JP2710941B2 - Rolling die steel - Google Patents

Rolling die steel

Info

Publication number
JP2710941B2
JP2710941B2 JP63027162A JP2716288A JP2710941B2 JP 2710941 B2 JP2710941 B2 JP 2710941B2 JP 63027162 A JP63027162 A JP 63027162A JP 2716288 A JP2716288 A JP 2716288A JP 2710941 B2 JP2710941 B2 JP 2710941B2
Authority
JP
Japan
Prior art keywords
less
steel
carbide
area ratio
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63027162A
Other languages
Japanese (ja)
Other versions
JPH01201442A (en
Inventor
敦 熊谷
利夫 奥野
敦輔 中尾
善裕 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63027162A priority Critical patent/JP2710941B2/en
Publication of JPH01201442A publication Critical patent/JPH01201442A/en
Application granted granted Critical
Publication of JP2710941B2 publication Critical patent/JP2710941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種ねじ、スプライン軸、セレーション軸
などの転造に用いる転造ダイス用工具鋼に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a tool steel for a rolling die used for rolling various screws, spline shafts, serration shafts and the like.

〔従来の技術〕[Conventional technology]

転造による加工は、従来ねじ製造に主に用いられてき
たが、転造機構の改良や、高精度化に伴い、自動車部品
のスプライン軸やセレーション軸の製造にも適用されて
きている。転造ダイスの材質は、一部転造条件が過酷な
場合には、高速度工具鋼も用いられることはあるが、主
にSKD11を基本として、合金元素の添加などにより改良
を行なった冷間工具鋼が用いられている。
Conventionally, rolling processing has been mainly used for screw production. However, with the improvement of the rolling mechanism and higher precision, it has also been applied to the production of spline shafts and serration shafts of automobile parts. As for the material of the rolling dies, high-speed tool steel may be used when the rolling conditions are partly severe. Tool steel is used.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

転造製品の適用課題に伴い、これらの素材、つまり被
加工材の材質も多様になってきている。自動車部品等に
おいては、硬さHRC40前後の調質材を転造する場合も現
われてきている。また、難加工材であるステンレスの転
造も増加してきている。このような状況のもとで、転造
ダイスの使用条件は過酷になってきており、従来の転造
ダイス材では、山部の欠損や摩耗により十分な工具寿命
を維持することが難しくなってきている。このため、転
造ダイスの廃却原因を詳しく調査した結果、残留炭化物
の性状が工具寿命を左右する主因であることがわかっ
た。つまり従来材は、耐摩耗性を重視するあまり、M7C3
型やMC型の30μm以上の大型の1次炭化物を10数%から
数10%と多量に分布させた組織としていたが、欠損や摩
耗はこれら大型の1次炭化物の連鎖状分布を径路として
クラックが進展するか、炭化物単位の欠落による微小欠
損の集積が原因であり、過剰の1次炭化物が逆効果とし
て作用していたのである。また、従来鋼は、高温焼もど
しでは十分な硬さが得られないため、低温焼もどしによ
り使用されていたが、難加工材の転造では、かなりの昇
温があるため、高温焼もどしにおいても十分な硬さの確
保ができ、軟化抵抗の高い材質が求められている。
With the application issues of rolled products, these materials, that is, the materials of the workpieces have also been diversified. In the case of automobile parts and the like, the case where a tempered material having a hardness of about HRC40 is rolled has also appeared. Rolling of stainless steel, which is a difficult-to-process material, is also increasing. Under these circumstances, the use conditions of rolling dies have become severe, and it has become difficult for conventional rolling dies to maintain a sufficient tool life due to chipping or wear of the ridges. ing. For this reason, as a result of investigating the cause of scrapping of the rolling dies in detail, it was found that the properties of the residual carbides were the main factors affecting the tool life. In other words, in the conventional material, M 7 C 3
The structure was such that a large primary carbide of 30 μm or more of the mold type or MC type was distributed in a large amount from 10% to several tens%. However, defects and abrasion were caused by the chain-like distribution of these large primary carbides. Or the accumulation of microscopic defects due to the lack of carbide units caused excessive primary carbides to act as an adverse effect. In addition, conventional steel has been used by low-temperature tempering because high-temperature tempering does not provide sufficient hardness.However, in the rolling of difficult-to-process materials, there is a considerable rise in temperature. In addition, a material that can secure sufficient hardness and has high softening resistance is required.

