WO2016082219A1 - 无人机及其水样检测方法 - Google Patents

无人机及其水样检测方法 Download PDF

Info

Publication number
WO2016082219A1
WO2016082219A1 PCT/CN2014/092576 CN2014092576W WO2016082219A1 WO 2016082219 A1 WO2016082219 A1 WO 2016082219A1 CN 2014092576 W CN2014092576 W CN 2014092576W WO 2016082219 A1 WO2016082219 A1 WO 2016082219A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
water sample
water
detected
portable electronic
Prior art date
Application number
PCT/CN2014/092576
Other languages
English (en)
French (fr)
Inventor
王铭钰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2014/092576 priority Critical patent/WO2016082219A1/zh
Priority to JP2016559575A priority patent/JP6340433B2/ja
Priority to CN201480065073.7A priority patent/CN105874397A/zh
Publication of WO2016082219A1 publication Critical patent/WO2016082219A1/zh
Priority to US15/604,894 priority patent/US10338608B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/54Floats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/042Control of altitude or depth specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/35UAVs specially adapted for particular uses or applications for science, e.g. meteorology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N2001/021Correlating sampling sites with geographical information, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0016Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the operator's input device

Definitions

  • the invention relates to a water sample detecting system for detecting a water sample and a water sample detecting method thereof.
  • the object of the present invention is to provide a drone for detecting a water sample and a water sample detecting method thereof which are low in cost, time-saving and labor-saving, and can ensure that the water quality of the detecting place is not damaged.
  • a water sample detecting method based on a drone wherein the drone is provided with a water sample detector, which comprises the following steps:
  • the depth of the water sample to be detected is sent to a portable electronic device, or is a preset default value;
  • the water sample detector is controlled to fall to a predetermined depth, the water sample detector detects the water sample and transmits the detection result to a ground station or the portable electronic device.
  • the method further comprises a step of: the drone receives the location information of the location to be detected, and the drone autonomously flies to the location to be sampled according to the location information of the location to be detected.
  • the address information of the location to be sampled is sent to the portable electronic device, and the portable electronic device displays a satellite map, and the location to be sampled or the location to be sampled can be selected on the satellite map, and the portable electronic device
  • the location information of the place to be sampled is selected and sent to the drone.
  • the drone is controlled to fly to a place to be sampled by a remote controller.
  • the portable electronic device After inputting a depth value of the water sample to be detected in the portable electronic device, the portable electronic device outputs the depth value of the water sample to be detected, and sends the depth value to the drone.
  • the drone is provided with a floating plate, and after the drone flies to the location to be detected, the drone floats on the water surface through the floating plate, and the distance of the drone from the horizontal plane is zero.
  • the default value of the preset is 0.4 meters to 1 meter underwater.
  • the distance of the drone from the horizontal plane is measured by a distance sensor on the drone.
  • the distance sensor is an ultrasonic sensor or a barometer.
  • the drone is provided with a lifting device for lifting the water sample detector relative to the drone, and the drone controls the lifting device to drive the water sample detector to drop to a predetermined depth.
  • the method further comprises the step of: the drone flying to a returning point or flying to the next location to be detected.
  • the method further includes a step of: calculating the remaining power of the drone before the take-off, and prohibiting the take-off when the remaining power cannot make the drone detect the water sample and then fly to the return point.
  • the method further includes the step of: calculating the remaining power of the drone before taking off, and prohibiting the takeoff when the remaining power cannot make the drone fly to the point to be detected.
  • the UAV communicates with the ground station or the portable electronic device through a 3G network, a 4G network, a 5G network, a WI-FI, or an NFC.
  • the water sample detector when the depth of the water sample to be detected is a preset default value, after the drone falls or rises to a position where the distance from the water surface is a preset first height, the water sample detector is controlled to fall. And setting a first drop value to cause the water sample detector to reach a depth of the water sample to be detected, the first drop height value being equal to a sum of the first height and a depth of the water sample to be detected.
  • the embodiment of the present invention is implemented as follows: a drone for detecting a water sample, wherein the drone is provided with a water sample detector that can be raised and lowered relative to the drone and used for detecting a water sample, the The human machine is configured to carry the water sample detector to the spot to be sampled, obtain the depth of the water sample to be detected, and calculate the water sample detector based on the distance of the drone from the water level and the depth of the water sample to be detected. The distance to be dropped, and controlling the water sample detector to fall to a predetermined depth, wherein the depth of the water sample to be collected is sent to a portable electronic device, or is a preset default value.
  • the drone includes a signal receiving/transmitting device for receiving position information of a place to be detected, and the drone autonomously flies to a place to be sampled according to position information of a place to be detected, the signal receiving/ The transmitter is also operative to transmit the test results to the portable electronic device or a ground station.
  • the address information of the location to be detected is sent to the portable electronic device, and the portable electronic device displays a satellite map, and the location to be detected is selected on the satellite map or the location to be detected is input in the portable electronic device.
  • the portable electronic device transmits the selected location information of the location to be detected to the signal receiving/transmitting device.
  • the signal receiving/transmitting device is further configured to receive a control signal of the remote controller, and the drone is controlled to fly to the location to be detected by the remote controller.
  • the portable electronic device when the depth of the water sample to be detected is input to the portable electronic device, the portable electronic device outputs a depth value of the water sample to be detected, and sends the depth value to the signal receiving/transmitting device.
  • the drone is provided with a floating plate, and after the drone flies to the location to be detected, the drone floats on the water surface through the floating plate, and the distance of the drone from the horizontal plane is zero.
  • the default value is 0.4 meters to 1 meter underwater.
  • the distance sensor is mounted on the drone, and the distance from the horizontal plane is measured by the distance sensor.
  • the distance sensor is an ultrasonic sensor or a barometer.
  • the drone is provided with a lifting device for lifting the water sample detector relative to the drone, and the drone controls the lifting device to drive the water sample detector to drop to a predetermined depth.
  • the lifting device comprises a rotating rolling member and a connecting rope
  • the drone controls the rotation of the rotating rolling member to cause the connecting rope to drive the water sample detector to move up and down relative to the drone.
  • the connecting rope is made of a hard rubber material.
  • the drone further includes a memory, and the result of the water sample detector detection is stored in the memory.
  • the UAV is further configured to transmit the detection result stored in the memory to the ground station or the portable electronic device through a 3G network, a 4G network, a 5G network, a WI-FI, or an NFC.
  • the drone transmits the result of the water sample detector detection to the portable electronic device or a ground station in real time; or the water sample detector transmits the detected result to the portable electronic device in real time.
  • the device or the ground station transmits the result of the water sample detector detection to the portable electronic device or a ground station in real time; or the water sample detector transmits the detected result to the portable electronic device in real time.
  • the drone is further configured to calculate the remaining power of the drone before take-off, and when the remaining power cannot make the drone detect the water sample and fly to the return point, the take-off is prohibited.
  • the drone is further configured to calculate the remaining power of the drone before take-off, and when the remaining power cannot make the drone fly to the point to be detected, the take-off is prohibited.
  • a water sample detecting method based on a drone wherein the drone is provided with a water sample collector and a water sample detector, which comprise the following steps:
  • the water sample collector extracts a water sample
  • the water sample detector detects the water sample taken by the water sample collector
  • the water sample collector comprises a floating plate, a water pump, a water reservoir, a first connecting pipe and a second connecting pipe, wherein the water pump and the water reservoir are disposed on the floating plate
  • the water sample detector is disposed in the water reservoir, and the pump is connected to the water reservoir through a first connecting pipe, and one end of the second connecting pipe is connected to the water pump.
  • the floating plate is connected to the drone, and the water sample collector extracts the water sample by the following steps:
  • the drone Based on the distance of the drone from the horizontal plane, the drone falls to float the floating plate on the water surface;
  • the pump draws a water sample to the reservoir.
  • the water sample detector detects the water sample taken by the water sample collector by the following steps:
  • the water sample detector detects a water sample in the reservoir.
  • sending the detection result to a ground station or a portable electronic device is accomplished by the following steps:
  • the water sample detector sends the detection result to the drone, and the drone transmits the detection result to the ground station or the portable electronic device; or the water sample detector directly directly detects the detection result Sended to the ground station or the portable electronic device.
  • the water sample collector comprises a floating plate, a water pump, a water reservoir, a first connecting pipe and a second connecting pipe, wherein the water pump and the water reservoir are disposed on the floating plate
  • the water sample detector is disposed in the water reservoir, and the pump is connected to the water reservoir through a first connecting pipe, and one end of the second connecting pipe is connected to the water pump.
  • the floating plate is connected to the drone through a lifting device, and the water sample collector extracts the water sample by the following steps:
  • the lifting device Based on the distance of the drone from the horizontal plane, the lifting device lowers the floating plate to float the floating plate on the water surface;
  • the pump draws a water sample to the reservoir.
  • the method further comprises the step of: the drone flying to a returning point or flying to the next location to be detected.
  • the method further includes a step of: calculating the remaining power of the drone before the take-off, and prohibiting the take-off when the remaining power cannot make the drone detect the water sample and then fly to the return point.
  • the method further includes the step of: calculating the remaining power of the drone before taking off, and prohibiting the takeoff when the remaining power cannot make the drone fly to the point to be detected.
  • the method further comprises a step of: the drone receiving the location information of the location to be sampled, and the drone autonomously flying to the location to be sampled according to the location information of the location to be sampled.
  • the address information of the location to be detected is sent to the portable electronic device, and the portable electronic device displays a satellite map, and the location to be detected is selected on the satellite map or the location to be detected is input on the portable electronic device.
  • the portable electronic device transmits the selected location information of the location to be detected to the drone.
  • the drone is controlled to fly to a place to be sampled by a remote controller.
  • the distance of the drone from the horizontal plane is measured by a distance sensor on the drone.
