WO2016084978A1 - Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method - Google Patents

Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method Download PDF

Info

Publication number
WO2016084978A1
WO2016084978A1 PCT/JP2015/083605 JP2015083605W WO2016084978A1 WO 2016084978 A1 WO2016084978 A1 WO 2016084978A1 JP 2015083605 W JP2015083605 W JP 2015083605W WO 2016084978 A1 WO2016084978 A1 WO 2016084978A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pattern
correction
correction function
exposure
Prior art date
Application number
PCT/JP2015/083605
Other languages
French (fr)
Japanese (ja)
Inventor
哲平 山本
中山 肇
荻野 晴夫
聡 磯田
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2016084978A1 publication Critical patent/WO2016084978A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process

Definitions

  • the present invention relates to a method for manufacturing a wiring board, a data correction apparatus, a wiring pattern forming system, and a data correction method, and more particularly to manufacturing a wiring board used for manufacturing a wiring board having a fine circuit used in an electronic device or the like.
  • the present invention relates to a method, a data correction apparatus, a wiring pattern forming system, and a data correction method.
  • a direct drawing type exposure apparatus directly irradiating a photosensitive resist with laser light, UV-LED light, etc.
  • DI Direct Imaging
  • AOI Automatic Optical Inspection
  • a method of feeding back inspection data of an inspection apparatus (AOI) of an actual pattern substrate produced in advance for each production lot is conceivable, but the inspection data of the inspection apparatus (AOI) is enormous. Therefore, there is a problem that it takes a long time to process the data to be fed back.
  • the state of the manufacturing process at the time of manufacturing the actual pattern substrate cannot be correctly reflected, and the accuracy is lowered.
  • the present invention has been made in view of the above problems, and in addition to fluctuations in the line width of the wiring pattern depending on the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc., photosensitive resist, development
  • the line width accuracy at the time of microcircuit formation can be increased by correcting the exposure data with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as solution and etching solution.
  • the purpose is to improve.
  • the difference between the data and the original data or exposure data (C-1), and the relationship between the difference data and the factor causing the difference, the factor causing the difference and the difference are suppressed.
  • a step (C-2) of creating a plurality of correction functions defining a relationship between the correction amount of the original data or the correction amount of the exposure data for performing the correction, and a correction function combining the plurality of correction functions A method of manufacturing a wiring board, comprising: a step of creating a number (C-3); and a step of correcting original data or exposure data of the wiring pattern using the combined correction function (C-4).
  • step (C-2) of creating the plurality of correction functions a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are In the step (C-3) of creating and combining the combined correction function, a step of generating a tertiary correction function by combining the primary correction function and the secondary correction function to correct the original data or exposure data (C In 4), the wiring board original method or the exposure data of the real pattern board is corrected using the cubic correction function.
  • step (C-2) of creating the plurality of correction functions separately from the secondary correction function, another secondary correction function created using another actual pattern substrate is created, Item 3.
  • the step (C-3) of creating the synthesized correction function creates the other third-order correction function by synthesizing the third-order correction function and the other created second-order correction function.
  • a method for manufacturing a wiring board (4)
  • the actual pattern substrate used to create the primary correction function and other actual functions used to create other secondary correction functions are used.
  • Item 4. The method for manufacturing a wiring board according to Item 2 or 3, wherein the pattern board or another actual pattern board has the same wiring pattern.
  • another secondary correction function created after the secondary correction function is generated for each production lot of the actual pattern substrate or for each actual pattern substrate. Item 5.
  • Factors that cause a difference between the actual pattern data and the original data or exposure data include the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate.
  • Item 6 The method for manufacturing a wiring board according to any one of Items 1 to 5, which is any one or a combination of any two or more.
  • the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Item 7.
  • the tertiary correction function is combined with the other secondary correction function generated to generate another tertiary correction function.
  • the data correction apparatus described.
  • the actual pattern substrate used to create the primary correction function and other secondary correction functions used to create other secondary correction functions Item 11.
  • the data correction device according to Item 9 or 10, wherein the actual pattern substrate or another actual pattern substrate has the same wiring pattern.
  • another secondary correction function created after the secondary correction function is set for each production lot of real pattern substrates or for each real pattern substrate. Item 12.
  • Factors causing a difference between the actual pattern data and the original data or exposure data are the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate.
  • Item 13 The method for manufacturing a wiring board according to any one of Items 8 to 12, which is any one or a combination of any two or more.
  • the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Item 14.
  • a pattern exposure device that exposes an exposure pattern to a photosensitive resist disposed on a substrate, a development pattern forming device that develops the photosensitive resist exposed to the exposure pattern to form a development pattern, and the development pattern
  • a wiring pattern forming system comprising: an actual pattern forming apparatus that forms a real pattern by performing circuit processing on the substrate on which the circuit pattern is formed; and an actual pattern data generating apparatus that generates actual pattern data from the actual pattern.
  • a data correction method for wiring pattern original data or exposure data using the data correction device using the data correction device according to any one of items 8 to 14, wherein the original wiring pattern original data or the original data A step (C-1) of creating difference data from the difference between the exposure data created based on the actual pattern data created from the actual pattern substrate formed using the exposure data, and the difference data and the difference A step of creating a plurality of correction functions defining a relationship between a factor causing the difference and a correction amount of the original data or a correction amount of the exposure data for suppressing the difference from a relationship with the factor to be generated ( C-2), a step (C-3) of creating a correction function by combining the plurality of correction functions, and a correction function using the correction function generated by combining the plurality of correction functions. And a step (C-4) of creating correction data of the original data of the wiring pattern or the exposure data.
  • the present invention in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as the pattern gap, pattern size, pattern thickness, pattern position, etc., the state of the manufacturing process of the photosensitive resist, developer, etching solution, etc. It is possible to improve the line width accuracy when forming a fine circuit by correcting the exposure data with higher accuracy to cope with the fluctuation of the line width of the wiring pattern due to the change.
  • the manufacturing method of the wiring board of one Embodiment of this invention is shown.
  • the wiring pattern (test pattern) used by one Embodiment of this invention is shown.
  • substrate A used by one Embodiment of this invention is shown.
  • substrate B used by one Embodiment of this invention is shown.
  • substrate C used by one Embodiment of this invention is shown.
  • the linear correction function produced in one Embodiment of this invention is shown.
  • the secondary correction function created in one embodiment of the present invention is shown. 3 shows a cubic correction function created in an embodiment of the present invention.
  • the other secondary correction function and other tertiary correction function which were produced in one embodiment of the present invention are shown.
  • the block diagram of the data correction apparatus of one Embodiment of this invention is shown.
  • the schematic of the wiring pattern formation system of one Embodiment of this invention is represented.
  • the primary correction function of Examples 1 and 2 is shown.
  • the secondary correction function of Example 1 and 2 is shown.
  • the third order correction function of Examples 1 and 2 is shown.
  • the other secondary correction function of Example 1 and 2 is shown.
  • 6 shows another third-order correction function of the first embodiment.
  • the other cubic correction function of Example 2 is shown.
  • the method for manufacturing a wiring board according to the present embodiment first includes a step (A) of creating exposure data based on original data of a target wiring pattern.
  • the target wiring pattern is a wiring pattern to be formed as an actual pattern after circuit processing, and includes a product pattern for functioning as a wiring board and a test pattern for creating a correction function described later.
  • the actual pattern is a wiring pattern of an actual pattern substrate that is actually formed by performing circuit processing.
  • the target wiring pattern is not particularly limited, and any wiring pattern can be used.
  • the original data of the wiring pattern is the design data of the target wiring pattern, and the target wiring pattern to be formed is quantified and expressed by, for example, numerical values of coordinates and pattern widths and coordinates and pattern gaps. is there. You may have the data to which the information required for exposure was added.
  • the original data is created using a device (CAD: Computer Aided Design) that creates design data.
  • Exposure data refers to data for forming an exposure pattern corresponding to a wiring pattern by exposing a photosensitive resist to pattern exposure means such as a linear drawing apparatus using laser light or UV light.
  • the exposure data is created using a device (CAM: Computer Aided Manufacturing) that creates exposure data based on the original data.
  • CAM Computer Aided Manufacturing
  • the method for manufacturing a wiring board according to the present embodiment includes a step (B) of creating actual pattern data from the actual pattern board formed using the exposure data.
  • the process (B) for creating actual pattern data includes a pattern exposure process (B-1), a development pattern formation process (B-2), an actual pattern formation process (B-3), and a pattern inspection process (B-4). Have.
  • the exposure pattern corresponding to the wiring pattern is exposed to a photosensitive resist by a pattern exposure apparatus such as a linear drawing apparatus using laser light or UV light.
  • a pattern exposure apparatus such as a linear drawing apparatus using laser light or UV light.
  • the pattern exposure apparatus refers to an exposure apparatus that exposes an exposure pattern to a photosensitive resist disposed on a substrate based on exposure data.
  • Examples of the pattern exposure apparatus include a direct drawing apparatus (DI: Direct Imaging) that directly exposes an exposure pattern to a photosensitive resist using laser light or UV-LED light.
  • DI Direct Imaging
  • the photosensitive resist refers to an etching resist or a plating resist used for forming a wiring pattern by etching a metal foil such as a copper foil or plating a metal such as copper by a photolithography method.
  • An exposure pattern refers to a pattern exposed to a photosensitive resist based on exposure data, and corresponds to a development pattern formed by subsequent development.
  • the photosensitive resist is removed while leaving an exposure pattern formed by pattern exposure and necessary for actual pattern formation.
  • the development pattern refers to a pattern that appears by developing the photosensitive resist after exposure.
  • the developing pattern forming apparatus may be a developing apparatus that develops a photosensitive resist having an exposed exposure pattern to form a developing pattern.
  • circuit processing is performed to manufacture an actual pattern substrate having an actual pattern.
  • the circuit processing refers to forming an actual pattern, and includes, for example, forming a conductor pattern by etching a metal foil by a subtract method.
  • the actual pattern refers to a conductor pattern that is actually formed by performing circuit processing, and can be formed by an actual pattern forming apparatus.
  • the actual pattern forming apparatus refers to an apparatus that forms a real pattern by performing circuit processing on a substrate on which a development pattern is formed, and includes an etching apparatus.
  • the actual pattern substrate means a substrate having a conductor pattern (actual pattern) actually formed by performing circuit processing, for example, a substrate having a conductor pattern obtained by etching a metal foil by a subtract method.
  • the actual pattern data refers to finished data obtained from an actual pattern using an optical appearance inspection apparatus (AOI: Automatic Optical Inspection), a measurement microscope, or the like.
  • the optical appearance inspection apparatus generally detects light reflected from the upper surface (top) of an actual pattern, digitizes the pattern, and sets the data as numerical values such as coordinates, pattern width, and pattern gap.
  • the measurement microscope in this embodiment can be used to measure and convert the line width of both the upper surface (top) of the actual pattern and the bottom surface (bottom) of the actual pattern. .
  • the wiring pattern forming method of the present embodiment includes a step (C) of creating correction data of the original data or exposure data based on the difference between the original data or exposure data and the actual pattern data.
  • the correction data of the original data or exposure data refers to original data or exposure data after correction, that is, corrected original data or exposure data. Further, as shown in FIG.
  • a step (C-1) for creating difference data from the difference between the actual pattern data and the original data or exposure data, and this difference A step of creating a plurality of correction functions defining a relationship between a factor causing a difference and a correction amount of original data or a correction amount of exposure data for suppressing the difference from a relationship between the data and a factor causing the difference ( C-2), a step of creating a correction function by combining the plurality of correction functions (C-3), and a step of correcting the original data or exposure data of the wiring pattern using the combined correction function (C-4) )have.
  • the relationship between the transfer direction of the actual pattern substrate and the direction in which the etching solution hits changes depending on the position of the wiring pattern, even within one of the front and back surfaces of the actual pattern substrate. Therefore, the etching process tends to have uneven directionality and etching amount. For this reason, it is desirable to divide the in-plane of the actual pattern substrate into a plurality of regions and create a correction function for each of these regions. In particular, in the periphery of the edge of the actual pattern substrate, in addition to the unevenness of the etching process, unevenness in the thickness of the copper foil due to variations in the plating thickness is also added. In the section, it is desirable to divide the area more finely and create a correction function for each area. As a result, it is possible to suppress variations in the finished value such as the line width of the actual pattern due to the position in the plane of the actual pattern substrate.
  • ⁇ Process (C-1)> In the step (C-1) of creating difference data from the difference between the actual pattern data and the original data or exposure data, the actual pattern data obtained in the pattern inspection step (B-4) is compared with the original data or exposure data. From this, differential data is created.
  • the difference between the actual pattern data and the original data or exposure data of the actual pattern is specifically the pattern gap, pattern width, etc. between the actual pattern data and the actual pattern original data or exposure data at the same coordinates.
  • the same coordinates are the same coordinates in the original data (design data), and the pattern gaps and the like are the same design values at the same coordinates.
  • a difference in pattern gaps or the like at the same coordinates indicates a difference obtained by comparing portions having the same design value in the wiring pattern.
  • the difference data refers to data representing this difference by coordinates, pattern gaps, pattern widths, and the like.
  • the difference data can be created using a computer from the difference between the actual pattern data and the original data of the actual pattern or the exposure data.
  • the correction amount of the original data for suppressing the difference or the exposure data A plurality of correction functions that define the relationship with the correction amount are created.
  • the factor causing the difference between the actual pattern data and the original data or the exposure data is that the actual pattern data and the original data or the exposure are changed by the fluctuation in the wiring pattern specification of the original data or the exposure data.
  • a factor that causes a change in the difference from data As such factors, for example, the original data of the actual pattern or the pattern gap of the exposure data, the pattern width, the pattern size, the pattern thickness, the pattern position, or any combination of two or more thereof can be cited.
  • the correction amount of the original data or the exposure data for suppressing the difference for example, the difference itself between the actual pattern data and the original data or exposure data of the actual pattern can be used. This is because if the correction is made such that the difference between the actual pattern data and the original data or exposure data of the actual pattern is added to or subtracted from the current original data or exposure data, the actual pattern data approaches the value of the original data or exposure data. It is because.
  • the correction function defines the relationship between the factor causing the difference and the correction amount of the original data or exposure data for suppressing the difference from the relationship between the factor causing the difference and the difference data.
  • the correction function is a computer having a calculation function for obtaining a relationship between a factor causing a difference and a correction amount of the original data or exposure data for suppressing the difference from a relationship between the factor causing the difference and the difference data.
  • FIG. 6 shows an example in which the correction function is created using the pattern gap of the wiring pattern of the actual pattern substrate as a factor that causes the difference between the actual pattern data and the original data or the exposure data. That is, in the correction function of FIG. 6, the horizontal axis represents the pattern gap of the wiring pattern of the actual pattern substrate, and the vertical axis represents the correction amount.
  • any of the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Alternatively, it is desirable to use actual pattern data corresponding to any combination of two or more.
  • the horizontal axis is the pattern gap of the wiring pattern of the actual pattern substrate.
  • data used as the numerical value of the pattern gap include the original data of the wiring pattern of the actual pattern substrate, the exposure data, Real pattern data can be considered.
  • the correction function indicates the relationship between the original data or exposure data of the pattern gap and the correction amount for the original data or exposure data, and the correction amount is the actual pattern data and the original data.
  • it is based on the difference data with the exposure data, even in this case, it is possible to obtain a correction amount that is somewhat accurate with respect to the original data or exposure data of the pattern gap.
  • the correction amount with respect to the original data or the exposure data is based on the difference data when the actual pattern data (finished value) is different from the original data (design value), and is actually obtained. Since the actual pattern data (finished value) is finished as the original data (design value), that is, the correction amount for matching the original data (design value) and the actual pattern data (finished value) It is conceivable that there is a deviation from the correction amount based on the difference data when the actual pattern data (finished value) is different from the original data (design value).
  • the correction function is the actual pattern data (actual measurement value) of the pattern gap.
  • the correction amount with respect to the original data or exposure data can be regarded as the target original data (design value) or exposure data.
  • Value) is a correction amount for obtaining target original data (design value) or exposure data.
  • the correction function is a factor that causes a change in the difference between the actual pattern data and the original data or the exposure data, which is a wiring pattern in which the pattern gap, pattern width, pattern size, pattern thickness, pattern position, etc. are changed. It can create using the some real pattern board
  • a wiring pattern used to create a correction function a wiring pattern used as a product of a wiring board can be used.
  • factors that cause a difference in FIG. 2, a pattern gap, a pattern It is desirable to use a test pattern in which the width, pattern shape, and pattern size) are changed, because necessary data can be easily obtained and a correction function with higher accuracy can be created.
  • an actual pattern substrate (hereinafter referred to as a test pattern substrate) is used in which a large number of relatively small area test patterns having the same wiring pattern are arranged in the actual pattern substrate.
  • a test pattern substrate it is desirable in that data relating to the same wiring pattern specification can be acquired over the entire actual pattern substrate, and data relating to variations in the actual pattern substrate can also be acquired.
  • a primary correction function created using an actual pattern substrate and another actual pattern substrate are used.
  • the created secondary correction function is created.
  • the other actual pattern substrate means an actual pattern substrate different from the actual pattern substrate when the primary correction function is created, and the wiring pattern itself may be the same or different. Absent. In this way, by creating the primary correction function and the secondary correction function separately, for example, using the actual pattern substrate on which the test pattern is arranged, the reference primary correction function is created and actually created.
  • a secondary correction function that reflects the state of the production line at that time is created again using another actual pattern board, and then these primary corrections are made.
  • a function and a quadratic correction function can be synthesized. That is, based on the primary correction function serving as a reference, correction to a more appropriate correction function according to the production line situation can be performed using the secondary correction function.
  • the actual pattern substrate used to create the primary correction function and the other actual pattern substrate used to create another secondary correction function have the same wiring pattern.
  • a plurality of correction functions may be created using a plurality of actual pattern substrates having the same wiring pattern or a plurality of actual pattern substrates having different wiring patterns, but the former is corrected. It is desirable in that the accuracy of the function can be increased. For example, as shown in FIGS. 3, 4, and 5, the actual pattern substrate A (FIG. 3), the actual pattern substrate B (FIG. 4), and the actual pattern substrate C (FIG. 5) have the same test pattern. Thus, even if the wiring pattern of other portions changes, it is possible to always create a correction function using the same test pattern portion.
  • the secondary correction function is created for each production lot of the actual pattern substrate or for each actual pattern substrate. This makes it possible to create a correction function that reflects the state of the manufacturing process when manufacturing an actual pattern substrate.
  • ⁇ Process (C-3)> In the step (C-3) of creating a correction function by combining a plurality of correction functions, a single correction function is created by combining the plurality of correction functions created in the step (C-2) of generating a plurality of correction functions. To do.
  • a tertiary correction function is created by synthesizing the primary correction function and the secondary correction function. For example, as shown in FIG. 6, first, a primary correction function serving as a reference is created using an actual pattern substrate. Next, as shown in FIG. 7, an actual pattern substrate different from the primary correction function is used. The secondary correction function is used to create a secondary correction function, and as shown in FIG. 8, the primary correction function and the secondary correction function are combined to create a tertiary correction function.
  • the primary correction function as a reference is always fixed, a stable tertiary correction function can be obtained, so that the secondary correction function created for each lot of actual pattern substrates or for each actual pattern substrate is measured. Even if errors or irregular measured values are included, the influence can be reduced.
  • a weighted average obtained by increasing the combination ratio of correction functions created using a larger amount of data is used. Desirable for accuracy improvement. For example, a primary correction function using a large amount of difference data is created as a reference correction function, and then compared as a secondary correction function that reflects the state of the manufacturing process when an actual pattern substrate is manufactured. When creating a secondary correction function using a small amount of difference data and combining these primary correction function and secondary correction function, increase the combination ratio of the primary correction function as a reference to increase the measurement error. And the effects of irregular data can be suppressed.
  • the composition ratio at the time of the weighted average may be arbitrarily set according to the number of difference data when creating the correction function, the state of the manufacturing process, etc.
  • the composite ratio of the primary correction function used as a reference and the secondary correction function created when manufacturing the actual pattern substrate is set in the range of 0.3 to 0.7. It is desirable to do.
  • the composition ratio refers to the ratio of the secondary correction function when the total of the primary correction function and the secondary correction function is set to 1.
  • ⁇ Process (C-4)> In the step (C-4) of correcting the original data or exposure data of the wiring pattern using the combined correction function, a difference is generated in the difference between the actual pattern data and the original data or exposure data using the combined correction function. By calculating the correction amount corresponding to the pattern gap, pattern width, etc., which are factors to be added, and adding or subtracting the obtained correction amount to the original data or exposure data, the original data or exposure data of the wiring pattern is obtained. to correct.
  • the original data or the exposure data of the wiring pattern of the actual pattern substrate is corrected using a tertiary correction function.
  • a plurality of correction functions are synthesized in this way to create a basic primary correction function and cope with variations in the manufacturing process. Even when creating a secondary correction function with less data than one correction function at the same time as the pattern substrate is manufactured, the effects of measurement errors and irregular measurement values can be reduced. An appropriate correction function reflecting the situation can be obtained. For this reason, it is suitable when the state of the production process hardly changes due to an increase in the number of production and the like and is relatively stable.
  • the wiring pattern due to changes in the state of the manufacturing process such as photosensitive resist, developer, etching solution, etc.
  • the line width accuracy at the time of forming a fine circuit can be improved by correcting the exposure data with higher accuracy to cope with the fluctuation of the line width.
  • Steps (A), (B), (C-1)> As in the first embodiment, first, steps (A), (B), and (C-1) are performed, and difference data is created from the difference between the actual pattern data and the original data. To do.
  • ⁇ Process (C-2)> In the step (C-2) of creating a plurality of correction functions, a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are created. Thereafter, apart from the secondary correction function, another secondary correction function created using another actual pattern substrate is created.
  • a tertiary correction function by combining the primary correction function and the secondary correction function is generated. After that, this tertiary correction function and another secondary correction function further created in the step (C-2) are combined to create another tertiary correction function.
  • a primary correction function is created using an actual pattern substrate, and then, as shown in FIG. 7, an actual pattern substrate different from this primary correction function.
  • a secondary correction function is synthesized to generate a tertiary correction function.
  • a secondary correction function is further created and combined with the tertiary correction function to create another tertiary correction function.
  • the third-order correction function is obtained by repeatedly accumulating the second-order correction function and the composition, the second-order correction function produced for each actual pattern substrate production lot or each actual pattern substrate has measurement errors and irregularities. Even if the measurement value is included, the influence can be reduced.
  • the data correction apparatus of the present embodiment uses a computer, and the computer includes a processing unit (processor), a display unit, an input unit, a storage unit, a communication unit, and each of these components. It has a bus for connecting parts.
  • the display unit displays an image output by a program executed on the computer.
  • the input unit accepts input, and is, for example, a keyboard or a mouse.
  • the storage unit can store information such as a nonvolatile memory, a volatile memory, and a hard disk.
  • the storage unit stores data such as original data, exposure data, actual pattern data, difference data, correction function, correction data, and the process up to correcting the original data or exposure data (correction data creation process (C) in FIG. 1). ) Is stored.
  • the communication unit performs wireless communication or wired communication using a USB cable or the like. Original data, exposure data, actual pattern data, difference data, and the like may be acquired via the communication unit.
  • the processing unit executes a process for correcting original data or exposure data (correction data creation process (C) in FIG. 1).
  • the data correction apparatus does not need to be a general-purpose computer, and may be realized by hardware for executing all or a part of each process and software operating in cooperation therewith.
  • the data correction apparatus of the present embodiment is the original data of the target wiring pattern or the exposure data created based on this original data. And difference data is created from the difference between the actual pattern data created from the actual pattern substrate formed using the exposure data.
  • FIG. 6 shows an example in which the correction function is created using the pattern gap of the wiring pattern as a factor that causes a difference between the actual pattern data and the original data or the exposure data. That is, in the correction function of FIG. 6, the horizontal axis represents the pattern gap of the wiring pattern, and the vertical axis represents the correction amount.
  • a primary correction function created using an actual pattern substrate and another actual pattern substrate are used as the plurality of correction functions.
  • a quadratic correction function created in the above manner is created and actually created.
  • the reference primary correction function is created and actually created.
  • a secondary correction function that reflects the current production line status is created again using another actual pattern board, and then these primary corrections are made.
  • a function and a quadratic correction function can be synthesized. That is, based on the primary correction function serving as a reference, correction to a more appropriate correction function according to the production line situation can be performed using the secondary correction function.
  • a tertiary correction function is created by synthesizing the primary correction function and the secondary correction function. For example, as shown in FIG. 6, first, a primary correction function serving as a reference is created using an actual pattern substrate. Next, as shown in FIG. 7, an actual pattern substrate different from the primary correction function is used. The secondary correction function is used to create a secondary correction function, and as shown in FIG. 8, the primary correction function and the secondary correction function are combined to create a tertiary correction function.
  • the primary correction function serving as a reference is always fixed, a stable tertiary correction function can be obtained, so the secondary correction function produced for each production lot of the actual pattern substrate or for each actual pattern substrate is Even if measurement errors and irregular measurement values are included, the influence can be reduced.
  • the original data or the exposure data (C-4) when correcting the original data or the exposure data (C-4), the original data or the exposure data of the wiring pattern of the actual pattern board is corrected using a tertiary correction function.
  • a plurality of correction functions may be created using a plurality of actual pattern substrates having the same wiring pattern or a plurality of actual pattern substrates having different wiring patterns, but the former is corrected. It is desirable in that the accuracy of the function can be increased. For example, as shown in FIGS. 3, 4, and 5, the actual pattern substrate A (FIG. 3), the actual pattern substrate B (FIG. 4), and the actual pattern substrate C (FIG. 5) have the same test pattern. Thus, even if the wiring pattern of other portions changes, it is possible to always create a correction function using the same test pattern portion.
  • C-2 When creating a plurality of correction functions (C-2), another secondary correction function created after the secondary correction function is created for each production lot of the actual pattern substrate or for each actual pattern substrate. Is desirable. This makes it possible to create a correction function that reflects the state of the manufacturing process when manufacturing an actual pattern substrate.
  • the photosensitivity Lines at the time of microcircuit formation can be dealt with by correcting exposure data with higher accuracy even for fluctuations in the line width of wiring patterns due to changes in the state of manufacturing processes such as resist, developer, and etchant.
  • the width accuracy can be improved.
  • the data correction apparatus according to the present embodiment has the configuration shown in FIG. 10 as with the data correction apparatus according to the third embodiment described above.
  • a primary correction function is created using an actual pattern substrate, and then, as shown in FIG. 7, an actual pattern substrate different from this primary correction function.
  • a secondary correction function is synthesized to generate a tertiary correction function.
  • a secondary correction function is further created and combined with the tertiary correction function to create another tertiary correction function.
  • the third-order correction function is obtained by repeatedly accumulating the second-order correction function and the composition, the second-order correction function produced for each actual pattern substrate production lot or each actual pattern substrate has measurement errors and irregularities. Even if the measurement value is included, the influence can be reduced.
  • the same operation and effect as those of the third embodiment can be obtained, and the tertiary correction function used for correcting the original data or the exposure data is obtained by repeatedly accumulating the secondary correction function. Therefore, more stable correction can be performed when the state of the manufacturing process tends to fluctuate in a specific direction due to the accumulation of the number of productions.
  • the wiring pattern forming system of the present embodiment first has a data correction device.
  • a computer is used as the data correction apparatus.
  • the computer includes a processing unit (processor), a display unit, an input unit, a storage unit, a communication unit, and each of these components. It has a bus to be connected.
  • the substrate means a substrate having a metal foil such as copper foil or copper plating on an insulating layer such as glass epoxy, and examples thereof include a copper clad laminate.
  • a pattern exposure apparatus refers to an exposure apparatus that exposes an exposure pattern to a photosensitive resist disposed on a substrate based on exposure data. Examples thereof include a direct drawing apparatus (DI: Direct Imaging) that directly exposes an exposure pattern on a photosensitive resist using laser light or UV-LED light.
  • DI Direct Imaging
  • the development pattern forming apparatus for developing a photosensitive resist having an exposed exposure pattern to form a development pattern.
  • An example of the development pattern forming apparatus is a development apparatus used in photolithography.
  • an actual pattern forming apparatus that forms a real pattern by performing circuit processing on the substrate on which the development pattern is formed.
  • Examples of the actual pattern forming apparatus include an etching apparatus and a plating apparatus used in circuit processing of a wiring board.
  • an actual pattern data creation device for creating actual pattern data from the actual pattern.
  • the actual pattern data creation device include an optical appearance inspection device (AOI: Automatic Optical Inspection), a measurement microscope, and the like.
  • the optical appearance inspection apparatus detects light reflected from the upper surface (top) of an actual pattern, digitizes the pattern, and sets the data as numerical values such as coordinates, pattern width, and pattern gap.
  • the measurement microscope can be used to measure the line width and convert it into data for either the upper surface (top) or the lower surface (bottom) of the actual pattern.
  • the data correction device receives the actual pattern data from the actual pattern data creation device, and as shown in FIG. 1, from the difference between the actual pattern data and the original data or exposure data.
  • Difference data is created (C-1), and the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference from the relationship between the difference and the factor causing the difference (C-2), a correction function obtained by synthesizing the plurality of correction functions is created (C-3), and the original data or exposure data of the wiring pattern is generated using the synthesized correction function. Is corrected (C-4).
  • the wiring pattern forming system of the present embodiment in the same manner as in the first embodiment, in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc.
  • the exposure data can be corrected with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as the resist, developer, and etchant. Line width accuracy can be improved.
  • the data correction method of the present embodiment uses the data correction neglect shown in FIG. 10, and as shown in the correction data creation step of FIG. 1, the original data of the target wiring pattern or the original data
  • the wiring pattern forming system of the present embodiment in the same manner as in the first embodiment, in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc.
  • the exposure data can be corrected with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as the resist, developer, and etchant. Line width accuracy can be improved.
  • Example 1 ⁇ Create primary correction function> First, in order to create a primary correction function, a thickness of 0.22 mm having a copper foil of 5 ⁇ m on the front and back of an insulating layer as a substrate for producing an actual pattern substrate C4c on which the test pattern 1 and the product pattern 7 are arranged. On the copper foil of the copper clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd., “MCL” is a registered trademark) having a length of 440 mm and a width of 510 mm, an electroplating of about 9 ⁇ m is applied. What prepared the total copper thickness of each surface of front and back about 14 micrometers was prepared.
  • the original data (design value) of the test pattern shown in FIG. 2 is a linear wiring in which the pattern width (width of pattern 3) is fixed at 100 ⁇ m and the pattern gap 2 is changed in 24 steps within the range of 14 to 150 ⁇ m.
  • the patterns are arranged in the vertical and horizontal directions for each of the front and back surfaces, and the initial exposure data created based on this original data is the same as the original data (design value).
  • FIG 5 shows an outline of the actual pattern substrate C4c.
  • the product pattern 7 there are 11 test patterns 1 in the vertical direction, 11 in the horizontal direction, and 121 in total. Were evenly arranged in the front and back surfaces of the actual pattern substrate C4c.
  • Actual pattern data (finished value) was obtained for the actual pattern substrate C4c using an optical automatic visual inspection apparatus.
  • the number of measurement points at this time is one for each of the vertical and horizontal linear wiring patterns for each test pattern.
  • 121 points each for the linear wiring patterns in the vertical direction and the horizontal direction 121 points each for the linear wiring patterns in the vertical direction and the horizontal direction
  • a total of 9 points is 1089 points for each surface for the linear wiring patterns in the vertical direction and the horizontal direction.
  • the difference data was created.
  • the actual pattern data (finished value) is obtained as 1089 points (121 points per sheet) of actual pattern data (finished value) for each surface for each of the 24 pattern gaps. (For every 121 points).
  • the relationship with the transport direction of the actual pattern substrate, the direction of contact with the etching solution, etc. changes depending on the position of the wiring pattern.
  • the directionality and the etching amount tend to be uneven.
  • the unevenness of the thickness of the copper foil due to the variation of the plating thickness is added, so this tendency is further strong.
  • the surface of the actual pattern substrate is divided into a plurality of regions, and the region around the edge portion is divided more finely than the center portion of the actual pattern substrate. A correction function was created.
  • the design value (unit: ⁇ m) of the pattern gap shown in the table of FIG. 12 is a numerical value of the pattern gap (factor causing the difference) of the original data of the test pattern.
  • the finished value (unit: ⁇ m) of the pattern gap is an actual measurement value of the pattern gap acquired from actual pattern data using an optical automatic visual inspection apparatus.
  • the one-side correction amount (unit: ⁇ m) is the exposure data correction amount for suppressing the difference between the finished value of the pattern gap and the original data, and was obtained by the following equation (1).
  • the one-side correction amount is used to correct the same amount on both sides of the pattern gap when correcting the exposure data.
  • One-side correction amount ( ⁇ m) (finish value of pattern gap ( ⁇ m) ⁇ design value ( ⁇ m)) / 2 (1)
  • the correction processing to the exposure data of the product pattern 7 using the primary correction function is performed, for example, in the exposure data of the product pattern 7 where the finished value of the pattern gap in the table of FIG. From the data of 28.5 ⁇ m (one-side correction amount is 4.3 ⁇ m) and the finished value is 33.2 ⁇ m (one-side correction amount is 5.6 ⁇ m), the value of the one-side correction amount when the finished value is 30 ⁇ m is It was obtained by calculation on the assumption that it was on a straight line connecting the data.
  • the one-side correction amount is 4.7 ⁇ m, and is for exposure data (here, it means initial exposure data and is the same as the original data). Correction processing for narrowing the pattern gap by 4.7 ⁇ m on one side was performed. In other words, the exposure data after the pattern gap correction processing is set to 20.6 ⁇ m at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 ⁇ m.
  • the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the primary correction function created above, and the exposure data of the test pattern 1 The correction process was not applied to.
  • test pattern 1 an actual pattern is always created using the same exposure data as when the primary correction function was created, and actual pattern data for creating the secondary correction function is collected.
  • FIG. 5 shows an outline of the actual pattern substrate C4c.
  • a total of 42 test patterns 1 are actually arranged in the actual pattern substrate C4c.
  • the positions of 42 test patterns 1 arranged in the actual pattern substrate C4c in the actual pattern substrate C4c are 42 points in the actual pattern substrate C4c used to create the primary correction function shown in FIG. This corresponds to the position of the test pattern 1.
  • actual pattern data (finished value) was obtained for the actual pattern substrate C4c using an optical automatic visual inspection apparatus.
  • the number of measurement points at this time is 42 points.
  • Actual pattern data was acquired only for six stages of 60, 80, and 130 ⁇ m.
  • the actual pattern data is averaged for every 42 points, and this averaged actual pattern data is used to create a primary correction function, as shown in FIG. A quadratic correction function as shown in FIG.
  • the pattern gap 2 at other stages was obtained by calculation assuming that the pattern gap 2 was on a straight line connecting the actual pattern data of the pattern gap 2 at the stage where the actual pattern data was obtained. That is, although not shown in the table of FIG. 13, actual pattern data was actually acquired only for six stages, and based on this, the actual pattern data for all 24 stages were estimated. As a result, the actual pattern data to be acquired is reduced and the data processing load is reduced.
  • FIG. 14 shows a case where the composition ratio (ratio) of correction amounts by the primary correction function is 0.5. Specifically, when the composition ratio (ratio) of the correction amounts by the primary correction function is 0.5, the composition ratio (ratio) of the correction amounts by the secondary correction function is 0.5.
  • the one-side correction amount was synthesized by the following equation (2).
  • One-sided correction amount ( ⁇ m) of tertiary correction function one-sided correction amount ( ⁇ m) of primary correction function ⁇ 0.5 + Secondary correction function one-side correction amount ( ⁇ m) ⁇ 0.5 (2)
  • the one-side correction amount data at the time of creating the secondary correction function is obtained only for the pattern gaps in six steps, which is smaller than the 24 steps at the time of creating the primary correction function. It was estimated by calculation so as to obtain data for the same 24 stages as when the primary correction function was created.
  • the correction process to the exposure data of the product pattern 7 using the tertiary correction function includes, for example, a combination ratio (ratio) of the correction amount by the primary correction function to the correction amount by the primary correction function and the correction amount by the secondary correction function.
  • ratio a combination ratio
  • the finished value of the pattern gap in the table of FIG. 14 is 26.8 ⁇ m (one-side correction amount is 3.4 ⁇ m).
  • the one-side correction amount value when the finishing value is 30 ⁇ m is on a straight line connecting these data. Obtained by calculation.
  • the one-side correction amount is 4.2 ⁇ m
  • exposure data in this case, it means initial exposure data, not corrected exposure data, (Same as the data.) Correction processing for narrowing the pattern gap by 4.2 ⁇ m on one side was performed.
  • the exposure data after the pattern gap correction processing is set to 21.6 ⁇ m at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 ⁇ m.
  • a tertiary correction function used for correcting the original data or exposure data of a product pattern (not shown) arranged on the actual pattern substrate C4c is created using the test pattern 1 having the closest positional relationship to each product pattern.
  • a cubic correction function was used.
  • the third-order correction function created above is used for the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) as in the case of creating the second-order correction function.
  • the correction process is performed, and the exposure data of the test pattern 1 is not subjected to the correction process.
  • an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
  • the combination ratio (ratio) of the correction amount of the primary correction function in the correction amount by the primary correction function and the correction amount by the secondary correction function is 0.5, 0,.
  • the tertiary correction function was created as 7 and 0.3, sufficient process capability was obtained, and the best results were obtained when the composite ratio of the primary correction function was 0.5.
  • the process capability tends to be lower than in the Examples.
  • Example 2 Similar to Example 1, ⁇ Creation of primary correction function>, ⁇ Correction of exposure data using primary correction function>, ⁇ Creation of secondary correction function>, ⁇ Creation of tertiary correction function>, ⁇ Cubic correction function Correction of exposure data using was performed.
  • the actual pattern data (finished value) is obtained for the actual pattern substrate C4c by using an optical automatic visual inspection apparatus, and the result is shown in FIG. A quadratic correction function was created. Further, the pattern gap 2 at the other stages is on the straight line connecting the actual pattern data of the pattern gap 2 at the stage of obtaining the actual pattern data in the same manner as the above-described secondary correction function is created. Obtained by calculation assuming that there is. That is, although not shown in the table of FIG. 15, the actual pattern data was actually acquired only for the six stages, and based on this, the actual pattern data for all 24 stages were estimated. As a result, the actual pattern data to be acquired is reduced and the data processing load is reduced.
  • One-side correction amount of other tertiary correction function ( ⁇ m) (One-side correction amount of primary correction function ( ⁇ m) + One-sided correction amount of other secondary correction function ( ⁇ m)) / 2 (3)
  • the primary correction function is fixed, and another secondary correction function newly created every time a real pattern substrate is produced is synthesized with this same primary correction function, Create a cubic correction function. For this reason, it is suitable for the case where the state of the production process hardly fluctuates due to an increase in the number of production and the like and is relatively stable.
  • the data of the one-side correction amount when the other secondary correction function is created is acquired only for the pattern gaps in six stages, which is smaller than the 24 stages when the primary correction function is created. In addition, it was estimated by calculation so as to be the data for the same 24 stages as when the primary correction function was created.
  • the correction process to the exposure data of the product pattern 7 using another tertiary correction function is, for example, the composition ratio of the correction amount by the primary correction function to the entire correction amount by the primary correction function and the correction amount by the other secondary correction function.
  • the (ratio) is 0.5
  • the pattern gap finish value in the table of FIG. 16 is 28.6 ⁇ m (one-side correction amount is 4) for the design value of 30 ⁇ m. .3 ⁇ m) and the finished value is 32.9 ⁇ m (one-side correction amount is 5.4 ⁇ m)
  • the one-side correction amount value when the finished value is 30 ⁇ m is on a straight line connecting these data.
  • the one-side correction amount is 4.7 ⁇ m
  • exposure data in this case, it means initial exposure data, not corrected exposure data, (Same as the data.) Correction processing for narrowing the pattern gap by 4.7 ⁇ m on each side was performed.
  • the exposure data after the pattern gap correction processing is set to 20.6 ⁇ m at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 ⁇ m.
  • the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the other third-order correction function created above, and the test pattern 1 The exposure data was not corrected.
  • test pattern 1 an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
  • Example 3 Similar to Example 2, ⁇ Creation of primary correction function>, ⁇ Correction of exposure data using primary correction function>, ⁇ Creation of secondary correction function>, ⁇ Creation of tertiary correction function>, ⁇ Cubic correction function Correction of exposure data using, and ⁇ Create other secondary correction functions>.
  • the combined ratio (ratio) of the correction amount based on the tertiary correction function in the correction amount based on the tertiary correction function created above and the correction amount based on the other secondary correction function is set to 0.5, 0.7,. 3, another cubic correction function was created.
  • FIG. 17 shows a case where the composition ratio (ratio) of correction amounts by the cubic correction function is 0.5.
  • the combination ratio (ratio) of the correction amounts by the tertiary correction function is 0.5
  • the combination ratio (ratio) of the correction amounts by the other secondary correction functions is 0.5.
  • the one-side correction amount for each gap was synthesized by the following equation (4).
  • One-side correction amount ( ⁇ m) of other tertiary correction function one-side correction amount ( ⁇ m) of tertiary correction function ⁇ 0.5 + Other-side correction function one-side correction amount ( ⁇ m) ⁇ 0.5 (4) That is, in this embodiment, by synthesizing a secondary correction function that is newly created every time an actual pattern substrate is produced, with respect to a tertiary correction function obtained by synthesizing the primary correction function and the secondary correction function, Create another cubic correction function. For this reason, since the tertiary correction function used for correcting the original data or the exposure data is the cumulative result of the secondary correction function, the status of the manufacturing process varies in a specific direction due to the accumulation of the production number or the like.
  • the data of the one-side correction amount when another secondary correction function is created is acquired only for the pattern gaps in six stages, which is smaller than the 24 stages when the tertiary correction function is created.
  • the correction process to the exposure data of the product pattern 7 using another tertiary correction function is, for example, a combination ratio of the correction amount by the tertiary correction function to the total correction amount by the tertiary correction function and the correction amount by the other secondary correction function.
  • the (ratio) is 0.5
  • the finished value of the pattern gap in the table of FIG. 17 is 27.8 ⁇ m (one-side correction amount is 3) for the design value 30 ⁇ m.
  • the one-side correction amount value when the finished value is 30 ⁇ m is on a straight line connecting these data. Obtained by calculation assuming that there is.
  • the one-side correction amount is 4.5 ⁇ m
  • exposure data here, not the exposure data after correction but the initial exposure data, (Same as data)
  • the exposure data after the pattern gap correction processing is set to 21.0 ⁇ m at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 ⁇ m.
  • the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the other third-order correction function created above, and the test pattern 1 The exposure data was not corrected.
  • test pattern 1 an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
  • Test pattern 2 Pattern gap 3: Pattern 4: Real pattern substrate 4a: Real pattern substrate A (test substrate) 4b: Actual pattern substrate B (test substrate) 4c: Actual pattern substrate C (product substrate) 5: Substrate 6: Product pattern area 7: Product pattern 8: Data correction device 9: Bus 10: Wiring pattern forming system

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

A step (C) for generating, on the basis of the difference between original data and actual pattern data, correction data for the original data or exposure data is provided with: a step (C-1) in which difference data is generated from the difference between the actual pattern data and the original data; a step (C-2) in which a plurality of correction functions defining the relationship between the cause of the difference and the original-data correction amount or the exposure-data correction amount for suppressing the difference are generated from the relationship between the difference data and the cause of the difference; and a step (C-3) in which a correction function obtained by synthesizing the plurality of correction functions is generated.

Description

配線基板の製造方法、データ補正装置、配線パターン形成システム及びデータ補正方法Wiring board manufacturing method, data correction apparatus, wiring pattern forming system, and data correction method
 本発明は、配線基板の製造方法、データ補正装置、配線パターン形成システム及びデータ補正方法に関するものであり、特には電子機器等に用いられる微細回路を有する配線基板の製造に用いられる配線基板の製造方法、データ補正装置、配線パターン形成システム及びデータ補正方法に関するものである。 The present invention relates to a method for manufacturing a wiring board, a data correction apparatus, a wiring pattern forming system, and a data correction method, and more particularly to manufacturing a wiring board used for manufacturing a wiring board having a fine circuit used in an electronic device or the like. The present invention relates to a method, a data correction apparatus, a wiring pattern forming system, and a data correction method.
 電子機器の高機能化、小型化の動向から、電子機器に用いられる配線基板に対しても、配線パターンの細線化による高密度化が求められている。 Due to the trend toward higher functionality and miniaturization of electronic devices, higher density is required for wiring boards used in electronic devices by thinning the wiring pattern.
 このような配線パターンの細線化による高密度化に対応するための配線パターン形成方法としては、感光性レジストに露光パターンをレーザー光やUV-LED光などで直接照射する直接描画式の露光装置(DI:Direct Imaging)と、エッチング等で実際に形成された実パターンを反射光で読み取って元データ(設計データ)との比較を行う光学式の検査装置(AOI::Automatic Optical Inspection)を組み合わせて、エッチング後の実際の仕上りのデータを検査装置(AOI)に取り込み、露光装置(DI)にフィードバックする方法が考えられている(特許文献1~3)。 As a wiring pattern forming method to cope with such high density by thinning the wiring pattern, a direct drawing type exposure apparatus (directly irradiating a photosensitive resist with laser light, UV-LED light, etc.) Combine DI (Direct Imaging) and an optical inspection device (AOI :: Automatic Optical Inspection) that reads the actual pattern actually formed by etching etc. with reflected light and compares it with the original data (design data). There has been considered a method in which actual finished data after etching is taken into an inspection apparatus (AOI) and fed back to an exposure apparatus (DI) (Patent Documents 1 to 3).
特開2005-116929号公報JP 2005-116929 A 特開2006-303229号公報JP 2006-303229 A 特開2007-033764号公報JP 2007-033764 A
 しかし、パターン幅の変動要因はいくつもあり、パターンの形状・粗密等による変動のように、製造ロットが変わっても、同じ配線パターンを有する製品では、ある程度一定になる要因もあれば、エッチング液の変動等のように、同じ製品であっても、製造プロセスの状態変化によって、製造ロット毎に変動する要因もある。このため、特許文献1~3のような従来の配線パターン形成方法では、配線パターン幅の変動を抑制できない場合が考えられる。このため、従来のように、検査装置(AOI)のデータをフィードバックする方法では、微細回路の精度向上に対してあまり有効とは言えない面があった。 However, there are a number of factors that change the pattern width. Even if the production lot changes, such as variations due to pattern shape, density, etc., there is a factor that remains constant to some extent for products with the same wiring pattern. Even if the product is the same, there are also factors that vary from one production lot to another due to a change in the state of the production process. For this reason, the conventional wiring pattern forming methods such as Patent Documents 1 to 3 may not be able to suppress fluctuations in the wiring pattern width. For this reason, the conventional method of feeding back data from an inspection apparatus (AOI) has not been very effective for improving the precision of a fine circuit.
 これに対しては、例えば、製造ロット毎に先行して作製した実パターン基板の検査装置(AOI)の検査データをフィードバックする方法が考えられるが、検査装置(AOI)の検査データは膨大であるため、フィードバックするデータの処理に長時間を要する問題がある。また、製造ロット毎に先行して作製した実パターン基板の検査データを少なくして、データの処理を早くすることが考えられるが、検査データを少なくすると、イレギュラーなデータを含む場合にその影響が大きく、その実パターン基板を作製する時点での製造プロセスの状態を正しく反映できず、かえって精度が低下する問題がある。 For this, for example, a method of feeding back inspection data of an inspection apparatus (AOI) of an actual pattern substrate produced in advance for each production lot is conceivable, but the inspection data of the inspection apparatus (AOI) is enormous. Therefore, there is a problem that it takes a long time to process the data to be fed back. In addition, it is conceivable to reduce the inspection data of the actual pattern substrate produced in advance for each production lot and speed up the data processing. However, if the inspection data is reduced, the influence is exerted when irregular data is included. However, there is a problem that the state of the manufacturing process at the time of manufacturing the actual pattern substrate cannot be correctly reflected, and the accuracy is lowered.
 本発明は、上記問題点に鑑みてなされたものであり、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることを目的とする。 The present invention has been made in view of the above problems, and in addition to fluctuations in the line width of the wiring pattern depending on the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc., photosensitive resist, development The line width accuracy at the time of microcircuit formation can be increased by correcting the exposure data with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as solution and etching solution. The purpose is to improve.
 本発明は、以下に関する。
(1) 目標とする配線パターンの元データに基づいて露光データを作成する工程(A)と、この露光データを用いて形成した実パターン基板から実パターンデータを作成する工程(B)と、前記元データと実パターンデータとの差分に基づいて、前記元データ又は露光データの補正データを作成する工程(C)と、を有し、前記補正データを作成する工程(C)が、前記実パターンデータと前記元データ又は露光データとの差分から差分データを作成する工程(C-1)と、この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、この複数の補正関数を合成した補正関数を作成する工程(C-3)と、前記合成した補正関数を用いて前記配線パターンの元データ又は露光データを補正する工程(C-4)と、を有する配線基板の製造方法。
(2) 前記複数の補正関数を作成する工程(C-2)では、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成し、前記合成した補正関数を作成する工程(C-3)では、前記一次補正関数と二次補正関数を合成した三次補正関数を作成し、前記元データ又は露光データを補正する工程(C-4)では、前記三次補正関数を用いて、前記実パターン基板の配線パターンの元データ又は露光データを補正する、項1に記載の配線基板の製造方法。
(3) 前記複数の補正関数を作成する工程(C-2)では、前記二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成し、前記合成した補正関数を作成する工程(C-3)では、前記三次補正関数と前記さらに作成された他の二次補正関数を合成して他の三次補正関数を作成する、項2に記載の配線基板の製造方法。
(4) 前記複数の補正関数を作成する工程(C-2)では、一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板又はさらに他の実パターン基板とが、同一の配線パターンを有する、項2又は3に記載の配線基板の製造方法。
(5) 前記複数の補正関数を作成する工程(C-2)では、前記二次補正関数の後に作成される他の二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成される、項2から4の何れか1項に記載の配線基板の製造方法。
(6) 前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子が、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せである、項1から5の何れか1項に記載の配線基板の製造方法。
(7) 前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子として、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せに対応する実パターンデータを用いる項6に記載の配線基板の製造方法。
(8) 項1から7の何れか1項に記載の配線基板の製造方法に用いる、配線パターンの元データ又は露光データのデータ補正装置であって、目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、前記露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成し(C-1)、この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と前記差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成し(C-2)、この複数の補正関数を合成した補正関数を作成し(C-3)、前記複数の補正関数を合成して作成した補正関数を用いて補正した前記配線パターンの元データ又は露光データの補正データを作成する(C-4)、データ補正装置。
(9) 複数の補正関数を作成する際(C-2)には、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成し、前記合成した補正関数を作成する際(C-3)には、前記一次補正関数と二次補正関数を合成した三次補正関数を作成し、前記元データ又は露光データを補正する(C-4)には、前記三次補正関数を用いて、前記実パターン基板の配線パターンの元データ又は露光データを補正する、項8に記載のデータ補正装置。
(10) 前記複数の補正関数を作成する際(C-2)には、前記二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成し、前記合成した補正関数を作成する際(C-3)には、前記三次補正関数と前記さらに作成された他の二次補正関数を合成して他の三次補正関数を作成する、項9に記載のデータ補正装置。
(11) 前記複数の補正関数を作成する際(C-2)には、一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板又はさらに他の実パターン基板とが、同一の配線パターンを有する、項9又は10に記載のデータ補正装置。
(12) 前記複数の補正関数を作成する際(C-2)には、前記二次補正関数の後に作成される他の二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成される、項9から11の何れか1項に記載のデータ補正放置。
(13) 前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子が、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せである、項8から12の何れか1項に記載の配線基板の製造方法。
(14) 前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子として、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せに対応する実パターンデータを用いる項13に記載の配線基板の製造方法。
(15) 項8から14の何れか1項に記載のデータ補正装置と、前記データ補正装置により補正された元データから作成された露光データ又は前記データ補正装置により補正された露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光するパターン露光装置と、前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像パターン形成装置と、前記現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する実パターン形成装置と、前記実パターンから実パターンデータを作成する実パターンデータ作成装置と、を有する配線パターン形成システム。
(16) 項8から14の何れか1項に記載のデータ補正装置を用いる、配線パターンの元データ又は露光データのデータ補正方法であって、目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、前記露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成する工程(C-1)と、この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と前記差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、この複数の補正関数を合成した補正関数を作成する工程(C-3)と、前記複数の補正関数を合成して作成した補正関数を用いて補正した前記配線パターンの元データ又は露光データの補正データを作成する工程(C-4)と、を有するデータ補正方法。
The present invention relates to the following.
(1) A step (A) of creating exposure data based on the original data of the target wiring pattern, a step (B) of creating actual pattern data from an actual pattern substrate formed using this exposure data, (C) creating correction data of the original data or exposure data based on the difference between the original data and the actual pattern data, and the step (C) of creating the correction data includes the actual pattern The difference between the data and the original data or exposure data (C-1), and the relationship between the difference data and the factor causing the difference, the factor causing the difference and the difference are suppressed. A step (C-2) of creating a plurality of correction functions defining a relationship between the correction amount of the original data or the correction amount of the exposure data for performing the correction, and a correction function combining the plurality of correction functions A method of manufacturing a wiring board, comprising: a step of creating a number (C-3); and a step of correcting original data or exposure data of the wiring pattern using the combined correction function (C-4).
(2) In the step (C-2) of creating the plurality of correction functions, a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are In the step (C-3) of creating and combining the combined correction function, a step of generating a tertiary correction function by combining the primary correction function and the secondary correction function to correct the original data or exposure data (C In 4), the wiring board original method or the exposure data of the real pattern board is corrected using the cubic correction function.
(3) In the step (C-2) of creating the plurality of correction functions, separately from the secondary correction function, another secondary correction function created using another actual pattern substrate is created, Item 3. The step (C-3) of creating the synthesized correction function creates the other third-order correction function by synthesizing the third-order correction function and the other created second-order correction function. A method for manufacturing a wiring board.
(4) In the step (C-2) of creating the plurality of correction functions, the actual pattern substrate used to create the primary correction function and other actual functions used to create other secondary correction functions are used. Item 4. The method for manufacturing a wiring board according to Item 2 or 3, wherein the pattern board or another actual pattern board has the same wiring pattern.
(5) In the step (C-2) of creating the plurality of correction functions, another secondary correction function created after the secondary correction function is generated for each production lot of the actual pattern substrate or for each actual pattern substrate. Item 5. The method for manufacturing a wiring board according to any one of Items 2 to 4, which is created.
(6) Factors that cause a difference between the actual pattern data and the original data or exposure data include the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate. Item 6. The method for manufacturing a wiring board according to any one of Items 1 to 5, which is any one or a combination of any two or more.
(7) As a factor causing a difference between the actual pattern data and the original data or exposure data, the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Item 7. The method for manufacturing a wiring board according to Item 6, wherein actual pattern data corresponding to any one or a combination of any two or more is used.
(8) A data correction apparatus for wiring pattern original data or exposure data used in the method for manufacturing a wiring board according to any one of items 1 to 7, wherein the original data of the target wiring pattern or the original data Difference data is created from the difference between the exposure data created based on the data and the actual pattern data created from the actual pattern substrate formed using the exposure data (C-1), and the difference data and the difference are A plurality of correction functions defining the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference are created from the relationship with the factor to be generated (C -2) A correction function obtained by combining the plurality of correction functions is created (C-3), and the original data of the wiring pattern corrected using the correction function created by combining the plurality of correction functions Alternatively, a data correction apparatus that creates correction data for exposure data (C-4).
(9) When creating a plurality of correction functions (C-2), a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are When creating the combined correction function (C-3), a tertiary correction function is generated by combining the primary correction function and the secondary correction function, and the original data or exposure data is corrected (C In 4), the data correction apparatus according to item 8, wherein the original data or exposure data of the wiring pattern of the actual pattern substrate is corrected using the cubic correction function.
(10) When creating the plurality of correction functions (C-2), in addition to the secondary correction function, another secondary correction function created using another actual pattern substrate is created. When the combined correction function is created (C-3), the tertiary correction function is combined with the other secondary correction function generated to generate another tertiary correction function. The data correction apparatus described.
(11) When creating the plurality of correction functions (C-2), the actual pattern substrate used to create the primary correction function and other secondary correction functions used to create other secondary correction functions Item 11. The data correction device according to Item 9 or 10, wherein the actual pattern substrate or another actual pattern substrate has the same wiring pattern.
(12) When creating the plurality of correction functions (C-2), another secondary correction function created after the secondary correction function is set for each production lot of real pattern substrates or for each real pattern substrate. Item 12. The data correction neglected according to any one of Items 9 to 11, which is created by
(13) Factors causing a difference between the actual pattern data and the original data or exposure data are the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate. Item 13. The method for manufacturing a wiring board according to any one of Items 8 to 12, which is any one or a combination of any two or more.
(14) As a factor causing a difference between the actual pattern data and the original data or exposure data, the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Item 14. The method for manufacturing a wiring board according to Item 13, wherein actual pattern data corresponding to any one or a combination of any two or more is used.
(15) Based on the data correction apparatus according to any one of Items 8 to 14, and exposure data created from original data corrected by the data correction apparatus or exposure data corrected by the data correction apparatus A pattern exposure device that exposes an exposure pattern to a photosensitive resist disposed on a substrate, a development pattern forming device that develops the photosensitive resist exposed to the exposure pattern to form a development pattern, and the development pattern A wiring pattern forming system comprising: an actual pattern forming apparatus that forms a real pattern by performing circuit processing on the substrate on which the circuit pattern is formed; and an actual pattern data generating apparatus that generates actual pattern data from the actual pattern.
(16) A data correction method for wiring pattern original data or exposure data using the data correction device according to any one of items 8 to 14, wherein the original wiring pattern original data or the original data A step (C-1) of creating difference data from the difference between the exposure data created based on the actual pattern data created from the actual pattern substrate formed using the exposure data, and the difference data and the difference A step of creating a plurality of correction functions defining a relationship between a factor causing the difference and a correction amount of the original data or a correction amount of the exposure data for suppressing the difference from a relationship with the factor to be generated ( C-2), a step (C-3) of creating a correction function by combining the plurality of correction functions, and a correction function using the correction function generated by combining the plurality of correction functions. And a step (C-4) of creating correction data of the original data of the wiring pattern or the exposure data.
 本発明によれば、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることができる。 According to the present invention, in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as the pattern gap, pattern size, pattern thickness, pattern position, etc., the state of the manufacturing process of the photosensitive resist, developer, etching solution, etc. It is possible to improve the line width accuracy when forming a fine circuit by correcting the exposure data with higher accuracy to cope with the fluctuation of the line width of the wiring pattern due to the change.
本発明の一実施形態の配線板の製造方法を示す。The manufacturing method of the wiring board of one Embodiment of this invention is shown. 本発明の一実施形態で用いる配線パターン(テストパターン)を示す。The wiring pattern (test pattern) used by one Embodiment of this invention is shown. 本発明の一実施形態で用いる実パターン基板Aの概略図を示す。The schematic of the real pattern board | substrate A used by one Embodiment of this invention is shown. 本発明の一実施形態で用いる実パターン基板Bの概略図を示す。The schematic of the real pattern board | substrate B used by one Embodiment of this invention is shown. 本発明の一実施形態で用いる実パターン基板Cの概略図を示す。The schematic of the real pattern board | substrate C used by one Embodiment of this invention is shown. 本発明の一実施形態で作成した一次補正関数を示す。The linear correction function produced in one Embodiment of this invention is shown. 本発明の一実施形態で作成した二次補正関数を示す。The secondary correction function created in one embodiment of the present invention is shown. 本発明の一実施形態で作成した三次補正関数を示す。3 shows a cubic correction function created in an embodiment of the present invention. 本発明の一実施形態で作成した他の二次補正関数及び他の三次補正関数を示す。The other secondary correction function and other tertiary correction function which were produced in one embodiment of the present invention are shown. 本発明の一実施形態のデータ補正装置の構成図を示す。The block diagram of the data correction apparatus of one Embodiment of this invention is shown. 本発明の一実施形態の配線パターン形成システムの概略図を表す。The schematic of the wiring pattern formation system of one Embodiment of this invention is represented. 実施例1及び2の一次補正関数を示す。The primary correction function of Examples 1 and 2 is shown. 実施例1及び2の二次補正関数を示す。The secondary correction function of Example 1 and 2 is shown. 実施例1及び2の三次補正関数を示す。The third order correction function of Examples 1 and 2 is shown. 実施例1及び2の他の二次補正関数を示す。The other secondary correction function of Example 1 and 2 is shown. 実施例1の他の三次補正関数を示す。6 shows another third-order correction function of the first embodiment. 実施例2の他の三次補正関数を示す。The other cubic correction function of Example 2 is shown.
(配線基板の製造方法:第1の実施形態)
<<工程(A)>>
 本発明の第1の実施形態の配線基板の製造方法を説明する。図1に示すように、本実施の形態の配線基板の製造方法は、まず、目標とする配線パターンの元データに基づいて露光データを作成する工程(A)を有している。目標とする配線パターンとは、回路加工後の実パターンとして形成しようとする配線パターンをいい、配線基板として機能させるための製品パターン及び後述する補正関数を作成するためのテストパターンを含む。また、実パターンとは、回路加工を行なって実際に形成された実パターン基板の配線パターンをいう。目標とする配線パターンには特に限定はなく、任意の配線パターンを用いることができる。
(Manufacturing method of wiring board: first embodiment)
<<< Process (A) >>>
A method for manufacturing a wiring board according to the first embodiment of the present invention will be described. As shown in FIG. 1, the method for manufacturing a wiring board according to the present embodiment first includes a step (A) of creating exposure data based on original data of a target wiring pattern. The target wiring pattern is a wiring pattern to be formed as an actual pattern after circuit processing, and includes a product pattern for functioning as a wiring board and a test pattern for creating a correction function described later. The actual pattern is a wiring pattern of an actual pattern substrate that is actually formed by performing circuit processing. The target wiring pattern is not particularly limited, and any wiring pattern can be used.
 配線パターンの元データとは、目標とする配線パターンの設計データのことをいい、形成しようとする目標の配線パターンを数値化し、例えば、座標とパターン幅、座標とパターン間隙の数値で表すものである。露光に必要な情報を付加されたデータを有していてもよい。元データは、設計データを作成する装置(CAD:Computer Aided Design)等を用いて作成される。 The original data of the wiring pattern is the design data of the target wiring pattern, and the target wiring pattern to be formed is quantified and expressed by, for example, numerical values of coordinates and pattern widths and coordinates and pattern gaps. is there. You may have the data to which the information required for exposure was added. The original data is created using a device (CAD: Computer Aided Design) that creates design data.
 露光データとは、配線パターンに対応する露光パターンを、レーザ光又はUV光等を用いた直線描画装置等のパターン露光手段によって、感光性レジストを感光させて形成するためのデータをいう。露光データは、元データに基づいて露光データを作成する装置(CAM:Computer Aided Manufacturing)等を用いて作成される。 Exposure data refers to data for forming an exposure pattern corresponding to a wiring pattern by exposing a photosensitive resist to pattern exposure means such as a linear drawing apparatus using laser light or UV light. The exposure data is created using a device (CAM: Computer Aided Manufacturing) that creates exposure data based on the original data.
<<工程(B)>>
 次に、図1に示すように、本実施の形態の配線基板の製造方法は、この露光データを用いて形成した実パターン基板から実パターンデータを作成する工程(B)を有しており、実パターンデータを作成する工程(B)は、パターン露光工程(B-1)、現像パターン形成工程(B-2)、実パターン形成工程(B-3)、パターン検査工程(B-4)を有している。
<<< Process (B) >>>
Next, as shown in FIG. 1, the method for manufacturing a wiring board according to the present embodiment includes a step (B) of creating actual pattern data from the actual pattern board formed using the exposure data. The process (B) for creating actual pattern data includes a pattern exposure process (B-1), a development pattern formation process (B-2), an actual pattern formation process (B-3), and a pattern inspection process (B-4). Have.
<工程(B-1)>
 パターン露光工程(B-1)では、露光データを用いて、配線パターンに対応する露光パターンを、レーザ光又はUV光等を用いた直線描画装置等のパターン露光装置によって、感光性レジストを感光させて形成する。ここで、パターン露光装置とは、露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光する露光装置のことをいう。パターン露光装置としては、レーザ光又はUV-LED光を用いて、直接感光性レジストに露光パターンを露光させる直接描画装置(DI:Direct Imaging)等が挙げられる。また、感光性レジストとは、フォトリソ法によって、銅箔等の金属箔をエッチングしたり、銅等の金属をめっきすることにより、配線パターンを形成する際に用いるエッチングレジスト又はめっきレジストのことをいう。露光パターンとは、露光データに基づいて、感光性レジストに露光されたパターンをいい、その後の現像によって形成される現像パターンに対応するものである。
<Process (B-1)>
In the pattern exposure step (B-1), using the exposure data, the exposure pattern corresponding to the wiring pattern is exposed to a photosensitive resist by a pattern exposure apparatus such as a linear drawing apparatus using laser light or UV light. Form. Here, the pattern exposure apparatus refers to an exposure apparatus that exposes an exposure pattern to a photosensitive resist disposed on a substrate based on exposure data. Examples of the pattern exposure apparatus include a direct drawing apparatus (DI: Direct Imaging) that directly exposes an exposure pattern to a photosensitive resist using laser light or UV-LED light. The photosensitive resist refers to an etching resist or a plating resist used for forming a wiring pattern by etching a metal foil such as a copper foil or plating a metal such as copper by a photolithography method. . An exposure pattern refers to a pattern exposed to a photosensitive resist based on exposure data, and corresponds to a development pattern formed by subsequent development.
<工程(B-2)>
 現像パターン形成工程(B-2)では、パターン露光によって形成された、実パターン形成に必要な露光パターンを残して、感光性レジストを除去する。ここで、現像パターンとは、露光後の感光性レジストを現像することによって現れるパターンをいう。現像パターン形成装置によって形成することができ、現像パターン形成装置としては、露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像装置が挙げられる。
<Process (B-2)>
In the development pattern formation step (B-2), the photosensitive resist is removed while leaving an exposure pattern formed by pattern exposure and necessary for actual pattern formation. Here, the development pattern refers to a pattern that appears by developing the photosensitive resist after exposure. The developing pattern forming apparatus may be a developing apparatus that develops a photosensitive resist having an exposed exposure pattern to form a developing pattern.
<工程(B-3)>
 実パターン形成工程(B-3)では、回路加工を行って実パターンを有する実パターン基板を作製する。ここで、回路加工とは、実パターンを形成することをいい、例えば、サブトラクト法により金属箔をエッチングして導体パターンを形成することが挙げられる。実パターンとは、回路加工を行って実際に形成される導体パターンをいい、実パターン形成装置によって形成することができる。実パターン形成装置とは、現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する装置をいい、エッチング装置が挙げられる。
<Process (B-3)>
In the actual pattern forming step (B-3), circuit processing is performed to manufacture an actual pattern substrate having an actual pattern. Here, the circuit processing refers to forming an actual pattern, and includes, for example, forming a conductor pattern by etching a metal foil by a subtract method. The actual pattern refers to a conductor pattern that is actually formed by performing circuit processing, and can be formed by an actual pattern forming apparatus. The actual pattern forming apparatus refers to an apparatus that forms a real pattern by performing circuit processing on a substrate on which a development pattern is formed, and includes an etching apparatus.
<工程(B-4)>
 パターン検査工程(B-4)では、実パターン基板の実パターンから実パターンデータを取得する。ここで、実パターン基板とは、回路加工を行って実際に形成された導体パターン(実パターン)を有する基板をいい、例えば、サブトラクト法により金属箔をエッチングして得られた導体パターンを有する基板が挙げられる。また、実パターンデータとは、光学式外観検査装置(AOI:Automatic Optical Inspection)、測定顕微鏡等を用いて実パターンから得られる仕上りのデータをいう。光学式外観検査装置とは、一般に実パターンの上面(トップ)から反射する光を検出してそのパターンを数値化し、座標とパターン幅やパターン間隙等の数値で表されたデータとするものである。一方、測定顕微鏡とは、本実施の形態においては、実パターンの上面(トップ)と実パターンの底面(ボトム)の両方の線幅を測定してデータ化するのに用いることができるものである。
<Process (B-4)>
In the pattern inspection step (B-4), actual pattern data is acquired from the actual pattern on the actual pattern substrate. Here, the actual pattern substrate means a substrate having a conductor pattern (actual pattern) actually formed by performing circuit processing, for example, a substrate having a conductor pattern obtained by etching a metal foil by a subtract method. Is mentioned. The actual pattern data refers to finished data obtained from an actual pattern using an optical appearance inspection apparatus (AOI: Automatic Optical Inspection), a measurement microscope, or the like. The optical appearance inspection apparatus generally detects light reflected from the upper surface (top) of an actual pattern, digitizes the pattern, and sets the data as numerical values such as coordinates, pattern width, and pattern gap. . On the other hand, the measurement microscope in this embodiment can be used to measure and convert the line width of both the upper surface (top) of the actual pattern and the bottom surface (bottom) of the actual pattern. .
<<工程(C)>>
 次に、本実施の形態の配線パターンの形成方法は、元データ又は露光データと実パターンデータとの差分に基づいて、前記元データ又は露光データの補正データを作成する工程(C)を有している。ここで、元データ又は露光データの補正データとは、補正を行なった後の元データ又は露光データ、つまり補正した元データ又は露光データのことをいう。また、図1に示すように、この補正データを作成する工程(C)には、実パターンデータと元データ又は露光データとの差分から差分データを作成する工程(C-1)と、この差分データと差分を生じさせる因子との関係から、差分を生じさせる因子と差分を抑制するための元データの補正量又は露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、この複数の補正関数を合成した補正関数を作成する工程(C-3)と、合成した補正関数を用いて配線パターンの元データ又は露光データを補正する工程(C-4)を有している。
<< Step (C) >>
Next, the wiring pattern forming method of the present embodiment includes a step (C) of creating correction data of the original data or exposure data based on the difference between the original data or exposure data and the actual pattern data. ing. Here, the correction data of the original data or exposure data refers to original data or exposure data after correction, that is, corrected original data or exposure data. Further, as shown in FIG. 1, in the step (C) for creating the correction data, a step (C-1) for creating difference data from the difference between the actual pattern data and the original data or exposure data, and this difference A step of creating a plurality of correction functions defining a relationship between a factor causing a difference and a correction amount of original data or a correction amount of exposure data for suppressing the difference from a relationship between the data and a factor causing the difference ( C-2), a step of creating a correction function by combining the plurality of correction functions (C-3), and a step of correcting the original data or exposure data of the wiring pattern using the combined correction function (C-4) )have.
 エッチングによる回路加工では、実パターン基板の表裏面のそれぞれで、エッチング液の当たり方が異なるので、エッチング処理の傾向が変化する。したがって、実パターン基板の表裏面のそれぞれについて、補正関数を作成するのが望ましい。これにより、実パターン基板の表裏面における面の違いによる実パターンのライン幅等の仕上り値の変動を抑制することが可能になる。 In circuit processing by etching, the manner in which the etching solution hits differs between the front and back surfaces of the actual pattern substrate, so the tendency of the etching process changes. Therefore, it is desirable to create a correction function for each of the front and back surfaces of the actual pattern substrate. This makes it possible to suppress variations in the finished value such as the line width of the actual pattern due to the difference between the front and back surfaces of the actual pattern substrate.
 また、エッチングによる回路加工においては、実パターン基板の表裏面の一方の面内においても、配線パターンの方向によって、実パターン基板の搬送方向やエッチング液の当たる方向等との関係が変化するので、エッチング処理に方向性やエッチング量のむらが生じる傾向がある。このため、実パターン基板に配置される配線パターンの方向によっても、エッチング処理の傾向が変化する。したがって、実パターン基板に配置される縦方向と横方向の配線パターンのそれぞれについて補正関数を作成するのが望ましい。これにより、配線パターンの方向による実パターンのライン幅等の仕上り値の変動を抑制することが可能になる。 In addition, in circuit processing by etching, even in one of the front and back surfaces of the actual pattern board, the relationship with the direction of the wiring pattern changes with the direction of transport of the actual pattern board, the direction of contact with the etching solution, etc. There is a tendency that unevenness in directionality and etching amount occurs in the etching process. For this reason, the tendency of an etching process changes also with the direction of the wiring pattern arrange | positioned on a real pattern board | substrate. Therefore, it is desirable to create a correction function for each of the vertical and horizontal wiring patterns arranged on the actual pattern substrate. This makes it possible to suppress variations in the finished value such as the line width of the actual pattern depending on the direction of the wiring pattern.
 また、エッチングによる回路加工においては、実パターン基板の表裏面の一方の面内においても、配線パターンの配置された位置によって、実パターン基板の搬送方向やエッチング液の当たる方向等との関係が変化するので、エッチング処理に方向性やエッチング量のむらが生じる傾向がある。このため、実パターン基板の面内を複数の領域に分け、これらの領域のそれぞれについて、補正関数を作成するのが望ましい。また、特に実パターン基板の端部周辺部では、エッチング処理のむらに加えて、めっき厚さの変動による銅箔の厚さのむら等も加わるため、実パターン基板の中央部に比べて、端部周辺部では、より領域を細かく分けて、領域毎に補正関数を作成するのが望ましい。これにより、実パターン基板の面内の位置による実パターンのライン幅等の仕上り値の変動を抑制することが可能になる。 Also, in circuit processing by etching, the relationship between the transfer direction of the actual pattern substrate and the direction in which the etching solution hits changes depending on the position of the wiring pattern, even within one of the front and back surfaces of the actual pattern substrate. Therefore, the etching process tends to have uneven directionality and etching amount. For this reason, it is desirable to divide the in-plane of the actual pattern substrate into a plurality of regions and create a correction function for each of these regions. In particular, in the periphery of the edge of the actual pattern substrate, in addition to the unevenness of the etching process, unevenness in the thickness of the copper foil due to variations in the plating thickness is also added. In the section, it is desirable to divide the area more finely and create a correction function for each area. As a result, it is possible to suppress variations in the finished value such as the line width of the actual pattern due to the position in the plane of the actual pattern substrate.
<工程(C-1)>
 実パターンデータと元データ又は露光データとの差分から差分データを作成する工程(C-1)では、パターン検査工程(B-4)で得られた実パターンデータと元データ又は露光データとの比較から、差分データを作成する。ここで、実パターンデータと実パターンの元データ又は露光データとの差分とは、具体的には、同一の座標における実パターンデータと実パターンの元データ又は露光データとのパターン間隙、パターン幅等の差異をいう。また、同一の座標とは、元データ(設計データ)における同一の座標であり、同一の座標においてはパターン間隙等は同一の設計値となる。このため、同一の座標におけるパターン間隙等の差異は、配線パターンのうち、同一の設計値を有する個所同士を比較して求めた差異であることを示す。差分データとは、この差分を座標とパターン間隙、パターン幅等で表したデータをいう。差分データは、実パターンデータと実パターンの元データ又は露光データとの差分から、コンピュータを用いて作成することができる。
<Process (C-1)>
In the step (C-1) of creating difference data from the difference between the actual pattern data and the original data or exposure data, the actual pattern data obtained in the pattern inspection step (B-4) is compared with the original data or exposure data. From this, differential data is created. Here, the difference between the actual pattern data and the original data or exposure data of the actual pattern is specifically the pattern gap, pattern width, etc. between the actual pattern data and the actual pattern original data or exposure data at the same coordinates. The difference. The same coordinates are the same coordinates in the original data (design data), and the pattern gaps and the like are the same design values at the same coordinates. For this reason, a difference in pattern gaps or the like at the same coordinates indicates a difference obtained by comparing portions having the same design value in the wiring pattern. The difference data refers to data representing this difference by coordinates, pattern gaps, pattern widths, and the like. The difference data can be created using a computer from the difference between the actual pattern data and the original data of the actual pattern or the exposure data.
<工程(C-2)>
 複数の補正関数を作成する工程(C-2)では、差分データと前記差分を生じさせる因子との関係から、差分を生じさせる因子と差分を抑制するための元データの補正量又は露光データの補正量との関係を規定した複数の補正関数を作成する。ここで、実パターンデータと元データ又は露光データとの差分を生じさせる因子とは、元データ又は露光データの配線パターン仕様の中で、それが変動することによって、実パターンデータと元データ又は露光データとの差分に変化を生じさせる因子をいう。このような因子として、例えば、実パターンの元データ又は露光データのパターン間隙、パターン幅、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せが挙げられる。また、差分を抑制するための元データの補正量又は露光データの補正量としては、例えば、実パターンデータと実パターンの元データ又は露光データとの差分そのものを用いることができる。これは、実パターンデータと実パターンの元データ又は露光データとの差分を、現在の元データ又は露光データに加える又は差し引くといった補正を行えば、実パターンデータが元データ又は露光データの数値に近づくことによるものである。
<Process (C-2)>
In the step (C-2) of creating a plurality of correction functions, the correction amount of the original data for suppressing the difference or the exposure data A plurality of correction functions that define the relationship with the correction amount are created. Here, the factor causing the difference between the actual pattern data and the original data or the exposure data is that the actual pattern data and the original data or the exposure are changed by the fluctuation in the wiring pattern specification of the original data or the exposure data. A factor that causes a change in the difference from data. As such factors, for example, the original data of the actual pattern or the pattern gap of the exposure data, the pattern width, the pattern size, the pattern thickness, the pattern position, or any combination of two or more thereof can be cited. Further, as the correction amount of the original data or the exposure data for suppressing the difference, for example, the difference itself between the actual pattern data and the original data or exposure data of the actual pattern can be used. This is because if the correction is made such that the difference between the actual pattern data and the original data or exposure data of the actual pattern is added to or subtracted from the current original data or exposure data, the actual pattern data approaches the value of the original data or exposure data. It is because.
 補正関数とは、差分を生じさせる因子と差分データとの関係から、差分を生じさせる因子と差分を抑制するための元データ又は露光データの補正量との関係を規定したものである。また、補正関数は、差分を生じさせる因子と差分データとの関係から、差分を生じさせる因子と差分を抑制するための元データ又は露光データの補正量との関係を求める演算機能を備えたコンピュータにより作成することができる。補正関数の一例として、図6に、実パターンデータと元データ又は露光データとの差分を生じさせる因子として、実パターン基板の配線パターンのパターン間隙を用いて補正関数を作成した例を示す。即ち、図6の補正関数は、横軸を実パターン基板の配線パターンのパターン間隙、縦軸を補正量としている。 The correction function defines the relationship between the factor causing the difference and the correction amount of the original data or exposure data for suppressing the difference from the relationship between the factor causing the difference and the difference data. The correction function is a computer having a calculation function for obtaining a relationship between a factor causing a difference and a correction amount of the original data or exposure data for suppressing the difference from a relationship between the factor causing the difference and the difference data. Can be created. As an example of the correction function, FIG. 6 shows an example in which the correction function is created using the pattern gap of the wiring pattern of the actual pattern substrate as a factor that causes the difference between the actual pattern data and the original data or the exposure data. That is, in the correction function of FIG. 6, the horizontal axis represents the pattern gap of the wiring pattern of the actual pattern substrate, and the vertical axis represents the correction amount.
 補正関数における、実パターンデータと元データ又は露光データとの差分を生じさせる因子として、実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せに対応する実パターンデータを用いるのが望ましい。 As a factor that causes the difference between the actual pattern data and the original data or exposure data in the correction function, any of the pattern gap, pattern size, pattern thickness, and pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate Alternatively, it is desirable to use actual pattern data corresponding to any combination of two or more.
 これについて、以下、図6の補正関数の例を用いて説明する。図6の補正関数では、横軸を、実パターン基板の配線パターンのパターン間隙としているが、このパターン間隙の数値として用いるデータの例としては、実パターン基板の配線パターンの元データ、露光データ、実パターンデータが考えられる。これらのうち、元データ又は露光データを用いる場合、補正関数はパターン間隙の元データ又は露光データと元データ又は露光データに対する補正量との関係を示すこととなり、補正量は実パターンデータと元データ又は露光データとの差分データに基づいているため、この場合でも、パターン間隙の元データ又は露光データに対してある程度正確な補正量を求めることができる。 This will be described below using an example of the correction function shown in FIG. In the correction function of FIG. 6, the horizontal axis is the pattern gap of the wiring pattern of the actual pattern substrate. Examples of data used as the numerical value of the pattern gap include the original data of the wiring pattern of the actual pattern substrate, the exposure data, Real pattern data can be considered. Among these, when using original data or exposure data, the correction function indicates the relationship between the original data or exposure data of the pattern gap and the correction amount for the original data or exposure data, and the correction amount is the actual pattern data and the original data. Alternatively, since it is based on the difference data with the exposure data, even in this case, it is possible to obtain a correction amount that is somewhat accurate with respect to the original data or exposure data of the pattern gap.
 しかし、この場合は、元データ又は露光データに対する補正量は、元データ(設計値)とは異なる実パターンデータ(仕上り値)となる場合の差分データに基づいていることになり、実際に求められるのは、元データ(設計値)のとおりに実パターンデータ(仕上り値)が仕上がること、つまり、元データ(設計値)と実パターンデータ(仕上り値)が一致するための補正量であるため、このような元データ(設計値)とは異なる実パターンデータ(仕上り値)となる場合の差分データに基づいた補正量とは、ずれが生じることが考えられる。 However, in this case, the correction amount with respect to the original data or the exposure data is based on the difference data when the actual pattern data (finished value) is different from the original data (design value), and is actually obtained. Since the actual pattern data (finished value) is finished as the original data (design value), that is, the correction amount for matching the original data (design value) and the actual pattern data (finished value) It is conceivable that there is a deviation from the correction amount based on the difference data when the actual pattern data (finished value) is different from the original data (design value).
 一方、図6の補正関数の横軸に用いる実パターン基板の配線パターンのパターン間隙の数値として、実パターンデータ(実測値)を用いる場合、補正関数は、パターン間隙の実パターンデータ(実測値)と元データ又は露光データに対する補正量との関係を示すこととなる。この横軸の元データ(設計値)又は露光データに対応する実パターンデータ(実測値)を、目標とする元データ(設計値)又は露光データであるとみなすことができ、実パターンデータ(実測値)の補正量が、目標とする元データ(設計値)又は露光データとするための補正量であることになる。これにより、実パターンデータ(実測値)が、目標である元データ(設計値)又は露光データのとおりに仕上がる場合に必要な元データ(設計値)又は露光データの補正量をより正確に設定することが可能になる。 On the other hand, when the actual pattern data (actual measurement value) is used as the numerical value of the pattern gap of the wiring pattern of the actual pattern substrate used on the horizontal axis of the correction function in FIG. 6, the correction function is the actual pattern data (actual measurement value) of the pattern gap. And the correction amount with respect to the original data or exposure data. The original data (design value) on the horizontal axis or the actual pattern data (measured value) corresponding to the exposure data can be regarded as the target original data (design value) or exposure data. Value) is a correction amount for obtaining target original data (design value) or exposure data. Thereby, the correction amount of the original data (design value) or the exposure data required when the actual pattern data (actual measurement value) is finished according to the target original data (design value) or the exposure data is set more accurately. It becomes possible.
 また、補正関数は、実パターンデータと元データ又は露光データとの差分に変化を生じさせる因子である、パターン間隙、パターン幅、パターンサイズ、パターン厚さ、パターン位置等を変化させた配線パターンを有する複数の実パターン基板を用いて作成することができる。補正関数を作成するのに用いる配線パターンとしては、配線基板の製品として用いられる配線パターンを用いることもできるが、図2に示すような、差分を生じさせる因子(図2では、パターン間隙、パターン幅、パターン形状、パターンサイズ)を変化させたテストパターンを用いると、必要なデータを得やすく、より高精度な補正関数を作成できる点で望ましい。 The correction function is a factor that causes a change in the difference between the actual pattern data and the original data or the exposure data, which is a wiring pattern in which the pattern gap, pattern width, pattern size, pattern thickness, pattern position, etc. are changed. It can create using the some real pattern board | substrate which has. As a wiring pattern used to create a correction function, a wiring pattern used as a product of a wiring board can be used. However, as shown in FIG. 2, factors that cause a difference (in FIG. 2, a pattern gap, a pattern It is desirable to use a test pattern in which the width, pattern shape, and pattern size) are changed, because necessary data can be easily obtained and a correction function with higher accuracy can be created.
 また、図3に示すように、同一の配線パターンを有する比較的小面積のテストパターンの一単位が、実パターン基板内に多数配置されるような実パターン基板(以下、テストパターン基板)を用いると、実パターン基板内全体に亘って同じ配線パターン仕様に関するデータを取得でき、実パターン基板内のばらつきに関するデータも取得できる点で望ましい。 Further, as shown in FIG. 3, an actual pattern substrate (hereinafter referred to as a test pattern substrate) is used in which a large number of relatively small area test patterns having the same wiring pattern are arranged in the actual pattern substrate. In addition, it is desirable in that data relating to the same wiring pattern specification can be acquired over the entire actual pattern substrate, and data relating to variations in the actual pattern substrate can also be acquired.
 本実施の形態においては、複数の補正関数として、複数の補正関数を作成する工程(C-2)では、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成する。ここで、他の実パターン基板とは、一次補正関数を作成したときの実パターン基板とは別の実パターン基板であることをいい、配線パターン自体は同じであっても、異なっていてもかまわない。このように、一次補正関数と二次補正関数とを別々に作成することにより、例えば、テストパターンを配置した実パターン基板を用いて、基準となる一次補正関数を作成しておき、実際に作成する製品パターンを配置した実パターン基板を作製するタイミングで、再び、他の実パターン基板を用いて、そのときの生産ラインの状態を反映した二次補正関数を作成したうえで、これらの一次補正関数と二次補正関数とを合成することができる。つまり、基準となる一次補正関数をベースとして、生産ラインの状況に応じたより適切な補正関数への修正を、二次補正関数を用いて行なうことが可能になる。 In the present embodiment, in the step (C-2) of creating a plurality of correction functions as a plurality of correction functions, a primary correction function created using an actual pattern substrate and another actual pattern substrate are used. The created secondary correction function is created. Here, the other actual pattern substrate means an actual pattern substrate different from the actual pattern substrate when the primary correction function is created, and the wiring pattern itself may be the same or different. Absent. In this way, by creating the primary correction function and the secondary correction function separately, for example, using the actual pattern substrate on which the test pattern is arranged, the reference primary correction function is created and actually created. At the timing of manufacturing the actual pattern board on which the product pattern to be placed is prepared, a secondary correction function that reflects the state of the production line at that time is created again using another actual pattern board, and then these primary corrections are made. A function and a quadratic correction function can be synthesized. That is, based on the primary correction function serving as a reference, correction to a more appropriate correction function according to the production line situation can be performed using the secondary correction function.
 一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板とが、同一の配線パターンを有するのが望ましい。複数の補正関数は、同じ配線パターンを有する複数の実パターン基板を用いて作成されても、異なる配線パターンを有する複数の実パターン基板を用いて作成されてもよいが、前者の方が、補正関数の精度を高めることができる点で望ましい。例えば、図3、図4、図5に示すように、実パターン基板A(図3)、実パターン基板B(図4)、実パターン基板C(図5)が、同一のテストパターンを有することで、他の部分の配線パターンが変化しても、常に同一のテストパターンの部分を用いて補正関数を作成することが可能になる。 It is desirable that the actual pattern substrate used to create the primary correction function and the other actual pattern substrate used to create another secondary correction function have the same wiring pattern. A plurality of correction functions may be created using a plurality of actual pattern substrates having the same wiring pattern or a plurality of actual pattern substrates having different wiring patterns, but the former is corrected. It is desirable in that the accuracy of the function can be increased. For example, as shown in FIGS. 3, 4, and 5, the actual pattern substrate A (FIG. 3), the actual pattern substrate B (FIG. 4), and the actual pattern substrate C (FIG. 5) have the same test pattern. Thus, even if the wiring pattern of other portions changes, it is possible to always create a correction function using the same test pattern portion.