本発明は、これらの事実をもとになされたものであ
り、化学成分の適正化とミクロ組織の調整により、1次
炭化物の適量化を図り、靭性を重視した材質とし、高温
焼もどしにおいてもHRC62以上の硬さの得られる高性能
転造ダイス材を提供するものである。さらに転造ダイス
の微小クラックの原因となり易い硫化物系の非金属介在
物を最少限にとどめるため、S含有量を炭化物の面積率
とともに規制することが有効なこと、およびP含有量も
ある特定値以下にすると、一段と靭性が向上し転造ダイ
スの欠け防止に有効であることを見出したものである。
The present invention has been made based on these facts, and by optimizing the chemical components and adjusting the microstructure, the primary carbide is appropriately quantified, and the material is emphasized in toughness. An object of the present invention is to provide a high-performance rolling die material having a hardness of HRC62 or more. Furthermore, in order to minimize sulfide-based non-metallic inclusions that are likely to cause microcracks in the rolling dies, it is effective to regulate the S content together with the area ratio of carbides, and the P content is also specified. It has been found that when the value is equal to or less than the value, the toughness is further improved and it is effective to prevent chipping of the rolling die.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、重量%でC 0.90〜1.35%、Si 0.70〜1.40
%、Mn 1.0%以下、S 0.004%以下、Cr 6.0〜10.0%、M
oとWの1種または2種をMo+W/2で1.5〜2.5%、VとNb
の1種または2種をV+Nb/2で0.15〜2.5%を含み、残
部Feおよび不可避的不純物からなり、さらに焼入れ焼も
どし組織において、M7C3型炭化物の面積率を2%以上9
%以下、MC炭化物の面積率を2.5以下としたことを特徴
とする転造ダイス用鋼、および重量%でC 0.90〜1.35
%、Si 0.70〜1.40%、Mn 1.0%以下、S 0.004%以下、
Cr 6.0〜10.0%、MoとWの1種または2種をMo+W/2で
1.5〜2.5%、VとNbの1種または2種をV+Nb/2で0.15
〜2.5%、NiとCoの1種または2種をNi+Coで0.3〜1.5
%を含み、残部Feおよび不可避的不純物からなり、さら
に焼入れ焼もどし組織において、M7C3型炭化物の面積率
を2%以上9%以下、MC炭化物の面積率を2.5%以下と
したことを特徴とする転造ダイス用鋼、および重量%で
C 0.90〜1.35%、Si 0.70〜1.40%、Mn 1.0%以下、S
0.004%以下、P 0.015%以下、Cr 6.0〜10.0%、MoとW
の1種または2種をMo+W/2で1.5〜2.5%、VとNbの1
種または2種をV+Nb/2で0.15〜2.5%を含み、残部Fe
および不可避的不純物からなり、さらに焼入れ焼もどし
組織において、M7C3型炭化物の面積率を2%以上9%以
下、MC炭化物の面積率を2.5%以下としたことを特徴と
する転造ダイス用鋼、および重量%でC 0.90〜1.35%、
Si 0.70〜1.40%、Mn 1.0%以下、S 0.004%以下、P 0.
015%以下、Cr 6.0〜10.0%、MoとWの1種または2種
をMo+W/2で1.5〜2.5%、VとNbの1種または2種をV
+Nb/2で0.15〜2.5%、NiとCoの1種または2種をNi+C
oで0.3〜1.5%を含み、残部Feおよび不可避的不純物か
らなり、さらに焼入れ焼もどし組織において、M7C3型炭
化物の面積率を2%以上9%以下、MC炭化物の面積率を
2.5%以下としたことを特徴とする転造ダイス用鋼、お
よび真空溶解、真空脱ガスおよびエレクトロスラグ溶解
から選ばれる1種または2種以上の精錬方法により鋼塊
を製造する工程、該鋼塊または該鋼塊を熱間加工する過
程で、少なくとも一回以上1150〜1250℃で保持し、高温
拡散処理する工程を含む請求項1ないし4のいずれかに
記載の転造ダイス用鋼の製造法である。
In the present invention, 0.90 to 1.35% by weight of C, 0.70 to 1.40% of Si
%, Mn 1.0% or less, S 0.004% or less, Cr 6.0 to 10.0%, M
One or two of o and W are 1.5% to 2.5% by Mo + W / 2, and V and Nb
Of 0.15 to 2.5% by V + Nb / 2, the balance being Fe and unavoidable impurities. In the quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more.
% Or less, and the area ratio of MC carbide is 2.5 or less. Rolled die steel, and C 0.90 to 1.35 by weight%.
%, Si 0.70-1.40%, Mn 1.0% or less, S 0.004% or less,
Cr 6.0 to 10.0%, Mo + W / 2 with one or two of Mo and W
1.5 to 2.5%, one or two of V and Nb are 0.15 in V + Nb / 2
~ 2.5%, one or two of Ni and Co in Ni + Co 0.3 ~ 1.5
%, The balance consists of Fe and inevitable impurities, and in the quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is 2.5% or less. Features rolling steel for die and by weight
C 0.90-1.35%, Si 0.70-1.40%, Mn 1.0% or less, S
0.004% or less, P 0.015% or less, Cr 6.0 to 10.0%, Mo and W
One or two of Mo + W / 2 1.5-2.5%, one of V and Nb
Species or two containing 0.15 to 2.5% by V + Nb / 2 and the balance Fe
A rolling die comprising an unavoidable impurity and a quenched and tempered structure having an area ratio of M 7 C 3 type carbide of 2% or more and 9% or less and an area ratio of MC carbide of 2.5% or less. For steel, and C 0.90-1.35% by weight,
Si 0.70 to 1.40%, Mn 1.0% or less, S 0.004% or less, P 0.
015% or less, Cr 6.0 to 10.0%, one or two of Mo and W are 1.5 to 2.5% by Mo + W / 2, and one or two of V and Nb are V
0.15 to 2.5% at + Nb / 2, one or two of Ni and Co are Ni + C
o 0.3-1.5%, the balance consists of Fe and unavoidable impurities. In the quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is
Rolling die steel characterized by being 2.5% or less, and a step of producing a steel ingot by one or more refining methods selected from vacuum melting, vacuum degassing, and electroslag melting; 5. The method for producing rolling die steel according to any one of claims 1 to 4, further comprising a step of hot-working the ingot and holding the steel ingot at least once at 1150 to 1250 ° C and performing a high-temperature diffusion treatment. It is.

