WO2016085167A1 - Particle inspection apparatus for porous formation part - Google Patents
Particle inspection apparatus for porous formation part Download PDFInfo
- Publication number
- WO2016085167A1 WO2016085167A1 PCT/KR2015/012157 KR2015012157W WO2016085167A1 WO 2016085167 A1 WO2016085167 A1 WO 2016085167A1 KR 2015012157 W KR2015012157 W KR 2015012157W WO 2016085167 A1 WO2016085167 A1 WO 2016085167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- particle
- particles
- gas
- component
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 124
- 238000007689 inspection Methods 0.000 title claims abstract description 31
- 230000015572 biosynthetic process Effects 0.000 title abstract description 7
- 238000000034 method Methods 0.000 claims description 22
- 238000011045 prefiltration Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000011109 contamination Methods 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 40
- 238000005070 sampling Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- -1 halogen anions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
Definitions
- the present invention relates to an apparatus for inspecting particles of a component, and more particularly, to an apparatus for detecting and inspecting particles attached to a porous part having a plurality of holes formed therein as a component for manufacturing a semiconductor and a display. .
- the manufacturing process of semiconductors and displays is a high-tech industry that includes nano-level highly precise processes. Even the minute environmental conditions of the field where the products are manufactured can greatly affect the quality of the products.
- Component contamination of the manufacturing apparatus may be caused by polishing, etching, photoresist, dry etching, or the like, or may be caused by chemicals, raw materials, or materials, or may be due to robots, structural components in chambers, component materials, or the like, or may be transferred from the human body.
- Nonionic contamination includes organic contamination by waxes, oils, photoresist residues, heavy metals and precious metals, and inorganic contamination by carbon, oxide films and oxides.
- Such component contamination is an important problem because the surface contamination directly affects the reliability or mass production yield of the device as the device is finer, the removal of fine inorganic or organic particles has become an important problem.
- an apparatus for manufacturing a semiconductor and a display is composed of various components, and when particles such as dust remain on such components, these particles form a film on a wafer, a glass substrate, a sapphire substrate, or the like, which are substrates for semiconductor and display manufacturing. In the process of etching the film, the particles adhere to the surface and cause a fatal defect of the product such as a pattern defect.
- the process of manufacturing semiconductors and displays is required to be maintained and managed in a very clean state. After use, they are cleaned and mounted on the equipment.
- the cleaning is performed by various methods such as chemicals, ultrapure water, and clean gas, and the related art related to the particle inspection method before and after the cleaning is (1) a predetermined time for inspecting the presence of particles after cleaning the parts.
- Surface particle counter such as US Patent No. 5,253,538 (registered on Oct. 19, 1993) relating to a method of counting suspended particles in liquid ultrapure water with a particle counter in liquid and (2) a method and apparatus for counting surface particles. There is a method such as using the test.
- the suction for the counting of particles depends on the suction force by the suction of air in a configuration named a scanner, and thus the suction force of such a pump is a shower head and a cathode. It is difficult to separate the particles present in the hole in which the fine pores, etc. are formed, so that the particles inside the hole are hardly detected.
- the present invention has been made to solve all the above-described problems, it is possible to detect and count the particles remaining in the hole of the porous part, excellent detection and counting efficiency of the particles, no counting error or error occurs This ensures that the particle zero environment is maintained at all times during inspection, that the part contamination and particle counts can be accurately inspected, furthermore preventing particles from adhering to the part, leading to product defects, and increasing product reliability and yield. It is an object of the present invention to provide a particle inspection apparatus for porous forming parts.
- the present invention provides a device for detecting and inspecting particles attached to a porous part having a plurality of holes formed therein, comprising: a housing constituting an outer portion of the device; A fan filter unit formed on an upper portion of the housing and sucking air from the outside and filtering the filter to supply clean air to the inside of the apparatus; An inlet pipe connected with the chamber to clean the inside of the apparatus by introducing clean air into the chamber, and having an inlet valve in the middle; A chamber formed below the fan filter unit, and equipped with a component to be inspected in an upper jig, and a gas injected from a jet nozzle flowing into the interior of the component through a hole in the component; A jet nozzle installed to be positioned above the chamber and separating a particle attached to the hole of the part by injecting a gas toward the part mounted on the jig; A particle counter installed under the chamber and connected to the inside of the chamber by a suction line, the particle counter for detecting and counting particles contained in the
- the present invention it is possible to detect and count the particles remaining in the hole of the porous part, and the particle detection and counting efficiency is excellent, and no counting error or error occurs, so that the particle zero environment is always present during the inspection. It is possible to maintain and accurately inspect the part contamination and particle count, and furthermore, it is possible to prevent the particles from adhering to the parts, causing product defects, and increasing the reliability and yield of the product.
- FIG. 1 is a perspective view of a particle inspection apparatus of a porous forming part according to an embodiment of the present invention.
- Fig. 2 is a schematic diagram showing the internal configuration of a particle inspection device for porous formed parts according to an embodiment of the present invention.
- FIG. 3 is a detailed view of the interior of the particle inspection device of the porous part according to the embodiment of the present invention.
- FIGS 4A to 4C are views showing an upper portion of the particle inspection apparatus of the porous formed part according to the embodiment of the present invention.
- FIG. 5 is a photograph associated with the jet nozzle sprayed on the shower head according to an embodiment of the present invention.
- 6A to 6D are diagrams illustrating an inspection method of a particle inspection device of a porous part according to an embodiment of the present invention.
- grain inspection apparatus 1 of the porous formation part which concerns on this invention relates to the apparatus which detects and inspects the particle
- the injection of the chamber-type jet nozzle 500 connected to the particle counter 600 to the chamber 400 and the vacuum suction of the vacuum pump 700 is a combined device.
- the housing 100 constitutes an outer portion of the apparatus, and includes a main space for controlling an operation of each component of the apparatus on an upper portion of the housing 100 having an installation space therein.
- a keyboard 110 attached to one side of the housing 100 to input a command to the main computer, and a monitor 120 displaying a screen of the main computer are installed.
- the keyboard 110 may be connected to the support 111 so as to move or rotate the position.
- One side of the monitor 120 is a control display screen for controlling nitrogen gas and measuring the flow rate of the MFC. Can be further formed.
- the lower side of the housing 100 may be provided with a USB, LAN connection terminal, a spare vacuum port, a power connector for a computer interface.
- the upper door 130 is installed in the middle of the housing 100, the upper door 130 is provided with a see-through window 131 to look inside the housing 100, the upper door 130
- the lower door 140 is installed at the lower side, and the screen of the particle counter 600, the compressed air regulator (A), the nitrogen gas regulator (N), etc., installed at the lower portion of the housing 100 in the lower door 140 as well. It may be included in the viewing window 141 to check from the outside.
- the fan filter unit 200 is formed on the upper portion of the housing 100, and supplies air of Class 1 level to the inside of the apparatus by filtering air after inhaling air from the outside.
- a pre-filter (210, pre-filter) is installed at the top to filter the air flowing in from the outside, the ULPA filter 220, An Ultra-Low Penetration Air filter is installed to collect most of the fine particles and supply clean air to the inside of the device.
- a suction fan 230 is installed between the prefilter 210 and the ULPA filter 220 to suck external air into the device.
- the inlet pipe 300 is connected to the side of the chamber 400 to introduce clean air supplied into the apparatus into the inside of the chamber 400 of the chamber 400.
- the inlet valve 310 is provided to clean and clean the inside, and determine whether or not the clean air is introduced or blocked in the middle.
- the clean air is introduced into the chamber 400 through the inlet pipe 300 to operate the apparatus, and thus, the particle zero environment is always maintained during the inspection, and the component contamination and the particle count can be accurately inspected.
- the chamber 400 is formed below the fan filter unit 200, and traps particles separated by the gas introduced by the gas injection of the jet nozzle 500 or the vacuum suction input of the vacuum pump 700.
- the jig 410 is formed on the upper part, and the part D to be inspected is fixedly mounted on the jig 410, and the gas injected from the jet nozzle 500 is a plurality of holes of the part D. It is introduced into the chamber 400 and accommodated together with the particles separated by passing through (H).
- the chamber 400 may be provided with a heating member (not shown) for removing moisture on the surface of the component (D) before and after the inspection on the upper side or the lower side of the jig 410.
- the chamber 400 may be installed to open and close a sealed door (not shown) to seal the inside of the chamber 400 at the top.
- the chamber 400 is further provided with an arc plasma apparatus (not shown) to apply a stress to the surface of the component (D) mounted on the jig 410 by the arc plasma to the pores of the component (D).
- the attached particles P may be separated to increase the separation efficiency.
- the chamber 400 is provided with a gas nozzle (not shown) in the lower portion to spray the gas toward the component (D) mounted on the jig 410 particles (P) attached to the pores of the component (D) It may be provided to remove more efficiently.
- the jet nozzle 500 is installed to be located above the chamber 400, and sprays gas toward the component D mounted on the jig 410 as shown in FIG. 5 (c). By separating the particles (P) attached to the hole (H) of the component (D) to be introduced into the chamber 400.
