetermined composition adjustment, no internal defects or cracks occur. It is possible to roll it into Moreover, since high-quality alloy tool steel plates can be manufactured even using large-scale factory equipment, it is economical and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延鋼板に発生する各種別れを説明する図、 第2図は合金工具鋼の高温延性を示す図、第3図は圧延
仕上げ温度と内部欠陥発生率(欠陥波高値、F1≧50
%の欠陥の面積率)の関係を示す図、 第4図は1パ人当りの圧下率と割れ発生個数の関係を示
す図である。 第 ] 図 第 図 包’”J >’m度(・0
Figure 1 is a diagram explaining the various types of separation that occur in rolled steel sheets, Figure 2 is a diagram showing the high-temperature ductility of alloy tool steel, and Figure 3 is a diagram showing the rolling finishing temperature and internal defect occurrence rate (defect peak value, F1 ≥ 50
Figure 4 is a diagram showing the relationship between the rolling reduction rate per machine and the number of cracks generated. No.]

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.75〜2.5
0%、Si:1.50%以下、Mn:2.00%以下、
P:0.030%以下、S:0.020%以下及びCr
:4.0〜14.0%を含み、残部がFeからなる鋼塊
又はスラブを1100〜1200℃の加熱温度で鋼塊又
はスラブ厚(mm)×1.5分以上均熱した後、1パス
当りの圧下率が10%以下で、圧延終了温度が950℃
以上の温度とし、総圧下比{(鋼塊厚)/(製品厚)}
が8以上となるように圧延することを特徴とする合金工
具鋼の圧延方法。
(1) In weight% (the same applies hereinafter), C: 0.75 to 2.5
0%, Si: 1.50% or less, Mn: 2.00% or less,
P: 0.030% or less, S: 0.020% or less, and Cr
: After soaking a steel ingot or slab containing 4.0 to 14.0% and the remainder consisting of Fe at a heating temperature of 1100 to 1200°C for more than 1.5 minutes x the thickness of the steel ingot or slab (mm), 1. The rolling reduction per pass is 10% or less, and the rolling end temperature is 950℃
The temperature is higher than that, and the total reduction ratio {(steel ingot thickness)/(product thickness)}
1. A method for rolling alloy tool steel, characterized by rolling the alloy tool steel so that it is 8 or more.
(2)前記鋼塊又はスラブが、更にMo:2.50%以
下、V:1.50%以下及びW:2.00%以下のうち
の1種又は2種以上を含むものである請求項1に記載の
方法。
(2) The steel ingot or slab further contains one or more of Mo: 2.50% or less, V: 1.50% or less, and W: 2.00% or less. Method described.
JP25028189A 1989-09-26 1989-09-26 Rolling method of alloy tool steel Expired - Fee Related JP2885436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25028189A JP2885436B2 (en) 1989-09-26 1989-09-26 Rolling method of alloy tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25028189A JP2885436B2 (en) 1989-09-26 1989-09-26 Rolling method of alloy tool steel

Publications (2)

Publication Number Publication Date
JPH03111515A true JPH03111515A (en) 1991-05-13
JP2885436B2 JP2885436B2 (en) 1999-04-26

Family

ID=17205566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25028189A Expired - Fee Related JP2885436B2 (en) 1989-09-26 1989-09-26 Rolling method of alloy tool steel

Country Status (1)

Country Link
JP (1) JP2885436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082838A (en) * 2003-09-05 2005-03-31 Jfe Steel Kk Method for manufacturing high-carbon hot-rolled stainless steel plate
WO2016208571A1 (en) * 2015-06-22 2016-12-29 日立金属株式会社 Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005082838A (en) * 2003-09-05 2005-03-31 Jfe Steel Kk Method for manufacturing high-carbon hot-rolled stainless steel plate
WO2016208571A1 (en) * 2015-06-22 2016-12-29 日立金属株式会社 Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product
JPWO2016208571A1 (en) * 2015-06-22 2017-12-07 日立金属株式会社 Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product
US10661353B2 (en) 2015-06-22 2020-05-26 Hitachi Metals, Ltd. Method for producing high-speed tool steel material, method for producing high-speed tool steel product, and high-speed tool steel product

Also Published As

Publication number Publication date
JP2885436B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
EP1846584B2 (en) Austenitic steel having high strength and formability method of producing said steel and use thereof
EP2660348B1 (en) Die steel having superior rusting resistance and thermal conductivity, and method for producing same
WO2017094870A1 (en) Rolling rod for cold-forged thermally refined article
JPS6119734A (en) Martensite stainless steel bar of wire rod and manufacture
JPS60245722A (en) Manufacture of high tensile wire rod
JP3357264B2 (en) Manufacturing method of non-tempered steel bar for high toughness hot forging
JP2710941B2 (en) Rolling die steel
JPH03111515A (en) Rolling method of alloy tool steel
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
JPH07251265A (en) Method for scarfing cast steel slab
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP2781296B2 (en) Manufacturing method of forged steel roll for cold rolling
JPH11285710A (en) Composite work roll for cold rolling and its manufacture
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
JPH02274810A (en) Production of high tensile untempered bolt
CN111876664B (en) Manufacturing method of 50CrVA hot-rolled wide spring steel plate
CN114990305B (en) Method for producing Q890D ultra-high strength steel medium plate through on-line quenching
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JPH0565567B2 (en)
JP3221468B2 (en) Roll material for hot rolling
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH01172518A (en) Manufacture of extremely thick steel plate for pressure vessel
JPH079027B2 (en) Forming method of low alloy steel for high temperature
JP4203982B2 (en) Manufacturing method for rolled compacted products
JP4260670B2 (en) Adamite roll for hot rolling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees