WO2016084146A1 - 原子炉燃料棒およびそれを束ねた燃料集合体 - Google Patents

原子炉燃料棒およびそれを束ねた燃料集合体 Download PDF

Info

Publication number
WO2016084146A1
WO2016084146A1 PCT/JP2014/081175 JP2014081175W WO2016084146A1 WO 2016084146 A1 WO2016084146 A1 WO 2016084146A1 JP 2014081175 W JP2014081175 W JP 2014081175W WO 2016084146 A1 WO2016084146 A1 WO 2016084146A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel rod
cladding tube
silicon carbide
reactor
Prior art date
Application number
PCT/JP2014/081175
Other languages
English (en)
French (fr)
Inventor
良 石橋
青田 欣也
旭東 張
英紀 北
誠司 山下
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP14906870.2A priority Critical patent/EP3226247B1/en
Priority to PCT/JP2014/081175 priority patent/WO2016084146A1/ja
Priority to JP2016561127A priority patent/JP6300953B2/ja
Priority to US15/529,663 priority patent/US10796807B2/en
Publication of WO2016084146A1 publication Critical patent/WO2016084146A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/14Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams
    • B23K1/18Soldering, e.g. brazing, or unsoldering specially adapted for soldering seams circumferential seams, e.g. of shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • B23K20/026Thermo-compression bonding with diffusion of soldering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/10End closures ; Means for tight mounting therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
    • G21C5/126Carbonic moderators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/16Silicon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/72Forming laminates or joined articles comprising at least two interlayers directly next to each other
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/326Bundles of parallel pin-, rod-, or tube-shaped fuel elements comprising fuel elements of different composition; comprising, in addition to the fuel elements, other pin-, rod-, or tube-shaped elements, e.g. control rods, grid support rods, fertile rods, poison rods or dummy rods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a nuclear reactor technology, and more particularly to a nuclear fuel rod loaded in a nuclear reactor core and a fuel assembly in which the nuclear fuel rods are bundled.
  • fuel assemblies are loaded as reactor fuel in the cores of light water reactors such as boiling water reactors (BWR) and pressurized water reactors (PWR).
  • a fuel assembly is one in which a plurality of nuclear fuel rods (also simply referred to as fuel rods) loaded with uranium fuel are aligned and supported by an upper tie plate and a lower tie plate.
  • Each reactor fuel rod is loaded with uranium fuel pellets in a fuel cladding tube with a length of about 4 mm and sealed at both ends by end plugs.
  • Zirconium alloy (Zircaloy), which has a small thermal neutron absorption cross section and excellent corrosion resistance, has been used as the material for fuel cladding tubes and end plugs. It has excellent neutron economy and is safe in a normal reactor environment. Has been used.
  • SiC silicon carbide
  • the oxidation rate of SiC in a high-temperature steam environment exceeding 1300 ° C is two orders of magnitude lower than that of zirconium alloys, a significant reduction in hydrogen production can be expected even if a coolant loss accident occurs.
  • Patent Document 1 (US 2013/0075039) describes a system for manufacturing a silicon carbide assembly, in which two or more silicon carbide materials and one or more bonded intermediate layers disposed therebetween. And one or more devices for applying energy to the bonding intermediate layer, wherein the bonding intermediate layer is dispersed throughout the first material and the first material that melts at a first temperature.
  • a second material that melts at a second temperature lower than the material and the device is operated to soften the first material and melt the second material in applying energy to the joining intermediate layer, And the softening of the first material and the melting of the second material convert the joining intermediate layer into a substantially void-free adhesive material, so that the two or more silicon carbide materials are joined together.
  • a silicon carbide assembly manufacturing system is disclosed. . Further, it is disclosed that the bonding intermediate layer contains an aluminum-silicon (Al-Si) alloy.
  • Patent Document 2 Japanese Patent Laid-Open No. 2012-2337344 discloses a fuel in which fuel pellets are inserted into the inner surface and an end plug is joined to the end of a fuel cladding tube whose outer surface is in contact with reactor water to seal the fuel pellets.
  • a cladding tube assembly wherein the fuel cladding tube and the end plug are both formed of a silicon carbide fiber reinforced composite material reinforced with silicon carbide long fibers, and the fuel cladding tube and the end plug are bonded to each other.
  • a fuel cladding tube assembly in which at least a portion in contact with the reactor water is directly joined without interposing a dissimilar material.
  • a fuel cladding tube assembly characterized in that it is bonded via a mixture of the above or silicon carbide containing aluminum and yttrium) is disclosed.
  • the fuel rod In the first place, the fuel rod is intended to contain radioactive materials (fuel pellets and fission products) so that they do not leak to the outside, and ensuring the airtightness of the joint between the fuel cladding tube and the end plug is an essential requirement. It is.
  • liquid phase bonding methods eg, brazing
  • the technique described in Patent Document 1 utilizes a liquid phase bonding method and is expected to have appropriate airtightness.
  • the fuel rod is required to have heat resistance that can withstand at least 1200 ° C. including the joint.
  • One of the high melting point bonding materials is a metal-silicon alloy (metal silicide), and the technique of Patent Document 1 utilizes metal silicide.
  • metal silicide metal-silicon alloy
  • Patent Document 1 since the Al—Si alloy used in Patent Document 1 is easily dissolved or corroded in the reactor water (eg, 280 to 330 ° C. reactor water) under the normal operating environment of the reactor, When the material comes into contact with the reactor water, another problem arises that the durability of the joint is greatly reduced.
  • the object of the present invention is to solve the above-mentioned problems, use SiC material as the material of the fuel cladding tube and the end plug, and combine air tightness, heat resistance and corrosion resistance at the joint portion between the fuel cladding tube and the end plug. It is an object of the present invention to provide a nuclear fuel rod and a fuel assembly in which the fuel rod is bundled.
  • One aspect of the present invention is a nuclear fuel rod for a light water reactor, which has a fuel cladding tube and an end plug both made of a silicon carbide material, and a joint portion between the fuel cladding tube and the end plug is
  • the fuel cladding tube is formed by brazing and / or diffusion bonding through a predetermined metal bonding material having a solidus temperature of 1200 ° C.
  • a reactor fuel rod characterized by being less than / K is provided.
  • the present invention can add the following improvements and changes to the reactor fuel rod (I) according to the above-described invention.
  • the predetermined metal bonding material is a kind selected from silicon (Si), Si alloy, titanium (Ti), Ti alloy, zirconium (Zr), and Zr alloy, and the predetermined coating metal is Ti , Ti alloy, Zr, and Zr alloy.
  • the thickness of the joint coating is 0.1 mm or more and 1 mm or less.
  • the silicon carbide material is a silicon carbide fiber-reinforced silicon carbide composite material in which silicon carbide is used as a matrix and silicon carbide fibers are combined.
  • the silicon carbide material is a material in which a silicon carbide layer is further formed on part of the surface of the silicon carbide fiber-reinforced silicon carbide composite material.
  • the abutting surface of the fuel cladding tube and the end plug at the joint is formed such that the surface direction has an inclination angle of 5 ° to 60 ° with respect to the axial direction of the fuel cladding tube. Yes.
  • the fuel cladding tube and the end plug are further fastened by a screw structure.
  • Another aspect of the present invention is a fuel assembly configured by bundling a plurality of reactor fuel rods, wherein the reactor fuel rod is the reactor fuel rod according to the present invention described above.
  • a fuel assembly characterized by the above is provided.
  • a nuclear reactor fuel rod that uses an SiC material as a material for the fuel cladding tube and the end plug, and has airtightness, heat resistance, and corrosion resistance at the joint between the fuel cladding tube and the end plug, and A bundled fuel assembly can be provided.
  • FIG. 2 is a schematic view showing an example of a fuel assembly according to the present invention, (a) a longitudinal sectional view, and (b) a transverse sectional view taken along line AA.
  • FIG. 1 is a schematic partial sectional view showing an example of a nuclear fuel rod according to the present invention.
  • a nuclear fuel rod 10 of the present invention includes a fuel cladding tube 11 and end plugs 12 (12a, 12b) that are joined to both ends of the fuel cladding tube 11 and seal the fuel cladding tube 11.
  • a plurality of fuel pellets 13 are loaded in the fuel cladding tube 11.
  • one end of the fuel pellets 13 that are connected is pressed by a plenum spring 15. Further, the periphery of the joint between the fuel cladding tube 11 and the end plug 12 is covered with a joint covering 14.
  • FIG. 2A is an enlarged schematic cross-sectional view showing an example of a joint portion between a fuel cladding tube and an end plug.
  • the joint portion between the fuel cladding tube 11 and the end plug 12a is shown as a representative joint portion, but the joint portion between the fuel cladding tube 11 and the end plug 12b also has the same structure. .
  • the illustration of the fuel pellet 13 is omitted.
  • the fuel cladding tube 11 and the end plug 12 use a silicon carbide (SiC) material, and in particular, a silicon carbide fiber reinforced silicon carbide composite material (hereinafter referred to as SiC / SiC) in which silicon carbide is used as a matrix and silicon carbide fibers are combined. It is preferable to use (which may be referred to as a composite material). Further, it is preferable to use a material in which a SiC layer is further formed on a part of the surface of the SiC / SiC composite material (for example, a region corresponding to the joint surface of both).
  • the method for forming the SiC layer is not particularly limited, and for example, a chemical vapor deposition method (CVD method) or a coating / sintering method can be used.
  • the dimensions of the fuel cladding tube 11 are preferably the same as those of a conventional fuel cladding tube made of a zirconium alloy.
  • the length is approximately 4 mm
  • the outer diameter is approximately 11 mm
  • the wall thickness is approximately 1 mm.
  • the end plug 12 (12a, 12b) has an insertion straight body portion 12c to be inserted into the fuel cladding tube 11 and an abutting surface 12d that abuts against the end surface of the fuel cladding tube 11, and is joined to the fuel cladding tube 11. It is sometimes preferable that the shape and dimensions are such that no step is generated on the outer surface near the joint.
  • the outer diameter of the insertion straight body 12c is formed to be smaller than the inner diameter of the fuel cladding tube 11 by an appropriate amount of play (for example, about 0.02 to 0.5 mm). Preferably it is.
  • the fuel cladding tube 11 and the end plug 12a are joined so as to ensure airtightness by brazing and / or diffusion joining via the metal joining material 20.
  • the metal bonding material 20 include Si (melting point: 1414 ° C.), Ti (melting point: 1812 ° C.), Zr (melting point: 1855 ° C.), and Si alloy, Ti alloy, and Zr alloy having a solidus temperature of 1200 ° C. or higher.
  • One kind selected from can be preferably used.
  • the joining of the fuel cladding tube 11 and the end plug 12 is performed, for example, as follows.
  • the surface of the fuel cladding tube 11 to be joined and the surface of the end plug 12 (for example, the end surface of the fuel cladding tube 11, the inner surface of the end portion, the insertion straight body portion 12c of the end plug 12 are abutted against each other)
  • a film of the metal bonding material 20 is formed on the surface 12d).
  • the thickness of the coating is preferably such that it fills the aforementioned play (gap between the inner diameter of the fuel cladding tube 11 and the outer diameter of the insertion straight body 12c) (for example, about 0.01 to 0.25 mm).