 複数の補正関数を作成する工程(C-2)では、前記二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成されるのが望ましい。これにより、実パターン基板を製造する際の製造プロセスの状態を反映した補正関数を作成することが可能になる。 In the step (C-2) of creating a plurality of correction functions, it is preferable that the secondary correction function is created for each production lot of the actual pattern substrate or for each actual pattern substrate. This makes it possible to create a correction function that reflects the state of the manufacturing process when manufacturing an actual pattern substrate.
<工程(C-3)>
 複数の補正関数を合成した補正関数を作成する工程(C-3)では、複数の補正関数を作成する工程(C-2)で作成した複数の補正関数を合成して一つの補正関数を作成する。
<Process (C-3)>
In the step (C-3) of creating a correction function by combining a plurality of correction functions, a single correction function is created by combining the plurality of correction functions created in the step (C-2) of generating a plurality of correction functions. To do.
 本実施の形態では、一次補正関数と二次補正関数を合成した三次補正関数を作成する。例えば、図6に示すように、まず、実パターン基板を用いて、基準となる一次補正関数を作成し、次に、図7に示すように、この一次補正関数とは別の実パターン基板を用いて二次補正関数を作成し、図8に示すように、一次補正関数と二次補正関数を合成して三次補正関数を作成する。つまり、基準となる一次補正関数は常に固定であるため、安定した三次補正関数を得ることができるため、実パターン基板の製造ロット毎又は実パターン基板毎に作製される二次補正関数が、測定誤差やイレギュラーな測定値を含んだとしても影響を小さくすることができる。 In this embodiment, a tertiary correction function is created by synthesizing the primary correction function and the secondary correction function. For example, as shown in FIG. 6, first, a primary correction function serving as a reference is created using an actual pattern substrate. Next, as shown in FIG. 7, an actual pattern substrate different from the primary correction function is used. The secondary correction function is used to create a secondary correction function, and as shown in FIG. 8, the primary correction function and the secondary correction function are combined to create a tertiary correction function. In other words, since the primary correction function as a reference is always fixed, a stable tertiary correction function can be obtained, so that the secondary correction function created for each lot of actual pattern substrates or for each actual pattern substrate is measured. Even if errors or irregular measured values are included, the influence can be reduced.
 複数の補正関数を合成する方法としては、製造プロセスの状態が比較的安定な場合は、より多くのデータを用いて作成した補正関数の合成比率を大きくした加重平均を用いるのが、補正関数の精度向上のために望ましい。例えば、基準となる補正関数として、多くの差分データを用いた一次補正関数を作成しておき、次に、製造プロセスの状態を反映する二次補正関数として、実パターン基板を作製する際に比較的少ない差分データを用いた二次補正関数を作成し、これらの一次補正関数と二次補正関数を合成するような場合は、基準となる一次補正関数の合成比率を大きくすることで、測定誤差やイレギュラーなデータによる影響を抑制することが可能になる。一方で、製造プロセスの状態が比較的不安定な場合は、上記の例では、二次補正関数の合成比率を大きくする方が、より製造プロセスの状態を反映した適切な補正関数を求めることができる。このように、加重平均の際の合成比率は、補正関数を作成する際の差分データの数や、製造プロセスの状態等に応じて任意に設定すればよく、例えば、比較的安定な製造プロセスに対しては、基準となる一次補正関数と、実パターン基板作製時に作成する二次補正関数との合成比率であれば、0.1~0.4の範囲で設定することが望ましい。一方、比較的不安定な製造プロセスに対しては、基準となる一次補正関数と、実パターン基板作製時に作成する二次補正関数との合成比率を、0.3~0.7の範囲で設定することが望ましい。なお、ここでの合成比率とは、一次補正関数と二次補正関数を合わせた全体を1とした場合における、二次補正関数の割合をいう。 As a method of combining a plurality of correction functions, when the state of the manufacturing process is relatively stable, a weighted average obtained by increasing the combination ratio of correction functions created using a larger amount of data is used. Desirable for accuracy improvement. For example, a primary correction function using a large amount of difference data is created as a reference correction function, and then compared as a secondary correction function that reflects the state of the manufacturing process when an actual pattern substrate is manufactured. When creating a secondary correction function using a small amount of difference data and combining these primary correction function and secondary correction function, increase the combination ratio of the primary correction function as a reference to increase the measurement error. And the effects of irregular data can be suppressed. On the other hand, when the state of the manufacturing process is relatively unstable, in the above example, it is possible to obtain an appropriate correction function that reflects the state of the manufacturing process more by increasing the composite ratio of the secondary correction function. it can. In this way, the composition ratio at the time of the weighted average may be arbitrarily set according to the number of difference data when creating the correction function, the state of the manufacturing process, etc. On the other hand, it is desirable to set the ratio in the range of 0.1 to 0.4 as long as it is a composite ratio of the primary correction function serving as a reference and the secondary correction function created when the actual pattern substrate is manufactured. On the other hand, for relatively unstable manufacturing processes, the composite ratio of the primary correction function used as a reference and the secondary correction function created when manufacturing the actual pattern substrate is set in the range of 0.3 to 0.7. It is desirable to do. Here, the composition ratio refers to the ratio of the secondary correction function when the total of the primary correction function and the secondary correction function is set to 1.
<工程(C-4)>
 合成した補正関数を用いて配線パターンの元データ又は露光データを補正する工程(C-4)では、合成した補正関数を用いて、実パターンデータと元データ又は露光データとの差分に変化を生じさせる因子である、パターン間隙、パターン幅等に対応する補正量を算出し、得られた補正量を元データ又は露光データに加えたり、差し引いたりすることで、配線パターンの元データ又は露光データを補正する。
<Process (C-4)>
In the step (C-4) of correcting the original data or exposure data of the wiring pattern using the combined correction function, a difference is generated in the difference between the actual pattern data and the original data or exposure data using the combined correction function. By calculating the correction amount corresponding to the pattern gap, pattern width, etc., which are factors to be added, and adding or subtracting the obtained correction amount to the original data or exposure data, the original data or exposure data of the wiring pattern is obtained. to correct.
 本実施の形態では、元データ又は露光データを補正する工程(C-4)では、三次補正関数を用いて、実パターン基板の配線パターンの元データ又は露光データを補正する。 In this embodiment, in the step (C-4) of correcting the original data or the exposure data, the original data or the exposure data of the wiring pattern of the actual pattern substrate is corrected using a tertiary correction function.
(作用・効果)
 本実施の形態の配線基板の製造方法によれば、このように、複数の補正関数を合成することで、基本となる一次補正関数を作成しておき、製造プロセスの変動に対応するため、実パターン基板を作製するタイミングに合わせて、一補正関数よりも少ないデータで二次補正関数を作成する場合でも、測定誤差やイレギュラーな測定値による影響を小さくすることができ、実際の製造プロセスの状況を反映した適切な補正関数を得ることができる。このため、生産数の増加等によっても、生産プロセスの状態が変動し難い、比較的安定な場合に好適である。したがって、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることができる。
(Action / Effect)
According to the wiring board manufacturing method of the present embodiment, a plurality of correction functions are synthesized in this way to create a basic primary correction function and cope with variations in the manufacturing process. Even when creating a secondary correction function with less data than one correction function at the same time as the pattern substrate is manufactured, the effects of measurement errors and irregular measurement values can be reduced. An appropriate correction function reflecting the situation can be obtained. For this reason, it is suitable when the state of the production process hardly changes due to an increase in the number of production and the like and is relatively stable. Therefore, in addition to fluctuations in the line width of the wiring pattern depending on the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc., the wiring pattern due to changes in the state of the manufacturing process such as photosensitive resist, developer, etching solution, etc. The line width accuracy at the time of forming a fine circuit can be improved by correcting the exposure data with higher accuracy to cope with the fluctuation of the line width.
(配線基板の製造方法:第2の実施形態)
 本発明の第2の実施形態の配線基板の製造方法を説明する。なお、本実施の形態については、主に第1の実施形態と異なる点を説明する。
(Manufacturing method of wiring board: second embodiment)
A method for manufacturing a wiring board according to a second embodiment of the present invention will be described. In addition, about this Embodiment, a different point from 1st Embodiment is mainly demonstrated.
<工程(A)、(B)、(C-1)>
 本実施の形態においては、実施形態1と同様にして、まず、工程(A)、(B)、(C-1)までを行い、実パターンデータと前記元データとの差分から差分データを作成する。
<Steps (A), (B), (C-1)>
In the present embodiment, as in the first embodiment, first, steps (A), (B), and (C-1) are performed, and difference data is created from the difference between the actual pattern data and the original data. To do.
<工程(C-2)>
 複数の補正関数を作成する工程(C-2)では、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成する。その後、この二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成する。
<Process (C-2)>
In the step (C-2) of creating a plurality of correction functions, a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are created. Thereafter, apart from the secondary correction function, another secondary correction function created using another actual pattern substrate is created.
<工程(C-3)>
 次に、複数の補正関数を合成した補正関数を作成する工程(C-3)で、一次補正関数と二次補正関数を合成した三次補正関数を作成する。その後、この三次補正関数と、工程(C-2)でさらに作成された他の二次補正関数を合成して他の三次補正関数を作成する。
<Process (C-3)>
Next, in a step (C-3) of generating a correction function by combining a plurality of correction functions, a tertiary correction function by combining the primary correction function and the secondary correction function is generated. After that, this tertiary correction function and another secondary correction function further created in the step (C-2) are combined to create another tertiary correction function.
 具体的には、例えば、図6に示すように、まず、実パターン基板を用いて一次補正関数を作成し、次に、図7に示すように、この一次補正関数とは別の実パターン基板を用いて二次補正関数を作成し、図8に示すように、一次補正関数と二次補正関数を合成して三次補正関数を作成する。さらに、図9に示すように、さらに二次補正関数を作成して、三次補正関数と合成し他の三次補正関数を作成する。つまり、三次補正関数は二次補正関数と合成を繰り返し累積されたものとなるため、実パターン基板の製造ロット毎又は実パターン基板毎に作製される二次補正関数が、測定誤差やイレギュラーな測定値を含んだとしても影響を小さくすることができる。 Specifically, for example, as shown in FIG. 6, first, a primary correction function is created using an actual pattern substrate, and then, as shown in FIG. 7, an actual pattern substrate different from this primary correction function. Is used to create a secondary correction function, and as shown in FIG. 8, a primary correction function and a secondary correction function are synthesized to generate a tertiary correction function. Further, as shown in FIG. 9, a secondary correction function is further created and combined with the tertiary correction function to create another tertiary correction function. In other words, since the third-order correction function is obtained by repeatedly accumulating the second-order correction function and the composition, the second-order correction function produced for each actual pattern substrate production lot or each actual pattern substrate has measurement errors and irregularities. Even if the measurement value is included, the influence can be reduced.
(作用・効果)
 本実施の形態の配線基板の製造方法によれば、一次補正関数と二次補正関数を合成した三次補正関数に対して、実パターン基板を作製する毎に新たに作成される他の二次補正関数を合成することで、他の三次補正関数を作成する。つまり、元データ又は露光データの補正に用いる三次補正関数が二次補正関数を繰り返し累積したものであるため、製造プロセスの状況が、生産数の累積等によって、特定の方向に向かって変動する傾向がある場合に好適である。したがって、実施形態1と同様の作用・効果を得ることができるとともに、このような場合に、より安定した補正を行うことが可能になる。
(Action / Effect)
According to the method for manufacturing a wiring board of the present embodiment, another secondary correction that is newly created every time a real pattern board is manufactured with respect to a tertiary correction function that combines a primary correction function and a secondary correction function. By synthesizing the function, another cubic correction function is created. In other words, since the tertiary correction function used for correcting the original data or exposure data is a cumulative result of the secondary correction function, the manufacturing process status tends to fluctuate in a specific direction due to the accumulation of production numbers, etc. It is suitable when there is. Therefore, it is possible to obtain the same operation and effect as in the first embodiment, and it is possible to perform more stable correction in such a case.
(データ補正装置:第3の実施形態)
 本発明の第3の実施形態であるデータ補正装置を説明する。図10に示すように、本実施の形態のデータ補正装置は、コンピュータを用いており、コンピュータは、処理部(プロセッサ)、表示部、入力部、記憶部、通信部、及び、これらの各構成部品を接続するバスを備えている。表示部はコンピュータにおいて実行されるプログラムによって出力される画像を表示する。入力部は入力を受け付けるものであり、例えば、キーボードやマウスである。記憶部は不揮発性メモリや揮発性メモリ、ハードディスク等の情報を格納できるものである。記憶部には、元データ、露光データ、実パターンデータ、差分データ、補正関数、補正データ等のデータと、元データ又は露光データを補正するまでの工程(図1の補正データ作成工程(C))を実行するための補正プログラムが格納される。通信部は、無線通信やUSBケーブル等を用いた有線通信を行う。通信部を介して、元データ、露光データ、実パターンデータ、差分データ等を取得してもよい。補正プログラムが実行されると、処理部(プロセッサ)は元データ又は露光データ補正のための工程(図1の補正データ作成工程(C))を実行する。データ補正装置は、汎用コンピュータである必要はなく、各工程のすべて又は一部を実行するためのハードウェアとこれと協働して動作するソフトウェアによって実現されてもよい。
(Data Correction Device: Third Embodiment)
A data correction apparatus according to the third embodiment of the present invention will be described. As shown in FIG. 10, the data correction apparatus of the present embodiment uses a computer, and the computer includes a processing unit (processor), a display unit, an input unit, a storage unit, a communication unit, and each of these components. It has a bus for connecting parts. The display unit displays an image output by a program executed on the computer. The input unit accepts input, and is, for example, a keyboard or a mouse. The storage unit can store information such as a nonvolatile memory, a volatile memory, and a hard disk. The storage unit stores data such as original data, exposure data, actual pattern data, difference data, correction function, correction data, and the process up to correcting the original data or exposure data (correction data creation process (C) in FIG. 1). ) Is stored. The communication unit performs wireless communication or wired communication using a USB cable or the like. Original data, exposure data, actual pattern data, difference data, and the like may be acquired via the communication unit. When the correction program is executed, the processing unit (processor) executes a process for correcting original data or exposure data (correction data creation process (C) in FIG. 1). The data correction apparatus does not need to be a general-purpose computer, and may be realized by hardware for executing all or a part of each process and software operating in cooperation therewith.
 本実施の形態のデータ補正装置は、図1の(C)データ作成工程の(C-1)に示すように、目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成する。 As shown in (C-1) of the data creation step (C) in FIG. 1, the data correction apparatus of the present embodiment is the original data of the target wiring pattern or the exposure data created based on this original data. And difference data is created from the difference between the actual pattern data created from the actual pattern substrate formed using the exposure data.
 次に、図1の(C)データ作成工程の(C-2)に示すように、差分データと差分を生じさせる因子との関係から、差分を生じさせる因子と差分を抑制するための元データの補正量又は露光データの補正量との関係を規定した複数の補正関数を作成する。補正関数の一例として、図6に、実パターンデータと元データ又は露光データとの差分を生じさせる因子として、配線パターンのパターン間隙を用いて補正関数を作成した例を示す。即ち、図6の補正関数は、横軸を配線パターンのパターン間隙、縦軸を補正量としている。 Next, as shown in (C-2) of FIG. 1 (C) data creation step, the factor causing the difference and the original data for suppressing the difference from the relationship between the difference data and the factor causing the difference. A plurality of correction functions defining the relationship between the correction amount and the exposure data correction amount are created. As an example of the correction function, FIG. 6 shows an example in which the correction function is created using the pattern gap of the wiring pattern as a factor that causes a difference between the actual pattern data and the original data or the exposure data. That is, in the correction function of FIG. 6, the horizontal axis represents the pattern gap of the wiring pattern, and the vertical axis represents the correction amount.
 本実施の形態においては、複数の補正関数を作成する際(C-2)には、複数の補正関数として、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成する。このように、一次補正関数と二次補正関数とを別々に作成することにより、例えば、テストパターンを配置した実パターン基板を用いて、基準となる一次補正関数を作成しておき、実際に作成する製品パターンを配置した実パターン基板を作製するタイミングで、再び、他の実パターン基板を用いて、そのときの生産ラインの状況を反映した二次補正関数を作成したうえで、これらの一次補正関数と二次補正関数とを合成することができる。つまり、基準となる一次補正関数をベースとして、生産ラインの状況に応じたより適切な補正関数への修正を、二次補正関数を用いて行なうことが可能になる。 In this embodiment, when creating a plurality of correction functions (C-2), a primary correction function created using an actual pattern substrate and another actual pattern substrate are used as the plurality of correction functions. And a quadratic correction function created in the above manner. In this way, by creating the primary correction function and the secondary correction function separately, for example, using the actual pattern substrate on which the test pattern is arranged, the reference primary correction function is created and actually created. At the timing of manufacturing the actual pattern board on which the product pattern to be placed is created, a secondary correction function that reflects the current production line status is created again using another actual pattern board, and then these primary corrections are made. A function and a quadratic correction function can be synthesized. That is, based on the primary correction function serving as a reference, correction to a more appropriate correction function according to the production line situation can be performed using the secondary correction function.
 次に、図1の(C)データ作成工程の(C-3)に示すように、この複数の補正関数を合成した補正関数を作成する。 Next, as shown in (C-3) of the data creation step (C) in FIG. 1, a correction function is created by combining the plurality of correction functions.
 本実施の形態では、一次補正関数と二次補正関数を合成した三次補正関数を作成する。例えば、図6に示すように、まず、実パターン基板を用いて、基準となる一次補正関数を作成し、次に、図7に示すように、この一次補正関数とは別の実パターン基板を用いて二次補正関数を作成し、図8に示すように、一次補正関数と二次補正関数を合成して三次補正関数を作成する。これにより、基準となる一次補正関数は常に固定であるため、安定した三次補正関数を得ることができるため、実パターン基板の製造ロット毎又は実パターン基板毎に作製される二次補正関数が、測定誤差やイレギュラーな測定値を含んだとしても影響を小さくすることができる。 In this embodiment, a tertiary correction function is created by synthesizing the primary correction function and the secondary correction function. For example, as shown in FIG. 6, first, a primary correction function serving as a reference is created using an actual pattern substrate. Next, as shown in FIG. 7, an actual pattern substrate different from the primary correction function is used. The secondary correction function is used to create a secondary correction function, and as shown in FIG. 8, the primary correction function and the secondary correction function are combined to create a tertiary correction function. Thereby, since the primary correction function serving as a reference is always fixed, a stable tertiary correction function can be obtained, so the secondary correction function produced for each production lot of the actual pattern substrate or for each actual pattern substrate is Even if measurement errors and irregular measurement values are included, the influence can be reduced.
 次に、図1の(C)データ作成工程の(C-4)に示すように、複数の補正関数を合成して作成した補正関数を用いて補正した配線パターンの元データ又は露光データの補正データを作成する。 Next, as shown in (C-4) of the (C) data creation step in FIG. 1, the correction of the wiring pattern original data or the exposure data corrected using the correction function created by combining a plurality of correction functions. Create data.
 本実施の形態では、元データ又は露光データを補正する際(C-4)には、三次補正関数を用いて、実パターン基板の配線パターンの元データ又は露光データを補正する。 In this embodiment, when correcting the original data or the exposure data (C-4), the original data or the exposure data of the wiring pattern of the actual pattern board is corrected using a tertiary correction function.
 複数の補正関数を作成する際(C-2)には、一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板又はさらに他の実パターン基板とが、同一の配線パターンを有するのが望ましい。複数の補正関数は、同じ配線パターンを有する複数の実パターン基板を用いて作成されても、異なる配線パターンを有する複数の実パターン基板を用いて作成されてもよいが、前者の方が、補正関数の精度を高めることができる点で望ましい。例えば、図3、図4、図5に示すように、実パターン基板A(図3)、実パターン基板B(図4)、実パターン基板C(図5)が、同一のテストパターンを有することで、他の部分の配線パターンが変化しても、常に同一のテストパターンの部分を用いて補正関数を作成することが可能になる。 When creating a plurality of correction functions (C-2), the actual pattern substrate used to create the primary correction function and another actual pattern substrate used to create other secondary correction functions or Further, it is desirable that other actual pattern substrates have the same wiring pattern. A plurality of correction functions may be created using a plurality of actual pattern substrates having the same wiring pattern or a plurality of actual pattern substrates having different wiring patterns, but the former is corrected. It is desirable in that the accuracy of the function can be increased. For example, as shown in FIGS. 3, 4, and 5, the actual pattern substrate A (FIG. 3), the actual pattern substrate B (FIG. 4), and the actual pattern substrate C (FIG. 5) have the same test pattern. Thus, even if the wiring pattern of other portions changes, it is possible to always create a correction function using the same test pattern portion.
 複数の補正関数を作成する際(C-2)には、二次補正関数の後に作成される他の二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成されるのが望ましい。これにより、実パターン基板を製造する際の製造プロセスの状態を反映した補正関数を作成することが可能になる。 When creating a plurality of correction functions (C-2), another secondary correction function created after the secondary correction function is created for each production lot of the actual pattern substrate or for each actual pattern substrate. Is desirable. This makes it possible to create a correction function that reflects the state of the manufacturing process when manufacturing an actual pattern substrate.
(作用・効果)
 本実施の形態のデータ補正装置によれば、実施形態1と同様に、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることができる。
(Action / Effect)
According to the data correction apparatus of the present embodiment, in the same manner as in the first embodiment, in addition to the variation in the line width of the wiring pattern due to the wiring pattern specifications such as the pattern gap, the pattern size, the pattern thickness, and the pattern position, the photosensitivity Lines at the time of microcircuit formation can be dealt with by correcting exposure data with higher accuracy even for fluctuations in the line width of wiring patterns due to changes in the state of manufacturing processes such as resist, developer, and etchant. The width accuracy can be improved.
(データ補正装置:第4の実施形態)
 本発明の第4の実施形態であるデータ補正装置を説明する。なお、本実施の形態については、主に第1の実施形態と異なる点を説明する。
(Data Correction Device: Fourth Embodiment)
A data correction apparatus according to the fourth embodiment of the present invention will be described. In addition, about this Embodiment, a different point from 1st Embodiment is mainly demonstrated.
 本実施の形態のデータ補正装置は、上述した第3の実施形態のデータ補正装置と同様に図10に示した構成を備えている。 The data correction apparatus according to the present embodiment has the configuration shown in FIG. 10 as with the data correction apparatus according to the third embodiment described above.
 また、複数の補正関数を作成する際(C-2)には、二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成し、合成した補正関数を作成する際(C-3)には、三次補正関数と前記さらに作成された他の二次補正関数を合成して他の三次補正関数を作成する。 Further, when creating a plurality of correction functions (C-2), in addition to the secondary correction function, another secondary correction function created using another actual pattern substrate is created and synthesized. When creating the correction function (C-3), the third-order correction function is combined with the other second-order correction function created to create another third-order correction function.
 具体的には、例えば、図6に示すように、まず、実パターン基板を用いて一次補正関数を作成し、次に、図7に示すように、この一次補正関数とは別の実パターン基板を用いて二次補正関数を作成し、図8に示すように、一次補正関数と二次補正関数を合成して三次補正関数を作成する。さらに、図9に示すように、さらに二次補正関数を作成して、三次補正関数と合成し他の三次補正関数を作成する。つまり、三次補正関数は二次補正関数と合成を繰り返し累積されたものとなるため、実パターン基板の製造ロット毎又は実パターン基板毎に作製される二次補正関数が、測定誤差やイレギュラーな測定値を含んだとしても影響を小さくすることができる。 Specifically, for example, as shown in FIG. 6, first, a primary correction function is created using an actual pattern substrate, and then, as shown in FIG. 7, an actual pattern substrate different from this primary correction function. Is used to create a secondary correction function, and as shown in FIG. 8, a primary correction function and a secondary correction function are synthesized to generate a tertiary correction function. Further, as shown in FIG. 9, a secondary correction function is further created and combined with the tertiary correction function to create another tertiary correction function. In other words, since the third-order correction function is obtained by repeatedly accumulating the second-order correction function and the composition, the second-order correction function produced for each actual pattern substrate production lot or each actual pattern substrate has measurement errors and irregularities. Even if the measurement value is included, the influence can be reduced.
(作用・効果)
 本実施の形態のデータ補正装置によれば、実施形態3と同様の作用・効果を得ることができるとともに、元データ又は露光データの補正に用いる三次補正関数が二次補正関数を繰り返し累積したものであるため、製造プロセスの状況が、生産数の累積等によって、特定の方向に向かって変動する傾向がある場合に、より安定した補正を行うことが可能になる。
(Action / Effect)
According to the data correction apparatus of the present embodiment, the same operation and effect as those of the third embodiment can be obtained, and the tertiary correction function used for correcting the original data or the exposure data is obtained by repeatedly accumulating the secondary correction function. Therefore, more stable correction can be performed when the state of the manufacturing process tends to fluctuate in a specific direction due to the accumulation of the number of productions.
(配線パターン形成システム:第5の実施形態)
 本発明の第5の実施形態である配線パターン形成システムを説明する。図11に示すように、本実施の形態の配線パターン形成システムは、まず、データ補正装置を有している。データ補正装置としては、実施形態3又は4と同様に、コンピュータを用いており、コンピュータは、処理部(プロセッサ)、表示部、入力部、記憶部、通信部、及び、これらの各構成部品を接続するバスを備えている。
(Wiring pattern forming system: fifth embodiment)
A wiring pattern forming system according to a fifth embodiment of the present invention will be described. As shown in FIG. 11, the wiring pattern forming system of the present embodiment first has a data correction device. As in the third or fourth embodiment, a computer is used as the data correction apparatus. The computer includes a processing unit (processor), a display unit, an input unit, a storage unit, a communication unit, and each of these components. It has a bus to be connected.
 次に、データ補正装置により補正された元データから作成された露光データ又はデータ補正装置により補正された露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光するパターン露光装置を有する。本実施の形態において、基板とは、ガラスエポキシ等の絶縁層上に銅箔や銅めっき等の金属箔を有するものをいい、銅張積層板等が挙げられる。パターン露光装置とは、露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光する露光装置のことをいう。レーザ光又はUV-LED光を用いて、直接感光性レジストに露光パターンを露光させる直接描画装置(DI:Direct Imaging)等が挙げられる。 Next, pattern exposure for exposing the exposure pattern to the photosensitive resist arranged on the substrate based on the exposure data created from the original data corrected by the data correction device or the exposure data corrected by the data correction device Have the device. In the present embodiment, the substrate means a substrate having a metal foil such as copper foil or copper plating on an insulating layer such as glass epoxy, and examples thereof include a copper clad laminate. A pattern exposure apparatus refers to an exposure apparatus that exposes an exposure pattern to a photosensitive resist disposed on a substrate based on exposure data. Examples thereof include a direct drawing apparatus (DI: Direct Imaging) that directly exposes an exposure pattern on a photosensitive resist using laser light or UV-LED light.
 次に、露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像パターン形成装置を有する。現像パターン形成装置としては、フォトリソグラフィで用いられる現像装置が挙げられる。 Next, it has a development pattern forming apparatus for developing a photosensitive resist having an exposed exposure pattern to form a development pattern. An example of the development pattern forming apparatus is a development apparatus used in photolithography.
 次に、現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する実パターン形成装置を有する。実パターン形成装置としては、配線基板の回路加工で用いられるエッチング装置、めっき装置が挙げられる。 Next, there is an actual pattern forming apparatus that forms a real pattern by performing circuit processing on the substrate on which the development pattern is formed. Examples of the actual pattern forming apparatus include an etching apparatus and a plating apparatus used in circuit processing of a wiring board.
 次に、実パターンから実パターンデータを作成する実パターンデータ作成装置を有する。
実パターンデータ作成装置としては、光学式外観検査装置(AOI:Automatic Optical Inspection)、測定顕微鏡等が挙げられる。光学式外観検査装置は、実パターンの上面(トップ)から反射する光を検出してそのパターンを数値化し、座標とパターン幅やパターン間隙等の数値で表されたデータとするものである。一方、測定顕微鏡は、実パターンの上面(トップ)又は下面(ボトム)の何れについても、線幅を測定してデータ化するのに用いることができる。
Next, an actual pattern data creation device for creating actual pattern data from the actual pattern is provided.
Examples of the actual pattern data creation device include an optical appearance inspection device (AOI: Automatic Optical Inspection), a measurement microscope, and the like. The optical appearance inspection apparatus detects light reflected from the upper surface (top) of an actual pattern, digitizes the pattern, and sets the data as numerical values such as coordinates, pattern width, and pattern gap. On the other hand, the measurement microscope can be used to measure the line width and convert it into data for either the upper surface (top) or the lower surface (bottom) of the actual pattern.
 本実施の形態の配線パターン形成システムにおいては、データ補正装置が、実パターンデータ作成装置から実パターンデータを受取り、図1に示すように、この実パターンデータと元データ又は露光データとの差分から差分データを作成し(C-1)、差分とこの差分を生じさせる因子との関係から、差分を生じさせる因子と差分を抑制するための元データの補正量又は露光データの補正量との関係を規定した複数の補正関数を作成し(C-2)、この複数の補正関数を合成した補正関数を作成し(C-3)、合成した補正関数を用いて配線パターンの元データ又は露光データを補正する(C-4)。 In the wiring pattern forming system of the present embodiment, the data correction device receives the actual pattern data from the actual pattern data creation device, and as shown in FIG. 1, from the difference between the actual pattern data and the original data or exposure data. Difference data is created (C-1), and the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference from the relationship between the difference and the factor causing the difference (C-2), a correction function obtained by synthesizing the plurality of correction functions is created (C-3), and the original data or exposure data of the wiring pattern is generated using the synthesized correction function. Is corrected (C-4).
(作用・効果)
 本実施の形態の配線パターン形成システムによれば、実施形態1と同様に、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることができる。
(Action / Effect)
According to the wiring pattern forming system of the present embodiment, in the same manner as in the first embodiment, in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc. The exposure data can be corrected with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as the resist, developer, and etchant. Line width accuracy can be improved.
 (データ補正方法:第6の実施形態)
 本発明の第6の実施形態であるデータ補正方法を説明する。本実施の形態のデータ補正方法は、図10に示すデータ補正放置を用いるものであり、図1の(C)補正データ作成工程に示すように、目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、前記露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成する工程(C-1)と、この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と前記差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、この複数の補正関数を合成した補正関数を作成する工程(C-3)と、前記複数の補正関数を合成して作成した補正関数を用いて補正した前記配線パターンの元データ又は露光データの補正データを作成する工程(C-4)と、を有する。
(Data Correction Method: Sixth Embodiment)
A data correction method according to the sixth embodiment of the present invention will be described. The data correction method of the present embodiment uses the data correction neglect shown in FIG. 10, and as shown in the correction data creation step of FIG. 1, the original data of the target wiring pattern or the original data A step (C-1) of creating difference data from the difference between the exposure data created based on the actual pattern data created from the exposure pattern and the actual pattern substrate formed using the exposure data, and the difference data and the difference Creating a plurality of correction functions defining the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference from the relationship with the factor causing the difference (C-2), a step (C-3) of creating a correction function by combining the plurality of correction functions, and the arrangement corrected using the correction function generated by combining the plurality of correction functions. It has a step (C-4) for creating correction data of the original data or exposure data pattern.
(作用・効果)
 本実施の形態の配線パターン形成システムによれば、実施形態1と同様に、パターン間隙、パターンサイズ、パターン厚さ、パターン位置等の配線パターン仕様による配線パターンのライン幅等の変動に加え、感光性レジスト、現像液、エッチング液等の製造プロセスの状態変化による配線パターンのライン幅の変動に対しても、露光データをより高精度に補正して対応可能とすることにより、微細回路形成時のライン幅精度を向上させることができる。
(Action / Effect)
According to the wiring pattern forming system of the present embodiment, in the same manner as in the first embodiment, in addition to fluctuations in the line width of the wiring pattern due to the wiring pattern specifications such as pattern gap, pattern size, pattern thickness, pattern position, etc. The exposure data can be corrected with higher accuracy to cope with fluctuations in the line width of the wiring pattern due to changes in the state of the manufacturing process such as the resist, developer, and etchant. Line width accuracy can be improved.
 以下に、本発明を実施例に基づいて説明するが、本発明は実施例に限定されない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples.
(実施例1)
<一次補正関数の作成>
 まず、一次補正関数を作成するため、テストパターン1と製品パターン7とを配置した実パターン基板C4cを作製するための基板として、絶縁層の表裏に5μmの銅箔を有した厚さ0.22mm、縦440mm、横510mmのMCL-E-700G(日立化成株式会社製 商品名、「MCL」は登録商標。)の銅張積層板の銅箔上に電気銅めっきで約9μmのめっきを施し、表裏面のそれぞれの面の全体の銅厚を約14μmとしたものを準備した。次に、表裏面の銅箔上に感光性のエッチングレジストを貼り合せ、製品パターン7と図2のテストパターン1を露光し、水平搬送型のエッチング装置を用いてエッチングによる回路形成を行い、図5に示すような実パターン基板C4cを、9枚作製した。図2に示したテストパターンの元データ(設計値)は、パターン幅(パターン3の幅)を100μmで固定し、パターン間隙2を14~150μmの範囲で24段階に変化させた線状の配線パターンを、表裏面のそれぞれについて、縦方向及び横方向に配置したものであり、この元データに基づいて作成した当初の露光データも元データ(設計値)と同じである。図5は実パターン基板C4cの概要を示したものであり、本実施例では実際には、製品パターン7以外に、縦方向に11個、横方向に11個、全部で121個のテストパターン1を、実パターン基板C4cの表裏面のそれぞれの面内に均等に配置した。
(Example 1)
<Create primary correction function>
First, in order to create a primary correction function, a thickness of 0.22 mm having a copper foil of 5 μm on the front and back of an insulating layer as a substrate for producing an actual pattern substrate C4c on which the test pattern 1 and the product pattern 7 are arranged. On the copper foil of the copper clad laminate of MCL-E-700G (trade name, manufactured by Hitachi Chemical Co., Ltd., “MCL” is a registered trademark) having a length of 440 mm and a width of 510 mm, an electroplating of about 9 μm is applied. What prepared the total copper thickness of each surface of front and back about 14 micrometers was prepared. Next, a photosensitive etching resist is laminated on the copper foils on the front and back surfaces, the product pattern 7 and the test pattern 1 in FIG. 2 are exposed, and a circuit is formed by etching using a horizontal conveyance type etching apparatus. Nine real pattern substrates C4c as shown in FIG. The original data (design value) of the test pattern shown in FIG. 2 is a linear wiring in which the pattern width (width of pattern 3) is fixed at 100 μm and the pattern gap 2 is changed in 24 steps within the range of 14 to 150 μm. The patterns are arranged in the vertical and horizontal directions for each of the front and back surfaces, and the initial exposure data created based on this original data is the same as the original data (design value). FIG. 5 shows an outline of the actual pattern substrate C4c. In the present embodiment, actually, in addition to the product pattern 7, there are 11 test patterns 1 in the vertical direction, 11 in the horizontal direction, and 121 in total. Were evenly arranged in the front and back surfaces of the actual pattern substrate C4c.
 実パターン基板C4cに対して、光学式自動外観検査装置を用いて実パターンデータ(仕上り値)を取得した。このときの測定ポイント数は、各テストパターン毎に縦方向と横方向の線状の配線パターンについて各1か所ずつであり、このため、実パターン基板C4cの表裏面のそれぞれの面内で、縦方向及び横方向の線状の配線パターンについて各121ポイント、9枚の合計では縦方向及び横方向の線状の配線パターンについて、面毎に各1089ポイントである。次に、テストパターン1の同一の座標、つまり、パターン間隙が同一の設計値を有する個所同士で、各設計値におけるパターン間隙毎に、実パターンデータ(仕上り値)と元データ(設計値)との差分データを作成した。ここで、実パターンデータ(仕上り値)は、24段階のパターン間隙のそれぞれについて、面毎に1089ポイント(1枚当り121ポイント)の実パターンデータ(仕上り値)を取得し、同じ位置のポイント毎に(121のポイント毎に)平均した値である。 Actual pattern data (finished value) was obtained for the actual pattern substrate C4c using an optical automatic visual inspection apparatus. The number of measurement points at this time is one for each of the vertical and horizontal linear wiring patterns for each test pattern. For this reason, in each of the front and back surfaces of the actual pattern substrate C4c, 121 points each for the linear wiring patterns in the vertical direction and the horizontal direction, and a total of 9 points is 1089 points for each surface for the linear wiring patterns in the vertical direction and the horizontal direction. Next, the actual pattern data (finished value) and the original data (design value) for each pattern gap at the same coordinates of the test pattern 1, that is, where the pattern gap has the same design value, The difference data was created. Here, the actual pattern data (finished value) is obtained as 1089 points (121 points per sheet) of actual pattern data (finished value) for each surface for each of the 24 pattern gaps. (For every 121 points).
 エッチングによる回路加工においては、実パターン基板の表裏面の一方の面内においても、配線パターンの配置された位置によって、実パターン基板の搬送方向やエッチング液の当たる方向等との関係が変化するので、エッチング処理に方向性やエッチング量のむらが生じる傾向がある。また、特に実パターン基板の端部周辺部では、エッチング処理のむらに加えて、めっき厚さの変動による銅箔の厚さのむら等も加わるため、さらにこの傾向が強い。このため、本実施例では、実パターン基板の面内を複数の領域に分け、しかも、実パターン基板の中央部に比べて、端部周辺部では、より領域を細かく分けて、これらの領域毎に補正関数を作成した。具体的には、実パターン基板の面内に均等に配置された121ポイントの実パターンデータのうち、実パターン基板の中央部から2ポイント、端部周辺部から40ポイントの合計42ポイントを選択して、これらの各ポイント毎に補正関数を作成した。以下では、42ポイントのうち、実パターン基板の中央部の1ポイントを用いて説明する。 In circuit processing by etching, even in one of the front and back surfaces of the actual pattern substrate, the relationship with the transport direction of the actual pattern substrate, the direction of contact with the etching solution, etc. changes depending on the position of the wiring pattern. In the etching process, the directionality and the etching amount tend to be uneven. In particular, in the peripheral portion of the end portion of the actual pattern substrate, in addition to the unevenness of the etching process, the unevenness of the thickness of the copper foil due to the variation of the plating thickness is added, so this tendency is further strong. For this reason, in this embodiment, the surface of the actual pattern substrate is divided into a plurality of regions, and the region around the edge portion is divided more finely than the center portion of the actual pattern substrate. A correction function was created. Specifically, out of 121 points of actual pattern data arranged evenly in the plane of the actual pattern substrate, 42 points in total, 2 points from the center portion of the actual pattern substrate and 40 points from the peripheral portion of the end portion, are selected. Thus, a correction function was created for each of these points. Below, it demonstrates using 1 point of the center part of a real pattern board | substrate among 42 points.
 また、エッチングによる回路加工では、実パターン基板の表裏面のそれぞれで、エッチング液の当たり方が異なるので、エッチング処理の傾向が変化する。このため、本実施例では、実パターン基板の表裏面のそれぞれについて、一次補正関数を作成したが、以下では、表面側(水平搬送でのエッチングによる回路形成時に、上側となった面)についてのみ説明し、裏面側については説明を省略する。 Also, in circuit processing by etching, the manner in which the etchant is applied differs between the front and back surfaces of the actual pattern substrate, so the tendency of the etching process changes. For this reason, in this embodiment, a primary correction function was created for each of the front and back surfaces of the actual pattern substrate. However, in the following, only the front side (the upper side when forming a circuit by etching in horizontal conveyance) The explanation is omitted, and the explanation of the back side is omitted.
 さらに、エッチングによる回路加工においては、実パターン基板の表裏面の一方の面内においても、配線パターンの方向によって、実パターン基板の搬送方向やエッチング液の当たる方向等との関係が変化するので、エッチング処理に方向性やむらが生じる傾向がある。このため、本実施例では、テストパターンの縦方向と横方向の線状の配線パターンのそれぞれについて、一次補正関数を作成した。が、以下では、横方向についてのみ説明し、縦方向については説明を省略する。 Furthermore, in circuit processing by etching, even in one of the front and back surfaces of the actual pattern substrate, the relationship with the direction of the wiring pattern, the direction of transport of the actual pattern substrate, the direction of contact with the etchant, etc. There is a tendency that directionality and unevenness occur in the etching process. For this reason, in this embodiment, a primary correction function is created for each of the linear wiring patterns in the vertical and horizontal directions of the test pattern. However, only the horizontal direction will be described below, and the description of the vertical direction will be omitted.
 次に、この差分データと差分を生じさせる因子であるパターン間隙との関係を調べ、このパターン間隙と差分を抑制するための元データの補正量との関係として、図12に示すような一次補正関数を作成した。 Next, the relationship between the difference data and the pattern gap, which is a factor causing the difference, is examined, and the primary correction as shown in FIG. 12 is performed as the relationship between the pattern gap and the correction amount of the original data for suppressing the difference. Created a function.
 図12の表に示したパターン間隙の設計値(単位はμm)は、テストパターンの元データのパターン間隙(差分を生じさせる因子)の数値である。パターン間隙の仕上り値(単位はμm)は、光学式自動外観検査装置を用いて実パターンデータから取得したパターン間隙の実測値である。片側補正量(単位はμm)は、パターン間隙の仕上り値と元データとの差分を抑制するための露光データの補正量であり、下式(1)によって求めた。ここで、片側補正量としているのは、露光データを補正する際に、パターン間隙の両側に同じ量の補正を行うためである。
  片側補正量(μm)=(パターン間隙の仕上り値(μm)-設計値(μm))/2 …(1)
The design value (unit: μm) of the pattern gap shown in the table of FIG. 12 is a numerical value of the pattern gap (factor causing the difference) of the original data of the test pattern. The finished value (unit: μm) of the pattern gap is an actual measurement value of the pattern gap acquired from actual pattern data using an optical automatic visual inspection apparatus. The one-side correction amount (unit: μm) is the exposure data correction amount for suppressing the difference between the finished value of the pattern gap and the original data, and was obtained by the following equation (1). Here, the one-side correction amount is used to correct the same amount on both sides of the pattern gap when correcting the exposure data.
One-side correction amount (μm) = (finish value of pattern gap (μm) −design value (μm)) / 2 (1)
<一次補正関数を用いた露光データの補正>
 一次補正関数を用いた製品パターン7の露光データへの補正処理は、例えば、製品パターン7の露光データにおいて、設計値が30μmの個所に対しては、図12の表のパターン間隙の仕上り値が28.5μm(片側補正量が4.3μm)と、仕上り値が33.2μm(片側補正量が5.6μm)の各データから、仕上り値が30μmである場合の片側補正量の値は、これらのデータ同士を結んだ直線上にあると仮定して計算により取得した。このようにして計算で取得したパターン間隙の仕上り値が30μmのときの片側補正量は4.7μmであり、露光データ(ここでは初期の露光データを意味し、元データと同じ。)に対して片側4.7μmずつパターン間隙を狭くする補正処理を行った。つまり、製品パターン7のパターン間隙の設計データ(設計値)が30μmの箇所については、パターン間隙の補正処理後の露光データは20.6μmとなるようにした。
<Exposure data correction using a primary correction function>
The correction processing to the exposure data of the product pattern 7 using the primary correction function is performed, for example, in the exposure data of the product pattern 7 where the finished value of the pattern gap in the table of FIG. From the data of 28.5 μm (one-side correction amount is 4.3 μm) and the finished value is 33.2 μm (one-side correction amount is 5.6 μm), the value of the one-side correction amount when the finished value is 30 μm is It was obtained by calculation on the assumption that it was on a straight line connecting the data. When the finished value of the pattern gap obtained in this way is 30 μm, the one-side correction amount is 4.7 μm, and is for exposure data (here, it means initial exposure data and is the same as the original data). Correction processing for narrowing the pattern gap by 4.7 μm on one side was performed. In other words, the exposure data after the pattern gap correction processing is set to 20.6 μm at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 μm.
 このとき、製品パターン7の露光データ(ここでは初期の露光データを意味し、元データと同じ。)には、上記で作成した一次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さないようにした。テストパターン1については、常に一次補正関数を作成したときと同じ露光データを用いて実パターンを作製し、二次補正関数を作成するための実パターンデータを採取するためである。 At this time, the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the primary correction function created above, and the exposure data of the test pattern 1 The correction process was not applied to. For test pattern 1, an actual pattern is always created using the same exposure data as when the primary correction function was created, and actual pattern data for creating the secondary correction function is collected.
<二次補正関数の作成>
 次に、二次補正関数を作成するため、一次補正関数を作製するときと同様の基板を準備し、図5に概略を示すようなテストパターン1と製品パターン7を混在させた実パターン基板C4cを、1枚作製した。テストパターン1は、一次補正関数を作製するときと同じ設計データを用いたものであり、製品パターン7は、パターンの幅/パターン間隙の設計値が30μm/30μmである箇所を有する設計データのものである。図5は実パターン基板C4cの概要を示したものであり、本実施例では実際には、全部で42個のテストパターン1を、実パターン基板C4c内に配置した。なお、実パターン基板C4c内に配置した42個のテストパターン1の実パターン基板C4c内における位置は、図18に示した一次補正関数を作成するのに用いた実パターン基板C4c内の42ポイントのテストパターン1の位置と対応している。
<Creation of secondary correction function>
Next, in order to create a secondary correction function, a substrate similar to that for creating the primary correction function is prepared, and an actual pattern substrate C4c in which the test pattern 1 and the product pattern 7 as schematically shown in FIG. One piece was produced. The test pattern 1 uses the same design data as that used to create the primary correction function, and the product pattern 7 has design data having locations where the design value of the pattern width / pattern gap is 30 μm / 30 μm. It is. FIG. 5 shows an outline of the actual pattern substrate C4c. In the present embodiment, a total of 42 test patterns 1 are actually arranged in the actual pattern substrate C4c. The positions of 42 test patterns 1 arranged in the actual pattern substrate C4c in the actual pattern substrate C4c are 42 points in the actual pattern substrate C4c used to create the primary correction function shown in FIG. This corresponds to the position of the test pattern 1.