以下に、化学成分の限定理由について述べる。 The reasons for limiting the chemical components are described below.

Cは、工具鋼の強度、耐摩耗性の主因をなす元素であ
り、十分な熱処理硬さを得るためには0.9%以上必要で
ある。またCは、Cr、Mo、Vと炭化物を形成し、耐摩耗
性に寄与する。しかし過剰になると、凝固時の1次炭化
物が多くなり、靭性を劣化させる原因となるため、上限
を1.35%とした。
C is an element that plays a major role in the strength and wear resistance of tool steel, and is required to be 0.9% or more to obtain sufficient heat treatment hardness. C forms carbides with Cr, Mo, and V, and contributes to wear resistance. However, if it becomes excessive, the primary carbides at the time of solidification increase, which causes deterioration of toughness. Therefore, the upper limit is set to 1.35%.

Siは通常脱酸剤として添加されるが、本発明において
は、低温焼もどし(180〜250℃)において使用される場
合も想定し、この温度域で軟化抵抗を発現するため規定
した。この効果を十分に発揮するためには、少なくとも
0.70%以上が必要であるが、1.40%を越えると靭性が低
下してくるため、これを上限とした。
Although Si is usually added as a deoxidizing agent, in the present invention, it is assumed that it is used in low-temperature tempering (180 to 250 ° C.), and is specified to exhibit softening resistance in this temperature range. In order to fully demonstrate this effect, at least
0.70% or more is required, but if it exceeds 1.40%, the toughness is reduced.

Crは、凝固時にM7C3型炭化物として晶出する。これは
工具鋼の耐摩耗性を発揮する主因となるものであるが、
その量は材質の靭性を大きく左右する。このため、C量
とのバランスから工具鋼としての耐摩耗性を維持するた
めには、6.0%以上必要であり、10%を越えると1次炭
化物が適量となり、靭性が劣化してくるためこれを上限
とした。
Cr crystallizes as M 7 C 3 type carbide during solidification. This is the main factor that demonstrates the wear resistance of tool steel,
The amount greatly affects the toughness of the material. For this reason, 6.0% or more is required to maintain the wear resistance of tool steel from the balance with the C content, and if it exceeds 10%, the primary carbide becomes an appropriate amount and the toughness deteriorates. Was set as the upper limit.

Mo、Wは、Cr炭化物に固溶して耐摩耗性を高めるとと
もに、焼入性を向上させ、また焼もどしにおいて、炭化
物として析出し、強い2次硬化を示す元素である。転造
ダイスでは被加工材の種類、特に難加工材では加工中に
昇温するため、ダイスには高温焼もどしが必要になる場
合がある。したがって、高温焼もどしによる硬さとHRC6
2以上と設定しMo、W量を規定した。
Mo and W are elements that form a solid solution with Cr carbide to enhance wear resistance, improve hardenability, and precipitate as carbides during tempering and exhibit strong secondary hardening. In the case of a rolled die, the type of the material to be processed, particularly in the case of a difficult-to-process material, is heated during processing, so that the die may require high-temperature tempering. Therefore, the hardness due to high temperature tempering and HRC6
It was set to 2 or more, and the Mo and W amounts were specified.

Moは、靭性の改善にWは耐摩耗性の向上にそれぞれ有
効であるため、用途により使い分けを行なうこととし、
Wの原子量はMoの約2倍であるため、(Mo+W/2)とし
てまとめ硬さの設定から1.5〜2.5%とした。
Mo is effective for improving toughness, and W is effective for improving wear resistance.
Since the atomic weight of W is about twice that of Mo, it is set as (Mo + W / 2) and set to 1.5 to 2.5% from the setting of hardness.

V、Nbはともに凝固時にMC型炭化物として晶出するも
のであり、硬質の炭化物として耐摩耗性に重要な役割を
担うとともに、結晶粒微細化の効果があり、靭性の向上
に有効である。また2次硬化元素であるため、高温焼も
どしによる硬さ確保に有利である。これら効果を発揮す
るためには、VとNbの1種または2種を(V+Nb/2)で
少なくとも0.15%以上必要である。しかし、この型の炭
化物は多量になると連鎖状に分布し、分布方向の靭性を
劣化させるだけでなく、熱処理によってほとんど変化し
ない。このため後に述べるMC型炭化物量の規定から上限
を2.5%とした。
V and Nb both crystallize as MC-type carbides during solidification and play an important role in wear resistance as hard carbides, and have an effect of refining crystal grains and are effective in improving toughness. Further, since it is a secondary hardening element, it is advantageous for securing hardness by high-temperature tempering. To exhibit these effects, one or two of V and Nb must be at least 0.15% (V + Nb / 2). However, carbides of this type are distributed in a chain form when the amount is large, not only deteriorating the toughness in the distribution direction, but also hardly changing by the heat treatment. For this reason, the upper limit is set to 2.5% from the provision of the amount of MC type carbide described later.

Ni、Coはともに基地に固溶して靭性や焼付性を改善す
る効果がある。またNiは焼入性の向上にも寄与する。こ
のためには、NiとCoの1種または2種を(Ni+Co)で少
なくとも0.3%以上必要であるが、過剰の添加はともに
熱処理硬さを低下させるため上限を1.5%とした。
Both Ni and Co are dissolved in the matrix to improve toughness and seizure. Ni also contributes to the improvement of hardenability. For this purpose, one or two of Ni and Co must be at least 0.3% or more (Ni + Co), but the upper limit is set to 1.5% because excessive addition lowers the heat treatment hardness.

Mnは通常脱酸剤として添加されるが、1%を越えると
熱間加工性を害するだけでなく、被削性を劣化させるた
めこれを上限とした。Sは特にMnと非金属介在物(Mn
S)を形成し、圧延方向に伸びた状態で分布する傾向を
持つ。この場合、特に圧延方向の靭性が低下する。転造
ダイスにおいては、刃部の圧造方向にこの非金属介在物
が並ぶと、刃の欠損につながるためできるだけ低Sとす
ることが望まれる。この点について検討したところ、0.
004%以下のSにおいて、改善効果が見られたのでこれ
を上限とした。
Mn is usually added as a deoxidizing agent, but if it exceeds 1%, it not only impairs hot workability but also deteriorates machinability, so the upper limit is set. S is particularly Mn and nonmetallic inclusions (Mn
S) is formed and tends to be distributed in a state of extending in the rolling direction. In this case, the toughness particularly in the rolling direction decreases. In the rolling die, if the non-metallic inclusions are arranged in the direction of the forging of the blade portion, it will lead to chipping of the blade. After examining this point, we found 0.
An improvement effect was observed in S of 004% or less, so the upper limit was set.

Pは、転造ダイスの刃部に作用する衝撃力に耐えるた
めに低い方がよい。特に0.015%以下にすると衝撃値の
縦横の異方性を小さくできるために転造ダイスの寿命向
上に寄与する。
P is preferably low in order to withstand the impact force acting on the blade portion of the rolling die. In particular, when the content is 0.015% or less, the anisotropy in the vertical and horizontal directions of the impact value can be reduced, which contributes to the improvement of the life of the rolling die.

前述したように、転造ダイス材の寿命を左右するの
は、凝固時に晶出する1次炭化物である。したがって、
本発明の効果を十分発揮するためには本発明の成分範囲
において、さらに1次炭化物の量を規定する必要があ
る。従来のSKD11レベルでは、M7C3型の1次炭化物の面
積率は、10〜12%であった。M7C3型1次炭化物を種々の
面積率を示す材質について靭性との関連を調査したとこ
ろ、9%以下において改善効果が見られるため、これを
上限とした。しかし工具としての耐摩耗性も必要であ
り、完全になくすことはできない。耐摩耗性の面からは
少なくとも2%以上必要である。MC型炭化物は、耐摩耗
性に大きな効果があるだけでなく、凝固時にM7C3型炭化
物に先立って晶出し、M7C3型炭化物の分布状態を改善す
る効果もある。しかし、面積率で2.5%を越えると靭性
が低下してくるため、これを上限とした。
As described above, the primary carbide that crystallizes during solidification determines the life of the rolled die material. Therefore,
In order to sufficiently exert the effects of the present invention, it is necessary to further define the amount of the primary carbide in the component range of the present invention. In conventional SKD11 level, the area ratio of the M 7 C 3 type primary carbides was 10 to 12%. It was a M 7 C 3 type primary carbides to investigate the relationship between toughness for materials showing various area ratio, since the improvement is observed below 9%, which was the upper limit. However, wear resistance as a tool is also necessary and cannot be completely eliminated. In terms of wear resistance, at least 2% is required. The MC type carbide not only has a great effect on wear resistance, but also has an effect of crystallizing prior to M 7 C 3 type carbide during solidification and improving the distribution state of the M 7 C 3 type carbide. However, if the area ratio exceeds 2.5%, the toughness decreases, so the upper limit was set.