  • the end plug 12 can be prevented from rattling or falling off.
  • conventional methods for example, vapor deposition, thermal spraying, cold spraying, melting
  • the fuel cladding tube 11 and the end plug 12 are heated and bonded while being pressed.
  • one end of the fuel cladding tube 11 is joined to one end plug (12a or 12b) without loading the fuel pellet 13, and the other end is connected to the other end after the fuel pellet 13 is loaded.
  • the entire fuel cladding tube 11 including the joint with the end plug 12 can be heated.
  • the joint is locally heated so that the fuel pellets 13 are not heated.
  • a conventional method for example, whole heating using a long heating furnace, local heating using a laser, a high frequency, or a local heater
  • Ti, Ti alloy, Zr, or Zr alloy is used as the metal bonding material 20
  • Ti carbide or Zr carbide is generated by depriving part of the C component from the SiC of the fuel cladding 11 and end plug 12 at the bonding interface.
  • a region having a lower C ratio (as a result, a higher Si ratio) than the stoichiometric composition of SiC may occur in the vicinity of the bonding interface.
  • Si or Si alloy is used as the metal bonding material 20
  • a region having a higher Si ratio than SiC having a stoichiometric composition is naturally generated in the vicinity of the bonding interface.
  • Stoichiometric SiC has very high oxidation resistance, but Si alone is an easily oxidizable material. Therefore, if there is an excessive Si component in the joint region, there is a concern that the excessive Si component may be oxidized and corroded (oxidized / dissolved) in the normal operating environment of the light water reactor (for example, reactor water at 280 to 330 ° C.). In other words, if the joint between the fuel cladding tube 11 and the end plug 12 is brought into direct contact with the reactor water, the durability of the joint (that is, the long-term reliability of the fuel rod 10) may be reduced.
  • the light water reactor for example, reactor water at 280 to 330 ° C.
  • a joint coating 14 made of a coating metal having high corrosion resistance against high-temperature water.
  • high-purity water temperature 288 ° C
  • PWR pressurized water reactors
  • the coating metal one selected from Ti, Ti alloy, Zr, and Zr alloy having high corrosion resistance in the normal operating environment of the light water reactor can be preferably used.
  • the thickness of the joint coating 14 is preferably 0.1 mm to 1 mm, and more preferably 0.2 mm to 0.5 mm. When the thickness of the joint coating 14 is less than 0.1 mm, the effect as a corrosion-resistant coating is insufficient. On the other hand, when the thickness of the bonding portion coating 14 exceeds 1 mm, the outer diameter of the portion becomes too thick, which increases the possibility of adversely affecting the flow of cooling water.
  • the joint coating 14 can be formed with high adhesion to the base material (the outer surface of the joint and a part of the outer surface of the fuel cladding tube 11 and the end plug 12 adjacent to the joint outer surface)
  • the method for forming the partial coating 14 and conventional methods (for example, vapor deposition, thermal spraying, cold spraying) can be used.
  • the metal bonding material 20 and the bonding portion coating 14 used in the present invention preferably have an average linear expansion coefficient of less than 10 ppm / K. Temperature fluctuation (thermal expansion) of the fuel rod 10 by using a material with a small difference from the average linear expansion coefficient (4.3 to 6.6 ppm / K) of the SiC material to be joined as the metal joining material 20 and the joint coating 14 -Thermal stress accompanying thermal contraction) can be minimized, and damage to the joint and joint cover 14 can be prevented. On the other hand, when the metal bonding material 20 or the bonding portion coating 14 having an average linear expansion coefficient of 10 ppm / K or more is used, the effect cannot be obtained, and the long-term reliability of the fuel rod 10 as a whole is impaired.
  • FIG. 2B is an enlarged schematic cross-sectional view showing another example of the joint between the fuel cladding tube and the end plug
  • FIG. 2C is an enlarged cross-sectional view showing still another example of the joint between the fuel cladding tube and the end plug.
  • It is a schematic diagram.
  • the end surface of the fuel cladding tube 11 and the butting surface 12d of the end plug 12a are in the direction of the fuel cladding. It is not limited to the case of being parallel to the axial direction of the tube 11 (see FIG. 2A), and may have an inclination with respect to the axial direction of the fuel cladding tube 11.
  • the inclination angle is preferably 5 ° or more and 60 ° or less with respect to the axial direction of the fuel cladding tube 11.
  • An inclination angle of less than 5 ° provides an effect of improving the alignment accuracy, but the effect of increasing the bonding area is sparse.
  • the inclination angle exceeds 60 °, chipping is likely to occur at the tip portion of the abutting surface.
  • FIG. 2D is an enlarged schematic cross-sectional view showing still another example of the joint portion between the fuel cladding tube and the end plug.
  • the embodiment shown in FIG. 2D has a screw structure 12e on the inner surface of the fuel cladding tube 11 and the outer surface of the insertion straight body portion 12c of the end plug 12a.
  • the screw structure 12e is desirably a loose screw structure (for example, a shallow valley and a wide screw pitch). Even if it is a loose screw structure, it has a sufficient effect as long as it does not fall out.
  • FIG. 3 is a schematic view showing an example of a fuel assembly according to the present invention, (a) a longitudinal sectional view and (b) a transverse sectional view taken along the line AA.
  • a fuel assembly 30 shown in FIGS. 3A and 3B is an example of a fuel assembly for a boiling water reactor (BWR), and includes an upper tie plate 31, a lower tie plate 32, and Attached to the upper tie plate 31 and a plurality of fuel rods 10 and water rods 33 held at both ends by the upper and lower tie plates 31 and 32, a fuel support lattice (spacer) 34 for bundling the fuel rods 10 and the water rods 33 And a channel box 35 surrounding the bundle of fuel rods.
  • BWR boiling water reactor
  • the fuel rods 10 also referred to as full length fuel rods
  • the partial length fuel rods 36 and the water rods 33 are bundled and accommodated in a square lattice shape in a channel box 35 having a rectangular cross section. (See FIG. 3B).
  • the partial-length fuel rod 36 is a kind of nuclear reactor fuel rod, and is a fuel rod whose effective internal length is shorter than the fuel rod 10 (full length fuel rod) and whose height does not reach the upper tie plate 31. . Further, a handle 37 is fastened to the upper tie plate 31, and when the handle 37 is lifted, the entire fuel assembly 30 can be pulled up.
  • the water rod 33 may be the same as the prior art (water rod made of zirconium alloy). However, assuming a coolant loss accident, the water rod 33 is also the present invention.
  • the same structure as the fuel rod 10 of the above (having a hollow tube made of SiC material and an end plug, the hollow tube and the end plug are bonded via a metal bonding material 20, and the periphery of the bonded portion is a bonded portion It is preferred to have a coating 14).
  • FIG. 4 is a schematic cross-sectional view showing an example of a boiling water reactor cell.
  • the BWR cell 40 in the BWR cell 40, four fuel assemblies 30 are arranged in a square shape, and a control rod 41 having a cross-shaped cross section is arranged in the center thereof.
  • the cell 40 uses the nuclear reactor fuel rod 10 and the fuel assembly 30 according to the present invention to maintain the same long-term reliability as in the conventional operation environment, and at the time of an accident (for example, loss of coolant). Safety in an accident) can be improved.
  • FIG. 5 is a schematic perspective view showing another example of the fuel assembly according to the present invention.
  • a fuel assembly 50 shown in FIG. 5 is an example of a fuel assembly for a pressurized water reactor (PWR), and includes a plurality of fuel rods 10, a plurality of control rod guide thimbles 51, and a guide thimble for in-core instrumentation. 52, a plurality of support grids (spacers) 53 that bundle and support them, an upper nozzle 54, and a lower nozzle 55 are provided.
  • the upper nozzle 54 and the lower nozzle 55 are components of the skeleton of the fuel assembly 50, and at the same time play a role in positioning the fuel assembly 50 in the core and securing a cooling water flow path.
  • FIG. 6 is a schematic cross-sectional view showing an example of a cell of a pressurized water reactor.
  • the PWR cell 60 since the control rods are arranged in the fuel assembly 50, the four fuel assemblies 50 are arranged in a square shape as they are.
  • the cell 60 also uses the reactor fuel rod 10 and the fuel assembly 50 according to the present invention to maintain the same long-term reliability as in the conventional operation environment, and in the event of an accident (for example, loss of coolant). Safety in an accident) can be improved.
  • SiC material bonding experiment using metal bonding material SiC material bonding experiment using metal bonding material
  • Examples 1 to 4 and Comparative Example 3 Si, Si alloy and Comparative Examples 1 and 2 (Ni alloy) have a microstructure mainly composed of brazing (brazing).
  • Examples 5 to 10 Ti, Ti alloy, Zr, Zr alloy
  • a fine structure mainly composed of diffusion bonding diffusion bonding structure
  • Comparative Examples 1 and 2 Ni alloy
  • cracks in the direction perpendicular to the bonding interface were observed in the metal bonding material. This is due to the large average linear expansion coefficient of Comparative Examples 1 and 2 (Ni alloy) (strictly due to the large difference in the average linear expansion coefficient between SiC and Comparative Examples 1 and 2). This is probably because a large tensile stress was applied to the metal joint during cooling after joining.
  • Examples 1 to 10 and Comparative Example 3 no cracks or communicating pores were observed in the joint region.
  • Example 3 since the additive elements (Mo, W, Fe) in the Si alloy do not form a chemically stable carbide than SiC, the C component is not deprived from the SiC material at the time of heat bonding. In addition, it is expected to contribute to improving the mechanical strength of the bonding layer.
  • the additive elements (Ti, Zr, Ta, Nb, V, Y, Cr) in the Si alloy can form carbides that are chemically more stable than SiC, but the content of each additive element is appropriately set. By controlling this, it is expected that an appropriate reaction layer is formed at the bonding interface and contributes to improvement in bonding strength.
  • Comparative Example 3 no problem in microstructural observation was observed, but since the solidus temperature is as low as 577 ° C., it is considered that a problem arises from the viewpoint of heat resistance.
  • a joint portion coating (thickness of about 0.2 mm) was formed on the surface of the SiC / SiC composite material plate by vapor deposition or thermal spraying.
  • a high temperature water corrosion experiment simulating the normal operating environment of BWR was conducted.
  • a mass change was measured after immersing in high temperature water having a temperature of 288 ° C., a dissolved oxygen concentration of 8 ppm and an electric conductivity of less than 0.1 ⁇ S / cm for 500 hours. The results are shown in FIG.
  • FIG. 7 is a graph showing the results of high-temperature water corrosion experiments in Comparative Examples 4 to 6 and Examples 11 and 15 to 18.
  • an increase in mass means oxidation or hydroxylation of the coated metal by high temperature water, and a decrease in mass means dissolution in high temperature water.
  • Comparative Example 4 Al
  • Comparative Example 5 Si
  • a large weight increase due to the formation of aluminum hydroxide oxide (AlO (OH)) was observed.
  • Comparative Example 5 Si
  • SiO 2 silicon oxide
  • Comparative Example 6 Ni alloy
  • Examples 11 and 15 to 18 Zr alloy, Ti alloy, Ti
  • ⁇ 1.0 mg / cm 2 or less under the normal operating environment of the reactor, and these materials sufficiently satisfy the requirements. there were.
  • the joint coating in the present invention is formed on the SiC material and the joint between the SiC materials, and it is necessary to reduce the difference in linear expansion coefficient from the SiC material as described above.
  • Comparative Example 6 Ni alloy
  • Comparative Example 6 Ni alloy
  • Comparative Example 6 Ni alloy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

 本発明は、燃料被覆管および端栓の材料としてSiC材料を用い、該燃料被覆管と端栓との接合部において気密性と耐熱性と耐食性とを兼ね備える原子炉燃料棒、およびそれを束ねた燃料集合体を提供することを目的とする。本発明に係る原子炉燃料棒は、軽水炉用の燃料棒であって、共に炭化ケイ素材料からなる燃料被覆管および端栓を有し、前記燃料被覆管と前記端栓との接合部は、固相線温度が1200℃以上である所定の金属接合材を介したろう付けおよび/または拡散接合によって形成されており、前記接合部の外表面と該接合部外表面に隣接する前記燃料被覆管および前記端栓の外表面の一部とが、所定の被覆金属からなる接合部被覆で覆われており、前記所定の金属接合材および前記所定の被覆金属は、その平均線膨張係数が10 ppm/K未満である。

Description

原子炉燃料棒およびそれを束ねた燃料集合体
 本発明は、原子炉の技術に関し、特に原子炉の炉心に装荷される原子炉燃料棒およびそれを束ねた燃料集合体に関するものである。
 一般に、沸騰水型原子炉(BWR)や加圧水型原子炉(PWR)などの軽水炉の炉心内には、原子炉燃料として燃料集合体が装荷されている。燃料集合体は、ウラン燃料が装填された複数本の原子炉燃料棒(単に燃料棒とも言う)が、上部タイプレートおよび下部タイプレートにより整列・支持されているものである。
 各原子炉燃料棒は、長さ約4 mの燃料被覆管にウラン燃料ペレットが装填されており、その両端が端栓によって封じられている。燃料被覆管および端栓は、従来から、熱中性子吸収断面積が小さくかつ耐食性に優れたジルコニウム合金(ジルカロイ)がその材料として使用されており、中性子経済に優れるとともに通常の原子炉内環境において安全に使用されてきた。
 一方、水を冷却材として使用する軽水炉では、冷却水が原子炉内に流入できなくなる事故(いわゆる、冷却材喪失事故)が発生した場合、ウラン燃料の発熱により原子炉内の温度が上昇し、高温の水蒸気が発生する。また、冷却水不足により燃料棒が冷却水から露出すると、燃料棒の温度が上昇して1000℃を優に超え、燃料被覆管のジルコニウム合金と水蒸気とが化学反応して(ジルコニウム合金が酸化して水蒸気が還元され)、水素が生成する。これら水蒸気や水素の大量発生は、爆発事故につながることから厳に避けるべき事象である。
 冷却材喪失や爆発のような事故を回避するため、現在の原子炉では、非常用電源、非常用炉心冷却装置など多重の電源装置・冷却装置を設けるといった安全性を強化したシステム設計が施されており、更なる改良・改修も重ねられている。安全性強化の試みは、システム設計に留まらず、炉心を構成する材料に対しても検討されている。
 例えば、燃料被覆管や端栓の材料として、水素発生の原因となるジルコニウム合金の代わりにセラミックス材料を用いる検討が進められている。中でも、炭化ケイ素(SiC)は、耐食性に優れ、熱伝導率も高く、熱中性子吸収断面積も小さいことから、燃料被覆管・端栓の有望な材料として研究開発が進んでいる。また、1300℃を超えるような高温水蒸気環境におけるSiCの酸化速度は、ジルコニウム合金のそれよりも2桁低いことから、万が一冷却材喪失事故が発生したとしても水素生成の大幅な低減が期待できる。
 一方、燃料被覆管・端栓の材料としてセラミックス材料を用いた場合、燃料棒の端部を端栓によって封じる際に、金属材料のように溶接によって容易に接合することができないという弱点がある。特に、燃料ペレットを装填した後の端栓接合では、燃料棒全体を加熱する接合方法を採用できないため、接合部を局所的に加熱して接合する必要がある。しかしながら、セラミックス材料は一般的に熱応力によって破損し易いため、局所的に大きな熱量を投入することは好ましくない。また、ジルコニウム合金からの材料置き換えを前提とすることから、燃料被覆管および端栓の(すなわち、燃料棒としての)寸法が大きく変更されることは望まれていない。
 上記のような弱点を克服するため、種々の技術が開発・提案されている。例えば、特許文献1(US 2013/0075039)には、炭化ケイ素組立体を製造するシステムであって、2つ以上の炭化ケイ素材料と、それらの間に配設された1つ以上の接合中間層と、前記接合中間層にエネルギーを付与する1つ以上の装置とを有し、前記接合中間層は、第一温度で溶融する第一材料と、前記第一材料の全体に分散し該第一材料より低い第二温度で溶融する第二材料とを含み、前記装置は、前記接合中間層へのエネルギー付与にあたって、前記第一材料が軟化して前記第二材料が溶融するように操作され、かつ前記第一材料の軟化と前記第二材料の溶融とが前記接合中間層を実質的に空孔のない接着材料に転換して、前記2つ以上の炭化ケイ素材料を合体接合するように操作される炭化ケイ素組立体の製造システムが、開示されている。また、前記接合中間層はアルミニウム-ケイ素(Al-Si)合金を含むことが、開示されている。
 特許文献2(特開2012-233734)には、内面に燃料ペレットが挿入されるとともに外面が炉水と接触する燃料被覆管の端部に、端栓を接合して前記燃料ペレットを封印した燃料被覆管接合体であって、前記燃料被覆管及び前記端栓がいずれも炭化ケイ素長繊維で強化された炭化ケイ素繊維強化複合材料により形成され、かつ前記燃料被覆管と前記端栓とが接合する部分のうち少なくとも前記炉水と接触する部分が異種材料を介在せず直接接合していることを特徴とする燃料被覆管接合体が、開示されている。また、前記燃料被覆管と前記端栓とが接合する部分のうち前記炉水と接触する側が異種材料を介在せず直接接合し、前記炉水と接触しない側が異種材料(チタンシリコンカーバイドとチタンシリサイドの混合体、またはアルミニウムとイットリウムを含む炭化ケイ素)を介して接合していることを特徴とする燃料被覆管接合体が、開示されている。
米国公開特許2013/0075039公報 特開2012-233734号公報
 燃料棒は、そもそも放射性物質(燃料ペレットや核分裂生成物)が外部に漏れないように封じ込めておくためのものであり、燃料被覆管と端栓との接合部の気密性確保は必須の要求項目である。この観点において、液相接合法(例えば、ろう付け)は有利と考えられる。特許文献1に記載された技術は、液相接合法を利用しており、適切な気密性を有すると期待される。
 また、万が一の冷却材喪失事故を想定した場合、燃料棒には、接合部を含めて、少なくとも1200℃に耐えられる耐熱性が求められる。高融点の接合材料の一つに金属-ケイ素合金(メタルシリサイド)があり、特許文献1の技術はメタルシリサイドを利用したものである。しかしながら、特許文献1で利用するAl-Si合金は、原子炉の通常運転環境下の炉水(例えば、280~330℃の炉水)に対して溶解または腐食し易いため、Al-Si合金ろう材が炉水と接触すると接合部の耐久性が大きく低下するという別の問題が生じる。
 特許文献2の技術は、炉水との接触によるろう材の腐食劣化を避けるため、炉水と接触する接合部の外周領域で接合材料を介さない固相接合を行い、接合部の内周領域で接合材料を介した拡散接合を行っている。しかしながら、燃料被覆管の厚さは1 mm程度であり、その厚さの中で固相接合と拡散接合とを正確に使い分けることは技術的に容易ではない。さらに、SiC同士の固相接合で完全な気密性を確保することも技術的に難しい。結果として、特許文献2の技術を利用した燃料棒は、製造歩留りおよび/または長期信頼性が非常に低くなることが懸念される。
 したがって、本発明の目的は、上記課題を解決し、燃料被覆管および端栓の材料としてSiC材料を用い、該燃料被覆管と端栓との接合部において気密性と耐熱性と耐食性とを兼ね備える原子炉燃料棒、およびそれを束ねた燃料集合体を提供することにある。
 (I)本発明の一態様は、軽水炉用の原子炉燃料棒であって、共に炭化ケイ素材料からなる燃料被覆管および端栓を有し、前記燃料被覆管と前記端栓との接合部は、固相線温度が1200℃以上である所定の金属接合材を介したろう付けおよび/または拡散接合によって形成されており、前記接合部の外表面と該接合部外表面に隣接する前記燃料被覆管および前記端栓の外表面の一部とが、所定の被覆金属からなる接合部被覆で覆われており、前記所定の金属接合材および前記所定の被覆金属は、その平均線膨張係数が10 ppm/K未満であることを特徴とする原子炉燃料棒を提供するものである。
 また、本発明は、上記の発明に係る原子炉燃料棒(I)において、以下のような改良や変更を加えることができる。
(i)前記所定の金属接合材は、ケイ素(Si)、Si合金、チタン(Ti)、Ti合金、ジルコニウム(Zr)、およびZr合金から選ばれる一種であり、前記所定の被覆金属は、Ti、Ti合金、Zr、およびZr合金から選ばれる一種である。
(ii)前記接合部被覆の厚さが0.1 mm以上1 mm以下である。
(iii)前記炭化ケイ素材料は、炭化ケイ素をマトリックスとし炭化ケイ素繊維を複合する炭化ケイ素繊維強化炭化ケイ素複合材料である。
(iv)前記炭化ケイ素材料は、前記炭化ケイ素繊維強化炭化ケイ素複合材料の表面の一部に炭化ケイ素層が更に形成されている材料である。
(v)前記接合部における前記燃料被覆管と前記端栓との突き合わせ面は、その面方向が該燃料被覆管の軸方向に対して5°以上60°以下の傾角を有するように形成されている。
(vi)前記燃料被覆管と前記端栓とが、更にねじ構造によって締結されている。
 (II)本発明の他の一態様は、複数の原子炉燃料棒を束ねて構成される燃料集合体であって、前記原子炉燃料棒が、上記の本発明に係る原子炉燃料棒であることを特徴とする燃料集合体を提供するものである。
 本発明によれば、燃料被覆管および端栓の材料としてSiC材料を用い、該燃料被覆管と端栓との接合部において気密性と耐熱性と耐食性とを兼ね備える原子炉燃料棒、およびそれを束ねた燃料集合体を提供することができる。
本発明に係る原子炉燃料棒の一例を示す部分断面模式図である。 燃料被覆管と端栓との接合部の一例を示す拡大断面模式図である。 燃料被覆管と端栓との接合部の他の一例を示す拡大断面模式図である。 燃料被覆管と端栓との接合部の更に他の一例を示す拡大断面模式図である。 燃料被覆管と端栓との接合部の更に他の一例を示す拡大断面模式図である。 本発明に係る燃料集合体の一例を示す模式図であり、(a)縦断面図、(b)A-A線の横断面図である。 沸騰水型原子炉のセルの一例を示す横断面模式図である。 本発明に係る燃料集合体の他の一例を示す斜視模式図である。 加圧水型原子炉のセルの一例を示す横断面模式図である。 比較例4~6、および実施例11,15~18における高温水腐食実験の結果を示すグラフである。
 以下、本発明に係る実施形態について、図面を参照しながらより具体的に説明する。なお、同義の部材や部位には同じ符号を付して、重複する説明を省略することがある。また、本発明は、ここで取り上げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能ある。
 (原子炉燃料棒)
 図1は、本発明に係る原子炉燃料棒の一例を示す部分断面模式図である。図1に示したように、本発明の原子炉燃料棒10は、燃料被覆管11と、該燃料被覆管11の両端に接合され燃料被覆管11を封じる端栓12(12a,12b)とを有し、燃料被覆管11内に複数の燃料ペレット13が装填されている。燃料ペレット13を固定するため、連装された燃料ペレット13の一方の端部は、プレナムスプリング15によって押圧されている。また、燃料被覆管11と端栓12との接合部周りは、接合部被覆14で覆われている。
 図2Aは、燃料被覆管と端栓との接合部の一例を示す拡大断面模式図である。なお、図2Aにおいては、接合部の代表として燃料被覆管11と端栓12aとの接合部を示したが、燃料被覆管11と端栓12bとの接合部も同様の構造を有している。また、図面の簡略化のため、燃料ペレット13の図示は省略した。
 本発明において、燃料被覆管11および端栓12は、炭化ケイ素(SiC)材料を用い、特に、炭化ケイ素をマトリックスとし炭化ケイ素繊維を複合する炭化ケイ素繊維強化炭化ケイ素複合材料(以下、SiC/SiC複合材料と称する場合がある)を用いることが好ましい。また、SiC/SiC複合材料の表面の一部(例えば、双方の接合面に相当する領域)にSiC層が更に形成された材料を用いることが好ましい。該SiC層の形成方法に特段の限定はなく、例えば、化学蒸着法(CVD法)や塗布・焼結法を用いることができる。
 燃料被覆管11の寸法は、ジルコニウム合金からなる従来の燃料被覆管と同様であることが好ましく、例えば、長さ約4 m、外径約11 mm、管の肉厚約1 mmである。また、端栓12(12a,12b)は、燃料被覆管11内に挿入する挿入直胴部12c、および燃料被覆管11の端面と突き合わさる突き合わせ面12dを有し、燃料被覆管11と接合したときに接合部近傍の外表面に段差が生じないような形状・寸法になっていることが好ましい。燃料被覆管11に端栓12を挿入し易くするため、挿入直胴部12cの外径は、燃料被覆管11の内径よりも適度な遊び分(例えば、0.02~0.5 mm程度)小さく形成されていることが好ましい。
 図2Aに示したように、燃料被覆管11と端栓12aとは、金属接合材20を介したろう付けおよび/または拡散接合によって気密性を確保するように接合されている。金属接合材20としては、Si(融点1414℃)、Ti(融点1812℃)、Zr(融点1855℃)、および固相線温度が1200℃以上となる組成を有するSi合金、Ti合金、Zr合金から選ばれる一種を好ましく用いることができる。溶融温度(液相が生じる温度)が1200℃以上となる金属接合材20を用いて接合することにより、燃料棒の温度が1200℃となるような事故に陥ったとしても燃料棒10の気密性を維持することができる。
 なお、本発明においては、金属接合材20を介して燃料被覆管11と端栓12との接合を行っているため、「ろう付け」と「拡散接合」とを微細組織的に完全に識別することが困難な場合がある。そのため、本明細書においては、金属接合材20を介して加熱接合することを前提として、「ろう付けおよび/または拡散接合」と表現する。
 燃料被覆管11と端栓12との接合は、例えば、次のように行われる。
 まず、接合しようとする燃料被覆管11の面と端栓12の面とのいずれか一方または両方(例えば、燃料被覆管11の端面と端部内表面、端栓12の挿入直胴部12cと突き合わせ面12d)に、金属接合材20の皮膜を成膜する。該皮膜厚さは、前述した遊び分(燃料被覆管11の内径と挿入直胴部12cの外径とのギャップ)を埋める程度(例えば、0.01~0.25 mm程度)が好ましい。これにより、燃料被覆管11に端栓12を挿入したときに、端栓12のガタツキや抜け落ちを防ぐことができる。金属接合材20皮膜の成膜方法に特段の限定はなく、従前の方法(例えば、蒸着法、溶射法、コールドスプレー法、溶融法)を用いることができる。
 次に、燃料被覆管11と端栓12とを押圧しながら加熱して接合する。通常、燃料被覆管11の一方の端部は、燃料ペレット13を装填しない状態で端栓の一方(12aまたは12b)と接合され、他方の端部は、燃料ペレット13を装填した後に他方の端栓と接合される。燃料ペレット13を装填しない状態で接合する場合は、端栓12との接合部を含む燃料被覆管11全体を加熱することができる。燃料ペレット13を装填した後に接合する場合は、燃料ペレット13を加熱しないように、接合部を局所的に加熱する。加熱方法に特段の限定はなく、従前の方法(例えば、長尺加熱炉を用いた全体加熱、レーザや高周波や局所ヒータを用いた局所加熱)を用いることができる。
 金属接合材20として、Ti、Ti合金、Zr、Zr合金を用いた場合、接合界面で燃料被覆管11および端栓12のSiCから一部のC成分が奪われてTi炭化物やZr炭化物が生成することがある。その結果、接合界面近傍で化学量論組成のSiCよりもC比率が低い(結果としてSi比率が高い)領域が生じることがある。また、金属接合材20として、Si、Si合金を用いた場合、当然のことながら、接合界面近傍で化学量論組成のSiCよりもSi比率が多い領域が生じる。
 化学量論組成のSiCは非常に高い耐酸化性を有するが、Si単体は易酸化性材料である。そのため、接合部領域に過剰のSi成分が存在すると、該過剰Si成分が軽水炉の通常運転環境下(例えば、280~330℃の炉水中)で酸化腐食(酸化・溶解)することが危惧される。言い換えると、燃料被覆管11と端栓12との接合部を炉水と直接接触させると、接合部の耐久性(すなわち、燃料棒10の長期信頼性)を低下させてしまう可能性がある。そこで、本発明では、接合部と炉水との直接接触を防ぐために、接合部の外表面と該接合部外表面に隣接する燃料被覆管11および端栓12の外表面の一部とを、高温水に対する耐食性の高い被覆金属からなる接合部被覆14で覆っている。なお、沸騰水型原子炉(BWR)では純度の高い水(温度288℃)が炉水として使用され、加圧水型原子炉(PWR)ではリチウムとホウ酸が添加された水(温度325℃)が炉水として使用されている。
 被覆金属としては、軽水炉の通常運転環境下において耐食性の高いTi、Ti合金、Zr、およびZr合金から選ばれる一種を好ましく用いることができる。接合部被覆14の厚さは、0.1 mm以上1 mm以下が好ましく、0.2 mm以上0.5 mm以下がより好ましい。接合部被覆14の厚さが0.1 mm未満になると、耐食被覆としての作用効果が不十分になる。一方、接合部被覆14の厚さが1 mm超になると、当該部分の外径が太くなり過ぎて冷却水の流れに悪影響を与える可能性が高まる。
 下地基材(接合部の外表面と該接合部外表面に隣接する燃料被覆管11および端栓12の外表面の一部)に対して高い密着性で接合部被覆14を形成できる限り、接合部被覆14の形成方法に特段の限定はなく、従前の方法(例えば、蒸着法、溶射法、コールドスプレー法)を用いることができる。
 本発明で用いる金属接合材20および接合部被覆14は、その平均線膨張係数が10 ppm/K未満であることが好ましい。被接合材となるSiC材料の平均線膨張係数(4.3~6.6 ppm/K)との差異が小さい材料を金属接合材20および接合部被覆14として用いることによって、燃料棒10の温度変動(熱膨張・熱収縮)に伴う熱応力を最小限に抑え、接合部および接合部被覆14の破損を防止することができる。一方、平均線膨張係数が10 ppm/K以上の金属接合材20や接合部被覆14を用いると、その作用効果が得られず、燃料棒10全体としての長期信頼性を損なう。
 図2Bは、燃料被覆管と端栓との接合部の他の一例を示す拡大断面模式図であり、図2Cは、燃料被覆管と端栓との接合部の更に他の一例を示す拡大断面模式図である。図2B,図2Cに示したように、燃料被覆管11の端面および端栓12aの突き合わせ面12d(総称すると、燃料被覆管11と端栓12との突き合わせ面)は、その面方向が燃料被覆管11の軸方向と平行である場合(図2A参照)に限定されるものではなく、燃料被覆管11の軸方向に対して傾角を有していてもよい。
 燃料被覆管11と端栓12との突き合わせ面に傾角をもたせることにより、燃料被覆管11と端栓12との軸合わせ精度が向上する。また、突き合わせ面での接合面積が増大し、接合強度や気密性の信頼性を高めることができる。これらの作用効果を奏するためには、当該傾角は、燃料被覆管11の軸方向に対して5°以上60°以下が好ましい。5°未満の傾角は、軸合わせ精度の向上効果は得られるが、接合面積の増大効果は希薄である。一方、60°超の傾角にすると、突き合わせ面の先端部分に欠けが生じ易くなる。
 図2Dは、燃料被覆管と端栓との接合部の更に他の一例を示す拡大断面模式図である。図2Dに示した実施形態は、燃料被覆管11の内表面および端栓12aの挿入直胴部12cの外表面にねじ構造12eを有するものである。燃料被覆管11と端栓12とをねじ構造12eによって機械的に締結することにより、接合強度の信頼性をより高めることができる。なお、燃料被覆管11の肉厚を考慮すると、ねじ構造12eは、緩いねじ構造(例えば、山谷が浅い、ねじピッチが広い)であることが望ましい。緩いねじ構造であっても、抜け落ちない程度であれば十分な作用効果を奏する。
 (燃料集合体)
 図3は、本発明に係る燃料集合体の一例を示す模式図であり、(a)縦断面図、(b)A-A線の横断面図である。図3(a),(b)に示した燃料集合体30は、沸騰水型原子炉(BWR)用の燃料集合体の一例であり、上部タイプレート31と、下部タイプレート32と、これらの上部・下部タイプレート31,32に両端が保持されている複数の燃料棒10およびウォータロッド33と、燃料棒10およびウォータロッド33を束ねる燃料支持格子(スペーサ)34と、上部タイプレート31に取り付けられ燃料棒束を取り囲むチャンネルボックス35とを備えている。端的に言うと、横断面角筒状のチャンネルボックス35内に、燃料棒10(全長燃料棒とも言う)と部分長燃料棒36とウォータロッド33とが正方格子状に束ねられて収容されている(図3(b)参照)。
 なお、部分長燃料棒36とは、原子炉燃料棒の一種であり、燃料棒10(全長燃料棒)よりも内部の燃料有効長が短く高さが上部タイプレート31まで達しない燃料棒である。また、上部タイプレート31にはハンドル37が締結されており、ハンドル37を吊り上げると、燃料集合体30全体を引き上げることができる。
 本発明に係る燃料集合体30において、ウォータロッド33は、従来技術と同じもの(ジルコニウム合金製のウォータロッド)を用いてもよいが、冷却材喪失事故を想定すると、ウォータロッド33も、本発明の燃料棒10と同様の構成(SiC材料からなる中空管と端栓とを有し、該中空管と端栓とが金属接合材20を介して接合され、該接合部周りが接合部被覆14で覆われている)を有していることが好ましい。
 図4は、沸騰水型原子炉のセルの一例を示す横断面模式図である。図4に示したように、BWRのセル40は、4体の燃料集合体30が正方状に配置され、その中央部に横断面が十字形の制御棒41が配設されている。当該セル40は、本発明に係る原子炉燃料棒10および燃料集合体30を利用することにより、通常運転環境下で従来と同等の長期信頼性を維持しつつ、事故時(例えば、冷却材喪失事故)における安全性を向上することができる。
 図5は、本発明に係る燃料集合体の他の一例を示す斜視模式図である。図5に示した燃料集合体50は、加圧水型原子炉(PWR)用の燃料集合体の一例であり、複数の燃料棒10と、複数の制御棒案内シンブル51と、炉内計装用案内シンブル52と、それらを束ねて支持する複数の支持格子(スペーサ)53と、上部ノズル54と、下部ノズル55とを備えている。上部ノズル54および下部ノズル55は、燃料集合体50の骨格の構成体であると同時に、炉心における燃料集合体50の位置決めや冷却水の流路確保の役割を担う。
 図6は、加圧水型原子炉のセルの一例を示す横断面模式図である。図6に示したように、PWRのセル60は、燃料集合体50の中に制御棒が配設されることから、4体の燃料集合体50がそのまま正方状に配置される。当該セル60も、本発明に係る原子炉燃料棒10および燃料集合体50を利用することにより、通常運転環境下で従来と同等の長期信頼性を維持しつつ、事故時(例えば、冷却材喪失事故)における安全性を向上することができる。
 以下、実施例により本発明を更に具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 (金属接合材を用いたSiC材料の接合実験)
 複数種の金属接合材を用意し、SiC板同士の接合実験を行った。SiC板は、その表面にSiC層を形成したものを用いた。表1に用意した金属接合材の諸元を示す。
























Figure JPOXMLDOC01-appb-T000001
 表面にSiC層が形成されたSiC板を2枚用意し、それぞれの一方の表面に金属接合材(厚さ約0.1 mm)を蒸着法により成膜した。次に、成膜した金属接合材皮膜同士が対面するように2枚のSiC板を重ね合わせ、電気炉を用いて押圧熱処理(アルゴン気流中)を施した。加熱温度は、実施例1,4では1450~1514℃とし、実施例2,3では1250~1514℃とし、実施例5~10では1200~1400℃とし、比較例1,2では1170~1250℃とし、比較例3では1350~1400℃とした。加熱接合後、接合部断面を研磨し、光学顕微鏡で接合部領域の微細組織を観察した。
 接合部領域の微細組織観察の結果、実施例1~4および比較例3(Si、Si合金)と、比較例1,2(Ni合金)とは、ろう付けを主体とする微細組織(ろう付け組織)が観察され、実施例5~10(Ti、Ti合金、Zr、Zr合金)は、拡散接合を主体とする微細組織(拡散接合組織)が観察された。ただし、比較例1,2(Ni合金)では、金属接合材中に接合界面に垂直方向のクラックが観察された。これは、比較例1,2(Ni合金)の大きな平均線膨張係数に起因して(厳密には、SiCと比較例1,2との平均線膨張係数の大きな差異に起因して)、加熱接合後の冷却中に金属接合材側に大きな引張応力が掛かったためと考えられた。一方、他の試料(実施例1~10、比較例3)では、接合部領域でクラックや連通する気孔は観察されなかった。
 なお、実施例3は、Si合金中の添加元素(Mo、W、Fe)がSiCよりも化学的に安定な炭化物を形成しないことから、加熱接合の際にSiC材料からC成分を奪うことなしに接合層の機械的強度向上に寄与することが期待される。実施例4は、Si合金中の添加元素(Ti、Zr、Ta、Nb、V、Y、Cr)がSiCよりも化学的に安定な炭化物を形成しうるが、各添加元素の含有量を適切に制御することにより、接合界面に適度な反応層を形成させて接合強度向上に寄与することが期待される。比較例3は、微細組織観察における問題は観察されなかったが、固相線温度が577℃と低いことから耐熱性の観点で問題が生じると考えられる。
 (接合部被覆の高温水腐食実験)
 複数種の被覆金属を用意し、SiC/SiC複合材料板上に接合部被覆を形成した後、高温水腐食実験を行った。表2に用意した被覆金属の諸元を示す。


































Figure JPOXMLDOC01-appb-T000002
 SiC/SiC複合材料板の表面に接合部被覆(厚さ約0.2 mm)を蒸着法または溶射法により成膜した。次に、BWRの通常運転環境を模擬した高温水腐食実験を行った。実験条件としては、温度288℃、溶存酸素濃度8 ppm、電気伝導度0.1μS/cm未満の高温水中に500時間浸漬した後に、質量変化を測定した。結果を図7に示す。
 図7は、比較例4~6、および実施例11,15~18における高温水腐食実験の結果を示すグラフである。高温水腐食実験における質量増加は、高温水による被覆金属の酸化や水酸化を意味し、質量減少は、高温水中への溶解を意味する。図7に示したように、比較例4(Al)は、水酸化酸化アルミニウム(AlO(OH))を生成することによる大きな重量増加が観察された。比較例5(Si)は、酸化ケイ素(SiO2)を生成した後の溶解により、大きな重量減少が観察された。比較例4,5の結果から、AlやSiは、原子炉の通常運転環境下において、耐食性に問題があることが確認された。
 一方、比較例6(Ni合金)および実施例11,15~18(Zr合金、Ti合金、Ti)は、極めて小さな質量変化であった。燃料棒に使用される材料として許容される質量変化(腐食)は、原子炉の通常運転環境下で±1.0 mg/cm2以下と言われており、これらの材料はその要求を十分満たすものであった。
 ただし、本発明における接合部被覆は、SiC材料およびSiC材料同士の接合部の上に形成されるものであり、前述したようにSiC材料との線膨張係数差を小さくする必要がある。この観点において、比較例6(Ni合金)は平均線膨張係数が大きいことから、それを用いた接合部被覆は、燃料棒の熱サイクルによって疲労破壊することが危惧される。すなわち、本発明における接合部被覆としては、平均線膨張係数の大きいNi合金を用いない方がよいと言える。
 上述した実施形態は、本発明の理解を助けるために具体的に説明したものであり、本発明は、説明した全ての構成を備えることに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 10…原子炉燃料棒、11…燃料被覆管、12,12a,12b…端栓、12c…挿入直胴部、12d…突き合わせ面、12e…ねじ構造、13…燃料ペレット、14…接合部被覆、15…プレナムスプリング、20…金属接合材、30…燃料集合体、31…上部タイプレート、32…下部タイプレート、33…ウォータロッド、34…燃料支持格子、35…チャンネルボックス、36…部分長燃料棒、37…ハンドル、40…セル、41…制御棒、50…燃料集合体、51…制御棒案内シンブル、52…炉内計装用案内シンブル、53…支持格子、54…上部ノズル、55…下部ノズル、60…セル。

Claims (8)

  1.  軽水炉用の原子炉燃料棒であって、
    共に炭化ケイ素材料からなる燃料被覆管および端栓を有し、
    前記燃料被覆管と前記端栓との接合部は、固相線温度が1200℃以上である所定の金属接合材を介したろう付けおよび/または拡散接合によって形成されており、
    前記接合部の外表面と該接合部外表面に隣接する前記燃料被覆管および前記端栓の外表面の一部とが、所定の被覆金属からなる接合部被覆で覆われており、
    前記所定の金属接合材および前記所定の被覆金属は、その平均線膨張係数が10 ppm/K未満であることを特徴とする原子炉燃料棒。
  2.  請求項1に記載の原子炉燃料棒において、
    前記所定の金属接合材は、ケイ素、ケイ素合金、チタン、チタン合金、ジルコニウム、およびジルコニウム合金から選ばれる一種であり、
    前記所定の被覆金属は、チタン、チタン合金、ジルコニウム、およびジルコニウム合金から選ばれる一種であることを特徴とする原子炉燃料棒。
  3.  請求項1又は請求項2に記載の原子炉燃料棒において、
    前記接合部被覆の厚さが0.1 mm以上1 mm以下であることを特徴とする原子炉燃料棒。
  4.  請求項1乃至請求項3のいずれかに記載の原子炉燃料棒において、
    前記炭化ケイ素材料は、炭化ケイ素をマトリックスとし炭化ケイ素繊維を複合する炭化ケイ素繊維強化炭化ケイ素複合材料であることを特徴とする原子炉燃料棒。
  5.  請求項4に記載の原子炉燃料棒において、
    前記炭化ケイ素材料は、前記炭化ケイ素繊維強化炭化ケイ素複合材料の表面の一部に炭化ケイ素層が更に形成されている材料であることを特徴とする原子炉燃料棒。
  6.  請求項1乃至請求項5のいずれかに記載の原子炉燃料棒において、
    前記接合部における前記燃料被覆管と前記端栓との突き合わせ面は、その面方向が該燃料被覆管の軸方向に対して5°以上60°以下の傾角を有するように形成されていることを特徴とする原子炉燃料棒。
  7.  請求項1乃至請求項6のいずれかに記載の原子炉燃料棒において、
    前記燃料被覆管と前記端栓とが、更にねじ構造によって締結されていることを特徴とする原子炉燃料棒。
  8.  複数の原子炉燃料棒を束ねて構成される燃料集合体であって、
    前記原子炉燃料棒が、請求項1乃至請求項7のいずれかに記載の原子炉燃料棒であることを特徴とする燃料集合体。
PCT/JP2014/081175 2014-11-26 2014-11-26 原子炉燃料棒およびそれを束ねた燃料集合体 WO2016084146A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14906870.2A EP3226247B1 (en) 2014-11-26 2014-11-26 Nuclear reactor fuel rods and fuel assembly in which same are bundled
PCT/JP2014/081175 WO2016084146A1 (ja) 2014-11-26 2014-11-26 原子炉燃料棒およびそれを束ねた燃料集合体
JP2016561127A JP6300953B2 (ja) 2014-11-26 2014-11-26 原子炉燃料棒およびそれを束ねた燃料集合体
US15/529,663 US10796807B2 (en) 2014-11-26 2014-11-26 Nuclear reactor fuel rod and fuel assembly having bundled same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081175 WO2016084146A1 (ja) 2014-11-26 2014-11-26 原子炉燃料棒およびそれを束ねた燃料集合体

Publications (1)

Publication Number Publication Date
WO2016084146A1 true WO2016084146A1 (ja) 2016-06-02

Family

ID=56073770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081175 WO2016084146A1 (ja) 2014-11-26 2014-11-26 原子炉燃料棒およびそれを束ねた燃料集合体

Country Status (4)

