EP2889393B1 - Intermediate material for stainless steel for knives - Google Patents

Intermediate material for stainless steel for knives Download PDF

Info

Publication number
EP2889393B1
EP2889393B1 EP14773977.5A EP14773977A EP2889393B1 EP 2889393 B1 EP2889393 B1 EP 2889393B1 EP 14773977 A EP14773977 A EP 14773977A EP 2889393 B1 EP2889393 B1 EP 2889393B1
Authority
EP
European Patent Office
Prior art keywords
stainless steel
intermediate material
plane
edged tools
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14773977.5A
Other languages
German (de)
French (fr)
Other versions
EP2889393A4 (en
EP2889393A1 (en
Inventor
Norihide Fukuzawa
Tomonori Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of EP2889393A1 publication Critical patent/EP2889393A1/en
Publication of EP2889393A4 publication Critical patent/EP2889393A4/en
Application granted granted Critical
Publication of EP2889393B1 publication Critical patent/EP2889393B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to an intermediate material for stainless steel for edged tools, which is used in, for example, razors, cutters, kitchen knives, and knives.
  • Martensitic stainless steel has been widely used as a material for edged tools such as razors, cutters, kitchen knives, and knives.
  • a strip of high-carbon martensitic stainless steel containing approximately 13% by mass of Cr and approximately 0.65% by mass of C is known to be most suitable as a material for razors.
  • the high-carbon martensitic stainless steel used in such applications (hereinafter referred to as "stainless steel for edged tools”) is usually subjected to hardening and tempering before use.
  • the stainless steel for edged tools is required to have high hardness when in use.
  • the stainless steel for edged tools is usually manufactured through the following manufacturing processes.
  • a raw material is melted and cast thereby to manufacture a material.
  • the material is hot-rolled thereby to manufacture an intermediate material.
  • the material may be hot-forged or hot-rolled through a blooming process.
  • the intermediate material is subjected to an initial annealing thereby to manufacture an annealed material.
  • the annealed material is repeatedly subjected to cold rolling followed by strain-removal annealing the necessary number of times thereby to manufacture a cold-rolled steel strip having an intended thickness.
  • the cold-rolled steel strip is subjected to hardening and tempering to produce stainless steel for edged tools.
  • the stainless steel for edged tools is subjected to processing processes such as sharpening and cutting, and thus becomes an end-product. It is noted that, in general, trading in the market of stainless steel for edged tools is often conducted in the form of either an annealed material or a cold-rolled steel strip.
  • Patent Literature 1 JP-A-5-39547 discloses that heat treatment during hardening can be performed for a short time by controlling the carbide density of steel for stainless razors.
  • Patent Literature 1 JP-A-5-39547
  • Non-Patent Literature 1 Transactions of the Japan Society of Mechanical Engineers (Series A), 2005, Vol. 71, No. 712, p. 1722
  • An object of the present invention is to provide an intermediate material for stainless steel for edged tools having an excellent carbide distribution, of which the hardness can be increased by heat treatment for a short time during hardening.
  • the present inventors studied the relationship between the carbide distribution that influences the hardenability and hardness of stainless steel for edged tools and the intermediate material for stainless steel for edged tools that influences the carbide distribution.
  • the present inventors have ascertained that, among the features of the intermediate material for stainless steel for edged tools, the strain amount before annealing influences the carbide distribution after annealing of the intermediate material.
  • the present inventors have found that, by allowing strain to be retained in a final pass of hot rolling for the intermediate material for stainless steel for edged tools substantially including an FCC phase, the carbide distribution after annealing can be improved when a KAM value by an SEM-EBSD method is 0.5° or more or when a half-value width of a (200) plane of the FCC phase in X-ray diffraction becomes 0.3° or more, and thus have accomplished the present invention.
  • an intermediate material for stainless steel for edged tools which substantially includes an FCC phase and is a material after hot rolling and before annealing, has a composition of, in % by mass, 0.46 to 0.72% of C, 0.15 to 0.55% of Si, 0.45 to 1.00% of Mn, 12.5 to 13.9% of Cr, 0 to 2.0% of Mo+W/2, and a remainder of Fe and impurities.
  • a KAM value by an SEM-EBSD method in a position at 1/4 in depth of a plane thickness from a surface of a rolled plane is 0.5° or more.
  • a half-value width of a (200) plane of a FCC phase in X-ray diffraction in a position at 1/4 in depth of a plane thickness from a surface of a rolled plane is 0.3° or more.
  • the stainless steel for edged tools manufactured using the intermediate material for stainless steel for edged tools according to the present invention can be increased in hardness by heat treatment for a short time during hardening. Therefore, the intermediate material for stainless steel for edged tools according to the present invention is most suitable especially in applications such as razors having a thin thickness.
  • one of the important characteristics of the present invention is that the carbide distribution in the intermediate material after annealing is improved by controlling the residual strain amount in the intermediate material before annealing.
  • KAM kernel average misorientation
  • ⁇ KAM value by SEM-EBSD method is 0.50° or more>
  • the residual strain plays an important role.
  • a KAM value defined in the present invention for example, the KAM value by the SEM (scanning electron microscope)-EBSD (electron backscatter diffraction) method is described as a measurement method of the residual strain in Non-Patent Literature 1. According to the studies conducted by the present inventors, it has been confirmed that the KAM value by the SEM-EBSD method of the intermediate material for stainless steel for edged tools having the above-described composition is correlated with the carbide distribution of the annealed material for stainless steel for edged tools obtained using the above-described intermediate material.
  • the intermediate material when the KAM value by the SEM-EBSD method of the intermediate material for stainless steel for edged tools is less than 0.50°, the intermediate material can be said to be in a state of having small residual strain.
  • coarse carbides are likely to be precipitated at grain boundaries, compared to a material having a large residual strain amount.
  • toughness decreases after hardening and tempering performed when used in edged tools. Therefore, an average value of the KAM values by the SEM-EBSD method needs to be 0.50° or more.
  • the larger KAM value causes larger residual strain, and is therefore preferred.
  • the upper limit of the KAM value is preferably 2.00° or less.
  • the residual strain plays an important role. It is known that there is a correlation between the half-value width and the residual strain. According to the studies conducted by the present inventors, it has been confirmed that the half-value width in X-ray diffraction of the intermediate material for stainless steel for edged tools having the above-described composition is correlated with the carbide distribution of the annealed material for stainless steel for edged tools obtained using the above-described intermediate material.
  • the half-value width of the (200) plane of the FCC phase in X-ray diffraction of the intermediate material for stainless steel for edged tools is less than 0.3°, the intermediate material can be said to be in a state of having small residual strain.
  • coarse carbides are likely to be precipitated at grain boundaries, compared to a material having a large residual strain amount.
  • toughness decreases after hardening and tempering performed when used in edged tools. Therefore, the half-value width in X-ray diffraction of the (200) plane of the FCC phase needs to be 0.3° or more.
  • the larger half-value width causes larger residual strain, and is therefore preferred.
  • the half-value width exceeds 1.0°, the residual strain is likely to become large in variation depending on the position. Therefore, the upper limit of the half-value width is preferably 1.0° or less.
  • the measurement of the KAM value by the SEM-EBSD method or the measurement of the half-value width of the (200) plane of the FCC phase in X-ray diffraction as described above is performed in a position at 1/4 in depth of the plane thickness from the surface of the rolled plane.
  • the "rolled plane” in the present invention refers to, as illustrated in FIG. 1 , a plane with which a rolling roll is in contact during rolling of the intermediate material for stainless steel for edged tools.
  • the reason why the rolled plane side is used for evaluation is that, since the strain amount introduced by rolling is non-uniform in a thickness direction, settling the evaluated plane and the thickness enables the evaluation to be performed under the same conditions.
  • the position at 1/4 in depth of the plane thickness from the surface is selected in the present invention because the vicinity of the surface has large strain introduced during hot rolling thereby to decrease the particle diameter of crystals generated by recrystallization, and is therefore not suitable for the measurement of the KAM value and the half-value width. It is also because the middle position of the plate thickness, on the other hand, has less rolling reduction during the final pass so that a difference in strain amount due to whether the final pass is performed or not is small compared to the position at 1/4 of the plate thickness, and accordingly, a difference in KAM value or in half-value width is unlikely to be produced.
  • the position at 1/4 in depth of the plane thickness from the surface is selected from the same reason as described above.
  • the vicinity of the surface has large strain introduced during hot rolling thereby to decrease the particle diameter of crystals generated by recrystallization, and is therefore not suitable for the measurement of the half-value width.
  • the middle position of the plate thickness has less rolling reduction during the final pass so that a difference in strain amount due to whether the final pass is performed or not is small compared to the position at 1/4 of the plate thickness, and accordingly, a difference in half-value width is unlikely to be produced.
  • the (200) plane of the FCC phase is selected in the measurement of the half-value width because the above-described orientation has a peak that provides the highest intensity in X-ray diffraction in the alloy system of the composition defined in the present invention.
  • the peak intensity is low outside the (200) plane, and therefore the effect by a difference in strain amount on the half-value width is smaller compared to the (200) plane.
  • the measurement of the half-value width on the (200) plane is sufficient.
  • the content of each element is in % by mass.
  • the C content is 0.46 to 0.72% for achieving the hardness sufficient as an edged tool and minimizing the crystallization of eutectic carbides during casting and solidification.
  • the C content is less than 0.46%, the hardness sufficient as an edged tool cannot be obtained.
  • the content exceeds 0.72%, the increase of the crystallization amount of the eutectic carbides in a balance with the Cr amount causes edge chipping during sharpening.
  • the lower limit of the C content is preferably 0.50%, and more preferably 0.65%.
  • the upper limit of the C content is preferably 0.70%.
  • Si is added as a deoxidizing agent during smelting. For obtaining sufficient deoxidizing effect, Si is retained in an amount of 0.15% or more. On the other hand, when the content exceeds 0.55%, the increase of the inclusion amount causes edge chipping during sharpening. Therefore, the Si content is set to be 0.15 to 0.55%. Also, Si has the effect of increasing the tempering softening resistance. When Si is added in an amount of 0.20% or more, the hardness can be further increased. Therefore, the lower limit of the Si content is preferably 0.20%, and the upper limit of the Si content is preferably 0.35%.
  • Mn is added as a deoxidizing agent during smelting in a similar manner to Si. For obtaining sufficient deoxidizing effect, Mn is retained in an amount of 0.45% or more. On the other hand, when the content exceeds 1.00%, hot workability decreases. Therefore, the Mn content is set to be 0.45 to 1.00%.
  • the lower limit of the Mn content is preferably 0.65%, and the upper limit of the Mn content is preferably 0.85%.
  • the Cr content is 12.5 to 13.9% for achieving sufficient corrosion resistance and minimizing crystallization of eutectic carbides during casting and solidification.
  • the Cr content is less than 12.5%, sufficient corrosion resistance as stainless steel cannot be obtained.
  • the content exceeds 13.9%, the increase of the crystallization amount of the eutectic carbides causes edge chipping during sharpening.
  • the lower limit of the Cr content is preferably 13.0%, and the upper limit of the Cr content is preferably 13.6%.
  • Mo and W may not be added (0%). However, these elements improve corrosion resistance, and therefore can be added as necessary to an upper limit of 2.0%.
  • Mo+W/2 content exceeds 2.0%, solid solution strengthening and deformation resistance are increased. Accordingly, hot workability deteriorates. Therefore, the content of Mo+W/2 is set to be 0 to 2.0%.
  • Examples of typical impurity elements include P, S, Ni, V, Cu, Al, Ti, N, and O. Mixing-in of these elements is unavoidable. However, the contents of the impurity elements are preferably controlled in the following ranges: P ⁇ 0.03%, S ⁇ 0.005%, Ni ⁇ 0.15%, V ⁇ 0.2%, Cu ⁇ 0.1%, Al ⁇ 0.01%, Ti ⁇ 0.01%, N ⁇ 0.05%, and O ⁇ 0.05%.