本発明鋼を製造するには、S、Pなどの不純物を低
め、非金属を最少限に調整して靭性の向上を図るために
真空溶解、真空脱ガスおよびエレクトロスラグ溶解から
選ばれる1種または2種以上の精錬方法を適用すること
が望ましい。さらに上述のM7C3型およびMC型の1次炭化
物量を調整する手段として、本発明鋼の製造するに当っ
て鋼塊または鋼塊を熱間加工する過程で、少なくとも1
回以上1150〜1250℃で保持し高温拡散処理する工程を含
むことが望ましい。拡散温度は1150℃未満だと十分な元
素の拡散、均質化が行なわれないため、下限を1150℃と
し、1250℃を越えると一部炭化物が溶融し、機械的強度
を下げるため上限を1250℃とした。
In order to manufacture the steel of the present invention, one or more selected from vacuum melting, vacuum degassing, and electroslag melting in order to reduce impurities such as S and P and minimize nonmetals to improve toughness. It is desirable to apply two or more refining methods. Further, as a means for adjusting the amount of primary carbides of the above-mentioned M 7 C 3 type and MC type, at least one step is performed during the hot working of the steel ingot or the steel ingot in producing the steel of the present invention.
It is desirable to include a step of performing the high-temperature diffusion treatment while maintaining the temperature at 1150 to 1250 ° C. or more. If the diffusion temperature is less than 1150 ° C, sufficient diffusion and homogenization of elements will not be performed, so the lower limit is 1150 ° C, and if it exceeds 1250 ° C, some carbides melt and the upper limit is 1250 ° C to lower the mechanical strength. And

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。第1表は
本発明鋼を評価するために従来鋼および比較鋼とともに
製造した本発明鋼の化学成分を示すものである。供試鋼
Noのうち、No.1が従来鋼であり、No.2はP、S以外は本
発明の成分範囲内にあるが、M7C3型炭化物の多いもの、
No.3は成分は本発明鋼と同一であるが、M7C3型炭化物が
本発明鋼より多いものである。供試鋼No.1とNo.2につい
ては高周波溶解、供試鋼No.3ないしNo.7については真空
誘導溶解、供試鋼No.8とNo.9についてはESR溶解、およ
び供試鋼No.10ないしNo.12については、真空脱ガス処理
を行なったものである。供試鋼No.4ないしNo.12の本発
明鋼の鋼塊については、1次炭化物、特にM7C3型炭化物
を調整するために、1170℃で20時間保持する高温拡散処
理を行なった。
Hereinafter, the present invention will be described based on examples. Table 1 shows the chemical composition of the steel of the present invention produced together with the conventional steel and the comparative steel to evaluate the steel of the present invention. Test steel
Among Nos, No. 1 is a conventional steel, No. 2 is within the composition range of the present invention except for P and S, but contains many M 7 C 3 type carbides,
No. 3 has the same composition as the steel of the present invention, but has more M 7 C 3 type carbides than the steel of the present invention. High frequency melting for test steel No.1 and No.2, vacuum induction melting for test steel No.3 to No.7, ESR melting for test steel No.8 and No.9, and test steel No. 10 to No. 12 have been subjected to vacuum degassing. For the ingots of the test steels No. 4 to No. 12 of the present invention, high-temperature diffusion treatment was performed at 1170 ° C. for 20 hours in order to adjust primary carbides, especially M 7 C 3 type carbides. .

この高温拡散処理の条件は、1次炭化物が溶融しない
範囲でできるだけ高い温度が望ましいので、温度として
は1150〜1250℃の範囲が最適である。すべての鋼塊は鍛
造圧延により、断面寸法が100mm×100mmの鋼片とした。
この鋼片に焼なまし処理を行ない供試材とした。
Since the temperature of the high-temperature diffusion treatment is desirably as high as possible without melting the primary carbide, the temperature is optimally in the range of 1150 to 1250 ° C. All ingots were forged and rolled into slabs having a cross-sectional dimension of 100 mm x 100 mm.
This steel piece was subjected to an annealing treatment to obtain a test material.