- the gas injected from the jet nozzle 500 is preferably a compressed nitrogen gas (N 2 ), a large amount of gas is injected from the jet nozzle 500 toward the component (D) as shown in FIG. While the portion is not the hole (H) is collided to be discharged to the outside, the hole (H) portion as the gas passes through to detach the particles (P) attached to the hole (H).
- N 2 compressed nitrogen gas
- the support rod 510 is installed on the upper side of the chamber 400, the support rod 510 is provided with a rotatable rod 520 rotatably, between the support rod 510 and the rotary rod 520
- a nozzle moving speed control valve 530 is provided to determine the moving speed of the jet nozzle 500, and a nozzle tube 540 having the jet nozzle 500 formed at one end thereof penetrates the side of the rotating rod 520. It is connected and installed, the other end of the nozzle pipe 540 is connected to the gas supply pipe 550 is installed.
- an MFC (560, Mass Flow Controller) is installed at the other end of the nozzle tube 540 to automatically adjust the supply amount of gas.
- the particle counter 600 is installed below the chamber 400 and is connected to the inside of the chamber 400 by the suction line 610, and inhales the gas in the chamber 400 and inhales the gas. Particles P contained are detected and counted.
- the particle counter 600 is provided with a suction port 620 at the upper end of the suction line 610, the suction port 620 is disposed in the chamber 400, the of the suction line 610 A lower end is disposed to be connected to the particle counter 600 through the inside of the vacuum suction tube 710.
- the particles P detached from the hole H of the component D by the gas injection of the jet nozzle 500 are transferred to the suction port 611 of the suction line 610 provided in the chamber 400. Particles that are induced and contained in the gas by the particle counter 600 are detected and counted.
- the vacuum pump 700 is installed in the vacuum suction pipe 710 connected to the lower side of the chamber 400, and generates a vacuum suction input inside the chamber 400 to pass through the hole (H) of the component (D).
- the gas is guided into the chamber 400, and the induced gas is induced to be sucked into the particle counter 600 through the suction port 620.
- the vacuum suction pipe 710 opens and closes the vacuum suction pipe 710 to determine whether the vacuum suction input is generated in the chamber 400 and the vacuum pump valve 720, the vacuum passing through the vacuum suction pipe 710 A Mass Flow Meter (MFM) for measuring the gas flow rate to the pump 700 is installed.
- MFM Mass Flow Meter
- the discharge fan 800 is installed in the discharge pipe 810 connected to the lower side of the chamber 400, and discharges the air inside the chamber to the outside, where the discharge pipe 810 passes through the discharge pipe 810
- a discharge fan valve 820 is provided to determine whether the inlet and blocking of the air or gas to be.
- the clean air filtered by the fan filter unit 200 is introduced into the chamber 400 through the inlet pipe 300 and then vacuumed. By discharging to the outside through the suction pipe 710 and the discharge pipe 810 to clean the interior of the chamber 400.
- the vacuum pump 700 is operated to suck the air in the initial chamber 400, the discharge fan 800 is also activated, the gas injection into the chamber 400 by the jet nozzle 500 Is also done.
- the particle counter 600 detects and counts the particles to determine whether the overall cleaning state inside the chamber 400 is close to zero, and the fan.
- the overall particle state of the filter unit 200, the inlet pipe 300, the chamber 400, the jet nozzle 500 can be confirmed.
- the inside of the chamber 400 is cleaned while the component D to be inspected is fixedly mounted on the jig 410.
- the clean air filtered by the fan filter unit 200 is introduced into the chamber 400 through the inlet pipe 300 and then the vacuum suction pipe 710. ) And the inside of the chamber 400 by cleaning the discharge to the outside through the discharge pipe 810 to clean.
- the jet nozzle 500 is rotated to face the outside of the chamber so that compressed air is injected to discharge the stagnant nitrogen to the nozzle tube 540, the gas supply pipe 550, and the like.
- the air in the chamber is sucked in through the suction port 620 of the suction line 610 in a state in which all the valves are blocked, and the particle counter 600 counts the number of particles included in the sucked air.
- the jet nozzle 500 provided at the tip of the nozzle tube 540 is moved by rotation so as to face the component D mounted on the jig 410 to inject gas.
- the operation of the vacuum pump 700 and the discharge fan 800 is determined while checking the sensitivity when setting the recipe in consideration of the type of the component (D) and the size of the hole (H).
- the sampling of the particles may be performed by using a single or a combination of air jet sampling (Vacuum pump Sampling) by the jet nozzle (500).
- the nitrogen gas or the compressed air supplied from the jet nozzle 500 passes through the hole H of the component D, and the particles P attached to the inside of the hole H are dropped to remove nitrogen. Together with gas or compressed air, the inlet 620 of the suction line 610 inside the chamber 400 is introduced.
- the air passing through the hole H of the component D is dropped by the vacuum suction input generated by operating the vacuum pump 700 to drop the particles P attached to the inside of the hole H, thereby allowing the chamber ( 400 is introduced into the interior, and the introduced air is directed to the inlet 620 of the suction line 610 inside the chamber 400.
- Combination sampling is sampling while applying the above-mentioned air jet sampling and vacuum suction sampling simultaneously or sequentially, and the setting regarding sampling of such particles can be specified through the recipe setting in the main computer of the apparatus.
- the gas injected by adjusting the gas injection time of the jet nozzle 500 and the particles P separated from the hole H of the component D collide with the inner wall surface of the chamber 400 to be rebuilt.
- gas injection of the jet nozzle 500 is terminated, and gas or air in the chamber 400 is sucked into the particle counter 600 to detect and count particles P contained therein.
- a predetermined pressure is formed in the chamber 400, wherein the jet nozzle 500 is
- the gas jet of the jet nozzle 500 is terminated immediately after the particles P, which are separated from the part D, collide with the inner wall of the chamber 400 and are reattached, and the particle counter 600 or the vacuum is removed.
- the gas is sucked into the pump 700 to detect and count particles P contained in the gas.
- the particles P separated in the hole H of the part D are blown away or attached to the inner wall surface of the chamber 400. It is excellent in particle detection and counting efficiency by preventing the remaining inside of the chamber 400, and the gas introduced into the chamber 400 collides with the inner wall of the chamber 400, and thus the inner wall of the chamber 400. Other particles that have been attached thereto may be suspended inside the chamber 400 to prevent the problem of being counted by the particle counter.
- the particle inspection device 1 of the porous formed part according to the present invention can detect and count particles remaining in the hole of the porous formed part, and excellent in particle detection and counting efficiency, By not occurring, the particle zero environment is always maintained during the inspection, the part contamination and particle counting can be accurately inspected, and furthermore, the particle adheres to the part to prevent product defects, and the product reliability and yield I can increase it.
- the particle inspection apparatus of the porous formed part according to the present invention is always maintained in the particle zero environment during the inspection, it is possible to accurately inspect the part contamination and particle counting, to prevent the particles from adhering to the parts to cause product defects, It has the effect of increasing the reliability and yield of the production, so there is industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
A porous formation part particle inspection apparatus according to the present invention relates to an apparatus for detecting and inspecting particles that are attached to a porous formation part having a plurality of holes formed inside the part, the apparatus comprising a housing, a fan filter unit, an inlet pipe, a chamber, a jet nozzle, a particle counter, a vacuum pump and a discharge fan. The apparatus can detect and count particles remaining inside the holes of the porous formation part, has an excellent particle detection and count efficiency, always maintains a zero-particle environment during inspection due to the absence of counting errors, can accurately inspect part contamination and particle count, prevent faulty products from occurring due to particles that are attached to the part, and can increase product credibility and production rate.
Description
본 발명은 부품의 입자 검사 장치에 관한 것으로, 보다 상세하게는 반도체, 디스플레이의 제조를 위한 부품으로서, 내부에 다수의 홀이 형성된 다공 형성 부품에 부착되어 있는 입자를 검출하여 검사하는 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting particles of a component, and more particularly, to an apparatus for detecting and inspecting particles attached to a porous part having a plurality of holes formed therein as a component for manufacturing a semiconductor and a display. .
일반적으로 반도체 및 디스플레이의 제조 공정은 나노 수준의 고도로 정밀한 공정이 포함된 첨단산업으로, 제품을 제조하는 현장의 미소한 환경 조건까지도 제품의 품질에 큰 영향을 줄 수 있는 바, 예컨대 반도체 및 디스플레이의 제조 장치의 부품 오염은 연마, 에칭, 포토레지스트, 드라이에칭 공정 등에 의해 발생하거나, 약액, 원료, 재료로부터 발생하거나, 로봇, 챔버 내 구조부품, 부품재료 등에 기인하거나 인체로부터 전이되기도 한다.In general, the manufacturing process of semiconductors and displays is a high-tech industry that includes nano-level highly precise processes. Even the minute environmental conditions of the field where the products are manufactured can greatly affect the quality of the products. Component contamination of the manufacturing apparatus may be caused by polishing, etching, photoresist, dry etching, or the like, or may be caused by chemicals, raw materials, or materials, or may be due to robots, structural components in chambers, component materials, or the like, or may be transferred from the human body.
또한, 부품 오염을 야기시키는 오염물질은 이온성 오염과 비이온성 오염으로 분류되고, 이온성 오염은 Na+, Li+, K+ 등 알칼리 금속이온, F-, Cl- 등 할로겐 음이온 등에 의한 것이고, 비이온성 오염은 왁스, 오일, 포토레지스트 잔여물, 중금속, 귀금속에 의한 유기물 오염과, 카본, 산화막, 산화물에 의한 무기물 오염이 있다.In addition, contaminants causing component contamination are classified into ionic contamination and nonionic contamination, and ionic contamination is due to alkali metal ions such as Na + , Li + , K + , halogen anions such as F − , Cl − , and the like. Nonionic contamination includes organic contamination by waxes, oils, photoresist residues, heavy metals and precious metals, and inorganic contamination by carbon, oxide films and oxides.
이러한 부품 오염은 디바이스의 미세화가 진행됨에 따라 표면의 오염이 디바이스의 신뢰성이나 양산수율에 직접적 영향을 미치게 되므로, 미세한 무기성 또는 유기성 입자 제거가 중요한 과제가 되고 있다.Such component contamination is an important problem because the surface contamination directly affects the reliability or mass production yield of the device as the device is finer, the removal of fine inorganic or organic particles has become an important problem.
예컨대, 반도체 및 디스플레이의 제조 장치는 여러 가지 부품들로 구성되는데, 이러한 부품에 먼지 등의 입자가 부착되어 잔류하는 경우 이들 입자가 반도체 및 디스플레이 제조용 기판인 웨이퍼, 유리 기판, 사파이어 기판 등에 막을 형성하거나, 막을 식각하는 과정에서 이들 입자가 표면에 부착되어 패턴 결함 등 제품의 치명적인 불량을 유발하게 되는 것이다.For example, an apparatus for manufacturing a semiconductor and a display is composed of various components, and when particles such as dust remain on such components, these particles form a film on a wafer, a glass substrate, a sapphire substrate, or the like, which are substrates for semiconductor and display manufacturing. In the process of etching the film, the particles adhere to the surface and cause a fatal defect of the product such as a pattern defect.
따라서, 반응로 및 반응용 챔버의 가스 공급경로 등 반도체 및 디스플레이의 제조 공정은 매우 청정한 상태로 유지 및 관리될 것이 요구되는 바, 이러한 청정도를 확보하기 위하여 제조 장치의 부품들에 대하여 초기와 일정 기간 사용 후에는 세정을 하여 장비에 장착하게 된다. Therefore, the process of manufacturing semiconductors and displays, such as gas supply paths of reactors and reaction chambers, is required to be maintained and managed in a very clean state. After use, they are cleaned and mounted on the equipment.
상기 세정은 화공약품, 초순수(ultrapure water), 청정 가스 등 다양한 방법으로 이루어지고, 이러한 세정 전후의 입자검사 방법에 관한 종래기술은 (1) 부품의 세정 후 입자의 잔류 유무를 검사하기 위하여 일정 시간 동안 깨끗한 초순수에 담구어 부유된 입자를 액체 중 입자계수기로 계수하는 방법과, (2) 표면 입자 계수 방법 및 장치에 관한 미국 등록특허공보 제5,253,538호(1993.10.19. 등록)과 같은 표면 입자계수기를 이용하여 검사하는 방법 등이 있다.The cleaning is performed by various methods such as chemicals, ultrapure water, and clean gas, and the related art related to the particle inspection method before and after the cleaning is (1) a predetermined time for inspecting the presence of particles after cleaning the parts. Surface particle counter, such as US Patent No. 5,253,538 (registered on Oct. 19, 1993) relating to a method of counting suspended particles in liquid ultrapure water with a particle counter in liquid and (2) a method and apparatus for counting surface particles. There is a method such as using the test.
그러나, (1)의 경우는 물에 녹는 입자에 대해서는 검사가 불가능하고, 부품을 물에 담그는 과정에서 발생한 기포 등이 입자로 계수되는 에러 문제가 발생하며, 계수 과정에서 초순수의 소비가 많아지는 문제가 있다.However, in the case of (1), it is impossible to inspect particles that are soluble in water, and an error problem occurs in which bubbles generated in the process of immersing parts in water are counted as particles, and the consumption of ultrapure water increases during the counting process. There is.
또한, (2)의 경우는 입자의 계수를 위한 흡입이 스캐너(scanner)로 명명된 구성에서 공기의 흡입에 의한 흡입력에 의존하므로 이러한 펌프의 흡입력으로는 샤워헤드(shower head), 캐소드(cathod) 등의 미세한 다공이 형성된 홀 내부에 존재하는 입자의 분리가 곤란하여 홀 내부의 입자가 잘 검출되지 않는 문제가 있다. Also, in the case of (2), the suction for the counting of particles depends on the suction force by the suction of air in a configuration named a scanner, and thus the suction force of such a pump is a shower head and a cathode. It is difficult to separate the particles present in the hole in which the fine pores, etc. are formed, so that the particles inside the hole are hardly detected.
본 발명은 상술한 문제들을 모두 해결하기 위하여 안출된 것으로, 다공 형성 부품의 홀 내부에 잔류하는 입자를 검출하여 계수할 수 있고, 입자의 검출 및 계수 효율이 우수하며, 계수 오차나 에러가 발생하지 않음으로써, 검사 중에 항상 파티클 제로 환경이 유지되고, 부품 오염과 입자 계수를 정확히 검사할 수 있으며, 나아가 입자가 부품에 부착되어 제품 불량이 유발되는 것을 방지하고, 제품의 신뢰성과 양산수율을 증가시킬 수 있는 다공 형성 부품의 입자 검사 장치의 제공에 그 목적이 있다.The present invention has been made to solve all the above-described problems, it is possible to detect and count the particles remaining in the hole of the porous part, excellent detection and counting efficiency of the particles, no counting error or error occurs This ensures that the particle zero environment is maintained at all times during inspection, that the part contamination and particle counts can be accurately inspected, furthermore preventing particles from adhering to the part, leading to product defects, and increasing product reliability and yield. It is an object of the present invention to provide a particle inspection apparatus for porous forming parts.
상기 과제를 해결하기 위하여 본 발명은 내부에 다수의 홀이 형성된 다공 형성 부품에 부착되어 있는 입자를 검출하여 검사하는 장치에 있어서, 장치의 외곽을 구성하는 하우징; 상기 하우징의 상부에 형성되고 외부로부터 공기를 흡입한 후 필터링하여 장치 내부로 청정공기를 공급하는 팬필터유닛; 챔버와 연결되어 장치 내부의 청정공기를 챔버의 내부로 유입시켜 클리닝하고, 중간에 유입밸브가 구비된 유입관; 상기 팬필터유닛의 하측에 형성되고, 상부의 지그에 검사할 부품이 장착되며, 제트노즐에서 분사된 가스가 부품의 다공을 통과하여 내부로 유입되는 챔버; 상기 챔버의 상측에 위치하도록 설치되고, 상기 지그에 장착된 부품을 향해 가스를 분사하여 부품의 홀에 부착되어 있는 입자를 분리시키는 제트노즐; 상기 챔버의 하측에 설치되어 상기 챔버의 내부와 흡입라인에 의해 연결되고, 상기 챔버 내 가스를 흡입한 후 흡입된 가스 중에 포함되어 있는 입자를 검출하여 계수하는 입자계수기; 상기 챔버의 하측에 연결된 진공흡입관에 설치되고, 상기 챔버의 내부에 진공흡입력을 발생시켜 부품의 홀을 통과한 가스를 상기 챔버의 내부로 유도하며, 유도된 가스가 상기 입자계수기로 흡입되도록 하는 진공펌프; 및 상기 챔버의 하측에 연결된 배출관에 설치되고, 상기 챔버 내부의 공기를 외부로 배출시키는 배출팬;을 포함하는 다공 형성 부품의 입자 검사 장치를 제공한다.In order to solve the above problems, the present invention provides a device for detecting and inspecting particles attached to a porous part having a plurality of holes formed therein, comprising: a housing constituting an outer portion of the device; A fan filter unit formed on an upper portion of the housing and sucking air from the outside and filtering the filter to supply clean air to the inside of the apparatus; An inlet pipe connected with the chamber to clean the inside of the apparatus by introducing clean air into the chamber, and having an inlet valve in the middle; A chamber formed below the fan filter unit, and equipped with a component to be inspected in an upper jig, and a gas injected from a jet nozzle flowing into the interior of the component through a hole in the component; A jet nozzle installed to be positioned above the chamber and separating a particle attached to the hole of the part by injecting a gas toward the part mounted on the jig; A particle counter installed under the chamber and connected to the inside of the chamber by a suction line, the particle counter for detecting and counting particles contained in the sucked gas after inhaling the gas in the chamber; It is installed in the vacuum suction pipe connected to the lower side of the chamber, generates a vacuum suction input inside the chamber to guide the gas passing through the hole of the part into the interior of the chamber, the vacuum so that the induced gas is sucked into the particle counter Pump; And a discharge fan installed at a discharge pipe connected to the lower side of the chamber and discharging air inside the chamber to the outside.