 次に、実パターン基板C4cに対して、光学式自動外観検査装置を用いて実パターンデータ(仕上り値)を取得した。このときの測定ポイント数は、42ポイントである。また、ここでは、図2のテストパターンのパターン間隙2を14~150μmの範囲で24段階に変化させた線状の配線パターンのうち、図13の表に示すように、20、30、45、60、80、130μmの6段階についてのみ実パターンデータを取得した。次に、この6段階のパターン間隙のそれぞれについて、42のポイント毎に、実パターンデータを平均し、この平均した実パターンデータを用いて、一次補正関数を作成する場合と同様にして、図13に示すような二次補正関数を作成した。これ以外の段階のパターン間隙2については、実パターンデータを取得した段階のパターン間隙2の実パターンデータ同士を結んだ直線上にあると仮定して計算により取得した。つまり、図13の表には示さないが、実際に実パターンデータを取得したのは6段階についてのみであり、これを基にして24段階全ての実パターンデータを推定した。これにより、取得する実パターンデータを少なくし、データ処理の負荷を軽減した。 Next, actual pattern data (finished value) was obtained for the actual pattern substrate C4c using an optical automatic visual inspection apparatus. The number of measurement points at this time is 42 points. Further, here, among the linear wiring patterns in which the pattern gap 2 of the test pattern of FIG. 2 is changed in 24 steps within the range of 14 to 150 μm, as shown in the table of FIG. 13, 20, 30, 45, Actual pattern data was acquired only for six stages of 60, 80, and 130 μm. Next, for each of the six stages of pattern gaps, the actual pattern data is averaged for every 42 points, and this averaged actual pattern data is used to create a primary correction function, as shown in FIG. A quadratic correction function as shown in FIG. The pattern gap 2 at other stages was obtained by calculation assuming that the pattern gap 2 was on a straight line connecting the actual pattern data of the pattern gap 2 at the stage where the actual pattern data was obtained. That is, although not shown in the table of FIG. 13, actual pattern data was actually acquired only for six stages, and based on this, the actual pattern data for all 24 stages were estimated. As a result, the actual pattern data to be acquired is reduced and the data processing load is reduced.
<三次補正関数の作成>
 次に、一次補正関数による補正量と二次補正関数による補正量の全体における一次補正関数による補正量の合成比率(割合)を、0.5、0.7、0.3として、三次補正関数を作成した。図14には、一次補正関数による補正量の合成比率(割合)を0.5とした場合を示す。具体的には、一次補正関数による補正量の合成比率(割合)を0.5とした場合、二次補正関数による補正量の合成比率(割合)は0.5であるため、各パターン間隙毎の片側補正量を、下式(2)によって合成した。
  三次補正関数の片側補正量(μm)=一次補正関数の片側補正量(μm)×0.5
              +二次補正関数の片側補正量(μm)×0.5 …(2)
 ここで、二次補正関数を作成したときの片側補正量のデータは、一次補正関数を作成したときの24段階よりも少ない6段階のパターン間隙についてしか取得していないが、上述したように、一次補正関数を作成したときと同じ24段階についてのデータとなるよう計算により推定した。
<Creating third-order correction function>
Next, assuming that the combination ratio (ratio) of the correction amount by the primary correction function in the correction amount by the primary correction function and the correction amount by the secondary correction function is 0.5, 0.7, 0.3, the tertiary correction function It was created. FIG. 14 shows a case where the composition ratio (ratio) of correction amounts by the primary correction function is 0.5. Specifically, when the composition ratio (ratio) of the correction amounts by the primary correction function is 0.5, the composition ratio (ratio) of the correction amounts by the secondary correction function is 0.5. The one-side correction amount was synthesized by the following equation (2).
One-sided correction amount (μm) of tertiary correction function = one-sided correction amount (μm) of primary correction function × 0.5
+ Secondary correction function one-side correction amount (μm) × 0.5 (2)
Here, the one-side correction amount data at the time of creating the secondary correction function is obtained only for the pattern gaps in six steps, which is smaller than the 24 steps at the time of creating the primary correction function. It was estimated by calculation so as to obtain data for the same 24 stages as when the primary correction function was created.
<三次補正関数を用いた露光データの補正>
 三次補正関数を用いた製品パターン7の露光データへの補正処理は、例えば、一次補正関数による補正量と二次補正関数による補正量の全体に対する一次補正関数による補正量の合成比率(割合)を0.5とした場合、製品パターン7の露光データにおいて、設計値が30μmの個所に対しては、図14の表のパターン間隙の仕上り値が26.8μm(片側補正量が3.4μm)と、仕上り値が31.0μm(片側補正量が4.5μm)の各データから、仕上り値が30μmである場合の片側補正量の値は、これらのデータ同士を結んだ直線上にあると仮定して計算により取得した。このようにして計算で取得したパターン間隙の仕上り値が30μmのときの片側補正量は4.2μmであり、露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)に対して片側4.2μmずつパターン間隙を狭くする補正処理を行った。つまり、製品パターン7のパターン間隙の設計データ(設計値)が30μmの箇所については、パターン間隙の補正処理後の露光データは21.6μmとなるようにした。また、実パターン基板C4c内に配置された製品パターン(図示しない。)の元データ又は露光データの補正に用いる三次補正関数は、それぞれの製品パターンと位置関係が最も近いテストパターン1を用いて作成した三次補正関数を用いた。
<Correction of exposure data using cubic correction function>
The correction process to the exposure data of the product pattern 7 using the tertiary correction function includes, for example, a combination ratio (ratio) of the correction amount by the primary correction function to the correction amount by the primary correction function and the correction amount by the secondary correction function. In the case of 0.5, in the exposure data of the product pattern 7, with respect to the place where the design value is 30 μm, the finished value of the pattern gap in the table of FIG. 14 is 26.8 μm (one-side correction amount is 3.4 μm). From each data with a finishing value of 31.0 μm (one-side correction amount is 4.5 μm), it is assumed that the one-side correction amount value when the finishing value is 30 μm is on a straight line connecting these data. Obtained by calculation. When the finished value of the pattern gap thus obtained by calculation is 30 μm, the one-side correction amount is 4.2 μm, and exposure data (in this case, it means initial exposure data, not corrected exposure data, (Same as the data.) Correction processing for narrowing the pattern gap by 4.2 μm on one side was performed. In other words, the exposure data after the pattern gap correction processing is set to 21.6 μm at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 μm. Further, a tertiary correction function used for correcting the original data or exposure data of a product pattern (not shown) arranged on the actual pattern substrate C4c is created using the test pattern 1 having the closest positional relationship to each product pattern. A cubic correction function was used.
 このとき、二次補正関数を作成したときと同様に、製品パターン7の露光データ(ここでは初期の露光データを意味し、元データと同じ。)には、上記で作成した三次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さないようにした。テストパターン1については、常に一次補正関数を作成したときと同じ露光データを用いて実パターンを作製し、これ以降の二次補正関数を作成するための実パターンデータを採取するためである。 At this time, the third-order correction function created above is used for the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) as in the case of creating the second-order correction function. Thus, the correction process is performed, and the exposure data of the test pattern 1 is not subjected to the correction process. For test pattern 1, an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
<評価用の実パターン基板の作成>
 次に、評価用の実パターン基板を作成するため、上述した二次補正関数を作成したときと同様にして、図5に概略を示すようなテストパターン1と製品パターン7を混在させた実パターン基板C4cを、3枚作製した。なお、製品パターン7の露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)には、上記で作成した三次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さない露光データを作成して露光を行った。
<Creation of actual pattern substrate for evaluation>
Next, in order to create a real pattern substrate for evaluation, a real pattern in which the test pattern 1 and the product pattern 7 as schematically shown in FIG. Three substrates C4c were produced. Note that the exposure data of the product pattern 7 (here, not the corrected exposure data but the initial exposure data means the same as the original data) is subjected to a correction process using the tertiary correction function created above. The exposure data for test pattern 1 was subjected to exposure by creating exposure data that was not subjected to correction processing.
(比較例1)
 上述した二次補正関数を作成したときと同様にして、図5に概略を示すようなテストパターン1と製品パターン7を混在させた実パターン基板C4cを、3枚作製した。なお、製品パターン7の露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)には、上記で作成した一次補正関数のみを用いて補正処理を施し、テストパターン1の露光データには補正処理を施さない露光データを作成して露光を行った。それ以外は、実施例1と同様である。
(Comparative Example 1)
Three real pattern substrates C4c mixed with the test pattern 1 and the product pattern 7 as schematically shown in FIG. 5 were produced in the same manner as when the secondary correction function described above was created. The exposure data of the product pattern 7 (here, not the corrected exposure data but the initial exposure data means the same as the original data) is corrected using only the primary correction function created above. Then, exposure data for which the correction processing is not applied to the exposure data of the test pattern 1 is created and exposed. The rest is the same as in the first embodiment.
(比較例2)
 上述した二次補正関数を作成したときと同様にして、図5に概略を示すようなテストパターン1と製品パターン7を混在させた実パターン基板C4cを、3枚作製した。なお、製品パターン7の露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)には、上記で作成した二次補正関数のみを用いて補正処理を施し、テストパターン1の露光データには補正処理を施さない露光データを作成して露光を行った。それ以外は、実施例1と同様である。
(Comparative Example 2)
Three real pattern substrates C4c mixed with the test pattern 1 and the product pattern 7 as schematically shown in FIG. 5 were produced in the same manner as when the secondary correction function described above was created. The exposure data of the product pattern 7 (here, not the corrected exposure data but the initial exposure data means the same as the original data) is corrected using only the secondary correction function created above. Then, exposure data for which the correction processing is not applied to the exposure data of the test pattern 1 was created and exposed. The rest is the same as in the first embodiment.
<工程能力の評価>
 実施例1、比較例1、2で作製した評価用の実パターン基板について、製品パターン7のうち、パターンの幅/パターン間隙の設計値が30μm/30μmである箇所(121ポイント/枚×3枚)に対し、測定顕微鏡を用いて、200倍の倍率でパターン幅を測定し、元データ(設計値)との差分から工程能力を調査した。その結果を、表1に示す。工程能力の右欄に記載した±10μm、±12μmとは、パターンの幅/パターン間隙の設計値(30μm/30μm)対する変動の許容範囲を示し、Cp、Cpkとは、工程能力指数を示す。
Figure JPOXMLDOC01-appb-T000001
<Evaluation of process capability>
With respect to the actual pattern substrates for evaluation produced in Example 1 and Comparative Examples 1 and 2, the part of the product pattern 7 where the design value of the pattern width / pattern gap is 30 μm / 30 μm (121 points / sheet × 3 sheets) ), The pattern width was measured at a magnification of 200 times using a measuring microscope, and the process capability was investigated from the difference from the original data (design value). The results are shown in Table 1. ± 10 μm and ± 12 μm described in the right column of the process capability indicate the allowable range of variation with respect to the design value (30 μm / 30 μm) of the pattern width / pattern gap, and Cp and Cpk indicate the process capability index.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本実施例においては、一次補正関数による補正量と二次補正関数による補正量の全体における一次補正関数の補正量の合成比率(割合)を、0.5、0.7、0.3として、三次補正関数を作成した実施例では、何れも十分な工程能力が得られ、一次補正関数の合成比率が0.5のときが最もよい結果であった。一方、比較例1、2では、実施例に比べて工程能力が低下する傾向がある。 As shown in Table 1, in this embodiment, the combination ratio (ratio) of the correction amount of the primary correction function in the correction amount by the primary correction function and the correction amount by the secondary correction function is 0.5, 0,. In Examples where the tertiary correction function was created as 7 and 0.3, sufficient process capability was obtained, and the best results were obtained when the composite ratio of the primary correction function was 0.5. On the other hand, in Comparative Examples 1 and 2, the process capability tends to be lower than in the Examples.
(実施例2)
 実施例1と同様にして、<一次補正関数の作成>、<一次補正関数を用いた露光データの補正>、<二次補正関数の作成>、<三次補正関数の作成>、<三次補正関数を用いた露光データの補正>までを行なった。
(Example 2)
Similar to Example 1, <Creation of primary correction function>, <Correction of exposure data using primary correction function>, <Creation of secondary correction function>, <Creation of tertiary correction function>, <Cubic correction function Correction of exposure data using was performed.
<他の二次補正関数の作成>
 次に、他の二次補正関数を作成するため、上述した二次補正関数を作成したときと同様にして、図5に概略を示すようなテストパターン1と製品パターン7を混在させた実パターン基板C4cを、1枚作製した。なお、製品パターン7の露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)には、上記で作成した三次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さない露光データを作成して露光を行った。
<Create other secondary correction functions>
Next, in order to create another secondary correction function, an actual pattern in which the test pattern 1 and the product pattern 7 as schematically shown in FIG. One substrate C4c was produced. Note that the exposure data of the product pattern 7 (here, not the corrected exposure data but the initial exposure data means the same as the original data) is subjected to a correction process using the tertiary correction function created above. The exposure data for test pattern 1 was subjected to exposure by creating exposure data that was not subjected to correction processing.
 次に、実パターン基板C4cに対して、光学式自動外観検査装置を用いて実パターンデータ(仕上り値)を取得し、上述した二次補正関数を作成したときと同様にして、図15に示すような二次補正関数を作成した。また、これ以外の段階のパターン間隙2については、上述した二次補正関数を作成したときと同様にして、実パターンデータを取得した段階のパターン間隙2の実パターンデータ同士を結んだ直線上にあると仮定して計算により取得した。つまり、図15の表には示さないが、実際に実パターンデータを取得したのは6段階についてのみであり、これを基にして24段階全ての実パターンデータを推定した。これにより、取得する実パターンデータを少なくし、データ処理の負荷を軽減した。 Next, the actual pattern data (finished value) is obtained for the actual pattern substrate C4c by using an optical automatic visual inspection apparatus, and the result is shown in FIG. A quadratic correction function was created. Further, the pattern gap 2 at the other stages is on the straight line connecting the actual pattern data of the pattern gap 2 at the stage of obtaining the actual pattern data in the same manner as the above-described secondary correction function is created. Obtained by calculation assuming that there is. That is, although not shown in the table of FIG. 15, the actual pattern data was actually acquired only for the six stages, and based on this, the actual pattern data for all 24 stages were estimated. As a result, the actual pattern data to be acquired is reduced and the data processing load is reduced.
<他の三次補正関数の作成>
 次に、上述した三次補正関数を作成したときと同様にして、図16に示すように、一次補正関数による補正量と他の二次補正関数による補正量の合成比率(割合)を、0.5として、他の三次補正関数を作成した。具体的には、各パターン間隙毎の片側補正量を、下式(3)によって合成した。
  他の三次補正関数の片側補正量(μm)=(一次補正関数の片側補正量(μm)
             +他の二次補正関数の片側補正量(μm))/2 …(3)
 つまり、本実施例では、一次補正関数を固定し、この同じ一次補正関数に対して、実パターン基板を作製する毎に新たに作成される他の二次補正関数を合成することで、他の三次補正関数を作成する。このため、生産数の増加等によっても、生産プロセスの状況が変動し難い、比較的安定な場合に好適である。ここで、他の二次補正関数を作成したときの片側補正量のデータは、一次補正関数を作成したときの24段階よりも少ない6段階のパターン間隙についてしか取得していないが、上述したように、一次補正関数を作成したときと同じ24段階についてのデータとなるよう計算により推定した。
<Create other cubic correction functions>
Next, in the same manner as when the above-described tertiary correction function is created, as shown in FIG. 16, the combination ratio (ratio) of the correction amount by the primary correction function and the correction amount by another secondary correction function is set to 0. 5, other cubic correction functions were created. Specifically, the one-side correction amount for each pattern gap was synthesized by the following equation (3).
One-side correction amount of other tertiary correction function (μm) = (One-side correction amount of primary correction function (μm)
+ One-sided correction amount of other secondary correction function (μm)) / 2 (3)
In other words, in this embodiment, the primary correction function is fixed, and another secondary correction function newly created every time a real pattern substrate is produced is synthesized with this same primary correction function, Create a cubic correction function. For this reason, it is suitable for the case where the state of the production process hardly fluctuates due to an increase in the number of production and the like and is relatively stable. Here, the data of the one-side correction amount when the other secondary correction function is created is acquired only for the pattern gaps in six stages, which is smaller than the 24 stages when the primary correction function is created. In addition, it was estimated by calculation so as to be the data for the same 24 stages as when the primary correction function was created.
<他の三次補正関数を用いた露光データの補正>
 他の三次補正関数を用いた製品パターン7の露光データへの補正処理は、例えば、一次補正関数による補正量と他の二次補正関数による補正量の全体に対する一次補正関数による補正量の合成比率(割合)を0.5とした場合、製品パターン7の露光データにおいて、設計値が30μmの個所に対しては、図16の表のパターン間隙の仕上り値が28.6μm(片側補正量が4.3μm)と、仕上り値が32.9μm(片側補正量が5.4μm)の各データから、仕上り値が30μmである場合の片側補正量の値は、これらのデータ同士を結んだ直線上にあると仮定して計算により取得した。このようにして計算で取得したパターン間隙の仕上り値が30μmのときの片側補正量は4.7μmであり、露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)に対して片側4.7μmずつパターン間隙を狭くする補正処理を行った。つまり、製品パターン7のパターン間隙の設計データ(設計値)が30μmの箇所については、パターン間隙の補正処理後の露光データは20.6μmとなるようにした。
<Exposure data correction using other cubic correction functions>
The correction process to the exposure data of the product pattern 7 using another tertiary correction function is, for example, the composition ratio of the correction amount by the primary correction function to the entire correction amount by the primary correction function and the correction amount by the other secondary correction function. When the (ratio) is 0.5, in the exposure data of the product pattern 7, the pattern gap finish value in the table of FIG. 16 is 28.6 μm (one-side correction amount is 4) for the design value of 30 μm. .3 μm) and the finished value is 32.9 μm (one-side correction amount is 5.4 μm), the one-side correction amount value when the finished value is 30 μm is on a straight line connecting these data. Obtained by calculation assuming that there is. When the finished value of the pattern gap thus obtained by calculation is 30 μm, the one-side correction amount is 4.7 μm, and exposure data (in this case, it means initial exposure data, not corrected exposure data, (Same as the data.) Correction processing for narrowing the pattern gap by 4.7 μm on each side was performed. In other words, the exposure data after the pattern gap correction processing is set to 20.6 μm at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 μm.
 このとき、製品パターン7の露光データ(ここでは初期の露光データを意味し、元データと同じ。)には、上記で作成した他の三次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さないようにした。テストパターン1については、常に一次補正関数を作成したときと同じ露光データを用いて実パターンを作製し、これ以降の二次補正関数を作成するための実パターンデータを採取するためである。 At this time, the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the other third-order correction function created above, and the test pattern 1 The exposure data was not corrected. For test pattern 1, an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
(実施例3)
 実施例2と同様にして、<一次補正関数の作成>、<一次補正関数を用いた露光データの補正>、<二次補正関数の作成>、<三次補正関数の作成>、<三次補正関数を用いた露光データの補正>、<他の二次補正関数の作成>までを行なった。
(Example 3)
Similar to Example 2, <Creation of primary correction function>, <Correction of exposure data using primary correction function>, <Creation of secondary correction function>, <Creation of tertiary correction function>, <Cubic correction function Correction of exposure data using, and <Create other secondary correction functions>.
<他の三次補正関数の作成>
 次に、上記で作成した三次補正関数による補正量と他の二次補正関数による補正量の全体における三次補正関数による補正量の合成比率(割合)を、0.5、0.7、0.3として、他の三次補正関数を作成した。図17には、三次補正関数による補正量の合成比率(割合)を0.5とした場合を示す。具体的には、三次補正関数による補正量の合成比率(割合)を0.5とした場合、他の二次補正関数による補正量の合成比率(割合)は0.5であるため、各パターン間隙毎の片側補正量を、下式(4)によって合成した。
 他の三次補正関数の片側補正量(μm)=三次補正関数の片側補正量(μm)×0.5
            +他の二次補正関数の片側補正量(μm)×0.5 …(4)
 つまり、本実施例では、一次補正関数と二次補正関数を合成した三次補正関数に対して、実パターン基板を作製する毎に新たに作成される他の二次補正関数を合成することで、他の三次補正関数を作成する。このため、元データ又は露光データの補正に用いる三次補正関数が二次補正関数を繰り返し累積したものであるため、製造プロセスの状況が、生産数の累積等によって、特定の方向に向かって変動する傾向がある場合に好適である。ここで、他の二次補正関数を作成したときの片側補正量のデータは、三次補正関数を作成したときの24段階よりも少ない6段階のパターン間隙についてしか取得していないが、上述したように、三次補正関数を作成したときと同じ24段階についてのデータとなるよう計算により推定した。
<Create other cubic correction functions>
Next, the combined ratio (ratio) of the correction amount based on the tertiary correction function in the correction amount based on the tertiary correction function created above and the correction amount based on the other secondary correction function is set to 0.5, 0.7,. 3, another cubic correction function was created. FIG. 17 shows a case where the composition ratio (ratio) of correction amounts by the cubic correction function is 0.5. Specifically, when the combination ratio (ratio) of the correction amounts by the tertiary correction function is 0.5, the combination ratio (ratio) of the correction amounts by the other secondary correction functions is 0.5. The one-side correction amount for each gap was synthesized by the following equation (4).
One-side correction amount (μm) of other tertiary correction function = one-side correction amount (μm) of tertiary correction function × 0.5
+ Other-side correction function one-side correction amount (μm) × 0.5 (4)
That is, in this embodiment, by synthesizing a secondary correction function that is newly created every time an actual pattern substrate is produced, with respect to a tertiary correction function obtained by synthesizing the primary correction function and the secondary correction function, Create another cubic correction function. For this reason, since the tertiary correction function used for correcting the original data or the exposure data is the cumulative result of the secondary correction function, the status of the manufacturing process varies in a specific direction due to the accumulation of the production number or the like. It is suitable when there is a tendency. Here, the data of the one-side correction amount when another secondary correction function is created is acquired only for the pattern gaps in six stages, which is smaller than the 24 stages when the tertiary correction function is created. In addition, it was estimated by calculation so as to obtain data for the same 24 stages as when the cubic correction function was created.
<他の三次補正関数を用いた露光データの補正>
 他の三次補正関数を用いた製品パターン7の露光データへの補正処理は、例えば、三次補正関数による補正量と他の二次補正関数による補正量の全体に対する三次補正関数による補正量の合成比率(割合)を0.5とした場合、製品パターン7の露光データにおいて、設計値が30μmの個所に対しては、図17の表のパターン間隙の仕上り値が27.8μm(片側補正量が3.9μm)と、仕上り値が31.8μm(片側補正量が4.9μm)の各データから、仕上り値が30μmである場合の片側補正量の値は、これらのデータ同士を結んだ直線上にあると仮定して計算により取得した。このようにして計算で取得したパターン間隙の仕上り値が30μmのときの片側補正量は4.5μmであり、露光データ(ここでは補正後の露光データではなく、初期の露光データを意味し、元データと同じ。)に対して片側4.5μmずつパターン間隙を狭くする補正処理を行った。つまり、製品パターン7のパターン間隙の設計データ(設計値)が30μmの箇所については、パターン間隙の補正処理後の露光データは21.0μmとなるようにした。
<Exposure data correction using other cubic correction functions>
The correction process to the exposure data of the product pattern 7 using another tertiary correction function is, for example, a combination ratio of the correction amount by the tertiary correction function to the total correction amount by the tertiary correction function and the correction amount by the other secondary correction function. When the (ratio) is 0.5, in the exposure data of the product pattern 7, the finished value of the pattern gap in the table of FIG. 17 is 27.8 μm (one-side correction amount is 3) for the design value 30 μm. .9 μm) and the finished value is 31.8 μm (one-side correction amount is 4.9 μm), the one-side correction amount value when the finished value is 30 μm is on a straight line connecting these data. Obtained by calculation assuming that there is. When the finished value of the pattern gap thus obtained by calculation is 30 μm, the one-side correction amount is 4.5 μm, and exposure data (here, not the exposure data after correction but the initial exposure data, (Same as data)) was corrected to narrow the pattern gap by 4.5 μm on each side. In other words, the exposure data after the pattern gap correction processing is set to 21.0 μm at the portion where the design data (design value) of the pattern gap of the product pattern 7 is 30 μm.
 このとき、製品パターン7の露光データ(ここでは初期の露光データを意味し、元データと同じ。)には、上記で作成した他の三次補正関数を用いて補正処理を施し、テストパターン1の露光データには補正処理を施さないようにした。テストパターン1については、常に一次補正関数を作成したときと同じ露光データを用いて実パターンを作製し、これ以降の二次補正関数を作成するための実パターンデータを採取するためである。 At this time, the exposure data of the product pattern 7 (here, the initial exposure data means the same as the original data) is subjected to a correction process using the other third-order correction function created above, and the test pattern 1 The exposure data was not corrected. For test pattern 1, an actual pattern is always created using the same exposure data as when the primary correction function was created, and the actual pattern data for creating the secondary correction function thereafter is collected.
1:テストパターン
2:パターン間隙
3:パターン
4:実パターン基板
4a:実パターン基板A(テスト基板)
4b:実パターン基板B(テスト基板)
4c:実パターン基板C(製品基板)
5:基材
6:製品パターン領域
7:製品パターン
8:データ補正装置
9:バス
10:配線パターン形成システム
1: Test pattern 2: Pattern gap 3: Pattern 4: Real pattern substrate 4a: Real pattern substrate A (test substrate)
4b: Actual pattern substrate B (test substrate)
4c: Actual pattern substrate C (product substrate)
5: Substrate 6: Product pattern area 7: Product pattern 8: Data correction device 9: Bus 10: Wiring pattern forming system