抗折試験片は、鋼片の圧延方向(以下L方向という)
と圧延方向に直角な方向(以下T方向という)よりφ5
×70mmlの試験片を採取し、所定の焼入れ焼もどしを行
ない試験に供した。なお、焼もどしは供試鋼No.1は低温
焼もどし、他は二次硬化を示す範囲での高温焼もどしで
ある。抗折試験は2点支持で、支点間隔50mmで行ない、
ミクロ組織の炭化物の定量はL方向とT方向の試料の平
均値として表わした。これらの結果を第2表にまとめて
示す。
The bending test specimen is the rolling direction of the steel slab (hereinafter referred to as L direction).
From the direction perpendicular to the rolling direction (hereinafter referred to as the T direction)
A test piece of × 70 mml was sampled, subjected to a predetermined quenching and tempering, and subjected to a test. In addition, the tempering was performed at a low temperature for sample steel No. 1, and at a high temperature within the range showing secondary hardening. The bending test is performed at two points and the support point interval is 50mm.
The quantification of the carbide in the microstructure was expressed as the average value of the samples in the L direction and the T direction. These results are summarized in Table 2.

本発明鋼は、HRC62以上の高い硬さが得られるととも
に一次炭化物の調整により、従来材に比較して高い抗折
力と大きなたわみが得られ、靭性の優れた材質であるこ
とがわかる。
The steel of the present invention has a high hardness of HRC62 or more, and has a high bending strength and a large deflection as compared with the conventional material by adjusting the primary carbide, indicating that the steel is excellent in toughness.

また、本発明鋼と類似する比較鋼でも、一次炭化物の
多いものは抗折力が小さいこと、およびP、Sの不純物
の少ない供試鋼No.4ないしNo.12の抗折力のL/Tの比は、
不純物の多い供試鋼No.1、No.2に比較して大きく、本発
明鋼の靭性値の縦横の差異が小さいことがわかる。
Further, among the comparative steels similar to the steel of the present invention, those having a large amount of primary carbides have a low transverse rupture strength, and L / L of the transverse rupture strengths of the test steels No. 4 to No. The ratio of T is
The test steels No. 1 and No. 2 containing a lot of impurities are larger than those of the test steels.

また耐摩耗性について、大越式摩耗試験を行なった結
果を同時に示した。これは相手材をSKD61(HRC40)と
し、摩擦速度1.37m/s、摩擦距離400m、最終荷重6.3kgの
条件で試験を行ない、摩耗体積を測定し、従来鋼の摩耗
体積を100とした場合の指数である。比較鋼はM7C3型炭
化物およびMC型炭化物量が多く耐摩耗性に優れているが
靭性で劣る。本発明鋼は靭性を重視した材質であるが、
耐摩耗性においても従来鋼と遜色なく、またMC型炭化物
の多い供試鋼No.6、No.12では従来鋼より優れているこ
とがわかる。
The results of the Ogoshi type abrasion test were also shown for the abrasion resistance. The test was performed under the conditions of SKD61 (HRC40) with a friction speed of 1.37 m / s, a friction distance of 400 m, and a final load of 6.3 kg, and the wear volume was measured. It is an index. The comparative steel has a large amount of M 7 C 3 type carbide and MC type carbide and has excellent wear resistance but poor toughness. The steel of the present invention is a material that emphasizes toughness,
It can be seen that the abrasion resistance is not inferior to that of the conventional steel, and that the test steels No. 6 and No. 12 having a large amount of MC type carbide are superior to the conventional steel.

比較のために供試鋼No.1とNo.5のミクロ組織を第1図
に示す。
FIG. 1 shows the microstructures of the test steels No. 1 and No. 5 for comparison.