  • the distance sensor is an ultrasonic sensor or a barometer.
  • the embodiment of the present invention is implemented as follows, a drone for detecting a water sample, wherein the drone is provided with a water sample collector and a water sample detector, wherein the drone is used to carry the water sample
  • the water sample collector and the water sample detector are used to detect a water sample
  • the water sample detector is configured to detect a water sample taken by the water sample collector,
  • the drone or the water sample detector transmits the test result to a ground station or a portable electronic device.
  • the water sample collector comprises a floating plate, a water pump, a water reservoir, a first connecting pipe and a second connecting pipe, wherein the water pump and the water reservoir are disposed on the floating plate
  • the water sample detector is disposed in the water reservoir, and the pump is connected to the water reservoir through a first connecting pipe, and one end of the second connecting pipe is connected to the water pump.
  • the floating plate is connected to the drone, the floating plate is used to float the water sample collector on the water surface, and the water pump is used for pumping a water sample to the water reservoir, the water sample detection The device detects the water sample in the reservoir.
  • the pump is a peristaltic pump.
  • the reservoir is provided with a water outlet.
  • first connecting tube and the second connecting tube are both silicone tubes.
  • the other end of the second connecting pipe is provided with a filter.
  • the drone is further configured to calculate the remaining power of the drone before take-off, and when the remaining power cannot make the drone fly to the point to be detected, the take-off is prohibited.
  • the drone includes a signal receiving/transmitting device for receiving location information of a location to be detected, and the drone automatically flies to the location to be sampled according to the location information of the location to be detected.
  • the address information of the location to be detected is sent to the portable electronic device, and the portable electronic device displays a satellite map, and the location to be detected is selected on the satellite map or the location to be detected is input in the portable electronic device.
  • the portable electronic device transmits the selected location information of the location to be detected to the signal receiving/transmitting device.
  • the signal receiving/transmitting device is further configured to receive a control signal of the remote controller, and the drone is controlled to fly to the location to be detected by the remote controller.
  • a distance sensor is installed on the drone.
  • the distance sensor is an ultrasonic sensor or a barometer.
  • the water sample collector is connected to the drone by a lifting device, the lifting device comprises at least one rotating rolling member, and at least one connecting rope, and the drone controls the rotating rolling member to rotate, so that The connecting rope drives the water sample detector to move up and down with respect to the drone to float the floating plate at the horizontal plane.
  • the water sample collector is fixedly connected to a tripod of the drone.
  • the drone further includes a memory, and the result of the water sample detector detection is stored in the memory.
  • the UAV is further configured to transmit the detection result stored in the memory to the ground station or the portable electronic device through a 3G network, a 4G network, a 5G network, a WI-FI, or an NFC.
  • the drone is further configured to calculate the remaining power of the drone before take-off, and when the remaining power cannot make the drone detect the water sample and fly to the return point, the take-off is prohibited.
  • the drone is further configured to calculate the remaining power of the drone before take-off, and when the remaining power cannot make the drone fly to the point to be detected, the take-off is prohibited.
  • the UAV of the present invention is used for detecting water samples, which can reduce the cost of the sampling personnel by boat or motorboat, and can prevent the ship or the motorboat from destroying the water quality of the sampling site, and ensure that the water quality of the sampling site is not destroyed.
  • the drone of the present invention can accurately drop the water sample detector to a predetermined depth.
  • Fig. 1 is a view showing a state of use of a water sample detecting system according to a first embodiment of the present invention.
  • Figure 2 is a schematic view of the frame of the drone of Figure 1.
  • FIG. 3 is a flow chart of a water sample detecting method according to a first embodiment of the present invention.
  • FIG. 4 is a flow chart of a water sample detecting method according to a second embodiment of the present invention.
  • Fig. 5 is a view showing a state of use of the water sample detecting system according to the second embodiment of the present invention.
  • Fig. 6 is a flow chart showing a water sample detecting method according to a third embodiment of the present invention.
  • Fig. 7 is a view showing a state of use of the water sample detecting system according to the third embodiment of the present invention.
  • Fig. 8 is a flow chart showing a water sample detecting method according to a fourth embodiment of the present invention.
  • the present invention provides a water sample detecting system 100, which includes a drone 10, a water sample detector 20 disposed on the drone 10, and a The unmanned aerial vehicle 10 is provided with a lifting device 30 for lifting the water sample detector 20 relative to the drone 10 .
  • the UAV 10 is an unmanned aerial vehicle comprising a fuselage, an International Medical University (IMU) 12, a positioning component 13, a memory 14, and a signal receiving/transmitting The controller 15, a main controller 16, and a power assembly 17.
  • the inertial measurement unit 12, the positioning assembly 13, the memory 14, the signal receiving/transmitting device 15, the main controller 16, and the power assembly 17 are all mounted to the body.
  • the body includes a main body portion 111 and two legs 112 for supporting the main body portion 111 and movable up and down relative to the main body portion 111.
  • the inertial measurement unit 12 is mounted in the main body portion 111, and the inertia measurement unit 12 is configured to measure posture information of the drone 10.
  • the inertial measurement unit 12 includes a gyroscope 121 and an angular velocity meter 122.
  • the main controller 16 is electrically connected to the inertial measurement unit 12 for detecting working data of the gyroscope 121 and the angular velocity meter 122.
  • the positioning component 13 includes a magnetic field sensor 131, a GPS positioning unit 132, and a distance sensor 133.
  • the magnetic field sensor 131 is a compass
  • the distance sensor 133 is a barometer.
  • the positioning component 13 is electrically connected to the main controller 16 .
  • the main controller 16 is further configured to detect operational data of the magnetic field sensor 131 and the GPS positioning unit 132.
  • the distance sensor 133 may be an ultrasonic sensor or the like, and is not limited to the embodiment.
  • the type of the memory 14 is an SD card, an MMC card, or a FLASH memory.
  • the memory 14 in this embodiment uses a 4G SD card, which can reduce the cost of the product.
  • the signal receiving/transmitting device 15 is configured to receive a remote control signal and a GPS positioning signal that the drone wants to fly, and send the received remote control signal and the GPS positioning signal of the drone to fly To the main controller 16.
  • the GPS positioning signal that the UAV wants to fly can be sent to a portable electronic device 200.
  • the portable electronic device 200 is an iPad or an iPhone. In other embodiments, the portable electronic device 200 can also be a ground station.
  • the signal receiving/transmitting device 15 is also used to transmit the detection result of the water sample detector 20 to the portable electronic device 200.
  • the main controller 16 can be implemented with an 8-bit or 32-bit MCU, and can have an SPI interface and/or an SDIO interface, as well as a PWM output and/or a DAC output capability. Since the cost of the 8-bit or 32-bit MCU is also low, when the controller 16 in this embodiment is implemented by an 8-bit or 32-bit MCU, the cost of the product can be further reduced.
  • the main controller 16 includes a first signal input interface 151, a second signal input interface 152, a third signal input interface 153, and a signal output interface 154.
  • the first signal input interface 151 is further electrically connected to the signal receiving/transmitting device 15 through an SPI protocol or an SDIO protocol.
  • the communication mode used between the main controller 16 and the signal receiver 15 is electrically connected by a 4-wire SPI, a 6-line SIDO-4bit or a 4-wire SIDO-4bit.
  • the second signal input interface 152 is electrically connected to the positioning component 13 .
  • the third signal input interface 153 is electrically connected to the signal receiver 15 .
  • the signal output interface 154 is electrically connected to the power component 17 .
  • the main controller 16 is configured to extract various working data of the gyroscope 121, the angular velocity meter 122, the magnetic field sensor 131, and the GPS positioning unit 132. The main controller 16 is also used to control the power assembly 17.
  • main controller 16 can also be set according to actual needs, and is not limited to the embodiment.
  • the power assembly 17 includes a plurality of drive motors 171.
  • each of the driving motors 171 is electrically connected to an electronic governor (electrical adjustment).
  • Each electronic governor is electrically connected to the main controller 16.
  • the ESC is used to receive a control signal from the main controller 16 and control the rotational speed of the drive motor 171.
  • the water sample detector 20 is a portable multi-parameter water quality detector, and the parameters for detecting water quality include: dissolved oxygen, chloride ion, pH, ORP, TDS, conductivity, dissolved oxygen, turbidity, COD, TOC, residual chlorine, chlorine dioxide, hardness, volatile phenol, ammonia nitrogen, total phosphorus, total nitrogen, fluoride, cyanide, chromium manganese and other metal ions, phosphate, sulfate, nitrate, surfactant, color Degree, absorbance, etc.
  • the parameters for detecting water quality include: dissolved oxygen, chloride ion, pH, ORP, TDS, conductivity, dissolved oxygen, turbidity, COD, TOC, residual chlorine, chlorine dioxide, hardness, volatile phenol, ammonia nitrogen, total phosphorus, total nitrogen, fluoride, cyanide, chromium manganese and other metal ions, phosphate, sulfate, nitrate, surfactant, color Degree, absorb
  • the lifting device 30 includes a rotating rolling member 31 and a connecting cord 32.
  • the rotary rolling member 31 is a drive wheel.
  • the connecting cord 32 is made of a rigid hose. The connecting cord 32 is disposed between the rotating rolling member 31 and the water sample detector 20.
  • the lifting device 30 can also be designed in other configurations, as long as the water sample detector 20 can be lifted and lowered relative to the drone 10, and is not limited to the embodiment. .
  • a water sample detecting method includes the following steps:
  • S101 The drone 100 flies to the location to be detected
  • the signal receiving/transmitting device 15 on the drone 100 receives the location information of the location to be sampled sent by the portable electronic device 200.
  • the portable electronic device 200 is wirelessly connected to the signal receiving/transmitting device 15 of the drone 100 via a wi-fi technology, an NFC technology, or a wireless communication network (3G, 4G, 5G network) or the like.
  • the portable electronic device 200 displays a satellite map, and the operator can select a location to be sampled or input a location to be sampled on the satellite map, and the portable electronic device 200 sends the location information of the selected sampling location to the drone.
  • Signal receiver/transmitter 15 of 100 is a wireless communication network.
  • the signal receiving/transmitting device 15 receives the location information of the location to be sampled and sends it to the main controller 16.
  • the main controller 16 controls the location based on the current location of the drone 100 positioned by the GPS positioning unit 132 of the positioning component 13 and the position information of the signal receiver 15 received by the signal receiver 15
  • the drone 100 autonomously flies to the location to be sampled.
  • the manner in which the drone 100 is flying to the location to be sampled is not limited to the embodiment.
  • the drone 100 can also be controlled to fly to the location to be sampled by a remote controller.
  • the remote controller is wirelessly connected to the signal receiving/transmitting device 15, and the signal receiver 15 receives a remote control signal of the remote controller.
  • the drone 100 includes a battery (not shown) for supplying power to the power component 17 of the drone 100, and the drone 100 can hang different types of water.
  • Sample detector 20 Before taking off, an operator may input the model of the water sample detector 20 on the portable electronic device 200, and the drone 100 may calculate the power of the battery carried by itself, the weight of the water sample detector 20.
  • the drone 100 can take off, otherwise it is forbidden to take off.
  • the drone 10 will send this information to the portable electronic device 200 and prompt the operator through the portable electronic device 200.
  • the remaining power of the drone 10 may be calculated before the take-off, and when the remaining power cannot make the drone 10 fly to the point to be detected, the take-off is prohibited.
  • S102 Obtain a depth of the water sample to be detected, where the depth of the water sample to be detected is sent to a portable electronic device, or is a preset default value;
  • the portable electronic device 200 is wirelessly connected with the signal receiving/transmitting device 15 of the drone 100, and an operator can input a depth value of the water sample to be detected on the portable electronic device 200, and The output is sent to the signal receiver/transmitter 15.
  • the depth of the water sample to be detected may also be a preset default value (eg, 0.4 meters to 1 meter underwater, preferably 0.5 meters), which is stored in the memory 14 . in.
  • S103 Calculate a distance that the water sample detector wants to land based on a distance of the drone from a horizontal plane and a depth of the water sample to be detected;
  • the distance sensor 133 measures the distance of the drone 100 from the horizontal plane, and the main controller 16 calculates the water sample detector 20 to land based on the distance of the drone 100 from the horizontal plane and the water sample to be detected. the distance.
  • S104 controlling the water sample detector to fall to a predetermined depth, the water sample detector detecting the water sample, and transmitting the detection result to a ground station or the portable electronic device;
  • the main controller 16 controls the lifting device 30 to bring the water sample detector 20 to a predetermined depth according to the distance that the water sample detector 20 is intended to land. Specifically, the main controller 16 controls the rotation of the rotary rolling member 31 to cause the connecting rope 32 to bring the water sample detector 20 down to a predetermined depth underwater.
  • the water sample detector 20 detects the process of the water sample, the drone 100 hover, and the main controller 16 reads the distance sensor 133 to measure the drone 100's arrival desire. The distance from the horizontal plane when the hovering point is detected after the location is detected. In other embodiments, the process of extracting the water sample by the water sample acquirer 20 may also be performed without the drone 100 being hovered, and the main controller 16 reads the distance sensor 133 in real time.
  • the distance of the drone 100 from the horizontal plane is measured, and the rotation of the rotary rolling member 31 is controlled in real time, so that the connecting rope 32 is adjusted in real time to bring the water sample detector 20 down to a predetermined depth underwater.
  • the detection result may be stored to the memory 14, and the signal receiving/transmitting unit 15 is further configured to transmit the detection result to the portable electronic device 200 or a ground station.
  • a wireless transmitting device can be directly disposed on the water sample detector 20, and the detection result can also be sent to the portable electronic device 200 or the ground station through the wireless transmitting device.
  • the rotation of the rotary rolling member 31 can also be controlled by other devices disposed on the drone, and is not limited to the embodiment.
  • S105 The drone flies to a returning point or flies to the next location to be tested.
  • the drone 10 flies to the return point, which may be the return point of the map displayed on the takeoff point of the drone 100 or on the portable electronic device 200.
  • a water sample detecting method includes the following steps:
  • S201 The drone 100a flies to a place to be sampled
  • the signal receiving/transmitting device 15 on the drone 100 receives the location information of the location to be sampled sent by the portable electronic device 200.
  • the portable electronic device 200 is wirelessly connected to the signal receiving/transmitting device 15 of the drone 100 via a wi-fi technology, an NFC technology, or a wireless communication network or the like.
  • the portable electronic device 200 displays a satellite map, and the operator can select a location to be sampled or input a location to be sampled on the satellite map, and the portable electronic device 200 sends the location information of the selected sampling location to the drone.
  • Signal receiver/transmitter 15 of 100 The signal receiving/transmitting device 15 receives the location information of the location to be sampled and sends it to the main controller 16.
  • the main controller 16 is based on the current position of the drone 100 positioned by the GPS positioning unit 132 of the positioning component 13 and the signal receiving/transmitting device 15 receives the location information of the location to be sampled.
  • the drone 100 is controlled to fly autonomously to the location to be sampled.
  • the manner in which the drone 100 is flying to the location to be sampled is not limited to the embodiment.
  • the drone 100 can also be controlled to fly to the location to be sampled by a remote controller.
  • the remote controller is wirelessly connected to the signal receiving/transmitting device 15, and the signal receiver 15 receives a remote control signal of the remote controller.
  • the drone 100 includes a battery (not shown) for supplying power to the power component 17 of the drone 100, and the drone 100 can hang different types of water.
  • Sample detector 20 Before taking off, an operator may input the model of the water sample detector 20 on the portable electronic device 200, and the drone 100 may calculate the power of the battery carried by itself, the weight of the water sample detector 20.
  • the drone 100 can take off, otherwise it is forbidden to take off.
  • the drone 10 will send this information to the portable electronic device 200 and prompt the operator through the portable electronic device 200.
  • the remaining power of the drone 10 may be calculated before the take-off, and when the remaining power cannot make the drone 10 fly to the point to be detected, the take-off is prohibited.
  • the water sample detector 20 is controlled to drop a preset first drop value, so that the water sample detector Reaching the depth of the water sample to be detected, the depth of the water sample to be detected is a preset value, and the first drop height value is equal to a sum of the first height and the depth of the water sample to be detected;
  • the drone 100 hovering at a first height from the water surface, specifically, when the drone 100 flies to the location to be detected, the height is higher than The first height then falls to the first height, and vice versa, to the first height, and then the main controller 16 controls the rotating rolling member 31 to rotate, so that the connecting rope 32 drives the water.
  • the sample detector 20 drops a predetermined first drop value, so that the water sample detector 20 reaches the depth of the water sample to be detected, the depth of the water sample to be detected is a preset value, and the first drop The high value is equal to the sum of the first height and the depth of the water sample to be tested, so that the water sample detector 20 can accurately fall to the depth of the water sample to be detected.
  • the first height value, the preset value to be detected, and the first drop value are all stored in the memory 14.
  • the water sample detector 20 detects a water sample, and sends the detection result to a ground station or the portable electronic device;
  • the detection result may be stored in the memory 14, and the signal receiving/transmitting device 15 is further configured to send the detection result to the portable electronic device 200. Or ground station. It can be understood that a wireless transmitting device can be directly disposed on the water sample detector 20, and the detection result can also be sent to the portable electronic device 200 or the ground station through the wireless transmitting device.
  • S204 The drone 10a flies to a returning point or flies to the next location to be detected.
  • the drone 10 flies to the return point, which may be the return point of the map displayed on the takeoff point of the drone 100 or on the portable electronic device 200.
  • a water sample detecting system 100a is similar in structure to the water sample detecting system 100 of the first embodiment, which is different from It is to be noted that a floating plate 40 is disposed on the drone 10a.
  • the floating plate 40 is fixed on the stand 112, and the floating plate 40 defines a through opening for passing the water sample detector 20a.
  • the floating plate 40 is disposed. After the drone 10a reaches the location to be detected, the drone 10a can float on the water surface through the floating plate 40.
  • the unmanned aerial vehicle 10a floats on the water surface, it is possible to prevent the water sample detector 20a from shaking due to the influence of wind when landing in the air, and the water sample detector 20a is damaged due to shaking. risks of.
  • the floating plate 40 can also be connected to the drone 10a through a connecting member such as a support frame, and is not limited to the embodiment.
  • a water sample detecting method includes the following steps:
  • S301 The drone 10a flies to a place to be sampled
  • the distance of the drone 10a from the horizontal plane is zero.
  • S303 Acquire a depth of the water sample to be detected, where the depth of the water sample to be detected is sent to a portable electronic device, or is a preset default value;
  • S304 Calculate a distance that the water sample detector wants to land based on a distance of the drone from a horizontal plane and a depth of the water sample to be detected;
  • S305 controlling the water sample detector to fall to a predetermined depth, the water sample detector detecting the water sample, and transmitting the detection result to a ground station or the portable electronic device;
  • S306 The drone 10a flies to a returning point or flies to the next location to be detected.
  • a water sample detecting system 100b is similar in structure to the water sample detecting system 100b of the second embodiment, which is different from
  • the floating plate 40b of the drone 10b is provided with a water pump 50, a water reservoir 60, a first connecting pipe 70, a second connecting pipe 80, and a filter 90.
  • the water sample detector 20b is disposed in the reservoir 60 and electrically connected to the main controller.
  • the pump 50 and the reservoir 60 are connected by the first connecting pipe 70.
  • One end of the second connecting pipe 80 is connected to the pump 50, and the other end is connected to the filter 90.
  • the pump 50 is a peristaltic pump.
  • the first connecting tube 70 and the second connecting tube 80 are both silicone tubes.
  • the length of the second connecting tube 80 is equal to the depth of the water sample to be detected.
  • the filter 90 is used to filter impurities.
  • the water reservoir 60 defines a water outlet 601 for overflowing water to ensure fresh water.
  • the water sample detector 20b is electrically connected to the main controller of the drone 10b.
  • the water sample detector 20b transmits the detection result to the drone 10b, and the drone 10b receives the detection result and then transmits it to the portable electronic device 200b or the ground station.
  • a wireless transmitting device can be directly disposed on the water sample detector 20b, and the detection result can also be sent to the portable electronic device 200b or the ground station through the wireless transmitting device.
  • the water pump 50 draws water into the reservoir 60, and the water sample detector 20b directly detects the water in the reservoir 60, thereby avoiding the water sample detector 20b.
  • the floating plate 40b is fixed on the stand 112b. In other embodiments, the floating plate 40b can also be connected to the drone 10b through a lifting device. The floating plate 40b is lowered to float the floating plate 40b on the water surface.
  • a water sample detecting method includes the following steps:
  • S401 The drone 10b flies to a place to be sampled
  • the water sample collector 20b extracts a water sample
  • the drone 10b When the floating plate 40b is fixed to the stand 112b, the drone 10b floats the floating plate 40b on the water surface based on the distance of the drone 10b from the horizontal plane.
  • the pump 50 draws a water sample to the reservoir 60.
  • the water sample collector extracts the water sample by the following steps:
  • the drone 10b controls the lifting device to lower the floating plate 40b to float the floating plate 40b on the water surface, and the pump 50 draws a water sample to the ground.
  • the reservoir 60 is described.
  • the water sample detector 20b detects the water sample extracted by the water sample collector
  • the water sample detector 20b detects the water quality in the reservoir 60;
  • S405 The drone 10b flies to a returning point or flies to the next location to be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Computer Networks & Wireless Communication (AREA)

Abstract

一种基于无人机的水样检测方法,无人机上设置有一水样检测器(20),其包括以下步骤:飞抵欲检测地点(S101);获取欲检测水样的深度,欲检测水样的深度发送于一便携式电子装置,或者为一预设的默认值(S102);基于无人机离水平面的距离以及欲检测水样的深度计算水样检测器欲降落的距离(S103);控制水样检测器降落至预定深度,水样检测器检测水样,并将检测结果发送至一地面站或所述便携式电子装置(S104)。检测成本低,省时省力。

Description

无人机及其水样检测方法 技术领域
本发明涉及拍一种用于检测水样的水样检测系统及其水样检测方法。
背景技术
在环境污染的监测和水体污染的调查工作中,要真实地反映水质污染状况,必须检测具有代表性的水样。目前水质监测在远离岸边人工不易进行水质采样的场合则需要采样人员乘船或汽艇至检测地点进行水质检测。但这种方法的弊端也很明显,一方面采样人员需乘船或汽艇耗时又耗力,有时还需要多人合作才能完成任务;另一方面采样人员所乘的船或汽艇驶向检测地点,很可能破坏采样地点水质,导致研究结果不准确。
发明内容
本发明的目的在于提供一种成本低、省时省力且可保证检测地点水质不被破坏的用于检测水样的无人机及其水样检测方法。
本发明实施例是这样实现的,一种基于无人机的水样检测方法,所述无人机上设置有一水样检测器,其包括以下步骤:
飞抵欲检测地点;
获取欲检测水样的深度,所述欲检测水样的深度发送于一便携式电子装置,或者为一预设的默认值;
基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离;
控制所述水样检测器降落至预定深度,所述水样检测器检测水样,并将检测结果发送至一地面站或所述便携式电子装置。
其中,所述方法进一步包括一步骤:无人机接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点。
其中,所述欲采样地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲采样地点或者输入欲采样地点,所述便携式电子装置将该选取欲采样地点的位置信息发送至所述无人机。
其中,所述无人机通过一遥控器操控飞抵欲采样地点。
其中,在所述便携式电子内输入一欲检测水样的深度值后,所述便携式电子装置输出所述欲检测水样的深度值,并发送至所述无人机。
其中,所述无人机上设置有一浮板,所述无人机飞抵所述欲检测地点后,所述无人机通过所述浮板漂浮于水面,所述无人机离水平面的距离为零。
其中,所述预设的默认值为水下0.4米至1米。
其中,所述无人机离水平面的距离通过所述无人机上的距离传感器测量。
其中,所述距离传感器为超声波传感器或气压计。
其中,所述无人机上设置有一用于使所述水样检测器相对所述无人机可升降的升降装置,所述无人机控制所述升降装置带动所述水样检测器降落至预定深度。
其中,所述方法进一步包括一步骤:所述无人机飞抵一返航点或飞抵下一个欲检测地点。
其中,进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
其中,进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
其中,所述无人机与所述地面站或所述便携式电子装置之间通过3G网络、4G网络、5G网络、WI-FI、或NFC实现通讯。
其中,当获取欲检测水样的深度为预设的默认值时,无人机降落或上升至离水面距离为一预设的第一高度的位置后,控制所述水样检测器降落一预设的第一降落值,以使所述水样检测器到达欲检测水样的深度,所述第一降落高值等于所述第一高度与所述欲检测水样的深度之和。
本发明实施例是这样实现的,一种无人机,其用于检测水样,所述无人机上设置有一可相对无人机升降且用于检测水样的水样检测器,所述无人机用于携带所述水样检测器飞抵欲采样地点,获取欲检测水样的深度,并基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离,以及控制所述水样检测器降落至预定深度,其中,所述欲采集水样的深度发送于一便携式电子装置,或者为一预设的默认值。
其中,所述无人机包括一信号接收/发射器,用于接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点,所述信号接收/发射器还用于将检测结果发送至所述便携式电子装置或一地面站。
其中,所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子内输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述信号接收/发射器。
其中,所述信号接收/发射器还用于接收遥控器的控制信号,所述无人机通过所述遥控器操控飞抵欲检测地点。
其中,当所述欲检测水样的深度输入至所述便携式电子装置后,所述便携式电子装置输出所述欲检测水样的深度值,并发送至所述信号接收/发射器。
其中,所述无人机上设置有一浮板,所述无人机飞抵所述欲检测地点后,所述无人机通过所述浮板漂浮于水面,所述无人机离水平面的距离为零。
其中,所述默认值为水下0.4米至1米。
其中,所述无人机上安装有一距离传感器,离水平面的距离通过所述距离传感器测量。
其中,所述距离传感器为超声波传感器或气压计。
其中,所述无人机上设置有一用于使所述水样检测器相对所述无人机可升降的升降装置,所述无人机控制所述升降装置带动所述水样检测器降落至预定深度。
其中,所述升降装置包括一旋转滚动件、以及一连接绳,所述无人机控制旋转滚动件转动,以使所述连接绳带动所述水样检测器相对所述无人机升降。
其中,所述连接绳为硬胶材料制成。
其中,所述无人机进一步包括一存储器,所述水样检测器检测的结果存储在所述存储器内。
其中,所述无人机还用于将存储在所述存储器内的检测结果通过3G网络、4G网络、5G网络、WI-FI、或NFC传送至所述地面站或所述便携式电子装置。
其中,所述无人机实时地将所述水样检测器检测的结果发送至所述便携式电子装置或一地面站;或者所述水样检测器实时地将检测的结果发送至所述便携式电子装置或所述地面站。
其中,所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
其中,所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
本发明实施例是这样实现的,一种基于无人机的水样检测方法,所述无人机上设置有一水样采集器和一水样检测器,其包括以下步骤:
飞抵欲采样地点;
所述水样采集器抽取水样;
所述水样检测器对所述水样采集器抽取的水样进行检测;
将检测结果发送至一地面站或一便携式电子装置。
其中,所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板连接于所述无人机,所述水样采集器抽取水样通过以下步骤完成:
基于所述无人机离水平面的距离,无人机降落使所述浮板浮在水面上;
所述抽水泵抽取水样至所述蓄水池。
其中,所述水样检测器对所述水样采集器抽取的水样进行检测通过以下步骤完成:
所述水样检测器对所述蓄水池内的水样进行检测。
其中,将检测结果发送至一地面站或一便携式电子装置通过以下步骤完成:
所述水样检测器将检测结果发送至所述无人机,所述无人机再将检测结果发送至所述地面站或所述便携式电子装置;或者所述水样检测器直接将检测结果发送至所述地面站或所述便携式电子装置。
其中,所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板通过一升降装置连接于所述无人机,所述水样采集器抽取水样通过以下步骤完成:
基于所述无人机离水平面的距离,所述升降装置降落所述浮板,以使所述浮板浮在水面上;
所述抽水泵抽取水样至所述蓄水池。
其中,所述方法进一步包括一步骤:所述无人机飞抵一返航点或飞抵下一个欲检测地点。
其中,进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
其中,进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
其中,所述方法进一步包括一步骤:无人机接收欲采样地点的位置信息,而所述无人机根据欲采样地点的位置信息自主飞抵欲采样地点。
其中,所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子装置上输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述无人机。
其中,所述无人机通过一遥控器操控飞抵欲采样地点。
其中,所述无人机离水平面的距离通过所述无人机上的距离传感器测量。
其中,所述距离传感器为超声波传感器或气压计。
本发明实施方式是这样实现的,一种无人机,其用于检测水样,所述无人机上设置有一水样采集器和一水样检测器,所述无人机用于携带所述水样采集器和所述水样检测器飞抵欲检测地点,所述水样采集器用于抽取水样,所述水样检测器用于对所述水样采集器抽取的水样进行检测,所述无人机或所述水样检测器将检测结果发送至一地面站或一便携式电子装置。
其中,所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板连接于所述无人机,所述浮板用于使所述水样采集器浮在水面上,所述抽水泵用于抽取水样至所述蓄水池,所述水样检测器对所述蓄水池内的水样进行检测。
其中,所述抽水泵为蠕动泵。
其中,所述蓄水池开设有一出水口。
其中,所述第一连接管和所述第二连接管均为硅胶管。
其中,所述第二连接管的另一端设有一滤嘴。
其中,所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