Claims (16)

  1.  目標とする配線パターンの元データに基づいて露光データを作成する工程(A)と、
     この露光データを用いて形成した実パターン基板から実パターンデータを作成する工程(B)と、
     前記元データと実パターンデータとの差分に基づいて、前記元データ又は露光データの補正データを作成する工程(C)と、を有し、
     前記補正データを作成する工程(C)が、
     前記実パターンデータと前記元データ又は露光データとの差分から差分データを作成する工程(C-1)と、
     この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、
     この複数の補正関数を合成した補正関数を作成する工程(C-3)と、
     前記合成した補正関数を用いて前記配線パターンの元データ又は露光データを補正する工程(C-4)と、
    を有する配線基板の製造方法。
    A step (A) of creating exposure data based on the original data of the target wiring pattern;
    A step (B) of creating actual pattern data from the actual pattern substrate formed using the exposure data;
    And (C) creating correction data of the original data or exposure data based on the difference between the original data and the actual pattern data,
    The step (C) of creating the correction data includes
    Creating difference data from the difference between the actual pattern data and the original data or exposure data (C-1);
    From the relationship between the difference data and the factor causing the difference, a plurality of corrections defining the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference Creating a function (C-2);
    A step (C-3) of creating a correction function by combining the plurality of correction functions;
    (C-4) correcting the original data or exposure data of the wiring pattern using the combined correction function;
    A method of manufacturing a wiring board having
  2.  前記複数の補正関数を作成する工程(C-2)では、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成し、
     前記合成した補正関数を作成する工程(C-3)では、前記一次補正関数と二次補正関数を合成した三次補正関数を作成し、
     前記元データ又は露光データを補正する工程(C-4)では、前記三次補正関数を用いて、前記実パターン基板の配線パターンの元データ又は露光データを補正する、請求項1に記載の配線基板の製造方法。
    In the step (C-2) of creating the plurality of correction functions, a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are created,
    In the step of creating the combined correction function (C-3), a tertiary correction function is generated by combining the primary correction function and the secondary correction function,
    The wiring board according to claim 1, wherein in the step (C-4) of correcting the original data or exposure data, the original data or exposure data of the wiring pattern of the real pattern board is corrected using the cubic correction function. Manufacturing method.
  3.  前記複数の補正関数を作成する工程(C-2)では、前記二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成し、
     前記合成した補正関数を作成する工程(C-3)では、前記三次補正関数と前記さらに作成された他の二次補正関数を合成して他の三次補正関数を作成する、請求項2に記載の配線基板の製造方法。
    In the step (C-2) of creating the plurality of correction functions, in addition to the secondary correction function, another secondary correction function created using another actual pattern substrate is created,
    3. The step (C-3) of creating the combined correction function creates another tertiary correction function by combining the tertiary correction function and the other secondary correction function that has been generated. Wiring board manufacturing method.
  4.  前記複数の補正関数を作成する工程(C-2)では、一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板又はさらに他の実パターン基板とが、同一の配線パターンを有する、請求項2又は3に記載の配線基板の製造方法。 In the step (C-2) of creating the plurality of correction functions, the actual pattern substrate used to create the primary correction function and another actual pattern substrate used to create another secondary correction function or The method for manufacturing a wiring board according to claim 2, wherein the other actual pattern board has the same wiring pattern.
  5.  前記複数の補正関数を作成する工程(C-2)では、前記二次補正関数の後に作成される他の二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成される、請求項2から4の何れか1項に記載の配線基板の製造方法。 In the step (C-2) of creating the plurality of correction functions, another secondary correction function created after the secondary correction function is created for each actual pattern substrate production lot or each actual pattern substrate. The method for manufacturing a wiring board according to any one of claims 2 to 4.
  6.  前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子が、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せである、請求項1から5の何れか1項に記載の配線基板の製造方法。 The factor causing the difference between the actual pattern data and the original data or exposure data is any of the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate, or The method for manufacturing a wiring board according to any one of claims 1 to 5, which is a combination of any two or more.
  7.  前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子として、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せに対応する実パターンデータを用いる請求項6に記載の配線基板の製造方法。 As a factor causing a difference between the actual pattern data and the original data or exposure data, any one of the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate or The method for manufacturing a wiring board according to claim 6, wherein actual pattern data corresponding to any combination of two or more is used.
  8.  請求項1から7の何れか1項に記載の配線基板の製造方法に用いる、配線パターンの元データ又は露光データのデータ補正装置であって、
     目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、前記露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成し(C-1)、
     この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と前記差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成し(C-2)、
     この複数の補正関数を合成した補正関数を作成し(C-3)、
     前記複数の補正関数を合成して作成した補正関数を用いて補正した前記配線パターンの元データ又は露光データの補正データを作成する(C-4)、データ補正装置。
    A data correction apparatus for wiring pattern original data or exposure data used in the method for manufacturing a wiring board according to claim 1,
    Difference data is created from the difference between the original data of the target wiring pattern or the exposure data created based on the original data and the actual pattern data created from the actual pattern substrate formed using the exposure data (C -1),
    From the relationship between the difference data and the factor causing the difference, a plurality of factors defining the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference Create a correction function (C-2)
    Create a correction function that combines these correction functions (C-3),
    A data correction device that generates correction data of the original data or exposure data of the wiring pattern corrected using a correction function generated by combining the plurality of correction functions (C-4).
  9.  複数の補正関数を作成する際(C-2)には、実パターン基板を用いて作成された一次補正関数と、他の実パターン基板を用いて作成された二次補正関数とを作成し、
     前記合成した補正関数を作成する際(C-3)には、前記一次補正関数と二次補正関数を合成した三次補正関数を作成し、
     前記元データ又は露光データを補正する(C-4)には、前記三次補正関数を用いて、前記実パターン基板の配線パターンの元データ又は露光データを補正する、請求項8に記載のデータ補正装置。
    When creating a plurality of correction functions (C-2), a primary correction function created using an actual pattern substrate and a secondary correction function created using another actual pattern substrate are created,
    When generating the combined correction function (C-3), a tertiary correction function is generated by combining the primary correction function and the secondary correction function,
    9. The data correction according to claim 8, wherein the original data or exposure data is corrected (C-4) by using the cubic correction function to correct the original data or exposure data of the wiring pattern of the actual pattern substrate. apparatus.
  10.  前記複数の補正関数を作成する際(C-2)には、前記二次補正関数とは別に、さらに他の実パターン基板を用いて作成された他の二次補正関数を作成し、
     前記合成した補正関数を作成する際(C-3)には、前記三次補正関数と前記さらに作成された他の二次補正関数を合成して他の三次補正関数を作成する、請求項9に記載のデータ補正装置。
    In creating the plurality of correction functions (C-2), in addition to the secondary correction function, another secondary correction function created using another actual pattern substrate is created,
    10. When generating the combined correction function (C-3), the tertiary correction function and the further generated secondary correction function are combined to generate another tertiary correction function. The data correction apparatus described.
  11.  前記複数の補正関数を作成する際(C-2)には、一次補正関数を作成するのに用いた実パターン基板と、他の二次補正関数を作成するのに用いた他の実パターン基板又はさらに他の実パターン基板とが、同一の配線パターンを有する、請求項9又は10に記載のデータ補正装置。 When creating the plurality of correction functions (C-2), the actual pattern substrate used to create the primary correction function and other actual pattern substrates used to create other secondary correction functions The data correction device according to claim 9 or 10, wherein the other wiring substrate has the same wiring pattern.
  12.  前記複数の補正関数を作成する際(C-2)には、前記二次補正関数の後に作成される他の二次補正関数が、実パターン基板の製造ロット毎又は実パターン基板毎に作成される、請求項9から11の何れか1項に記載のデータ補正放置。 When creating the plurality of correction functions (C-2), another secondary correction function created after the secondary correction function is created for each production lot or real pattern substrate of the actual pattern substrate. The data correction neglect according to any one of claims 9 to 11.
  13.  前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子が、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せである、請求項8から12の何れか1項に記載の配線基板の製造方法。 The factor causing the difference between the actual pattern data and the original data or exposure data is any of the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate, or The method for manufacturing a wiring board according to any one of claims 8 to 12, which is a combination of any two or more.
  14.  前記実パターンデータと前記元データ又は露光データとの差分を生じさせる因子として、前記実パターン基板の配線パターンの元データ又は露光データのパターン間隙、パターンサイズ、パターン厚さ、パターン位置の何れか又は何れか2以上の組み合せに対応する実パターンデータを用いる請求項13に記載の配線基板の製造方法。 As a factor causing a difference between the actual pattern data and the original data or exposure data, any one of the pattern gap, pattern size, pattern thickness, pattern position of the original data or exposure data of the wiring pattern of the actual pattern substrate or The method for manufacturing a wiring board according to claim 13, wherein actual pattern data corresponding to any combination of two or more is used.
  15.  請求項8から14の何れか1項に記載のデータ補正装置と、
     前記データ補正装置により補正された元データから作成された露光データ又は前記データ補正装置により補正された露光データに基づいて、基板上に配置された感光性レジストに、露光パターンを露光するパターン露光装置と、
     前記露光パターンが露光された感光性レジストを現像して現像パターンを形成する現像パターン形成装置と、
     前記現像パターンを形成した基板に対して回路加工を行ない実パターンを形成する実パターン形成装置と、
     前記実パターンから実パターンデータを作成する実パターンデータ作成装置と、を有する配線パターン形成システム。
    The data correction device according to any one of claims 8 to 14,
    A pattern exposure apparatus that exposes an exposure pattern to a photosensitive resist arranged on a substrate based on exposure data created from original data corrected by the data correction apparatus or exposure data corrected by the data correction apparatus When,
    A development pattern forming apparatus for developing a photosensitive resist exposed with the exposure pattern to form a development pattern;
    An actual pattern forming apparatus that forms a real pattern by performing circuit processing on the substrate on which the development pattern is formed;
    A wiring pattern forming system comprising: an actual pattern data creating device that creates actual pattern data from the actual pattern.
  16.  請求項8から14の何れか1項に記載のデータ補正装置を用いる、配線パターンの元データ又は露光データのデータ補正方法であって、
     目標とする配線パターンの元データ又はこの元データに基づいて作成された露光データと、前記露光データを用いて形成した実パターン基板から作成した実パターンデータとの差分から差分データを作成する工程(C-1)と、
     この差分データと前記差分を生じさせる因子との関係から、前記差分を生じさせる因子と前記差分を抑制するための前記元データの補正量又は前記露光データの補正量との関係を規定した複数の補正関数を作成する工程(C-2)と、
     この複数の補正関数を合成した補正関数を作成する工程(C-3)と、
     前記複数の補正関数を合成して作成した補正関数を用いて補正した前記配線パターンの元データ又は露光データの補正データを作成する工程(C-4)と、
    を有するデータ補正方法。
    A data correction method for original data of a wiring pattern or exposure data using the data correction device according to any one of claims 8 to 14,
    A step of creating difference data from the difference between the original data of the target wiring pattern or the exposure data created based on the original data and the actual pattern data created from the actual pattern substrate formed using the exposure data ( C-1)
    From the relationship between the difference data and the factor causing the difference, a plurality of factors defining the relationship between the factor causing the difference and the correction amount of the original data or the correction amount of the exposure data for suppressing the difference Creating a correction function (C-2);
    A step (C-3) of creating a correction function by combining the plurality of correction functions;
    A step (C-4) of creating correction data of the original data or exposure data of the wiring pattern corrected using a correction function created by combining the plurality of correction functions;
    A data correction method comprising:
PCT/JP2015/083605 2014-11-28 2015-11-30 Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method WO2016084978A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014241441 2014-11-28
JP2014-241441 2014-11-28
JP2015194083 2015-09-30
JP2015-194083 2015-09-30
JP2015194084 2015-09-30
JP2015-194082 2015-09-30
JP2015-194084 2015-09-30
JP2015194082 2015-09-30