〔発明の効果〕〔The invention's effect〕

本発明は、従来の転造ダイスの廃却原因の解析に基づ
きなされたものであり、1次炭化物を適正化することに
より、高硬度でしかも高い靭性を有する転造ダイス用鋼
を開発したものである。本発明により、過酷な転造条件
においても、長寿命を有する転造ダイスを製造すること
ができる。
The present invention has been made based on the analysis of the causes of scrapping conventional rolling dies, and has developed a steel for rolling dies having high hardness and high toughness by optimizing the primary carbide. It is. According to the present invention, a rolling die having a long life can be manufactured even under severe rolling conditions.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、抗折試験に供した供試鋼No.1(従来鋼)と供
試鋼No.5(発明鋼)のミクロ金属組織写真である。
FIG. 1 is a microstructure photograph of test steel No. 1 (conventional steel) and test steel No. 5 (inventive steel) subjected to a bending test.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−23747(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-23747 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でC 0.90〜1.35%、Si 0.70〜1.40
%、Mn 1.0%以下、S 0.004%以下、Cr 6.0〜10.0%、M
oとWの1種または2種をMo+W/2で1.5〜2.5%、VとNb
の1種または2種をV+Nb/2で0.15〜2.5%を含み、残
部Feおよび不可避的不純物からなり、さらに焼入れ焼も
どし組織において、M7C3型炭化物の面積率を2%以上9
%以下、MC炭化物の面積率を2.5%以下としたことを特
徴とする転造ダイス用鋼。
C. 0.90 to 1.35% by weight, Si 0.70 to 1.40
%, Mn 1.0% or less, S 0.004% or less, Cr 6.0 to 10.0%, M
One or two of o and W are 1.5% to 2.5% by Mo + W / 2, and V and Nb
Of 0.15 to 2.5% by V + Nb / 2, the balance being Fe and unavoidable impurities. In the quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more.
% Or less, and the area ratio of MC carbide is 2.5% or less.
【請求項2】重量%でC 0.90〜1.35%、Si 0.70〜1.40
%、Mn 1.0%以下、S 0.004%以下、Cr 6.0〜10.0%、M
oとWの1種または2種をMo+W/2で1.5〜2.5%、VとNb
の1種または2種をV+Nb/2で0.15〜2.5%、NiとCoの
1種または2種をNi+Coで0.3〜1.5%を含み、残部Feお
よび不可避的不純物からなり、さらに焼入れ焼もどし組
織において、M7C3型炭化物の面積率を2%以上9%以
下、MC炭化物の面積率を2.5%以下としたことを特徴と
する転造ダイス用鋼。
2. C 0.90 to 1.35% by weight, Si 0.70 to 1.40 by weight%
%, Mn 1.0% or less, S 0.004% or less, Cr 6.0 to 10.0%, M
One or two of o and W are 1.5% to 2.5% by Mo + W / 2, and V and Nb
Contains 0.15 to 2.5% of V + Nb / 2 in one or two kinds, and 0.3 to 1.5% of one or two kinds of Ni and Co in Ni + Co, and the balance consists of Fe and unavoidable impurities. , M 7 C 3 type and the area ratio of the carbides than 9% 2%, steel rolling die, characterized in that the area ratio of MC carbides and 2.5% or less.
【請求項3】重量%でC 0.90〜1.35%、Si 0.70〜1.40
%、Mn 1.0%以下、S 0.004%以下、P 0.015%以下、Cr
6.0〜10.0%、MoとWの1種または2種をMo+W/2で1.5
〜2.5%、VとNbの1種または2種をV+Nb/2で0.15〜
2.5%を含み、残部Feおよび不可避的不純物からなり、
さらに焼入れ焼もどし組織において、M7C3型炭化物の面
積率を2%以上9%以下、MC炭化物の面積率を2.5%以
下としたことを特徴とする転造ダイス用鋼。
3. C 0.90-1.35% by weight, Si 0.70-1.40% by weight
%, Mn 1.0% or less, S 0.004% or less, P 0.015% or less, Cr
6.0 to 10.0%, Mo + W / 2 1.5% for one or two types of Mo and W
2.5%, one or two of V and Nb are 0.15 to V + Nb / 2
Containing 2.5%, the balance being Fe and unavoidable impurities,
Further, in a quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is 2.5% or less.
【請求項4】重量%でC 0.90〜1.35%、Si 0.70〜1.40
%、Mn 1.0%以下、S 0.004%以下、P 0.015%以下、Cr
6.0〜10.0%、MoとWの1種または2種をMo+W/2で1.5
〜2.5%、VとNbの1種または2種をV+Nb/2で0.15〜
2.5%、NiとCoの1種または2種をNi+Coで0.3〜1.5%
を含み、残部Feおよび不可避的不純物からなり、さらに
焼入れ焼もどし組織において、M7C3型炭化物の面積率を
2%以上9%以下、MC炭化物の面積率を2.5%以下とし
たことを特徴とする転造ダイス用鋼。
4. A composition wherein C is 0.90 to 1.35% by weight and Si is 0.70 to 1.40.
%, Mn 1.0% or less, S 0.004% or less, P 0.015% or less, Cr
6.0 to 10.0%, Mo + W / 2 1.5% for one or two types of Mo and W
2.5%, one or two of V and Nb are 0.15 to V + Nb / 2
2.5%, one or two of Ni and Co are 0.3 to 1.5% with Ni + Co
And the balance consists of Fe and unavoidable impurities, and in the quenched and tempered structure, the area ratio of M 7 C 3 type carbide is 2% or more and 9% or less, and the area ratio of MC carbide is 2.5% or less. And rolling die for steel.
【請求項5】真空溶解、真空脱ガスおよびエレクトロス
ラグ溶解から選ばれる1種または2種以上の精錬方法に
より鋼塊を製造する工程、該鋼塊または該鋼塊を熱間加
工する過程で、少なくとも一回以上1150〜1250℃で保持
し、高温拡散処理する工程を含む請求項1ないし4のい
ずれかに記載の転造ダイス用鋼の製造法。
5. A step of producing a steel ingot by one or more refining methods selected from vacuum melting, vacuum degassing and electroslag melting, and hot-working the steel ingot or the steel ingot, The method for producing steel for a rolling die according to any one of claims 1 to 4, further comprising a step of holding at 1150 to 1250 ° C at least once and performing a high-temperature diffusion treatment.
JP63027162A 1988-02-08 1988-02-08 Rolling die steel Expired - Fee Related JP2710941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63027162A JP2710941B2 (en) 1988-02-08 1988-02-08 Rolling die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63027162A JP2710941B2 (en) 1988-02-08 1988-02-08 Rolling die steel