Country Link
US (1) US10796807B2 (ja)
EP (1) EP3226247B1 (ja)
JP (1) JP6300953B2 (ja)
WO (1) WO2016084146A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107967949A (zh) * 2016-10-20 2018-04-27 华北电力大学 铅基快堆四边形燃料组件及其用于的快中子反应堆
CN108080806A (zh) * 2016-11-21 2018-05-29 浙江三花智能控制股份有限公司 管件与连接部件的连接结构及气液分离器
WO2018071066A3 (en) * 2016-06-22 2018-06-07 Westinghouse Electric Company Llc Nuclear fuel rod
JP2019006627A (ja) * 2017-06-23 2019-01-17 日立Geニュークリア・エナジー株式会社 接合部材、それを用いた接合構造体及び接合部材の製造方法
FR3071655A1 (fr) 2017-09-25 2019-03-29 Kabushiki Kaisha Toshiba Conteneur et procede d’obturation d’une ouverture de conteneur
JP2019052075A (ja) * 2017-09-19 2019-04-04 三菱重工業株式会社 耐せん断高耐熱性無機繊維結合型セラミックス製のロッド形状部品及びその製造方法
JP2021503427A (ja) * 2017-10-19 2021-02-12 ゼネラル・アトミックスGeneral Atomics 加圧されたセラミック構成体の接合および封止
JP7453941B2 (ja) 2021-07-02 2024-03-21 日立Geニュークリア・エナジー株式会社 原子炉燃料棒、該燃料棒の製造方法および該燃料棒を束ねた燃料集合体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049622B2 (en) * 2018-02-13 2021-06-29 Westinghouse Electric Company Llc Method to pressurize sic fuel cladding tube before end plug sealing by pressurization pushing spring loaded end plug
FR3115154B1 (fr) * 2020-10-13 2023-05-12 Framatome Sa Crayon de combustible nucléaire et procédé de fabrication
RU2762100C1 (ru) * 2020-11-10 2021-12-15 Акционерное общество "Высокотехнологический научно-исследовательский институт неорганических материалов имени академика А.А. Бочвара" (АО "ВНИИНМ") Торцевая заглушка для герметизации композиционной трубчатой керамической оболочки тепловыделяющего элемента ядерного реактора (варианты) и способ ее изготовления (варианты)
CN112786224A (zh) * 2020-12-31 2021-05-11 中核北方核燃料元件有限公司 一种碳化硅复合材料燃料包壳与端塞的连接方法
CN113185315B (zh) * 2021-03-29 2022-07-29 岭东核电有限公司 核用碳化硅包壳快速连接方法、SiC包壳及其应用
CN113402289A (zh) * 2021-05-08 2021-09-17 中广核研究院有限公司 碳化硅包壳感应加热连接方法及碳化硅包壳

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239787A (ja) * 1985-08-15 1987-02-20 ウエスチングハウス エレクトリック コ−ポレ−ション 複合核燃料被覆管
JPH05180986A (ja) * 1991-12-18 1993-07-23 Mitsubishi Nuclear Fuel Co Ltd 燃料棒の製造方法及びそれに用いる端栓
JPH06174873A (ja) * 1992-12-03 1994-06-24 Toshiba Corp 原子燃料被覆管および原子炉構成材料
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP2012233734A (ja) * 2011-04-28 2012-11-29 Toshiba Corp 燃料被覆管接合体およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003298763A1 (en) * 2003-01-24 2004-08-23 Westinghouse Electric Company Llc Flat weld end plug
FR2978697B1 (fr) * 2011-08-01 2014-05-16 Commissariat Energie Atomique Tube multicouche ameliore en materiau composite a matrice ceramique, gaine de combustible nucleaire en resultant et procedes de fabrication associes
WO2013089869A2 (en) 2011-09-23 2013-06-20 Edison Welding Institute, Inc. System for fabricating silicon carbide assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239787A (ja) * 1985-08-15 1987-02-20 ウエスチングハウス エレクトリック コ−ポレ−ション 複合核燃料被覆管
JPH05180986A (ja) * 1991-12-18 1993-07-23 Mitsubishi Nuclear Fuel Co Ltd 燃料棒の製造方法及びそれに用いる端栓
JPH06174873A (ja) * 1992-12-03 1994-06-24 Toshiba Corp 原子燃料被覆管および原子炉構成材料
JP2008501977A (ja) * 2004-06-07 2008-01-24 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子力発電所における燃料格納容器障壁等に使用される多層セラミックチューブ
JP2012233734A (ja) * 2011-04-28 2012-11-29 Toshiba Corp 燃料被覆管接合体およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522783A (ja) * 2016-06-22 2019-08-15 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー 原子燃料棒
WO2018071066A3 (en) * 2016-06-22 2018-06-07 Westinghouse Electric Company Llc Nuclear fuel rod
EP3475951A4 (en) * 2016-06-22 2020-01-22 Westinghouse Electric Company Llc NUCLEAR FUEL ROD
US10475542B2 (en) 2016-06-22 2019-11-12 Westinghouse Electric Company Llc Nuclear fuel rod
CN107967949A (zh) * 2016-10-20 2018-04-27 华北电力大学 铅基快堆四边形燃料组件及其用于的快中子反应堆
CN108080806A (zh) * 2016-11-21 2018-05-29 浙江三花智能控制股份有限公司 管件与连接部件的连接结构及气液分离器
JP2019006627A (ja) * 2017-06-23 2019-01-17 日立Geニュークリア・エナジー株式会社 接合部材、それを用いた接合構造体及び接合部材の製造方法
JP2019052075A (ja) * 2017-09-19 2019-04-04 三菱重工業株式会社 耐せん断高耐熱性無機繊維結合型セラミックス製のロッド形状部品及びその製造方法
RU2692840C1 (ru) * 2017-09-25 2019-06-28 Кабусики Кайся Тосиба Контейнер и способ закрывания отверстия контейнера
FR3071655A1 (fr) 2017-09-25 2019-03-29 Kabushiki Kaisha Toshiba Conteneur et procede d’obturation d’une ouverture de conteneur
SE543890C2 (en) * 2017-09-25 2021-09-14 Toshiba Kk Nuclear fuel cladding tube and method for closing an opening of the tube
JP2021503427A (ja) * 2017-10-19 2021-02-12 ゼネラル・アトミックスGeneral Atomics 加圧されたセラミック構成体の接合および封止
JP7353277B2 (ja) 2017-10-19 2023-09-29 ゼネラル・アトミックス 加圧されたセラミック構成体の接合および封止
US11881322B2 (en) 2017-10-19 2024-01-23 General Atomics Joining and sealing pressurized ceramic structures
JP7453941B2 (ja) 2021-07-02 2024-03-21 日立Geニュークリア・エナジー株式会社 原子炉燃料棒、該燃料棒の製造方法および該燃料棒を束ねた燃料集合体

Also Published As

Publication number Publication date
US10796807B2 (en) 2020-10-06
EP3226247A1 (en) 2017-10-04
EP3226247A4 (en) 2018-06-20
EP3226247B1 (en) 2019-05-29
JP6300953B2 (ja) 2018-03-28
US20170330638A1 (en) 2017-11-16
JPWO2016084146A1 (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6300953B2 (ja) 原子炉燃料棒およびそれを束ねた燃料集合体
JP6314254B2 (ja) 軽水炉用燃料棒及び燃料集合体
JP6082810B2 (ja) 管状体および管状体の製造方法
KR102312043B1 (ko) 세라믹-함유 피복관을 위한 이중-밀봉된 연료봉 단부 플러그
EP3117439B1 (en) Ceramic reinforced zirconium alloy nuclear fuel cladding with intermediate oxidation resistant layer
CN105706176A (zh) 一种具有火花等离子体烧结的端塞的SiC基体燃料包壳管
JP6165751B2 (ja) 軽水炉用の原子炉用制御棒および軽水炉用の原子炉用制御棒の製造方法
KR20210137088A (ko) 자가 치유 액체 펠릿-클래딩 간극 열 전달 필러
JP2019006627A (ja) 接合部材、それを用いた接合構造体及び接合部材の製造方法
JP6632931B2 (ja) 構造部材およびその製造方法、燃料棒、燃料チャンネルボックス、ウォーターロッド、燃料集合体
JP7350254B2 (ja) 端栓が接合された燃料棒
JP7453941B2 (ja) 原子炉燃料棒、該燃料棒の製造方法および該燃料棒を束ねた燃料集合体
JP7397739B2 (ja) 接合材料、接合部の製造方法、及び接合構造体
JP2023007566A (ja) 原子炉燃料棒および該燃料棒を束ねた燃料集合体
JPH07333390A (ja) 燃料集合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15529663

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906870

Country of ref document: EP