其中,所述无人机包括一信号接收/发射器,用于接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点。
其中,所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子内输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述信号接收/发射器。
其中,所述信号接收/发射器还用于接收遥控器的控制信号,所述无人机通过所述遥控器操控飞抵欲检测地点。
其中,所述无人机上安装有一距离传感器。
其中,所述距离传感器为超声波传感器或气压计。
其中,所述水样采集器通过一升降装置连接于所述无人机,所述升降装置包括至少一旋转滚动件、以及至少一连接绳,所述无人机控制旋转滚动件转动,以使所述连接绳带动所述水样检测器相对所述无人机升降,以使所述浮板漂浮于所述水平面。
其中,所述水样采集器固定连接于所述无人机的一脚架上。
其中,所述无人机进一步包括一存储器,所述水样检测器检测的结果存储在所述存储器内。
其中,所述无人机还用于将存储在所述存储器内的检测结果通过3G网络、4G网络、5G网络、WI-FI、或NFC传送至所述地面站或所述便携式电子装置。
其中,所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
其中,所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
相对于现有技术,本发明的无人机用于检测水样,可以降低采样人员乘船或汽艇的成本,同时可避免船或汽艇破坏采样地点的水质,保证了采样地点水质不被破坏。此样,本发明的无人机可以使水样检测器精确地降落至预定深度。
附图说明
图1是本发明第一实施方式提供的水样检测系统的使用状态图。
图2是图1中的无人机的框架示意图。
图3是本发明第一实施方式提供的水样检测方法的流程图。
图4是本发明第二实施方式提供的水样检测方法的流程图。
图5是本发明第二实施方式提供的水样检测系统的使用状态图。
图6是本发明第三实施方式提供的水样检测方法的流程图。
图7是本发明第三实施方式提供的水样检测系统的使用状态图。
图8是本发明第四实施方式提供的水样检测方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
以下结合具体实施方式对本发明的实现进行详细的描述。
请一并参阅图1-2,本发明提供的一种水样检测系统100,其包括一无人机10、一设置于所述无人机10上的水样检测器20、以及一设置于所述无人机10上用于使所述水样检测器20相对所述无人机10可升降的升降装置30。
本实施例中,所述无人机10为一无人飞行器,其包括一机身、一惯性测量单元(International Medical University,IMU)12、一定位组件13、一存储器14、一信号接收/发射器15、一主控制器16以及一动力组件17。所述惯性测量单元12、定位组件13、存储器14、信号接收/发射器15、主控制器16以及动力组件17均安装于所述机身。
所述机身包括一主体部111和两用于支撑所述主体部111且可相对所述主体部111升降的脚架112。
所述惯性测量单元12安装于所述主体部111内,所述惯性测量单元12用于测量所述无人机10的姿态信息。所述惯性测量单元12包括一陀螺仪121、一角速度计122。所述主控制器16与所述惯性测量单元12电性连接,其用于检测所述陀螺仪121和所述角速度计122的工作数据。
所述定位组件13包括一磁场感应器131、一GPS定位单元132、和一距离传感器133。本实施方式中,所述磁场感应器131为一指南针,而所述距离传感器133为一气压计。所述定位组件13电性连接至所述主控制器16。所述主控制器16还用于检测所述磁场感应器131和所述GPS定位单元132的工作数据。可以理解的是,在其他实施方式中,所述距离传感器133也可以为超声波传感器等,并不限于本实施方式。
所述存储器14的类型为SD卡、MMC卡或FLASH存储器。优选地,由于4G的SD卡成本较低,因此,本实施例中的所述存储器14采用4G的SD卡,这样则能够使产品的成本降低。
所述信号接收/发射器15用于接收遥控控制信号以及所述无人机欲飞行的GPS定位信号,并将所述接收到的遥控控制信号以及所述无人机欲飞行的GPS定位信号发送至所述主控制器16。本实施例中,所述无人机欲飞行的GPS定位信号可以发送于一便携式电子装置200,本实施例中,所述便携式电子装置200为ipad或iphone等。在其他实施例中,所述便携式电子装置200也可以为一地面站。
所述信号接收/发射器15还用于将所述水样检测器20的检测结果发射至所述便携式电子装置200。
本实施例中,所述主控制器16其可采用8位或32位的MCU来实现,并且可具备SPI接口和/或SDIO接口,以及PWM输出和/或DAC输出的能力。由于现今8位或32位的MCU的成本也较低,因此,当本实施例中的所述控制器16采用8位或32位的MCU来实现时,能够使产品的成本更进一步降低。所述主控制器16包括一第一信号输入接口151、一第二信号输入接口152、一第三信号输入接口153和一信号输出接口154。所述第一信号输入接口151通过SPI协议或SDIO协议进而与所述信号接收/发射器15电性连接。具体地,所述主控制器16与所述信号接收器15之间所采用的通讯方式为4线SPI、6线SIDO-4bit或4线SIDO-4bit等方式电性连接。所述第二信号输入接口152与所述定位组件13电性连接。所述第三信号输入接口153与所述信号接收器15电性连接。所述信号输出接口154与所述动力组件17电性连接。
所述主控制器16用于提取所述陀螺仪121、所述角速度计122、所述磁场感应器131和所述GPS定位单元132的各个工作数据。所述主控制器16还用于控制所述动力组件17。
可以理解的是,所述主控制器16也可根据实际需求而设置,并不限于本实施例。
本实施例中,所述动力组件17包括多个驱动电机171。本实施例中,每个所述驱动电机171均电性连接至一电子调速器(电调)。每个电子调速器电性连接至所述主控制器16。所述电调用于接收所述主控制器16的控制信号,并控制驱动电机171的转速。
本实施例中,所述水样检测器20为一便携式多参数水质检测仪,其可以检测水质的参数包括:溶解氧、氯离子、pH,ORP,TDS,电导率,溶解氧,浊度,COD,TOC,余氯,二氧化氯,硬度,挥发酚,氨氮,总磷,总氮,氟化物,氰化物,铬锰等金属离子,磷酸盐,硫酸盐,硝酸盐,表面活性剂,色度,吸光度等。
本实施例中,所述升降装置30包括一旋转滚动件31、以及一连接绳32。所述旋转滚动件31为一驱动轮。本实施例中,所述连接绳32采用硬质软管制成。所述连接绳32设置于所述旋转滚动件31与所述水样检测器20之间。
可以理解的是,在其他实施例中,所述升降装置30也可以为其他结构设计,只要能带动所述水样检测器20相对所述无人机10升降即可,并不限于本实施例。
请参阅图3,本发明第一实施方式提供的水样检测方法,其包括以下步骤:
S101:所述无人机100飞抵欲检测地点;
本实施例中,所述无人机100上的信号接收/发射器15接收所述便携式电子装置200发送的欲采样地点的位置信息。具体地,所述便携式电子装置200通过wi-fi技术、NFC技术或无线通讯网络(3G、4G、5G网络)等与所述无人机100的信号接收/发射器15之间无线连接。所述便携式电子装置200显示有一卫星地图,操作者可在卫星地图上选取欲采样地点或者输入欲采样地点,所述便携式电子装置200将该选取欲采样地点的位置信息发送至所述无人机100的信号接收/发射器15。所述信号接收/发射器15接收到所述欲采样地点的位置信息后,发送至所述主控制器16。所述主控制器16基于所述定位组件13的所述GPS定位单元132定位的所述无人机100的当前位置和所述信号接收器15接收到所述欲采样地点的位置信息,控制所述无人机100自主飞抵欲采样地点。
可以理解的是,所述无人机100飞抵欲采样地点的方式并不限于本实施方式,在其他实施例中,所述无人机100也可通过一遥控器操控飞抵欲采样地点。所述遥控器与所述信号接收/发射器15之间无线连接,所述信号接收器15接收所述遥控器的遥控控制信号。
在本实施例中,所述无人机100包括一电池(图未示),用于为所述无人机100的动力组件17提供电能,所述无人机100可以挂设不同型号的水样检测器20。起飞前,操作者可以在所述便携式电子装置200上输入所述水样检测器20的型号,所述无人机100会基于计算自身携带的电池的电量、所述水样检测器20的重量、以及所述无人机100的起飞点至欲检测地点之间的距离和采样地点与返航点之间的距离计算所述无人机10的剩余电量能否使所述无人机飞抵欲检测地点并在采取到水样后飞抵所述预定点,只有当剩余电量可以使所述无人机100飞抵欲检测地点并在检测到水样后飞抵所述预定点时,所述无人机100才能起飞,否则禁止起飞。所述无人机10会将此信息发送至所述便携式电子装置200并通过所述便携式电子装置200提示操作者。
在其他实施方式中,也可以是在起飞前计算所述无人机10的剩余电量,当剩余电量无法使所述无人机10飞抵所述欲检测点时,禁止起飞。
S102:获取欲检测水样的深度,所述欲检测水样的深度发送于一便携式电子装置,或者为一预设的默认值;
如上所述,所述便携式电子装置200与所述无人机100的信号接收/发射器15之间无线连接,操作者可以在所述便携式电子装置200上输入欲检测水样的深度值,并输出发送至所述信号接收/发射器15。可以理解的是,在其他实施方式中,所述欲检测水样的深度也可以为一预设的默认值(如水下0.4米至1米,优选为0.5米),其存储在所述存储器14中。
S103:基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离;