Publications (2)

Publication Number Publication Date
JPH01201442A JPH01201442A (en) 1989-08-14
JP2710941B2 true JP2710941B2 (en) 1998-02-10

Family

ID=12213362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63027162A Expired - Fee Related JP2710941B2 (en) 1988-02-08 1988-02-08 Rolling die steel

Country Status (1)

Country Link
JP (1) JP2710941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653837A (en) * 2012-02-24 2012-09-05 宝山钢铁股份有限公司 High-toughness wear-resistant cold-working die steel and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822040B2 (en) * 1988-06-30 1998-11-05 愛知製鋼株式会社 Cold tool steel
EP0930374B1 (en) * 1998-01-06 2001-10-04 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
JP4144094B2 (en) 1999-01-28 2008-09-03 日立金属株式会社 Blade material for metal band saw
US7615123B2 (en) * 2006-09-29 2009-11-10 Crucible Materials Corporation Cold-work tool steel article
CN102644027A (en) * 2011-02-22 2012-08-22 宝山钢铁股份有限公司 Fixed-length shear blade and manufacturing method thereof
CN103692153A (en) * 2013-09-17 2014-04-02 马鞍山市益华液压机具有限公司 Manufacturing method of reaction arm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237511A (en) * 1975-09-22 1977-03-23 Hitachi Metals Ltd Alloy tool steel for cold working
JPS59179762A (en) * 1983-03-30 1984-10-12 Daido Steel Co Ltd Cold tool steel
JPS6123747A (en) * 1984-07-10 1986-02-01 Nachi Fujikoshi Corp Steel for cold working tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653837A (en) * 2012-02-24 2012-09-05 宝山钢铁股份有限公司 High-toughness wear-resistant cold-working die steel and preparation method thereof

Also Published As

Publication number Publication date
JPH01201442A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
CN110172641B (en) Fine-grain high-toughness hot-work die steel and preparation method thereof
CN110129678B (en) Economical fine-grain high-toughness hot-work die steel and preparation method thereof
EP0523375B1 (en) Process for producing steel bar wire rod for cold working
JPH10273756A (en) Cold tool made of casting, and its production
CN109563578B (en) Steel for induction hardening
EP4261320A1 (en) High-strength and toughness free-cutting non-quenched and tempered round steel and manufacturing method therefor
EP0637636B1 (en) Graphite structural steel having good free-cutting and good cold-forging properties and process of making this steel
CN109477179B (en) Steel for induction hardening
AU2022392619A1 (en) High-strength steel with good weather resistance and manufacturing method therefor
EP2682491B1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP2002539325A (en) Method of manufacturing weather-resistant steel sheets and products thereof
JP2809677B2 (en) Rolling die steel
JP2710941B2 (en) Rolling die steel
KR102131530B1 (en) Steel wire rod having excellent spheroidizing heat treatment properties and method of manufacturing the same
JP3733229B2 (en) Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
CN114959506B (en) High-speed steel for ultrathin stainless steel rolling roller and preparation method thereof
KR970009087B1 (en) Method for manufacturing strong and touch thick steel plate
JPH05156407A (en) Steel for high-performance rolling die and production thereof
JPH0643605B2 (en) Manufacturing method of non-heat treated steel for hot forging
KR102218435B1 (en) Hot rolled steel sheet having excellent surface qualities and low mechanical properties deviation and method of manufacturing the same
KR20210102398A (en) Method for manufacturing high manganese steel slab and manufacturing method for high manganese steel slab or steel sheet
CN114790530B (en) High-plasticity ultrahigh-strength steel plate and manufacturing method thereof
JP2001234278A (en) Cold tool steel excellent in machinability
CN115558854B (en) Hot-rolled strip steel for high-deformation-resistance buckling circular saw and preparation method thereof
JP3238452B2 (en) Forged steel rolls for rolling metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees