JPH05156407A - Steel for high-performance rolling die and production thereof - Google Patents

Steel for high-performance rolling die and production thereof

Info

Publication number
JPH05156407A
JPH05156407A JP32222791A JP32222791A JPH05156407A JP H05156407 A JPH05156407 A JP H05156407A JP 32222791 A JP32222791 A JP 32222791A JP 32222791 A JP32222791 A JP 32222791A JP H05156407 A JPH05156407 A JP H05156407A
Authority
JP
Japan
Prior art keywords
less
steel
quenching
tempering
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP32222791A
Other languages
Japanese (ja)
Inventor
Atsushi Kumagai
敦 熊谷
Eiji Hirakawa
英司 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP32222791A priority Critical patent/JPH05156407A/en
Publication of JPH05156407A publication Critical patent/JPH05156407A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To provide the steel for rolling dies which has the excellent service life to rolling of hardly workable materials, such as stainless steels having a high work hardening property and tempered steels having about 40 HRC and has the hardenability dealing with a vacuum furnace. CONSTITUTION:The material which consists, by weight%, 0.95 to 1.10% C, 0.65 to 1.2O% Si, >=1.0% Mn, 6.80 to 7.80% Cr, 2.50 to 3.50% one or two kinds of Mo and W (Mo+1/2W), 0.20 to 0.60% one or two kinds of V and Nb (V+1/2Nb) or further contg. 1.0 to 4.0% Co in addition thereto and further, 0.2 to 1.0% Ni and the balance Fe, contains respectively carbides of an M7C3 type and MC type, <=20mum max. primary carbide and provides >=64 hardness HRC after high-temp. tempering by specifying the hardening and cooling temp. rate down to 500 deg.C to 25 deg.C/min and the process for production thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種ねじ、スプライン
軸、セレーション軸などの転造加工に用いる転造ダイス
用工具鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tool steel for a rolling die used for rolling various kinds of screws, spline shafts, serration shafts and the like.

【0002】[0002]

【従来の技術】転造加工法は、転造機構の改良や高精度
化に伴い、ねじ製造だけでなく、自動車部品のスプライ
ン軸やセレーション軸の製造にも適用されている。この
ような適用拡大に伴い、被加工材として加工硬化の大き
なステンレス鋼や耐熱鋼、またHRC40前後の調質鋼など
難加工材が増加してきている。これに対し転造ダイス用
の工具材質としては、高速度工具鋼や冷間工具鋼が用い
られているが、コストパフォーマンスから主にSKD1
1クラスの冷間工具鋼が多く用いられている。しかし、
難加工材の増加に対してSKD11クラスでは十分な工
具寿命を確保できていない。このため、特公昭1−51
00号や特開平1−201442号に開示されているよ
うな材質、つまり高温焼もどしにおいてHRC61〜63の硬
さが得られ、かつ一次炭化物を減じることにより、耐摩
耗性より靭性を重視した冷間工具鋼が用いられてきてい
る。
2. Description of the Related Art The rolling method has been applied not only to screw manufacturing but also to spline shafts and serration shafts for automobile parts due to improvements in rolling mechanism and higher precision. Along with the expansion of such applications, the number of difficult-to-process materials such as stainless steel and heat-resistant steel, which have large work hardening as the work material, and heat-treated steel around HRC40, is increasing. On the other hand, high-speed tool steel and cold tool steel are used as the material for rolling dies, but SKD1 is mainly used for cost performance.
1st class cold work tool steel is often used. But,
SKD11 class cannot secure sufficient tool life against the increase of difficult-to-machine materials. For this reason,
No. 00 and Japanese Patent Application Laid-Open No. 1-201442, that is, a hardness of HRC61 to 63 is obtained in high temperature tempering, and primary carbides are reduced, so that toughness is emphasized over wear resistance. Tool steels have been used.

【0003】[0003]

【発明が解決しようとする課題】前述したように、難加
工材の増加に対し、工具材質としては、高い硬さが得ら
れ、かつ、より靭性を重視した冷間工具鋼に推移してき
た。これにより従来材質に比較し、工具寿命の向上は見
られるが、いまだ十分満足すべきものではないため、さ
らに高性能の材質が求められている。また、これに加
え、最近特に普及している真空熱処理炉に対応した高い
焼入性を備えることが要求されている。真空熱処理は、
工数の低減や作業環境が良いことなどから広く利用され
るようになってきたが、ガス冷却のため、十分な冷却速
度を得ることができない。このため処理材質には、高い
焼入性が要求されるわけである。より高性能を目指した
冷間工具鋼として特開平3−134136号にその例が
見られる。しかし、当該鋼は、本発明者の知見による
と、一次炭化物の量やサイズの点で十分な規定がなされ
ておらず、実使用の際、問題となる焼入性についても明
確でない。本発明は、転造ダイス用鋼として、難加工材
の転造に対して高い工具寿命を確保するだけでなく、十
分な焼入性により真空熱処理に対応可能な転造ダイス用
鋼を提供することを目的とする。
As described above, in response to the increase in difficult-to-machine materials, as a tool material, a high hardness has been obtained, and a cold tool steel with more emphasis placed on toughness has been used. As a result, the tool life is improved as compared with the conventional material, but it is not yet fully satisfactory, and therefore a higher performance material is required. In addition to this, it is required to have high hardenability corresponding to a vacuum heat treatment furnace which has been particularly popular recently. Vacuum heat treatment
It has come to be widely used due to the reduction of man-hours and a good working environment, but it is not possible to obtain a sufficient cooling rate because of gas cooling. Therefore, the processed material is required to have high hardenability. An example can be found in JP-A-3-134136 as a cold tool steel aiming at higher performance. However, according to the knowledge of the present inventor, the steel is not sufficiently defined in terms of the amount and size of primary carbides, and the hardenability which is a problem during actual use is not clear. INDUSTRIAL APPLICABILITY The present invention provides, as a rolling die steel, a rolling die steel which not only secures a long tool life for rolling difficult-to-machine materials but also can be applied to vacuum heat treatment due to sufficient hardenability. The purpose is to

【0004】[0004]

【課題を解決するための手段】本発明は、HRC40レベル
の被加工材を転造し、廃却に至った従来工具を詳細に解
析した結果に基づきなされたものである。すなわち、転
造ダイス用鋼としては、耐疲労負荷のため高い硬さが必
要であること、相対的に耐摩耗性より靭性が必要である
が、特に凝固時に晶出する一次炭化物の量、分布、サイ
ズが寿命に対し大きな影響を及ぼすことを見出し、かつ
真空熱処理が容易にできる焼入性を保有するためにも適
切な炭化物の特定の面積率と粒径範囲があることを見出
したものである。すなわち、本発明のうち第1発明は、
重量%でC 0.95〜1.10%、Si 0.65〜1.20%、Mn 1.0%
以下、Cr 6.80〜7.80%、MoとWの1種または2種を
(Mo+1/2W)で2.50〜3.50%、VとNbの1種
または2種を(V+1/2Nb)で0.20〜0.60%を含み、残
部Feおよび不可避的不純物からなり、焼入焼もどし後
において、M73型一次炭化物が面積率で4%以下、MC
型一次炭化物が面積率で0.5%以下、一次炭化物の最大粒
径が実質的に20μm以下で基地中に均一に分布したミク
ロ組織となり、さらに1050℃〜1100℃の焼入温度から、
500℃までの焼入冷却速度を25℃/minとして焼入れし、
これを高温焼もどしした場合の硬さがHRC64以上を得る
ことのできる高性能転造ダイス用鋼である。第2発明
は、第1発明の添加元素に加えCoを1.0〜4.0%含有する
ものであり、第3発明はさらにNiを0.2〜1.0%含有させ
たものである。なお、上記各発明鋼に対し、不可避的不
純物であるP,S,OおよびNをそれぞれ0.015%以下、
0.005%以下、30ppm以下および300ppm以下にすることが
望ましい。第4発明は、これらを製造する工程を規定し
たもので、真空溶解、真空脱ガスおよびエレクトロスラ
グ溶解から選ばれる工程を経る精錬方法による鋼塊を用
い、また工程中に1150℃〜1250℃の高温拡散処理を行な
うことを特徴とする高性能転造ダイス用鋼の製造方法で
ある。
The present invention has been made based on the result of detailed analysis of a conventional tool which has been rolled and rolled into a work material of HRC40 level. That is, as the steel for rolling dies, high hardness is required due to fatigue resistance, and toughness is required relative to wear resistance, but especially the amount and distribution of primary carbide crystallized during solidification. It was found that the size has a great influence on the life, and that there is a specific area ratio and grain size range of the carbide that are suitable for maintaining hardenability that facilitates vacuum heat treatment. is there. That is, the first aspect of the present invention is
% By weight C 0.95 to 1.10%, Si 0.65 to 1.20%, Mn 1.0%
Below, Cr 6.80 to 7.80%, one or two kinds of Mo and W are 2.50 to 3.50% at (Mo + 1 / 2W), and one or two kinds of V and Nb are 0.20 to 0.60 at (V + 1 / 2Nb). %, And the balance Fe and unavoidable impurities. After quenching and tempering, M 7 C 3 type primary carbides have an area ratio of 4% or less, MC
The area ratio of the type primary carbides is 0.5% or less, and the maximum grain size of the primary carbides is substantially 20 μm or less to form a uniformly distributed microstructure in the matrix, and from the quenching temperature of 1050 ° C to 1100 ° C,
Quenching up to 500 ℃ at a cooling rate of 25 ℃ / min,
This is a high-performance rolling die steel that can obtain a hardness of HRC 64 or higher when tempered at a high temperature. The second aspect of the present invention contains 1.0 to 4.0% of Co in addition to the additive element of the first aspect of the present invention, and the third aspect of the present invention further contains 0.2 to 1.0% of Ni. In addition, P, S, O and N which are inevitable impurities are 0.015% or less for each of the above invention steels,
It is desirable to set it to 0.005% or less, 30 ppm or less, and 300 ppm or less. The fourth invention defines the steps for producing these, and uses a steel ingot by a refining method that goes through a step selected from vacuum melting, vacuum degassing, and electroslag melting. A high-performance rolling die steel manufacturing method characterized by performing high-temperature diffusion treatment.

【0005】[0005]

【作用】以下に本発明の化学成分および炭化物の量、分
布、サイズおよび熱処理性、さらに製造工程の数値の限
定理由について述べる。Cは、周知のように鋼に強度を
付与する重要な元素である。本発明の場合、二つの観点
から規定される。一つは凝固時に晶出するM73型(M
はCrを主体としたMo,W等の炭化物生成元素)やMC
型(MはVまたはNb等の炭化物生成元素)の炭化物の量
に関係するものである。このうちM73型炭化物は高温
拡散処理である程度までは固溶するが、VC型はほとん
ど固溶せず、焼入れ熱処理後も残存する。これらは連鎖
状の分布となりやすく、転造ダイスとして使用する際の
クラック進展の経路となるため、C量の規定により、ま
ず炭化物量を制限しなければならない。この点からCは
上限を1.10%とした。もう一点は、焼入焼もどし後の硬
さをHRC64以上とすることに基づくものである。本発明
では、高温焼もどしにおける二次硬化でこれを達成する
ものである。二次硬化においては、Mo,W,Vの析出炭
化物によるものであり、HRC64以上を得るためには、こ
れら炭化物生成元素とのバランスから少なくとも0.95%
以上を必要とする。
The function, quantity, distribution, size and heat-treatability of the chemical components and carbides of the present invention and the reasons for limiting the numerical values of the manufacturing process will be described below. As is well known, C is an important element that imparts strength to steel. In the case of the present invention, it is defined from two viewpoints. One is the M 7 C 3 type (M
Is a carbide-forming element such as Mo or W mainly composed of Cr) and MC
It is related to the amount of carbides of the type (M is a carbide-forming element such as V or Nb). Of these, the M 7 C 3 type carbides form a solid solution to some extent by the high temperature diffusion treatment, but the VC type hardly dissolves and remain after the quenching heat treatment. These tend to have a chain distribution and serve as a route for crack development when used as a rolling die, so that the amount of carbide must first be limited by the regulation of the amount of C. From this point, C has an upper limit of 1.10%. Another point is that the hardness after quenching and tempering is set to HRC64 or higher. In the present invention, this is achieved by secondary hardening in high temperature tempering. In the secondary hardening, it is due to precipitated carbides of Mo, W and V. To obtain HRC of 64 or more, at least 0.95% is required from the balance with these carbide forming elements.
You need more than that.

【0006】Siは、通常脱酸剤として添加されるが、
この目的で含有されるレベルは0.5%程度までである。本
発明では、焼もどし過程における析出炭化物の凝集を抑
制し、二次硬化を促進させるために0.65%以上を添加し
た。一方本発明のようなCrを主体とする合金系でSi
は、オーステナイト領域を狭め、M73型炭化物の晶出
領域を拡大するため、過度の添加はM73型炭化物の増
加をまねく。このため、上限を1.2%に抑えた。Mnは、
Si同様脱酸剤として添加されるが、多量の添加は熱間
における加工性を阻害する。加えて、オーステナイト生
成元素であることから、本発明鋼の焼入温度 1050℃〜1
100℃から焼入した場合、残留オーステナイトを過剰に
生成するため上限を1.0%とした。Crは、凝固時にM7
3型炭化物として晶出し、耐摩耗性に寄与するが、この
炭化物は前述のようにその分布は、クラック進展の経路
として作用するため、C量とのバランスから上限を7.8%
とした。一方Crは、焼入性を改善する最も有効な元素
である。本発明では真空炉による焼入を想定し、焼入加
熱温度から500℃までの焼入冷却速度を25℃/minとして
十分焼入が可能であることを条件とした。したがって、
これを満足するためには少なくとも6.8%必要である。
Si is usually added as a deoxidizing agent,
The level contained for this purpose is up to about 0.5%. In the present invention, 0.65% or more is added in order to suppress the agglomeration of precipitated carbide in the tempering process and accelerate the secondary hardening. On the other hand, in the alloy system mainly composed of Cr as in the present invention, Si
Reduces the austenite region and expands the crystallization region of M 7 C 3 type carbide, so excessive addition leads to an increase in M 7 C 3 type carbide. Therefore, the upper limit was suppressed to 1.2%. Mn is
Like Si, it is added as a deoxidizer, but a large amount of addition impairs the hot workability. In addition, since it is an austenite forming element, the quenching temperature of the steel of the present invention is 1050 ℃ ~ 1
When quenching from 100 ° C, the upper limit was set to 1.0% because excessive austenite is generated. Cr is M 7 C during solidification
Although it crystallizes as a 3 type carbide and contributes to wear resistance, the distribution of this carbide acts as a route for crack propagation as described above, so the upper limit is 7.8% from the balance with the C content.
And On the other hand, Cr is the most effective element for improving hardenability. In the present invention, it is assumed that quenching is performed in a vacuum furnace, and the quenching cooling rate from the quenching heating temperature to 500 ° C. is 25 ° C./min and sufficient quenching is possible. Therefore,
At least 6.8% is required to satisfy this.

【0007】MoおよびWは、二次硬化作用を発揮する
重要な元素であり、Mo量と1/2W量がほぼ等価の効果を
有するので、選択または複合で添加できる。本成分系に
おいて、高温焼もどしによりHRC64以上を得るには、
(Mo+1/2W)で少なくとも2.50%以上を必要とする。
一方、これらの元素はオーステナイト領域を狭め、M7
3の晶出を過多とするため上限を3.50%とした。Vおよ
びNbはともに、凝固時にMC型炭化物として晶出し、
耐摩耗性に寄与する。また結晶粒の粗大化を抑制し、靭
性向上に有効である。このような効果を得るためにはV
と1/2Nbの量がほぼ等価であり、VとNbは選択または
複合して添加できる。しかし、これらの炭化物は、縞状
分布やネットワーク状の分布を形成し易く、また高硬度
であることから、基地と剥離しやすい傾向を持つ、つま
り、割れの起点や進展を助長するため、本発明では耐摩
耗性よりも焼入オーステナイト化温度における結晶粒粗
大化の抑制を狙っている。このためには、(V+1/2Nb)
で0.20%以上必要であるが、0.60%を越えるとMC量が0.
5%を越えるためこれを上限とした。Coは基地に固溶し
て、耐熱性や耐焼付性の向上に有効な元素である。ま
た、Coはオーステナイト領域を拡大する元素であり、
焼入温度において溶質元素の固溶を促進させるため、高
温焼もどしにおける二次硬化に有効である。このために
は、少なくとも1%以上必要であるが、4%を越えるとこの
効果は少なくなるためこれを上限とした。
Mo and W are important elements that exert a secondary hardening action, and since Mo amount and 1/2 W amount have almost the same effect, they can be selected or added in combination. In this component system, to obtain HRC 64 or higher by high temperature tempering,
(Mo + 1 / 2W) requires at least 2.50% or more.
On the other hand, these elements narrow the austenite region and cause M 7
The upper limit was set to 3.50% in order to excessively crystallize C 3 . Both V and Nb crystallize as MC type carbides during solidification,
Contributes to wear resistance. It is also effective in improving the toughness by suppressing the coarsening of crystal grains. To obtain this effect, V
And 1/2 Nb are almost equivalent, and V and Nb can be selected or added in combination. However, since these carbides easily form a striped distribution or a network distribution and have high hardness, they tend to be easily separated from the matrix, that is, they promote the starting point and progress of cracking, and The invention aims at suppressing coarsening of crystal grains at the quenching austenitizing temperature rather than abrasion resistance. For this, (V + 1 / 2Nb)
The required amount is 0.20% or more, but if it exceeds 0.60%, the MC amount is 0.
This is the upper limit because it exceeds 5%. Co is an element effective as a solid solution in the matrix to improve heat resistance and seizure resistance. Also, Co is an element that expands the austenite region,
Since it promotes solid solution of solute elements at the quenching temperature, it is effective for secondary hardening in high temperature tempering. For this purpose, at least 1% or more is necessary, but if it exceeds 4%, this effect becomes small, so this is made the upper limit.

【0008】NiはCoと同様に基地に固溶する元素であ
る。靭性の向上や焼入性の向上に有効であるが、0.2%未
満ではこの効果は少ない。一方、Niはオーステナイト
安定化元素であるため、残留オーステナイトの生成を助
長し、焼入硬さの低下を招くため上限を1.0%とした。
P,S,O,Nは通常不純物元素として微量含有され
る。Pは結晶粒界に偏析し、粒界強度を低下させるだけ
でなく、凝固時の基地偏析を助長し、材質の方向性の原
因となる。SやOは主に非金属介在物として鋼中に存在
し、疲労強度等に悪影響を及ぼす。また、Nは凝固時に
おける一次炭化物の晶出形態に影響を及ぼし、300ppmを
越えると一次炭化物を粗大化させるようになる。これら
の不純物を低減することにより、特に靭性面での効果が
大きい。しかし、本発明鋼のような高硬度で使用される
場合は、1元素の低減では効果が少ないため、4元素を
同時に制限し、それぞれP 0.015%以下、S 0.005%以
下、O30ppm以下、N 300ppm以下とすることにより、改
善効果が得られたので、これらを上限とした。
Ni is an element which forms a solid solution in the matrix like Co. It is effective in improving toughness and hardenability, but if it is less than 0.2%, this effect is small. On the other hand, since Ni is an austenite stabilizing element, it promotes the formation of retained austenite and causes a decrease in quenching hardness, so the upper limit was made 1.0%.
P, S, O and N are usually contained in trace amounts as impurity elements. P not only segregates at the crystal grain boundaries and reduces the grain boundary strength, but also promotes matrix segregation during solidification, which causes the directionality of the material. S and O are mainly present in the steel as non-metallic inclusions and adversely affect fatigue strength and the like. Further, N affects the crystallized form of the primary carbide during solidification, and when it exceeds 300 ppm, the primary carbide becomes coarse. By reducing these impurities, the effect on the toughness is particularly large. However, when it is used with high hardness like the steel of the present invention, the effect of reducing one element is small, so four elements are simultaneously limited, and P 0.015% or less, S 0.005% or less, O 30 ppm or less, and N 300 ppm, respectively. Since the improvement effect was obtained by setting it as follows, these were made into the upper limit.

【0009】冷間工具鋼において、凝固時に晶出する一
次のM73型やMC型炭化物は耐摩耗性を向上する重要
な要素である。しかし、転造ダイスにおいては、工具寿
命を左右する重要な要因となる。特に被加工材がHRC40
クラスの高硬度材の場合、損耗形態は摩耗ではなく、ほ
とんどが欠損で寿命となっていることがわかった。これ
を詳しく解析すると、大型のM73型炭化物やMC型炭
化物と基地との剥離からクラックが発生し、炭化物の配
列に沿って進展する現象が確認された。したがって、こ
れら一次炭化物のサイズ、量、分布について、クラック
の発生、進展の点から検討を行なった結果、M73型炭
化物の量は面積率で4%以下、MC型炭化物の量は面積率
で0.5%以下、さらに大きさとして20μm以下にし、均一
に分布させることにより、大幅に工具寿命を改善させる
ことを知見した。
In cold work tool steel, primary M 7 C 3 type and MC type carbides that crystallize during solidification are important factors for improving wear resistance. However, in the rolling die, it becomes an important factor affecting the tool life. Especially the work material is HRC40
It was found that in the case of the high hardness material of the class, the wear morphology was not wear, but most of the wear was due to defects. When this is analyzed in detail, it has been confirmed that a crack is generated from the peeling of the large M 7 C 3 type carbide or MC type carbide from the matrix and the crack propagates along the carbide array. Therefore, as a result of examining the size, amount, and distribution of these primary carbides from the viewpoint of crack generation and development, the amount of M 7 C 3 type carbides is 4% or less in area ratio, and the amount of MC type carbides is area. It has been found that the tool life can be significantly improved by making the ratio 0.5% or less and the size 20 μm or less and by uniformly distributing the particles.

【0010】被加工材が調質材のような高硬度の場合に
は、転造における変形抵抗も大となり、ダイスに負荷さ
れる応力も高くなる。これに対し、硬さの点からダイス
材を検討した結果、従来の冷間工具鋼レベルの硬さ HRC
60〜63では十分な寿命が得られず、少なくともHRC64以
上とすることにより格段の工具寿命向上が可能であるこ
とが判明した。加えて実際の焼入れ焼もどしの熱処理
は、従来、雰囲気炉やソルト炉が用いられてきたが、工
程効率の向上や作業環境の改善から真空炉を用いた焼入
れが増加してきている。真空炉での冷却はN2ガス冷却
が大半であり、従来の油冷等に比較すると冷却速度は遅
くなるため、工具材料には十分な焼入性が要求される。
本発明では、これらの動向に対応するため、真空炉にお
ける各種サイズの鋼材を用いて実体での冷却速度を測定
し、焼もどし後の硬さとの関連を検討したところ、1050
℃から1100℃の焼入温度から500℃までの冷却速度を25
℃/minとしてもHRC64以上の十分な熱処理硬さが得られ
ることが必要であることがわかった。つまり、この条件
で焼入し、高温焼もどしを行なうことにより、少なくと
もHRC64の硬さが得られるものでなければならないこと
がわかった。本発明の組成と炭化物分布(面積率、粒
径)を有する鋼により、初めて転造ダイスとしての特性
を備え、かつ比較的遅い冷却速度である真空熱処理炉の
使用も可能になるのである。
When the material to be processed has a high hardness like a tempered material, the deformation resistance in rolling also becomes large, and the stress applied to the die becomes high. On the other hand, as a result of examining the die material from the viewpoint of hardness, the hardness of the conventional cold tool steel level HRC
It was found that a sufficient life cannot be obtained with 60 to 63, and that a tool life can be significantly improved by setting at least HRC64 or more. In addition, in the actual heat treatment for quenching and tempering, an atmospheric furnace or a salt furnace has been conventionally used, but quenching using a vacuum furnace is increasing due to improvement in process efficiency and working environment. Most of the cooling in a vacuum furnace is N 2 gas cooling, and the cooling rate is slower than that of conventional oil cooling and the like, so that the tool material is required to have sufficient hardenability.
In the present invention, in order to respond to these trends, the cooling rate in the substance was measured using steel materials of various sizes in a vacuum furnace, and the relationship with the hardness after tempering was examined, and 1050
The cooling rate from the quenching temperature from ℃ to 1100 ℃ to 500 ℃ is 25
It was found that it is necessary to obtain a sufficient heat treatment hardness of HRC64 or higher even at ° C / min. In other words, it was found that at least the hardness of HRC64 should be obtained by quenching under these conditions and performing high temperature tempering. The steel having the composition and carbide distribution (area ratio, grain size) of the present invention makes it possible to use a vacuum heat treatment furnace which has characteristics as a rolling die for the first time and has a relatively slow cooling rate.