  • the following describes an intermediate material for stainless steel for edged tools according to the present invention and a typical method for manufacturing an annealed material using the intermediate material.
  • a material for stainless steel for edged tools is manufactured by melting and casting.
  • the melting include vacuum melting, air melting, vacuum arc remelting, and electroslag remelting.
  • the casting include die casting and continuous casting, by which the material is obtained. The obtained material may be subjected to homogenization heat treatment as necessary. The material may be further subjected to a blooming process by hot forging or hot rolling.
  • the material is subjected to hot rolling.
  • the hot rolling is performed so that the rolling reduction is 80% or more, and the temperature of the material after hot rolling (material temperature) is 1000 to 1250°C.
  • the temperature of the material after hot rolling material temperature
  • hot rolling is performed at a material temperature of 900°C or less and a rolling reduction of 10% or more. Accordingly, an intermediate material for stainless steel for edged tools is manufactured.
  • the temperature in the final hot rolling is set at 900°C or less in order to introduce residual strain into the material. In the temperature range exceeding 900°C, dynamic recovery and recrystallization are likely to occur. For this reason, residual strain is unlikely to be introduced. Also, the rolling reduction is set at 10% or more because, at the rolling reduction less than 10%, residual strain is not sufficiently introduced, thereby causing carbides to concentrate on grain boundaries during annealing.
  • the intermediate material is substantially an FCC phase.
  • the intermediate material substantially includes an FCC phase described in the present invention means that 80% by volume or more of the FCC phase is measured by an X-ray diffraction apparatus. At this time, the remainder is martensite formed during cooling. A specific evaluation method therefor is described below in later-described examples.
  • the intermediate material for stainless steel for edged tools manufactured by the above-described manufacturing method is subjected to an annealing process at 800 to 860°C for one to 100 hours. Accordingly, there is manufactured an annealed material of stainless steel for edged tools containing precipitated carbides.
  • a cold-rolled steel strip having a thickness of less than 0.5mm for stainless steel for edged tools can be manufactured using the above-described annealed material by repeating cold rolling and annealing.
  • the cold-rolled steep strip may be subjected to the sub-zero treatment after hardening and the coating of the surface after tempering, as necessary.
  • a steel ingot (material) having a chemical composition shown in Table 1 was produced by melting.
  • [Table 1] (% by mass) C Si Mn Cr Mo W Remainder Composition 1 0.69 0.33 0.75 13.22 0.01 0.02 Fe and unavoidable impurities Composition 2 0.50 0.50 0.89 13.39 1.30 0.06 Same as above
  • the steel ingot was subjected to a hot blooming process to produce a hot rolling material with a width of 350 mm and a thickness of 50 mm. There were produced two rolling materials having the composition of Composition 1, and one rolling material having the composition of Composition 2.
  • the hot rolling material of Composition 1 was heated to 1200°C, and was subjected to hot rolling at a total rolling reduction ratio of 95% (the temperature of the material after this hot rolling (material temperature) was 1050°C). Thereafter, final hot rolling was performed at a material temperature of 850°C and a rolling reduction ratio of 15% thereby to produce an intermediate material A according to the present invention.
  • an intermediate material B was produced in a process in which the final hot rolling process was omitted.
  • the hot rolling material of Composition 1 was heated to 1200°C to be subjected to hot rolling.
  • the intermediate material B was produced in which the material temperature of hot rolling was 1050°C and the total rolling reduction ratio was 95%.
  • the hot rolling material of Composition 2 was heated to 1200°C, thereby subjected to hot rolling at a total rolling reduction ratio of 95% (the temperature of the material after this hot rolling (material temperature) was 1050°C). Thereafter, final hot rolling was performed at a material temperature of 850°C and a rolling reduction ratio of 15% thereby to produce an intermediate material C according to the present invention.
  • a test piece was sampled in the vicinity of the center in width for each of the intermediate materials 1A, B, and C for stainless steel for edged tools.
  • the sampling position of the test piece is a position illustrated in FIG. 1 .
  • a vertical section 2 is an evaluated plane of a metal structure observation plane.
  • a rolled plane 3 is an evaluated plane for the EBSD and the X-ray diffraction.
  • the metal structure was observed on the vertical section of the sampled test piece. Also, the position at 1/4 in depth of the plate thickness from the rolled plane of the test piece to be used in the EBSD and the X-ray diffraction was prepared by mirror polishing followed by electrolytic polishing. Table 2 shows the KAM value by the EBSD method, the half-value width, and the FCC amount by X-ray diffraction for each sample.
  • the vertical section of the test piece was polished to be a mirror finished surface and then corroded with an aqueous solution of ferric chloride to perform observation using an optical microscope.
  • the measurement of the KAM value was performed using an SEM (Model No. "ULTRA 55") manufactured by ZEISS, and an EBSD measurement and analysis system OIM (Orientation-Imaging-Micrograph) manufactured by TSL.
  • SEM Model No. "ULTRA 55”
  • OIM Orientation-Imaging-Micrograph
  • Kikuchi patterns formed by electrons reflected from electron beams incident on the sample surface were obtained to measure the orientations in the region.
  • the measured orientation data were analyzed using the analysis software OIM Analysis of the above-described system.
  • the measurement area was 100 ⁇ m ⁇ 100 ⁇ m.
  • the distance between adjacent pixels was 0.2 ⁇ m.
  • the boundary having a misorientation between adjacent pixels of 5° or more was considered as a crystal grain boundary.
  • KAM value an average value of the misorientations between an individual measurement point and a proximate measurement point excluding the crystal grain boundary was calculated. This calculated average value was an average value in all regions constituting the whole measurement plane.
  • the measurement of the amount of the FCC phase in X-ray diffraction was performed using RINT 2500 manufactured by Rigaku Corporation. Co was used as a line source.
  • the amount of the FCC phase was calculated using a diffraction line intensity ratio obtained from each plane of (200) ⁇ , (211) ⁇ , (200) ⁇ , (220) ⁇ and (311) ⁇ under the conditions of a voltage of 40 kV and a current of 200 mA.
  • the intermediate materials A to C for stainless steel for edged tools were annealed at 840°C for 5 hours. Thereafter, from each of the annealed materials, a test piece was sampled such that the vicinity of the center in width of the rolled material illustrated in FIG. 1 was contained and the vertical section serving as the evaluated plane 2 became a metal structure observation plane.
  • the photographs of the metal structures of the annealed intermediate materials A, B, and C are shown in FIG. 2 to FIG. 4 respectively.
  • Stainless steel for edged tools manufactured using an intermediate material for stainless steel for edged tools according to the present invention has a favorable carbide distribution. Therefore, the present invention is applicable to razors or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to an intermediate material for stainless steel for edged tools, which is used in, for example, razors, cutters, kitchen knives, and knives.
  • BACKGROUND ART
  • Martensitic stainless steel has been widely used as a material for edged tools such as razors, cutters, kitchen knives, and knives. In particular, a strip of high-carbon martensitic stainless steel containing approximately 13% by mass of Cr and approximately 0.65% by mass of C is known to be most suitable as a material for razors. The high-carbon martensitic stainless steel used in such applications (hereinafter referred to as "stainless steel for edged tools") is usually subjected to hardening and tempering before use. The stainless steel for edged tools is required to have high hardness when in use.
  • The stainless steel for edged tools is usually manufactured through the following manufacturing processes.
  • First, a raw material is melted and cast thereby to manufacture a material. Next, the material is hot-rolled thereby to manufacture an intermediate material. The material may be hot-forged or hot-rolled through a blooming process.
  • Next, the intermediate material is subjected to an initial annealing thereby to manufacture an annealed material. The annealed material is repeatedly subjected to cold rolling followed by strain-removal annealing the necessary number of times thereby to manufacture a cold-rolled steel strip having an intended thickness. Then, the cold-rolled steel strip is subjected to hardening and tempering to produce stainless steel for edged tools.
  • Furthermore, the stainless steel for edged tools is subjected to processing processes such as sharpening and cutting, and thus becomes an end-product. It is noted that, in general, trading in the market of stainless steel for edged tools is often conducted in the form of either an annealed material or a cold-rolled steel strip.
  • For the above-described stainless steel for edged tools, there has been proposed a technique of achieving high hardness by heat treatment for a short time during hardening. For example, as a representative example, JP-A-5-39547 (Patent Literature 1) discloses that heat treatment during hardening can be performed for a short time by controlling the carbide density of steel for stainless razors.
  • CITATION LIST PATENT LITERATURE
  • Patent Literature 1: JP-A-5-39547
  • NON-PATENT LITERATURE
  • Non-Patent Literature 1: Transactions of the Japan Society of Mechanical Engineers (Series A), 2005, Vol. 71, No. 712, p. 1722
  • SUMMARY OF INVENTION PROBLEMS TO BE SOLVED BY THE INVENTION
  • As described above, with respect to the shortened hardening processing time and increased hardness of the stainless steel for edged tools, there have been proposed various techniques that focus on the features of the cold-rolled steel strip.
  • However, there have been few studies that focus on the features of the intermediate material after hot rolling and before annealing. The relationship between the features of the intermediate material and the properties of the annealed material for stainless steel for edged tools after annealing and before hardening, which is commercially available as a semi-finished product, has not been satisfactorily elucidated. The relationship between the features of the intermediate material and the carbide distribution of the cold-rolled steel strip has also not been satisfactorily elucidated.
  • For this reason, there has been a problem that poor knowledge on what the features of the intermediate material should be like inhibits excellent hardening properties that the stainless steel for edged tools originally has from being satisfactorily elicited.
  • An object of the present invention is to provide an intermediate material for stainless steel for edged tools having an excellent carbide distribution, of which the hardness can be increased by heat treatment for a short time during hardening.
  • SOLUTIONS TO THE PROBLEMS
  • The present inventors studied the relationship between the carbide distribution that influences the hardenability and hardness of stainless steel for edged tools and the intermediate material for stainless steel for edged tools that influences the carbide distribution.
  • First, the present inventors have ascertained that, among the features of the intermediate material for stainless steel for edged tools, the strain amount before annealing influences the carbide distribution after annealing of the intermediate material.
  • Then, the present inventors have found that, by allowing strain to be retained in a final pass of hot rolling for the intermediate material for stainless steel for edged tools substantially including an FCC phase, the carbide distribution after annealing can be improved when a KAM value by an SEM-EBSD method is 0.5° or more or when a half-value width of a (200) plane of the FCC phase in X-ray diffraction becomes 0.3° or more, and thus have accomplished the present invention.
  • According to an aspect of the present invention, an intermediate material for stainless steel for edged tools, which substantially includes an FCC phase and is a material after hot rolling and before annealing, has a composition of, in % by mass, 0.46 to 0.72% of C, 0.15 to 0.55% of Si, 0.45 to 1.00% of Mn, 12.5 to 13.9% of Cr, 0 to 2.0% of Mo+W/2, and a remainder of Fe and impurities. In addition, a KAM value by an SEM-EBSD method in a position at 1/4 in depth of a plane thickness from a surface of a rolled plane is 0.5° or more.
  • According to another aspect, in an intermediate material for stainless steel for edged tools which is a material after hot rolling and before annealing, a half-value width of a (200) plane of a FCC phase in X-ray diffraction in a position at 1/4 in depth of a plane thickness from a surface of a rolled plane is 0.3° or more.
  • EFFECTS OF THE INVENTION
  • The stainless steel for edged tools manufactured using the intermediate material for stainless steel for edged tools according to the present invention can be increased in hardness by heat treatment for a short time during hardening. Therefore, the intermediate material for stainless steel for edged tools according to the present invention is most suitable especially in applications such as razors having a thin thickness.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a schematic diagram illustrating a position at which a test piece is sampled and an evaluated plane.
    • FIG. 2 is a drawing-substitute photograph illustrating an example of a metal structure of an annealed material of an intermediate material for stainless steel for edged tools according to the present invention.
    • FIG. 3 is a drawing-substitute photograph illustrating an example of a metal structure of an annealed material of an intermediate material for stainless steel for edged tools according to a comparative example.
    • FIG. 4 is a drawing-substitute photograph illustrating an example of a metal structure of an annealed material of an intermediate material for stainless steel for edged tools according to the present invention.
    DESCRIPTION OF EMBODIMENTS
  • As described above, one of the important characteristics of the present invention is that the carbide distribution in the intermediate material after annealing is improved by controlling the residual strain amount in the intermediate material before annealing.
  • First, the KAM (kernel average misorientation) value which is most characteristic is described below.
  • < KAM value by SEM-EBSD method is 0.50° or more>
  • In the present invention, the residual strain plays an important role. With respect to a KAM value defined in the present invention, for example, the KAM value by the SEM (scanning electron microscope)-EBSD (electron backscatter diffraction) method is described as a measurement method of the residual strain in Non-Patent Literature 1. According to the studies conducted by the present inventors, it has been confirmed that the KAM value by the SEM-EBSD method of the intermediate material for stainless steel for edged tools having the above-described composition is correlated with the carbide distribution of the annealed material for stainless steel for edged tools obtained using the above-described intermediate material.
  • Specifically, when the KAM value by the SEM-EBSD method of the intermediate material for stainless steel for edged tools is less than 0.50°, the intermediate material can be said to be in a state of having small residual strain. When annealing is thereafter performed, coarse carbides are likely to be precipitated at grain boundaries, compared to a material having a large residual strain amount. As a result, for example, toughness decreases after hardening and tempering performed when used in edged tools. Therefore, an average value of the KAM values by the SEM-EBSD method needs to be 0.50° or more. It is noted that the larger KAM value causes larger residual strain, and is therefore preferred. However, when the KAM value exceeds 2.00°, the residual strain is likely to become large in variation depending on the position. Therefore, the upper limit of the KAM value is preferably 2.00° or less.
  • Next, the half-value width is described below.
  • <Full-width at half maximum of (200) plane of FCC phase in X-ray diffraction is 0.3° or more>
  • In the present invention, the residual strain plays an important role. It is known that there is a correlation between the half-value width and the residual strain. According to the studies conducted by the present inventors, it has been confirmed that the half-value width in X-ray diffraction of the intermediate material for stainless steel for edged tools having the above-described composition is correlated with the carbide distribution of the annealed material for stainless steel for edged tools obtained using the above-described intermediate material.
  • Specifically, when the half-value width of the (200) plane of the FCC phase in X-ray diffraction of the intermediate material for stainless steel for edged tools is less than 0.3°, the intermediate material can be said to be in a state of having small residual strain. When annealing is thereafter performed, coarse carbides are likely to be precipitated at grain boundaries, compared to a material having a large residual strain amount. As a result, for example, toughness decreases after hardening and tempering performed when used in edged tools. Therefore, the half-value width in X-ray diffraction of the (200) plane of the FCC phase needs to be 0.3° or more. It is noted that the larger half-value width causes larger residual strain, and is therefore preferred. However, when the half-value width exceeds 1.0°, the residual strain is likely to become large in variation depending on the position. Therefore, the upper limit of the half-value width is preferably 1.0° or less.
  • <Position at 1/4 in depth of plate thickness from surface of rolled plane>
  • In the present invention, the measurement of the KAM value by the SEM-EBSD method or the measurement of the half-value width of the (200) plane of the FCC phase in X-ray diffraction as described above is performed in a position at 1/4 in depth of the plane thickness from the surface of the rolled plane.
  • The "rolled plane" in the present invention refers to, as illustrated in FIG. 1, a plane with which a rolling roll is in contact during rolling of the intermediate material for stainless steel for edged tools. The reason why the rolled plane side is used for evaluation is that, since the strain amount introduced by rolling is non-uniform in a thickness direction, settling the evaluated plane and the thickness enables the evaluation to be performed under the same conditions.
  • In addition, the position at 1/4 in depth of the plane thickness from the surface is selected in the present invention because the vicinity of the surface has large strain introduced during hot rolling thereby to decrease the particle diameter of crystals generated by recrystallization, and is therefore not suitable for the measurement of the KAM value and the half-value width. It is also because the middle position of the plate thickness, on the other hand, has less rolling reduction during the final pass so that a difference in strain amount due to whether the final pass is performed or not is small compared to the position at 1/4 of the plate thickness, and accordingly, a difference in KAM value or in half-value width is unlikely to be produced.
  • With respect to the half-value width of the (200) plane of the FCC phase in X-ray diffraction, the position at 1/4 in depth of the plane thickness from the surface is selected from the same reason as described above. The vicinity of the surface has large strain introduced during hot rolling thereby to decrease the particle diameter of crystals generated by recrystallization, and is therefore not suitable for the measurement of the half-value width. On the other hand, the middle position of the plate thickness has less rolling reduction during the final pass so that a difference in strain amount due to whether the final pass is performed or not is small compared to the position at 1/4 of the plate thickness, and accordingly, a difference in half-value width is unlikely to be produced.
  • The (200) plane of the FCC phase is selected in the measurement of the half-value width because the above-described orientation has a peak that provides the highest intensity in X-ray diffraction in the alloy system of the composition defined in the present invention. The peak intensity is low outside the (200) plane, and therefore the effect by a difference in strain amount on the half-value width is smaller compared to the (200) plane. Thus, the measurement of the half-value width on the (200) plane is sufficient.
  • Next, the alloy composition that provides fundamental characteristics defined in the present invention is described below. The content of each element is in % by mass.
  • <C: 0.46 to 0.72%>
  • The C content is 0.46 to 0.72% for achieving the hardness sufficient as an edged tool and minimizing the crystallization of eutectic carbides during casting and solidification. When the C content is less than 0.46%, the hardness sufficient as an edged tool cannot be obtained. When the content exceeds 0.72%, the increase of the crystallization amount of the eutectic carbides in a balance with the Cr amount causes edge chipping during sharpening. The lower limit of the C content is preferably 0.50%, and more preferably 0.65%. The upper limit of the C content is preferably 0.70%.
  • <Si: 0.15 to 0.55%>
  • Si is added as a deoxidizing agent during smelting. For obtaining sufficient deoxidizing effect, Si is retained in an amount of 0.15% or more. On the other hand, when the content exceeds 0.55%, the increase of the inclusion amount causes edge chipping during sharpening. Therefore, the Si content is set to be 0.15 to 0.55%. Also, Si has the effect of increasing the tempering softening resistance. When Si is added in an amount of 0.20% or more, the hardness can be further increased. Therefore, the lower limit of the Si content is preferably 0.20%, and the upper limit of the Si content is preferably 0.35%.
  • <Mn: 0.45 to 1.00%>
  • Mn is added as a deoxidizing agent during smelting in a similar manner to Si. For obtaining sufficient deoxidizing effect, Mn is retained in an amount of 0.45% or more. On the other hand, when the content exceeds 1.00%, hot workability decreases. Therefore, the Mn content is set to be 0.45 to 1.00%. The lower limit of the Mn content is preferably 0.65%, and the upper limit of the Mn content is preferably 0.85%.
  • <Cr: 12.5 to 13.9%>
  • The Cr content is 12.5 to 13.9% for achieving sufficient corrosion resistance and minimizing crystallization of eutectic carbides during casting and solidification. When the Cr content is less than 12.5%, sufficient corrosion resistance as stainless steel cannot be obtained. When the content exceeds 13.9%, the increase of the crystallization amount of the eutectic carbides causes edge chipping during sharpening. The lower limit of the Cr content is preferably 13.0%, and the upper limit of the Cr content is preferably 13.6%.
  • <Mo+W/2: 0 to 2.0%>
  • Mo and W may not be added (0%). However, these elements improve corrosion resistance, and therefore can be added as necessary to an upper limit of 2.0%. When the Mo+W/2 content exceeds 2.0%, solid solution strengthening and deformation resistance are increased. Accordingly, hot workability deteriorates. Therefore, the content of Mo+W/2 is set to be 0 to 2.0%.
  • Other than the elements described above, Fe and impurities are contained.
  • Examples of typical impurity elements include P, S, Ni, V, Cu, Al, Ti, N, and O. Mixing-in of these elements is unavoidable. However, the contents of the impurity elements are preferably controlled in the following ranges: P≤0.03%, S≤0.005%, Ni≤0.15%, V≤0.2%, Cu≤0.1%, Al≤0.01%, Ti≤0.01%, N≤0.05%, and O≤0.05%.
  • The following describes an intermediate material for stainless steel for edged tools according to the present invention and a typical method for manufacturing an annealed material using the intermediate material.
  • First, a material for stainless steel for edged tools is manufactured by melting and casting. Examples of the melting include vacuum melting, air melting, vacuum arc remelting, and electroslag remelting. Examples of the casting include die casting and continuous casting, by which the material is obtained. The obtained material may be subjected to homogenization heat treatment as necessary. The material may be further subjected to a blooming process by hot forging or hot rolling.
  • Thereafter, the material is subjected to hot rolling. The hot rolling is performed so that the rolling reduction is 80% or more, and the temperature of the material after hot rolling (material temperature) is 1000 to 1250°C. Then, in final hot rolling, hot rolling is performed at a material temperature of 900°C or less and a rolling reduction of 10% or more. Accordingly, an intermediate material for stainless steel for edged tools is manufactured.
  • The temperature in the final hot rolling is set at 900°C or less in order to introduce residual strain into the material. In the temperature range exceeding 900°C, dynamic recovery and recrystallization are likely to occur. For this reason, residual strain is unlikely to be introduced. Also, the rolling reduction is set at 10% or more because, at the rolling reduction less than 10%, residual strain is not sufficiently introduced, thereby causing carbides to concentrate on grain boundaries during annealing.
  • When such hot rolling is performed, pearlite transformation does not sufficiently occur. For this reason, the intermediate material is substantially an FCC phase. It is noted that "the intermediate material substantially includes an FCC phase" described in the present invention means that 80% by volume or more of the FCC phase is measured by an X-ray diffraction apparatus. At this time, the remainder is martensite formed during cooling. A specific evaluation method therefor is described below in later-described examples.
  • The intermediate material for stainless steel for edged tools manufactured by the above-described manufacturing method is subjected to an annealing process at 800 to 860°C for one to 100 hours. Accordingly, there is manufactured an annealed material of stainless steel for edged tools containing precipitated carbides.
  • Furthermore, a cold-rolled steel strip having a thickness of less than 0.5mm for stainless steel for edged tools can be manufactured using the above-described annealed material by repeating cold rolling and annealing.
  • When the cold-rolled steel strip for stainless steel for edged tools is subjected to hardening, tempering, and sharpening to provide an edged tool, the cold-rolled steep strip may be subjected to the sub-zero treatment after hardening and the coating of the surface after tempering, as necessary.
  • Examples
  • The present invention is further described below in detail with reference to the following examples.
  • A steel ingot (material) having a chemical composition shown in Table 1 was produced by melting. [Table 1]
    (% by mass)
    C Si Mn Cr Mo W Remainder
    Composition
    1 0.69 0.33 0.75 13.22 0.01 0.02 Fe and unavoidable impurities
    Composition
    2 0.50 0.50 0.89 13.39 1.30 0.06 Same as above
  • The steel ingot was subjected to a hot blooming process to produce a hot rolling material with a width of 350 mm and a thickness of 50 mm. There were produced two rolling materials having the composition of Composition 1, and one rolling material having the composition of Composition 2.
  • The hot rolling material of Composition 1 was heated to 1200°C, and was subjected to hot rolling at a total rolling reduction ratio of 95% (the temperature of the material after this hot rolling (material temperature) was 1050°C). Thereafter, final hot rolling was performed at a material temperature of 850°C and a rolling reduction ratio of 15% thereby to produce an intermediate material A according to the present invention.
  • As a comparative example, an intermediate material B was produced in a process in which the final hot rolling process was omitted. In this process, the hot rolling material of Composition 1 was heated to 1200°C to be subjected to hot rolling. As a result, the intermediate material B was produced in which the material temperature of hot rolling was 1050°C and the total rolling reduction ratio was 95%.
  • Furthermore, the hot rolling material of Composition 2 was heated to 1200°C, thereby subjected to hot rolling at a total rolling reduction ratio of 95% (the temperature of the material after this hot rolling (material temperature) was 1050°C). Thereafter, final hot rolling was performed at a material temperature of 850°C and a rolling reduction ratio of 15% thereby to produce an intermediate material C according to the present invention.
  • A test piece was sampled in the vicinity of the center in width for each of the intermediate materials 1A, B, and C for stainless steel for edged tools. The sampling position of the test piece is a position illustrated in FIG. 1. A vertical section 2 is an evaluated plane of a metal structure observation plane. A rolled plane 3 is an evaluated plane for the EBSD and the X-ray diffraction.
  • The metal structure was observed on the vertical section of the sampled test piece. Also, the position at 1/4 in depth of the plate thickness from the rolled plane of the test piece to be used in the EBSD and the X-ray diffraction was prepared by mirror polishing followed by electrolytic polishing. Table 2 shows the KAM value by the EBSD method, the half-value width, and the FCC amount by X-ray diffraction for each sample.
  • In the above-described metal structure observation, the vertical section of the test piece was polished to be a mirror finished surface and then corroded with an aqueous solution of ferric chloride to perform observation using an optical microscope.
  • The measurement of the KAM value was performed using an SEM (Model No. "ULTRA 55") manufactured by ZEISS, and an EBSD measurement and analysis system OIM (Orientation-Imaging-Micrograph) manufactured by TSL. In each region delimited in a hexagon as a measurement region, Kikuchi patterns formed by electrons reflected from electron beams incident on the sample surface were obtained to measure the orientations in the region. The measured orientation data were analyzed using the analysis software OIM Analysis of the above-described system. The measurement area was 100 µm×100µm. The distance between adjacent pixels was 0.2 µm. The boundary having a misorientation between adjacent pixels of 5° or more was considered as a crystal grain boundary.
  • It is noted that, as the KAM value, an average value of the misorientations between an individual measurement point and a proximate measurement point excluding the crystal grain boundary was calculated. This calculated average value was an average value in all regions constituting the whole measurement plane.
  • Also, the measurement of the amount of the FCC phase in X-ray diffraction was performed using RINT 2500 manufactured by Rigaku Corporation. Co was used as a line source. The amount of the FCC phase was calculated using a diffraction line intensity ratio obtained from each plane of (200)α, (211)α, (200)γ, (220)γ and (311)γ under the conditions of a voltage of 40 kV and a current of 200 mA.
  • Next, the intermediate materials A to C for stainless steel for edged tools were annealed at 840°C for 5 hours. Thereafter, from each of the annealed materials, a test piece was sampled such that the vicinity of the center in width of the rolled material illustrated in FIG. 1 was contained and the vertical section serving as the evaluated plane 2 became a metal structure observation plane. The photographs of the metal structures of the annealed intermediate materials A, B, and C are shown in FIG. 2 to FIG. 4 respectively.
  • In the metal structure observation, the evaluated plane was polished to be a mirror finished surface and then corroded with an aqueous solution of ferric chloride to perform observation using a scanning electron microscope. [Table 2]
    Material KAM value (°) Full-width at half maximum of (200) plane of FCC phase (°) Amount of FCC phase (% by volume) Remarks
    Intermediate material A 0.77 0.340 100 Present invention
    Intermediate material B 0.48 0.247 100 Comparative Example
    Intermediate material C 1.11 0.395 84.24 Present invention
  • When the intermediate material for stainless steel for edged tools was annealed, more carbides after annealing were distributed in a grain, as seen from FIG. 2 and FIG. 4, in a case where a KAM value was 0.5° or more or a half-value width of the (200) plane of the FCC phase in X-ray diffraction was 0.3° or more. Thus, it can be understood that this intermediate material had a favorable structure. On the other hand, as seen from FIG. 3, in a case where a KAM value was less than 0.5 or a half-value width of the (200) plane of the FCC phase was less than 0.3°, coarser carbides were precipitated at a grain boundary. In this metal structure, carbides are unlikely to decompose during hardening. For this reason, it is concerned that the coarse carbides retained after hardening causes toughness to decrease.
  • From the results described above, it was confirmed that, when annealing is performed to the intermediate material for stainless steel for edged tools having a KAM value of 0.5° or more, or to the intermediate material for stainless steel for edged tools having a half-value width of the (200) plane of the FCC phase in X-ray diffraction of 0.3° or more, there can be achieved the metal structure of stainless steel for edged tools that is suitable for the edged tools such as razors.
  • INDUSTRIAL APPLICABILITY
  • Stainless steel for edged tools manufactured using an intermediate material for stainless steel for edged tools according to the present invention has a favorable carbide distribution. Therefore, the present invention is applicable to razors or the like.
  • LIST OF REFERENCE NUMERALS
  • 1
    Intermediate material for stainless steel for edged tools
    2
    Vertical section
    3
    Rolled plane

Claims (1)

  1. An intermediate material for stainless steel for edged tools, the intermediate material including 80% by volume or more of an FCC phase when measured by an X-ray diffraction apparatus and being a material after hot rolling and before annealing, wherein
    the intermediate material has a composition of, in % by mass, 0.46 to 0.72% of C, 0.15 to 0.55% of Si, 0.45 to 1.00% of Mn, 12.5 to 13.9% of Cr, 0 to 2.0% of Mo+W/2, and a remainder of Fe and impurities, and
    a KAM value by an SEM-EBSD method in a position at 1/4 in depth of a plane thickness from a surface of a rolled plane is 0.50° or more.
EP14773977.5A 2013-03-25 2014-03-18 Intermediate material for stainless steel for knives Active EP2889393B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013061445 2013-03-25
JP2013061446 2013-03-25
PCT/JP2014/057251 WO2014156806A1 (en) 2013-03-25 2014-03-18 Intermediate material for stainless steel for knives

Publications (3)

Publication Number Publication Date
EP2889393A1 EP2889393A1 (en) 2015-07-01
EP2889393A4 EP2889393A4 (en) 2016-04-27
EP2889393B1 true EP2889393B1 (en) 2017-12-13

Family

ID=51623786

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14773977.5A Active EP2889393B1 (en) 2013-03-25 2014-03-18 Intermediate material for stainless steel for knives

Country Status (4)

Country Link
EP (1) EP2889393B1 (en)
JP (1) JP5645151B1 (en)
CN (1) CN104838031B (en)
WO (1) WO2014156806A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105881593A (en) * 2014-10-29 2016-08-24 重庆市大足区袁鹏刀具有限公司 Kitchen knife blade and preparation method thereof
KR101648271B1 (en) * 2014-11-26 2016-08-12 주식회사 포스코 High-hardness martensitic stainless steel with excellent antibiosis and manufacturing the same
CN108136514B (en) * 2015-09-29 2019-08-09 京瓷株式会社 Clava and cutting element
CN105568169A (en) * 2016-01-19 2016-05-11 溧阳市金昆锻压有限公司 Martensitic stainless steel circular mould
US20240158879A1 (en) 2021-03-11 2024-05-16 Nippon Steel Stainless Steel Corporation Martensitic stainless steel sheet having excellent corrosion resistance and method for manufacturing same, and martensitic stainless bladed product
CN114289715A (en) * 2021-03-22 2022-04-08 武汉钜能科技有限责任公司 Additive manufacturing tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230714A (en) * 1988-03-09 1989-09-14 Nippon Steel Corp Manufacture of high carbon martensitic stainless steel containing fine carbide
JP3354163B2 (en) 1991-08-05 2002-12-09 日立金属株式会社 Stainless steel for razor and method for producing the same
JPH0920923A (en) * 1995-07-05 1997-01-21 Sumitomo Metal Ind Ltd Production of high carbon stainless steel plate
JPH0987746A (en) * 1995-09-27 1997-03-31 Sumitomo Metal Ind Ltd Production of martensitic stainless steel strip
JP2002155316A (en) * 2000-11-16 2002-05-31 Nisshin Steel Co Ltd Method for producing high carbon martensitic stainless steel sheet
KR101312776B1 (en) * 2009-12-21 2013-09-27 주식회사 포스코 Martensitic stainless steel and method of the manufacture the same containing 0.1~0.5% carbon
WO2013047237A1 (en) * 2011-09-26 2013-04-04 日立金属株式会社 Stainless steel for cutlery and manufacturing process therefor
JP6044870B2 (en) * 2012-09-27 2016-12-14 日立金属株式会社 Manufacturing method of steel strip for blades

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104838031A (en) 2015-08-12
JPWO2014156806A1 (en) 2017-02-16
EP2889393A4 (en) 2016-04-27
JP5645151B1 (en) 2014-12-24
EP2889393A1 (en) 2015-07-01
CN104838031B (en) 2017-05-10
WO2014156806A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
EP2889393B1 (en) Intermediate material for stainless steel for knives
JP4857811B2 (en) Steel for knives
EP2865778B1 (en) High-strength hot-rolled steel sheet and process for producing same
EP2762595B1 (en) Stainless steel for cutlery and manufacturing process therefor
CN106574351A (en) High strength austenitic stainless steel and production method thereof
EP3170912B1 (en) Steel product and manufacturing method of the same
JP5277658B2 (en) Manufacturing method of hot press member
KR20180125594A (en) Austenitic stainless steel
EP2615186A1 (en) Titanium material
EP3202937A1 (en) Steel for bolts, and bolt
EP3282032A1 (en) Steel sheet with excellent cold workability during forming, and process for producing same
EP3279355A1 (en) Steel wire for mechanical structural parts
EP3438308A1 (en) Ti-containing ferritic stainless steel sheet, manufacturing method, and flange
EP3093358A1 (en) Steel material and process for producing same
EP4286544A1 (en) Steel sheet for hot stamping and hot stamping molded body
EP2982770B1 (en) Method for producing steel for blades
EP3202950B1 (en) Titanium cast product for hot rolling and method for producing the same
JP7180782B2 (en) Titanium alloy plate and automobile exhaust system parts
EP3307920B1 (en) Steel strip for cutlery
EP3173500B1 (en) Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool
JP6044870B2 (en) Manufacturing method of steel strip for blades
EP2803745B1 (en) Hot-rolled steel sheet and manufacturing method for same
EP4144882A1 (en) Stainless steel sheet, method for producing same, edged tools and cutlery
EP3141627A1 (en) Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel
JP7380512B2 (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150326

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20160324

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/00 20060101AFI20160318BHEP

Ipc: C21D 8/02 20060101ALI20160318BHEP

Ipc: C21D 9/46 20060101ALI20160318BHEP

Ipc: C22C 38/22 20060101ALI20160318BHEP

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170102

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 6/00 20060101ALI20170606BHEP

Ipc: C22C 38/04 20060101ALI20170606BHEP

Ipc: C21D 9/46 20060101ALN20170606BHEP

Ipc: C22C 38/02 20060101ALI20170606BHEP

Ipc: C22C 38/00 20060101AFI20170606BHEP

Ipc: C22C 38/22 20060101ALI20170606BHEP

Ipc: C21D 8/02 20060101ALI20170606BHEP

INTG Intention to grant announced

Effective date: 20170626

RIN1 Information on inventor provided before grant (corrected)

Inventor name: UENO TOMONORI

Inventor name: FUKUZAWA NORIHIDE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 954428

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014018527

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180314

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180413

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014018527

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014018527

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20180914

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171213

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230210

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240226

Year of fee payment: 11