Publications (1)

Publication Number Publication Date
WO2016084978A1 true WO2016084978A1 (en) 2016-06-02

Family

ID=56074520

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/083604 WO2016084977A1 (en) 2014-11-28 2015-11-30 Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method
PCT/JP2015/083605 WO2016084978A1 (en) 2014-11-28 2015-11-30 Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083604 WO2016084977A1 (en) 2014-11-28 2015-11-30 Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method

Country Status (2)

Country Link
JP (2) JP6801955B2 (en)
WO (2) WO2016084977A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072343B (en) * 2019-05-07 2020-04-17 四川海英电子科技有限公司 Production line and production process of printed circuit board for new energy automobile

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664493A (en) * 1979-10-31 1981-06-01 Hitachi Ltd Method of manufacturing printed board
JPH08272076A (en) * 1995-03-31 1996-10-18 Nec Corp Production of printed wiring board
JP2004246223A (en) * 2003-02-17 2004-09-02 Sony Corp Method of correcting mask
JP2004334349A (en) * 2003-04-30 2004-11-25 Ngk Spark Plug Co Ltd Cad/cam system for electronic circuit board, computer program used therefor, and manufacturing method for electronic circuit board
JP2004347834A (en) * 2003-05-22 2004-12-09 Sony Corp Method for manufacturing exposure mask
JP2005099739A (en) * 2003-07-31 2005-04-14 Fuji Photo Film Co Ltd Pattern production system, exposure system, and exposure method
JP2005116929A (en) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd System for manufacturing pattern
JP2006303229A (en) * 2005-04-21 2006-11-02 Toray Eng Co Ltd Circuit forming system
JP2007033764A (en) * 2005-07-26 2007-02-08 Fujifilm Holdings Corp Pattern manufacturing system, exposure device, and exposure method
JP2008197194A (en) * 2007-02-09 2008-08-28 Sony Corp Optical proximity effect correction method, optical proximity effect correction device, optical proximity effect correction program, method of manufacturing semiconductor device, pattern design restriction developing method and calculation method of optical proximity effect correction condition
JP2012212792A (en) * 2011-03-31 2012-11-01 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274784B2 (en) * 2002-05-28 2009-06-10 新光電気工業株式会社 Wiring forming system and method thereof
EP1804278A4 (en) * 2004-09-14 2011-03-02 Nikon Corp Correction method and exposure device
JP2007219208A (en) * 2006-02-17 2007-08-30 Sony Corp Pattern correction device, pattern correction program, pattern correction method and method for manufacturing semiconductor device
JP2009278071A (en) * 2008-04-14 2009-11-26 Toshiba Corp Method of manufacturing semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664493A (en) * 1979-10-31 1981-06-01 Hitachi Ltd Method of manufacturing printed board
JPH08272076A (en) * 1995-03-31 1996-10-18 Nec Corp Production of printed wiring board
JP2004246223A (en) * 2003-02-17 2004-09-02 Sony Corp Method of correcting mask
JP2004334349A (en) * 2003-04-30 2004-11-25 Ngk Spark Plug Co Ltd Cad/cam system for electronic circuit board, computer program used therefor, and manufacturing method for electronic circuit board
JP2004347834A (en) * 2003-05-22 2004-12-09 Sony Corp Method for manufacturing exposure mask
JP2005099739A (en) * 2003-07-31 2005-04-14 Fuji Photo Film Co Ltd Pattern production system, exposure system, and exposure method
JP2005116929A (en) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd System for manufacturing pattern
JP2006303229A (en) * 2005-04-21 2006-11-02 Toray Eng Co Ltd Circuit forming system
JP2007033764A (en) * 2005-07-26 2007-02-08 Fujifilm Holdings Corp Pattern manufacturing system, exposure device, and exposure method
JP2008197194A (en) * 2007-02-09 2008-08-28 Sony Corp Optical proximity effect correction method, optical proximity effect correction device, optical proximity effect correction program, method of manufacturing semiconductor device, pattern design restriction developing method and calculation method of optical proximity effect correction condition
JP2012212792A (en) * 2011-03-31 2012-11-01 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Also Published As

Publication number Publication date
JP2017063169A (en) 2017-03-30
JP2017062452A (en) 2017-03-30
JP6690204B2 (en) 2020-04-28
WO2016084977A1 (en) 2016-06-02
JP6801955B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP2005098885A (en) Integrated circuit pattern verifying apparatus and verification method
CN110267437B (en) Printed circuit board expansion and shrinkage control method and device
US7844939B2 (en) Mask pattern correction program and system
JP2008233687A (en) Pattern information generating method
TW571176B (en) Manufacturing method of mask and manufacturing method of semiconductor device using the mask
CN109884862A (en) The compensation device and method of alignment deviation in three-dimensional storage exposure system
JP2013217969A (en) Method for generating mask pattern
WO2016084978A1 (en) Wiring-board production method, data correction device, wiring-pattern formation system, and data correction method
JP2010066460A (en) Method for correcting pattern and program for correcting pattern
TWI237746B (en) Optical proximity correction method
JP2009186841A (en) Photomask manufacturing method and apparatus, and photomask
JP2008139688A (en) Method for manufacturing semiconductor integrated circuit, method for manufacturing mask, semiconductor mask data producing device, method for correcting mask pattern, and method for correcting design layout
TWI617899B (en) Method for determining the dose corrections to be applied to an ic manufacturing process by a matching procedure
WO2005001912A1 (en) Method of measuring focus deviation in pattern exposure and pattern exposure method
JP6491974B2 (en) EXPOSURE DATA CORRECTION DEVICE, WIRING PATTERN FORMING SYSTEM, AND WIRING BOARD MANUFACTURING METHOD
JP2017181613A (en) Producing method for circuit board, data correction apparatus, wiring pattern forming system and data correction method
JP6610210B2 (en) Wiring pattern forming system
JP2014093340A (en) Test coupon for managing characteristic impedance and print circuit board with the same
JP2017212381A (en) Data correction device, wiring pattern formation system, data correction method, and manufacturing method for wiring board
US20100167190A1 (en) Pattern-correction supporting method, method of manufacturing semiconductor device and pattern-correction supporting program
CN104897706B (en) A kind of method for measuring chip or wafer surface structure
CN107831636B (en) Rule-based OPC method
JP2012181298A (en) Mask pattern correction method and program, and photomask using mask pattern correction method
JP4589163B2 (en) Image processing apparatus, substrate wiring exposure system, and substrate wiring forming system
JP2003030250A (en) System for estimating printed board design man-hour and estimation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862291

Country of ref document: EP

Kind code of ref document: A1