【0011】本発明鋼を製造するには、S,P,O,N
などの不純物を低め、非金属介在物を最小限に調整して
靭性の向上を図るため、真空溶解、真空脱ガスおよびエ
レクトロスラグ溶解から選ばれる工程の精錬法を適用す
ることが必要である。さらに、上述のM73型およびM
C型一次炭化物のサイズ、量、分布を調整する手段とし
て、本発明鋼の製造に当って、鋼塊の状態で、または鋼
塊を熱間加工する過程で、少なくとも一回以上 1150℃
〜1250℃で保持し高温拡散処理する工程を含むことが必
要である。拡散温度は、1150℃未満であると、十分な元
素の拡散が行なわれず、一次炭化物のサイズや形態が変
化しないためこれを下限とした。また、1250℃を越える
と一部溶融が始まるためこれを上限とした。
To produce the steel of the present invention, S, P, O, N
It is necessary to apply a refining method in a process selected from vacuum melting, vacuum degassing and electroslag melting in order to reduce impurities such as and to adjust non-metallic inclusions to the minimum and to improve toughness. Further, the above-mentioned M 7 C 3 type and M
As a means for adjusting the size, amount, and distribution of C-type primary carbide, in the production of the steel of the present invention, at least once at a temperature of 1150 ° C. in the state of a steel ingot or in the process of hot working the steel ingot.
It is necessary to include a step of holding at ~ 1250 ° C and performing high temperature diffusion treatment. If the diffusion temperature is less than 1150 ° C., sufficient diffusion of elements is not carried out, and the size and morphology of primary carbides do not change, so this was made the lower limit. Further, when the temperature exceeds 1250 ° C., partial melting starts, so this is set as the upper limit.

【0012】[0012]

【実施例】以下に、本発明を実施例に基づき説明する。
供試材として、表1に示す組成の本発明鋼(No.1〜No.
9)、比較鋼(No.10〜No.12)、および従来鋼(No.13,1
4)を、表2にそれぞれ該当No.で示した溶解法により溶
製し、さらに本発明鋼および比較鋼No.12については、
鋼塊状態で表2に示した条件の高温拡散処理を行なっ
た。この後、熱間加工および焼鈍処理を行なって供試材
とした。なおNo.9※は、化学成分がNo.9と同一で高温
拡散処理をしないものを表す。これらの素材を用いて、
実際の真空焼入炉を用い、焼入を行なった。試験材のサ
イズは、典型的な丸転造ダイスの大きさである直径 200
mm、厚さ 70mmとし、実操業の例と同じ条件である装入
量 300kg、冷却N2ガス圧力 1.8barrで処理を行なっ
た。この場合焼入温度から500℃までの平均冷却速度
は、25℃/minであった。なお比較例No.11は、ガス冷却
では十分な硬さが得られないので油冷(当該温度域冷却
時間≦1min)とした。これらを540℃で焼もどし処理を行
なった。ただし、No.13のSKD11相当材は、通常、
低温焼もどしで使用されるので、ここでは200℃の焼も
どしを行なった。熱処理後、各供試材について、硬さの
測定、画像解析装置による一次炭化物(M73,MC)
のサイズおよび面積率を測定した。また、実際の転造状
態を模擬し、ダイス材の性能比較を行なった。その方法
は、円周方向に連なる頂角60°の刃状突起を有する円板
状試験片を遊転可能に支持して旋盤の刃物台にセット
し、これを主軸で支持回転した相手材の外周に螺旋角を
以って、所定深さの押圧を加えるもので、相手材として
HRC40に調質したSCM440を用い、試験片の山部に
カケが発生するまでの総回転数を寿命として用いた。
EXAMPLES The present invention will be described below based on examples.
As the test material, the steel of the present invention having the composition shown in Table 1 (No. 1 to No. 1).
9), comparative steel (No.10 to No.12), and conventional steel (No.13,1)
4) was melted by the melting method shown in Table 2 with the corresponding No., and for the steel of the present invention and the comparative steel No. 12,
The high temperature diffusion treatment under the conditions shown in Table 2 was performed in the ingot state. After that, hot working and annealing treatment were performed to obtain a test material. No. 9 * indicates that the chemical composition is the same as No. 9 and that high temperature diffusion treatment is not performed. Using these materials,
Quenching was performed using an actual vacuum quenching furnace. The size of the test material is 200 mm, which is the size of a typical round rolling die.
mm, thickness 70 mm, treatment was carried out under the same conditions as in the actual operation, with a charging amount of 300 kg and a cooling N 2 gas pressure of 1.8 barr. In this case, the average cooling rate from the quenching temperature to 500 ° C was 25 ° C / min. Comparative Example No. 11 was oil-cooled (cooling time in the temperature range ≤ 1 min) because sufficient hardness cannot be obtained by gas cooling. These were tempered at 540 ° C. However, the material equivalent to SKD11 of No. 13 is usually
Since it is used for low temperature tempering, tempering at 200 ° C was performed here. After heat treatment, measure hardness of each test material, primary carbide (M 7 C 3 , MC) by image analyzer
The size and area ratio of the In addition, the performance of die materials was compared by simulating the actual rolling state. The method is to set a disc-shaped test piece having blade-shaped projections with an apex angle of 60 ° that are continuous in the circumferential direction so that it can rotate freely and set it on the tool post of a lathe, and support this on a spindle to rotate the mating material. A spiral angle is applied to the outer circumference to apply a predetermined depth of pressure.
Using SCM440 tempered to HRC40, the total number of revolutions before chipping of the test piece was used as the life.

【0013】[0013]

【表1】 [Table 1]

【0014】以上の結果を表2に示す。本発明鋼は、一
次炭化物の面積率、サイズとも適切であり、かつ真空熱
処理においてHRC64以上を得ることができるため、高硬
度の加工材の転造加工に対し、十分な強度と靭性を確保
することができる。すなわち、転造疲労寿命試験におい
て、比較鋼、従来鋼に対して、2倍から5倍の寿命を示
すことがわかる。No.9※は本発明鋼No.9の組成で、高
温拡散処理を行なわないで製造したものであり、比較鋼
である。高温拡散処理工程を欠くため、熱処理硬さは十
分に得られるが、一次炭化物の量、サイズがNo.9との
対比でも判るように過剰かつ過大となり、本来の工具寿
命を阻害している。比較鋼No.10は硬さは満足するが、
C,Cr量が不適切なため、M73型の一次炭化物の
量、サイズとも過剰となり、クラックの発生確率が高
く、本発明鋼に及ばない。比較鋼No.11の一次炭化物は
硬質のMC型が相対的に多い。MC型炭化物は基地の変
形特性との差が大きいため、応力集中源となり易く、ク
ラック発生の要因となる。また焼入性も低下させるので
満足すべき工具寿命は得られていない。比較鋼No.12
は、一次炭化物の面積率では、本発明鋼に近く、また熱
処理硬さも十分であるが、一次炭化物の最大サイズが大
きく、また溶解法と関連してP,SおよびO,Nの不純
物の水準が高いため、本発明鋼のレベルに至っていな
い。また、従来鋼No.13は、SKD11相当で、一次炭
化物の量、サイズとも大幅に過剰、過大であり、加えて
焼入性はあるものの、Mo+1/2WやV+1/2Nbの不足
等、化学組成的にHRC64以上を得ることは不可能であ
る。また、従来鋼である8Cr系のNo.14では、一次炭化
物の水準は、本発明鋼に近づくが不十分であり、またHR
C64以上を得ることも困難である。このため両従来鋼種
とも、転造疲労寿命で本発明鋼よりかなり劣る結果とな
っている。
The above results are shown in Table 2. The steel of the present invention has an appropriate area ratio and size of primary carbides, and can obtain HRC64 or more in vacuum heat treatment, so that sufficient strength and toughness are ensured for rolling of high hardness work materials. be able to. That is, it can be seen that the rolling fatigue life test shows a life of 2 to 5 times that of the comparative steel and the conventional steel. No. 9 * is the composition of the steel No. 9 of the present invention, which was manufactured without high temperature diffusion treatment and is a comparative steel. Since the high temperature diffusion treatment step is lacking, sufficient heat treatment hardness can be obtained, but the amount and size of primary carbides are excessive and excessive as can be seen by comparison with No. 9, which impairs the original tool life. Comparative steel No. 10 is satisfactory in hardness,
Since the amounts of C and Cr are inadequate, the amounts and sizes of M 7 C 3 type primary carbides become excessive, and the probability of cracking is high, which is inferior to the steel of the present invention. The primary carbides of comparative steel No. 11 are relatively large in hard MC type. Since the MC type carbide has a large difference from the deformation characteristics of the matrix, it easily becomes a stress concentration source and causes a crack. Further, the hardenability is also deteriorated, so that a satisfactory tool life is not obtained. Comparative Steel No. 12
Has an area ratio of primary carbides close to that of the steel of the present invention, and has sufficient heat treatment hardness, but has a large maximum size of primary carbides, and the levels of impurities of P, S and O, N are associated with the melting method. Is high, it has not reached the level of the steel of the present invention. In addition, the conventional steel No. 13 is equivalent to SKD11, and the amount and size of primary carbides are greatly excessive and excessive, and although it has hardenability, it has a chemical composition such as Mo + 1/2 W and V + 1/2 Nb. It is impossible to get HRC64 or higher. Further, in the conventional steel No. 14 of 8Cr system, the level of primary carbides is inadequate although close to that of the steel of the present invention, and HR
It is also difficult to get C64 and above. Therefore, the rolling fatigue life of both the conventional steel types is considerably inferior to that of the steel of the present invention.

【0015】[0015]

【表2】 [Table 2]

【0016】表3には、本発明鋼No.1,9、比較鋼No.1
1、従来鋼No.14の熱処理特性、特に冷却時間の影響を
調査した結果を示している。工具材料は、実際の熱処理
条件で目標とする硬さを得ることが実用上重要である。
先に述べたように、代表的な大きさの転造ダイスの真空
焼入では、焼入温度から500℃までの冷却速度は約25℃/
min、したがって1180℃からでは約27分、1160℃からで
は約26分である。したがって、この冷却条件以内で焼も
どし後の硬さHRC64以上を満足し得るものでなければな
らない。表3から、本発明のNo.1はこれを満足し、ま
たNo.9は30minの遅い冷却となっても十分な硬さを得る
ことができることがわかる。これに対し、比較鋼No.11
は油冷ではHRC64を越えるが、焼入性が不十分のため、2
7minの条件では硬さはかなり低下し、No.14は、表2の
焼入温度よりさらに高温の1160℃で焼入れしたが、冷却
時間が長くなっても硬さの低下は少ないとはいえ、化学
組成的に二次硬化は限界であり、急冷によってもHRC64
以上を得ることは困難である。
Table 3 shows steel Nos. 1 and 9 of the present invention and comparative steel No. 1.
1. The results of investigation of heat treatment characteristics of conventional steel No. 14, especially the influence of cooling time are shown. It is practically important for the tool material to obtain a target hardness under actual heat treatment conditions.
As mentioned above, in vacuum quenching of a typical size rolling die, the cooling rate from the quenching temperature to 500 ° C is about 25 ° C /
min, therefore about 27 minutes from 1180 ° C and about 26 minutes from 1160 ° C. Therefore, within this cooling condition, the hardness after tempering must be HRC 64 or more. From Table 3, it can be seen that No. 1 of the present invention satisfies this, and No. 9 can obtain sufficient hardness even with slow cooling of 30 minutes. On the other hand, comparative steel No. 11
Oil-cooled exceeds HRC64, but hardenability is insufficient, so 2
The hardness decreased considerably under the condition of 7 min, and No. 14 was quenched at 1160 ° C., which is higher than the quenching temperature shown in Table 2. However, even if the cooling time is long, the hardness is not significantly reduced. Secondary curing is limited in terms of chemical composition, and HRC64 can be achieved even by quenching.
It is difficult to obtain the above.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】以上述べたように本発明は、従来の転造
ダイス材では、加工硬化の大きいステンレス鋼等やHRC4
0程度の調質鋼等の難加工材に対して、十分な工具寿命
が得られなかったことに対応して、また真空炉の適用を
考慮して熱処理性を加見し開発されたものであり、最適
の成分範囲でかつミクロ組織を適正化することにより、
優れた工具寿命を達成したものである。
As described above, according to the present invention, in the conventional rolling die material, stainless steel or the like having a large work hardening and HRC4 are used.
It was developed in response to the fact that a sufficient tool life could not be obtained for difficult-to-machine materials such as heat-treated steel of about 0, and in consideration of the application of a vacuum furnace, the heat treatment property was added. Yes, by optimizing the microstructure within the optimum component range,
It achieves an excellent tool life.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%でC 0.95〜1.10%、Si 0.65〜1.
20%、Mn 1.0%以下、Cr 6.80〜7.80%、MoとWの1種
または2種を(Mo+1/2W)で2.50〜3.50%、VとNbの
1種または2種を(V+1/2Nb)で0.20〜0.60%を含
み、残部Feおよび不可避的不純物からなり、焼入焼も
どし後において、M73型一次炭化物が面積率で4%以
下、MC型一次炭化物が面積率で0.5%以下、一次炭化物
の最大粒径が実質的に20μm以下で基地中に均一に分布
したミクロ組織となり、さらに1050℃〜1100℃の焼入温
度から、500℃までの焼入冷却速度を25℃/minとして焼
入れし、これを高温焼もどしした場合の硬さがHRC64以
上を得ることのできる高性能転造ダイス用鋼。
1. C. 0.95 to 1.10% by weight, Si 0.65 to 1.10% by weight.
20%, Mn 1.0% or less, Cr 6.80 to 7.80%, 1 or 2 types of Mo and W (Mo + 1 / 2W) 2.50 to 3.50%, 1 or 2 types of V and Nb (V + 1 / 2Nb) Of 0.20 to 0.60%, and the balance Fe and unavoidable impurities. After quenching and tempering, the M 7 C 3 type primary carbides have an area ratio of 4% or less and the MC type primary carbides have an area ratio of 0.5% or less. , The primary carbide has a maximum grain size of substantially 20 μm or less and has a uniformly distributed microstructure in the matrix. Further, the quenching cooling rate from the quenching temperature of 1050 ℃ to 1100 ℃ to 500 ℃ is 25 ℃ / min A steel for high-performance rolling dies that can be hardened as above and has a hardness of HRC64 or higher when tempered at high temperature.
【請求項2】 重量%でC 0.95〜1.10%、Si 0.65〜1.
20%、Mn 1.0%以下、Cr 6.80〜7.80%、MoとWの1種
または2種を(Mo+1/2W)で2.50〜3.50%、VとNbの
1種または2種を(V+1/2Nb)で0.20〜0.60%、Co
1.0〜4.0%を含み、残部Feおよび不可避的不純物からな
り、焼入焼もどし後において、M73型一次炭化物が面
積率で4%以下、MC型一次炭化物が面積率で0.5%以下、
一次炭化物の最大粒径が実質的に20μm以下で基地中に
均一に分布したミクロ組織となり、さらに1050℃〜1100
℃の焼入温度から、500℃までの焼入冷却速度を25℃/mi
nとして焼入れし、これを高温焼もどしした場合の硬さ
がHRC64以上を得ることのできる高性能転造ダイス用
鋼。
2. C 0.95 to 1.10% by weight% and Si 0.65 to 1.10% by weight.
20%, Mn 1.0% or less, Cr 6.80 to 7.80%, 1 or 2 types of Mo and W (Mo + 1 / 2W) 2.50 to 3.50%, 1 or 2 types of V and Nb (V + 1 / 2Nb) 0.20-0.60%, Co
1.0 to 4.0%, balance Fe and unavoidable impurities, and after quenching and tempering, M 7 C 3 type primary carbides have an area ratio of 4% or less, MC type primary carbides have an area ratio of 0.5% or less,
The maximum grain size of primary carbide is substantially 20 μm or less, and the microstructure is uniformly distributed in the matrix.
The quenching cooling rate from the quenching temperature of ℃ to 500 ℃ is 25 ℃ / mi
Steel for high-performance rolling dies that can obtain hardness of HRC64 or higher when quenched as n and tempered at high temperature.
【請求項3】 重量%でC 0.95〜1.10%、Si 0.65〜1.
20%、Mn 1.0%以下、Cr 6.80〜7.80%、MoとWの1種
または2種を(Mo+1/2W)で2.50〜3.50%、VとNbの
1種または2種を(V+1/2Nb)で0.20〜0.60%、Co
1.0〜4.0%、Ni 0.2〜1.0%を含み、残部Feおよび不可
避的不純物からなり、焼入焼もどし後において、M73
型一次炭化物が面積率で4%以下、MC型一次炭化物が面
積率で0.5%以下、一次炭化物の最大粒径が実質的に20μ
m以下で基地中に均一に分布したミクロ組織となり、さ
らに1050℃〜1100℃の焼入温度から、500℃までの焼入
冷却速度を25℃/minとして焼入れし、これを高温焼もど
しした場合の硬さがHRC64以上を得ることのできる高性
能転造ダイス用鋼。
3. C 0.95 to 1.10% by weight%, Si 0.65 to 1.10% by weight.
20%, Mn 1.0% or less, Cr 6.80 to 7.80%, 1 or 2 types of Mo and W (Mo + 1 / 2W) 2.50 to 3.50%, 1 or 2 types of V and Nb (V + 1 / 2Nb) 0.20-0.60%, Co
1.0 to 4.0%, Ni 0.2 to 1.0%, balance Fe and unavoidable impurities, and after quenching and tempering, M 7 C 3
Area ratio of type primary carbide is 4% or less, MC type primary carbide is 0.5% or less, and maximum grain size of primary carbide is substantially 20μ.
When the microstructure is uniformly distributed in the matrix at m or less, and further quenching is performed at a quenching cooling rate of 1050 ° C to 1100 ° C to 500 ° C at a quenching cooling rate of 25 ° C / min and high temperature tempering. Steel for high performance rolling dies that can obtain hardness of HRC 64 or more.
【請求項4】 不可避的不純物として、P 0.015%以
下、S 0.005%以下、O30ppm以下、N 300ppm以下を満
足する請求項1〜3のいずれかに記載の高性能転造ダイ
ス用鋼。
4. The high-performance rolling die steel according to claim 1, wherein P 0.015% or less, S 0.005% or less, O 30 ppm or less, and N 300 ppm or less are satisfied as unavoidable impurities.
【請求項5】 真空溶解、真空脱ガスおよびエレクトロ
スラグ溶解から選ばれる工程を経る精錬方法により鋼塊
を製造する工程、該鋼塊の状態で、または該鋼塊を熱間
加工する過程で、少なくとも1回以上1150℃〜1250℃で
保持し、高温拡散処理する工程を含む請求項1から4の
いずれかに記載の高性能転造ダイス用鋼の製造方法。
5. A step of producing a steel ingot by a refining method including a step selected from vacuum melting, vacuum degassing and electroslag melting, in the state of the steel ingot, or in the step of hot working the steel ingot, The method for producing a steel for high performance rolling dies according to any one of claims 1 to 4, comprising a step of holding at 1150 ° C to 1250 ° C at least once and performing a high temperature diffusion treatment.
JP32222791A 1991-12-06 1991-12-06 Steel for high-performance rolling die and production thereof Abandoned JPH05156407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32222791A JPH05156407A (en) 1991-12-06 1991-12-06 Steel for high-performance rolling die and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32222791A JPH05156407A (en) 1991-12-06 1991-12-06 Steel for high-performance rolling die and production thereof

Publications (1)

Publication Number Publication Date
JPH05156407A true JPH05156407A (en) 1993-06-22

Family

ID=18141357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32222791A Abandoned JPH05156407A (en) 1991-12-06 1991-12-06 Steel for high-performance rolling die and production thereof

Country Status (1)

Country Link
JP (1) JPH05156407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053991A (en) * 1998-01-06 2000-04-25 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
WO2002083966A1 (en) * 2001-04-18 2002-10-24 Usinor Reinforced durable tool steel, method for the production thereof, method for producing parts made of said steel, and parts thus obtained
WO2016047396A1 (en) 2014-09-26 2016-03-31 日立金属株式会社 Cold tool material and method for manufacturing cold tool
WO2016152406A1 (en) * 2015-03-26 2016-09-29 日立金属株式会社 Cold work tool and method for manufacturing same
CN109023125A (en) * 2018-10-23 2018-12-18 河南中原特钢装备制造有限公司 The production technology of low-carbon, high silicon cupric containing aluminium plastic mould steel
US10407747B2 (en) 2016-03-18 2019-09-10 Hitachi Metals, Ltd. Cold working tool material and cold working tool manufacturing method
CN114427091A (en) * 2020-10-14 2022-05-03 无锡朗贤轻量化科技股份有限公司 High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
CN115058633A (en) * 2022-06-20 2022-09-16 中国科学院金属研究所 High-carbon medium-high alloy steel and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6053991A (en) * 1998-01-06 2000-04-25 Sanyo Special Steel Co., Ltd. Production of cold working tool steel
WO2002083966A1 (en) * 2001-04-18 2002-10-24 Usinor Reinforced durable tool steel, method for the production thereof, method for producing parts made of said steel, and parts thus obtained
FR2823768A1 (en) * 2001-04-18 2002-10-25 Usinor Reinforced durable tool steel includes chromium, manganese, molybdenum, tungsten, titanium and zirconium
CZ297762B6 (en) * 2001-04-18 2007-03-21 Usinor Tool steel, process for producing parts of such steel and a steel part obtained in such a manner
US7445750B1 (en) 2001-04-18 2008-11-04 Usinor Reinforced durable steel, method for the production thereof, method for producing parts made of steel, and parts thus obtained
WO2016047396A1 (en) 2014-09-26 2016-03-31 日立金属株式会社 Cold tool material and method for manufacturing cold tool
US9890435B2 (en) 2014-09-26 2018-02-13 Hitachi Metals, Ltd. Cold work tool material and method of manufacturing cold work tool
KR20170036125A (en) 2014-09-26 2017-03-31 히타치 긴조쿠 가부시키가이샤 Cold tool material and method for manufacturing cold tool
JPWO2016152406A1 (en) * 2015-03-26 2017-06-01 日立金属株式会社 Cold tool and manufacturing method thereof
WO2016152406A1 (en) * 2015-03-26 2016-09-29 日立金属株式会社 Cold work tool and method for manufacturing same
US10844456B2 (en) 2015-03-26 2020-11-24 Hitachi Metals, Ltd. Cold work tool and method for manufacturing same
US10407747B2 (en) 2016-03-18 2019-09-10 Hitachi Metals, Ltd. Cold working tool material and cold working tool manufacturing method
CN109023125A (en) * 2018-10-23 2018-12-18 河南中原特钢装备制造有限公司 The production technology of low-carbon, high silicon cupric containing aluminium plastic mould steel
CN114427091A (en) * 2020-10-14 2022-05-03 无锡朗贤轻量化科技股份有限公司 High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
CN114427091B (en) * 2020-10-14 2024-03-26 无锡朗贤轻量化科技股份有限公司 High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
CN115058633A (en) * 2022-06-20 2022-09-16 中国科学院金属研究所 High-carbon medium-high alloy steel and preparation method thereof
CN115058633B (en) * 2022-06-20 2023-08-18 中国科学院金属研究所 High-carbon medium-high alloy steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6384626B2 (en) Induction hardening steel
JP6384629B2 (en) Induction hardening steel
JP6384630B2 (en) Induction hardening steel
JPH06322482A (en) High toughness high-speed steel member and its production
JPH10273756A (en) Cold tool made of casting, and its production
CN109477179B (en) Steel for induction hardening
JP6384628B2 (en) Induction hardening steel
JPH05156407A (en) Steel for high-performance rolling die and production thereof
JP2809677B2 (en) Rolling die steel
JP2710941B2 (en) Rolling die steel
JPH0853735A (en) Steel for bearing
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH093604A (en) High speed tool steel for precision casting
JPH1192868A (en) Steel for cold forging excellent in crystal grain-coarsening preventability and delayed fracture resistance and its production
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP2000087177A (en) Steel casting of cold-working tool steel excellent in machinability, and its production
JP2001234278A (en) Cold tool steel excellent in machinability
JPH11269601A (en) Steel for cold working excellent in induction hardenability, parts for machine structure and production thereof
JPH08209297A (en) High speed steel
JP2000282184A (en) High hardness steel for induction hardening excellent in machinability and corrosion resistance
JP2003041344A (en) High-carbon seamless steel pipe superior in secondary workability, and manufacturing method therefor
JP2003313642A (en) Steel for high-speed tool and manufacturing method therefor
JP2004315840A (en) Cold working tool steel superior in machinability, and manufacturing method therefor
CN115505838A (en) High-strength-toughness low-alloy die steel and preparation method thereof
JPH06322439A (en) Method for softening and annealing high alloy tool steel

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040416