所述距离传感器133测量出所述无人机100离水平面的距离,所述主控制器16基于所述无人机100离水平面以及欲检测水样的深度计算所述水样检测器20欲降落的距离。
S104:控制所述水样检测器降落至预定深度,所述水样检测器检测水样,将检测结果发送至一地面站或所述便携式电子装置;
所述主控制器16根据所述水样检测器20欲降落的距离控制所述升降装置30带动所述水样检测器20降落至预定深度。具体地,所述主控制器16控制所述旋转滚动件31转动,以使所述连接绳32带动所述水样检测器20下降至水下预定深度。本实施例中,所述水样检测器20检测水样的过程,所述无人机100悬停,所述主控制器16只要读取所述距离传感器133测量所述无人机100抵达欲检测地点后悬停时刻离所述水平面的距离即可。在其他实施例中,所述水样获取器20抽取水样的过程也可在所述无人机100不悬停的情况下进行,所述主控制器16实时地读取所述距离传感器133测量的所述无人机100离水平面的距离,并通过实时控制所述旋转滚动件31转动,从而实时调整所述连接绳32带动所述水样检测器20下降至水下预定深度。所述检测结果可以存储至所述存储器14,所述信号接收/发射器15还用于将该检测结果发送至所述便携式电子装置200或地面站。可以理解的是,也可是在所述水样检测器20上设置直接设置一无线发射装置,所述检测结果也可以是通过该无线发射装置送至所述便携式电子装置200或地面站。
可以理解的是,在其他实施方式中,也可通过设置于所述无人机上的其他装置来控制所述旋转滚动件31转动,并不限于本实施例。
S105:所述无人机飞抵一返航点或飞抵下一个欲检测地点。
当完成检测水样后,所述无人机10飞抵返航点,所述返航点可以为在所述无人机100的起飞点或者在所述便携式电子装置200上显示的地图的返航点。
请参阅图4,本发明第二实施方式提供的水样检测方法,其包括以下步骤:
S201:所述无人机100a飞抵欲采样地点;
本实施例中,所述无人机100上的信号接收/发射器15接收所述便携式电子装置200发送的欲采样地点的位置信息。具体地,所述便携式电子装置200通过wi-fi技术、NFC技术或无线通讯网络等与所述无人机100的信号接收/发射器15之间无线连接。所述便携式电子装置200显示有一卫星地图,操作者可在卫星地图上选取欲采样地点或者输入欲采样地点,所述便携式电子装置200将该选取欲采样地点的位置信息发送至所述无人机100的信号接收/发射器15。所述信号接收/发射器15接收到所述欲采样地点的位置信息后,发送至所述主控制器16。所述主控制器16基于所述定位组件13的所述GPS定位单元132定位的所述无人机100的当前位置和所述信号接收/发射器15接收到所述欲采样地点的位置信息,控制所述无人机100自主飞抵欲采样地点。
可以理解的是,所述无人机100飞抵欲采样地点的方式并不限于本实施方式,在其他实施例中,所述无人机100也可通过一遥控器操控飞抵欲采样地点。所述遥控器与所述信号接收/发射器15之间无线连接,所述信号接收器15接收所述遥控器的遥控控制信号。
在本实施例中,所述无人机100包括一电池(图未示),用于为所述无人机100的动力组件17提供电能,所述无人机100可以挂设不同型号的水样检测器20。起飞前,操作者可以在所述便携式电子装置200上输入所述水样检测器20的型号,所述无人机100会基于计算自身携带的电池的电量、所述水样检测器20的重量、以及所述无人机100的起飞点至欲检测地点之间的距离和采样地点与返航点之间的距离计算所述无人机10的剩余电量能否使所述无人机飞抵欲检测地点并在采取到水样后飞抵所述预定点,只有当剩余电量可以使所述无人机100飞抵欲检测地点并在检测到水样后飞抵所述预定点时,所述无人机100才能起飞,否则禁止起飞。所述无人机10会将此信息发送至所述便携式电子装置200并通过所述便携式电子装置200提示操作者。
在其他实施方式中,也可以是在起飞前计算所述无人机10的剩余电量,当剩余电量无法使所述无人机10飞抵所述欲检测点时,禁止起飞。
S202:无人机降落或上升至离水面距离为一预设的第一高度的位置后,控制所述水样检测器20降落一预设的第一降落值,以使所述水样检测器到达欲检测水样的深度,所述欲检测水样的深度为一预设值,所述第一降落高值等于所述第一高度与所述欲检测水样的深度之和;
所述无人机100飞抵欲采样地点后,所述无人机100悬停于离水面的第一高度处,具体地,当所述无人机100飞抵欲检测地点时,高度高于第一高度时则降落至所述第一高度处,反之则上升至第一高度处,随后所述主控制器16控制所述旋转滚动件31转动,以使所述连接绳32带动所述水样检测器20降落一预设的第一降落值,以使所述水样检测器20到达欲检测水样的深度,所述欲检测水样的深度为一预设值,所述第一降落高值等于所述第一高度与所述欲检测水样的深度之和,以使所述水样检测器20能够精准地降落至欲检测水样的深度。本实施例中,所述第一高度值、所述欲检测的所述预设值和所述第一降落值均存储于所述存储器14。
S203:所述水样检测器20检测水样,将检测结果发送至一地面站或所述便携式电子装置;
所述水样检测器20检测出水质的检测结果后,所述检测结果可以存储至所述存储器14,所述信号接收/发射器15还用于将该检测结果发送至所述便携式电子装置200或地面站。可以理解的是,也可是在所述水样检测器20上设置直接设置一无线发射装置,所述检测结果也可以是通过该无线发射装置送至所述便携式电子装置200或地面站。
S204:所述无人机10a飞抵一返航点或飞抵下一个欲检测地点。
当完成检测水样后,所述无人机10飞抵返航点,所述返航点可以为在所述无人机100的起飞点或者在所述便携式电子装置200上显示的地图的返航点。
请参阅图5,为本发明第二实施方式提供的水样检测系统100a,该第二实施方式的水样检测系统100a与第一实施方式的水样检测系统100的结构相似,其不同之于在于:所述无人机10a上设置有一浮板40。本实施例中,所述浮板40固设于所述脚架112上,所述浮板40开设有一贯穿口,用于使所述水样检测器20a通过。设置所述浮板40,所述无人机10a飞抵所述欲检测地点后,所述无人机10a可通过所述浮板40漂浮于水面。本实施方式中,由于所述无人机10a漂浮于水面,因此,可避免所述水样检测器20a在空中降落时由于风的影响而晃动,降低所述水样检测器20a由于晃动而损坏的风险。
可以理解的是,所述浮板40也可通过一连接件,如支撑架而连接于所述无人机10a,并不限于本实施例。
请参阅图6,本发明第三实施方式提供的水样检测方法,其包括以下步骤:
S301:所述无人机10a飞抵欲采样地点;
S302:所述无人机10a通过浮板40漂浮于水面;
所述无人机10a离水平面的距离为零。
S303:获取欲检测水样的深度,所述欲检测水样的深度发送于一便携式电子装置,或者为一预设的默认值;
S304:基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离;
S305:控制所述水样检测器降落至预定深度,所述水样检测器检测水样,并将检测结果发送至一地面站或所述便携式电子装置;
S306:所述无人机10a飞抵一返航点或飞抵下一个欲检测地点。
请参阅图7,为本发明第三实施方式提供的水样检测系统100b,该第三实施方式的水样检测系统100b与第二实施方式的水样检测系统100a的结构相似,其不同之于在于:所述无人机10b的浮板40b上设置有一抽水泵50、一蓄水池60、一第一连接管70、一第二连接管80、和一滤嘴90。所述水样检测器20b设置于所述蓄水池60内且与所述主控制器电性连接。所述抽水泵50与所述蓄水池60之间通过所述第一连接管70连接。所述第二连接管80的一端连接于所述抽水泵50,另一端连接所述滤嘴90。本实施例中,所述抽水泵50为蠕动泵。所述第一连接管70和所述第二连接管80均为硅胶管。所述第二连接管80的长度等于欲检测水样的深度。所述滤嘴90用于过滤杂质。所述蓄水池60开设有一出水口601,用于使水溢出,以保证水质新鲜。
所述水样检测器20b与所述无人机10b的主控制器电性连接。所述水样检测器20b将检测结果发送至所述无人机10b,所述无人机10b接收检测结果后再发送至所述便携式电子装置200b或地面站。
可以理解的是,也可是在所述水样检测器20b上设置直接设置一无线发射装置,所述检测结果也可以是通过该无线发射装置送至所述便携式电子装置200b或地面站。
本实施例中,所述抽水泵50将水抽到蓄水池60内,而所述水样检测器20b直接对蓄水池60内的水进行检测,从而可避免所述水样检测器20b伸入至水面以下被礁石碰撞损坏的问题。
本实施例中,所述浮板40b固设于所述脚架112b上,在其他实施例中,所述浮板40b也可通过一升降装置连接于所述无人机10b,所述升降装置降落所述浮板40b,以使所述浮板40b浮在水面上。
请参阅图8,本发明第四实施方式提供的水样检测方法,其包括以下步骤:
S401:所述无人机10b飞抵欲采样地点;
S402:所述水样采集器20b抽取水样;
当所述浮板40b固设于所述脚架112b时,所述无人机10b基于所述无人机10b离水平面的距离降落使所述浮板40b浮在水面上。所述抽水泵50抽取水样至所述蓄水池60。而当所述浮板40b也可通过一升降装置连接于所述无人机10b时,所述水样采集器抽取水样通过以下步骤完成:
基于所述无人机10b离水平面的距离,所述无人机10b控制升降装置降落所述浮板40b,以使所述浮板40b浮在水面上,所述抽水泵50抽取水样至所述蓄水池60。
S403:所述水样检测器20b对所述水样采集器抽取的水样进行检测;
所述水样检测器20b对蓄水池60内的水质进行检测;
S404:将检测结果发送至一地面站或一便携式电子装置200b;
S405:所述无人机10b飞抵一返航点或飞抵下一个欲检测地点。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (63)

  1. 一种基于无人机的水样检测方法,所述无人机上设置有一水样检测器,其包括以下步骤:
    飞抵欲检测地点;
    获取欲检测水样的深度,所述欲检测水样的深度发送于一便携式电子装置,或者为一预设的默认值;
    基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离;
    控制所述水样检测器降落至预定深度,所述水样检测器检测水样,并将检测结果发送至一地面站或所述便携式电子装置。
  2. 如权利要求1所述的水样检测方法,其特征在于:所述方法进一步包括一步骤:无人机接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点。
  3. 如权利要求2所述的水样检测方法,其特征在于:所述欲采样地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲采样地点或者输入欲采样地点,所述便携式电子装置将该选取欲采样地点的位置信息发送至所述无人机。
  4. 如权利要求1所述的水样检测方法,其特征在于:所述无人机通过一遥控器操控飞抵欲采样地点。
  5. 如权利要求1所述的水样检测方法,其特征在于:在所述便携式电子内输入一欲检测水样的深度值后,所述便携式电子装置输出所述欲检测水样的深度值,并发送至所述无人机。
  6. 如权利要求1所述的水样检测方法,其特征在于:所述无人机上设置有一浮板,所述无人机飞抵所述欲检测地点后,所述无人机通过所述浮板漂浮于水面,所述无人机离水平面的距离为零。
  7. 如权利要求1所述的水样检测方法,其特征在于:所述预设的默认值为水下0.4米至1米。
  8. 如权利要求1所述的水样检测方法,其特征在于:所述无人机离水平面的距离通过所述无人机上的距离传感器测量。
  9. 如权利要求8所述的水样检测方法,其特征在于:所述距离传感器为超声波传感器或气压计。
  10. 如权利要求1所述的水样检测方法,其特征在于:所述无人机上设置有一用于使所述水样检测器相对所述无人机可升降的升降装置,所述无人机控制所述升降装置带动所述水样检测器降落至预定深度。
  11. 如权利要求1所述的水样检测方法,其特征在于:所述方法进一步包括一步骤:所述无人机飞抵一返航点或飞抵下一个欲检测地点。
  12. 如权利要求1所述的水样检测方法,其特征在于:进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
  13. 如权利要求1所述的水样检测方法,其特征在于:进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
  14. 如权利要求1所述的水样检测方法,其特征在于:所述无人机与所述地面站或所述便携式电子装置之间通过3G网络、4G网络、5G网络、WI-FI、或NFC实现通讯。
  15. 如权利要求1所述的水样检测方法,其特征在于:当获取欲检测水样的深度为预设的默认值时,无人机降落或上升至离水面距离为一预设的第一高度的位置后,控制所述水样检测器降落一预设的第一降落值,以使所述水样检测器到达欲检测水样的深度,所述第一降落高值等于所述第一高度与所述欲检测水样的深度之和。
  16. 一种无人机,其用于检测水样,其特征在于:所述无人机上设置有一可相对无人机升降且用于检测水样的水样检测器,所述无人机用于携带所述水样检测器飞抵欲采样地点,获取欲检测水样的深度,并基于所述无人机离水平面的距离以及欲检测水样的深度计算所述水样检测器欲降落的距离,以及控制所述水样检测器降落至预定深度,其中,所述欲采集水样的深度发送于一便携式电子装置,或者为一预设的默认值。
  17. 如权利要求16所述的无人机,其特征在于:所述无人机包括一信号接收/发射器,用于接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点,所述信号接收/发射器还用于将检测结果发送至所述便携式电子装置或一地面站。
  18. 如权利要求17所述的无人机,其特征在于:所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子内输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述信号接收/发射器。
  19. 如权利要求17所述的无人机,其特征在于:所述信号接收/发射器还用于接收遥控器的控制信号,所述无人机通过所述遥控器操控飞抵欲检测地点。
  20. 如权利要求18所述的无人机,其特征在于:当所述欲检测水样的深度输入至所述便携式电子装置后,所述便携式电子装置输出所述欲检测水样的深度值,并发送至所述信号接收/发射器。
  21. 如权利要求16所述的无人机,其特征在于:所述无人机上设置有一浮板,所述无人机飞抵所述欲检测地点后,所述无人机通过所述浮板漂浮于水面,所述无人机离水平面的距离为零。
  22. 如权利要求16所述的无人机,其特征在于:所述默认值为水下0.4米至1米。
  23. 如权利要求16所述的无人机,其特征在于:所述无人机上安装有一距离传感器,离水平面的距离通过所述距离传感器测量。
  24. 如权利要求22所述的无人机,其特征在于:所述距离传感器为超声波传感器或气压计。
  25. 如权利要求16所述的无人机,其特征在于:所述无人机上设置有一用于使所述水样检测器相对所述无人机可升降的升降装置,所述无人机控制所述升降装置带动所述水样检测器降落至预定深度。
  26. 如权利要求25所述的无人机,其特征在于:所述升降装置包括一旋转滚动件、以及一连接绳,所述无人机控制旋转滚动件转动,以使所述连接绳带动所述水样检测器相对所述无人机升降。
  27. 如权利要求26所述的无人机,其特征在于:所述连接绳为硬胶材料制成。
  28. 如权利要求16所述的无人机,其特征在于:所述无人机进一步包括一存储器,所述水样检测器检测的结果存储在所述存储器内。
  29. 如权利要求28所述的无人机,其特征在于:所述无人机还用于将存储在所述存储器内的检测结果通过3G网络、4G网络、5G网络、WI-FI、或NFC传送至所述地面站或所述便携式电子装置。
  30. 如权利要求16所述的无人机,其特征在于:所述无人机实时地将所述水样检测器检测的结果发送至所述便携式电子装置或一地面站;或者所述水样检测器实时地将检测的结果发送至所述便携式电子装置或所述地面站。
  31. 如权利要求16所述的无人机,其特征在于:所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
  32. 如权利要求16所述的无人机,其特征在于:所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
  33. 一种基于无人机的水样检测方法,所述无人机上设置有一水样采集器和一水样检测器,其包括以下步骤:
    飞抵欲采样地点;
    所述水样采集器抽取水样;
    所述水样检测器对所述水样采集器抽取的水样进行检测;
    将检测结果发送至一地面站或一便携式电子装置。
  34. 如权利要求33所述的水样检测方法,其特征在于:所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板连接于所述无人机,所述水样采集器抽取水样通过以下步骤完成:
    基于所述无人机离水平面的距离,无人机降落使所述浮板浮在水面上;
    所述抽水泵抽取水样至所述蓄水池。
  35. 如权利要求34所述的水样检测方法,其特征在于:所述水样检测器对所述水样采集器抽取的水样进行检测通过以下步骤完成:
    所述水样检测器对所述蓄水池内的水样进行检测。
  36. 如权利要求34所述的水样检测方法,其特征在于:将检测结果发送至一地面站或一便携式电子装置通过以下步骤完成:
    所述水样检测器将检测结果发送至所述无人机,所述无人机再将检测结果发送至所述地面站或所述便携式电子装置;或者所述水样检测器直接将检测结果发送至所述地面站或所述便携式电子装置。
  37. 如权利要求33所述的水样检测方法,其特征在于:所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板通过一升降装置连接于所述无人机,所述水样采集器抽取水样通过以下步骤完成:
    基于所述无人机离水平面的距离,所述升降装置降落所述浮板,以使所述浮板浮在水面上;
    所述抽水泵抽取水样至所述蓄水池。
  38. 如权利要求33所述的水样检测方法,其特征在于:所述方法进一步包括一步骤:所述无人机飞抵一返航点或飞抵下一个欲检测地点。
  39. 如权利要求33所述的水样检测方法,其特征在于:进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
  40. 如权利要求33所述的水样检测方法,其特征在于:进一步包括一步骤:在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
  41. 如权利要求33所述的水样检测方法,其特征在于:进一步包括一步骤:无人机接收欲采样地点的位置信息,而所述无人机根据欲采样地点的位置信息自主飞抵欲采样地点。
  42. 如权利要求41所述的水样检测方法,其特征在于:所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子装置上输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述无人机。
  43. 如权利要求33所述的水样检测方法,其特征在于:所述无人机通过一遥控器操控飞抵欲采样地点。
  44. 如权利要求33所述的水样检测方法,其特征在于:所述无人机离水平面的距离通过所述无人机上的距离传感器测量。
  45. 如权利要求44所述的水样检测方法,其特征在于:所述距离传感器为超声波传感器或气压计。
  46. 一种无人机,其用于检测水样,其特征在于:所述无人机上设置有一水样采集器和一水样检测器,所述无人机用于携带所述水样采集器和所述水样检测器飞抵欲检测地点,所述水样采集器用于抽取水样,所述水样检测器用于对所述水样采集器抽取的水样进行检测,所述无人机或所述水样检测器将检测结果发送至一地面站或一便携式电子装置。
  47. 如权利要求46所述的无人机,其特征在于:所述水样采集器包括一浮板、一抽水泵、一蓄水池、一第一连接管和一第二连接管,所述抽水泵和所述蓄水池设置于所述浮板上,所述水样检测器设置于所述蓄水池内,所述抽水泵与所述蓄水池之间通过第一连接管连接,所述第二连接管的一端连接于所述抽水泵,所述浮板连接于所述无人机,所述浮板用于使所述水样采集器浮在水面上,所述抽水泵用于抽取水样至所述蓄水池,所述水样检测器对所述蓄水池内的水样进行检测。
  48. 如权利要求47所述的无人机,其特征在于:所述抽水泵为蠕动泵。
  49. 如权利要求47所述的无人机,其特征在于:所述蓄水池开设有一出水口。
  50. 如权利要求47所述的无人机,其特征在于:所述第一连接管和所述第二连接管均为硅胶管。
  51. 如权利要求47所述的无人机,其特征在于:所述第二连接管的另一端设有一滤嘴。
  52. 如权利要求46所述的无人机,其特征在于:所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
  53. 如权利要求46所述的无人机,其特征在于:所述无人机包括一信号接收/发射器,用于接收欲检测地点的位置信息,而所述无人机根据欲检测地点的位置信息自主飞抵欲采样地点。
  54. 如权利要求53所述的无人机,其特征在于:所述欲检测地点的地址信息发送于所述便携式电子装置,所述便携式电子装置显示有一卫星地图,可在卫星地图上选取欲检测地点或者在所述便携式电子内输入欲检测地点,所述便携式电子装置将该选取的欲检测地点的位置信息发送至所述信号接收/发射器。
  55. 如权利要求53所述的无人机,其特征在于:所述信号接收/发射器还用于接收遥控器的控制信号,所述无人机通过所述遥控器操控飞抵欲检测地点。
  56. 如权利要求46所述的无人机,其特征在于:所述无人机上安装有一距离传感器。
  57. 如权利要求56所述的无人机,其特征在于:所述距离传感器为超声波传感器或气压计。
  58. 如权利要求47所述的无人机,其特征在于:所述水样采集器通过一升降装置连接于所述无人机,所述升降装置包括至少一旋转滚动件、以及至少一连接绳,所述无人机控制旋转滚动件转动,以使所述连接绳带动所述水样检测器相对所述无人机升降,以使所述浮板漂浮于所述水平面。
  59. 如权利要求47所述的无人机,其特征在于:所述水样采集器固定连接于所述无人机的一脚架上。
  60. 如权利要求46所述的无人机,其特征在于:所述无人机进一步包括一存储器,所述水样检测器检测的结果存储在所述存储器内。
  61. 如权利要求60所述的无人机,其特征在于:所述无人机还用于将存储在所述存储器内的检测结果通过3G网络、4G网络、5G网络、WI-FI、或NFC传送至所述地面站或所述便携式电子装置。
  62. 如权利要求46所述的无人机,其特征在于:所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机检测到水样后飞抵所述返航点时,禁止起飞。
  63. 如权利要求46所述的无人机,其特征在于:所述无人机还用于在起飞前计算所述无人机的剩余电量,当剩余电量无法使所述无人机飞抵所述欲检测点时,禁止起飞。
PCT/CN2014/092576 2014-11-28 2014-11-28 无人机及其水样检测方法 WO2016082219A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/092576 WO2016082219A1 (zh) 2014-11-28 2014-11-28 无人机及其水样检测方法
JP2016559575A JP6340433B2 (ja) 2014-11-28 2014-11-28 無人機およびその水試料検出方法
CN201480065073.7A CN105874397A (zh) 2014-11-28 2014-11-28 无人机及其水样检测方法
US15/604,894 US10338608B2 (en) 2014-11-28 2017-05-25 Unmanned aerial vehicle and water sampling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092576 WO2016082219A1 (zh) 2014-11-28 2014-11-28 无人机及其水样检测方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/604,894 Continuation US10338608B2 (en) 2014-11-28 2017-05-25 Unmanned aerial vehicle and water sampling method thereof

Publications (1)

Publication Number Publication Date
WO2016082219A1 true WO2016082219A1 (zh) 2016-06-02

Family

ID=56073409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092576 WO2016082219A1 (zh) 2014-11-28 2014-11-28 无人机及其水样检测方法

Country Status (4)

Country Link
US (1) US10338608B2 (zh)
JP (1) JP6340433B2 (zh)
CN (1) CN105874397A (zh)
WO (1) WO2016082219A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340154A (zh) * 2016-12-16 2017-11-10 常州市环境监测中心 一种用于水体采样的设备及其工作方法
CN107621391A (zh) * 2017-10-18 2018-01-23 深圳国技仪器有限公司 抗风环境大气采样飞行器
WO2018168564A1 (ja) * 2017-03-12 2018-09-20 株式会社ナイルワークス 圃場の水深測定用ドローン
CN108613841A (zh) * 2018-07-07 2018-10-02 华川技术有限公司 无人机载自动水质采样器
JP2018176905A (ja) * 2017-04-07 2018-11-15 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法
CN109724829A (zh) * 2019-02-22 2019-05-07 韩煦阳 一种便携式生物样本取样装置
CN109738602A (zh) * 2018-12-12 2019-05-10 河南科技学院 一种水域污染的预警系统及方法
CN112389657A (zh) * 2020-10-30 2021-02-23 南华大学 基于无人机平台的抛投式取液装置
JP2021049985A (ja) * 2020-12-11 2021-04-01 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874397A (zh) * 2014-11-28 2016-08-17 深圳市大疆创新科技有限公司 无人机及其水样检测方法
US10131429B2 (en) * 2015-11-02 2018-11-20 Lockheed Martin Corporation Method and systems of autonomously picking up water in support of fire fighting missions
CN107300486A (zh) * 2017-08-11 2017-10-27 上海拓攻机器人有限公司 一种基于无人机的水质采样方法及系统
CN107651181B (zh) * 2017-10-18 2023-07-25 深圳国技仪器有限公司 漂浮式湖泊采水飞行器
CN108072543A (zh) * 2017-12-07 2018-05-25 浙江省化工工程地质勘察院 一种水利水体质量综合监测系统及方法
KR102063888B1 (ko) * 2018-01-23 2020-01-08 주식회사 유비마이크로 드론에 결합 가능한 채수 장치
CN108445172A (zh) * 2018-01-31 2018-08-24 南京俊全科技有限公司 一种基于无人机的水质检测采样系统和采样方法
CN111566010A (zh) * 2018-02-28 2020-08-21 株式会社尼罗沃克 提高防呆性的农业用无人机
CN112384442A (zh) * 2018-11-09 2021-02-19 乐天株式会社 无人飞行器
EP3977167A4 (en) * 2019-05-30 2023-06-21 Woolpert, Inc. AIRBORNE TOPOGRAPHIC AND BATHYMETRIC LIDAR SYSTEMS AND ASSOCIATED METHODS
GB2586125B (en) * 2019-08-01 2023-01-25 Animal Dynamics Ltd A flight control system
CN110758737B (zh) * 2019-10-31 2020-11-27 乐清市路航电气有限公司 一种水陆两栖的采样检测无人机
CN111896323A (zh) * 2020-07-03 2020-11-06 江立 一种农田灌溉水渠的采样车
CN112776984A (zh) * 2021-03-15 2021-05-11 国网新疆电力有限公司巴州供电公司 无人机定点投掷装置
CN113917104B (zh) * 2021-10-15 2022-08-09 中国农业大学 利用带绞盘无人机的空地一体化海水养殖水质监测方法
CN114235501B (zh) * 2021-12-17 2024-01-09 高晓霞 一种环境工程保护类自动提取检测装置
CN116952880B (zh) * 2023-08-07 2024-03-15 江苏省环境科学研究院 一种适用于多种介质的检测系统及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591355A (zh) * 2012-02-24 2012-07-18 山东电力研究院 无人机电力巡线安全距离检测方法
CN103235602A (zh) * 2013-03-25 2013-08-07 山东电力集团公司电力科学研究院 一种电力巡线无人机自动拍照控制设备及控制方法
CN103543751A (zh) * 2013-09-12 2014-01-29 深圳市大疆创新科技有限公司 无人飞行器的控制装置及无人飞行器
US20140146303A1 (en) * 2011-06-30 2014-05-29 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
CN104155297A (zh) * 2014-08-11 2014-11-19 江苏恒创软件有限公司 一种基于无人机的工业水体污染源检测方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748867A (en) * 1971-11-10 1973-07-31 B Hamri Apparatus to obtain fresh water from moisture containing air
JPS5587073A (en) * 1978-12-25 1980-07-01 Mitsuru Sekioka Observing method by radiozonde mounted on flying object possible for stop in air and its unit
US20170313332A1 (en) * 2002-06-04 2017-11-02 General Electric Company Autonomous vehicle system and method
US20160286128A1 (en) * 2002-10-01 2016-09-29 Dylan TX ZHOU Amphibious vtol super drone camera in a mobile case (phone case) with multiple aerial and aquatic flight modes for capturing panoramic virtual reality views, selfie and interactive video
US6809648B1 (en) * 2002-11-26 2004-10-26 University Corporation For Atmospheric Research Aerial sampler system
US7343232B2 (en) * 2003-06-20 2008-03-11 Geneva Aerospace Vehicle control system including related methods and components
US9023410B2 (en) * 2005-10-21 2015-05-05 Allen Szydlowski Method and system for recovering and preparing glacial water
US20070276552A1 (en) * 2006-02-24 2007-11-29 Donald Rodocker Underwater crawler vehicle having search and identification capabilities and methods of use
US20100005857A1 (en) * 2006-04-28 2010-01-14 Rowan University Interactive mobile aquatic probing and surveillance system
JP4404943B1 (ja) * 2008-11-27 2010-01-27 コデン株式会社 無人ボート自動観測システムおよび無人ボート自動観測方法
CN101592649A (zh) * 2009-05-27 2009-12-02 深圳市华测检测技术股份有限公司 一种可远程遥控自导航水质采样分析装置
CN101866180A (zh) * 2010-06-23 2010-10-20 清华大学 一种飞行控制系统
US20120289103A1 (en) * 2010-09-24 2012-11-15 Edison Thurman Hudson Unmanned Underwater Vehicle
CN102120088B (zh) * 2011-01-28 2012-08-22 深圳市格兰之特科技有限公司 一种飞行玩具状态检测与安全控制的系统与方法
CN102407925B (zh) * 2011-09-07 2013-12-25 俞少平 一种无人水样采样艇
DE102011116613A1 (de) * 2011-10-20 2013-04-25 Atlas Elektronik Gmbh Unbemanntes Unterwasserfahrzeug und Verfahren zum Lokalisieren und Untersuchen eines am Gewässergrund eines Gewässers angeordenten Objekts sowie System mit dem unbemannten Unterwasserfahrzeug
US10049278B2 (en) * 2012-09-19 2018-08-14 Botsitter, Llc Method and system for remote monitoring, care and maintenance of animals
US9423522B2 (en) * 2012-12-11 2016-08-23 Westerngeco L.L.C. Communication systems for water vehicles
US8909391B1 (en) * 2012-12-28 2014-12-09 Google Inc. Responsive navigation of an unmanned aerial vehicle to a remedial facility
US9580172B2 (en) * 2013-09-13 2017-02-28 Sandia Corporation Multiple environment unmanned vehicle
GR20130100619A (el) * 2013-10-25 2015-05-18 Ιωαννης Γεωργιου Μικρος Μικρη πτηνομορφη πτητικη συσκευη και εφαρμογες
CN203601574U (zh) * 2013-12-04 2014-05-21 广州地理研究所 一种单旋翼电动无人机平衡调节装置
US9606028B2 (en) * 2014-02-14 2017-03-28 Nutech Ventures Aerial water sampler
US9643722B1 (en) * 2014-02-28 2017-05-09 Lucas J. Myslinski Drone device security system
CN103809600B (zh) * 2014-03-04 2016-08-17 北京航空航天大学 一种无人飞艇的人机交互控制系统
CN103869255B (zh) * 2014-03-18 2016-06-15 南京航空航天大学 微小型电动无人机续航时间估算方法
US9262929B1 (en) * 2014-05-10 2016-02-16 Google Inc. Ground-sensitive trajectory generation for UAVs
CN103983474A (zh) * 2014-05-16 2014-08-13 哈尔滨工程大学 一种水质采样多旋翼飞行器
US20160221683A1 (en) * 2014-05-19 2016-08-04 Google Inc. Hybrid Power Systems for Vehicle with Hybrid Flight Modes
JP6062079B2 (ja) * 2014-05-30 2017-01-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人型航空輸送機(uav)の動作を制御するための制御器および方法ならびに乗り物
WO2015187743A1 (en) * 2014-06-02 2015-12-10 California Institute Of Technology Controllable buoys and networked buoy systems
US9817396B1 (en) * 2014-06-09 2017-11-14 X Development Llc Supervisory control of an unmanned aerial vehicle
US20160376000A1 (en) * 2014-07-10 2016-12-29 Christoph Kohstall Submersible unmanned aerial vehicles and associated systems and methods
CN104122117A (zh) * 2014-08-06 2014-10-29 青岛理工大学 一种基于多旋翼无人机的河流湖泊水样自动控制采集系统
DE102014111649A1 (de) * 2014-08-14 2016-02-18 Thyssenkrupp Ag Unterwasserfahrzeug, Verfahren zum Aufnehmen einer Last vom Meeresgrund und ein Verfahren zum Absetzen einer Last am Meeresgrund
US9665094B1 (en) * 2014-08-15 2017-05-30 X Development Llc Automatically deployed UAVs for disaster response
US9174733B1 (en) * 2014-08-28 2015-11-03 Google Inc. Payload-release device and operation thereof
US10195629B1 (en) * 2014-09-12 2019-02-05 Working Drones, Inc. System, mobile base station and umbilical cabling and tethering (UCAT) apparatus
CN111913494B (zh) * 2014-10-31 2023-10-17 深圳市大疆创新科技有限公司 用于遛宠物的系统和方法
CN105874397A (zh) * 2014-11-28 2016-08-17 深圳市大疆创新科技有限公司 无人机及其水样检测方法
US9440718B1 (en) * 2015-04-17 2016-09-13 Rujing Tang System and methods of using unmanned underwater vehicles (UUVs) along with tethers and tethered devices
US10023323B1 (en) * 2015-04-29 2018-07-17 X Development Llc Estimating wind from an airborne vehicle
US11112799B2 (en) * 2015-05-25 2021-09-07 Skimdevil Pure LLC Intelligent solar powered pool skimming robot
EP3875366A1 (en) * 2015-07-02 2021-09-08 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle, control system and method therefor, and landing control method for unmanned aerial vehicle
US10054104B1 (en) * 2015-07-24 2018-08-21 AJC Innovations, LLC Autonomous underwater beacon locator
US10131428B1 (en) * 2016-02-18 2018-11-20 Wing Aviation Llc Inflatable packaging for use with UAV
CN109074090A (zh) * 2016-02-29 2018-12-21 深圳市大疆创新科技有限公司 无人机硬件架构
US10467908B2 (en) * 2016-04-08 2019-11-05 Sea Machines Robotics, Inc. Autonomous boat design for tandem towing
US9791862B1 (en) * 2016-04-25 2017-10-17 Thayermahan, Inc. Systems and method for unmanned undersea sensor position, orientation, and depth keeping
US20170364924A1 (en) * 2016-06-15 2017-12-21 James Duane Bennett Mobile units for furnishing, repairing and refurbishing residences
EP3604712B1 (en) * 2016-09-13 2021-11-17 Maytronics Ltd. Pool cleaning robot
WO2018071727A1 (en) * 2016-10-12 2018-04-19 Aker Technologies, Inc. System for monitoring crops and soil conditions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140146303A1 (en) * 2011-06-30 2014-05-29 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
CN102591355A (zh) * 2012-02-24 2012-07-18 山东电力研究院 无人机电力巡线安全距离检测方法
CN103235602A (zh) * 2013-03-25 2013-08-07 山东电力集团公司电力科学研究院 一种电力巡线无人机自动拍照控制设备及控制方法
CN103543751A (zh) * 2013-09-12 2014-01-29 深圳市大疆创新科技有限公司 无人飞行器的控制装置及无人飞行器
CN104155297A (zh) * 2014-08-11 2014-11-19 江苏恒创软件有限公司 一种基于无人机的工业水体污染源检测方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107340154B (zh) * 2016-12-16 2023-10-27 常州市环境监测中心 一种用于水体采样的设备及其工作方法
CN107340154A (zh) * 2016-12-16 2017-11-10 常州市环境监测中心 一种用于水体采样的设备及其工作方法
CN110392819B (zh) * 2017-03-12 2022-02-01 株式会社尼罗沃克 用于测量农场水深的无人机
WO2018168564A1 (ja) * 2017-03-12 2018-09-20 株式会社ナイルワークス 圃場の水深測定用ドローン
CN110392819A (zh) * 2017-03-12 2019-10-29 株式会社尼罗沃克 用于测量农场水深的无人机
JPWO2018168564A1 (ja) * 2017-03-12 2020-01-09 株式会社ナイルワークス 圃場の水深測定用ドローン
JP2018176905A (ja) * 2017-04-07 2018-11-15 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法
CN107621391A (zh) * 2017-10-18 2018-01-23 深圳国技仪器有限公司 抗风环境大气采样飞行器
CN108613841A (zh) * 2018-07-07 2018-10-02 华川技术有限公司 无人机载自动水质采样器
CN109738602A (zh) * 2018-12-12 2019-05-10 河南科技学院 一种水域污染的预警系统及方法
CN109724829B (zh) * 2019-02-22 2021-01-22 韩煦阳 一种便携式生物样本取样装置
CN109724829A (zh) * 2019-02-22 2019-05-07 韩煦阳 一种便携式生物样本取样装置
CN112389657A (zh) * 2020-10-30 2021-02-23 南华大学 基于无人机平台的抛投式取液装置
JP2021049985A (ja) * 2020-12-11 2021-04-01 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法
JP7053774B2 (ja) 2020-12-11 2022-04-12 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法

Also Published As

Publication number Publication date
JP6340433B2 (ja) 2018-06-06
JP2017520751A (ja) 2017-07-27
US20170261998A1 (en) 2017-09-14
US10338608B2 (en) 2019-07-02
CN105874397A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2016082219A1 (zh) 无人机及其水样检测方法
WO2016082218A1 (zh) 无人机及其水样采集方法
JP7226487B2 (ja) 制御装置および制御方法
US11237560B2 (en) Control device, imaging device, control method, imaging method, and computer program
ES2937394T3 (es) Método y aparato para localizar averías en tendidos aéreos de líneas eléctricas
WO2016049923A1 (en) System and method for data recording and analysis
WO2016019567A1 (en) Systems and methods for uav battery exchange
JP2016082441A (ja) 制御装置、制御方法及びコンピュータプログラム
WO2016078056A1 (en) Addressing method for functional modules of a movable object
US20200057454A1 (en) Unmanned aircraft
JPWO2015163107A1 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
JP6579767B2 (ja) 構造物の点検装置
WO2018101592A1 (ko) 무인 비행체 및 그 제어 방법
JP2010006089A (ja) ライフライン等の施設の被災、損傷、劣化状況の空撮装置
CN111551108B (zh) 测绘装置及方法
WO2016076463A1 (ko) 플라잉 봇의 제어 장치 및 제어 방법
JP2018199403A (ja) インフラ設備
JP2019081526A (ja) 無人飛行体の飛行方法、及び無人飛行体を利用した送電設備の点検方法
CN210479030U (zh) 可自主飞行的煤矿立井井壁裂痕巡检飞行器系统
CN115826596B (zh) 基于多旋翼无人机的智能火电厂烟囱巡检方法及系统
WO2012057392A1 (ko) 복수개의 카메라를 이용한 거리측정 시스템 및 그 방법
CN209766995U (zh) 配电网电缆通道巡检机器人
JP2018185255A (ja) 無人航空機
CN206819122U (zh) 一种无人机搭载的云台结构
US20210237709A1 (en) Moving Object and Method for Using Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906709

Country of ref document: EP

Kind code of ref document: A1