본 발명에 의하면, 다공 형성 부품의 홀 내부에 잔류하는 입자를 검출하여 계수할 수 있고, 입자의 검출 및 계수 효율이 우수하며, 계수 오차나 에러가 발생하지 않음으로써, 검사 중에 항상 파티클 제로 환경이 유지되고, 부품 오염과 입자 계수를 정확히 검사할 수 있으며, 나아가 입자가 부품에 부착되어 제품 불량이 유발되는 것을 방지하고, 제품의 신뢰성과 양산수율을 증가시킬 수 있는 효과가 있다.According to the present invention, it is possible to detect and count the particles remaining in the hole of the porous part, and the particle detection and counting efficiency is excellent, and no counting error or error occurs, so that the particle zero environment is always present during the inspection. It is possible to maintain and accurately inspect the part contamination and particle count, and furthermore, it is possible to prevent the particles from adhering to the parts, causing product defects, and increasing the reliability and yield of the product.
도 1은 본 발명의 실시예에 따른 다공 형성 부품의 입자 검사 장치의 사시도이다. 1 is a perspective view of a particle inspection apparatus of a porous forming part according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 다공 형성 부품의 입자 검사 장치의 내부 구성을 나타낸 개락도이다.Fig. 2 is a schematic diagram showing the internal configuration of a particle inspection device for porous formed parts according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 다공 형성 부품의 입자 검사 장치의 내부 상세 도면이다.3 is a detailed view of the interior of the particle inspection device of the porous part according to the embodiment of the present invention.
도 4a 내지 도 4c는 본 발명의 실시예에 따른 다공 형성 부품의 입자 검사 장치의 상측 부분을 도시한 도면이다.4A to 4C are views showing an upper portion of the particle inspection apparatus of the porous formed part according to the embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 제트노즐이 샤워헤드에 분사하는 것과 관련된 사진이다..5 is a photograph associated with the jet nozzle sprayed on the shower head according to an embodiment of the present invention.
도 6a 내지 도 6d는 본 발명의 실시예에 따른 다공 형성 부품의 입자 검사 장치의 검사 방법을 도시한 도면이다.6A to 6D are diagrams illustrating an inspection method of a particle inspection device of a porous part according to an embodiment of the present invention.
이하, 도면을 참조하여 본 발명에 따른 다공 형성 부품의 입자 검사 장치를 실시하기 위한 구체적인 내용에 대하여 실시예를 중심으로 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, with reference to drawings, the specific content for implementing the particle | grain inspection apparatus of the porous formation component which concerns on this invention is demonstrated in detail centering on an Example.
본 발명에 따른 다공 형성 부품의 입자 검사 장치(1)는, 내부에 다수의 홀(H)이 형성된 다공 형성 부품(D)에 부착되어 있는 입자(P)를 검출하여 검사하는 장치에 관한 것으로, 하우징(100), 팬필터유닛(200), 유입관(300), 챔버(400), 제트노즐(500), 입자계수기(600), 진공펌프(700), 배출팬(800)을 포함하여 이루어지되, 상기 챔버(400)에 입자계수기(600)를 연결한 챔버형 제트노즐(500)의 분사와 진공펌프(700)의 진공흡입이 복합된 장치이다.The particle | grain inspection apparatus 1 of the porous formation part which concerns on this invention relates to the apparatus which detects and inspects the particle | grains P adhering to the porous formation part D in which the many hole H was formed inside, It comprises a housing 100, fan filter unit 200, inlet pipe 300, chamber 400, jet nozzle 500, particle counter 600, vacuum pump 700, discharge fan 800 However, the injection of the chamber-type jet nozzle 500 connected to the particle counter 600 to the chamber 400 and the vacuum suction of the vacuum pump 700 is a combined device.
도 1을 참고하면, 상기 하우징(100)은 장치의 외곽을 구성하는 것으로, 내부에 설치공간을 구비하여 대략 직육면체의 형상으로 이루어지고, 상부에 장치의 각 구성요소의 작동을 제어하는 메인 컴퓨터(미도시)와, 상기 하우징(100)의 일측에 부착되어 상기 메인 컴퓨터에 명령을 입력하기 위한 키보드(110)와, 상기 메인 컴퓨터의 화면이 디스플레이되는 모니터(120)가 설치되어 있다. 이때, 상기 키보드(110)는 위치 이동이나 회전이 가능하도록 지지대(111)에 연결 설치될 수 있고, 상기 모니터(120)의 일측에는 질소가스를 제어하고 MFC의 유량을 측정 표시하는 제어 디스플레이 화면이 더 형성될 수 있다.Referring to FIG. 1, the housing 100 constitutes an outer portion of the apparatus, and includes a main space for controlling an operation of each component of the apparatus on an upper portion of the housing 100 having an installation space therein. Not shown), a keyboard 110 attached to one side of the housing 100 to input a command to the main computer, and a monitor 120 displaying a screen of the main computer are installed. In this case, the keyboard 110 may be connected to the support 111 so as to move or rotate the position. One side of the monitor 120 is a control display screen for controlling nitrogen gas and measuring the flow rate of the MFC. Can be further formed.
더불어, 상기 하우징(100)의 하부 일측에는 컴퓨터 인터페이스를 위한 USB, LAN 접속 단자와, 스페어 진공구, 전원 커넥터 가 설치될 수 있다.In addition, the lower side of the housing 100 may be provided with a USB, LAN connection terminal, a spare vacuum port, a power connector for a computer interface.
또한, 상기 하우징(100)의 중간에 상부도어(130)가 설치되고, 상기 상부도어(130)에는 하우징(100)의 내부를 들여다 볼 수 있도록 투시창(131)이 구비되며, 상기 상부도어(130)의 하측에는 하부도어(140)가 설치되고, 상기 하부도어(140)에도 하우징(100)의 하부에 설치된 입자계수기(600)의 화면, 압축공기 조절기(A), 질소가스 조절기(N) 등을 외부에서 확인할 수 있도록 투시창(141)이 포함될 수 있다.In addition, the upper door 130 is installed in the middle of the housing 100, the upper door 130 is provided with a see-through window 131 to look inside the housing 100, the upper door 130 The lower door 140 is installed at the lower side, and the screen of the particle counter 600, the compressed air regulator (A), the nitrogen gas regulator (N), etc., installed at the lower portion of the housing 100 in the lower door 140 as well. It may be included in the viewing window 141 to check from the outside.
상기 팬필터유닛(200)은 상기 하우징(100)의 상부에 형성되고, 외부로부터 공기를 흡입한 후 필터링하여 장치 내부로 Class 1 수준의 청정공기를 공급한다.The fan filter unit 200 is formed on the upper portion of the housing 100, and supplies air of Class 1 level to the inside of the apparatus by filtering air after inhaling air from the outside.
이때, 도 4a 내지 도 4c를 참고하면 상기 팬필터유닛(200)은, 상부에 프리필터(210, pre filter)가 설치되어 외부로부터 유입되는 공기를 1차로 필터링하고, 하부에 ULPA 필터(220, Ultra-Low Penetration Air filter)가 설치되어 미세 입자를 대부분 포집하여 장치 내부로 청정공기를 공급한다.At this time, referring to Figure 4a to 4c the fan filter unit 200, a pre-filter (210, pre-filter) is installed at the top to filter the air flowing in from the outside, the ULPA filter 220, An Ultra-Low Penetration Air filter is installed to collect most of the fine particles and supply clean air to the inside of the device.
더불어, 상기 프리필터(210)와 ULPA 필터(220)의 사이에 흡입팬(230)이 설치되어 외부 공기를 장치의 내부로 흡입하도록 한다.In addition, a suction fan 230 is installed between the prefilter 210 and the ULPA filter 220 to suck external air into the device.
도 2 및 도 3을 참고하면, 상기 유입관(300)은 상기 챔버(400)의 측면과 연결되어 장치 내부로 공급된 청정공기를 상기 챔버(400)의 내부로 유입시켜 상기 챔버(400)의 내부를 클리닝하여 청정화하고, 중간에 청정공기의 유입과 차단 여부를 결정하는 유입밸브(310)가 구비된다.2 and 3, the inlet pipe 300 is connected to the side of the chamber 400 to introduce clean air supplied into the apparatus into the inside of the chamber 400 of the chamber 400. The inlet valve 310 is provided to clean and clean the inside, and determine whether or not the clean air is introduced or blocked in the middle.
이와 같이, 상기 유입관(300)을 통하여 청정공기를 챔버(400)의 내부로 도입하여 장치를 가동하여 검사 중에 항상 파티클 제로 환경이 유지되고, 부품 오염과 입자 계수를 정확히 검사할 수 있다.As such, the clean air is introduced into the chamber 400 through the inlet pipe 300 to operate the apparatus, and thus, the particle zero environment is always maintained during the inspection, and the component contamination and the particle count can be accurately inspected.
상기 챔버(400)는 상기 팬필터유닛(200)의 하측에 형성되되, 상기 제트노즐(500)의 가스 분사에 의해 유입된 가스 또는 진공펌프(700)의 진공흡입력에 의하여 분리된 입자를 가두어 두는 역할을 하는 것으로, 상부에 지그(410)가 형성되어 검사할 부품(D)이 상기 지그(410) 위에 고정 장착되며, 상기 제트노즐(500)에서 분사된 가스가 부품(D)의 다수의 홀(H)을 통과하여 분리된 입자와 함께 상기 챔버(400)의 내부로 유입되어 수용된다.The chamber 400 is formed below the fan filter unit 200, and traps particles separated by the gas introduced by the gas injection of the jet nozzle 500 or the vacuum suction input of the vacuum pump 700. In this case, the jig 410 is formed on the upper part, and the part D to be inspected is fixedly mounted on the jig 410, and the gas injected from the jet nozzle 500 is a plurality of holes of the part D. It is introduced into the chamber 400 and accommodated together with the particles separated by passing through (H).
더불어, 상기 챔버(400)는 상기 지그(410)의 상측 또는 하측에 검사 전후의 부품(D)의 표면의 수분을 제거하기 위한 가온부재(미도시)가 설치될 수도 있다.In addition, the chamber 400 may be provided with a heating member (not shown) for removing moisture on the surface of the component (D) before and after the inspection on the upper side or the lower side of the jig 410.
이와 함께, 상기 챔버(400)는 상단에 챔버(400)의 내부를 밀폐할 수 있도록 밀폐도어(미도시)가 개폐 가능하게 설치될 수도 있다.In addition, the chamber 400 may be installed to open and close a sealed door (not shown) to seal the inside of the chamber 400 at the top.
그리고, 상기 챔버(400)는 아크 플라즈마 장치(미도시)가 추가로 설치되어 상기 지그(410)에 장착된 부품(D)의 표면에 아크 플라즈마에 의해 스트레스를 인가하여 부품(D)의 다공에 부착된 입자(P)를 분리하여 분리 효율을 증가시킬 수 있다.In addition, the chamber 400 is further provided with an arc plasma apparatus (not shown) to apply a stress to the surface of the component (D) mounted on the jig 410 by the arc plasma to the pores of the component (D). The attached particles P may be separated to increase the separation efficiency.
더하여, 상기 챔버(400)는 하부에 가스노즐(미도시)이 설치되어 상기 지그(410)에 장착된 부품(D)을 향하여 가스를 분사하여 부품(D)의 다공에 부착된 입자(P)를 보다 효율적으로 제거하도록 구비될 수도 있다.In addition, the chamber 400 is provided with a gas nozzle (not shown) in the lower portion to spray the gas toward the component (D) mounted on the jig 410 particles (P) attached to the pores of the component (D) It may be provided to remove more efficiently.
도 5를 참고하면, 상기 제트노즐(500)은 상기 챔버(400)의 상측에 위치하도록 설치되고, 도 5(c)와 같이 상기 지그(410)에 장착된 부품(D)을 향해 가스를 분사하여 부품(D)의 홀(H)에 부착되어 있는 입자(P)를 분리시켜 상기 챔버(400)의 내부로 유입되도록 한다.Referring to FIG. 5, the jet nozzle 500 is installed to be located above the chamber 400, and sprays gas toward the component D mounted on the jig 410 as shown in FIG. 5 (c). By separating the particles (P) attached to the hole (H) of the component (D) to be introduced into the chamber 400.
이때, 상기 제트노즐(500)로부터 분사되는 가스는 압축된 질소 가스(N2)인 것이 바람직하고, 도 5(b)와 같이 상기 제트노즐(500)로부터 가스가 부품(D)을 향해 다량 분사되면서 홀(H)이 아닌 부분은 충돌하여 외부로 배출되며, 홀(H) 부분은 가스가 통과되면서 홀(H)에 부착된 입자(P)를 탈리시킨다.At this time, the gas injected from the jet nozzle 500 is preferably a compressed nitrogen gas (N 2 ), a large amount of gas is injected from the jet nozzle 500 toward the component (D) as shown in FIG. While the portion is not the hole (H) is collided to be discharged to the outside, the hole (H) portion as the gas passes through to detach the particles (P) attached to the hole (H).
*더불어, 상기 챔버(400)의 상부 일측에 지지봉(510)이 설치되고, 상기 지지봉(510)에 회전봉(520)이 회전 가능하게 구비되며, 상기 지지봉(510)과 회전봉(520)의 사이에는 상기 제트노즐(500)의 이동속도를 결정하는 노즐이동속도조절밸브(530)가 설치되고, 일단에 상기 제트노즐(500)이 형성된 노즐관(540)이 상기 회전봉(520)의 측면을 관통하여 연결 설치되며, 상기 노즐관(540)의 타단에는 가스 공급관(550)이 연결 설치된다.* In addition, the support rod 510 is installed on the upper side of the chamber 400, the support rod 510 is provided with a rotatable rod 520 rotatably, between the support rod 510 and the rotary rod 520 A nozzle moving speed control valve 530 is provided to determine the moving speed of the jet nozzle 500, and a nozzle tube 540 having the jet nozzle 500 formed at one end thereof penetrates the side of the rotating rod 520. It is connected and installed, the other end of the nozzle pipe 540 is connected to the gas supply pipe 550 is installed.
이와 함께, 상기 노즐관(540)의 타단부에는 MFC(560, Mass Flow Controller)가 설치되어 가스의 공급량을 자동으로 조절할 수 있다.In addition, an MFC (560, Mass Flow Controller) is installed at the other end of the nozzle tube 540 to automatically adjust the supply amount of gas.
상기 입자계수기(600)는 상기 챔버(400)의 하측에 설치되어 상기 챔버(400)의 내부와 흡입라인(610)에 의해 연결되고, 상기 챔버(400) 내 가스를 흡입한 후 흡입된 가스 중에 포함되어 있는 입자(P)를 검출하여 계수한다.The particle counter 600 is installed below the chamber 400 and is connected to the inside of the chamber 400 by the suction line 610, and inhales the gas in the chamber 400 and inhales the gas. Particles P contained are detected and counted.
여기서, 상기 입자계수기(600)는 상기 흡입라인(610)의 상단에 흡입구(620)가 구비되고, 상기 흡입구(620)는 상기 챔버(400)의 내부에 배치되며, 상기 흡입라인(610)의 하단은 상기 진공흡입관(710)의 내부를 거쳐 하측의 상기 입자계수기(600)에 연결되게 배치된다.Here, the particle counter 600 is provided with a suction port 620 at the upper end of the suction line 610, the suction port 620 is disposed in the chamber 400, the of the suction line 610 A lower end is disposed to be connected to the particle counter 600 through the inside of the vacuum suction tube 710.
이로써, 상기 제트노즐(500)의 가스 분사에 의해 부품(D)의 홀(H)로부터 탈리된 입자(P)는 상기 챔버(400) 내부에 구비된 흡입라인(610)의 흡입구(611)로 유도되어 입자계수기(600)에 의해 가스 중에 포함된 입자가 검출 및 계수되는 것이다.Accordingly, the particles P detached from the hole H of the component D by the gas injection of the jet nozzle 500 are transferred to the suction port 611 of the suction line 610 provided in the chamber 400. Particles that are induced and contained in the gas by the particle counter 600 are detected and counted.
상기 진공펌프(700)는 상기 챔버(400)의 하측에 연결된 진공흡입관(710)에 설치되고, 상기 챔버(400)의 내부에 진공흡입력을 발생시켜 부품(D)의 홀(H)을 통과한 가스를 상기 챔버(400)의 내부로 유도하며, 유도된 가스가 흡입구(620)를 통하여 상기 입자계수기(600)로 흡입되도록 유도한다.The vacuum pump 700 is installed in the vacuum suction pipe 710 connected to the lower side of the chamber 400, and generates a vacuum suction input inside the chamber 400 to pass through the hole (H) of the component (D). The gas is guided into the chamber 400, and the induced gas is induced to be sucked into the particle counter 600 through the suction port 620.
이때, 상기 진공흡입관(710)에는 진공흡입관(710)을 개폐시켜 상기 챔버(400)에 진공흡입력의 발생 여부를 결정하는 진공펌프용 밸브(720)와, 상기 진공흡입관(710)을 통과하여 진공펌프(700)로의 가스 유량을 측정하는 MFM(Mass Flow Meter)이 설치된다.At this time, the vacuum suction pipe 710 opens and closes the vacuum suction pipe 710 to determine whether the vacuum suction input is generated in the chamber 400 and the vacuum pump valve 720, the vacuum passing through the vacuum suction pipe 710 A Mass Flow Meter (MFM) for measuring the gas flow rate to the pump 700 is installed.
상기 배출팬(800)은 상기 챔버(400)의 하측에 연결된 배출관(810)에 설치되고, 상기 챔버 내부의 공기를 외부로 배출시키는 것이며, 여기서 상기 배출관(810)에는 배출관(810)을 통해 통과되는 공기나 가스의 유입과 차단 여부를 결정하는 배출팬용 밸브(820)가 설치되어 있다.The discharge fan 800 is installed in the discharge pipe 810 connected to the lower side of the chamber 400, and discharges the air inside the chamber to the outside, where the discharge pipe 810 passes through the discharge pipe 810 A discharge fan valve 820 is provided to determine whether the inlet and blocking of the air or gas to be.
따라서, 상기 배출팬용 밸브(820)를 개방하고 상기 배출팬(800)을 작동시키면 상기 유입관(300)으로부터 유입된 청정공기가 상기 챔버(400)의 내부로 유입되어 경유한 후 상기 배출관(810)을 통하여 하측으로 배출됨으로써 상기 챔버(400) 내부의 청정화가 달성될 수 있다.Therefore, when the discharge fan valve 820 is opened and the discharge fan 800 is operated, clean air introduced from the inlet pipe 300 flows into the chamber 400 and passes through the discharge pipe 810. By discharging to the lower side through) can be cleaned inside the chamber 400.
이하, 도면을 참조하여 본 발명에 따른 다공 형성 부품의 입자 검사 장치(1)의 작동에 대하여 실시예를 중심으로 상세히 설명한다.Hereinafter, with reference to the drawings will be described in detail with respect to the operation of the particle inspection device 1 of the porous forming part according to the present invention.
초기에, 도 6a와 같이 장치와 연결된 모든 관의 밸브를 개방한 상태에서 팬필터유닛(200)에 의해 필터링된 청정공기를 유입관(300)을 통해 챔버(400)의 내부로 유입시킨 후 진공흡입관(710)과 배출관(810)을 통해 외부로 배출시킴으로써 챔버(400)의 내부를 클리닝하여 청정화한다.Initially, in the state in which the valves of all the pipes connected to the apparatus are opened as shown in FIG. 6A, the clean air filtered by the fan filter unit 200 is introduced into the chamber 400 through the inlet pipe 300 and then vacuumed. By discharging to the outside through the suction pipe 710 and the discharge pipe 810 to clean the interior of the chamber 400.
이때, 진공펌프(700)가 가동되어 초기의 챔버(400) 내부의 공기를 흡입할 수 있고, 배출팬(800)도 가동되며, 제트노즐(500)에 의한 챔버(400)의 내측으로 가스 분사도 이루어진다.At this time, the vacuum pump 700 is operated to suck the air in the initial chamber 400, the discharge fan 800 is also activated, the gas injection into the chamber 400 by the jet nozzle 500 Is also done.
더불어, 흡입라인(610)의 흡입구(620)를 통해 공기를 흡입하여 입자계수기(600)가 입자를 검출 및 계수함으로써 챔버(400) 내부의 전체적인 청정화 상태가 제로에 근접한 것인 지를 확인하여, 팬필터유닛(200), 유입관(300), 챔버(400), 제트노즐(500) 등의 전반적인 입자 상태를 확인할 수 있다.In addition, by suctioning the air through the suction port 620 of the suction line 610, the particle counter 600 detects and counts the particles to determine whether the overall cleaning state inside the chamber 400 is close to zero, and the fan. The overall particle state of the filter unit 200, the inlet pipe 300, the chamber 400, the jet nozzle 500 can be confirmed.
다음에, 도 6b와 같이 검사하고자 하는 부품(D)을 지그(410) 위에 고정 장착한 상태에서 챔버(400) 내부를 청정화한다.Next, as shown in FIG. 6B, the inside of the chamber 400 is cleaned while the component D to be inspected is fixedly mounted on the jig 410.
즉, 부품(D)을 지그(410)에 장착한 상태에서 팬필터유닛(200)에 의해 필터링된 청정공기를 유입관(300)을 통해 챔버(400)의 내부로 유입시킨 후 진공흡입관(710)과 배출관(810)을 통해 외부로 배출시킴으로써 챔버(400)의 내부를 클리닝하여 청정화한다. That is, in the state in which the component D is mounted on the jig 410, the clean air filtered by the fan filter unit 200 is introduced into the chamber 400 through the inlet pipe 300 and then the vacuum suction pipe 710. ) And the inside of the chamber 400 by cleaning the discharge to the outside through the discharge pipe 810 to clean.
이는 부품(D)을 장착하는 과정 또는 전회의 테스트에서 챔버(400) 내부의 공기 중에 부유하는 입자(P)인 백그라운드 입자를 제거하기 위하여 메인 컴퓨터를 제어하여 청정공기로 퍼지(purge)를 실행하는 것이다.This is to control the main computer to purge the clean air to remove background particles, which are particles P floating in the air inside the chamber 400 in the process of mounting the component D or the previous test. will be.
이때, 제트노즐(500)이 챔버의 외측을 향하도록 회전시킨 상태에서 압축공기를 분사토록 하여 노즐관(540), 가스 공급관(550) 등에 정체된 질소를 외부로 배출시킨다.At this time, the jet nozzle 500 is rotated to face the outside of the chamber so that compressed air is injected to discharge the stagnant nitrogen to the nozzle tube 540, the gas supply pipe 550, and the like.
그리고, 모든 밸브들을 차단한 상태에서 흡입라인(610)의 흡입구(620)를 통하여 챔버 내부의 공기를 흡입하여 입자계수기(600)가 흡입된 공기 중에 포함된 입자의 수를 카운팅한다.Then, the air in the chamber is sucked in through the suction port 620 of the suction line 610 in a state in which all the valves are blocked, and the particle counter 600 counts the number of particles included in the sucked air.
다음에, 도 6c와 같이 노즐관(540) 선단에 구비된 제트노즐(500)이 지그(410)에 장착된 부품(D)을 향하도록 회전에 의해 이동 배치하여 가스를 분사토록 한다. 여기서, 진공펌프(700)와 배출팬(800)의 가동 여부는 부품(D) 종류와 홀(H)의 크기 등을 고려하여 레시피 설정시 감도를 확인해 가며 결정한다.Next, as shown in FIG. 6C, the jet nozzle 500 provided at the tip of the nozzle tube 540 is moved by rotation so as to face the component D mounted on the jig 410 to inject gas. Here, the operation of the vacuum pump 700 and the discharge fan 800 is determined while checking the sensitivity when setting the recipe in consideration of the type of the component (D) and the size of the hole (H).
여기서, 입자의 샘플링은 제트노즐(500)에 의한 에어 제트 샘플링(Air Jet Sampling), 진공 흡입 샘플링(Vacuum pump Sampling)을 단독 또는 조합하여 이루어질 수 있다.Here, the sampling of the particles may be performed by using a single or a combination of air jet sampling (Vacuum pump Sampling) by the jet nozzle (500).
에어 제트 샘플링은 제트노즐(500)로부터 공급된 청정한 상태의 질소 가스 또는 압축 공기가 부품(D)의 홀(H)을 통과하면서 홀(H)의 내부에 부착된 입자(P)를 탈락시켜 질소 가스 또는 압축 공기와 함께 챔버(400) 내부의 흡입라인(610)의 흡입구(620)로 유도하는 것이다.In the air jet sampling, the nitrogen gas or the compressed air supplied from the jet nozzle 500 passes through the hole H of the component D, and the particles P attached to the inside of the hole H are dropped to remove nitrogen. Together with gas or compressed air, the inlet 620 of the suction line 610 inside the chamber 400 is introduced.
진공 흡입 샘플링은 진공펌프(700)를 가동하여 발생된 진공흡입력에 의하여 부품(D)의 홀(H)을 통과하는 공기가 홀(H)의 내부에 부착된 입자(P)를 탈락시켜 챔버(400)의 내부로 유입시키고, 유입된 공기는 챔버(400) 내부의 흡입라인(610)의 흡입구(620)로 유도하는 것이다.In the vacuum suction sampling, the air passing through the hole H of the component D is dropped by the vacuum suction input generated by operating the vacuum pump 700 to drop the particles P attached to the inside of the hole H, thereby allowing the chamber ( 400 is introduced into the interior, and the introduced air is directed to the inlet 620 of the suction line 610 inside the chamber 400.
조합 샘플링은 상술한 에어 제트 샘플링과 진공 흡입 샘플링을 동시에 또는 순차적으로 인가하면서 샘플링하는 것이고, 이러한 입자의 샘플링에 관한 설정은 장치의 메인 컴퓨터에서 레시피 설정을 통하여 지정할 수 있다.Combination sampling is sampling while applying the above-mentioned air jet sampling and vacuum suction sampling simultaneously or sequentially, and the setting regarding sampling of such particles can be specified through the recipe setting in the main computer of the apparatus.
아울러, 도 6d와 같이 제트노즐(500)의 가스 분사 시간을 조절하여 분사된 가스와 부품(D)의 홀(H)로부터 분리된 입자(P)가 챔버(400)의 내측 벽면에 충돌하여 재부착되기 전에 즉시 제트노즐(500)의 가스 분사를 종료시키고 입자계수기(600)로 챔버(400) 내의 가스나 공기를 흡입하여 여기에 포함된 입자(P)를 검출하여 계수한다.In addition, as shown in FIG. 6D, the gas injected by adjusting the gas injection time of the jet nozzle 500 and the particles P separated from the hole H of the component D collide with the inner wall surface of the chamber 400 to be rebuilt. Immediately before attachment, gas injection of the jet nozzle 500 is terminated, and gas or air in the chamber 400 is sucked into the particle counter 600 to detect and count particles P contained therein.
이와 같이, 모든 밸브들을 차단하고 부품(D)이 챔버(400)의 상단의 지그(410)에 장착된 상태에서는 챔버(400)의 내부에 소정의 압력이 형성되는데, 이때 제트노즐(500)이 상측에서 부품(D)을 향해 가스를 분사하면 부품(D)의 홀(H)로부터 분리된 입자(P)는 챔버(400) 내부에 형성된 압력에 의하여 챔버(400)의 내부에서 부유되는 상태로 존재하며, 이후 부품(D)에서 분리된 입자(P)가 챔버(400)의 내측 벽면에 충돌하여 재부착되기 전에 즉시 제트노즐(500)의 가스 분사를 종료시키고, 입자계수기(600) 또는 진공펌프(700)로 가스를 흡입하여 가스 중에 포함된 입자(P)를 검출하여 계수하는 것이다.As such, when all the valves are blocked and the component D is mounted on the jig 410 at the upper end of the chamber 400, a predetermined pressure is formed in the chamber 400, wherein the jet nozzle 500 is When the gas is injected toward the component D from the upper side, the particles P separated from the hole H of the component D are suspended in the chamber 400 by the pressure formed in the chamber 400. The gas jet of the jet nozzle 500 is terminated immediately after the particles P, which are separated from the part D, collide with the inner wall of the chamber 400 and are reattached, and the particle counter 600 or the vacuum is removed. The gas is sucked into the pump 700 to detect and count particles P contained in the gas.
일반적으로 부품의 구멍에 공기를 불어 넣기만 하면 분리된 입자가 곧 주변으로 날아가 버리거나 벽면에 부착하여 입자계수기로 계수할 수 없거나 입자의 검출 및 계수 효율이 떨어지게 된다. 더불어, 공기의 분사 압력을 낮추면 입자가 구멍으로부터 잘 분리되지 않게 되는 문제가 있다.In general, simply blowing air into a hole in a part will cause the separated particles to fly around or attach to the wall and not be able to be counted with a particle counter or the particle detection and counting efficiency will be reduced. In addition, there is a problem that the particles are not easily separated from the hole by lowering the injection pressure of the air.
그러나, 본 발명에 따른 다공 형성 부품의 입자 검사 장치(1)를 사용하는 경우, 부품(D)의 홀(H)에서 분리된 입자(P)가 날아가 버리거나 챔버(400)의 내측벽면에 부착하여 챔버(400)의 내부에 잔존하는 것을 방지하여 입자의 검출 및 계수 효율이 우수하고, 챔버(400)의 내부로 유입된 가스가 챔버(400)의 내벽에 충돌하여 혹시라도 챔버(400)의 내벽에 부착되었던 다른 입자를 챔버(400)의 내부에 부유시켜 입자계수기에 의해 계수되는 문제도 방지할 수 있다.However, in the case of using the particle inspection device 1 of the porous formed part according to the present invention, the particles P separated in the hole H of the part D are blown away or attached to the inner wall surface of the chamber 400. It is excellent in particle detection and counting efficiency by preventing the remaining inside of the chamber 400, and the gas introduced into the chamber 400 collides with the inner wall of the chamber 400, and thus the inner wall of the chamber 400. Other particles that have been attached thereto may be suspended inside the chamber 400 to prevent the problem of being counted by the particle counter.
더불어, 샘플링 이전에 청정화 공정을 수행하기 때문에 챔버의 내면에 부착되어 있던 다른 입자와 혼입됨으로써 계수 오차나 에러가 발생하는 것을 방지할 수 있는 것이다.In addition, since the cleaning process is performed before sampling, mixing with other particles adhering to the inner surface of the chamber can prevent occurrence of counting errors or errors.
결국, 본 발명에 따른 다공 형성 부품의 입자 검사 장치(1)는 다공 형성 부품의 홀 내부에 잔류하는 입자를 검출하여 계수할 수 있고, 입자의 검출 및 계수 효율이 우수하며, 계수 오차나 에러가 발생하지 않음으로써, 검사 중에 항상 파티클 제로 환경이 유지되고, 부품 오염과 입자 계수를 정확히 검사할 수 있으며, 나아가 입자가 부품에 부착되어 제품 불량이 유발되는 것을 방지하고, 제품의 신뢰성과 양산수율을 증가시킬 수 있겠다.As a result, the particle inspection device 1 of the porous formed part according to the present invention can detect and count particles remaining in the hole of the porous formed part, and excellent in particle detection and counting efficiency, By not occurring, the particle zero environment is always maintained during the inspection, the part contamination and particle counting can be accurately inspected, and furthermore, the particle adheres to the part to prevent product defects, and the product reliability and yield I can increase it.
본 발명에서 상기 실시 형태는 하나의 예시로서 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Anything that has substantially the same configuration as the technical idea described in the claims of the present invention and achieves the same effect is included in the technical scope of the present invention.
본 발명에 따른 다공 형성 부품의 입자 검사 장치는 검사 중에 항상 파티클 제로 환경이 유지되고, 부품 오염과 입자 계수를 정확히 검사할 수 있으며, 입자가 부품에 부착되어 제품 불량이 유발되는 것을 방지하고, 제품의 신뢰성과 양산수율을 증가시킬 수 있는 효과가 있으므로 산업상 이용가능성이 있다.The particle inspection apparatus of the porous formed part according to the present invention is always maintained in the particle zero environment during the inspection, it is possible to accurately inspect the part contamination and particle counting, to prevent the particles from adhering to the parts to cause product defects, It has the effect of increasing the reliability and yield of the production, so there is industrial applicability.
Claims (10)
- 내부에 다수의 홀이 형성된 다공 형성 부품에 부착되어 있는 입자를 검출하여 검사하는 장치에 있어서, An apparatus for detecting and inspecting particles adhering to porous forming parts having a plurality of holes formed therein,장치의 외곽을 구성하는 하우징;A housing constituting the outside of the device;상기 하우징의 상부에 형성되고 외부로부터 공기를 흡입한 후 필터링하여 장치 내부로 청정공기를 공급하는 팬필터유닛;A fan filter unit formed on an upper portion of the housing and sucking air from the outside and filtering the filter to supply clean air to the inside of the apparatus;챔버와 연결되어 장치 내부의 청정공기를 챔버의 내부로 유입시켜 클리닝하고, 중간에 유입밸브가 구비된 유입관;An inlet pipe connected with the chamber to clean the inside of the apparatus by introducing clean air into the chamber, and having an inlet valve in the middle;상기 팬필터유닛의 하측에 형성되고, 상부의 지그에 검사할 부품이 장착되며, 제트노즐에서 분사된 가스가 부품의 다공을 통과하여 내부로 유입되는 챔버;A chamber formed below the fan filter unit, and equipped with a component to be inspected in an upper jig, and a gas injected from a jet nozzle flowing into the interior of the component through a hole in the component;상기 챔버의 상측에 위치하도록 설치되고, 상기 지그에 장착된 부품을 향해 가스를 분사하여 부품의 홀에 부착되어 있는 입자를 분리시키는 제트노즐;A jet nozzle installed to be positioned above the chamber and separating a particle attached to the hole of the part by injecting a gas toward the part mounted on the jig;상기 챔버의 하측에 설치되어 상기 챔버의 내부와 흡입라인에 의해 연결되고, 상기 챔버 내 가스를 흡입한 후 흡입된 가스 중에 포함되어 있는 입자를 검출하여 계수하는 입자계수기;A particle counter installed under the chamber and connected to the inside of the chamber by a suction line, the particle counter for detecting and counting particles contained in the sucked gas after inhaling the gas in the chamber;상기 챔버의 하측에 연결된 진공흡입관에 설치되고, 상기 챔버의 내부에 진공흡입력을 발생시켜 부품의 홀을 통과한 가스를 상기 챔버의 내부로 유도하며, 유도된 가스가 상기 입자계수기로 흡입되도록 하는 진공펌프; 및It is installed in the vacuum suction pipe connected to the lower side of the chamber, generates a vacuum suction input inside the chamber to guide the gas passing through the hole of the part into the interior of the chamber, the vacuum so that the induced gas is sucked into the particle counter Pump; And상기 챔버의 하측에 연결된 배출관에 설치되고, 상기 챔버 내부의 공기를 외부로 배출시키는 배출팬;을 포함하는 다공 형성 부품의 입자 검사 장치.And a discharge fan installed in the discharge pipe connected to the lower side of the chamber and discharging the air in the chamber to the outside.
- 제 1항에 있어서,The method of claim 1,상기 하우징은 장치의 각 구성요소의 작동을 제어하는 메인 컴퓨터와, 상기 메인 컴퓨터의 화면이 디스플레이되는 모니터가 설치되어 있는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.And the housing is provided with a main computer for controlling the operation of each component of the device, and a monitor on which the screen of the main computer is displayed.
- 제 1항에 있어서,The method of claim 1,상기 팬필터유닛은, 상부에 설치된 프리필터, 하부에 설치된 ULPA 필터 및 상기 프리필터와 ULPA 필터의 사이에 설치된 흡입팬을 포함하는 다공 형성 부품의 입자 검사 장치.The fan filter unit, the particle inspection device of the porous forming part comprising a pre-filter installed in the upper portion, a ULPA filter installed in the lower portion and a suction fan provided between the pre-filter and the ULPA filter.
- 제 1항에 있어서,The method of claim 1,상기 챔버는 상기 지그의 상측 또는 하측에 검사 전후의 부품의 표면의 수분을 제거하기 위한 가온부재가 설치되어 있는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The chamber is provided with a heating member for removing moisture on the surface of the component before and after the inspection on the upper side or the lower side of the jig.
- 제 1항에 있어서,The method of claim 1,상기 챔버는 상단에 밀폐도어가 구비되어 있는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The chamber is a particle inspection device of the porous part, characterized in that the upper end is provided with a sealed door.
- 제 1항에 있어서,The method of claim 1,상기 챔버는 아크 플라즈마 장치가 추가로 설치되어 상기 지그에 장착된 부품의 표면에 아크 플라즈마에 의해 스트레스를 인가하여 입자를 분리 가능한 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The chamber is further provided with an arc plasma apparatus, the particle inspection device of the porous forming component, characterized in that the particles can be separated by applying stress to the surface of the component mounted on the jig by the arc plasma.
- 제 1항에 있어서,The method of claim 1,상기 챔버는 하부에 가스노즐이 설치되어 상기 지그에 장착된 부품의 입자를 제거하는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The chamber is provided with a gas nozzle in the lower portion of the particle inspection device of the porous forming component, characterized in that for removing the particles of the component mounted on the jig.
- 제 1항에 있어서,The method of claim 1,상기 제트노즐은, 회전 가능하게 설치되고, 가스의 공급량을 자동으로 조절하기 위한 MFC가 설치되어 있는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The jet nozzle is rotatably provided, and the particle inspection apparatus for the porous part is characterized in that the MFC is installed for automatically adjusting the supply amount of gas.
- 제 1항에 있어서,The method of claim 1,상기 입자계수기는, 상기 흡입라인의 상단에 구비된 흡입구는 상기 챔버의 내부에 배치되고, 상기 흡입라인의 하단은 상기 진공흡입관의 내부를 거치도록 배치되는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.The particle counting device, the suction port provided at the upper end of the suction line is disposed in the interior of the chamber, the lower end of the suction line is a particle inspection device of the porous forming component, characterized in that arranged to pass through the interior of the vacuum suction pipe. .
- 제 1항에 있어서,The method of claim 1,상기 진공흡입관에는 진공펌프용 밸브와 유량을 측정하는 MFM이 설치되고, The vacuum suction pipe is installed with a vacuum pump valve and MFM for measuring the flow rate,상기 배출관에는 배출팬용 밸브가 설치되어 있는 것을 특징으로 하는 다공 형성 부품의 입자 검사 장치.Particle inspection apparatus of the porous forming part, characterized in that the discharge pipe is provided with a valve for the discharge fan.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0164929 | 2014-11-25 | ||
KR1020140164929A KR101483224B1 (en) | 2014-11-25 | 2014-11-25 | Apparatus for detecting particles in porous parts |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016085167A1 true WO2016085167A1 (en) | 2016-06-02 |
Family
ID=52590630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/012157 WO2016085167A1 (en) | 2014-11-25 | 2015-11-12 | Particle inspection apparatus for porous formation part |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101483224B1 (en) |
WO (1) | WO2016085167A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102590033B1 (en) | 2018-11-20 | 2023-10-16 | (주)코미코 | Apparatus for measuring paricles and measuring method for using the same |
KR102472500B1 (en) * | 2022-05-17 | 2022-12-01 | 주식회사 에어콕 | Particulate matter measuring device using pump |
CN115656012B (en) * | 2022-12-08 | 2023-03-14 | 山东恒智一建净化工程有限公司 | Environment comprehensive index detection device |
CN118483020B (en) * | 2024-07-11 | 2024-10-01 | 洛阳兴宏安装检修有限公司 | External early warning device of industrial equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085542A (en) * | 1994-06-20 | 1996-01-12 | Hitachi Ltd | Method and apparatus for fabricating semiconductor device |
JPH11217670A (en) * | 1997-11-25 | 1999-08-10 | Japan Steel Works Ltd:The | Single-wafer load locking device and substrate cleaning method |
KR20070038795A (en) * | 2005-10-07 | 2007-04-11 | 주식회사 코미코 | Method of removing particles on an object, apparatus for performing the removing method, method of measuring particles on an object and apparatus for performing the measuring method |
KR100976987B1 (en) * | 2010-01-07 | 2010-08-19 | 주식회사 올루 | Instrument for testing particulate contamination of cleanroom supplies |
KR20110010735A (en) * | 2008-04-24 | 2011-02-07 | 알까뗄 루슨트 | Station and method for measuring the contamination of an enclosure used for transporting semiconductor substrates |
-
2014
- 2014-11-25 KR KR1020140164929A patent/KR101483224B1/en active IP Right Grant
-
2015
- 2015-11-12 WO PCT/KR2015/012157 patent/WO2016085167A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH085542A (en) * | 1994-06-20 | 1996-01-12 | Hitachi Ltd | Method and apparatus for fabricating semiconductor device |
JPH11217670A (en) * | 1997-11-25 | 1999-08-10 | Japan Steel Works Ltd:The | Single-wafer load locking device and substrate cleaning method |
KR20070038795A (en) * | 2005-10-07 | 2007-04-11 | 주식회사 코미코 | Method of removing particles on an object, apparatus for performing the removing method, method of measuring particles on an object and apparatus for performing the measuring method |
KR20110010735A (en) * | 2008-04-24 | 2011-02-07 | 알까뗄 루슨트 | Station and method for measuring the contamination of an enclosure used for transporting semiconductor substrates |
KR100976987B1 (en) * | 2010-01-07 | 2010-08-19 | 주식회사 올루 | Instrument for testing particulate contamination of cleanroom supplies |
Also Published As
Publication number | Publication date |
---|---|
KR101483224B1 (en) | 2015-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016085167A1 (en) | Particle inspection apparatus for porous formation part | |
TWI475595B (en) | Substrate transfer apparatus | |
TWI383443B (en) | Substrate processing apparatus | |
KR102074472B1 (en) | Substrate carrier deterioration detection and repair | |
CN100405536C (en) | Substrate processing system | |
US20090158537A1 (en) | Static electricity and dust removing apparatus | |
JP4912008B2 (en) | Substrate processing equipment | |
KR100430445B1 (en) | Processing apparatus having particle counter and cleaning device, cleaning method, cleanliness diagnosis method and semiconductor fabricating apparatus using the same | |
JP2007088398A (en) | Cleaning device, cleaning system using the cleaning device, and method of cleaning substrate to be cleaned | |
CN112997287B (en) | Particle removal device using symmetrical gas injection | |
KR20100052658A (en) | Substrate cleaning apparatus and method | |
JP5946109B2 (en) | Air purifier and its test system | |
KR100976987B1 (en) | Instrument for testing particulate contamination of cleanroom supplies | |
WO2016163604A1 (en) | System for flushing pipe plumbing using microbubbles, method therefor, and ship or maritime plant having same | |
JP2002214115A (en) | Air cleaning device and its test system | |
JP5950144B2 (en) | Air purifier and its test system | |
KR20140071651A (en) | Cleaning apparatus | |
KR20020050738A (en) | Clean room and method for fabricating semiconductor device | |
JP2001250802A (en) | Foreign particle removing system in manufacturing process | |
CN213376729U (en) | Glass panels processing is with dustless platform that detects | |
JPH04145918A (en) | Method for testing dust collector in semiconductor producing device | |
KR102096948B1 (en) | Equipment for Processing Substrate | |
KR102357186B1 (en) | Filter Assembly having Test Material Distributor | |
TWI693104B (en) | Substrate processing device and parts inspection method of substrate processing device | |
KR102681953B1 (en) | Apparatus for preventing chemical leakage and the method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863249 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15863249 Country of ref document: EP Kind code of ref document: A1 |